
FIDO Metadata Statement

https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.1-ps-20250521.html

https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.0-ps-20210518.html

GitHub

Billy Jack (Microsoft)
Rolf Lindemann (Nok Nok Labs)

Yuriy Ackermann (FIDO Alliance)

Copyright © 2025 FIDO Alliance. All Rights Reserved.

FIDO authenticators may have many different form factors, characteristics and capabilities. This document
defines a standard means to describe the relevant pieces of information about an authenticator in order to
interoperate with it, or to make risk-based policy decisions about transactions involving a particular authenticator.

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard Specification. If you wish to make
comments regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

Proposed Standard, May 21, 2025

This version:

Previous Versions:

Issue Tracking:

Editors:

Former Editor:

Abstract

Status of This Document

1 Notation

2 Overview
2.1 Scope
2.2 Audience
2.3 Architecture

1/35

https://fidoalliance.org/
https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.1-ps-20250521.html
https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.0-ps-20210518.html
https://github.com/fido-alliance/mds-specs
mailto:billyj@microsoft.com
mailto:Inc. rolf@noknok.com
mailto:Inc. yuriy@fidoalliance.org
https://fidoalliance.org
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenationoperations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members MUST NOT have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it MUST NOT be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it MUST NOT be an empty list.

All diagrams, examples, notes in this specification are non-normative.

3 Types
3.1 Authenticator Attestation GUID (AAGUID) typedef
3.2 CodeAccuracyDescriptor dictionary
3.3 BiometricAccuracyDescriptor dictionary
3.4 PatternAccuracyDescriptor dictionary
3.5 VerificationMethodDescriptor dictionary
3.6 VerificationMethodANDCombinations typedef
3.7 rgbPaletteEntry dictionary
3.8 DisplayPNGCharacteristicsDescriptor dictionary
3.9 EcdaaTrustAnchor dictionary
3.10 ExtensionDescriptor dictionary
3.11 FriendlyNames dictionary
3.12 AlternativeDescriptions dictionary
3.13 AuthenticatorGetInfo dictionary

4 Metadata Keys
4.1 SVG requirements

5 Metadata Statement Format
5.1 UAF Example
5.2 U2F Example
5.3 FIDO2 Example

6 Additional Considerations
6.1 Field updates and metadata

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

IDL Index

1. Notation

2/35

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

This section is not normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety of
different devices in a competitive marketplace. Much of the complexity behind this variety is hidden from Relying
Party applications, but in order to accomplish the goals of FIDO, Relying Parties must have some means of
discovering and verifying various characteristics of authenticators. Relying Parties can learn a subset of verifiable
information for authenticators certified by the FIDO Alliance with an Authenticator Metadata statement. The
Metadata statement can be acquired from the Metadata BLOB that is hosted on the Metadata Service [FIDOMeta
dataService].

For definitions of terms, please refer to the FIDO Glossary [FIDOGlossary].

This document describes the format of and information contained in Authenticator Metadata statements. For a
definitive list of possible values for the various types of information, refer to the FIDO Registry of Predefined
Values [FIDORegistry].

The description of the processes and methods by which authenticator metadata statements are distributed and
the methods how these statements can be verified are described in the Metadata Service Specification [FIDOMet
adataService].

The intended audience for this document includes:

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this document, as required. The keyword required
has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which
implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means
to ensure those fields are present.

2. Overview

2.1. Scope

2.2. Audience

FIDO authenticator vendors who wish to produce metadata statements for their products.

FIDO server implementers who need to consume metadata statements to verify characteristics of
authenticators and attestation statements, make proper algorithm choices for protocol messages, create
policy statements or tailor various other modes of operation to authenticator-specific characteristics.

FIDO relying parties who wish to

create custom policy statements about which authenticators they will accept

risk score authenticators based on their characteristics

verify attested authenticator IDs for cross-referencing with

third party metadata

2.3. Architecture

3/35

Figure 1 The FIDO Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the information
contained in the authoritative statement is used in several other places. How a server obtains these metadata
statements is described in [FIDOMetadataService].

The workflow around an authenticator metadata statement is as follows:

1. The authenticator vendor produces a metadata statement, that is UTF-8 encoded, describing the
characteristics of an authenticator.

2. The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification process. The
FIDO Alliance distributes the metadata as described in [FIDOMetadataService].

3. A FIDO relying party configures its registration policy to allow authenticators matching certain characteristics
to be registered.

4. The FIDO server sends a registration challenge message. This message can contain such policy statement.

5. Depending on the FIDO protocol being used, either the relying party application or the FIDO UAF Client
receives the policy statement as part of the challenge message and processes it. It queries available
authenticators for their self-reported characteristics and (with the user’s input) selects an authenticator that
matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message contains a
reference to the authenticator model and, optionally, a signature made with the private key corresponding to
the public key in the authenticator’s attestation certificate.

7. The FIDO Server looks up the metadata statement for the particular authenticator model. If the metadata
statement lists an attestation certificate(s), it verifies that an attestation signature is present, and made with
the private key corresponding to either (a) one of the certificates listed in this metadata statement or (b)

4/35

This section is normative.

typedef DOMString AAGUID;

string[36]

Some authenticators have an AAGUID, which is a 128-bit identifier that indicates the type (e.g. make and model)
of the authenticator. The AAGUID MUST be chosen by the manufacturer to be identical across all substantially
identical authenticators made by that manufacturer, and different (with probability 1-2-128 or greater) from the
AAGUIDs of all other types of authenticators.

The AAGUID is represented as a string (e.g. "7a98c250-6808-11cf-b73b-00aa00b677a7") consisting of 5 hex
strings separated by a dash ("-"), see [RFC4122].

The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user verification
methods.

dictionary CodeAccuracyDescriptor {
 required unsigned short base;
 required unsigned short minLength;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

corrsponding to the public key in a certificate that chains to one of the issuer certificates listed in the
authenticator’s metadata statement.

8. The FIDO Server next verifies that the authenticator meets the originally supplied registration policy based
on its authoritative metadata statement. This prevents the registration of unexpected authenticator models.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the
authenticator, based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested authenticator model with other metadata
databases published by third parties. Such third-party metadata might, for example, inform the FIDO Server
if an authenticator has achieved certifications relevant to certain markets or industry verticals, or whether it
meets application-specific regulatory requirements.

3. Types

3.1. Authenticator Attestation GUID (AAGUID) typedef

3.2. CodeAccuracyDescriptor dictionary

One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral system base (radix) and minLen, instead of the number of potential combinations
since there is sufficient evidence [iPhonePasscodes] [MoreTopWorstPasswords] that users don’t select their
code evenly distributed at random. So software might take into account the various probability distributions for
different bases. This essentially means that in practice, passcodes are not as secure as they could be if
randomly chosen.

base, of type unsigned short

5/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short

The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4 digits.

Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0
means this user verification method will be blocked, either permanently or until an alternative user
verification method method succeeded. All alternative user verification methods MUST be specified
appropriately in the Metadata in userVerificationDetails.

The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a biometric
user verification method, see [FIDOBiometricsRequirements].

At least one of the values MUST be set. If the vendor doesn’t want to specify such values, then
VerificationMethodDescriptor.baDesc MUST be omitted.

dictionary BiometricAccuracyDescriptor {
 double selfAttestedFRR;
 double selfAttestedFAR;
 double iAPARThreshold;
 unsigned short maxTemplates;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

The false rejection rate [ISOIEC-19795-1] for a single template, i.e. the percentage of verification
transactions with truthful claims of identity that are incorrectly denied. For example a FRR of 10% would be
encoded as 0.1.

This value is self attested and, if the authenticator passed biometric certification, the data is an
independently verified FRR as measured when meeting the FRR target specified in the biometric
certification requirements [FIDOBiometricsRequirements] for the indicated biometric certification level (see
certLevel in related biometricStatusReport as specified in [FIDOMetadataService]).

The false acceptance rate [ISOIEC-19795-1] for a single template, i.e. the percentage of verification
transactions with wrongful claims of identity that are incorrectly confirmed. For example a FAR of 0.002%
would be encoded as 0.00002.

