
FIDO UAF Authenticator Metadata Statements
v1.0
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��
Editors:

Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
FIDO authenticators may have many different form factors, characteristics and capabilities. This document
defines a �standard means to describe the relevant pieces of information about an authenticator in order to
interoperate with it, or to make risk-based policy decisions about transactions involving a particular
authenticator.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current FIDO Alliance publications and the latest revision of this technical
report can be found in the FIDO Alliance specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document,
please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is
hereby granted to use the Specification solely for the purpose of implementing the Specification. No rights��
are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce�
portions of this Specification for other uses must contact the �FIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual�
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any
other contributors to the Specification are not, and shall not be held, responsible in any manner �for
identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://fidoalliance.org/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Scope
2.2 Audience
2.3 Architecture

3. Types
3.1 CodeAccuracyDescriptor dictionary

3.1.1 Dictionary CodeAccuracyDescriptor Members
3.2 BiometricAccuracyDescriptor dictionary

3.2.1 Dictionary BiometricAccuracyDescriptor Members
3.3 PatternAccuracyDescriptor dictionary

3.3.1 Dictionary PatternAccuracyDescriptor Members
3.4 VerificationMethodDescriptor dictionary�

3.4.1 Dictionary VerificationMethodDescriptor Members
3.5 verificationMethodANDCombinations typedef�
3.6 rgbPalletteEntry dictionary

3.6.1 Dictionary rgbPalletteEntry Members
3.7 DisplayPNGCharacteristicsDescriptor dictionary

3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members
4. Metadata Keys

4.1 Dictionary MetadataStatement Members
5. Metadata Statement Format
6. Additional Considerations

6.1 Field updates and metadata
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, �it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, �it must not be an empty list.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements.
Such members are marked in the WebIDL definitions found in this document, as �required. The
keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using
a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your
WebIDL and use other means to ensure those fields are present.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”,
“may”, and “optional” in this document are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety
of different devices in a competitive marketplace. Much of the complexity behind this variety is hidden from
Relying Party applications, but in order to accomplish the goals of FIDO, Relying Parties must have some
means of discovering and verifying various characteristics of authenticators. Relying Parties can learn a
subset of verifiable information for authenticators certified ��by the FIDO Alliance with an Authenticator
Metadata statement. The URL to access that Metadata statement is provided by the Metadata TOC file�
accessible through the Metadata Service [UAFMetadataService].

For definitions of terms, please refer to the FIDO Glossary �[FIDOGlossary].

2.1 Scope
This document describes the format of and information contained in Authenticator Metadata statements. For
a definitive list �of possible values for the various types of information, refer to the FIDO Registry of
Predefined Values [�UAFRegistry].

The description of the processes and methods by which authenticator metadata statements are distributed
and the methods how these statements can be verified are described in �the UAF Metadata Service
Specification [�UAFMetadataService].

2.2 Audience
The intended audience for this document includes:

FIDO authenticator vendors who wish to produce metadata statements for their products.
FIDO server implementers who need to consume metadata statements to verify characteristics of
authenticators and attestation statements, make proper algorithm choices for protocol messages,
create policy statements or tailor various other modes of operation to authenticator-specific�
characteristics.
FIDO relying parties who wish to

create custom policy statements about which authenticators they will accept
risk score authenticators based on their characteristics
verify attested authenticator IDs for cross-referencing with
third party metadata

2.3 Architecture

Fig. 1 The UAF Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the
information contained in the authoritative statement is used in several other places. How a server obtains
these metadata statements is described in [UAFMetadataService].

The workflow around an authenticator metadata statement is as �follows:

1. The authenticator vendor produces a metadata statement describing the characteristics of an
authenticator.

2. The metadata statement is submitted to the FIDO Aliance as part of the FIDO certification process.�
The FIDO Alliance distributes the metadata as described in [UAFMetadataService].

3. A FIDO relying party configures its registration policy to allow �authenticators matching certain
characteristics to be registered.

