
FIDO UAF Authenticator-Specific Module�
API
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-asm-api-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdf��
Editors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Roni Sasson, Discretix, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
UAF authenticators may be connected to a user device via various physical interfaces
(SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific �Module (ASM) is a software
interface on top of UAF authenticators which gives a standardized way for FIDO UAF
Clients to detect and access the functionality of UAF authenticators and hides internal
communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs, defines the UAF ASM API�
and explains how FIDO UAF Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO FIDO UAF Client
vendors.

Status of This Document

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-asm-api-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdf
davit@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
rolf@noknok.com
https://www.noknok.com/
bhill@paypal.com
http://www.paypal.com/
Roni.Sasson@discretix.com
http://www.discretix.com/
https://www.fidoalliance.org/

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of�
implementing the Specification. No rights �are granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce �portions of this Specification for�
other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third�
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not,�
and shall not be held, responsible in any manner for identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Code & Example format
3. ASM Requests and Responses

3.1 Request enum
3.2 StatusCode Interface

3.2.1 Constants
3.3 ASMRequest Dictionary

3.3.1 Dictionary ASMRequest Members
3.4 ASMResponse Dictionary

3.4.1 Dictionary ASMResponse Members
3.5 GetInfo Request

3.5.1 GetInfoOut Dictionary
3.5.1.1 Dictionary GetInfoOut Members

3.5.2 AuthenticatorInfo Dictionary
3.5.2.1 Dictionary AuthenticatorInfo Members

3.6 Register Request
3.6.1 RegisterIn Object

3.6.1.1 Dictionary RegisterIn Members
3.6.2 RegisterOut Object

3.6.2.1 Dictionary RegisterOut Members
3.6.3 Detailed Description for Processing the Register Request

https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.7 Authenticate Request
3.7.1 AuthenticateIn Object

3.7.1.1 Dictionary AuthenticateIn Members
3.7.2 Transaction Object

3.7.2.1 Dictionary Transaction Members
3.7.3 AuthenticateOut Object

3.7.3.1 Dictionary AuthenticateOut Members
3.7.4 Detailed Description for Processing the Authenticate Request

3.8 Deregister Request
3.8.1 DeregisterIn Object

3.8.1.1 Dictionary DeregisterIn Members
3.8.2 Detailed Description for Processing the Deregister Request

3.9 GetRegistrations Request
3.9.1 GetRegistrationsOut Object

3.9.1.1 Dictionary GetRegistrationsOut Members
3.9.2 AppRegistration Object

3.9.2.1 Dictionary AppRegistration Members
3.9.3 Detailed Description for Processing the GetRegistrations
Request

3.10 OpenSettings Request
4. Using ASM API
5. Using the ASM API on various platforms

5.1 Android ASM Intent API
5.1.1 Discovering ASMs

5.2 Windows ASM API
6. Security and Privacy Guidelines

6.1 KHAccessToken
6.2 Access Control for ASM APIs

A. References
A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL
[WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly
marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, �it must not be
empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, �it must not be an
empty list.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“recommended”, “may”, and “optional” in this document are to be interpreted as
described in [RFC2119].

2. Overview
This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces
(SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific module (ASM) is a software�
interface on top of UAF authenticators which gives a standardized way for FIDO UAF
Clients to detect and access the functionality of UAF authenticators, and hides internal
communication complexity from clients.

The ASM is a platform-specific �software component offering an API to FIDO UAF
Clients, enabling them to discover and communicate with one or more available
authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and FIDO UAF
Client vendors.

The FIDO UAF protocol and its various operations is described in the FIDO UAF

NOTE

Note: Certain dictionary members need to be present in order to comply with
FIDO requirements. Such members are marked in the WebIDL definitions found�
in this document, as required. The keyword required has been introduced by
[WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser
which implements [WebIDL], then you may remove the keyword required from
your WebIDL and use other means to ensure those fields are present.�

NOTE

Platform vendors might choose to not expose the ASM API defined in this�
document to applications. They might instead choose to expose ASM
functionality through some other API (such as, for example, the Android KeyStore
API, or iOS KeyChain API). In these cases it's important to make sure that the
underlying ASM communicates with the FIDO UAF authenticator in a manner
defined in this document.�

Protocol Specification [�UAFProtocol]. The following simplified architecture diagram�
illustrates the interactions and actors this document is concerned with:

Fig. 1 UAF ASM API Architecture

2.1 Code & Example format
ASM requests and responses are presented in WebIDL format.

3. ASM Requests and Responses
This section is normative.

The ASM API is defined in terms of JSON-formatted [�ECMA-404] request and reply
messages. In order to send a request to an ASM, a FIDO UAF Client creates an
appropriate object (e.g., in ECMAscript), "stringifies" it (also known �as serialization) into
a JSON-formated string, and sends it to the ASM. The ASM de-serializes the JSON-
formatted string, processes the request, constructs a response, stringifies it, returning it�
as a JSON-formatted string.

