
Copyright © 2018 FIDO Alliance All Rights Reserved.

FIDO Alliance White Paper:
Hardware-backed Keystore
Authenticators (HKA) on Android 8.0 or
Later Mobile Devices
Enabling Any Relying Parties to Create FIDO UAF (1.1 or later) Client Apps

June 2018

Editors: Dr. Max Hata, NTT DOCOMO, Inc.
 Dr. Rolf Lindemann, Nok Nok Labs

https://fidoalliance.org/

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 2

Table of Contents
Audience 3

Summary 3

1. Introduction 4

2. Android Keystore and Key Attestation 5

2.1 Keystore 5

2.2 Key Attestation 5

2.3 Fingerprint Sensor 6

3. The Trend of Android Mobile Devices 6

4. Implementation of HKA using UAF 1.1 7

4.1 Architecture of UAF 1.1 HKAs 7

4.2 Implementation Notes 8

1) Client Side 8

2) Server Side 8

3) Conformance Test Tools 9

4.3 Implementation Options 9

5. Design Considerations 9

5.1 User Verification Index (UVI) for Fingerprint 9

5.2 Multiple Applications and AppID/FacetIDs 9

6. Advantages of HKA 11

1) Relying Parties 11

2) FIDO Ecosystem 11

3) End Users 11

4) Handset Vendors 11

7. Conclusions 12

8. Acknowledgements 12

9. References 13

10. Appendix 13

10.1 Appendix-A An Example of an Attestation Certificate Chain 13

10.2 Appendix-B Android CDD Relative to Key Attestation and Fingerprint Sensors 25

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 3

Audience
This paper is aimed at Relying Parties and Android application developers who are interested in developing or

deploying FIDO authentication systems that leverage the FIDO UAF protocol.

Summary
In 2017, Android 8.0 began supporting Android Keystore with hardware-backed key attestation which enables your

servers to verify provenance of the Keystore implementation. Almost all Android mobile devices (8.0 or later) now

support Keystore with key attestation and fingerprint sensors in hardware. This milestone allows Android mobile

device app developers and Relying Parties to build and deploy FIDO UAF authenticators without being dependent

on underlying UAF specific hardware. This is an epoch-making event to implement FIDO UAF authenticators since

Relying Parties (RPs) and app developers can enable such Android mobile devices to become secure FIDO UAF

authenticators by just adding applications. This paper introduces the details of such an implementation approach,

based on the first commercial deployment [4]. It takes advantage of Android Keystore with key attestation and

fingerprint sensors in hardware on standard off-the-shelf Android mobile devices. The first deployment of this

approach has been proven to work successfully in the ecosystem with all the other UAF devices based on the

conventional device implementation approach.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 4

1. Introduction
The typical way to develop secure authenticators on Android mobile devices (smartphones and tablets) is to use a

secure hardware-backed operating environment (referred to in this paper as a Restricted Operating Environment or

ROE). This includes technology such as a TEE (Trusted Execution Environment) that performs cryptographic and

other sensitive operations including digital signing and biometric data processing used to support FIDO

functionality. FIDO Alliance relies on its Authenticator Certification program to define authenticator security levels

based on such an ROE as Level 2. Using a ROE, a Level 2 authenticator defends against large scale attacks and OS

compromise.

Android Keystore allows app developers to store cryptographic keys in a container and use them in cryptographic

operations via APIs. Android also offers protection of fingerprint sensor data via a TEE, which allows for encryption

and cryptographic authentication.

In 2017, Android 8.0 was released. In addition to the Keystore and fingerprint sensor, Android 8.0 or later supports

key attestation in secure hardware1. “Key attestation affirms that a crypto key lives in secure hardware and has

specific characteristics [1]”. Google provides the root CA and certifies attestation keys. Thus, an application can

attest the provenance of the Keystore implementation as well as if it supports secure hardware. This is done by

examining the certificates provided through Android APIs.

UAF 1.1 supports Android key attestation among other attestation schemes; Android key attestation defined in UAF

1.1 complies with Android’s key attestation. One of the basic requirements for a FIDO Level 2 authenticator is that

it must support attestation. Android key attestation satisfies this requirement. Android Keystore implementations

with hardware-backed key attestation with fingerprint sensors could satisfy all the FIDO Level 2 authenticator

certification requirements and are referred to in this paper as “L2-candidate”.

Adding a small application to complement some functions that are necessary to perform as a UAF 1.1 authenticator

enables Android Keystore with hardware-backed key attestation and fingerprint sensor to become a secure FIDO

UAF 1.1 authenticator. In this paper, such an authenticator is called a “Hardware-backed Keystore Authenticator

(HKA)”.

HKAs are secure thanks to hardware-backed Keystore with Android key attestation and fingerprint sensor data

processing executed in a ROE, which is an L2-candidate.

Until HKAs became available, only handset vendors were able to develop and offer FIDO Level 2 UAF

authenticators for Android. Such authenticators require OS customization to support hardware-backed attestation

keys and the Full Basic Attestation2 defined in the UAF specifications. These implementations offer a strong

security level that can achieve FIDO Level 2 or higher. This document, however, does not go into the details of

such implementations as their customizations may differ from one handset vendor to another.

With HKAs, Relying Parties (RP) and application developers are now able to enable a standard off-the-shelf Android

(8.0 or later) mobile device with a fingerprint sensor to become a secure FIDO UAF 1.1 authenticator by adding a

small application leveraging the building blocks provided by the L2-candidate platform. No OS customization is

1 Before Android 8, Android 7 first started supporting key attestation primarily in software. Only a small number of

devices running Android 7 support hardware-backed key attestation [9] and therefore it is not relevant to this

white paper that is focused on hardware-backed key attestation.

2 Full Basic Attestation is one of the attestation flavors that FIDO UAF supports. It is based on an attestation

private key shared among a class of authenticators (e.g. same model). FIDO Servers verify the signature signed by

an attestation private key using a trust anchor which is the root certificate of the public attestation keys.

https://fidoalliance.org/certification/authenticator-certification-levels/

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 5

required, and RPs/app developers can now offer their own secure FIDO UAF authenticator instead of relying on

handset vendors to support the functionality.

The vast majority of coming Android mobile devices will be the target of HKAs because Android’s compliance

requirements mandate supporting key attestation and strongly recommends supporting fingerprint sensors.

All the essential building-blocks to develop a secure UAF authenticator are now provided by Android: Keystore for

cryptographic operations, key attestation and related certificates chaining up to the Google root CA, and

fingerprint sensors with secure processing in a TEE.

This white paper introduces the details of HKAs for UAF 1.1.

The first HKAs based on UAF 1.1 [4] have successfully been deployed for various services in the same way as all the

current FIDO UAF authenticators that were based on OS customization. HKAs are commercially proven to provide

the same quality, usability and security as those built with OS customizations.

2. Android Keystore and Key Attestation
This section gives an overview of the essential building-blocks in Android (8.0 or later) that enable HKAs.

2.1 Keystore

The Android Keystore[5] allows app developers to store cryptographic keys in a container and use them in

cryptographic operations through the KeyChain API or the Keystore API.

The Keystore keeps the key material out of the app's process space so the application cannot inadvertently reveal

it to the user.