4. The FIDO server sends a registration challenge message containing this policy statement.
5. The FIDO UAF Client receives the policy statement as part of the challenge message. It queries

available authenticators for their self-reported characteristics and (with the user's input) selects an
authenticator that matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message
contains the AAID for the authenticator and, optionally, a signature made with the private key
corresponding to the public key in the authenticator's attestation certificate.�

7. The FIDO Server looks up the metadata statement for the authenticator using the authenticator's
AAID. If the metadata statement lists an attestation certificate(s), it �verifies that an attestation�
signature is present, and made with the private key corresponding to either (a) one of the certificates�
listed in this metadata statement or (b) corrsponding to the public key in a certificate that �chains to one
of the issuer certificates listed in the authenticator's metadata statement.�

8. The FIDO Server next verifies that the authenticator meets the �originally supplied registration policy
based on its authoritative metadata statement. This prevents a faulty, modified, or compromised FIDO�
UAF Client from registering authenticators that are out of policy.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the
authenticator, based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested AAID of the authenticator with other
metadata databases published by third parties. Such third-party metadata might, for example, inform
the FIDO Server if an authenticator has achieved certifications relevant to certain markets or industry�
verticals, or whether it meets application-specific regulatory �requirements.

3. Types
This section is normative.

3.1 CodeAccuracyDescriptor dictionary

The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user
verification methods.�

WebIDL

dictionary CodeAccuracyDescriptor {
 required unsigned short base;
 required unsigned short minLength;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.1.1 Dictionary CodeAccuracyDescriptor Members

base of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4
digits.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for
some time). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or
similar). 0 means this user verification �method will be blocked, either permanently or until an
alternative user verification method method succeeded. �All alternative user verification methods�
must be specified appropriately in the Metadata in �userVerificationDetails.

3.2 BiometricAccuracyDescriptor dictionary
The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a
biometric user verification method.�

At least one of the values must be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.baDesc must be omitted.

WebIDL

dictionary BiometricAccuracyDescriptor {
 double FAR;
 double FRR;
 double EER;
 double FAAR;
 unsigned short maxReferenceDataSets;

NOTE

One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral system base (radix) and minLen, instead of the number of potential
combinations since there is sufficient evidence [�iPhonePasscodes] [MoreTopWorstPasswords] that
users don't select their code evenly distributed at random. So software might take into account the
various probability distributions for different bases. This essentially means that in practice, passcodes
are not as secure as they could be if randomly chosen.

NOTE

The False Acceptance Rate (FAR) and False Rejection Rate (FRR) values typically are
interdependent via the Receiver Operator Characteristic (ROC) curve.

The False Artefact Acceptance Rate (FAAR) value reflects the capability of detecting presentation�
attacks, such as the detection of rubber finger presentation.�

The FAR, FRR, and FAAR values given here must reflect the actual configuration of the��
authenticators (as opposed to being theoretical best case values).

 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.2.1 Dictionary BiometricAccuracyDescriptor Members

FAR of type double
The false acceptance rate [ISO19795-1] for a single reference data set, i.e. the percentage of
non-matching data sets that are accepted as valid ones. For example a FAR of 0.1% would be
encoded as 0.001.

FRR of type double
The false rejection rate for a single reference data set, i.e. the percentage of presented valid data
sets that lead to a (false) non-acceptance. For example a FRR of 0.1% would be encoded as
0.001.

EER of type double
The equal error rate for a single reference data set.

FAAR of type double
The false artefact acceptance rate [ISO30107-1], i.e. the percentage of artefacts that are
incorrectly accepted by the system. For example a FAAR of 0.1% would be encoded as 0.001.

maxReferenceDataSets of type unsigned short
Maximum number of alternative reference data sets, e.g. 3 if the user is allowed to enroll 3
different fingers to a fingerprint based authenticator.��

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for
some time). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or
similar). 0 means that this user verification �method will be blocked either permanently or until an
alternative user verification method succeeded. �All alternative user verification methods �must be
specified appropriately in the metadata in �userVerificationDetails.

3.3 PatternAccuracyDescriptor dictionary
The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern
is used as the user verification method.�

NOTE

The resulting FAR when all reference data sets are used is maxReferenceDataSets * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean
better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

NOTE

The false rejection rate is relevant for the convenience. Lower false acceptance rates mean
better convenience.