NOTE

The ASM request processing rules in this document explicitly assume that the
underlying authenticator implements the "UAFV1TLV" assertion scheme (e.g.
references to TLVs and tags) as described in [UAFProtocol]. If an authenticator
supports a different assertion scheme then the corresponding processing rules

Authenticator implementers may create custom authenticator command interfaces other
than the one defined in [�UAFAuthnrCommands]. Such implementations are not required
to implement the exact message-specific processing steps described in this section.�
However,

1. the command interfaces must present the ASM with external behavior equivalent
to that described below in order for the ASM to properly respond to the client
request messages (e.g. returning appropriate UAF status codes for specific�
conditions).

2. all authenticator implementations must support an assertion scheme as defined�
[UAFRegistry] and must return the related objects, i.e. TAG_UAFV1_REG_ASSERTION
and TAG_UAFV1_AUTH_ASSERTION.

3.1 Request enum
WebIDL

enum Request {
 "GetInfo",
 "Register",
 "Authenticate",
 "Deregister",
 "GetRegistrations",
 "OpenSettings"
};

Enumeration description
GetInfo GetInfo
Register Register
Authenticate Authenticate
Deregister Deregister
GetRegistrations GetRegistrations
OpenSettings OpenSettings

3.2 StatusCode Interface
WebIDL

interface StatusCode {
 const short UAF_ASM_STATUS_OK = 0x00;
 const short UAF_ASM_STATUS_ERROR = 0x01;
 const short UAF_ASM_STATUS_ACCESS_DENIED = 0x02;
 const short UAF_ASM_STATUS_USER_CANCELLED = 0x03;
};

3.2.1 Constants

UAF_ASM_STATUS_OK of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR of type short
An unknown error has been encountered during the processing.

must be replaced with appropriate assertion scheme-specific rules.�

UAF_ASM_STATUS_ACCESS_DENIED of type short
Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED of type short
Indicates that user explicitly canceled the request.

3.3 ASMRequest Dictionary
All ASM requests are represented as ASMRequest objects.

WebIDL

dictionary ASMRequest {
 required Request requestType;
 Version asmVersion;
 unsigned short authenticatorIndex;
 object args;
 Extension[] exts;
};

3.3.1 Dictionary ASMRequest Members

requestType of type required Request
Request type

asmVersion of type Version
ASM message version to be used with this request. For the definition of the�
Version dictionary see [UAFProtocol]. The ASM version must be 1.0 (i.e.
major version is 1 and minor version 0).

authenticatorIndex of type unsigned short
Refer to the GetInfo request for more details. Field authenticatorIndex must
not be set for GetInfo request.

args of type object
Request-specific arguments. If set, this attribute �may take one of the following
types:

RegisterIn
AuthenticateIn
DeregisterIn

exts of type array of Extension
List of UAF extensions. For the definition of the �Extension dictionary see
[UAFProtocol].

3.4 ASMResponse Dictionary
All ASM responses are represented as ASMResponse objects.

WebIDL

dictionary ASMResponse {
 required short statusCode;
 object responseData;
 Extension[] exts;
};

3.4.1 Dictionary ASMResponse Members

statusCode of type required short
must contain one of the values defined in the �StatusCode interface

responseData of type object
Request-specific response data. This attribute �must have one of the following
types:

GetInfoOut
RegisterOut
AuthenticateOut
GetRegistrationOut

exts of type array of Extension
List of UAF extensions. For the definition of the �Extension dictionary see
[UAFProtocol].

3.5 GetInfo Request
Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports
2. Collect information about all of them
3. Assign indices to them (authenticatorIndex)
4. Return the information to the caller

For a GetInfo request, the following ASMRequest member(s) must have the following
value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to GetInfo

For a GetInfo response, the following ASMResponse member(s) must have the following
value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR

ASMResponse.responseData must be an object of type GetInfoOut

3.5.1 GetInfoOut Dictionary

WebIDL

NOTE

Where possible, an authenticatorIndex should be a persistent identifier that�
uniquely identifies an �authenticator over time, even if it is repeatedly
disconnected and reconnected. This avoids possible confusion if the set of
available authenticators changes between a GetInfo request and subsequent
ASM requests, and allows a FIDO client to perform caching of information about
removable authenticators for a better user experience.

dictionary GetInfoOut {
 required AuthenticatorInfo[] Authenticators;
};

3.5.1.1 Dictionary GetInfoOut Members

Authenticators of type array of required AuthenticatorInfo
List of authenticators reported by the current ASM. may be empty an empty
list.