Many Android devices also provide hardware-backed security for Keystore keys in secure hardware such as TEEs.

This keeps the key material out of the Android system entirely, and the key material cannot be leaked even by a

Linux kernel compromise.

To mitigate unauthorized use of keys on the device, Keystore lets applications specify authorized uses of their keys

when generating or importing the keys (e.g. fingerprint-based user verification). Once a key is generated or

imported, its authorizations cannot be changed. Authorizations are then enforced by the Keystore whenever the

key is used. Concerning the security of an HKA, this is how the trust relationship between the hardware-backed

Keystore and the application is ensured.

2.2 Key Attestation

Key attestation [1][2][3] allows the server to verify that the requested key lives in secure hardware, i.e., the

attestation signing key is protected by secure hardware such as TEEs and signing is performed in the secure

hardware. It also allows servers to verify that each use of the key is gated by user verification, preventing

unauthorized uses of the key.

The attestation statement is signed by an attestation key injected into the secure hardware at the factory.

Attestation statements are produced in the form of an X.509 certificate. Google provides the root CA and certifies

attestation keys to each vendor (Appendix-A shows an example of the attestation certificates). This satisfies the

basic requirements of FIDO Level 2 authenticators, i.e., operation contained in a ROE and also provides support for

attestation. The attestation signing keys must be shared across a large enough number (100,000 or more) of

devices to prevent the keys from being used as device identifiers. The last feature fulfills one of the key principles

of FIDO specifications, which is to protect users’ privacy.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 6

2.3 Fingerprint Sensor

Android 8.0 or later strongly recommends that Android mobile devices include a fingerprint sensor (7.3.10., CDD

8.1[2]). Further, if a device includes a fingerprint sensor and makes it available to third-party applications, it

mandates:

1) a hardware-backed Keystore implementation, and perform the fingerprint matching in a Trusted

Execution Environment (TEE) or on a chip with a secure channel to the TEE, and

2) all identifiable fingerprint data encrypted and cryptographically authenticated such that they cannot be

acquired, read or altered outside of the Trusted Execution Environment (TEE).

These mandatory requirements ensure that fingerprint sensors function securely, protect users’ privacy, and are

consistent with the cryptographic operations in Keystore.

Additional device requirements, if fingerprint sensors are supported, include the mandate that they:

● MUST have a false acceptance rate (FAR) not higher than 0.002%.

● Are STRONGLY RECOMMENDED to have a spoof and imposter acceptance rate not higher than 7%. (New from

8.1)

● MUST rate limit attempts for at least 30 seconds after five false trials for fingerprint verification.

● MUST prevent adding a fingerprint without first establishing a chain of trust by having the user confirm

existing or add a new device credential (PIN/pattern/password) that's secured by TEE.

● MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.

These requirements are adequate for Android 8.0 or later mobile devices to qualify as an L2-candidate.

3. The Trend of Android Mobile Devices
Android compliance is defined by the Compatibility Definition Document (CDD) [6]. The trend of Android mobile

devices relative to Keystore and biometric sensors, as defined by the CDD3, is summarized as follows:

A) Mandatory support of the Keystore implementation with secure hardware like a TEE

B) Mandatory support of key attestation where the attestation signing key is protected by secure hardware and

signing is performed in secure hardware, and

C) Strong recommendation to include a fingerprint sensor.

Thus, we can expect almost all coming Android mobile devices (8.0 or later) will support all these features and

can be the target for HKAs.

The details of the relevant CDD requirements are shown in Appendix-B.

3 As shown in Appendix-B, all these mandatory requirements are conditional on “If device implementations include

a secure lock screen, …”. Since almost all modern commercial mobile devices (smartphones and tablets) include a

secure lock screen, these conditional requirements can be considered as mandatory requirements for such mobile

devices.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 7

4. Implementation of HKA using UAF 1.1

4.1 Architecture of UAF 1.1 HKAs

An example of typical architecture of UAF 1.1 HKAs is shown in Figure 1.

Figure 1. An example of architecture of HKAs.

In the case of HKA, the FIDO UAF ASM also implements the non-security critical aspects of the authenticator that

are not offered by the Keystore.

The FIDO ASM module talks to the Keystore and fingerprint sensor through the standard Android APIs. The approach

is similar to what has been used to enable iOS for UAF except that an HKA includes key attestation. Key attestation

is a particularly important feature for a multi-vendor ecosystem, such as Android, to ensure the provenance and

security of the Keystore that can achieve Level 2 FIDO Authenticator Certification.

“Secure Area” in Figure 1 means a Keystore implementation with Android key attestation in a secure environment

such as a Trusted Execution Environment (TEE) or a Hardware Security Module (HSM). Fingerprint matching is

performed in the TEE or on a chip with a secure channel to the TEE. An HSM is a class of security hardware, e.g.,

embedded Secure Elements (eSE), to support a StrongBox Keymaster that was introduced in Android P [7]. The HSM

adds mechanisms to resist package tampering and unauthorized sideloading of apps. When checking keys stored in

the StrongBox Keymaster, the system corroborates a key's integrity with the TEE.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 8

Figure 2. Registration Sequence of the Android Key Attestation Extension.

Figure 2 shows the registration sequence of the Android key attestation extension. The FIDO server sends a

registration request with the Android key attestation extension. The request causes the application to trigger a

call into the FIDO UAF ASM. From there, a call is made into the Android Keystore API to generate the

authentication key pair and also a call into the API with getCertificateChain to get the attestation for the key pair.

The Keystore returns a JSON array containing base 64 encoded entries of the X.509 attestation certificate chain.

These certificates chain up to the root certificate of Google’s root CA. The leaf certificate is the signed message

attesting that the key was generated by the hardware-backed Keystore. This array is added as an extension to the

FIDO UAF response that is sent back to the FIDO server. The server verifies the certificate chain and registers the

authenticator, referencing the metadata. The FIDO server will know, based on the authenticator model, whether

or not to expect the Android key attestation extension in the response.

As discussed in the Keystore section above, the trust relationship between the Keystore and the calling application

is ensured by the Keystore.

4.2 Implementation Notes

1) Client Side

● You must support Android key attestation as defined in UAF 1.1.

● You need to declare isKeyRestricted=false in the Metadata Statement. By setting isKeyRestricted=false, it

tells the server that the authenticator doesn't restrict the authentication private key to only sign valid FIDO

signature assertions. If this field is missing, the assumed value is isKeyRestricted=true [14]. If

isKeyRestricted=true, then FIDO authenticators other than keystore based ones, such as an HKA, restrict the

private key for authentication only to sign FIDO signature assertions.

2) Server Side

● A UAF 1.1 server must support UAF 1.1 Errata [12] to process X.509 certificates of Android key attestation

correctly. There is a minor deviation in Google’s certificates from a typical X.509 certificate (See Appendix-

A). The Errata describes the details on the issue.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 9

3) Conformance Test Tools

● FIDO’s UAF Test Tool already supports these features for certification testing. The test tools are available for

download from https://fidoalliance.org/certification/conformance/.

4.3 Implementation Options

One can develop the application from scratch based on the UAF 1.1 specification or alternatively can use one of

the SDKs that software vendors are offering in order to minimize complexity and time-to-market.

5. Design Considerations
When designing FIDO authentication systems based on HKAs, a few aspects may need to be considered.

