f

ALLIANCE

This version:
https://fidoalliance.org/specs/fido-v2.3-rd-20251023/fido-client-to-authenticator-protocol-v2.3-rd-
20251023.html

Previous Versions:
https://fidoalliance.org/specs/fido-v2.2-ps-20250714/fido-client-to-authenticator-protocol-v2.2-ps-
20250714.html

Issue Tracking:

GitHub
Editors:
John Bradley (Yubico)
Michael B. Jones (independent)
Akshay Kumar (Microsoft)
Rolf Lindemann (Nok Nok Labs)

Johan Verrept (OneSpan)
David Waite (Ping Identity)

Former Editors:
Matthieu Antoine (Gemalto)
Vijay Bharadwaj (Microsoft)
Arnar Birgisson (Google)
Christiaan Brand (Google)
Alexei Czeskis (Google)
Thomas Duboucher (Thales Group)
Jakob Ehrensvard (Yubico)
Jeff Hodges (Google)
Mirko J. Ploch (SurePassID)
Adam Powers (FIDO Alliance)

Contributors:
Chad Armstrong (Google)
Tim Cappalli (Okta)
Konstantinos Georgantas (Yubico)
Fabian Kaczmarczyck (Google)
Harsh Lal (Google)
Kim Paulhamus (Google)
Nina Satragno (Google)
Nuno Sung (AuthenTrend)

Copyright © 2025 FIDO Alliance. All Rights Reserved.

This specification describes an application layer protocol for communication between a roaming authenticator
and another client/platform, as well as bindings of this application protocol to a variety of transport protocols
using different physical media. The application layer protocol defines requirements for such transport protocols.
Each transport binding defines the details of how such transport layer connections should be set up, in a manner
that meets the requirements of the application layer protocol.

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft Specification. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of
reviewing the Specification. No rights are granted to prepare derivative works of this Specification. Entities
seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to
determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

1/148

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.3-rd-20251023/fido-client-to-authenticator-protocol-v2.3-rd-20251023.html
https://fidoalliance.org/specs/fido-v2.2-ps-20250714/fido-client-to-authenticator-protocol-v2.2-ps-20250714.html
https://github.com/fido-alliance/fido-2-specs
mailto:jbradley@yubico.com
mailto:michael_b_jones@hotmail.com
mailto:akshayku@microsoft.com
mailto:rolf@noknok.com
mailto:johan.verrept@onespan.com
mailto:dwaite@pingidentity.com
mailto:matthieu.antoine@gemalto.com
mailto:vijay.bharadwaj@microsoft.com
mailto:arnarb@google.com
mailto:cbrand@google.com
mailto:aczeskis@google.com
mailto:thomas.duboucher@thalesgroup.com
mailto:jakob@yubico.com
mailto:jdhodges@google.com
mailto:mirko.ploch@surepassid.com
mailto:adam@fidoalliance.org
mailto:chadarmstrong@google.com
mailto:tim.cappalli@okta.com
mailto:kostas@yubico.com
mailto:kaczmarczyck@google.com
mailto:harshlal@google.com
mailto:kpaulhamus@google.com
mailto:nso@google.com
mailto:nuno.sung@authentrend.com
https://fidoalliance.org
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

1 Introduction

1.1 Relationship to Other Specifications

1.2 Data Elements Referenced by Other Specifications

2 Conformance

3 Protocol Structure

4 Protocol Overview

5 Terminology

6 Authenticator API

6.1 authenticatorMakeCredential (0x01)

6.1.1 Platform Actions for authenticatorMakeCredential (non-normative)
6.1.2 authenticatorMakeCredential Algorithm

6.1.3 Discoverable credentials

6.2 authenticatorGetAssertion (0x02)

6.2.1 Platform Actions for authenticatorGetAssertion (non-normative)
6.2.2 authenticatorGetAssertion Algorithm

6.3 authenticatorGetNextAssertion (0x08)

6.3.1 Client Logic

6.4 authenticatorGetInfo (0x04)
6.5 authenticatorClientPIN (0x06)

6.5.1 PIN Composition Requirements

6.5.2 PIN/UV Auth Protocol Global State

6.5.2.1 pinUvAuthToken State

6.5.2.2 PersistentPinUvAuthToken State

6.5.2.3 PIN-Entry and User Verification Retries Counters
6.5.3 Utility Functions

6.5.3.1 Perform Built-in User Verification Algorithm

6.5.3.2 pinUvAuthToken State Maintenance Functions
6.5.4 PIN/UV Auth Protocol Abstract Definition

6.5.5 authenticatorClientPIN (0x06) Command Definition
6.5.5.1 Authenticator Configuration Operations Upon Power Up
6.5.5.2 Platform getting PIN retries from Authenticator
6.5.5.3 Platform getting UV Retries from Authenticator
6.5.5.4 Obtaining the Shared Secret

6.5.5.5 Setting a New PIN

6.5.5.6 Changing existing PIN

6.5.5.7 Operations to Obtain a pinUvAuthToken

6.5.5.7.1 Getting pinUvAuthToken using getPinToken (superseded)
6.5.5.7.2 Getting pinUvAuthToken using getPinUvAuthTokenUsingPinWithPermissions (ClientPIN)
6.5.5.7.3 Getting pinUvAuthToken using getPinUvAuthTokenUsingUvWithPermissions (built-in user verification methods)
6.5.6 PIN/UV Auth Protocol One

6.5.7 PIN/UV Auth Protocol Two

6.5.8 PRF values used

6.6 authenticatorReset (0x07)

6.7 authenticatorBioEnroliment (0x09)

6.7.1 Feature detection

6.7.2 Get bio modality

6.7.3 Get fingerprint sensor info

6.7.4 Enrolling fingerprint

6.7.5 Cancel current enroliment

6.7.6 Enumerate enrollments

6.7.7 Rename/Set FriendlyName

6.7.8 Remove enroliment

6.8 authenticatorCredentialManagement (0x0A)

6.8.1 Feature detection

6.8.2 Getting Credentials Metadata

6.8.3 Enumerating RPs

6.8.4 Enumerating Credentials for an RP

6.8.5 DeleteCredential

6.8.6 Updating user information

6.8.7 Truncation of relying party identifiers

6.9 authenticatorSelection (0x0B)

6.10 authenticatorLargeBlobs (0x0C)
6.10.1 Feature detection

6.10.2 Reading and writing serialised data
6.10.3 Large, per-credential blobs

2/148

6.10.4 Reading per-credential large-blob data

6.10.5 Writing per-credential large-blob data for a new credential
6.10.6 Updating per-credential large-blob data
6.10.7 Garbage collection of large-blob data

6.11 authenticatorConfig (0x0D)

6.11.1 Enable Enterprise Attestation

6.11.2 Toggle Always Require User Verification

6.11.3 Vendor Prototype Command

6.11.4 Setting a minimum PIN Length

6.11.5 Enable Long Touch For Reset

6.12 Prototype authenticatorBioEnroliment (0x40) (For backwards compatibility with "FIDO_2_1_PRE")

6.13 Prototype authenticatorCredentialManagement (0x41) (For backwards compatibility with
"FIDO_2_1_PRE")

7 Feature-Specific Descriptions and Actions
741 Enterprise Attestation

711 Feature detection

71.2 Platform Actions

713 Authenticator Actions

7.2 Always Require User Verification
7.21 Feature detection

722 Platform Actions

723 Authenticator Actions
7.2.4 Disabling CTAP1/U2F

7.3 Authenticator Certifications
7.31 Authenticator Actions

7.4 Set Minimum PIN Length
7.41 Feature detection

7.4.2 Platform Actions

7.4.3 Authenticator Actions

7.5 Set PIN Complexity Policy
7.5.1 Feature detection

752 Platform Actions

7.5.3 Authenticator Actions

7.6 JSON-based Messages
7.6.1 Feature detection

7.6.2 Request Properties

7.6.3 Response Properties

7.7 Long touch for Reset

7.71 Feature detection

7.7.2 Platform Actions

7.7.3 Authenticator Actions

8 Message Encoding

8.1 Command Codes

8.2 Status codes
8.3 Utility functions

9 Mandatory features

10 Interoperating with CTAP1/U2F authenticators

10.1 Framing of U2F commands

10.1.1 U2F Request Message Framing

10.1.2 U2F Response Message Framing

10.2 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
10.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators
10.4 Cross-version Credential Compatibility