3.5.2 AuthenticatorInfo Dictionary

WebIDL

dictionary AuthenticatorInfo {
 required unsigned short authenticatorIndex;
 required Version[] asmVersions;
 required boolean isUserEnrolled;
 required boolean hasSettings;
 required AAID aaid;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 required unsigned short[] attestationTypes;
 required unsigned long userVerification;
 required unsigned short keyProtection;
 required unsigned short matcherProtection;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required boolean isRoamingAuthenticator;
 required DOMString[] supportedExtensionIDs;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 DOMString title;
 DOMString description;
 DOMString icon;
};

3.5.2.1 Dictionary AuthenticatorInfo Members

authenticatorIndex of type required unsigned short
Authenticator index. Unique, within the scope of all authenticators reported by
the ASM, index referring to an authenticator. This index is used by the UAF
Client to refer to the appropriate authenticator in further requests.

asmVersions of type array of required Version
A list of ASM Versions that this authenticator can be used with. For the
definition of the �Version dictionary see [UAFProtocol].

isUserEnrolled of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators
which don't have user verification technology �must always return true. Bound
authenticators which support different profiles per operating system (OS) user�
must report enrollment status for the current OS user.

hasSettings of type required boolean
A boolean value indicating whether the authenticator has its own settings. If
so, then a FIDO UAF Client can launch these settings by sending a
OpenSettings request.

aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and �batch
of the authenticator. See [UAFProtocol] for the definition of the AAID�
structure.

assertionScheme of type required DOMString
The assertion scheme the authenticator uses for attested data and
signatures.

AssertionScheme identifiers are defined in the UAF Protocol ��specification�
[UAFProtocol].

authenticationAlgorithm of type required unsigned short
Indicates the authentication algorithm that the authenticator uses.
Authentication algorithm identifiers are defined in are defined ���in
[UAFRegistry] with UAF_ALG prefix.�

attestationTypes of type array of required unsigned short
Indicates attestation types supported by the authenticator. Attestation type
TAGs are defined in [�UAFRegistry] with TAG_ATTESTATION prefix�

userVerification of type required unsigned long
A set of bit flags indicating the user verification method(s) ��supported by the
authenticator. The values are defined by the �USER_VERIFY constants in
[UAFRegistry].

keyProtection of type required unsigned short
A set of bit flags indicating the key protections used by the �authenticator. The
values are defined by the �KEY_PROTECTION constants in [UAFRegistry].

matcherProtection of type required unsigned short
A set of bit flags indicating the matcher protections used by the �authenticator.
The values are defined by the �MATCHER_PROTECTION constants in
[UAFRegistry].

attachmentHint of type required unsigned long
A set of bit flags indicating how the authenticator is currently �connected to the
system hosting the FIDO UAF Client software. The values are defined by the�
ATTACHMENT_HINT constants defined in �[UAFRegistry].

isSecondFactorOnly of type required boolean
Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs of type array of required DOMString

NOTE

Because the connection state and topology of an authenticator may be
transient, these values are only hints that can be used by server-
supplied policy to guide the user experience, e.g. to prefer a device
that is connected and ready for authenticating or confirming a low-value�
transaction, rather than one that is more secure but requires more user
effort. These values are not reflected in authenticator metadata and�
cannot be relied on by the relying party, although some models of
authenticator may provide attested measurements with similar
semantics as part of UAF protocol messages.

List of supported UAF extension Ids. may be an empty list.

tcDisplay of type required unsigned short
A set of bit flags indicating the availability and type of �the authenticator's
transaction confirmation display. The values are �defined by the�
TRANSACTION_CONFIRMATION_DISPLAY constants in [UAFRegistry].

This value must be 0 if transaction confirmation is not �supported by the
authenticator.

tcDisplayContentType of type DOMString
Supported transaction content type [UAFAuthnrMetadata].

This value must be present if transaction confirmation is supported, �i.e.
tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of
DisplayPNGCharacteristicsDescriptor

Supported transaction Portable Network Graphic (PNG) type
[UAFAuthnrMetadata]. For the definition of the�
DisplayPNGCharacteristicsDescriptor structure see [UAFAuthnrMetadata].

This list must be present if transaction confirmation is supported, �i.e.
tcDisplay is non-zero.

title of type DOMString
A human-readable short title for the authenticator. It should be localized for
the current locale.

description of type DOMString
Human-readable longer description of what the authenticator represents.

icon of type DOMString
Portable Network Graphic (PNG) format image file representing the �icon
encoded as a data: url [RFC2397].

NOTE

If the ASM doesn't return a title, the FIDO UAF Client must provide a
title to the calling App. See section "Authenticator interface" in
[UAFAppAPIAndTransport].

NOTE

This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from
the description specified in the metadata statement for the�
authenticator [UAFAuthnrMetadata].

If the ASM doesn't return a description, the FIDO UAF Client will
provide a description to the calling application. See section
"Authenticator interface" in [UAFAppAPIAndTransport].