NOTE

The false artefact acceptance rate is relevant for the security of the system. Lower false
artefact acceptance rates imply better security.

NOTE

One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern]

WebIDL

dictionary PatternAccuracyDescriptor {
 required unsigned long minComplexity;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.3.1 Dictionary PatternAccuracyDescriptor Members

minComplexity of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the
right one, i.e. 1/probability in the case of equal distribution.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this
method (at least temporarily). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar
mechanism). 0 means this user verification �method will be blocked, either permanently or until an
alternative user verification method method succeeded. �All alternative user verification methods�
must be specified appropriately in the metadata under �userVerificationDetails.

3.4 VerificationMethodDescriptor dictionary�
A descriptor for a specific �base user verification method� as implemented by the authenticator.

A base user verification method must be chosen from the list of those described in [�UAFRegistry]

The specification of the related AccuracyDescriptor is optional, but recommended.�

WebIDL

dictionary VerificationMethodDescriptor {
 required unsigned long userVerification;
 CodeAccuracyDescriptor caDesc;
 BiometricAccuracyDescriptor baDesc;
 PatternAccuracyDescriptor paDesc;
};

3.4.1 Dictionary VerificationMethodDescriptor Members

userVerification of type required unsigned long
a single USER_VERIFY constant (see [UAFRegistry]), not a bit flag combination�. This value must
be non-zero.

caDesc of type CodeAccuracyDescriptor
May optionally be used in the case of method USER_VERIFY_PASSCODE.

baDesc of type BiometricAccuracyDescriptor
May optionally be used in the case of method USER_VERIFY_FINGERPRINT, USER_VERIFY_VOICEPRINT,
USER_VERIFY_FACEPRINT, USER_VERIFY_EYEPRINT, or USER_VERIFY_HANDPRINT.

paDesc of type PatternAccuracyDescriptor
may optionally be used in case of method USER_VERIFY_PATTERN.

3.5 verificationMethodANDCombinations typedef�
WebIDL

screen unlock. The minComplexity would be 1624 in that case, based on the user choosing a 4-digit
PIN, the minimum allowed for this mechanism.

NOTE

In reality, several of the methods described above might be combined. For example, a fingerprint�
based user verification can be combined with an alternative password.�

WebIDL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations must be non-empty. It is a list containing the list of base user
verification methods which must be passed as part �of a successful user verification.�

This list will contain only a single entry if using a single user verification method is sufficient.��

If this list contains multiple entries, then all of the listed user verification methods �must be passed as part of
the user verification process.�

3.6 rgbPalletteEntry dictionary
The rgbPalletteEntry is an RGB three-sample tuple pallete entry

WebIDL

dictionary rgbPalletteEntry {
 required unsigned short r;
 required unsigned short g;
 required unsigned short b;
};

3.6.1 Dictionary rgbPalletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.7 DisplayPNGCharacteristicsDescriptor dictionary
The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG�
[PNG] spec for IHDR (image header) and PLTE (palette table)

WebIDL

dictionary DisplayPNGCharacteristicsDescriptor {
 required unsigned long width;
 required unsigned long height;
 required octet bitDepth;
 required octet colorType;
 required octet compression;
 required octet filter;
 required octet interlace;
 rgbPalletteEntry[] plte;
};

3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

width of type required unsigned long
image width

height of type required unsigned long
image height

bitDepth of type required octet
Bit depth - bits per sample or per palette index.

colorType of type required octet
Color type defines the PNG image type.�

compression of type required octet
Compression method used to compress the image data.

filter of type required octet

Filter method is the preprocessing method applied to the image data before compression.

interlace of type required octet
Interlace method is the transmission order of the image data.

plte of type array of rgbPalletteEntry
1 to 256 palette entries

4. Metadata Keys
This section is normative.

WebIDL

dictionary MetadataStatement {
 required AAID aaid;
 required DOMString description;
 required unsigned short authenticatorVersion;
 required Version[] upv;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 required unsigned short publicKeyAlgAndEncoding;
 required unsigned short[] attestationTypes;
 required VerificationMethodANDCombinations[] userVerificationDetails;
 required unsigned short keyProtection;
 required unsigned short matcherProtection;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 required DOMString[] attestationRootCertificates;
 required DOMString icon;
};

4.1 Dictionary MetadataStatement Members
aaid of type required AAID

The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure.�

description of type required DOMString
A human-readable short description of the authenticator.

authenticatorVersion of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this�
metadata statement.