11 Transport-specific Bindings
11.1 Secure protocol implementation
11.2 USB Human Interface Device (USB HID)

11.2.1 Design rationale

11.2.2 Protocol structure and data framing

11.2.3 Concurrency and channels

11.24 Message and packet structure

11.25 Arbitration

11.2.5.1 Transaction atomicity, idle and busy states.
11.25.2 Transaction timeout

11.25.3 Transaction abort and re-synchronization
11.2.5.4 Packet sequencing

11.2.6 Channel locking

11.2.7 Protocol version and compatibility

11.2.8 HID device implementation

11.2.8.1 Interface and endpoint descriptors

11.2.8.2 HID report descriptor and device discovery
11.2.9 CTAPHID commands

11.2.9.1 Mandatory commands

11.2.9.1.1 CTAPHID_MSG (0x03)

3/148

11.29.1.2 CTAPHID_CBOR (0x10)

11.29.1.3 CTAPHID_INIT (0x06)
11.29.1.4 CTAPHID_PING (0x01)
11.29.15 CTAPHID_CANCEL (0x11)
11.2.9.1.6 CTAPHID_ERROR (0x3F)
11.29.1.7 CTAPHID_KEEPALIVE (0x3B)
11.2.9.2 Optional commands

11.2.9.2.1 CTAPHID_WINK (0x08)
11.2.9.2.2 CTAPHID_LOCK (0x04)
11.2.9.3 Vendor specific commands

11.3 1ISO7816, 1ISO14443 and Near Field Communication (NFC)
11.3.1 Conformance

11.3.2 Protocol

11.3.3 Applet selection

11.3.4 Applet deselection

1135 Framing

11.3.5.1 Commands

11.35.2 Response

11.3.6 Fragmentation

11.3.7 Commands

11.3.7.1 NFCCTAP_MSG (0x10)

11.3.7.2 NFCCTAP_GETRESPONSE (0x11)

114 Bluetooth Smart / Bluetooth Low Energy Technology
11.4.1 Conformance

11.4.2 Pairing

11.4.3 Link Security

11.4.4 Framing

11.4.4.1 Request from Client to Authenticator
11.4.42 Response from Authenticator to Client
11.4.4.3 Command, Status, and Error constants
1145 GATT Service Description

11.4.5.1 FIDO Service

11.4.5.2 Device Information Service

11.4.5.3 Generic Access Profile Service

11.4.6 Protocol Overview

11.4.7 Authenticator Advertising Format
11.4.8 Requests

11.4.9 Responses

11.4.10 Framing fragmentation

11.4.11 Notifications

11.4.12 Request Collisions

11.4.13 Implementation Considerations
11.4.13.1 Bluetooth pairing: Client considerations
11.4.13.2 Bluetooth pairing: Authenticator considerations

11.4.14 Handling command completion
11.4.15 Data throughput

11.4.16 Advertising

11.4.17 Authenticator Address Type
11.5 Hybrid transports

11.5.1 QR-initiated Transactions

11.5.1.1 Data transfer channel

11.5.1.11 Websockets

11.5.1.1.2 Bluetooth Low Energy

11.5.1.2 Data Transfer

11.5.2 State-assisted Transactions

12 Defined Extensions

121 Credential Protection (credProtect)
12.1.1 Feature detection

12.2 Credential Blob (credBlob)

12.2.1 Feature detection

12.3 Large Blob Key (largeBlobKey)

124 Large Blob (largeBlob)

125 Minimum PIN Length Extension (minPinLength)

12.6 PIN Complexity Extension (pinComplexityPolicy)

12.7 HMAC Secret Extension (hmac-secret)

12.8 HMAC Secret MakeCredential Extension (hmac-secret-mc)
12.9 Third-Party Payment authentication (thirdPartyPayment)

13 Related Documents

14 IANA Considerations
141 WebAuthn Extension Identifier Registrations

15 Security Considerations

Index
Terms defined by this specification

4/148

Terms defined by reference

References
Normative References
Informative References

IDL Index

This section is not normative.

This protocol is intended to be used in scenarios where a user interacts with aRelying Party (a website or native
app) on some platform (e.g., a PC) which prompts the user to interact with a roaming authenticator (e.g., a
smartphone).

In order to provideevidence of user interaction, a roaming authenticator implementing this protocol may have a
built-in mechanism to obtain a "user gesture", allowing the platform to collect a PIN on behalf of the authenticator.

This specification is part of the FIDO2 project, which includes this specification and is related to the W3CQWebAu
thn] specification. This specification refers to two CTAP protocol versions:

1. The CTAP1/U2F protocol, which is defined by the U2F Raw Messages specificationfU2FRawMsgs].
CTAP1/U2F messages are recognizable by their APDU-like binary structure. CTAP1/U2F may also be
referred to as CTAP 1.2 or U2F 1.2. The latter was the U2F specification version used as the basis for
several portions of this specification. Authenticators implementing CTAP1/U2F are typically referred to as
U2F authenticators or CTAP1 authenticators.

2. The CTAP2 protocol, whose messages are encoded in theCTAP2 canonical CBOR encoding form.
Authenticators implementing CTAP2 are referred to as CTAP2 authenticators, FIDO2 authenticators, or
WebAuthn authenticators.

Both CTAP1 and CTAP2 share the same underlying transports: USB Human Interface Device (USB HID), Near
Field Communication (NFC), and Bluetooth Smart / Bluetooth Low Energy Technology (BLE).

Whole documents or specific features may besuperseded by this document. A superseded document or feature
MAY be implemented if optional, but it exists purely for backwards compatibility with older platforms or
authenticators. Thus a superseded document or feature SHOULD NOT be used unless the replacement is not
implemented by the counterparty. (Superseded features are not automatically optional, e.g. a CTAP 2.1
authenticator MUST still support authenticatorClientPIN’s getPinToken subcommand if it supports clientPIN and
CTAP 2.0.)

The [U2FUsbHid], [U2FNfc], [U2FBle], and [U2FRawMsgs] specifications, specifically, are superseded by this
specification.

CTAP2 authenticators SHOULD also implement CTAP1/U2F. See § 10 Interoperating with CTAP1/U2F
authenticators for details on how these protocols interoperate from the perspective of authenticators, platforms,
and RPs.

Occasionally, the term "CTAP" may be used without clarifying whether it is referring to CTAP1 or CTAP2. In such
cases, it should be understood to be referring to the entirety of this specification or portions of this specification
that are not specific to either CTAP1 or CTAP2. For example, some error messages begin with the term "CTAP"
without clarifying whether they are CTAP1- or CTAP2-specific because they are applicable to both CTAP
protocol versions. CTAP protocol-specific error messages are prefixed with either "CTAP1" or "CTAP2" as
appropriate.

Note: For certifications, other requirements than those specified in this specification may apply, for example
with respect to security and privacy requirements. Those seeking authenticator certifications can refer to the
applicable certification documentation, from the certifying organization in question (e.g., the FIDO Alliance,
FIPS, Common Criteria, etc.), for additional information and requirements.

