
1

U2F Case Study
Examining the U2F paradox

3

What is Universal 2nd

Factor (U2F)?

4

Simple, Secure, Scalable 2FA

5

Didn’t We Solve This Already?

SMS OTP Devices
Coverage
Delay
Cost
Battery
Policy

One per site
Provisioning costs
Battery

Smart Cards
Readers/drivers
Middleware
Cost

6

Bad User experience Still phishable
Users find it hard to use Successful attacks

carried out today

MitM
Successful attacks
carried out today

And...

7

Why U2F?
• Simple

– To register and authenticate -- a simple touch!
– No drivers or client software to install

• Secure
– Public key cryptography
– Protects against phishing and man-in-the-middle

•Scalable
– One U2F device, many services

•Protects Privacy
– No secrets shared between service providers

8

1. Enter username/pwd 2. Insert U2F Key 3. Touch device

Google Login With U2F

9

1. Enter username/pwd 2. Insert U2F Key 3. Touch device

Dropbox Login With U2F

10

1. Enter username/pwd 2. Insert U2F Key 3. Touch device

GitHub Login With U2F

11

1. Enter username/pwd 2. Insert U2F Key 3. Touch device

Your Login With U2F

12

1. Enter username/pwd 2. Insert U2F Key 3. Touch device

Your Login With U2F

13

1. Enter username/pwd 2. Insert U2F Key 3. Touch device

Your Login With U2F

14

Protocol Overview

Server	sends	challenge1

Server	receives	and	verifies	device	signature	
using	attestation	cert5
Key	handle	and	public	key	are	stored	in	database6

Device	generates	 key	pair2
Device	creates	key	handle3
Device	signs	challenge	+	client	info4

Registration

Server	sends	challenge	+	key	handle	1

Server	receives	and	verifies	using	stored	public	key	4

Device	unwraps/derives	private	key	
from	key	handle	2
Device	signs	challenge	+	client	info	3

Authentication

In
di
vi
du

al
	w
ith

	U
2F
	D
ev
ic
e

,	Relying	Party

16

Protocol Design
Step-By-Step

17

U2F
Device Client

Relying
Party

challenge

challenge

Sign
with
kpriv signature(challenge)

s

Check
signature (s)
using kpub

s

Lookup
kpub

Authentication

18

U2F
Device Client

Relying
Party

challenge

challenge, origin, channel id

Sign
with kpriv

signature(c)

c, s
Check s
using kpub

Verify origin &
channel id

s

Lookup
kpub

Phishing/MitM Protection

19

U2F
Device Client

Relying
Party

handle, app id, challenge

h, a; challenge, origin, channel id, etc.

c

a
Check
app id

Lookup
the kpriv

associated
with h

Sign
with kpriv

signature(a,c)

c, s
Check s
using kpub

Verify origin &
channel id

s

h

Lookup
the kpub

associate
d with h

Application-Specific Keys

20

U2F
Device Client

Relying
Party

handle, app id, challenge

h, a; challenge, origin, channel id, etc.

c

a
Check
app id

Lookup
the kpriv

associated
with h

Sign
with kpriv

counter++

counter, signature(a,c, counter)

counter, c, s
Check s
using kpub

Verify origin,
channel id &
counter

s

h

Lookup
the kpub

associate
d with h

Device Cloning

21

U2F
Device Client

Relying
Party

app id, challenge

a; challenge, origin, channel id, etc.

c

a
Check
app id

Generate:
kpub

kpriv

handle h kpub, h, attestation cert, signature(a,c,kpub,h)

c, kpub, h, attestation cert, s

Associate
kpub with
handle h
for user

s

Registration + Device Attestation

22

Bad User
Experience

Still
Phishable

MitM

x xx
So How Did We Do?

23

Resources
Strengthen 2 step verification with Security Key

Yubico Security Key

Yubico Libraries, Plugins, Sample Code,
Documentation

FIDO U2F Protocol Specification

Yubico Demo Server - Test U2F

Yubico Demo Server - Test Yubico OTP

Google security blog

yubico.com/security-key

developers.yubico.com

fidoalliance.org/specifications

demo.yubico.com/u2f

demo.yubico.com

24

Questions, Comments

Derek Hanson
derek@yubico.com

@derekhanson
@yubico