This value is self attested and, if the authenticator passed biometric certification, the data is an
independently verified FAR specified in the biometric certification requirements [FIDOBiometricsRequiremen
ts] for the indicated biomeric certification level (see certLevel in related biometricStatusReport as specified in
[FIDOMetadataService]).

minLength, of type unsigned short

maxRetries, of type unsigned short

blockSlowdown, of type unsigned short

3.3. BiometricAccuracyDescriptor dictionary

Note: Typical fingerprint sensor characteristics can be found in Andoid [AndroidCompatibilityDefinition] and
Apple iOS [ApplePlatformSecurity].

selfAttestedFRR, of type double

Note: The false rejection rate is relevant for user convenience. Lower false rejection rates mean better
convenience.

selfAttestedFAR, of type double

6/35

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double

Impostor Attack Presentation Accept Rate (IAPAR) is the proportion of impostor attack presentations using
the same presentation attack instrument (PAI) species that result in accept [isoiec-30107-3]. For biometric
certification requirements [FIDOBiometricsRequirements], certification can be achieved for an IAPAR
threshold of less than 7% OR less than 15% for each of the PAI species tested.

If the authenticator did not pass biometric certification, vendor can submit any number, but this number has
not been validated for biometric performance requirements.

Maximum number of alternative templates from different fingers allowed (for other modalities, multiple parts
of the body that can be used interchangeably), e.g. 3 if the user is allowed to enroll up to 3 different fingers
to a fingerprint based authenticator.

If the authenticator passed biometric certification this value defaults to 1. For maxTemplates greater than
one, it SHALL be independently verified to ensure FAR meets biometric performance requirements of
certLevel (of the related biometricStatusReport as specified in [FIDOMetadataService]).

If the authenticator did not pass biometric certification, vendor can submit any number, but this number has
not been validated for biometric performance requirements.

Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0
means that this user verification method will be blocked either permanently or until an alternative user
verification method succeeded. All alternative user verification methods MUST be specified appropriately in
the metadata in userVerificationDetails.

The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern is
used as the user verification method.

dictionary PatternAccuracyDescriptor {
 required unsigned long minComplexity;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

Number of possible patterns (having the minimum length) out of which exactly one would be the right one,
i.e. 1/probability in the case of equal distribution.

Note: The resulting FAR when all templates are used is approx. maxTemplates * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

iAPARThreshold, of type double

maxTemplates, of type unsigned short

maxRetries, of type unsigned short

blockSlowdown, of type unsigned short

3.4. PatternAccuracyDescriptor dictionary

Note: One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern] screen
unlock. The minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN, the
minimum allowed for this mechanism.

minComplexity, of type unsigned long

maxRetries, of type unsigned short

7/35

https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-short

Maximum number of false attempts before the authenticator will block authentication using this method (at
least temporarily). 0 means it will never block.

Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar mechanism).
0 means this user verification method will be blocked, either permanently or until an alternative user
verification method method succeeded. All alternative user verification methods MUST be specified
appropriately in the metadata under userVerificationDetails.

A descriptor for a specific base user verification method as implemented by the authenticator.

A base user verification method must be chosen from the list of those described in [FIDORegistry].

The specification of the related AccuracyDescriptor is optional, but recommended.

dictionary VerificationMethodDescriptor {
 DOMString userVerificationMethod;
 CodeAccuracyDescriptor caDesc;
 BiometricAccuracyDescriptor baDesc;
 PatternAccuracyDescriptor paDesc;
};

a single USER_VERIFY constant case-sensitive string name. See section "User Verification Methods" in [FIDO
Registry] (e.g. "presence_internal"). This value MUST NOT be empty.

The constant USER_VERIFY_ALL MUST NOT be used here.

May optionally be used in the case of method USER_VERIFY_PASSCODE_INTERNAL or
USER_VERIFY_PASSCODE_EXTERNAL.

May optionally be used in the case of method USER_VERIFY_FINGERPRINT_INTERNAL,
USER_VERIFY_VOICEPRINT_INTERNAL, USER_VERIFY_FACEPRINT_INTERNAL,
USER_VERIFY_EYEPRINT_INTERNAL, or USER_VERIFY_HANDPRINT_INTERNAL.

May optionally be used in case of method USER_VERIFY_PATTERN_INTERNAL or
USER_VERIFY_PATTERN_EXTERNAL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations list describes a combination of the user verification methods that MUST
be passed by the user, in order to achieve successful user verification.

The list MUST NOT be empty.

Each entry in the VerificationMethodANDCombinations describes an individual user verification method, that
must be passed by the user, as well as some security properties of the user verification method such as pin

blockSlowdown, of type unsigned short

3.5. VerificationMethodDescriptor dictionary

Note: In reality, several of the methods described above might be combined. For example, a fingerprint based
user verification can be combined with an alternative password.

userVerificationMethod, of type DOMString

caDesc, of type CodeAccuracyDescriptor

baDesc, of type BiometricAccuracyDescriptor

paDesc, of type PatternAccuracyDescriptor

3.6. VerificationMethodANDCombinations typedef

8/35

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

requirements, biometric properties, etc

The rgbPaletteEntry is an RGB three-sample tuple palette entry

dictionary rgbPaletteEntry {
 required unsigned short r;
 required unsigned short g;
 required unsigned short b;
};

Red channel sample value

Green channel sample value

Blue channel sample value

The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG [PNG]
spec for IHDR (image header) and PLTE (palette table)

dictionary DisplayPNGCharacteristicsDescriptor {
 required unsigned long width;
 required unsigned long height;
 required octet bitDepth;
 required octet colorType;
 required octet compression;
 required octet filter;
 required octet interlace;
 rgbPaletteEntry[] plte;
};

image width

image height

Bit depth - bits per sample or per palette index.

Color type defines the PNG image type.

Compression method used to compress the image data.

Filter method is the preprocessing method applied to the image data before compression.

Interlace method is the transmission order of the image data.

1 to 256 palette entries

3.7. rgbPaletteEntry dictionary

r, of type unsigned short

g, of type unsigned short

b, of type unsigned short

3.8. DisplayPNGCharacteristicsDescriptor dictionary

width, of type unsigned long

height, of type unsigned long

bitDepth, of type octet

colorType, of type octet

compression, of type octet

filter, of type octet

interlace, of type octet

plte, of type rgbPaletteEntry[]

9/35

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet

In the case of ECDAA attestation, the ECDAA-Issuer’s trust anchor MUST be specified in this field.

dictionary EcdaaTrustAnchor {
 required DOMString X;
 required DOMString Y;
 required DOMString c;
 required DOMString sx;
 required DOMString sy;
 required DOMString G1Curve;
};

base64url encoding of the result of ECPoint2ToB of the ECPoint2 \(X = P_2^x\). See [FIDOEcdaaAlgorithm]
for the definition of ECPoint2ToB.

base64url encoding of the result of ECPoint2ToB of the ECPoint2 \(Y = P_2^y\). See [FIDOEcdaaAlgorithm]
for the definition of ECPoint2ToB.

base64url encoding of the result of BigNumberToB(\(c\)). See section "Issuer Specific ECDAA Parameters"
in [FIDOEcdaaAlgorithm] for an explanation of \(c\). See [FIDOEcdaaAlgorithm] for the definition of
BigNumberToB.

base64url encoding of the result of BigNumberToB(\(sx\)). See section "Issuer Specific ECDAA Parameters"
in [FIDOEcdaaAlgorithm] for an explanation of \(sx\). See [FIDOEcdaaAlgorithm] for the definition of
BigNumberToB.

base64url encoding of the result of BigNumberToB(\(sy\)). See section "Issuer Specific ECDAA Parameters"
in [FIDOEcdaaAlgorithm] for an explanation of \(sy\). See [FIDOEcdaaAlgorithm] for the definition of
BigNumberToB.

Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256", and
"BN_ISOP512" are supported. See section "Supported Curves for ECDAA" in [FIDOEcdaaAlgorithm] for
details.

This descriptor contains an extension supported by the authenticator.

dictionary ExtensionDescriptor {
 required DOMString id;
 unsigned short tag;
 DOMString data;
 required boolean fail_if_unknown;
};

Identifies the extension.