In particular, see here for FIDO Alliance’s certification programs.

The following data elements might be referenced by other specifications and hence should not be changed in
their fundamental data type or high-level semantics without liaising with the other specifications:

1. aaguid, data type byte string and identifying the authenticator model, i.e. identical values mean that they
refer to the same authenticator model and different values mean they refer to different authenticator models.

2. RP 1D, data type string representing theRelying party identifier, i.e. identical values mean that they refer to
the same Relying Party.
3. credentiallD, data type byte string identifying a specificpublic key credential source, i.e. identical values

5/148

https://fidoalliance.org/certification/
https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#public-key-credential-source

mean that they refer to the same credential and different values mean they refer to different credentials.
Note that there might be a very small probability that different credentials get assigned the same
credentiallD.

4. up and uv, data type boolean indicating whether user presence (up) or user verification (uv) was performed
by the authenticator.

NOTE: Some of the data elements might have an internal structure that might change. Other specifications
shall not rely on such internal structure.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this
specification are non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in [REC2119].

Authenticators and Platforms may implement additional constraints on these specifications to meet the
certification requirements of programs like [CMVP], [CSPN], and [CommonCriteria].

This protocol is specified in three parts:

« Authenticator API: At this level of abstraction, eachauthenticator operation is defined similarly to an API
call - it accepts input parameters and returns either an output or error code. Note that this APl level is
conceptual and does not represent actual APIs. The actual APIs will be provided by each implementing
platform.

Message Encoding: In order to invoke a method in the authenticator API, the host must construct and
encode a request and send it to the authenticator over the chosen transport protocol. The authenticator will
then process the request and return an encoded response.

Transport-specific Binding: Requests and responses are conveyed to roaming authenticators over
specific transports (e.g., USB, NFC, Bluetooth). For each transport technology, message bindings are
specified for this protocol.

This document specifies all three of the above pieces for roaming FIDO2 authenticators.

The general protocol between aRelying Party application, a client platform, and an authenticator is as follows:

1. In Relying Party-oriented use cases involving credential registration or user authentication, aRelying Party
application calls navigator.credentials.create() ornavigator.credentials.get() ifitisa
website, or the client platform’s equivalent APl methods if it is a native application. Other use cases, such as
credential management, PIN establishment/maintenance, or biometric enroliment, are typically initiated by
the client platform itself.

2. The platform establishes a connection with a nominally appropriate available authenticator, having used
criteria passed in by the Relying Party application and possibly other information it has to select the
authenticator.

3. The platform gets information about the authenticator using the authenticatorGetinfo command, which helps
it determine the authenticator’s capabilities.

4. Depending upon the operation the Relying Party application, or the platform itself, initiated (in step 1), the
options it supplied, and the authenticator’s capabilities, the platform will invoke one or more further
Authenticator APl commands.

Built-in User Verification method
The authenticator supports a built-in on-device user verification method like fingerprint or has a input Ul with
secure communication to the authenticator.

NOTE: clientPin is not a built-in user verification method

Credential Manager Hosting Device (CMHD)

In the context of hybrid transports, the CMHD is the device running the credential manager software that
interfaces with the client platform. For FIDO2 credentials, the credential manager acts as an authenticator.
For digital credentials (e.g. verifiable digital credentials), the credential manager acts as a digital identity
wallet.

6/148

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://www.w3.org/TR/webauthn-2#client-platform

Evidence of user interaction
Collection of evidence of user interaction establishes a state of user presence. Also, if it is collected along

with displaying a particular prompt to a user it may be considered collecting user consent. The general
notion is that the user interacts with the authenticator in some fashion, also known as supplying a "user
gesture"—e.g., touches a consent button, enters a password or a PIN, or supplies a biometric—in order to at
least confirm their presence and possibly consent to some proposed action. Some "user gesture"
approaches provide user verification in addition to establishing user presence, e.g., a fingerprint-basedbuilt-
in user verification method.

Platform-mediated user interactions such as clientPin may provide user verification but are not considered to
assert user presence. Thus, there are transport-based affordances affecting when and for how longuser
presence is established on a per-transport basis:

1ISO7816
For authenticators supporting the 1ISO7816 contact interface or the ISO14443 contactless interface

(NFC) without a method to collect a user gesture inside the authenticator boundary other than through a
power on gesture, the act of a user placing an authenticator into a NFC reader’s field or inserting it into
a contact reader is considered a user gesture that establishes user presence and provides evidence of
user interaction. This powers-up the authenticator, who then starts anNFC powered-up timer, and sets
an NFC userPresent flag to true. There is an associated NFC user presence maximum time limit of
two minutes (120 seconds).

NOTE: Authenticators with a method to collect a user gesture inside the authenticator boundary
via other methods MUST not use this method. The following text uses NFC powered-up timer for
historical reasons. These timers and limits also apply to authenticators using the ISO7816 contact
interface.

Upon the platform subsequently invoking either authenticatorMakeCredential or
authenticatorGetAssertion (e.g., with the "up" option key set to 'true'):

1. If evidence of user interaction is requested then:

1. If the platform sends a zero length pinUvAuthParam then return either
CTAP2_ERR_PIN_NOT_SET if PIN is not set or CTAP2_ERR_PIN_INVALID if PIN has been
set.

NOTE: This is done for backwards compatibility with CTAP2.0 platforms in the case
where multiple authenticators are attached to the platform. In this case the authenticator
must not consume the NEC userPresent flag or it will prevent authentication with some
CTAP2.0 platforms.

2. If the NEC userPresent flag’s value is true, then consider the user as having granted
permission, and set the NFC userPresent flag to false.

3. Otherwise, do not consider the user as having granted permission. End the operation by
returning CTAP2_ERR_UP_REQUIRED.

Upon expiry of the NFC user presence maximum time limit the NFC userPresent flag is set to false if it
is not already false.

NOTE: This notion of user presence establishment is distinct due to the physical proximity and
user action characteristics of devices employing NFC to communicate, i.e., the user placing the
authenticator in the NFC field, also known as the "NFC tap". Thus, user presence is asserted even if
the platform and authenticator then use a form of user verification that does not itself provide user
presence, such as clientPin-based user verification (clientPin does not assert user presence when
used over other transports).

For example, in an authentication scenario, the user places an NFC authenticator on an NFC reading
device having a keyboard and display, and is prompted to enter a PIN. If PIN entry is completed (e.g.,
by pressing Enter) before the NFC user presence maximum time limitexpires, the authenticator will
return an assertion with the "UP" bit in authenticator data set to true and the NEC userPresent flag is
then set to false.

If a user lays an NFC authenticator on an NFC reader and for whatever reason ignores it for greater
than the NEC user presence maximum time limitthey will need to remove the authenticator from the
NFC field and re-insert it and start over to complete any interaction requiring user presence.

All other transports
If evidence of user interaction is explicitly requested (i.e., even if apinUvAuthToken is in use) it is
interactively collected at that time in an authenticator-specific manner.
pre-flight
In order to determine whetherauthenticatorMakeCredential’s excludelL.ist or authenticatorGetAssertion’s
allowList contain credential IDs that are already present on an authenticator, a platform typically invokes
authenticatorGetAssertion with the "up" option key set to false and optionally pinUvAuthParam one or more
times. If a credential is found an assertion is returned. If a valid pinUvAuthParam was also provided, the
response will contain "up"=0 and "uv"=1 within the "flags bits" of the authenticator data structure, otherwise
the "flag bits" will contain "up"=0 and "uv"=0.

7/148

https://www.w3.org/TR/webauthn-2#user-verification
https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#authenticator-data

Protected by some form of User Verification
Either or both clientPin or built-in user verification methods are supported and enabled. l.e., in the
authenticatorGetInfo response the pinUvAuthToken option ID is present and set totrue, and either clientPin
option ID is present and set to true or uv option ID is present and set to true or both.