NOTE

3.6 Register Request
Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following ASMRequest member(s) must have the following
value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Register
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
ASMRequest.args must be set to an object of type RegisterIn

For a Register response, the following ASMResponse member(s) must have the following
value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR
UAF_ASM_STATUS_ACCESS_DENIED
UAF_ASM_STATUS_USER_CANCELLED

ASMResponse.responseData must be an object of type RegisterOut

3.6.1 RegisterIn Object

WebIDL

dictionary RegisterIn {
 required DOMString appID;
 required DOMString username;
 required DOMString finalChallenge;
 required unsigned short attestationType;
};

3.6.1.1 Dictionary RegisterIn Members

appID of type required DOMString
The FIDO server Application Identity.

username of type required DOMString
Human-readable user account name

finalChallenge of type required DOMString
base64url-encoded challenge data [RFC4648]

attestationType of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

WebIDL

If the ASM doesn't return an icon, the FIDO UAF Client will provide a
default icon to the calling application. See section "Authenticator
interface" in [UAFAppAPIAndTransport].

WebIDL

dictionary RegisterOut {
 required DOMString assertion;
 required DOMString assertionScheme;
};

3.6.2.1 Dictionary RegisterOut Members

assertion of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionScheme of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol ��specification�
[UAFProtocol].

3.6.3 Detailed Description for Processing the Register Request

Refer to [UAFAuthnrCommands] document for more information about the TAGs and
structure mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be
located, then fail with UAF_ASM_STATUS_ERROR.

2. If a user is already enrolled with this authenticator (such as biometric enrollment,
PIN setup, etc. for example) then the ASM must request that the authenticator
verifies the user.�

If verification fails, return �UAF_ASM_STATUS_ACCESS_DENIED
3. If the user is not enrolled with the authenticator then take the user through the

enrollment process.
If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)
5. Hash the provided RegisterIn.finalChallenge using the authenticator-specific�

hash function (FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm
defined in the �AuthenticatorInfo.authenticationAlgorithm field.�

6. Create a TAG_UAFV1_REGISTER_CMD structure and pass it to the authenticator
1. Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username,

UserVerificationToken, RegisterIn.AppID, RegisterIn.AttestationType
1. Depending on AuthenticatorType some arguments may be optional.

Refer to [UAFAuthnrCommands] for more information on authenticator
types and their required arguments.

7. Invoke the command and receive the response

NOTE

If the authenticator supports UserVerificationToken (see
[UAFAuthnrCommands]), then the ASM must obtain this token in order to
later include it with the Register command.

8. Parse TAG_UAFV1_REGISTER_CMD_RESP
1. Parse the content of TAG_AUTHENTICATOR_ASSERTION (e.g.

TAG_UAFV1_REG_ASSERTION) and extract TAG_KEYID
9. If the authenticator is a bound authenticator

1. Store CallerID, AppID, TAG_KEYHANDLE, TAG_KEYID and CurrentTimestamp in the
ASM's database.

10. Create a RegisterOut object
1. Set RegisterOut.assertionScheme according to

AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g.

TAG_UAFV1_REG_ASSERTION) in base64url format and set as
RegisterOut.assertion.

3. Return RegisterOut object

3.7 Authenticate Request
Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following ASMRequest member(s) must have the
following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Authenticate.
ASMRequest.asmVersion must be set to the desired version.
ASMRequest.authenticatorIndex must be set to the target authenticator index.
ASMRequest.args must be set to an object of type AuthenticateIn

For an Authenticate response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR
UAF_ASM_STATUS_ACCESS_DENIED
UAF_ASM_STATUS_USER_CANCELLED

ASMResponse.responseData must be an object of type AuthenticateOut

3.7.1 AuthenticateIn Object

WebIDL

dictionary AuthenticateIn {
 required DOMString appID;
 DOMString[] keyIDs;
 required DOMString finalChallenge;

NOTE

What data an ASM will store at this stage depends on underlying
authenticator's architecture. For example some authenticators might
store AppID, KeyHandle, KeyID inside their own secure storage. In
this case ASM doesn't have to store these data in its database.

 Transaction[] transaction;
};

3.7.1.1 Dictionary AuthenticateIn Members

appID of type required DOMString
appID string

keyIDs of type array of DOMString
base64url [RFC4648] encoded keyIDs

finalChallenge of type required DOMString
base64url [RFC4648] encoded final challenge�

transaction of type array of Transaction
An array of transaction data to be confirmed by user. If multiple transactions�
are provided, then the ASM must select the one that best matches the current
display characteristics.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
 required DOMString contentType;
 required DOMString content;
 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.7.2.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to
its metadata statement (see [UAFAuthnrMetadata])

content of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to
the contentType to be shown to the user.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the�
DisplayPNGCharacteristicsDescriptor structure See [UAFAuthnrMetadata].

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {
 required DOMString assertion;
 required DOMString assertionScheme;

NOTE

This may, for example, depend on whether user's device is positioned
horizontally or vertically at the moment of transaction.

};

3.7.3.1 Dictionary AuthenticateOut Members

assertion of type required DOMString
Authenticator UAF authentication assertion.

assertionScheme of type required DOMString
Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the TAGs
and structure mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex
2. If no user is enrolled with this authenticator (such as biometric enrollment, PIN

setup, etc.), return UAF_ASM_STATUS_ACCESS_DENIED
3. The ASM must request the authenticator to verify the user.