3.9. EcdaaTrustAnchor dictionary

X, of type DOMString

Y, of type DOMString

c, of type DOMString

sx, of type DOMString

sy, of type DOMString

G1Curve, of type DOMString

Note: Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly
generated by verifying \(s, sx, sy\). See [FIDOEcdaaAlgorithm] for details.

3.10. ExtensionDescriptor dictionary

id, of type DOMString

tag, of type unsigned short

10/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short

The TAG of the extension if this was assigned. TAGs are assigned to extensions if they could appear in an
assertion.

Contains arbitrary data further describing the extension and/or data needed to correctly process the
extension.

This field MAY be missing or it MAY be empty.

Indicates whether unknown extensions must be ignored (false) or must lead to an error (true) when the
extension is to be processed by the FIDO Server, FIDO Client, ASM, or FIDO Authenticator.

This descriptor contains friendly names (e.g., public trade name) of the authenticator in multiple languages.

dictionary FriendlyNames {
 DOMString *IETFLanguageCodes-members...;
};

IETF language codes ([RFC5646]), defined by a primary language subtag, followed by a region subtag
based on a two-letter country code from [ISO3166] alpha-2 (usually written in upper case), e.g: Austrian-
German - "de-AT". In case of absence of the specific territorial language definition, vendor should fallback to
the more general language option, e.g: If "de" is given, but "de-AT" is missing, the use "de" entry instead.
Description values can contain any UTF-8 characters.

For example:

{
 "en-US": "FIDO Sample Security Key"
}

Each entry SHOULD NOT exceed a maximum length of 63 characters to ensure proper display.

This descriptor contains description in alternative languages.

dictionary AlternativeDescriptions {
 DOMString *IETFLanguageCodes-members...;
};

IETF language codes ([RFC5646]), defined by a primary language subtag, followed by a region subtag
based on a two-letter country code from [ISO3166] alpha-2 (usually written in upper case), e.g: Austrian-
German - "de-AT". In case of absence of the specific territorial language definition, vendor should fallback to
the more general language option, e.g: If "de" is given, but "de-AT" is missing, the use "de" entry instead.
Description values can contain any UTF-8 characters.

For example:

Examples are TAG_USER_VERIFICATION_STATE and TAG_USER_VERIFICATION_INDEX as defined in [UAFRegist
ry].

data, of type DOMString

fail_if_unknown, of type boolean

A value of false indicates that unknown extensions MUST be ignored.

A value of true indicates that unknown extensions MUST result in an error.

3.11. FriendlyNames dictionary

*IETFLanguageCodes-members...

3.12. AlternativeDescriptions dictionary

*IETFLanguageCodes-members...

11/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean

{
 "ru-RU": "Пример U2F аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple U2F authenticator de FIDO Alliance"
}

Each description SHALL NOT exceed a maximum length of 200 characters.

This dictionary describes supported versions, extensions, AAGUID of the device and its capabilities.

dictionary AuthenticatorGetInfo {
 DOMString members...;
};

The members are the fields of the structure reported by an authenticator when invoking the
'authenticatorGetInfo' method, see [FIDOCTAP]. All binary values are base64 encoded.

This section is normative.

3.13. AuthenticatorGetInfo dictionary

members...

4. Metadata Keys

12/35

dictionary MetadataStatement {
 DOMString legalHeader;
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 FriendlyNames friendlyNames;
 required DOMString description;
 AlternativeDescriptions alternativeDescriptions;
 required unsigned long authenticatorVersion;
 required DOMString protocolFamily;
 required unsigned short schema;
 required Version[] upv;
 required DOMString[] authenticationAlgorithms;
 required DOMString[] publicKeyAlgAndEncodings;
 required DOMString[] attestationTypes;
 VerificationMethodANDCombinations[] userVerificationDetails;
 required DOMString[] keyProtection;
 boolean isKeyRestricted;
 boolean isFreshUserVerificationRequired;
 required DOMString[] matcherProtection;
 unsigned short cryptoStrength;
 DOMString[] attachmentHint;
 required DOMString[] tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 required DOMString[] attestationRootCertificates;
 EcdaaTrustAnchor[] ecdaaTrustAnchors;
 DOMString icon;
 DOMString iconDark;
 DOMString providerLogoLight;
 DOMString providerLogoDark;
 ExtensionDescriptor[] supportedExtensions;
 DOMString keyScope;
 DOMString multiDeviceCredentialSupport;
 AuthenticatorGetInfo authenticatorGetInfo;
 DOMString cxpConfigURL;
};

The legalHeader, which must be in each Metadata Statement, is an indication of the acceptance of the
relevant legal agreement for using the MDS.

The example of a Metadata Statement legal header is:

"legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/".

The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure. This field MUST
be set if the authenticator implements FIDO UAF.

The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure.
This field MUST be set if the authenticator implements FIDO2.

legalHeader, of type DOMString

aaid, of type AAID

Note: FIDO UAF Authenticators support AAID, but they don’t support AAGUID.
It is always expected that the UAF Authenticator (or at least the UAF ASM) knows and provides the
correct AAID.

aaguid, of type AAGUID

Note: FIDO2 Authenticators support AAGUID, but they don’t support AAID.

13/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

A list of the attestation certificate public key identifiers encoded as hex string.

This value MUST be calculated according to method 1 for computing the keyIdentifier as defined in [RFC528
0] section 4.2.1.2. The hex string MUST NOT contain any non-hex characters (e.g. spaces). All hex letters
MUST be lower case. This field MUST be set if neither aaid nor aaguid are set. Setting this field implies that
the attestation certificate(s) are dedicated to a single authenticator model.

All attestationCertificateKeyIdentifier values should be unique within the scope of the
Metadata Service.

A human-readable friendly name of the authenticator / passkey provider in multiple languages. The name is
intended to be shown to end users. A name in English language ("en-US") is mandatory, localized names for
other languages are optional.

A human-readable, short description of the authenticator, in English.

This description MUST be in English, and only contain ASCII [ECMA-262] characters.

This description SHALL NOT exceed a maximum length of 200 characters.

A list of human-readable short descriptions of the authenticator in different languages.

Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this
metadata statement.

Adding new StatusReport entries with status UPDATE_AVAILABLE to the metadata BLOB object [FIDOMetadat
aService] MUST also change this authenticatorVersion if the update fixes severe security issues, e.g. the
ones reported by preceding StatusReport entries with status code
USER_VERIFICATION_BYPASS,ATTESTATION_KEY_COMPROMISE,USER_KEY_REMOTE_COMPROMISE,USER_KEY_PHYSI
CAL_COMPROMISE,REVOKED.

It is RECOMMENDED to assume increased risk if this version is higher (newer) than the firmware version
present in an authenticator. For example, if a StatusReport entry with status USER_VERIFICATION_BYPASS or
USER_KEY_REMOTE_COMPROMISE precedes the UPDATE_AVAILABLE entry, than any firmware version lower
(older) than the one specified in the metadata statement is assumed to be vulnerable.

The specified version should equal the value of the 'firmwareVersion' member of the
authenticatorGetInfo response. If present, see [FIDOCTAP].

The FIDO protocol family. The values "uaf", "u2f", and "fido2" are supported.

For credentials that are backup eligible, restoring them to a different authenticator model/passkey
provider might be supported as well. The AAGUID might change over time as a result. Such credentials
belong to an authenticator with keyScope "public-key-credential-source" or "provider-spk", and either
have the "Backup Eligibility" flag set or the authenticator metadata statement has
multiDeviceCredentialSupport set to "implicit".

attestationCertificateKeyIdentifiers, of type DOMString[]

Note: FIDO U2F Authenticators typically do not support AAID nor AAGUID, but they use attestation
certificates dedicated to a single authenticator model.

friendlyNames, of type FriendlyNames

description, of type DOMString

Note: This description should help an administrator configuring authenticator policies. This description
might deviate from the description returned by the ASM for that authenticator.
This description should contain the public authenticator trade name and the publicly known vendor
name.

alternativeDescriptions, of type AlternativeDescriptions

authenticatorVersion, of type unsigned long

protocolFamily, of type DOMString

14/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-DOMString

Metadata Statements for U2F authenticators MUST set the value of protocolFamily to "u2f". Metadata
statement for UAF authenticator MUST set the value of protocolFamily to "uaf", and
FIDO2/WebAuthentication Authenticator implementations MUST set the value of protocolFamily to
"fido2".