Some form of User Verification
This term refers to eitherclientPin or built-in user verification methods.

User action timeout
This refers to a timeout that occurs when the authenticator is waiting for direct action from the user, like a
touch. (l.e. nota command from the platform.) The duration of this timeout is chosen by the authenticator but
MUST be at least 10 seconds. Thirty seconds is a reasonable value.

Each operation in the authenticator API can be performed independently of the others, and all operations are
asynchronous. The authenticator may enforce a limit on outstanding operations to limit resource usage - in this
case, the authenticator is expected to return a busy status and the host is expected to retry the operation later.
Additionally, this protocol does not enforce in-order or reliable delivery of requests and responses; if these
properties are desired, they must be provided by the underlying transport protocol or implemented at a higher
layer by applications.

Note that this API level is conceptual and does not represent actual APIs. The actual APls will be provided by
each implementing platform.

Some commands or subcommands require the authenticator to maintain state. For example, the
authenticatorCredentialManagement subcommand enume rateRPsGetNextRP implicitly assumes that the
authenticator remembers which RP is next to return. The following (sub)commands require such state and are
called stateful commands. Each such command uses and updates state that is initialized by a corresponding
state initializing command:

1. authenticatorGetNextAssertion, with state initialized by authenticatorGetAssertion.

2. authenticatorCredentialManagement/enumerateRPsGetNextRP, with state initialized by enumerateRPsBegin.

3. authenticatorCredentialManagement/enumerateCredentialsGetNextCredential, with state initialized by
enumerateCredentialsBegin.

4. authenticatorLargeBlobs where the parameter set is given and the parameteroffset is non-zero, with state
initialized by a prior authenticatorl argeBlobs command with set given and a zero of fset.

In order to accommodate authenticators with limited capacity, the following accommodations are made:

1. The state SHOULD NOT be maintained across power cycles.

2. The authenticator MAY maintain state based on the assumption that eachstateful command is exclusively
preceded by either another instance of the same command, or by the corresponding state initializing
command, and no more than 30 seconds will elapse between such commands. If this pattern is violated then
the authenticator MAY fail any stateful command with the error CTAP2_ERR_NOT_ALLOWED. Here,
“exclusively preceded” means that no other authenticator operation occurs in between. An authenticator
MAY assume this globally, even when the transport-specific binding provides for independent streams of

platform commands (e.g. § 11.2.3 Concurrency and channels).

3. An authenticator MUST discard the state for astateful command command if the pinUvAuthToken that
authenticated the state initializing command expires since the stateful commands do not themselves always

verify a pinUvAuthToken.

The authenticator API has the following methods and data structures.

This method is invoked by the host to request generation of a new credential in the authenticator. It takes the
following input parameters, several of which correspond to those defined in theauthenticatorMakeCredential
operation section of the Web Authentication specification:

Parameter name Data type Required? Definition

Hash of the ClientData
clientDataHash (0x01) Byte String Required contextual binding specified by
host. See [WebAuthn].

This
PublicKeyCredentialRpEntity
data structure describes a
Relying Party with which the
new public key credential will be

8/148

https://www.w3.org/TR/webauthn-2#op-make-cred
https://www.w3.org/TR/webauthn-2#public-key-credential

Parameter name

Data type

Required?

associateddt ?on{ains the
) efinition
relying party identifier (rp.id of

rp (0x02)

user (0x03)

PublicKeyCredentialRpEntity

PublicKeyCredentialUserEntity

9/148

Required

Required

type text string, (optionally) a
human-friendly RP name of type
text string. The RP name is to
be used by the authenticator
when displaying the credential
to the user for selection and
usage authorization. The RP
name and URL are OPTIONAL
so that the RP can be more
privacy friendly if it chooses to.
For example, for authenticators
with a display, RP may not want
to display name for single-factor
scenarios.

NOTE: [WebAuthn-2] has
removed the optional icon
member. Authenticators
MUST NOT error if the icon
member is present, they
MAY not store this value.

This
PublicKeyCredentialUserEntity
data structure describes the
user account to which the new

public key credential will be
associated at the RP.

It contains an RP-specific user
account identifier of type byte
string, (optionally) a user name
of type text string, (optionally) a
user display name of type text
string, and (optionally) a URL of
type text string, referencing a
user icon image (of a user
avatar, for example). Note that
while an empty account
identifier is valid, it has known
interoperability hurdles in
practice and platforms are
RECOMMENDED to avoid
sending them.

The authenticator associates
the created public key credential
with the account identifier, and
MAY also associate any or all of
the user name, and user display
name. The user name and
display name are OPTIONAL for
privacy reasons for single-factor
scenarios where only user
presence is required. For
example, in certain closed
physical environments like
factory floors, user presence
only authenticators can satisfy
RP’s productivity and security
needs. In these environments,
omitting user name and display
name makes the credential
more privacy friendly. Although
this information is not available
without user verification,
devices which support user
verification but do not have it
configured, can be tricked into

https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://www.w3.org/TR/webauthn-2#public-key-credential

Parameter name

Data type

Required?

releésm.g trbse #‘.‘.ﬁ?{?&ﬁ"?“, by.
configuring the user verification.

pubKeyCredParams (0x04)

excludeList (0x05)

extensions (0x06)

options (0x07)

pinUvAuthParam (0x08)

pinUvAuthProtocol (0x09)

enterpriseAttestation (0x0A)

Array of

. i Required
PublicKeyCredentialParameters

Array of

3 . . Optional
PublicKeyCredentialDescriptor

CBOR map of extension identifier —

. L Optional
authenticator extension input values

Map of authenticator options Optional

Byte String Optional

Unsigned Integer Optional

Unsigned Integer optional

10/148

NOTE: [WebAuthn-2] has
removed the optional icon
member. Authenticators
MUST NOT error if the icon
member is present, they
MAY not store this value.

List of supported algorithms for
credential generation, as
specified in [WebAuthn]. The
array is ordered from most
preferred to least preferred and
MUST NOT include duplicate
entries.
PublicKeyCredentialParameters'
algorithm identifiers are values
that SHOULD be registered in
the IANA COSE Algorithms
registry
[IANA-COSE-ALGS-REG].

An array of
PublicKeyCredentialDescriptor
structures, as specified in
WebAuthn]. The authenticator
returns an error if the
authenticator already contains
one of the credentials
enumerated in this array. This
allows RPs to limit the creation
of multiple credentials for the
same account on a single
authenticator. If this parameter
is present, it MUST NOT be
empty.

Parameters to influence
authenticator operation, as
specified in [WebAuthn]. These
parameters might be
authenticator specific.

Parameters to influence
authenticator operation, as
specified in in the table below.

Result of calling
authenticate(pinUvAuthToken
clientDataHash)

PIN/UV protocol version chosen
by the platform

An authenticator supporting this
enterprise attestation feature is
enterprise attestation capable
and signals its support via the

ep Option ID in the
authenticatorGetInfo command

response.

If the enterpriseAttestation
parameter is absent,
attestation’s privacy
characteristics are unaffected,
regardless of whether the
enterprise attestation feature is
presently enabled.

If present with a valid value, the
usual privacy concerns around
attestation batching may not
apply to the results of this

https://w3c.github.io/webauthn/#dictdef-publickeycredentialparameters
https://w3c.github.io/webauthn/#dictdef-publickeycredentialdescriptor
https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-2#authenticator-extension-input

operation aBg ftll"lﬁt%%tform is

Parameter name Data type Required? < ;
requesting an enterprise

attestation that includes
uniquely identifying information.