5.1 User Verification Index (UVI) for Fingerprint

Android does not support features to enable the user verification index (UVI) for any applications like an HKA. The

user verification index (UVI) is defined by the FIDO UAF specification as one of the optional extensions. A UVI is a

value uniquely identifying a user verification data record to one specific relying party account. For fingerprint

authentication, it can be used by a FIDO authenticator to let the server know specifically whether the finger used

for authentication was exactly the same as the one used for registration. This concept allows relying parties to

distinguish legitimate users from “friends” that might have enrolled their biometric to the same device (e.g. for

playing games) – this is also known as protection against “friendly fraud”.

Android only supports the so-called “Any Finger Matching”. It tells the server that fingerprint verification was

successful, but it does not tell which individual finger was verified. Thus, an HKA can only support Any Finger

Matching. The following 2 requirements are the relevant ones in the Android CDD [2]:

[C-1-8] MUST prevent adding a fingerprint without first establishing a chain of trust by having the

user confirm existing or add a new device credential (PIN/pattern/password) that's secured by TEE;

the Android Open Source Project implementation provides the mechanism in the framework to do so.

[C-1-9] MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.

Note that the first requirement prevents friendly fraud.

5.2 Multiple Applications and AppID/FacetIDs

As defined by the UAF specification, AppID/FacetIDs enables multiple applications (or Facets) on various platforms

to access the same FIDO credentials when those Facets belong to the same Application Identifier. For example, the

MyBank application may have an Android app, an iOS app, and a Web app. These are all facets of the MyBank

application. In FIDO UAF, the relying party can specify a TrustedFacetsList, i.e. a list of FacetIDs that belong to

one AppID. The AppID is the URL to download the TrustedFacetsList from (see FIDO AppID and Facet

Specification).

A FacetID is a platform-specific identifier (URI) for an application facet. For Android applications, the FacetID is

the URI android:apk-key-hash:<hash-of-apk-signing-cert>.

An AppID is sent from the FIDO server in a registration (or authentication) request to the FIDO Client and is a URL

pointing to the list of FacetIDs related to the AppID. The Client downloads the FacetIDs based on the AppID and

determines if the application can register to (or authenticate with) the authenticator. By listing all the FacetIDs

with the AppID, the FacetIDs/AppID feature enables multiple client applications to access the credentials in the

authenticator.

https://fidoalliance.org/certification/conformance/

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 10

Some existing deployments use this feature to enable multiple applications, installed on the same Android device,

for FIDO servers belonging to the same RP sharing user accounts. AppID/FacetIDs allows use of applications that

are installed on the device and listed in the FacetIDs, without registering with each application once the user has

registered with one of the applications. Some OEM-based device implementations expose an ASM interface to

applications that allows multiple applications to access the ASM interface to support the AppID/FacetIDs feature in

a straightforward way.

In the case of HKAs, Android allows only one application with the access-privilege to access the corresponding

credential in the Keystore. So, the generic AppID/FacetID approach specified by FIDO UAF is restricted by the

Keystore concept (Figure 3 (a)). Consequently, multiple HKA applications cannot share the same key in the

Keystore. This separation is quite a reasonable security measure for Android as a platform to protect credentials in

the Keystore from malicious applications. But it may pose a challenge when attempting to realize similar multi-

application use cases in some deployments that use this approach.

One of the solutions is illustrated in Figure 3 (b), where a ’Proxy App' with the privilege access to the FIDO

credentials -- whereas other applications talk to the Proxy App using the app-to-app communications.

Figure 3. (a) Android Keystore limits credential access to one calling App, (b) One of the solutions using a

‘Proxy App’ (App0).

In cases where such a solution like Figure 3 (b) does not meet your goal, there are other architectures to avoid the

one-device-with-multiple-applications situation and allow multiple servers to share a FIDO key in the Keystore.

One example is use of federation protocols such as OpenID Connect [8]. Federation can enable linking many

different RP services, including the ones supported by that RP, as well as ones from third-parties, where the user

needs to register and authenticate with one server from one application on each device (each application on

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 11

different devices is listed in the FacetIDs). It provides an open, flexible and extensible architecture to enable

various multiple services sharing a FIDO key.

6. Advantages of HKA
This section discusses the advantages of an HKA.

Figure 4. Advantages of an HKA.

1) Relying Parties

The HKA approach enables anyone to develop FIDO UAF enabled apps for almost all new Android mobile devices,

using the standard Android APIs and FIDO UAF Client SDK. Furthermore, the HKA approach reduces development

costs and increases device coverage for RP services. Only minor updates are required to support UAF 1.1 (for HKA)

on RP UAF 1.0 servers. (Namely, FIDO servers need to send registration or authentication requests with the Android

key attestation extension and process Android key attestation certificates that are sent from the devices.)

2) FIDO Ecosystem

HKA stands to dramatically accelerate FIDO adoption by rapidly growing both the number of FIDO supporting devices

and service deployments supporting FIDO authentication.

3) End Users

The HKA approach increases the range of device models supporting FIDO biometric authentication.

4) Handset Vendors

No OS customization is required to enable UAF authenticators to be candidates for FIDO Level 2 Certification. The

comparison of the two typical implementation approaches is shown in Figure 5. This new approach saves time and

cost. Note that OS customization is still required for other modalities, e.g., iris4.

4 In May 2018, Android P announced a new API to support Face and Iris authentication in addition to Fingerprint

authentication [13].

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 12

Figure 5. Comparison of conventional implementation and new HKA implementation.

7. Conclusions
This paper introduces the HKA implementation approach for UAF 1.1, based on the successful first commercial

deployment [4]. Almost all the coming Android mobile devices will be the target of HKAs because Android

compliance mandates supporting key attestation and strongly recommends supporting fingerprint sensors. All the

essential building-blocks to develop a secure UAF authenticator are now provided in Android.

Anyone is now able to enable a standard off-the-shelf Android (8.0 or later) mobile device with fingerprint sensor

to become a secure FIDO UAF 1.1 authenticator. All it takes is a small application leveraging the security features

of the L2-candidate platform. No OS customization is required, and RPs/app developers are now capable of

offering their own FIDO UAF authenticator instead of relying on handset vendors.

HKA dramatically accelerates FIDO adoption, the number of devices that support FIDO, and service deployments

supporting FIDO authentication.

It is highly recommended to consider adopting the HKA implementation approach for the coming Android mobile

devices.