If verification fails, return �UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)
5. Hash the provided AuthenticateIn.finalChallenge using an authenticator-specific�

hash function (FinalChallengeHash).

The authenticator's preferred hash function information must meet the algorithm
defined in the �AuthenticatorInfo.authenticationAlgorithm field.�

6. If this is a Second Factor authenticator and AuthenticateIn.keyIDs is empty, then
return UAF_ASM_STATUS_ACCESS_DENIED

7. If AuthenticateIn.keyIDs is not empty,
1. If this is a bound authenticator, then look up ASM's database with

AuthenticateIn.appID and AuthenticateIn.keyIDs and obtain the
KeyHandles associated with it.

Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found
2. If this is a roaming authenticator, then treat AuthenticateIn.keyIDs as

KeyHandles
8. Create TAG_UAFV1_SIGN_CMD structure and pass it to the authenticator.

1. Copy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not
empty), FinalChallengeHash, KHAccessToken, UserVerificationToken,
KeyHandles

Depending on AuthenticatorType some arguments may be optional.
Refer to [UAFAuthnrCommands] for more information on authenticator
types and their required arguments.
If multiple transactions are provided, select the one that best matches

NOTE

If the authenticator supports UserVerificationToken (see
[UAFAuthnrCommands]), the ASM must obtain this token in order to
later pass to Sign command.

the current display characteristics.

Decode the base64url encoded AuthenticateIn.Transaction.content
before passing it to the authenticator

9. Invoke the command and receive the response
10. Parse TAG_UAFV1_SIGN_CMD_RESP

If it's a first-factor authenticator and the response includes�
TAG_USERNAME_AND_KEYHANDLE, then

1. Extract usernames from TAG_USERNAME_AND_KEYHANDLE fields�
2. If two equal usernames are found, then choose the one which has

registered most recently
3. Show remaining distinct usernames and ask the user to choose a

single username
4. Set TAG_UAFV1_SIGN_CMD.KeyHandles to the single KeyHandle

associated with the selected username.
5. Go to step #8 and send a new TAG_UAFV1_SIGN_CMD command

11. Create the AuthenticateOut object
1. Set AuthenticateOut.assertionScheme as

AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g.

TAG_UAFV1_AUTH_ASSERTION) in base64url format and set as
AuthenticateOut.assertion

3. Return the AuthenticateOut object

The authenticator metadata statement must truly indicate the type of transaction
confirmation display implementation. �Typically the "Transaction Confirmation Display"�
flag �will be set to TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

3.8 Deregister Request
Delete registered UAF record from the authenticator.

For a Deregister request, the following ASMRequest member(s) must have the following
value(s). The remaining ASMRequest members should be omitted:

NOTE

This may, for example, depend on whether user's device is
positioned horizontally or vertically at the moment of transaction.

NOTE

Some authenticators might support "Transaction Confirmation Display"�
functionality not inside the authenticator but within the boundaries of the ASM.
Typically these are software based Transaction Confirmation Displays. When�
processing the Sign command with a given transaction such ASM should show
transaction content in its own UI and after user confirms it -- pass the content to�
authenticator so that the authenticator includes it in the final assertion.�

See [UAFRegistry] for flags describing Transaction Confirmation Display type.��

ASMRequest.requestType must be set to Deregister
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
ASMRequest.args must be set to an object of type DeregisterIn

For a Deregister response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR
UAF_ASM_STATUS_ACCESS_DENIED

3.8.1 DeregisterIn Object

WebIDL

dictionary DeregisterIn {
 required DOMString appID;
 required DOMString keyID;
};

3.8.1.1 Dictionary DeregisterIn Members

appID of type required DOMString
FIDO Server Application Identity

keyID of type required DOMString
Base64url-encoded [RFC4648] key identifier of �the authenticator to be de-
registered.

3.8.2 Detailed Description for Processing the Deregister Request

Refer to [UAFAuthnrCommands] for more information about the TAGs and structures
mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex
2. Construct KHAccessToken (see section KHAccessToken for more details).
3. If this is a bound authenticator, then

Lookup the authenticator related data in the ASM database and delete the
record associated with DeregisterIn.appID and DeregisterIn.keyID

4. Create the TAG_UAFV1_DEREGISTER_CMD structure, copy KHAccessToken,
DeregisterIn.keyID and pass it to the authenticator.

5. Invoke the command and receive the response

3.9 GetRegistrations Request
Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the following ASMRequest member(s) must have the
following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to GetRegistrations

ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to corresponding ID

For a GetRegistrations response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR

The ASMResponse.responseData must be an object of type GetRegistrationsOut

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut {
 required AppRegistration[] appRegs;
};

3.9.1.1 Dictionary GetRegistrationsOut Members

appRegs of type array of required AppRegistration
List of registrations associated with an appID (see AppRegistration below).
may be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration {
 required DOMString appID;
 required DOMString[] keyIDs;
};

3.9.2.1 Dictionary AppRegistration Members

appID of type required DOMString
FIDO Server Application Identity.

keyIDs of type array of required DOMString
List of key identifiers associated with the �appID

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator using authenticatorIndex
2. If this is bound authenticator, then

Lookup the registrations associated with CallerID and AppID in the ASM
database and construct a list of AppRegistration objects

NOTE

Some ASMs might not store this information inside their own

3. Create GetRegistrationsOut object and return

3.10 OpenSettings Request
Display the authenticator-specific settings interface. If the authenticator has its own�
built-in user interface, then the ASM must invoke TAG_UAFV1_OPEN_SETTINGS_CMD to
display it.