A prioritized list of attestation
statement format identifiers that
the client and/or RP prefers.
Authenticators that support
attestationFormatsPreference)) multiple formats may use this
Array of String optional)]
(0x0B) list to select a format compatible
with the caller. Clients may
request omission of attestation
by including a single element
with the string value "none".

The following option keys are defined for use inauthenticatorMakeCredential’s options parameter. All option keys
have boolean values.

NOTE: For brevity, individual option keys are often referred to as simply an "bption", below.

Option Default

Definition
Key value

rk false Specifies whether this credential is to be discoverable or not.

user presence: Instructs the authenticator to requireuser consent to complete the
operation. Platforms MAY send the "up" option key to CTAP2.1 authenticators, and
its value MUST be true if present. The value false will cause a
CTAP2_ERR_INVALID_OPTION response regardless of authenticator version.

up true

user verification: If true, instructs the authenticator to require a user-verifying
gesture in order to complete the request. Examples of such gestures are fingerprint
scan or a PIN.

NOTE: Use of this "uv" option key is deprecated in CTAP2.1 and later. Instead,
platforms SHOULD create a pinUvAuthParam by obtaining pinUvAuthToken via
getPinUvAuthTokenUsingUvWithPermissions or
getPinUvAuthTokenUsingPinWithPermissions, as appropriate.

uv false

Platforms MUST NOT include the "uv" option key if the authenticator does not
support built-in user verification.

Platforms MUST NOT include both the "uv" option key and the pinUvAuthParam
parameter in the same request.

NOTE: For backwards compatibility, platforms must be aware that if a FIDO_2_0 (aka CTAP2.0)
authenticator is protected by some form of user verification it always requires some form of user verification
for authenticatorMakeCredential operations. If a platform attempts to create anon-discoverable credential on
a CTAP2.0 authenticator without including the "uv" option key or the pinUvAuthToken parameter that
authenticator will return an error. In contrast, a FIDO_2_1 (aka CTAP2.1) or later authenticator with the
makeCredUvNotRqgd option ID (set to true) in the authenticatorGetInfo response structure, will allow the
creation of non-discoverable credentials without requiring some form of user verification

NOTE: For backwards compatibility, platforms must be aware that FIDO_2_0 (aka CTAP2.0) authenticators
will return a CTAP2_ERR_INVALID_OPTION response if "up" is present. Platforms SHOULD NOT send "up"
to a CTAP2.0 authenticator.

NOTE: The [WebAuthn] specification defines an abstract authenticatorMakeCredential operation, which
corresponds to the operation described in this section. The parameters in the abstract [WebAuthn
authenticatorMakeCredential operation map to the above parameters as follows:

WebAuthn
authenticatorMakeCredential CTAP authenticatorMakeCredential operation
operation
hash clientDataHash
rpEntity P
userEntity user
requireResidentKey options.rk

11/148

https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier

WebAuthn options.up
authenticatorMakeCredential CTAP authenticatorMakeCredential operation

operlation NOTE: [WebAuthn-2] defines requireUserPresence as a
constant Boolean value true. options.up is required to be absent for —
backwards comparability with CTAP2.0.

requireUserVerification options.uv or pinUvAuthParam

credTypesAndPubKeyAlgs pubKeyCredParams

excludeCredentialDescriptorList excludeList

attestationFormats attestationFormatsPreference

extensions extensions

NOTE: Icon values used with authenticators can employ[RFC2397] "data" URLs so that the image data is

passed by value, rather than by reference. This can enable authenticators with a display but no Internet
connection to display icons.

NOTE: Text strings are UTF-8 encoded (CBOR major type 3).

6.1.1. Platform Actions for authenticatorMakeCredential (non-normative)

To invoke authenticatorMakeCredential, the platform performs the following steps, in general. Here, we are
assuming that the platform has already queried the authenticator for its particularsusing the authenticatorGetInfo
command, and has determined that the authenticator’s present characteristics are likely sufficient to be able to
satisfy the request(s) the platform will send it. In other words, this is only a brief sketch of plausible platform
behavior.

For example, if the authenticator is notprotected by some form of user verificationand user verification is
required for the present usage scenario, e.g., the Relying Party set
options.authenticatorSelection.userVerification to "required" in the WebAuthn API, then the
platform recovers in some fashion out of scope of these actions.

1. The platform marshals the necessary and appropriate input parameters given the present usage scenario,
and additionally:

1. If the authenticator is protected by some form of user verification or the Relying Party prefers enforcing

user verification (e.g., by setting options.authenticatorSelection.userVerification to
"required", or "preferred" in the WebAuthn API):

1. If the platform has already created apinUvAuthParam parameter during this overall scenario, it
uses that along with the other marshalled input parameters to invoke the authenticator operation:
either authenticatorMakeCredential or possibly authenticatorGetAssertion. For example, in
some situations (e.g., with CTAP2 authenticators) when an "exclude list" was provided by the
Relying Party, the platform may first invoke theauthenticatorGetAssertion operation multiple
times to "pre-flight" the "exclude list" (i.e., to determine if any of the exclude list's credential IDs are
already present on the authenticator), prior to invoking authenticatorMakeCredential to create a
new credential on this authenticator.

2. Otherwise, the platform examines various option IDs in the authenticatorGetlnfo response to
determine its course of action:

1. If the uv option ID is present and set totrue:

1. If the pinUvAuthToken option ID is present and true then plan to use
getPinUvAuthTokenUsingUvWithPermissions to obtain a pinUvAuthToken, and let it be the
selected operation. Go to Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is set to false or absent) use the 'uv" option
key when invoking the authenticatorMakeCredential operation and terminate these
steps. (Note that if the authenticator returns a 0x36 error code
(CTAP2_ERR_PUAT_REQUIRED (aka CTAP2_ERR_PIN_REQUIRED in CTAP2.0)) then
"fall back" and go to Step 1.1.2.2.2.1)

2. Else (implying the uv option ID is present and set to false or absent):

1. If the pinUvAuthToken option ID is present and true:

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinUvAuthTokenUsingPinWithPermissions to obtain a pinUvAuthToken, and let it
be the selected operation. Go to Step 1.1.2.3.

2. 'Else (implying the pinUvAuthToken option ID is absent):

12/148

https://w3c.github.io/webauthn/#dom-publickeycredentialcreationoptions-authenticatorselection
https://w3c.github.io/webauthn/#dom-authenticatorselectioncriteria-userverification
https://w3c.github.io/webauthn/#dom-publickeycredentialcreationoptions-authenticatorselection
https://w3c.github.io/webauthn/#dom-authenticatorselectioncriteria-userverification

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinToken to obtain a pinUvAuthToken, and let it be the selected operation.

3. 'In preparation for obtaining pinUvAuthToken, the platform:
1. Obtains a shared secret.

2. Sets the pinUvAuthProtocol parameter to the value as selected whenit obtained the
shared secret.

4. Then the platform obtains a pinUvAuthToken from the authenticator, with themc (and likely
also with the ga) permission (see "pre-flight", mentioned above), using the selected operation.

5. If pinUvAuthToken was obtained successfully:

1. The platform creates the pinUvAuthParam parameter by calling
authenticate(pinUvAuthToken, clientDataHash), and goes to Step 1.1.1.

6. Else (implying pinUvAuthToken was not obtained successfully):

1. If the error code when attempting to obtain thepinUvAuthToken is one of the following:
CTAP2_ERR_NOT_ALLOWED, CTAP2_ERR_UV_BLOCKED or
CTAP2_ERR_UNAUTHORIZED_PERMISSION, and the selected operation is
getPinUvAuthTokenUsingUvWithPermissions:

1. The platform falls back to PIN authentication, and goes to Step 1.1.2.2.

2. Else:

1. Fails this overall scenario

2. Otherwise, implying the authenticator is not presentlyprotected by some form of user verification or the
Relying Party wants to create anon-discoverable credential and not require user verification (e.g., by
setting options.authenticatorSelection.userVerification to "discouraged" in the WebAuthn
API), the platform invokes the authenticatorMakeCredential operation using the marshalledinput
parameters along with the 'uv" option key set to false and terminate these steps.