The Metadata Schema version

Metadata schema version defines what schema of the metadata statement is currently present. The schema
version of this version of the specification is 3.

The FIDO unified protocol version(s) (related to the specific protocol family) supported by this authenticator.
See [UAFProtocol] for the formal definition of the Version structure (containing major and minor version
numbers).

The unified protocol version is determined as follows:

The list of authentication algorithms supported by the authenticator.

Must be set to the complete list of the supported ALG_ constant case-sensitive string names defined in the
FIDO Registry of Predefined Values [FIDORegistry] (section "Authentication Algorithms") if the authenticator
supports multiple algorithms. E.g. "secp256r1_ecdsa_sha256_raw", "secp256r1_ecdsa_sha256_der".

The list MUST NOT be empty.

The list of public key formats supported by the authenticator during registration operations.

Must be set to the complete list of the supported ALG_KEY constant case-sensitive string names defined in
the FIDO Registry of Predefined Values [FIDORegistry] if the authenticator model supports multiple
encodings. See section "Public Key Representation Formats", e.g. "ecc_x962_raw", "ecc_x962_der".

Because this information is not present in APIs related to authenticator discovery or policy, a FIDO server
MUST be prepared to accept and process any and all key representations defined for any public key

schema, of type unsigned short

upv, of type Version[]

in the case of FIDO UAF, use the upv value as specified in the respective "OperationHeader" field, see [
UAFProtocol].

in the case of U2F, use

major version 1, minor version 0 for U2F v1.0

major version 1, minor version 1 for U2F v1.1

major version 1, minor version 2 for U2F v1.2 also known as CTAP1

in the case of FIDO2/CTAP2, use

major version 1, minor version 0 for CTAP 2.0

major version 1, minor version 1 for CTAP 2.1

authenticationAlgorithms, of type DOMString[]

For verification purposes, the field SignatureAlgAndEncoding in the FIDO UAF authentication
assertion [UAFAuthnrCommands] should be used to determine the actual signature algorithm and
encoding.

FIDO U2F only supports one signature algorithm and encoding:
ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW [FIDORegistry].

FIDO UAF Authenticators

FIDO U2F Authenticators

publicKeyAlgAndEncodings, of type DOMString[]

15/35

https://webidl.spec.whatwg.org/#idl-unsigned-short

algorithm it supports. The list MUST NOT be empty. If there are multiple values they MUST be ordered by
preference.

Must be set to the complete list of the supported ATTESTATION_ constant case-sensitive string names. See
section "Authenticator Attestation Types" of FIDO Registry [FIDORegistry] for all available attestation
formats, e.g. "basic_full".

A list of alternative VerificationMethodANDCombinations.

userVerificationDetails is a two dimensional array, that informs RP what
VerificationMethodANDCombinations user may be required to perform in order to pass user verification,
e.g User need to pass fingerprint, or faceprint, or password and palm print, etc.

If this entry is missing, any user verification method could be implemented - including "none",
"presence_internal" and other methods - including methods not formally defined in the FIDO Registry [FIDO
Registry]. Depending on the "protocolFamily", the authentication assertion might contain further details.

Consider this userVerificationDetails example:

[
 [
 { "userVerificationMethod": "fingerprint_internal" }
],
 // OR
 [
 { "userVerificationMethod": "passcode_internal" }
],
 // OR
 [
 { "userVerificationMethod": "faceprint_internal"},
 // AND
 { "userVerificationMethod": "voiceprint_internal"}
]
]

In this example we have user verification details that describe these potential scenarios: User has an
authenticator model that requires

The RP verifying attestation or assertion, by checking UV flag in the response knows that one of the user
verification combinations been passed.

For verification purposes, the field PublicKeyAlgAndEncoding in the FIDO UAF registration
assertion [UAFAuthnrCommands] should be used to determine the actual encoding of the public
key.

FIDO U2F only supports one public key encoding: ALG_KEY_ECC_X962_RAW [FIDORegistry].

FIDO UAF Authenticators

FIDO U2F Authenticators

attestationTypes, of type DOMString[]

userVerificationDetails, of type VerificationMethodANDCombinations[]

1. Fingerprint, or

2. Passcode, or

3. Faceprint and Voiceprint - where Voiceprint and Faceprint must be provided in order to pass user
verification.

16/35

The list of key protection types supported by the authenticator. Must be set to the complete list of the
supported KEY_PROTECTION_ constant case-sensitive string names defined in the FIDO Registry of
Predefined Values [FIDORegistry] in section "Key Protection Types" e.g. "secure_element". Each value
MUST NOT be empty.

This entry is set to true, if the Uauth private key is restricted by the authenticator to only sign valid FIDO
signature assertions. This entry is set to false, if the authenticator doesn’t restrict the Uauth key to only sign
valid FIDO signature assertions. In this case, the calling application could potentially get any hash value
signed by the authenticator. If this field is missing, the assumed value is isKeyRestricted=true.

This entry is set to true, if Uauth key usage always requires a fresh user verification. If this field is missing,
the assumed value is isFreshUserVerificationRequired=true. This entry is set to false, if the Uauth key can
be used without requiring a fresh user verification, e.g. without any additional user interaction, if the user was
verified a (potentially configurable) caching time ago.

In the case of isFreshUserVerificationRequired=false, the FIDO server MUST verify the registration
response and/or authentication response and verify that the (maximum) caching time (sometimes also called
"authTimeout") is acceptable.

This entry solely refers to the user verification. In the case of transaction confirmation, the authenticator
MUST always ask the user to authorize the specific transaction.

Note: FIDO2 "Security Keys" will typically support "none", or "presence_internal", or "passcode_external"
[FIDOCTAP], i.e.

[
 [
 { "userVerificationMethod": "none" }
],
 [
 { "userVerificationMethod": "presence_internal" }
],
 [
 { "userVerificationMethod": "passcode_external" }
],
 [
 { "userVerificationMethod": "passcode_external" },
 { "userVerificationMethod": "presence_internal" }
]
]

The FIDO Client will typically prevent "none" (silent authentication) and "passcode_external" (without
"presence_internal") from being used in practice, see [WebAuthn].

keyProtection, of type DOMString[]

Note: The keyProtection specified here denotes the effective security of the attestation key and Uauth
private key and the effective trustworthiness of the attested attributes in the “sign assertion”. Effective
security means that key extraction or injecting malicious attested attributes is only possible if the
specified protection method is compromised. For example, if keyProtection=TEE is stated, it shall be
impossible to extract the attestation key or the Uauth private key or to inject any malicious attested
attributes without breaking the TEE.

isKeyRestricted, of type boolean

Note: Only in the case of isKeyRestricted=true, the FIDO server can trust a signature counter,
transaction text, or any other extension in the signature assertion to have been correctly
processed/controlled by the authenticator.

isFreshUserVerificationRequired, of type boolean

17/35

https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean

The list of matcher protections supported by the authenticator. Must be set to the complete list of the
supported MATCHER_PROTECTION constant case-sensitive string names defined in the FIDO Registry of
Predefined Values [FIDORegistry]. See section "Matcher Protection Types", e.g. "on_chip". This value
MUST NOT be empty.

The authenticator’s overall claimed cryptographic strength in bits (sometimes also called security
strength or security level). If this value is absent, the cryptographic strength is unknown. If the cryptographic
strength of one of the involved cryptographic methods is unknown the overall claimed cryptographic strength
is also unknown.

The list of supported attachment hints describing the method(s) by which the authenticator communicates
with the FIDO user device. Must be set to the complete list of the supported ATTACHMENT_HINT constant
case-sensitive string names defined in the FIDO Registry of Predefined Values [FIDORegistry]. See section
"Authenticator Attachment Hints", e.g. "nfc".

This value MUST be present for all authenticators supporting CTAP 2.2 or newer. This value SHOULD be
present for all authenticators supporting CTAP 2.1. If the value is provided, the array MUST NOT be empty.