For an OpenSettings request, the following ASMRequest member(s) must have the
following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to OpenSettings
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index

For an OpenSettings response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

4. Using ASM API
This section is non-normative.

In a typical implementation, the FIDO UAF Client will call GetInfo during initialization
and obtain information about the authenticators. Once the information is obtained it will
typically be used during FIDO UAF message processing to find a match �for given FIDO
UAF policy. Once a match is found the FIDO UAF Client will send the appropriate
request (Register/Authenticate/Deregister...) to this ASM.

The FIDO UAF Client may use the information obtained from a GetInfo response to
display relevant information about an authenticator to the user.

5. Using the ASM API on various platforms
This section is normative.

5.1 Android ASM Intent API
On Android systems FIDO UAF ASMs may be implemented as a separate APK-
packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions
between the FIDO UAF Client and an ASM on Android takes place through the following
intent identifier:�

org.fidoalliance.intent.FIDO_OPERATION

To carry messages described in this document, an intent must also have its type
attribute set to application/fido.uaf_asm+json.

database. Instead it might have been stored inside the authenticator's
secure storage area. In this case the ASM must send a proprietary
command to obtain the necessary data.

ASMs must register that intent in their manifest file and implement a handler for it.�

FIDO UAF Clients must append an extra, message, containing a String representation of
a ASMRequest, before invoking the intent.

FIDO UAF Clients must invoke ASMs by calling startActivityForResult()

FIDO UAF Clients should assume that ASMs will display an interface to the user in
order to handle this intent, e.g. prompting the user to complete the verification�
ceremony. However, the ASM should not display any user interface when processing a
GetInfo request.

After processing is complete the ASM will return the response intent as an argument to
onActivityResult(). The response intent will have an extra, message, containing a
String representation of a ASMResponse.

5.1.1 Discovering ASMs

FIDO UAF Clients can discover the ASMs available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags) with the FIDO
Intent described above to see if any activities are available.

A typical FIDO UAF Client will enumerate all ASM applications using this function and
will invoke the GetInfo operation for each one discovered.

5.2 Windows ASM API
On Windows, an ASM is implemented in the form of a Dynamic Link Library (DLL). The
following is an example asmplugin.h header file defining a Windows ASM API:��

EXAMPLE 1
/*! @file asm.h
*/

#ifndef __ASMH_
#define __ASMH_
#ifdef _WIN32
#define ASM_API __declspec(dllexport)
#endif

#ifdef _WIN32
#pragma warning (disable : 4251)
#endif

#define ASM_FUNC extern "C" ASM_API
#define ASM_NULL 0

/*! \brief Error codes returned by ASM Plugin API.
* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.
*/

enum asmResult_t
{
 Success = 0, /**< Success */
 Failure /**< Generic failure */
};

/*! \brief Generic structure containing JSON string in UTF-8
* format.
* This structure is used throughout functions to pass and receives
* JSON data.
*/

struct asmJSONData_t

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)

{
 int length; /**< JSON data length */
 char pData; /*< JSON data */
};

/*! \brief Enumeration event types for authenticators.
These events will be fired when an authenticator becomes
 available (plugged) or unavailable (unplugged).
*/

enum asmEnumerationType_t
{
 Plugged = 0, /**< Indicates that authenticator Plugged to system */
 Unplugged /**< Indicates that authenticator Unplugged from system */
};

namespace ASM
{
 /*! \brief Callback listener.
 FIDO UAF Client must pass an object implementating this interface to
 Authenticator::Process function. This interface is used to provide
 ASM JSON based response data.*/
 class ICallback
 {
 public
 virtual ~ICallback() {}
 /**
 This function is called when ASM's response is ready.
 *
 @param response JSON based event data
 @param exchangeData must be provided by ASM if it needs some
 data back right after calling the callback function.
 The lifecycle of this parameter must be managed by ASM. ASM must
 allocate enough memory for getting the data back.
 */

 virtual void Callback(const asmJSONData_t &response,
 asmJSONData_t &exchangeData) = 0;
 };

 /*! \brief Authenticator Enumerator.
 FIDO UAF Client must provide an object implementing this
 interface. It will be invoked when a new authenticator is plugged or
 when an authenticator has been unplugged. */

 class IEnumerator
 {
 public
 virtual ~IEnumerator() {}
 /**
 This function is called when an authenticator is plugged or
 unplugged.
 * @param eventType event type (plugged/unplugged)
 @param AuthenticatorInfo JSON based GetInfoResponse object
 */

 virtual void Notify(const asmEnumerationType_t eventType, const
 asmJSONData_t &AuthenticatorInfo) = 0;
 };
}