6.1.2. authenticatorMakeCredential Algorithm
Upon receipt of anauthenticatorMakeCredential request, the authenticator performs the following procedure:

1. If authenticator supports either pinUvAuthToken or clientPin features and the platform sends a zero length
pinUvAuthParam:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED light).

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. If evidence of user interaction is provided in this step then return either CTAP2_ERR_PIN_NOT_SET if
PIN is not set or CTAP2_ERR_PIN_INVALID if PIN has been set.

NOTE: This is done for backwards compatibility with CTAP2.0 platforms in the case where multiple
authenticators are attached to the platform and the platform wants to enforce pinUvAuthToken feature
semantics, but the user has to select which authenticator to get the pinUvAuthToken from. CTAP2.1 and
later platforms SHOULD use § 6.9 authenticatorSelection (0x0B).

2. If the pinUvAuthParam parameter is present:
1. If the pinUvAuthProtocol parameter’s value is not supported, return
CTAP1_ERR_INVALID_PARAMETER error.
2. If the pinUvAuthProtocol parameter is absent, return CTAP2_ERR_MISSING_PARAMETER error.
3. Validate pubKeyCredParams with the following steps:

1. For each element of pubKeyCredParams:

1. If the element is missing required members, including members that are mandatory only for the
specific type, then return an error, for example CTAP2_ERR_INVALID_CBOR.

2. If the values of any known members have the wrong type then return an error, for example
CTAP2_ERR_CBOR_UNEXPECTED_TYPE.

3. If the element specifies an algorithm that is supported by the authenticator, and no algorithm has
yet been chosen by this loop, then let the algorithm specified by the current element be the chosen
algorithm.

2. If the loop completes and no algorithm was chosen then return
CTAP2_ERR_UNSUPPORTED_ALGORITHM.

NOTE: This loop chooses the first occurrence of an algorithm identifier supported by this authenticator
but always iterates over every element of pubKeyCredParams to validate them.

4. 'Create a new authenticatorMakeCredential response structure and initialize both its "uv" bit and "up" bit as
false.

13/148

https://w3c.github.io/webauthn/#dom-publickeycredentialcreationoptions-authenticatorselection
https://w3c.github.io/webauthn/#dom-authenticatorselectioncriteria-userverification
https://w3c.github.io/webauthn/#dom-publickeycredentialparameters-type

5. 'If the options parameter is present, process all option keys and values present in the parameter. Treat any
option keys that are not understood as absent.

NOTE: As this specification defines normative behaviours for the 'tk", "up", and "uv" option keys, they
MUST be understood by all authenticators.

1. If the "uv" option is absent, let the "uv" option be treated as being present with the valuefalse. (This is
the default)

2. If the pinUvAuthParam is present, let the "uv" option be treated as being present with the valuefalse.

NOTE: pinUvAuthParam and the "uv" option are processed as mutually exclusive with
pinUvAuthParam taking precedence.

3. If the "uv" option is true then:

1. If the authenticator does not support abuilt-in user verification method end the operation by
returning CTAP2_ERR_INVALID_OPTION.

2. If the built-in user verification method has not yet been enabled, end the operation by returning
CTAP2_ERR_INVALID_OPTION.

4. If the "rk" option is present then:

1. If the rk option ID is not present in authenticatorGetinfo response, end the operation by returning
CTAP2_ERR_UNSUPPORTED_OPTION.

5. Else: (the "rk" option is absent)
1. Let the "rk" option be treated as being present with the valuefalse. (This is the default.)
6. If the "up" option is present then:

1. If the "up" option is false, end the operation by returning CTAP2_ERR_INVALID_OPTION.

7. If the "up" option is absent, let the "up" option be treated as being present with the valuetrue (i.e., this
is the default for both CTAP2.0 and CTAP2.1 authenticators).

6. If the alwaysUv option ID is present and true then:

1. Let the makeCredUvNotRqd option ID be treated as false.

2. If the authenticator is not protected by some form of user verification

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or
false (clientPin is supported for the mc permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

3. If the pinUvAuthParam is not present, and the uv option ID is true, let the "uv" option be treated as
being present with the value true.

NOTE: The above step 6.3 is for backwards compatibility with CTAP2.0 platforms who are not
aware of the Always UV feature.

4. If the pinUvAuthParam is not present, and the "uv" option is false or absent:

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or
false (clientPin is supported for the mc permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

7. If the makeCredUvNotRqd option ID is present and set to true in the authenticatorGetInfo response:

1. If the following statements are all true:

NOTE: This step returns an error if the platform tries to create adiscoverable credential without
performing some form of user verification

1. The authenticator is protected by some form of user verification
2. The "uv" option is set to false.

3. The pinUvAuthParam parameter is not present.

4. The "rk" option is present and set to true.

Then:

14/148

2.

. If ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent or

false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.
Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

8. Else: (the makeCredUvNotRqd option ID in authenticatorGetlnfo’s response is present with the value false
or is absent):

9.

1. If the following statements are all true:

NOTE: This step returns an error if the platform tries to create a credential without performing
some form of user verification when the makeCredUvNotRqd option ID in authenticatorGetInfo’s
response is present with the value false or is absent.

1.
2.
3.

The authenticator is protected by some form of user verification

The "uv" option is set to false.
The pinUvAuthParam parameter is not present.

Then:

1.

2.

If the ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent or
false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.

Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

If the enterpriseAttestation parameter is present:
1. If the authenticator is not enterprise attestation capable, or the authenticator isenterprise attestation

capable but enterprise attestation is disabled, then end the operation by returning
CTAP1_ERR_INVALID_PARAMETER.

2. Else: (the authenticator is enterprise attestation capable and enterprise attestation is enabled; see also
§ 7.1.2 Platform Actions):

1.

2.

If the enterpriseAttestation parameter’s value is not 1 or 2, then end the operation by returning
CTAP2_ERR_INVALID_OPTION.

Consider the following cases in order, until one matches, to learn whether the authenticator may

return an enterprise attestation. (These substeps define when an authenticator is permitted to return
an enterprise attestation. Authenticators MUST NOT do so in any other cases.)

1. If the authenticator supports only vendor-facilitated enterprise attestation and the request’s
rp.id matches an entry on the authenticator’s pre-configured RP ID list, then the authenticator

MAY return an enterprise attestation.

NOTE: An authenticator that only supportsvendor-facilitated enterprise attestation is
obliged to treat enterpriseAttestation parameter values 1 and 2 equivalently, otherwise it will
yield unexpected results if used with an enterprise-managed platform (which will be setting
enterpriseAttestation to 2).

2. If the authenticator supports vendor-facilitated enterprise attestation at all, the
enterpriseAttestation parameter’s value is 1, and the request’srp.id matches an entry on the
authenticator’s pre-configured RP ID list, then the authenticator MAY return anenterprise
attestation.

3. If the authenticator supports platform-managed enterprise attestation (whether or notvendor-
facilitated enterprise attestation is also supported), and the enterpriseAttestation parameter’s
value is 2, then the platform MUST have performed the necessary vetting of the request’s rp.id
(e.g., via local policy lookup), and the authenticator MAY return an enterprise attestation
without checking whether the request’s rp.id matches an entry on the authenticator’'spre-

configured RP ID list (if any).