The list of supported transaction confirmation display capabilities. Must be set to include a valid combination,
as specified in FIDO Registry of Predefined Values [FIDORegistry] section "Transaction Confirmation
Display Types", of the supported TRANSACTION_CONFIRMATION_DISPLAY constant case-sensitive string
names e.g. "any", "hardware".

Note that in the case of isFreshUserVerificationRequired=false, the calling App could trigger use of the
key without user involvement. In this case it is the responsibility of the App to ask for user consent.

matcherProtection, of type DOMString[]

If multiple user verification methods are supported, either (a) one entry per method or the minimum
security level over all methods could be specified.
If multiple alternative implementations exist, then each entry must reflect the weakest implementation of
all alternative implementations.

If a user verification method implementation is split across multiple components, then this value must
reflect the weakest implementation of all those components.

The matcherProtection specified here denotes the effective security of the FIDO authenticator’s user
verification. This means that a false positive user verification implies breach of the stated method. For
example, if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key
when bypassing the user verification without breaking the TEE.

cryptoStrength, of type unsigned short

See [FIDOAuthenticatorSecurityRequirements], requirement 2.1.4, "Overall Claimed Cryptographic
Strength"

attachmentHint, of type DOMString[]

Note: The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set ATTACHMENT_HINT_EXTERNAL but not
ATTACHMENT_HINT_INTERNAL.

For FIDO2 the values of attachmentHint MUST correspond to the authenticatorGetInfo.transports if
present.

See the field authenticatorGetInfo for FIDO2 authenticators; which expose similar information in the
'transports' member when invoking the 'authenticatorGetInfo' method. See [FIDOCTAP]

tcDisplay, of type DOMString[]

18/35

https://webidl.spec.whatwg.org/#idl-unsigned-short

This value MUST be empty, if transaction confirmation is not supported by the authenticator.

Supported MIME content type [RFC2049] for the transaction confirmation display, such as text/plain or
image/png.

This value MUST be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

A list of alternative DisplayPNGCharacteristicsDescriptor.

Each of these entries is one alternative of supported image characteristics for displaying a PNG image.

This list MUST be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-
zero and tcDisplayContentType is image/png.

List of attestation trust anchors for the batch chain in the authenticator attestation. Each element of this
array represents a PKIX [RFC5280] X.509 certificate that is a valid trust anchor for this authenticator model.
Multiple certificates might be used for different batches of the same model. The array does not represent a
certificate chain, but only the trust anchor of that chain. A trust anchor can be a root certificate, an
intermediate CA certificate or even the attestation certificate itself.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value. Each element MUST be dedicated for authenticator attestation.

Either

MUST be specified.

In the case (1), the trust anchor certificate might cover multiple authenticator models. In this case, it must be
possible to uniquely derive the authenticator model from the Attestation Certificate. When using AAID or
AAGUID, this can be achieved by either specifying the AAID or AAGUID in the attestation certificate using
the extension id-fido-gen-ce-aaid { 1 3 6 1 4 1 45724 1 1 1 } or id-fido-gen-ce-aaguid { 1 3 6 1 4 1 45724 1 1 4
} or - when neither AAID nor AAGUID are defined - by using the attestationCertificateKeyIdentifier
method.

In the case (2) this is not required as the trust anchor only covers a single authenticator model.

When supporting surrogate basic attestation only (see [UAFProtocol], section "Surrogate Basic Attestation"),
no attestation trust anchor is required/used. So this array MUST be empty in that case.

A list of trust anchors used for ECDAA attestation. This entry MUST be present if and only if attestationType

The tcDisplay specified here denotes the effective security of the authenticator’s transaction confirmation
display. This means that only a breach of the stated method allows an attacker to inject transaction text
to be included in the signature assertion which hasn’t been displayed and confirmed by the user.

tcDisplayContentType, of type DOMString

tcDisplayPNGCharacteristics, of type DisplayPNGCharacteristicsDescriptor[]

attestationRootCertificates, of type DOMString[]

Note: A certificate listed here is a trust anchor. It might (1) be the actual certificate presented by the
authenticator, or it might (2) be an issuing authority certificate from the vendor that the attestation
certificate chains to. In the case of (1), a binary comparison is sufficient to determine if the attestation
trust anchor is the attestation certificate itself.
In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain are
included in the registration assertion (see [UAFAuthnrCommands]).

1. the manufacturer attestation trust anchor

or

2. the trust anchor dedicated to a specific authenticator model

ecdaaTrustAnchors, of type EcdaaTrustAnchor[]

19/35

https://webidl.spec.whatwg.org/#idl-DOMString

includes ATTESTATION_ECDAA. The entries in attestationRootCertificates have no relevance for
ECDAA attestation. Each ecdaaTrustAnchor MUST be dedicated to a single authenticator model (e.g as
identified by its AAID/AAGUID).

A data: url [RFC2397] encoded [PNG] or [SVG11] (light mode) icon for the Authenticator (e.g., depicting the
security key). This icon is intended to be shown to users by RPs. Use of [SVG11] format is mandatory if any
of the iconDark, providerLogoLight and/or providerLogoDark is used in addition to icon. Use of [SVG11]
is recommended if only icon is used. The icon is more specific than the provider logo and should be shown
if present.

A data: url [RFC2397] encoded [SVG11] dark mode icon for the Authenticator (e.g., depicting the security
key). This icon is intended to be shown to users by RPs. The icon is more specific than the provider logo
and should be shown if present.

A data: url [RFC2397] encoded [SVG11] light mode icon for the provider (e.g., logomark of the passkey
provider). The SVG MUST meet all of the requirements defined in § 4.1 SVG requirements. This icon is
intended to be shown to users by RPs.

A data: url [RFC2397] encoded [SVG11] dark mode icon for the provider (e.g., logomark of the passkey
provider). The SVG MUST meet all of the requirements defined in § 4.1 SVG requirements. This icon is
intended to be shown to users by RPs.

List of extensions supported by the FIDO UAF authenticator. This field only applies to UAF authenticators.
For FIDO2 authenticators see authenticatorGetInfo

Scope of keys generated and maintained by this authenticator model. When this field is absent or set to
"public-key-credential-source", this authenticator only generates and maintains "main" FIDO credentials (and
not supplemental public keys).

When set to "device-spk", this authenticator only generates and maintains device-scoped supplemental
public keys that are included in the supplemental public keys (SPK) extension.

When set to "provider-spk", this authenticator only generates and maintains provider-scoped supplemental
public keys that are included in the supplemental public keys (SPK) extension.

Seeing keys generated and maintained by this authenticator model in an unexpected location (main
credential, supplemental public keys extension confusion) is an indication of malicious authenticator
behavior and should be rejected.

When set to "unsupported" it means that all private keys relating to the Public Key Credential Source [WebA
uthn] are designed to stay within the authenticator boundary. Consequently, the security characteristics of
this Metadata Statement apply to all keys.

When set to "explicit" it means that the authenticator explicitly marks keys as either multi-device keys or
single-device keys via the "Backup Eligibility" flag [WebAuthn].

When set to "implicit" it means that all private keys relating to Public Key Credential Source [WebAuthn] may
be backed up.

The field authenticatorGetInfo / supportedExtensions will include the "supplementalPubKeys"
extension if the authenticator supports it in general.

If this multiDeviceCredentialSupport field is missing the implicit value is "unsupported" (to provide

Note: This field only applies to UAF authenticators.

icon, of type DOMString

iconDark, of type DOMString

providerLogoLight, of type DOMString

providerLogoDark, of type DOMString

supportedExtensions, of type ExtensionDescriptor[]

keyScope, of type DOMString

multiDeviceCredentialSupport, of type DOMString

20/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

backwards compatibility).

Describes supported versions, extensions, AAGUID of the device and its capabilities.

The information is the same reported by an authenticator when invoking the 'authenticatorGetInfo' method,
see [FIDOCTAP].

Specifies the URL for retrieving the configuration details for the credential export protocol (CXP).