8. Acknowledgements
The authors acknowledge the following people for their valuable feedback and comments:

● Laurence Lundblade, Qualcomm

● Christiaan Brand, Google

● Koichi Moriyama, NTT DOCOMO

● Giridhar Mandyam, Qualcomm

● Ki-Eun Shin, SK Planet

● Hisashi Yoshinaga, NTT DOCOMO

● John Fontana, Yubico

● Béatrice Peirani, Gemalto

● Naga Nagarajan, Nok Nok Labs

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 13

● Andrew Shikiar, FIDO Alliance

9. References
[1] Keystore key attestation, 28 September 2017, Shawn Willden, Software Engineer

https://android-developers.googleblog.com/2017/09/keystore-key-attestation.html

[2] Android CDD 8.1, December 5, 2017

https://source.android.com/compatibility/8.1/android-8.1-cdd.pdf

[3] Android Bootcamp 2016, Android Keystore Attestation, January 21, 2016,

https://source.android.com/security/reports/Android-Bootcamp-2016-Android-Keystore-Attestation.pdf

[4] FIDO Press Release: “First FIDO UAF 1.1 Implementations Ease Deployment of Advanced Biometric

Authentication on Android Devices”, December 7, 2017

https://fidoalliance.org/first-fido-uaf-1-1-implementations-ease-deployment-advanced-biometric-authentication-

android-devices/

[5] Hardware-backed Keystore, https://source.android.com/security/keystore/

[6] Android Compatibility Definition Document (CDD), https://source.android.com/compatibility/cdd

[7] Hardware security module, https://developer.android.com/preview/features/security.html

[8] FIDO Alliance White Paper: Enterprise Adoption Best Practices (December 2017),

https://fidoalliance.org/wp-content/uploads/Enterprise_Adoption_Best_Practices_Federation_FIDO_Alliance.pdf

[9] Certificate Extension Data Schema, https://developer.android.com/training/articles/security-key-

attestation.html#certificate_schema

[10] Key and ID Attestation, https://source.android.com/security/keystore/attestation

[11] Keymaster Authorization Tags, https://source.android.com/security/keystore/tags

[12] FIDO Alliance Errata UAF 1.1, https://fidoalliance.org/download/

[13] Android Developers Blog, https://android-developers.googleblog.com/2018/05/whats-new-in-android-p-

beta.html

[14] FIDO Metadata Statements, https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-

statement-v1.1-ps-20170202.html#widl-MetadataStatement-isKeyRestricted

10. Appendix

10.1 Appendix-A An Example of an Attestation Certificate Chain

This section introduces an example of an X.509 certificate chain of Android key attestation.

It consists of 4 certificates and they are standard X.509 certificates with optional extensions. The certificate chain

is extracted from a sample device, an off-the-shelf Pixel 2, using an application developed for this paper.

Certificate 0 is the certificate of a public key that was generated for an attested key from an application for this

paper, whereas Certificate 3 is the root certificate. Certificates 1,2, and 3 are injected in the Keymaster of the

device by each vendor, and Certificate 0 is generated by an Android application.

https://android-developers.googleblog.com/2017/09/keystore-key-attestation.html
https://source.android.com/compatibility/8.1/android-8.1-cdd.pdf
https://source.android.com/security/reports/Android-Bootcamp-2016-Android-Keystore-Attestation.pdf
https://fidoalliance.org/first-fido-uaf-1-1-implementations-ease-deployment-advanced-biometric-authentication-android-devices/
https://fidoalliance.org/first-fido-uaf-1-1-implementations-ease-deployment-advanced-biometric-authentication-android-devices/
https://source.android.com/security/keystore/
https://source.android.com/compatibility/cdd
https://fidoalliance.org/wp-content/uploads/Enterprise_Adoption_Best_Practices_Federation_FIDO_Alliance.pdf
https://developer.android.com/training/articles/security-key-attestation.html#certificate_schema
https://developer.android.com/training/articles/security-key-attestation.html#certificate_schema
https://source.android.com/security/keystore/attestation
https://source.android.com/security/keystore/tags
https://fidoalliance.org/download/
https://android-developers.googleblog.com/2018/05/whats-new-in-android-p-beta.html
https://android-developers.googleblog.com/2018/05/whats-new-in-android-p-beta.html
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html#widl-MetadataStatement-isKeyRestricted
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html#widl-MetadataStatement-isKeyRestricted

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 14

The optional attestation extension in the first certificate (i.e., Certificate 0) contains various descriptions of the

attested key. They are defined by the ASN.1 schema [9][10][11].

Certificate 0

-----BEGIN CERTIFICATE-----

MIICgjCCAiigAwIBAgIBATAKBggqhkjOPQQDAjAbMRkwFwYDVQQFExBjNjA0NzU3MWQ4ZjBkMTdjMB4XDTcwMDEwMTAw

MDAwMFoXDTM4MDExOTAzMTQwN1owHzEdMBsGA1UEAwwUQW5kcm9pZCBLZXlzdG9yZSBLZXkwWTATBgcqhkjOPQIB

BggqhkjOPQMBBwNCAAQhAZeExQaRmffwzDPu/UpO/eh4L7Kxa/S8EmRXYPosgOWgqgEWpMiYZS5kSKCRQ4rOTfQPiZN6

sCd+ZmfZaarCo4IBVzCCAVMwDgYDVR0PAQH/BAQDAgeAMIIBPwYKKwYBBAHWeQIBEQSCAS8wggErAgECCgEBAgEDCgEB

BCCZxmGfwTUq41TvlFBOq2hiCdIV+wacJ7OZB/kqu5MavQQAMIGEv4MQAwIBAL+DEQgCBgHz///8GL+DEggCBgHz///8G

L+FPQgCBgFizZRu2b+FRVUEUzBRMSswKQQiY29tLmV4YW1wbGUuYW5kcm9pZC5rZXlhdHRlc3RhdGlvbgIDAWgoMSIEIBg

8po4noiIv3i1GPeehbaP88dqAjfxC3hMmyPY/YZTTMHKhBTEDAgECogMCAQOjBAICAQClBTEDAgEEqgMCAQG/g3gDAgECv

4U+AwIBAL+FPwIFAL+FQCowKAQgnBLP3ATHRYTXh6w9I3chMsGFJLx6so3sQhm4/FtCX3ABAQAKAQK/hUEFAgMBOOS/h

UIFAgMDFEwwCgYIKoZIzj0EAwIDSAAwRQIgDhWogzzymtmnVC/R697228lhKAdG2c7xr7fSUJ7a3oQCIQCaGNyoAHmAh6w

j8Hl0pUZHJkUsVXNpZErjeWXbblOdaA==

-----END CERTIFICATE-----

Certificate 1

-----BEGIN CERTIFICATE-----

MIICKzCCAbKgAwIBAgIKEXhzFQJ5hgIAEDAKBggqhkjOPQQDAjAbMRkwFwYDVQQFExA4N2Y0NTE0NDc1YmEwYTJiMB4XD

TE2MDUyNjE3MTUwMloXDTI2MDUyNDE3MTUwMlowGzEZMBcGA1UEBRMQYzYwNDc1NzFkOGYwZDE3YzBZMBMGByqGS

M49AgEGCCqGSM49AwEHA0IABOoJkrjZcbPu6IcDxyrvlugASVQm5MX7OGGT0T34rzlwwbR9UV2ATu6aMiEa8uuQdP3iy5qS

UYeCzUuneIdo7dujgd0wgdowHQYDVR0OBBYEFHlfwP7+91r1xLPq/o7/eYXAU9ocMB8GA1UdIwQYMBaAFDBEI+Wi9gbhU

Kt3XxYWu5HMY8ZZMAwGA1UdEwEB/wQCMAAwDgYDVR0PAQH/BAQDAgeAMCQGA1UdHgQdMBugGTAXghVpbnZhbGlk

O2VtYWlsOmludmFsaWQwVAYDVR0fBE0wSzBJoEegRYZDaHR0cHM6Ly9hbmRyb2lkLmdvb2dsZWFwaXMuY29tL2F0dGVz

dGF0aW9uL2NybC8xMTc4NzMxNTAyNzk4NjAyMDAxMDAKBggqhkjOPQQDAgNnADBkAjAMOvX7podpWf2gJjzut3Woz/bq