. If, by considering the substeps of the previous step, the authenticator did not conclude that it may

return an enterprise attestation then let the enterpriseAttestation parameter be treated as absent,
terminate these steps, and go to Step 10. A non-enterprise attestation will be returned with the
credential.

. Apply any additional constraints that may prohibit returning anenterprise attestation. An

authenticator has unlimited discretion to apply additional constraints which can further limit the
contexts in which enterprise attestation is returned. They may be based on other parameters from
the request or, indeed, on any other factor the authenticator wishes. It is the job of enterprise
Relying Party to know the authenticators that it has deployed and thus to arrange the request so as
to get its desired result.

. If, by considering any additional constraints in the previous step, the authenticator concluded that it

did not wish to return an enterprise attestation then let the enterpriseAttestation parameter be
treated as absent, terminate these steps, and go to Step 10. A non-enterprise attestation will be
returned with the credential.

. If the authenticator has a display, then the authenticator SHOULD display an explicit warning to the

user, including the rp.id, notifying the user that they are being uniquely identified to thisRelying
Party.

15/148

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

7. Let epAtt in the authenticatorMakeCredential response structure be set to true and return an
enterprise attestation.

10. If the following statements are all true:

NOTE: This step allows the authenticator to create anon-discoverable credential without requiring
some form of user verification under the below specific criteria.

1. "rk" and "uv" options are both set to false or omitted.

2. the makeCredUvNotRqd option ID in authenticatorGetlnfo’s response is present with the value true.

3. the pinUvAuthParam parameter is not present.

Then go to Step 12.
NOTE: Step 4 has already ensured that the "uv" bit isfalse in the response.

11. 1If the authenticator is protected by some form of user verification then:

1. If pinUvAuthParam parameter is present (implying the "uv" option is false (see Step 5)):

1. Call verify(pinUvAuthToken, clientDataHash, pinUvAuthParam).

1. If the verification returnserror, then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID error.

2. Verify that the pinUvAuthToken has the mc permission, if not, then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID.

3. If the pinUvAuthToken has a permissions RP ID associated:

1. If the permissions RP ID does not match the rp.id in this request, then end the operation by
returning CTAP2_ERR_PIN_AUTH_INVALID.

4. Let userVerifiedFlagValue be the result of callinggetUserVerifiedFlagValue().

5. If userVerifiedFlagValue is false then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID.

6. If userVerifiedFlagValue is true then set the "uv" bit totrue in the response.

7. If the pinUvAuthToken does not have a permissions RP ID associated:

1. Associate the request’s rp.id parameter value with the pinUvAuthToken as its permissions RP
ID.
8. Go toStep 12.

2. If the "uv" option is present and set to true (implying the pinUvAuthParam parameter is not present,
and that the authenticator supports an enabled built-in user verification method, see Step 5):

NOTE: This step provides backwards compatibility for CTAP2.0 platforms.

1. LetinternalRetry be true.

2. Let uvState be the result of callingperformBuiltinUv(internalRetry)

3. IfuvStateiserror:
1. If the error reason is auser action timeout, then return
CTAP2_ERR_USER_ACTION_TIMEOUT.

2. If the ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent
or false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.

3. If the uvRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED.
4. Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

4. If uvState is success:

1. Set the "uv" bit totrue in the response.

NOTE: If Step 11 was skipped, then the authenticator is NOT protected by some form of user
verification, and Step 4 has already ensured that the "uv" bit is false in the response.

12. If the excludeList parameter is present and contains a credential ID created by this authenticator, that is
bound to the specified rp.id:
1. If the credential’s credProtect value is not userVerificationRequired, then:

1. Let userPresentFlagValue be false.

2. If the pinUvAuthParam parameter is present then let userPresentFlagValue be the result of calling
etUserPresentFlagValue().

3. Else, if evidence of user interaction was provided as part of Step 11 let userPresentFlagValue be

true.

4. If userPresentFlagValue is false, then:

16/148

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

1. Wait for user presence.

2. Regardless of whether user presence is obtained or the authenticator times out, terminate this
procedure and return CTAP2_ERR_CREDENTIAL_EXCLUDED.

5. Else, (implying userPresentFlagValue is true) terminate this procedure and return
CTAP2_ERR_CREDENTIAL_EXCLUDED.

NOTE: A user presence test is required for CTAP2 authenticators, before the RP is told that
the authenticator is already registered, to behave similarly to CTAP1/U2F authenticators.

2. Else (implying the credential’s credProtect value is userVerificationRequired):
1. If the "uv" bit is true in the response:

1. Let userPresentFlagValue be false.

2. If the pinUvAuthParam parameter is present then let userPresentFlagValue be the result of
calling getUserPresentFlagValue().

3. Else, if evidence of user interaction was provided as part of Step 11 let userPresentFlagValue
be true.

4. If userPresentFlagValue is false, then:

1. Wait for user presence.

2. Regardless of whether user presence is obtained or the authenticator times out, terminate
this procedure and return CTAP2_ERR_CREDENTIAL_EXCLUDED.

5. Else, (implying userPresentFlagValue is true) terminate this procedure and return
CTAP2_ERR_CREDENTIAL_EXCLUDED.

2. Else (implying user verification was not collected inStep 11), remove the credential from the
excludeList and continue parsing the rest of the list.

13. If evidence of user interaction was provided as part of Step 11 (i.e., by invoking performBuiltinUv()):

NOTE: This step’s criteria implies that the 'uv" option is present and set totrue and the
pinUvAuthParam parameter is not present. l.e., the pinUvAuthToken feature is not in use.

1. Set the "up" bit totrue in the response.
2. GotoStep 15
14. If the "up" option is set to true:

1. If the pinUvAuthParam parameter is present then:

1. Let userPresentFlagValue be the result of callinggetUserPresentFlagValue().

2. If userPresentFlagValue is false:

NOTE: An authenticator may be configured to collect user presence whenever the Up" option
is true by setting the defaultuser present time limitto zero.

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the items contained within the user and rp
parameter structures to the user, and request permission to create a credential.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

2. Else (implying the pinUvAuthParam parameter is not present):
1. If the "up" bit is false in the response :

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the items contained within the user and rp
parameter structures to the user, and request permission to create a credential.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. Set the "up" bit totrue in the response.

4. Call clearUserPresentFlag(), clearUserVerifiedFlag(), and
clearPinUvAuthTokenPermissionsExceptLbw().

NOTE: This consumes both the "user present state", sometimes referred to as the "cached UP",
and the "user verified state", sometimes referred to as "cached UV". These functions are no-ops if
there is not an in-use pinUvAuthToken.

15. If the extensions parameter is present:
1. Process any extensions that this authenticator supports, ignoring any that it does not support.

2. Authenticator extension outputs generated by the authenticator extension processing are returned in the

17/148

https://www.w3.org/TR/webauthn-2#authenticator-extension-output

authenticator data. The set of keys in theauthenticator extension outputs map MUST be equal to, or a
subset of, the keys of the authenticator extension inputs map.

NOTE: Some extensions may produce different output depending on the state of the "uv" bit and/or
"up" bit in the response.

16. Generate a new credential key pair for the algorithm chosen in step 3.

17. "If the "rk" option is set to true:
1. The authenticator MUST create adiscoverable credential.

2. If a credential for the samerp.id and account ID already exists on the authenticator:
1. If the existing credential contains alargeBlobKey, an authenticator MAY erase any associated

large-blob data. Platforms MUST NOT assume that authenticators will do this. Platforms can later
garbage collect any orphaned large-blobs.

2. Overwrite that credential.
3. Store the user parameter along with the newly-created key pair.

4. If authenticator does not have enough internal storage to persist the new credential, return
CTAP2_ERR_KEY_STORE_FULL.