Adding new StatusReport entries with status UPDATE_AVAILABLE to the metadata TOC object
[UAFMetadataService] must also change this authenticatorVersion if the update fixes severe�
security issues, e.g. the ones reported by preceding StatusReport entries with status code
USER_VERIFICATION_BYPASS, ATTESTATION_KEY_COMPROMISE, USER_KEY_REMOTE_COMPROMISE,
USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

It is recommended to assume increased risk if this version is higher (newer) than the firmware�
version present in an authenticator. For example, if a StatusReport entry with status
USER_VERIFICATION_BYPASS or USER_KEY_REMOTE_COMPROMISE precedes the UPDATE_AVAILABLE entry,
than any firmware version lower (older) than the one �specified in the metadata statement is�
assumed to be vulnerable.

upv of type array of required Version
The UAF protocol version(s) supported by this authenticator. See [UAFProtocol] for the definition�
of the Version structure.

assertionScheme of type required DOMString
The assertion scheme supported by the Authenticator. Must be set to one of the enumerated
Strings defined in the FIDO UAF �Registry of Predefined Values [�UAFRegistry].

NOTE

This description should help an administrator configuring authenticator policies. �This
description might deviate from the description returned by the ASM for that authenticator.

authenticationAlgorithm of type required unsigned short
The authentication algorithm supported by the authenticator. Must be set to one of the UAF_ALG
constants defined in the �FIDO UAF Registry of Predefined Values [�UAFRegistry]. This value must
be non-zero.

publicKeyAlgAndEncoding of type required unsigned short
The public key format used by the authenticator during registration operations. Must be set to one
of the UAF_ALG_KEY constants defined in the �FIDO UAF Registry of Predefined Values�
[UAFRegistry]. Because this information is not present in APIs related to authenticator discovery
or policy, a FIDO server must be prepared to accept and process any and all key representations
defined for any public key algorithm it supports. �This value must be non-zero.

attestationTypes of type array of required unsigned short
The supported attestation type(s). (e.g. TAG_ATTESTATION_BASIC_FULL) See UAF Registry for more
information [UAFRegistry].

userVerificationDetails of type array of required VerificationMethodANDCombinations�
A list alternative VerificationMethodANDCombinations. �Each of these entries is one alternative
user verification method. �Each of these alternative user verification methods might �itself be an
"AND" combination of multiple modalities.

All effectively available alternative user verification methods �must be properly specified here. �A
user verification method is considered effectively available if this method can be used �to either:

enroll new verification reference data to one of the user verification methods��

or

unlock the UAuth key directly after successful user verification�

keyProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the ��KEY_PROTECTION constants in the FIDO
Registry of Predefined �Values [UAFRegistry].

This value must be non-zero.

matcherProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the ��MATCHER_PROTECTION constants in the
FIDO Registry of Predefined �Values [UAFRegistry].

This value must be non-zero.

attachmentHint of type required unsigned long
A 32-bit number representing the bit fields defined by the ��ATTACHMENT_HINT constants in the FIDO
Registry of Predefined �Values [UAFRegistry].

isSecondFactorOnly of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some
other authentication method as a first factor (e.g. username+password).�

tcDisplay of type required unsigned short
A 16-bit number representing the bit fields defined by the ��TRANSACTION_CONFIRMATIOM_DISPLAY
constants in the FIDO Registry of Predefined �Values [UAFRegistry].

This value must be 0, if transaction confirmation is not supported by the authenticator.�

NOTE

If multiple matchers are implemented, then this value must reflect the �weakest
implementation of all matchers.

NOTE

The connection state and topology of an authenticator may be transient and cannot be
relied on as authoritative by a relying party, but the metadata field should �have all the bit
flags set for the topologies possible for the �authenticator. For example, an authenticator
instantiated as a single-purpose hardware token that can communicate over bluetooth
should set ATTACHMENT_HINT_EXTERNAL but not ATTACHMENT_HINT_INTERNAL.

tcDisplayContentType of type DOMString
Supported MIME content type [RFC2049] for the transaction confirmation �display, such as
text/plain or image/png.