/**
Initializes ASM plugin. This is the first function to be
 called.
*
@param pEnumerationListener caller provided Enumerator
*/

ASM_FUNC asmResult_t asmInit(ASM::IEnumerator
 *pEnumerationListener);
/**
Process given JSON request and returns JSON response.
*

A Windows-based FIDO UAF Client must look for ASM DLLs in the following registry
paths:

HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The FIDO UAF Client iterates over all keys under this path and looks for "path" field:�

[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE_PATH_TO_ASM>.dll"

path must point to the absolute location of the ASM DLL.

6. Security and Privacy Guidelines
This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs
must follow these security guidelines:

ASMs must implement a mechanism for isolating UAF credentials registered by
two different FIDO UAF Clients from one another. One FIDO UAF Client must not
have access to FIDO UAF credentials that have been registered via a different
FIDO UAF Client. This prevents malware from exercising credentials associated
with a legitimate FIDO Client.

If the caller wants to execute a function defined in ASM JSON
 schema then this is the function that must be called.
*
@param pInData input JSON data
@param pListener event listener for receiving events from ASM
*/
ASM_FUNC asmResult_t asmProcess(const asmJSONData_t *pInData,
 ASM::ICallback *pListener);
/**
Unitializes ASM plugin.
*
*/
ASM_FUNC asmResult_t asmUninit();
#endif // __ASMPLUGINH_

NOTE

ASMs must properly protect their sensitive data against malware using
platform-provided isolation capabilities in order to follow the assumptions
made in [FIDOSecRef]. Malware with root access to the system or direct
physical attack on the device are out of scope for this requirement.

NOTE

The following are examples for achieving this:

If an ASM is bundled with a FIDO UAF Client, this isolation
mechanism is already built-in.

An ASM designed specifically for bound authenticators �must ensure that FIDO
UAF credentials registered with one ASM cannot be accessed by another ASM.
This is to prevent an application pretending to be an ASM from exercising
legitimate UAF credentials.

Using a KHAccessToken offers such a mechanism.

An ASMs must implement platform-provided security best practices for protecting
UAF related stored data.

ASMs must not store any sensitive FIDO UAF data in its local storage, except the
following:

CallerID, ASMToken, PersonaID, KeyID, KeyHandle, AppID

ASMs should ensure that applications cannot use silent authenticators for tracking
purposes. ASMs implementing support for a silent authenticator must show, during
every registration, a user interface which explains what a silent authenticator is,
asking for the users consent for the registration. Also, it is recommended that
ASMs designed to support roaming silent authenticators either

Run with a special permission/privilege on the system, or
Have a built-in binding with the authenticator which ensures that other
applications cannot directly communicate with the authenticator by
bypassing this ASM.

6.1 KHAccessToken
KHAccessToken is an access control mechanism for protecting an authenticator's FIDO
UAF credentials from unauthorized use. It is created by the ASM by mixing various
sources of information together. Typically, a KHAccessToken contains the following four
data items in it: AppID, PersonaID, ASMToken and CallerID.

AppID is provided by the FIDO Server and is contained in every FIDO UAF message.

PersonaID is obtained by the ASM from the operational environment. Typically a different

If the ASM and FIDO UAF Client are implemented by the same
vendor, the vendor may implement proprietary mechanisms to bind its
ASM exclusively to its own FIDO UAF Client.
On some platforms ASMs and the FIDO UAF Clients may be assigned
with a special privilege or permissions which regular applications don't
have. ASMs built for such platforms may avoid supporting isolation of
UAF credentials per FIDO UAF Clients since all FIDO UAF Clients will
be considered equally trusted.

NOTE

An ASM, for example, must never store a username provided by a FIDO
Server in its local storage in a form other than being decryptable exclusively
by the authenticator.

PersonaID is assigned to every operating system user account.

ASMToken is a randomly generated secret which is maintained and protected by the ASM.

CallerID is the ID the platform has assigned to the calling FIDO UAF Client (e.g.
"bundle ID" for iOS). On different platforms the caller ID can be obtained differently.

The ASM uses the KHAccessToken to establish a link between the ASM and the key
handle that is created by authenticator on behalf of this ASM.

The ASM provides the KHAccessToken to the authenticator with every command which
works with key handles.

NOTE

In a typical implementation an ASM will randomly generate an ASMToken when it
is launched the first time �and will maintain this secret until the ASM is uninstalled.

NOTE

For example on Android platform ASM can use the hash of the caller's apk-
signing-cert.

NOTE

The following example describes how the ASM constructs and uses
KHAccessToken.