When importing credentials, the passkey provider to export the credential might retrieve the configuration
details for the credential export protocol in order to provide additional security. More details can be found in
Credential Export Protocol specification that can be found on the FIDO Credential Exchange Specifications
web page.

This section is normative.

All [SVG11] provider icons MUST adhere to the SVG Portable/Secure (SVG-P/S) profile defined in
https://datatracker.ietf.org/doc/draft-svg-tiny-ps-abrotman/09/.

Additional requirements:

This section is not normative.
A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary
MetadataStatement.

Example of the metadata statement for an UAF authenticator with:

authenticatorGetInfo, of type AuthenticatorGetInfo

Note: This field MUST be present for FIDO2 authenticators.
FIDO UAF and FIDO U2F authenticators do not support authenticatorGetInfo.

cxpConfigURL, of type DOMString

4.1. SVG requirements

1. Format: SVG Version: 1.2 with baseProfile as “tiny-ps"

2. Elements: vector-based (cannot contain raster components)

3. Dimensions: square aspect ratio

4. The <title> element MUST be populated with the English version of the provider friendly name

5. The SVG MUST not contain comments or extra text

5. Metadata Statement Format

5.1. UAF Example

authenticatorVersion 2.

Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance rate of 0.002%
and rate limiting attempts for 30 seconds after 5 false trials.

Authenticator is embedded with the FIDO User device.

The authentication keys are protected by TEE and are restricted to sign valid FIDO sign assertions only.

The (fingerprint) matcher is implemented in TEE.

The Transaction Confirmation Display is implemented in a TEE.

The Transaction Confirmation Display supports display of "image/png" objects only.
21/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://fidoalliance.org/specifications-credential-exchange-specifications/
https://datatracker.ietf.org/doc/draft-svg-tiny-ps-abrotman/09/

Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color
(=Color Type 2). The zlib compression method (0). It doesn’t support filtering (i.e. filter type of=0) and no
interlacing support (interlace method=0).

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.

It uses the ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).

It only implements the ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).

It implements UAF protocol version (upv) 1.0 and 1.1.

EXAMPLE 1
{
 "legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/",
 "friendlyNames": {"en-US": "FIDO UAF Sample"},
 "description": "FIDO Alliance Sample UAF Authenticator",
 "aaid": "1234#5678",
 "alternativeDescriptions": {
 "ru-RU": "Пример UAF аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple UAF authenticator de FIDO Alliance"
 },
 "authenticatorVersion": 2,
 "protocolFamily": "uaf",
 "schema": 3,
 "upv": [
 { "major": 1, "minor": 0 },
 { "major": 1, "minor": 1 }
],
 "authenticationAlgorithms": ["secp256r1_ecdsa_sha256_raw"],
 "publicKeyAlgAndEncodings": ["ecc_x962_raw"],
 "attestationTypes": ["basic_full"],
 "userVerificationDetails": [
 [{
 "userVerificationMethod": "fingerprint_internal",
 "baDesc": {
 "selfAttestedFAR": 0.00002,
 "maxRetries": 5,
 "blockSlowdown": 30,
 "maxTemplates": 5
 }
 }]
],
 "keyProtection": ["hardware", "tee"],
 "isKeyRestricted": true,
 "matcherProtection": ["tee"],
 "cryptoStrength": 128,
 "attachmentHint": ["internal"],
 "tcDisplay": ["any", "tee"],
 "tcDisplayContentType": "image/png",
 "tcDisplayPNGCharacteristics": [{
 "width": 320,
 "height": 480,
 "bitDepth": 16,
 "colorType": 2,
 "compression": 0,
 "filter": 0,
 "interlace": 0
 }],
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy

22/35

Example of an User Verification Methods entry for an authenticator with:

 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

Fingerprint based user verification method, with:

the ability for the user to enroll up to 5 fingers (reference data sets) with

a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01% (0.0001).

The fingerprint verification will be blocked after 5 unsuccessful attempts.

A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification method.
Entering the PIN into the authenticator will be required to re-activate fingerprint based user verification after
it has been blocked.

23/35

Example of the metadata statement for an U2F authenticator with:

EXAMPLE 2
[
 [
 {
 "userVerificationMethod": "fingerprint_internal",
 "baDesc": {
 "selfAttestedFAR": 0.000002,
 "maxTemplates": 5,
 "maxRetries": 5,
 "blockSlowdown": 0
 }
 }
],
 [
 {
 "userVerificationMethod": "passcode_internal",
 "caDesc": {
 "base": 10,
 "minLength": 4
 }
 }
]
]

5.2. U2F Example

authenticatorVersion 2.

Touch based user presence check.

Authenticator is a USB pluggable hardware token.

The authentication keys are protected by a secure element.

The user presence check is implemented in the chip. From the perspective of the authenticator, the
presence check is optional for U2F_AUTHENTICATE.

The Authenticator is a pure second factor authenticator.

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.

It uses the ALG_KEY_ECC_X962_RAW public key format.

It only implements the ATTESTATION_BASIC_FULL method.

It implements U2F protocol versions 1.2, 1.1 and 1.0

EXAMPLE 3
{
 "legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/",
 "friendlyNames": {"en-US": "FIDO U2F Sample"},
 "description": "FIDO Alliance Sample U2F Authenticator",
 "alternativeDescriptions": {
 "ru-RU": "Пример U2F аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple U2F authenticator de FIDO Alliance",
 "zh-CN": "��FIDO Alliance���U2F�����"
 },
 "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
 "protocolFamily": "u2f",
 "schema": 3,
 "authenticatorVersion": 2,
 "upv": [24/35

 "upv": [
 { "major": 1, "minor": 0 },
 { "major": 1, "minor": 1 },
 { "major": 1, "minor": 2 }
],
 "authenticationAlgorithms": ["secp256r1_ecdsa_sha256_raw"],
 "publicKeyAlgAndEncodings": ["ecc_x962_raw"],
 "attestationTypes": ["basic_full"],
 "userVerificationDetails": [
 [
 {"userVerificationMethod": "none"}
],
 [
 {"userVerificationMethod": "presence_internal"}
]
],
 "keyProtection": ["hardware", "secure_element"],
 "matcherProtection": ["on_chip"],
 "cryptoStrength": 128,
 "attachmentHint": ["external", "wired", "nfc"],
 "tcDisplay": [],
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu

25/35

Example of the metadata statement for an FIDO2 authenticator with:

 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

5.3. FIDO2 Example

AAGUID is set to 0132d110-bf4e-4208-a403-ab4f5f12efe5.

authenticatorVersion is set to 2.

Touch based user presence check, and external pin(ClientPin Protocol) support.

Authenticator is a USB pluggable hardware token with support for NFC.

The authentication keys are protected by a secure element.

The user presence check is implemented in the chip. From the perspective of the authenticator, the
presence check is optional for getAssertion.

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW and ALG_SIGN_RSASSA_PKCSV15_SHA256_RAW
authentication algorithms.

It uses the ALG_KEY_COSE public key format.

It only implements the ATTESTATION_BASIC_FULL method.

It implements FIDO2 protocol version 1.0.

EXAMPLE 4
{
 "legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/",
 "friendlyNames": {"en-US": "FIDO Sample Security Key"},
 "description": "FIDO Alliance Sample FIDO2 Authenticator",
 "aaguid": "0132d110-bf4e-4208-a403-ab4f5f12efe5",
 "alternativeDescriptions": {
 "ru-RU": "Пример FIDO2 аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple FIDO2 authenticator de FIDO Alliance",
 "zh-CN": "��FIDO Alliance���FIDO2�����"
 },
 "protocolFamily": "fido2",
 "schema": 3,
 "authenticatorVersion": 5,
 "upv": [
 { "major": 1, "minor": 0 }
],
 "authenticationAlgorithms": ["secp256r1_ecdsa_sha256_raw", "rsassa_pkcsv15_sha256_raw"],
 "publicKeyAlgAndEncodings": ["cose"],
 "attestationTypes": ["basic_full"],
 "userVerificationDetails": [
 [
 {"userVerificationMethod": "none"}
],
 [
 {"userVerificationMethod": "presence_internal"}
],
 [{
 "userVerificationMethod": "passcode_external",
 "caDesc": {
 "base": 10, 26/35

 "base": 10,
 "minLength": 4
 }
 }],
 [{
 "userVerificationMethod": "passcode_external",
 "caDesc": {
 "base": 10,
 "minLength": 4
 }},
 {"userVerificationMethod": "presence_internal"}
]
],
 "keyProtection": ["hardware", "secure_element"],
 "matcherProtection": ["on_chip"],
 "cryptoStrength": 128,
 "attachmentHint": ["external", "wired", "wireless", "nfc"],
 "tcDisplay": [],
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1

27/35

Metadata statements are intended to be stable once they have been published. When authenticators are
updated in the field, such updates are expected to improve the authenticator security (for example, improve FRR
or FAR). The authenticatorVersion must be updated if firmware updates fixing severe security issues (e.g. as
reported previously) are available.