1B42pC7Bu511pv1zj4jbtsdhhYCo/u/pnylG3LMCMCgdkdZQBPOEaJuBTYmxGiWrqVFe6vTsX60SJ4vqa1PruSZzEFcyukXM

ckPn1wcz8A==

-----END CERTIFICATE-----

Certificate 2

-----BEGIN CERTIFICATE-----

MIIDwzCCAaugAwIBAgIKA4gmZ2BliZaFdTANBgkqhkiG9w0BAQsFADAbMRkwFwYDVQQFExBmOTIwMDllODUzYjZiMDQ1M

B4XDTE2MDUyNjE3MDE1MVoXDTI2MDUyNDE3MDE1MVowGzEZMBcGA1UEBRMQODdmNDUxNDQ3NWJhMGEyYjB2MBAG

ByqGSM49AgEGBSuBBAAiA2IABGQ7VmgdJ/rEgs9sIE3rzvApXDUMAaqMMn8+1fRJrvQpZkJfOT2EdjtdrVaxDQRZxixqT5MlV

qiSk8PRTqLx3+8OPLoicqMiOeGytH2sVQurvFynVeKqSGKK1jx2/2fccqOBtjCBszAdBgNVHQ4EFgQUMEQj5aL2BuFQq3dfFh

a7kcxjxlkwHwYDVR0jBBgwFoAUNmHhAHyIBQlRi0RsR/8aTMnqTxIwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBA

MCAYYwUAYDVR0fBEkwRzBFoEOgQYY/aHR0cHM6Ly9hbmRyb2lkLmdvb2dsZWFwaXMuY29tL2F0dGVzdGF0aW9uL2Nyb

C9FOEZBMTk2MzE0RDJGQTE4MA0GCSqGSIb3DQEBCwUAA4ICAQBAOYqLNryTmbOlnrjnIvDoXxzaLOgCXu29l7KpbFHacV

LxgYuGRiIEQqzZBqUYSt9Pgx+P2KvoHtz99sEZr2xTe0Dw6CTHTAmxWXUFdrlvEMm2GySfvJRfMNCuX1oIS/M5PfREY2YZHy

Lq/sn1sJr3FjbKMdUMBo5AcamcD3H8wl9O/6qfhX+57iXzoK6yMzJRG/Mlkm58/sFk0pjayUBchmUJL0FQ6IhKYgy8RKE2UD

yXKOE7+ZMSMUUkAdzyn2PFv7TvQtDk0ge2mkVrNrfPSglMzBNvrSDHPBmTktXzwseVagIRT5WI91OrUOYPFgostsfH42hs5w

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 15

JtAFGPwDg/1mNa8UyH9k1bMrRq3Srez1XG0Ju7SGN/uNX5dkcwvfAmadtmM7Pp+l2VHRYRR600jAcM2+7bl8egqfM/A7vy

DLZqPIxDwkLXj2eN99nJZJVaGfB9dHyFOqBqBM6SdyV6MSIr3AHoo6u+BWIX9+q8n1qg5I6JWeEe+K58SbRDVoNQgsKP9/iP

ruXMU5rm2ywPxICVGysl1GgAP+FJ3X6oP0tXFWQlYoWdSloSVHNZQqj2ev/69sMnGsTeJw1V7I0gR+eZNEfxe+vZD4KP88Kx

uiPCe94rp+Aqs5/YwuCo6rQ+HGi5OZNBsQXYIufClSBje+OpjQb7HJgihJdzo2/IBw==

-----END CERTIFICATE-----

Certificate 3 (root)

-----BEGIN CERTIFICATE-----

MIIFYDCCA0igAwIBAgIJAOj6GWMU0voYMA0GCSqGSIb3DQEBCwUAMBsxGTAXBgNVBAUTEGY5MjAwOWU4NTNiNmIwND

UwHhcNMTYwNTI2MTYyODUyWhcNMjYwNTI0MTYyODUyWjAbMRkwFwYDVQQFExBmOTIwMDllODUzYjZiMDQ1MIICIjAN

BgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAr7bHgiuxpwHsK7Qui8xUFmOr75gvMsd/dTEDDJdSSxtf6An7xyqpRR90PL2a

bxM1dEqlXnf2tqw1Ne4Xwl5jlRfdnJLmN0pTy/4lj4/7tv0Sk3iiKkypnEUtR6WfMgH0QZfKHM1+di+y9TFRtv6y//0rb+T+W8a

9nsNL/ggjnar86461qO0rOs2cXjp3kOG1FEJ5MVmFmBGtnrKpa73XpXyTqRxB/M0n1n/W9nGqC4FSYa04T6N5RIZGBN2z2

MT5IKGbFlbC8UrW0DxW7AYImQQcHtGl/m00QLVWutHQoVJYnFPlXTcHYvASLu+RhhsbDmxMgJJ0mcDpvsC4PjvB+TxywE

lgS70vE0XmLD+OJtvsBslHZvPBKCOdT0MS+tgSOIfga+z1Z1g7+DVagf7quvmag8jfPioyKvxnK/EgsTUVi2ghzq8wm27ud/mI

M7AY2qEORR8Go3TVB4HzWQgpZrt3i5MIlCaY504LzSRiigHCzAPlHws+W0rB5N+er5/2pJKnfBSDiCiFAVtCLOZ7gLiMm0jhO

2B6tUXHI/+MRPjy02i59lINMRRev56GKtcd9qO/0kUJWdZTdA2XoS82ixPvZtXQpUpuL12ab+9EaDK8Z4RHJYYfCT3Q5vNAX

aiWQ+8PTWm2QgBR/bkwSWc+NpUFgNPN9PvQi8WEg5UmAGMCAwEAAaOBpjCBozAdBgNVHQ4EFgQUNmHhAHyIBQlRi0

RsR/8aTMnqTxIwHwYDVR0jBBgwFoAUNmHhAHyIBQlRi0RsR/8aTMnqTxIwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8B

Af8EBAMCAYYwQAYDVR0fBDkwNzA1oDOgMYYvaHR0cHM6Ly9hbmRyb2lkLmdvb2dsZWFwaXMuY29tL2F0dGVzdGF0aW9

uL2NybC8wDQYJKoZIhvcNAQELBQADggIBACDIw41L3KlXG0aMiS//cqrG+EShHUGo8HNsw30W1kJtjn6UBwRM6jnmiwfBP

b8VA91chb2vssAtX2zbTvqBJ9+LBPGCdw/E53Rbf86qhxKaiAHOjpvAy5Y3m00mqC0w/Zwvju1twb4vhLaJ5NkUJYsUS7rm

JKHHBnETLi8GFqiEsqTWpG/6ibYCv7rYDBJDcR9W62BW9jfIoBQcxUCUJouMPH25lLNcDc1ssqvC2v7iUgI9LeoM1sNovqPm

QUiG9rHli1vXxzCyaMTjwftkJLkf6724DFhuKug2jITV0QkXvaJWF4nUaHOTNA4uJU9WDvZLI1j83A+/xnAJUucIv/zGJ1AMH