During a Register request
Append AppID

KHAccessToken = AppID

If a bound authenticator, append ASMToken, PersonaID and CallerID
KHAccessToken |= ASMToken | PersonaID | CallerID

Hash KHAccessToken
Hash KHAccessToken using the authenticator's hashing algorithm.
The reason of using authenticator specific hash function is to�
make sure of interoperability between ASMs. If interoperability is
not required, an ASM can use any other secure hash function it
wants.
KHAccessToken=hash(KHAccessToken)

Provide KHAccessToken to the authenticator
The authenticator puts the KHAccessToken into RawKeyHandle (see
[UAFAuthnrCommands] for more details)

During other commands which require KHAccessToken as input argument
The ASM computes KHAccessToken the same way as during the
Register request and provides it to the authenticator along with other
arguments.
The authenticator unwraps the provided key handle(s) and proceeds
with the command only if RawKeyHandle.KHAccessToken is equal to the
provided KHAccessToken.

Bound authenticators must support a mechanism for binding generated key handles to
ASMs. The binding mechanism must have at least the same security characteristics as
mechanism for protcting KHAccessToken described above. As a consequence it is
recommended to securely derive KHAccessToken from AppID, ASMToken, PersonaID and the
CallerID.

6.2 Access Control for ASM APIs
The following table summarizes the access control requirements for each API call.

ASMs must implement the access control requirements defined below. ASM vendors�
may implement additional security mechanisms.

Terms used in the table:

NoAuth -- no access control
CallerID -- FIDO UAF Client's platform-assigned ID is verified�
UserVerify -- user must be explicitly verification�
KeyIDList -- must be known to the caller

Commands
First-factor

bound
authenticator

Second-
factor bound
authenticator

First-factor
roaming

authenticator

Second-factor
roaming

authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Authenticate
UserVerify
AppID
CallerID
PersonaID

UserVerify
AppID
KeyIDList
CallerID
PersonaID

UserVerify
AppID

UserVerify
AppiD
KeyIDList

GetRegistrations* CallerID
PersonaID

CallerID
PersonaID X X

Deregister
AppID
KeyID
PersonaID
CallerID

AppID
KeyID
PersonaID
CallerID

AppID
KeyID

AppID
KeyID

NOTE

It is recommended for roaming authenticators that the KHAccessToken contains
only the AppID since otherwise users won't be able to use them on different
machines (PersonaID, ASMToken and CallerID are platform specific). If the�
authenticator vendor decides to do that in order to address a specific use case,�
however, it is allowed.

Including PersonaID in the KHAccessToken is optional for all types of authenticators.
However an authenticator designed for multi-user systems will likely have to
support it.

A. References
A.1 Normative references
[ECMA-262]

ECMAScript Language Specification, Edition 5.1�. June 2011. URL:
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648),
IETF, October 2006, URL: http://www.ietf.org/rfc/rfc4648.txt

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
authnr-cmds-v1.0-rd-20140209.pdf

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values�
v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL:
http://heycam.github.io/webidl/

A.2 Informative references
[ECMA-404]

. The JSON Data Interchange Format. 1 October 2013. Standard. URL:
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf�

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
security-ref-v1.0-rd-20140209.pdf

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:
https://tools.ietf.org/html/rfc2397

[UAFAppAPIAndTransport]
B. Hill FIDO UAF Application API and Transport Binding Specification v1.0�. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
client-api-transport-v1.0-rd-20140209.pdf

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate
Recommendation. URL: http://www.w3.org/TR/WebIDL/

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/

	FIDO UAF Authenticator-Specific Module API
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Code & Example format

	3. ASM Requests and Responses
	3.1 Request enum
	3.2 StatusCode Interface
	3.2.1 Constants

	3.3 ASMRequest Dictionary
	3.3.1 Dictionary ASMRequest Members

	3.4 ASMResponse Dictionary
	3.4.1 Dictionary ASMResponse Members

	3.5 GetInfo Request
	3.5.1 GetInfoOut Dictionary
	3.5.2 AuthenticatorInfo Dictionary

	3.6 Register Request
	3.6.1 RegisterIn Object
	3.6.2 RegisterOut Object
	3.6.3 Detailed Description for Processing the Register Request

	3.7 Authenticate Request
	3.7.1 AuthenticateIn Object
	3.7.2 Transaction Object
	3.7.3 AuthenticateOut Object
	3.7.4 Detailed Description for Processing the Authenticate Request

	3.8 Deregister Request
	3.8.1 DeregisterIn Object
	3.8.2 Detailed Description for Processing the Deregister Request

	3.9 GetRegistrations Request
	3.9.1 GetRegistrationsOut Object
	3.9.2 AppRegistration Object
	3.9.3 Detailed Description for Processing the GetRegistrations Request

	3.10 OpenSettings Request

	4. Using ASM API
	5. Using the ASM API on various platforms
	5.1 Android ASM Intent API
	5.1.1 Discovering ASMs

	5.2 Windows ASM API

	6. Security and Privacy Guidelines
	6.1 KHAccessToken
	6.2 Access Control for ASM APIs

	A. References
	A.1 Normative references
	A.2 Informative references