Significant changes in authenticator functionality are not anticipated in firmware updates. For example, if an
authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a user
verification method, the vendor MUST assign a new authenticator model identifier
(AAID/AAGUID/attestationCertificateKeyIdentifiers) to this authenticator.

A single authenticator implementation could report itself as two "virtual" authenticators using different

 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg==",
 "authenticatorGetInfo": {
 "versions": ["U2F_V2", "FIDO_2_0"],
 "extensions": ["credProtect", "hmac-secret"],
 "aaguid": "0132d110bf4e4208a403ab4f5f12efe5",
 "options": {
 "plat": false,
 "rk": true,
 "clientPin": true,
 "up": true,
 "uv": true,
 "uvToken": false,
 "config": false
 },
 "maxMsgSize": 1200,
 "pinUvAuthProtocols": [1],
 "maxCredentialCountInList": 16,
 "maxCredentialIdLength": 128,
 "transports": ["usb", "nfc"],
 "algorithms": [{
 "type": "public-key",
 "alg": -7
 },
 {
 "type": "public-key",
 "alg": -257
 }
],
 "maxAuthenticatorConfigLength": 1024,
 "defaultCredProtect": 2,
 "firmwareVersion": 5
 }
}

6. Additional Considerations

6.1. Field updates and metadata

Note: The metadata statement is assumed to relate to all authenticators having the same authenticator model
identifier (AAID/AAGUID/attestationCertificateKeyIdentifiers).

Note: The FIDO Server is recommended to assume increased risk if the authenticatorVersion specified in
the metadata statement is newer (higher) than the one present in the authenticator.

28/35

authenticator model identifiers (AAIDs/AAGUIDs/attestationCertificateKeyIdentifiers). Such implementations
MUST properly (i.e. according to the security characteristics claimed in the metadata) protect UAuth keys and
other sensitive data from the other "virtual" authenticator - just as a normal authenticator would do.

Note: Authentication keys (UAuth.pub) registered for one authenticator model (e.g. as identified by
AAID/AAGUID/attestationCertificateKeyIdentifiers) cannot be used by authenticators reporting a different
authenticator model identifier (AAID/AAGUID/attestationCertificateKeyIdentifiers) - even when running on the
same hardware (see section "Authentication Response Processing Rules for FIDO Server" in [UAFProtocol]).

Note: To remain compatible with future versions the FIDO Server SHOULD ignore unrecognized fields when
processing any element of an entry. The addition, subtraction or change in interpretation of any fields in an
entry of this specification which substantively changes the processing logic of a consumer will only occur
alongside an update to the major version number of the specification.

Index

Terms defined by this specification

AAGUID, in § 3.1

aaguid, in § 4
aaid, in § 4
alternativeDescriptions, in § 4
attachmentHint, in § 4
attestationCertificateKeyIdentifiers, in § 4
attestationRootCertificates, in § 4
attestationTypes, in § 4
authenticationAlgorithms, in § 4
authenticatorGetInfo, in § 4
authenticatorVersion, in § 4
b, in § 3.7

baDesc, in § 3.5

base, in § 3.2

BiometricAccuracyDescriptor, in § 3.3

bitDepth, in § 3.8

blockSlowdown
dict-member for BiometricAccuracyDescriptor , in § 3.3

dict-member for CodeAccuracyDescriptor , in § 3.2

dict-member for PatternAccuracyDescriptor, in § 3.4

c, in § 3.9

caDesc, in § 3.5

CodeAccuracyDescriptor, in § 3.2

colorType, in § 3.8

compression, in § 3.8

cryptoStrength, in § 4
cxpConfigURL, in § 4

29/35

data, in § 3.10

description, in § 4
DisplayPNGCharacteristicsDescriptor, in § 3.8

EcdaaTrustAnchor, in § 3.9

ecdaaTrustAnchors, in § 4
ExtensionDescriptor, in § 3.10

fail_if_unknown, in § 3.10

filter, in § 3.8

friendlyNames, in § 4
g, in § 3.7

G1Curve, in § 3.9

height, in § 3.8

iAPARThreshold, in § 3.3

icon, in § 4
iconDark, in § 4
id, in § 3.10

interlace, in § 3.8

isFreshUserVerificationRequired, in § 4
isKeyRestricted, in § 4
keyProtection, in § 4
keyScope, in § 4
legalHeader, in § 4
matcherProtection, in § 4
maxRetries

dict-member for BiometricAccuracyDescriptor , in § 3.3

dict-member for CodeAccuracyDescriptor , in § 3.2

dict-member for PatternAccuracyDescriptor, in § 3.4

maxTemplates, in § 3.3

MetadataStatement, in § 4
minComplexity, in § 3.4

minLength, in § 3.2

multiDeviceCredentialSupport, in § 4
overall claimed cryptographic strength, in § 4
paDesc, in § 3.5

PatternAccuracyDescriptor, in § 3.4

plte, in § 3.8

protocolFamily, in § 4
providerLogoDark, in § 4
providerLogoLight, in § 4
publicKeyAlgAndEncodings, in § 4
r, in § 3.7

rgbPaletteEntry, in § 3.7
30/35

ECMAScript Language Specification. URL: https://tc39.es/ecma262/multipage/

Rolf Lindemann; Dr. Joshua E. Hill; Douglas Biggs. FIDO Authenticator Security Requirements. November
2020. Final Draft. URL: https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-
requirements-v1.4-fd-20201102.html

Stephanie Schuckers; et al. FIDO Biometrics Requirements. October 2020. URL:
https://fidoalliance.org/specs/biometric/requirements/Biometrics-Requirements-v2.0-fd-20201006.html

C. Brand; et al. FIDO 2.0: Client To Authenticator Protocol. 30 January 2019. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-
20190130.html

schema, in § 4
selfAttestedFAR, in § 3.3

selfAttestedFRR, in § 3.3

supportedExtensions, in § 4
sx, in § 3.9

sy, in § 3.9

tag, in § 3.10

tcDisplay, in § 4
tcDisplayContentType, in § 4
tcDisplayPNGCharacteristics, in § 4
upv, in § 4
userVerificationDetails, in § 4
userVerificationMethod, in § 3.5

VerificationMethodANDCombinations, in § 3.6

VerificationMethodDescriptor, in § 3.5

width, in § 3.8

X, in § 3.9

Y, in § 3.9

Terms defined by reference

[WebIDL] defines the following terms:
DOMString

boolean

double

octet

unsigned long

unsigned short

References

Normative References

[ECMA-262]

[FIDOAuthenticatorSecurityRequirements]

[FIDOBiometricsRequirements]

[FIDOCTAP]

31/35

https://tc39.es/ecma262/multipage/
https://tc39.es/ecma262/multipage/
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/biometric/requirements/Biometrics-Requirements-v2.0-fd-20201006.html
https://fidoalliance.org/specs/biometric/requirements/Biometrics-Requirements-v2.0-fd-20201006.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html

B. Jack; R. Lindemann; Y. Ackermann. FIDO Metadata Service. 21 May 2025. Proposed Standard. URL:
https://fidoalliance.org/specs/mds/fido-metadata-service-v3.1-ps-20250521.html

R. Lindemann; et al. FIDO Registry of Predefined Values. 23 May 2022. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html

ISO/IEC 19795-1:2021 Information technology — Biometric performance testing and reporting — Part 1:
Principles and framework. 2021. URL: https://www.iso.org/standard/73515.html