This value must be present if transaction confirmation is supported, �i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
A list of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative
of supported image characteristics for displaying a PNG image.

This list must be present if transaction confirmation is supported, �i.e. tcDisplay is non-zero.

attestationRootCertificates of type array of required DOMString
Each element of this array represents a PKIX [RFC5280] trust root X.509 certificate that is valid�
for this AAID. Multiple certificates might be used for different batches without �distinct AAIDs. The
array does not represent a certificate �chain, but only the trust anchor of that chain.

Each array element is a Base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-
2008] PKIX certificate �value. Each element must be dedicated for authenticator attestation.

Either

the manufacturer attestation root certificate�

or

the root certificate related to a specific AAID��

must be specified included here.�

In the case (a), the root certificate might cover multiple �authenticator types (i.e. multiple AAIDs).
In this case, the AAID must be specified in the SubjectDN CommonName (oid 2.5.4.3) of the�
Attestation Certificate. In the case (b) it is not required to include the AAID in �the SubjectDN
CommonName of the attestation certificate, as the �root certificate only covers a single AAID.�

In the case of surrogate basic attestation (see [UAFProtocol], section "Surrogate Basic
Attestation"), no attestation root certificate is required/used. �So this array must be empty in that
case.

icon of type required DOMString
A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

5. Metadata Statement Format
This section is non-normative.

NORMATIVE

A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary
MetadataStatement.

Example of the metadata statement for an authenticator with:

authenticatorVersion 2.
Fingerprint based user verification with false acceptance rate of 0.001.�
Authenticator is embedded with the FIDO User device.
The authentication keys are protected by TEE.
The (fingerprint) matcher is implemented in TEE.�

NOTE

A certificate listed here is a trust root. It might be the �actual certificate presented by the�
authenticator, or it might be an issuing authority certificate from the vendor that the �actual
certificate in the authenticator chains to.�

The attestation certificate itself and the ordered certificate ��chain is included in the
registration assertion (see [UAFAuthnrCommands]).

The Transaction Confirmation Display is implemented in a TEE.�
The Transaction Confirmation Display supports display of "image/png" objects only.�
Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color
(=Color Type 2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) and��
no interlacing support (interlace method=0).
The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.�
It supports the "UAFV1TLV" assertion scheme.
It uses the UAF_ALG_SIGN_ECDSA_SHA256_RAW authentication algorithm.
It uses the UAF_ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).
It only implements the TAG_ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).
It implements UAF protocol version 1.0 only.

EXAMPLE 1: MetadataStatement
{ "aaid": "1234#5678",
 "description": "FIDO Alliance Sample UAF Authenticator",
 "authenticatorVersion": 2,
 "upv": [{ "major": 1, "minor": 0 }],
 "assertionScheme": "UAFV1TLV",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15879],
 "userVerificationDetails": [[{ "userVerification": 2, "baDesc": { "FAR": 0.001 } }]],
 "keyProtection": 6,
 "matcherProtection": 2,
 "attachmentHint": 1,
 "isSecondFactorOnly": "false",
 "tcDisplay": 4,
 "tcDisplayContentType": ["image/png"],
 "tcDisplayPNGCharacteristics": [{"width": 320, "height": 480, "bitDepth": 16,
 "colorType": 2, "compression": 0, "filter": 0, "interlace": 0}],
 "attestationRootCertificates": [
"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
lQ=="],
 "icon": "data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

Example of an User Verification Methods� entry for an authenticator with:

Fingerprint based user verification method, with:�
the ability for the user to enroll up to 5 fingers (reference data sets) with�

a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01%�
(0.0001).
The fingerprint verification will be blocked after 5 unsuccessful attempts.��

A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification�
method. Entering the PIN will be required to re-activate fingerprint based user verification after it has��
been blocked.

6. Additional Considerations
This section is non-normative.

6.1 Field updates and metadata
Metadata statements are intended to be stable once they have been published. When authenticators are
updated in the field, such updates are expected to improve the authenticator security �(for example, improve
FRR or FAR). The authenticatorVersion must be updated if firmware updates fixing severe security ��issues
(e.g. as reported previously) are available.