2boHqF8CY16LpsYgBt6tKxxWH00XcyDCdW2KlBCeqbQPcsFmWyWugxdcekhYsAWyoSf818NUsZdBWBaR/OukXrNLfkQ79I

yZohZbvabO/X+MVT3rriAoKc8oE2Uws6DF+60PV7/WIPjNvXySdqspImSN78mflxDqwLqRBYkA3I75qppLGG9rp7UCdRjxMl

8ZDBld+7yvHVgt1cVzJx9xnyGCC23UaicMDSXYrB4I4WHXPGjxhZuCuPBLTdOLU8YRvMYdEvYebWHMpvwGCF6bAx3JBpIe

OQ1wDB5y0USicV3YgYGmi+NZfhA4URSh77Yd6uuJOJENRaNVTzk

-----END CERTIFICATE-----

Here are decoded X.509 certificates:

Certificate 0 (Leaf)

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1 (0x1)

 Signature Algorithm: ecdsa-with-SHA256

 Issuer:

 serialNumber = c6047571d8f0d17c

 Validity

 Not Before: Jan 1 00:00:00 1970 GMT

 Not After : Jan 19 03:14:07 2038 GMT

 Subject:

 commonName = Android Keystore Key

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 16

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:21:01:97:84:c5:06:91:99:f7:f0:cc:33:ee:fd:

 4a:4e:fd:e8:78:2f:b2:b1:6b:f4:bc:12:64:57:60:

 fa:2c:80:e5:a0:aa:01:16:a4:c8:98:65:2e:64:48:

 a0:91:43:8a:ce:4d:f4:0f:89:93:7a:b0:27:7e:66:

 67:d9:69:aa:c2

 ASN1 OID: prime256v1

 X509v3 extensions:

 X509v3 Key Usage: critical

 Digital Signature

 1.3.6.1.4.1.11129.2.1.17:

Please see Table 1 below for the summary of the decoded

extensions of the ASN.1 schema.

 Signature Algorithm: ecdsa-with-SHA256

 30:45:02:20:0e:15:a8:83:3c:f2:9a:d9:a7:54:2f:d1:eb:de:

 f6:db:c9:61:28:07:46:d9:ce:f1:af:b7:d2:50:9e:da:de:84:

 02:21:00:9a:18:dc:a8:00:79:80:87:ac:23:f0:79:74:a5:46:

 47:26:45:2c:55:73:69:64:4a:e3:79:65:db:6e:53:9d:68

Table-1 shows a summary of the decoded values of the attestation extensions of the ASN.1 schema in the first

certificate with the descriptions from the definitions [9][10][11].

Table-1 The decoded ASN.1 attestation extensions of the sample device, Pixel 2, used for this paper.

Field Name 5 AL 6 Value Description Note

attestationVersion 2 KM3 The version of the key

attestation feature.

attestationSecurityLevel 1 SecurityLevel is

TrustEnvironment.

TrustEnvironment means the

code that creates or manages

the relevant element

(attestation or key) is

5 The numbers in [] correspond to those that are defined in [10].

6 AuthorizationList: “SW”: softwareEnforced AuthorizationList, “TEE”: teeEnforced AuthorizationList.

softwareEnforced: (Optional) The Keymaster authorization list that is enforced by the Android system, not by the

device's TEE.

teeEnforced: (Optional) The Keymaster authorization list that is enforced by the device's TEE.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 17

implemented in a Trusted

Execution Environment (TEE).

If the value is ‘0’, it is

Software. It means the code

that creates or manages the

relevant element (attestation

or key) is implemented in the

Android system and could be

altered if that system is

compromised.

keymasterVersion 3 The version of the

Keymaster

hardware

abstraction layer

(HAL).

Version 3.0?

Android developer page [9] may

not be updated yet (?)

keymasterSecurityLevel 1 SecurityLevel is

TrustEnvironment.

Hardware-backed Keystore. See

above.

attestationChallenge 99 C6 61 9F C1 35 2A E3 54 EF 94 50 4E AB 68 62

09 D2 15 FB 06 9C 27 B3 99 07 F9 2A BB 93 1A BD

purpose [1] TEE 2 SIGN Specifies the set of purposes for

which the key may be used.

algorithm [2] TEE 3 EC Specifies the cryptographic

algorithm with which the key is

used.

keySize [3] TEE 256 256bit

digest [5] TEE 4 SHA_2_256 Specifies the digest algorithms

that may be used with the key

to perform signing and

verification operations.

ecCurve [10] TEE 1 P_256 The EC curve that is used.

activeDateTime [400] sw 0 Specifies the date and time at

which the key becomes active.

Prior to this time, any attempt

to use the key fails. The value

is a 64-bit integer representing

milliseconds since January 1,

1970.

originationExpireDateTime

[401]

sw 2147483647000 A 64-bit integer representing

milliseconds since January 1,

1970.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 18

usageExpireDateTime

[402]

sw 2147483647000 A 64-bit integer representing

milliseconds since January 1,

1970.

userAuthType [504] TEE 2 Fingerprint

creationDateTime [701] sw 1523867479769 A 64-bit integer representing

milliseconds since January 1,

1970.

Origin [702] TEE 0 GENERATED Specifies where the key was

created, if known.

rollbackResistant [703] TEE NULL

rootOfTrust [704] TEE verifiedBootKey:

9c 12 cf dc 04 c7 45 84 d7 87 ac 3d 23 77 21 32

c1 85 24 bc 7a b2 8d ec 42 19 b8 fc 5b 42 5f 70

deviceLocked: false (*1)

verifiedBootState: 2, Unverified (*2)

*1: deviceLocked: True if the device's bootloader is locked, which enables

Verified Boot checking and prevents an unsigned device image from being

flashed onto the device [9].

*2: “Unverified” indicates that the user can modify the device freely.

Therefore, the user is responsible for verifying the device's integrity [9].

osVersion [705] TEE 80100 OS Version: 8.01.00

osPatchLevel [706] TEE 201804 OS Patch Level:

201804

attestationApplicationId

[709]

sw package_name: com.example.android.attestation,

version: 92200,

signature_digests:

183CA68E27A2222FDE2D463DE7A16DA3FCF1DA808DFC42DE1326C8F63F6194

D3

N.B.: The package_name is the name of the Android application that

created the keys for this paper (underlined text below in ASCII)

30 51 31 2B 30 29 04 22 63 6F 6D 2E 65 78 61 6D

70 6C 65 2E 61 6E 64 72 6F 69 64 2E 6B 65 79 61

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 19

74 74 65 73 74 61 74 69 6F 6E 02 03 01 68 28 31

22 04 20 18 3C A6 8E 27 A2 22 2F DE 2D 46 3D E7

A1 6D A3 FC F1 DA 80 8D FC 42 DE 13 26 C8 F6 3F

61 94 D3

Certificate 1

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 11:78:73:15:02:79:86:02:00:10

 Signature Algorithm: ecdsa-with-SHA256

 Issuer:

 serialNumber = 87f4514475ba0a2b

 Validity

 Not Before: May 26 17:15:02 2016 GMT

 Not After : May 24 17:15:02 2026 GMT

 Subject:

 serialNumber = c6047571d8f0d17c

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04:ea:09:92:b8:d9:71:b3:ee:e8:87:03:c7:2a:ef:

 96:e8:00:49:54:26:e4:c5:fb:38:61:93:d1:3d:f8:

 af:39:70:c1:b4:7d:51:5d:80:4e:ee:9a:32:21:1a:

 f2:eb:90:74:fd:e2:cb:9a:92:51:87:82:cd:4b:a7:

 78:87:68:ed:db

 ASN1 OID: prime256v1

 X509v3 extensions:

 X509v3 Subject Key Identifier:

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 20

 79:5F:C0:FE:FE:F7:5A:F5:C4:B3:EA:FE:8E:FF:79:85:C0:53:DA:1C

 X509v3 Authority Key Identifier:

 keyid:30:44:23:E5:A2:F6:06:E1:50:AB:77:5F:16:16:BB:91:CC:63:C6:59

 X509v3 Basic Constraints: critical

 CA:FALSE

 X509v3 Key Usage: critical

 Digital Signature Note-1

 X509v3 Name Constraints:

 Permitted:

 DNS:invalid;email:invalid

 X509v3 CRL Distribution Points:

 Full Name:

 URI:https://android.googleapis.com/attestation/crl/11787315027986020010

 Signature Algorithm: ecdsa-with-SHA256

 30:64:02:30:0c:3a:f5:fb:a6:87:69:59:fd:a0:26:3c:ee:b7:

 75:a8:cf:f6:ea:d4:1e:36:a4:2e:c1:bb:9d:75:a6:fd:73:8f:

 88:db:b6:c7:61:85:80:a8:fe:ef:e9:9f:29:46:dc:b3:02:30:

 28:1d:91:d6:50:04:f3:84:68:9b:81:4d:89:b1:1a:25:ab:a9:

 51:5e:ea:f4:ec:5f:ad:12:27:8b:ea:6b:53:eb:b9:26:73:10:

 57:32:ba:45:cc:72:43:e7:d7:07:33:f0

Note-1: This is the issue that is discussed in the Errata UAF 1.1 [12]:

The Server "MUST verify the syntax of the key attestation extension and it MUST perform RFC5280 compliant

chain validation of the entries in the array to one attestationRootCertificate specified in the Metadata Statement

- accepting that that the keyCertSign bit in the key usage extension of the certificate issuing the leaf

certificate is NOT set (which is a deviation from RFC5280)."

Certificate 2

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 21

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 03:88:26:67:60:65:89:96:85:75

 Signature Algorithm: sha256WithRSAEncryption

 Issuer:

 serialNumber = f92009e853b6b045

 Validity

 Not Before: May 26 17:01:51 2016 GMT

 Not After : May 24 17:01:51 2026 GMT

 Subject:

 serialNumber = 87f4514475ba0a2b

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (384 bit)

 pub:

 04:64:3b:56:68:1d:27:fa:c4:82:cf:6c:20:4d:eb:

 ce:f0:29:5c:35:0c:01:aa:8c:32:7f:3e:d5:f4:49:

 ae:f4:29:66:42:5f:39:3d:84:76:3b:5d:ad:56:b1:

 0d:04:59:c6:2c:6a:4f:93:25:56:a8:92:93:c3:d1:

 4e:a2:f1:df:ef:0e:3c:ba:22:72:a3:22:39:e1:b2:

 b4:7d:ac:55:0b:ab:bc:5c:a7:55:e2:aa:48:62:8a:

 d6:3c:76:ff:67:dc:72

 ASN1 OID: secp384r1

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 30:44:23:E5:A2:F6:06:E1:50:AB:77:5F:16:16:BB:91:CC:63:C6:59

 X509v3 Authority Key Identifier:

 keyid:36:61:E1:00:7C:88:05:09:51:8B:44:6C:47:FF:1A:4C:C9:EA:4F:12

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 22

 X509v3 Basic Constraints: critical

 CA:TRUE

 X509v3 Key Usage: critical

 Digital Signature, Certificate Sign, CRL Sign

 X509v3 CRL Distribution Points:

 Full Name:

 URI:https://android.googleapis.com/attestation/crl/E8FA196314D2FA18

Certificate 3 (Root)

 Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 16787758474318772760 (0xe8fa196314d2fa18)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer:

 serialNumber = f92009e853b6b045

 Validity

 Not Before: May 26 16:28:52 2016 GMT

 Not After : May 24 16:28:52 2026 GMT

 Subject:

 serialNumber = f92009e853b6b045

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (4096 bit)

 Modulus:

 00:af:b6:c7:82:2b:b1:a7:01:ec:2b:b4:2e:8b:cc:

 54:16:63:ab:ef:98:2f:32:c7:7f:75:31:03:0c:97:

 52:4b:1b:5f:e8:09:fb:c7:2a:a9:45:1f:74:3c:bd:

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 23

 9a:6f:13:35:74:4a:a5:5e:77:f6:b6:ac:35:35:ee:

 17:c2:5e:63:95:17:dd:9c:92:e6:37:4a:53:cb:fe:

 25:8f:8f:fb:b6:fd:12:93:78:a2:2a:4c:a9:9c:45:

 2d:47:a5:9f:32:01:f4:41:97:ca:1c:cd:7e:76:2f:

 b2:f5:31:51:b6:fe:b2:ff:fd:2b:6f:e4:fe:5b:c6:

 bd:9e:c3:4b:fe:08:23:9d:aa:fc:eb:8e:b5:a8:ed:

 2b:3a:cd:9c:5e:3a:77:90:e1:b5:14:42:79:31:59:

 85:98:11:ad:9e:b2:a9:6b:bd:d7:a5:7c:93:a9:1c:

 41:fc:cd:27:d6:7f:d6:f6:71:aa:0b:81:52:61:ad:

 38:4f:a3:79:44:86:46:04:dd:b3:d8:c4:f9:20:a1:

 9b:16:56:c2:f1:4a:d6:d0:3c:56:ec:06:08:99:04:

 1c:1e:d1:a5:fe:6d:34:40:b5:56:ba:d1:d0:a1:52:

 58:9c:53:e5:5d:37:07:62:f0:12:2e:ef:91:86:1b:

 1b:0e:6c:4c:80:92:74:99:c0:e9:be:c0:b8:3e:3b:

 c1:f9:3c:72:c0:49:60:4b:bd:2f:13:45:e6:2c:3f:

 8e:26:db:ec:06:c9:47:66:f3:c1:28:23:9d:4f:43:

 12:fa:d8:12:38:87:e0:6b:ec:f5:67:58:3b:f8:35:

 5a:81:fe:ea:ba:f9:9a:83:c8:df:3e:2a:32:2a:fc:

 67:2b:f1:20:b1:35:15:8b:68:21:ce:af:30:9b:6e:

 ee:77:f9:88:33:b0:18:da:a1:0e:45:1f:06:a3:74:

 d5:07:81:f3:59:08:29:66:bb:77:8b:93:08:94:26:

 98:e7:4e:0b:cd:24:62:8a:01:c2:cc:03:e5:1f:0b:

 3e:5b:4a:c1:e4:df:9e:af:9f:f6:a4:92:a7:7c:14:

 83:88:28:85:01:5b:42:2c:e6:7b:80:b8:8c:9b:48:

 e1:3b:60:7a:b5:45:c7:23:ff:8c:44:f8:f2:d3:68:

 b9:f6:52:0d:31:14:5e:bf:9e:86:2a:d7:1d:f6:a3:

 bf:d2:45:09:59:d6:53:74:0d:97:a1:2f:36:8b:13:

 ef:66:d5:d0:a5:4a:6e:2f:5d:9a:6f:ef:44:68:32:

 bc:67:84:47:25:86:1f:09:3d:d0:e6:f3:40:5d:a8:

 96:43:ef:0f:4d:69:b6:42:00:51:fd:b9:30:49:67:

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 24

 3e:36:95:05:80:d3:cd:f4:fb:d0:8b:c5:84:83:95:

 26:00:63

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 36:61:E1:00:7C:88:05:09:51:8B:44:6C:47:FF:1A:4C:C9:EA:4F:12

 X509v3 Authority Key Identifier:

 keyid:36:61:E1:00:7C:88:05:09:51:8B:44:6C:47:FF:1A:4C:C9:EA:4F:12

 X509v3 Basic Constraints: critical

 CA:TRUE

 X509v3 Key Usage: critical

 Digital Signature, Certificate Sign, CRL Sign

 X509v3 CRL Distribution Points:

 Full Name:

 URI:https://android.googleapis.com/attestation/crl/

 Signature Algorithm: sha256WithRSAEncryption

 20:c8:c3:8d:4b:dc:a9:57:1b:46:8c:89:2f:ff:72:aa:c6:f8:

 44:a1:1d:41:a8:f0:73:6c:c3:7d:16:d6:42:6d:8e:7e:94:07:

 04:4c:ea:39:e6:8b:07:c1:3d:bf:15:03:dd:5c:85:bd:af:b2:

 c0:2d:5f:6c:db:4e:fa:81:27:df:8b:04:f1:82:77:0f:c4:e7:

 74:5b:7f:ce:aa:87:12:9a:88:01:ce:8e:9b:c0:cb:96:37:9b:

 4d:26:a8:2d:30:fd:9c:2f:8e:ed:6d:c1:be:2f:84:b6:89:e4:

 d9:14:25:8b:14:4b:ba:e6:24:a1:c7:06:71:13:2e:2f:06:16:

 a8:84:b2:a4:d6:a4:6f:fa:89:b6:02:bf:ba:d8:0c:12:43:71:

 1f:56:eb:60:56:f6:37:c8:a0:14:1c:c5:40:94:26:8b:8c:3c:

 7d:b9:94:b3:5c:0d:cd:6c:b2:ab:c2:da:fe:e2:52:02:3d:2d:

 ea:0c:d6:c3:68:be:a3:e6:41:48:86:f6:b1:e5:8b:5b:d7:c7:

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 25

 30:b2:68:c4:e3:c1:fb:64:24:b9:1f:eb:bd:b8:0c:58:6e:2a:

 e8:36:8c:84:d5:d1:09:17:bd:a2:56:17:89:d4:68:73:93:34:

 0e:2e:25:4f:56:0e:f6:4b:23:58:fc:dc:0f:bf:c6:70:09:52:

 e7:08:bf:fc:c6:27:50:0c:1f:66:e8:1e:a1:7c:09:8d:7a:2e:

 9b:18:80:1b:7a:b4:ac:71:58:7d:34:5d:cc:83:09:d5:b6:2a:

 50:42:7a:a6:d0:3d:cb:05:99:6c:96:ba:0c:5d:71:e9:21:62:

 c0:16:ca:84:9f:f3:5f:0d:52:c6:5d:05:60:5a:47:f3:ae:91:

 7a:cd:2d:f9:10:ef:d2:32:66:88:59:6e:f6:9b:3b:f5:fe:31:

 54:f7:ae:b8:80:a0:a7:3c:a0:4d:94:c2:ce:83:17:ee:b4:3d:

 5e:ff:58:83:e3:36:f5:f2:49:da:ac:a4:89:92:37:bf:26:7e:

 5c:43:ab:02:ea:44:16:24:03:72:3b:e6:aa:69:2c:61:bd:ae:

 9e:d4:09:d4:63:c4:c9:7c:64:30:65:77:ee:f2:bc:75:60:b7:

 57:15:cc:9c:7d:c6:7c:86:08:2d:b7:51:a8:9c:30:34:97:62:

 b0:78:23:85:87:5c:f1:a3:c6:16:6e:0a:e3:c1:2d:37:4e:2d:

 4f:18:46:f3:18:74:4b:d8:79:b5:87:32:9b:f0:18:21:7a:6c:

 0c:77:24:1a:48:78:e4:35:c0:30:79:cb:45:12:89:c5:77:62:

 06:06:9a:2f:8d:65:f8:40:e1:44:52:87:be:d8:77:ab:ae:24:

 e2:44:35:16:8d:55:3c:e4

10.2 Appendix-B Android CDD Relative to Key Attestation and Fingerprint Sensors

The followings are the requirements of Android 8.1 (latest one at the time of this drafting) related to Keystore,

key attestation and fingerprint sensors [2].

Note: All these mandatory requirements are conditional on “If device implementations include a secure lock

screen, …”. Since almost all modern commercial mobile devices (smartphones and tablets) include a secure lock

screen, these conditional requirements can be considered as mandatory requirements for such mobile devices.

• If device implementations include a secure lock screen, they

– SHOULD include a fingerprint sensor (7.3.10., CDD 8.1[2]).

– MUST (9.11., CDD 8.1[2])

• [C-1-1] back up the keystore implementation with secure hardware.

• [C-1-3] perform the lock screen authentication in the isolated execution environment

and only when successful, allow the authentication-bound keys to be used.

FIDO Alliance White Paper: HKA on Android 8.0 or Later Mobile Devices

©FIDO Alliance 2018 Page 26

• [C-1-4] support key attestation where the attestation signing key is protected by

secure hardware and signing is performed in secure hardware. The attestation

signing keys MUST be shared across large enough number of devices to prevent the

keys from being used as device identifiers. One way of meeting this requirement is to

share the same attestation key unless at least 100,000 units of a given SKU are

produced. If more than 100,000 units of an SKU are produced, a different key MAY be

used for each 100,000 units.

• If device implementations include a fingerprint sensor and make the sensor available to third-party

Apps, they:

– [C-1-6] MUST have a hardware-backed keystore implementation, and perform the

fingerprint matching in a Trusted Execution Environment (TEE) or on a chip with a secure

channel to the TEE.

– [C-1-7] MUST have all identifiable fingerprint data encrypted and cryptographically

authenticated such that they cannot be acquired, read or altered outside of the Trusted

Execution Environment (TEE) as documented in the implementation guidelines on the

Android Open Source Project site.

– [C-1-3] MUST have a false acceptance rate not higher than 0.002%.

– [SR] Are STRONGLY RECOMMENDED to have a spoof and imposter acceptance rate not higher

than 7%. (New from 8.1)

– [C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials for fingerprint

verification.

– [C-1-8] MUST prevent adding a fingerprint without first establishing a chain of trust by having

the user confirm existing or add a new device credential (PIN/pattern/password) that's

secured by TEE; the Android Open Source Project implementation provides the mechanism in

the framework to do so.

– [C-1-9] MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.

