

© 2025 FIDO Alliance. All rights reserved. Page 1

 DBSC/DPOP as Complementary

Technologies to FIDO
Authentication

May 2025

Editors:

Shane Weeden, IBM

An Ho, IBM

© 2025 FIDO Alliance. All rights reserved. Page 2

Abstract
Session hijacking is a growing initial attack vector for online fraud and account takeover.
Because FIDO authentication reduces the effectiveness of other simpler forms of
compromise, such as credential stuffing and phishing, cybercriminals turn to theft and
re-use of bearer tokens. Bearer tokens are a form of credential which include session
cookies used by browsers connecting to websites and OAuth access tokens used by
other thick client application types such as native mobile applications. When these
credentials are long-lived and can be “lifted and shifted” from the machine where they
were created to be usable by a bad actor from another machine, their tradable value is
significant. Emerging technologies such as Device Bound Session Credentials (DBSC)
for browsers and Demonstrating Proof of Possession (DPoP) for OAuth applications
seek to reduce the threat of session hijacking. This article describes how these
technologies address the problem of session hijacking and how they complement strong
phishing resistant authentication in online ecosystems.

Audience
This white paper is for chief information security officers (CISOs) and technical staff
whose responsibility it is to protect the security and life cycle of online identity and
access management from online fraud.

	

© 2025 FIDO Alliance. All rights reserved. Page 3

Table of Contents

1	 INTRODUCTION 4	

2	 TERMINOLOGY 4	

3	 ADJACENT/COMPLEMENTARY TECHNOLOGIES FOR A SECURE ECOSYSTEM 5	

3.1	 Browser	session	cookie	security	 6	

3.2	 Device	Bound	Sessional	Credentials	-	DBSC	 6	

3.2.1	 What	makes	DBSC	a	technology	complementary	to	FIDO?	 8	

3.2.2	 Alternative	solutions	 8	

3.2.3	 Advice	 8	

4	 OAUTH GRANTS 9	

4.1	 Demonstrate	Proof	of	Possession	(DPoP)	 9	

4.2	 What	makes	DPoP	a	complementary	technology	to	FIDO?	 10	

4.2.1	 DPoP	alternative	solutions?	 11	

4.2.2	 Advice	 11	

5	 CONCLUSION 11	

© 2025 FIDO Alliance. All rights reserved. Page 4

1 Introduction
Authentication and authorization are integral parts of an identity lifecycle, especially for
online credential ecosystems. The growing threat of online identity fraud with costly
security incidents and breaches has enterprises looking for ways to protect and secure
their workforces from account takeover through different attack vectors such as
phishing, credential stuffing, and session hijacking. For authentication, FIDO
authentication with passkeys provides users with “Safer, more secure, and faster online
experiences”1, and an increase in the adoption of passkeys has contributed to a
reduction of the success of attack vectors of credential phishing, credential stuffing, and
session hijacking accomplished via man-in-the-middle (MITM) phishing attacks.
However, what happens after the authentication ceremony?

After authentication, browsers and application clients are typically issued other
credentials. Enterprise applications generally fall into two primary categories: those that
are web browser based and use session cookies for state management and those that
are thick client applications using OAuth access tokens (this includes some browser-
based single page applications and most native mobile applications). Both types of
credentials (session cookies and access tokens) are considered, in their basic use, as
“bearer” tokens. If you have the token (the session cookie or the access token), then
you can continue to transact for the lifetime of that token as the user who authenticated
and owned it.

This whitepaper explores adjacent technologies that address the “lift and shift” attack
vector for bearer tokens and how these technologies complement FIDO-based
authentication mechanisms. In particular, this paper focuses on the proposed web
standard Device Bound Session Credentials (DBSC)2 for protecting browser session
cookies and OAuth 2.0 Demonstrating Proof of Possession (DPoP)3 for protecting
OAuth grants.

2 Terminology
session hijacking: An exploitation of the web session control mechanism that is
normally managed for a session cookie4.

credential stuffing: An automated injection of stolen username and password pairs
(credentials) into website login forms to fraudulently gain access to user accounts5.

1 Passkeys - https://fidoalliance.org/passkeys/
2 Device Bound Session Credentials - https://github.com/w3c/webappsec-dbsc
3 OAuth 2.0 Demonstrating Proof of Possession (DPoP) - RFC9449: https://datatracker.ietf.org/doc/html/rfc9449
4 Session hijacking attack https://owasp.org/www-community/attacks/Session_hijacking_attack
5 Credential stuffing https://owasp.org/www-community/attacks/Credential_stuffing

© 2025 FIDO Alliance. All rights reserved. Page 5

access token: A credential used by a client-side application to invoke API calls on
behalf of the user.

session cookie: A credential managed by browsers to maintain session state between
a browser and a website.

bearer token: A token (in the context of this whitepaper may refer to either an access
token or a session cookie) so called because whoever holds the token can use it to
access resources. A bearer token on its own can be “lifted and shifted” for use on
another computing device.

sender-constrained token: A token protected by a mechanism designed to minimize
the risk that anything other than the client which established the token during an
authentication process could use that token in subsequent requests for server-side
resources.