NORMATIVE

Significant changes in authenticator �functionality are not anticipated in firmware updates. �For example, if
an authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a
user verification method, the vendor would �must assign a new AAID to this authenticator.

NORMATIVE

A single authenticator implementation could report itself as two "virtual" authenticators using different
AAIDs. Such implementations must properly (i.e. according to the security characteristics claimed in the
metadata) protect UAuth keys and other sensitive data from the other "virtual" authenticator - just as a
normal authenticator would do.

A. References

EXAMPLE 2: User Verification Methods Entry�
[
 [{ "userVerification": 2, "baDesc": { "FAR": 0.00002, "maxReferenceDataSets": 5,
 "maxRetries": 5, "blockSlowdown": 0} }],
 [{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } }]
]

NOTE

The metadata statement is assumed to relate to all authenticators having the same AAID.

NOTE

The FIDO Server is recommended to assume increased risk if the authenticatorVersion specified in�
the metadata statement is newer (higher) than the one present in the authenticator.

NOTE

Authentication keys (UAuth.pub) registered for one AAID cannot be used by authenticators reporting a
different AAID - even when running on the same hardware (see section "Authentication Response
Processing Rules for FIDO Server" in [UAFProtocol]).

A.1 Normative references
[ISO19795-1]

ISO/IEC JTC 1/SC 37, Information Technology - Biometric peformance testing and reporting - Part 1:
Principles and framework, URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447

[ISO30107-1]
ISO/IEC JTC 1/SC 37, Information Technology - Biometrics - Presentation attack detection - Part 1:
Framework, URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227

[RFC2049]
N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance
Criteria and Examples (RFC 2049), IETF, November 1996, URL: http://www.ietf.org/rfc/rfc2049.txt

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:
https://tools.ietf.org/html/rfc2397

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL:
http://heycam.github.io/webidl/

A.2 Informative references
[AndroidUnlockPattern]

Android Unlock Pattern Security Analysis. Sinustrom.info web site. URL:
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/'

[ECMA-262]
ECMAScript Language Specification, Edition 5.1�. June 2011. URL: http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance
Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-glossary-v1.0-rd-��
20140209.pdf

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),�
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811).
International Telecommunications Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-
200811-I/en

[MoreTopWorstPasswords]
10000 Top Passwords, Mark Burnett (Accessed July 11, 2014) URL: https://xato.net/passwords/more-
top-worst-passwords/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition)�. 10 November 2003.
W3C Recommendation. URL: http://www.w3.org/TR/PNG

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current
Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006,
URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk; Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile���, IETF, May 2008, URL:
http://www.ietf.org/rfc/rfc5280.txt

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf��

[UAFMetadataService]
R. Lindemann FIDO UAF Metadata Service v1.0. FIDO Alliance Working Draft (Work in progress.)
URL: TODO

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�. FIDO Alliance
Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-��
20140209.pdf

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values v1.0�. FIDO Alliance
Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL:
http://www.w3.org/TR/WebIDL/

[iPhonePasscodes]
Most Common iPhone Passcodes, Daniel Amitay (Accessed July 11, 2014) URL:
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
http://www.w3.org/TR/PNG
http://www.w3.org/TR/PNG
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

	FIDO UAF Authenticator Metadata Statements v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 CodeAccuracyDescriptor dictionary
	3.1.1 Dictionary CodeAccuracyDescriptor Members

	3.2 BiometricAccuracyDescriptor dictionary
	3.2.1 Dictionary BiometricAccuracyDescriptor Members

	3.3 PatternAccuracyDescriptor dictionary
	3.3.1 Dictionary PatternAccuracyDescriptor Members

	3.4 VerificationMethodDescriptor dictionary
	3.4.1 Dictionary VerificationMethodDescriptor Members

	3.5 verificationMethodANDCombinations typedef
	3.6 rgbPalletteEntry dictionary
	3.6.1 Dictionary rgbPalletteEntry Members

	3.7 DisplayPNGCharacteristicsDescriptor dictionary
	3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references