ISO/IEC 30107-3:2017 Information technology — Biometric presentation attack detection — Part 3: Testing
and reporting. 2017. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en

Chris Lilley; et al. Portable Network Graphics (PNG) Specification (Third Edition). URL:
https://w3c.github.io/png/

N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and
Examples (RFC 2049). November 1996. November 1996. URL: https://tools.ietf.org/html/rfc2049

L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc2397

P. Leach. A Universally Unique IDentifier (UUID) URN Namespace. July 2005. URL:
https://tools.ietf.org/html/rfc4122

Erik Dahlström; et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). 16 August 2011. REC. URL:
https://www.w3.org/TR/SVG11/

R. Lindemann; et al. FIDO UAF Protocol Specification v1.2. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

Dirk Balfanz (Google); et al. Web Authentication: An API for accessing Public Key Credentials Level 2. 8
April 2021. TR. URL: https://www.w3.org/TR/webauthn-2/

Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://webidl.spec.whatwg.org/

Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/

Android 14 Compatibility Definition. URL: https://source.android.com/docs/compatibility/14/android-14-cdd

Android Unlock Pattern Security Analysis. Published. URL: http://www.sinustrom.info/2012/05/21/android-
unlock-pattern-security-analysis/

Apple Platform Security. URL: https://support.apple.com/guide/security/welcome/web

R. Lindemann; et al. FIDO ECDAA Algorithm. 23 May 2022. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

[FIDOMetadataService]

[FIDORegistry]

[ISOIEC-19795-1]

[ISOIEC-30107-3]

[PNG]

[RFC2049]

[RFC2397]

[RFC4122]

[SVG11]

[UAFProtocol]

[WebAuthn]

[WebIDL]

[WebIDL-ED]

Informative References

[AndroidCompatibilityDefinition]

[AndroidUnlockPattern]

[ApplePlatformSecurity]

[FIDOEcdaaAlgorithm]

[FIDOGlossary]

32/35

https://fidoalliance.org/specs/mds/fido-metadata-service-v3.1-ps-20250521.html
https://fidoalliance.org/specs/mds/fido-metadata-service-v3.1-ps-20250521.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://www.iso.org/standard/73515.html
https://www.iso.org/standard/73515.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en
https://w3c.github.io/png/
https://w3c.github.io/png/
https://tools.ietf.org/html/rfc2049
https://tools.ietf.org/html/rfc2049
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc2397
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
https://source.android.com/docs/compatibility/14/android-14-cdd
https://source.android.com/docs/compatibility/14/android-14-cdd
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

R. Lindemann; et al. FIDO Technical Glossary. 23 May 2022. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-ps-20220523.html

FIDO 2.0: Key attestation format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-
attestation-v2.0-ps-20150904.html

Daniel Amitay. Most Common iPhone Passcodes. URL: http://danielamitay.com/blog/2011/6/13/most-
common-iphone-passcodes

Codes for the representation of names of countries and their subdivisions — Part 1: Country code. August
2020. Published. URL: https://www.iso.org/standard/72482.html

X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811).
November 2008. URL: https://www.itu.int/rec/T-REC-X.690-200811-S

Mark Burnett. 10000 Top Passwords. URL: https://xato.net/passwords/more-top-worst-passwords/

S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

D. Cooper; et al. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280

A. Phillips, Ed.; M. Davis, Ed.. Tags for Identifying Languages. September 2009. Best Current Practice.
URL: https://www.rfc-editor.org/rfc/rfc5646

D. Baghdasaryan; et al. FIDO UAF Authenticator Commands. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html

typedef DOMString AAGUID;

dictionary CodeAccuracyDescriptor {
 required unsigned short base;
 required unsigned short minLength;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

dictionary BiometricAccuracyDescriptor {
 double selfAttestedFRR;
 double selfAttestedFAR;
 double iAPARThreshold;
 unsigned short maxTemplates;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

dictionary PatternAccuracyDescriptor {
 required unsigned long minComplexity;

[FIDOKeyAttestation]

[iPhonePasscodes]

[ISO3166]

[ITU-X690-2008]

[MoreTopWorstPasswords]

[RFC4648]

[RFC5280]

[RFC5646]

[UAFAuthnrCommands]

[UAFRegistry]

IDL Index

33/35

https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-ps-20220523.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
https://www.iso.org/standard/72482.html
https://www.iso.org/standard/72482.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://www.rfc-editor.org/rfc/rfc5646
https://www.rfc-editor.org/rfc/rfc5646
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short

 required unsigned long minComplexity;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

dictionary VerificationMethodDescriptor {
 DOMString userVerificationMethod;
 CodeAccuracyDescriptor caDesc;
 BiometricAccuracyDescriptor baDesc;
 PatternAccuracyDescriptor paDesc;
};

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

dictionary rgbPaletteEntry {
 required unsigned short r;
 required unsigned short g;
 required unsigned short b;
};

dictionary DisplayPNGCharacteristicsDescriptor {
 required unsigned long width;
 required unsigned long height;
 required octet bitDepth;
 required octet colorType;
 required octet compression;
 required octet filter;
 required octet interlace;
 rgbPaletteEntry[] plte;
};

dictionary EcdaaTrustAnchor {
 required DOMString X;
 required DOMString Y;
 required DOMString c;
 required DOMString sx;
 required DOMString sy;
 required DOMString G1Curve;
};

dictionary ExtensionDescriptor {
 required DOMString id;
 unsigned short tag;
 DOMString data;
 required boolean fail_if_unknown;
};

dictionary MetadataStatement {
 DOMString legalHeader;
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 FriendlyNames friendlyNames;
 required DOMString description;
 AlternativeDescriptions alternativeDescriptions;
 required unsigned long authenticatorVersion;
 required DOMString protocolFamily;
 required unsigned short schema;
 required Version[] upv;
 required DOMString[] authenticationAlgorithms;
 required DOMString[] publicKeyAlgAndEncodings;
 required DOMString[] attestationTypes;
 VerificationMethodANDCombinations[] userVerificationDetails;

34/35

https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

 VerificationMethodANDCombinations[] userVerificationDetails;
 required DOMString[] keyProtection;
 boolean isKeyRestricted;
 boolean isFreshUserVerificationRequired;
 required DOMString[] matcherProtection;
 unsigned short cryptoStrength;
 DOMString[] attachmentHint;
 required DOMString[] tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 required DOMString[] attestationRootCertificates;
 EcdaaTrustAnchor[] ecdaaTrustAnchors;
 DOMString icon;
 DOMString iconDark;
 DOMString providerLogoLight;
 DOMString providerLogoDark;
 ExtensionDescriptor[] supportedExtensions;
 DOMString keyScope;
 DOMString multiDeviceCredentialSupport;
 AuthenticatorGetInfo authenticatorGetInfo;
 DOMString cxpConfigURL;
};

↑
→

35/35

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

	FIDO Metadata Statement
	Proposed Standard, May 21, 2025
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	2. Overview
	2.1. Scope
	2.2. Audience
	2.3. Architecture

	3. Types
	3.1. Authenticator Attestation GUID (AAGUID) typedef
	3.2. CodeAccuracyDescriptor dictionary
	3.3. BiometricAccuracyDescriptor dictionary
	3.4. PatternAccuracyDescriptor dictionary
	3.5. VerificationMethodDescriptor dictionary
	3.6. VerificationMethodANDCombinations typedef
	3.7. rgbPaletteEntry dictionary
	3.8. DisplayPNGCharacteristicsDescriptor dictionary
	3.9. EcdaaTrustAnchor dictionary
	3.10. ExtensionDescriptor dictionary
	3.11. FriendlyNames dictionary
	3.12. AlternativeDescriptions dictionary
	3.13. AuthenticatorGetInfo dictionary

	4. Metadata Keys
	4.1. SVG requirements

	5. Metadata Statement Format
	5.1. UAF Example
	5.2. U2F Example
	5.3. FIDO2 Example

	6. Additional Considerations
	6.1. Field updates and metadata

	Index
	Terms defined by this specification
	Terms defined by reference

	References
	Normative References
	Informative References

	IDL Index