Device Bound Session Credential (DBSC): A proposal for a W3C web standard
defining a protocol and browser behavior to establish and maintain sender-constrained
cookies. The mechanism uses proof of possession of an asymmetric cryptographic key
to help mitigate session cookie hijacking.

OAuth 2.0 Demonstrating Proof of Procession (DPoP): A mechanism for
implementing sender-constrained access tokens that requires clients to demonstrate
possession of an asymmetric cryptographic key when using the token.

3 Adjacent/complementary technologies for a secure
ecosystem

While FIDO authentication technology can effectively eliminate phishing and credential
stuffing attacks that occur during the login process, the addition of solutions to mitigate
threats associated with bearer token theft is equally important. Bad actors whose
attacks are thwarted during the login process will go after the next weakest link in the
chain and try to steal post-authentication bearer tokens. This section explores two of
these technologies for protecting bearer tokens: Device Bound Session Credentials
(DBSC) protect browser-based session cookies and Demonstrating Proof of Possession
(DPoP) protects OAuth grants. Alternative approaches to protect bearer tokens are also
discussed.

Because no single piece of technology can protect against all threats, a combination of
multiple techniques is required for adequate protection.

© 2025 FIDO Alliance. All rights reserved. Page 6

Table 1: Combination of technologies for increased security

3.1 Browser session cookie security
Before discussing Device Bound Session Credentials (DBSC), you will need to
understand the problem being addressed regarding browser session cookies. Session
hijacking via cookie theft allows an attacker, who possesses stolen cookies, to bypass
end-user authentication, including any strong or multi-factor authentication (MFA). This
is particularly problematic when browsers create long-lived session cookies (which are a
type of bearer token), since these cookies can be traded as alternatives to a user’s
primary authentication credentials and then used from the attacker’s machine. This can
lead to unauthorized access to sensitive data, financial loss, and damage to an
organization’s reputation.

Attackers perform cookie theft through various methods such as man-in-the-middle
phishing of a user’s existing MFA login process (when phishing-resistant authentication
such as FIDO is not used), client-side malware, and occasionally through vulnerabilities
in server-side infrastructure or software. Regardless of how cookie theft is perpetrated,
when successful, these attacks are not only dangerous, but also hard to isolate and
detect. Complementary technologies, such as Device Bound Session Credentials
(DBSC), minimize the risks associated with browser cookie theft by making stolen
cookies impractical to use from any machine other than the machine to which they were
issued during authentication.

3.2 Device Bound Sessional Credentials - DBSC
DBSC refers to a proposed web standard currently in development within the Web
Application Security working group of the W3C[2]. The goal of DBSC is to combat and
disrupt the stolen web session cookies market. This is achieved by defining an HTTP
messaging protocol and required browser and server behaviors to result in binding the

Technologies
Authentication threats Post-authentication

threats

Remote Phishing Credential Stuffing Token Theft

Passkeys ✅ ✅ ❌

DBSC/DPoP ❌ ❌ ✅

Passkeys +
DBSC/DPoP

✅ ✅ ✅

© 2025 FIDO Alliance. All rights reserved. Page 7

use of application session cookies to the user’s computing device. DBSC uses an
asymmetric key pair and in browser implementations the private keys should be
unextractable by an attacker - for example stored within a Trusted Platform Module
(TPM), secure element, or similar hardware-based cryptographic module.

At a high level, the API in conjunction with the user’s browser and secure key storage
capabilities, allows for the following:

● The server communicates to the browser a request to establish a new DBSC
session. This includes a server-provided challenge.

● The browser generates an asymmetric key pair, then sends the public key along
with the signed challenge to the server. This process is referred to as DBSC
registration. Browser implementations of DBSC should use operating system
APIs that facilitate secure, hardware-bound storage and use of the private key.

● The server binds the public key to the browser session by issuing a short-lived,
refreshable auth_cookie which is then required to be transmitted in subsequent
browser requests to the web server.

As the auth_cookie regularly expires, a mechanism is required for the browser to
refresh the auth_cookie asynchronously to primary application web traffic. The refresh
process requires signing a new server-issued challenge with the same private key
created during DBSC registration, thereby re-proving (regularly) that the client browser
is still in possession of the same private key.

Limiting the lifetime of the auth_cookie to short periods of time (for example, a few
minutes) disrupts the market for trading long-lived session cookies. An attacker can only
use stolen session cookies (including the auth_cookie) for a brief period, and cannot
perform a refresh operation, since the private key required to perform a refresh
operation is not extractable from the client machine.

DBSC may be introduced into existing deployments with minimal changes to the
application. This is important as DBSC could easily be incorporated as a web plugin
module in existing server-side technology (for example, Apache module, Servlet Filter,
or reverse proxy functionality). This permits enterprises to roll out deployment of DBSC
in phases without a complete overhaul of all current infrastructure and companies can
prioritize certain critical endpoints or resources first.

DBSC server-side implementations can also be written in a manner that permits
semantics, for example: “If the browser supports DBSC, use it, otherwise fallback to
regular session characteristics.” This allows users to gain the security advantages of
DBSC when they use a browser that supports it without having to require all users to
upgrade their browsers first.

© 2025 FIDO Alliance. All rights reserved. Page 8

Refer to the Device Bound Session Credentials explainer for more details on the DBSC
protocol and standard, including a proposal for enterprise-specific extensions that adds
attestation to DBSC keypairs.

3.2.1 What makes DBSC a technology complementary to FIDO?
The DBSC draft standard permits the login process to be closely integrated with the
DBSC API. While FIDO is a mechanism that makes authentication safer and phishing
resistant, DBSC is a mechanism that makes the bearer credential (session cookie) safer
post-authentication. They complement each other by reducing the risk of account
takeover and abuse, making the entire lifecycle of application sessions safer.

3.2.2 Alternative solutions
DBSC is not the first standard to propose binding session cookies to a client device.
Token Binding is an alternative that combines IETF RFCs 8471, 8472, and 8473. Token
Binding over HTTP is implemented via a Transport Layer Security (TLS) extension and
uses cryptographic certificates to bind tokens to a TLS session. Token Binding has had
limited browser adoption and is complex to implement as it requires changes at the
application layer and in TLS security stacks. The Token Binding over HTTP standard
has not been widely adopted and only one major browser currently offers support.

3.2.3 Advice
The DBSC standard relies on local device security and operating system APIs for
storage and use of the private key that is bound to the browser’s session. While these
private keys cannot be exported to another device, the key is available on the local
system and may be exercisable by malware residing on the user’s device. Similarly, in-
browser malware still has complete visibility into both regular session cookies and short-
lived auth_cookies. DBSC is not a replacement for client-side malware protection, and
the threat model for DBSC does not provide protections from persistent client-side
malware. Ultimately, the user must trust the browser.

As browsers start to support DBSC over time, it will be important for servers to be able
to work with a mix of browsers that do and do not include support for this technology.
Some enterprises may dictate that corporate issued machines include browsers known
to support DBSC, but many will not. It will be necessary for server-side implementations
to take this into consideration, using DBSC when the browser responds to registration
requests, and tolerating unbound session cookies when the browser does not. When
building or choosing a commercial solution, ensure you consider this scenario, and
include the ability to implement access control policies that strictly require DBSC in
highly controlled or regulated environments or for specific applications.

© 2025 FIDO Alliance. All rights reserved. Page 9

At the time of writing, DBSC is in early evolution. It remains to be seen whether or not it
will be widely adopted by browser vendors. The hope is that incubating and developing
this standard via the W3C will result in wider adoption than previous proposals, similar
to the way that the WebAuthn API has been adopted to bring passkey authentication to
all major browser implementations.

4 OAuth grants
The previous section introduced DBSC as a means to protect against session cookie
theft in web browsers. Thick application clients, including mobile applications and
single-page web applications, typically use stateless API calls leveraging OAuth grants
instead of session cookies. An OAuth grant may be established in several ways, with
the recommended pattern for thick clients6 being to initially use the system browser to
authenticate a user, and grant access for an application to act on their behalf.
Conceptually this is remarkably similar to browser-based sessions, including the ability
and recommendation, to use FIDO authentication for end-user authentication when
possible. At the conclusion of the browser-based authentication portion of this flow,
control is returned to the thick client application or single-page web application where
tokens are established for use in programmatic API calls.

The challenge that occurs from this point forward is almost identical to that described for
browsers - the OAuth tokens are bearer tokens that if exposed to a bad actor can be
used to call application APIs from a remote machine instead of from the legitimate
application.

This section describes the use of DPoP, a technology for protecting the “lift and shift” of
credentials used in OAuth-protected API calls which, just like DBSC, makes use of an
asymmetric key pair and ongoing proof of possession of the private key.

4.1 Demonstrate Proof of Possession (DPoP)
OAuth 2.0 Demonstrating Proof of Possession (DPoP) is an extension of the
existing OAuth 2.0 standard for implementing device bound (or sender-constrained)
OAuth access and refresh tokens. It is an application-level mechanism that allows for
the tokens associated with an OAuth grant (that is, refresh tokens and access tokens) to
bind with the requested client using a public and private key pair. This requires the client
to prove ownership of its private key to the authorization server when performing access
token refresh operations and to resource servers when using access tokens to call
APIs.

6 OAuth 2.0 for Native Apps https://datatracker.ietf.org/doc/html/rfc8252

© 2025 FIDO Alliance. All rights reserved. Page 10

High assurance OpenID specifications, such as Financial-grade API (FAPI 2.0),
mandate the use of sender-constrained tokens and DPoP is the recommended method
for implementing this requirement when Mutual TLS (mTLS) is not available.

At a high level, DPoP requires that:

● The client generates a per-grant public/private key pair to be used for
constructing DPoP proofs. Best practice implementations should use operating
system APIs to ensure the private key is non-extractable.

● On initial grant establishment (for example, exchanging an OAuth authorization
code for the grant’s first access token and refresh token), a DPoP proof (a JWT
signed by the client’s private key that contains, among other things, a copy of the
public key) is used to bind a public key to the grant.

● Requests to a resource server using an access token obtained in this manner
must also include a DPoP proof header, continuously proving possession of the
private key used during grant establishment. This is done for every API request.
Resource servers are required to check if an access token is sender-constrained,
confirm the public key, and validate the DPoP proof header on each API call.

● For public clients, subsequent refresh_token flows to the authorization server’s
token endpoint must also contain a DPoP proof signed with the same key used
during initial grant establishment. This is particularly important as the refresh
tokens are often long-lived and are also a type of bearer token (that is, if you
have it you can use it). The authorization server must enforce the use of a DPoP
proof for these refresh token flows and ensure signature validation occurs via the
same public key registered during initial grant establishment.

Unlike a plain bearer access token which can be used by any holder, DPoP based
access tokens are bound to the client that initially established the OAuth grant, since
only that client can sign DPoP proofs with the private key. This approach minimizes the
risks associated with malicious actors trading leaked access tokens.

Refer to DPoP RFC 9449 - OAuth 2.0 Demonstrating Proof of Possession (DPoP) for
more information.

4.2 What makes DPoP a complementary technology to FIDO?
FIDO can be leveraged for phishing resistant end-user authentication during
establishment of an OAuth grant. Refresh and access tokens obtained by a client
following this authentication should be safeguarded against “lift and shift” attacks just
like session cookies in browser-based apps. DPoP is a recommended solution for
protecting these OAuth tokens from unauthorized post-authentication use. Together,

© 2025 FIDO Alliance. All rights reserved. Page 11

FIDO for end user authentication and DPoP for binding OAuth tokens to a client device
complement each other to improve the overall security posture for identities used in
thick client applications.

4.2.1 DPoP alternative solutions?
RFC8705 - OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access
Tokens describes a mechanism that offers a transporter layer solution to bind access
tokens to a client certificate. While it has been approved for use in FAPI 2.0 for open
banking solutions, it is not particularly suitable for public clients such as native mobile
applications.

RFC9421 - HTTP Message Signatures defines an application-level mechanism for
signing portions of an HTTP message. Key establishment and sharing between the
client and verifier are not defined by this specification, although this could be performed
in a trust on first user manner during initial grant establishment in a similar manner to
DPoP. There is no known public specification that maps the use of HTTP message
signatures to the use case of sender-constrained bearer tokens in an OAuth client
application. In the absence of such a public specification, widespread adoption for this
use case is unlikely.

4.2.2 Advice
Sender-constrained tokens are a good idea, and, in some deployments, they are a
regulatory requirement. For example, use of the FAPI profiles of OAuth is now
mandated by many sovereign open banking initiatives. DPoP is a relatively simple way
to achieve this requirement and is flexible enough to cover a wide range of application
client types. That said, care must still be taken to adhere to the security considerations
of DPoP. Pay close attention to section 11 of RFC9449, as well as apply other
application security strategies for native or browser based single page applications as
your scenario dictates. Remember that DPoP is focused solely on addressing the
threats associated with token exfiltration, which include trading and use by malicious
actors. It should be considered part of a defense-in-depth strategy for OAuth
applications.

5 Conclusion
The intent of this paper is to inspire thinking around how different web security
standards fit together and how those standards relate to the use of FIDO authentication
for users. There are so many standards and standards bodies that it is often hard to
understand which compete in the same space and which augment one another to form
part of a comprehensive defense-in-depth strategy for identity fraud protection in online
applications.

© 2025 FIDO Alliance. All rights reserved. Page 12

This paper tackled a specific, prevalent application security problem - the malicious
trading and use of stolen cookies and access tokens. This paper also showed how
technologies such as DBSC and DPoP mitigate the threats associated with token theft
and how these technologies are complementary to FIDO authentication. Paired with
FIDO, DBSC and DPoP provide greater overall identity fraud protection for your
applications.

© 2025 FIDO Alliance. All rights reserved. Page 13

Document history

Change Description Date

Initial publication White paper first published. May 2025