5. Generate a new 128-bit random value forcredential store state.

18. Otherwise, if the "rk" option is false: the authenticator MUST create anon-discoverable credential.

NOTE: This step is a change from CTAP2.0 where if the k" option is false the authenticator could
optionally create a discoverable credential.

19. If the authenticator doesn’t support multiple attestation formats or theattestationFormatsPreference is
absent or its value is the empty list, generate an attestation statement for the newly-created credential using
clientDataHash, taking into account the value of the enterpriseAttestation parameter, if present, as described
above in Step 9.

If attestationFormatsPreference is present and contains only one entry with the value"none", omit
attestation from the output.

If the authenticator supports multiple attestation formats and theattestationFormatsPreference parameter is
present, the authenticator MUST choose a supported format whose attestation statement format identifier
appears with the lowest index in the supplied array. If no supported format identifier appears on the list, the
authenticator may select a format by any other means.

On success, the authenticator returns the followingauthenticatorMakeCredential response structure which
contains an attestation object plus additional information.

Member name Data type Required? Definition
The attestation statement format
fmt (0x01) String Required ; "
identifier.
authData (0x02) Byte String Required The authenticator data object.
CBOR Map, the The attestation statement, as specified
structure of in [WebAuthn], if one is provided.
which depends
attStmt (0x03) on the Optional
attestation
statement

format identifier

Indicates whether an enterprise
attestation was returned for this
credential. If epAtt is absent or present
and set to false, then an enterprise
attestation was not returned. IfepAtt is
present and set to true, then an
enterprise attestation was returned.

epAtt (0x04) Boolean Optional

Contains the largeBlobKey for the
largeBlobKey (0x05) Byte string Optional credential, if requested with the

largeBlobKey extension.

A map, keyed by extension identifiers,

CBOR map of 3) 5

osterision to unsigned outputs of extensions, if
.) . " any. Authenticators SHOULD omit this

unsignedExtensionOutputs identifier — : - ; A
(0x06) unsianed Optional field if no processed extensions define
extengsion unsigned outputs. Clients MUST treat
an empty map the same as an omitted

output values

18/148

https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#authenticator-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-extension-input
https://www.w3.org/TR/webauthn-2#credential-key-pair
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier
https://www.w3.org/TR/webauthn-2#attestation-object
https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier
https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-3#unsigned-extension-output

Member name Data type Required? field. Definition

6.1.3. Discoverable credentials

A credential may, or may not, be discoverable. A discoverable credential [WebAuthn] has the property that, in
response to an authenticatorGetAssertion request where the allowList parameter is omitted, the authenticator
is able to discover the appropriate public key credential source given only an RP ID, possibly with user
assistance.

Each credential has acredential protection policy. For backwards compatibility with CTAP2.0 platforms, the
default credential creation policy is userVerificationOptional (0x01). If a credential was created withcredential
protection values of userVerificationOptionalWithCredentialIDList (0x02) or userVerificationRequired (0x03) it will
not be discoverable unless the platform invokes authenticatorGetAssertion with a valid pinUvAuthParam or the
"uv" option key with a value of true.

NOTE: Regarding user assistance, for example, the authenticator may provide the user a pick-list of
credentials scoped to the RP ID.

In contrast, server-side credentials (also known as non-discoverable credentials) have the property that their
credential IDs MUST be supplied by the Relying Party in authenticatorGetAssertion’s allowList parameter in
order for the authenticator to discover and employ them.

Note that this definition does not speak to whether a credential isstatefully maintained or not.

An authenticator may choose to keep state, such as theprivate key, whether a credential is discoverable or not
(see also public key credential source). A discoverable credential, however, always involves maintaining some

state because it must be discoverable using only the RP_ID and the user id (also known as the user handle)
must always be returned.

All state that is kept for a discoverable credential MUST be storedclient side—i.e., such that the authenticator
working together with the client platform, if necessary, can satisfy requestedauthenticator operations.

An authenticator specifies whether it is capable of creating discoverable credentials via therk option ID in the
authenticatorGetInfo response. A discoverable credential will be created if, and only if, therk option key of the
options parameter of an authenticatorMakeCredential request is true.

If the authenticatorCredentialManagement command is supported by an authenticator then it can be used to
manage discoverable credentials.

If a discoverable credential’'s state is deleted, e.g., by the authenticatorCredentialManagement command or
overwritten by authenticatorMakeCredential, the associated credentiallD MUST no longer yield apublic key
credential source, e.g., when processed by the authenticator’s equivalent of theLookup Credential Source by
Credential ID Algorithm including cases where the credential source is encoded within the credentiallD. This
means, for example, that any such deleted credentials whose credentiallDs may have been stored server-side
and subsequently are provided in an allowList to authenticatorGetAssertion, will no longer be "located" in the
latter’s Step 7 when the allowList is processed.

NOTE: Historically discoverable credentials have been called "resident keys", and this terminology can still
be found in aspects of the protocol. (For example the name of the rk option key comes from the term
“resident key”.) However, the word “resident” conflated the concepts of being discoverable and being
statefully maintained by the authenticator, when it's only the former that is externally observable and thus
important.

This method is used by a host to request cryptographic proof of user authentication as well as user consent to a
given transaction, using a previously generated credential that is bound to the authenticator and relying party
identifier. It takes the followinginput parameters, several of which correspond to those defined in the
authenticatorGetAssertion operation section of the Web Authentication specification:

Parameter name Data type Required? Definition

relying party identifier. See

rpld (0x01) String Required | \ebAuthn].

Hash of the serialized client
Byte String Required data collected by the host.
See [WebAuthn].

clientDataHash
(0x02)

An array of
PublicKeyCredentialDescriptor
structures, each denoting a
credential, as specified in
WebAuthn]. A platform MUST
Array of NOT send an empty allowList
19/148

https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#public-key-credential-source
https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#server-side-credential
https://www.w3.org/TR/webauthn-2#public-key-credential-source-privatekey
https://www.w3.org/TR/webauthn-2#public-key-credential-source
https://www.w3.org/TR/webauthn-2#rp-id
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://www.w3.org/TR/webauthn-2#user-handle
https://www.w3.org/TR/webauthn-2#client-side
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#public-key-credential-source
https://www.w3.org/TR/webauthn-2#sctn-op-lookup-credsource-by-credid
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#op-get-assertion
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#collectedclientdata-hash-of-the-serialized-client-data

g&ﬂ-gfg,f%’é%% PublicKeyCrgggnialDescriptor Rggﬂ?rréa o | —ifit would sty it MUST
be omitted If this parameteris
present the authenticator
MUST only generate an
assertion using one of the
denoted credentials.

Parameters to influence
CBOR map of extension identifier — Optional authenticator operation. These
authenticator extension input values parameters might be

authenticator specific.

extensions (0x04)

Parameters to influence
options (0x05) Map of authenticator options Optional authenticator operation, as
specified in the table below.

Result of calling

inUvAuthParam
P Byte String Optional authenticate(pinUvAuthToken

0x06
(0xQ8) clientDataHash)
pinUvAuthProtocol s . PIN/UV protocol version
Unsigned Integer Optional
(0x07) g g P selected by platform.

The following option keys are defined for use inauthenticatorGetAssertion’s options parameter. All option keys
have boolean values.

NOTE: For brevity, individual option keys are often referred to as simply an 'bption", below.

Option Default

Definition
Key value

user presence: Instructs the authenticator to require user consent to complete the

up true .
operation.

user verification: If true, instructs the authenticator to require a user-verifying
gesture in order to complete the request. Examples of such gestures are fingerprint
scan or a PIN.

NOTE: Use of this "uv" option key is deprecated in CTAP2.1 and later. Instead,
platforms SHOULD create a pinUvAuthParam by obtaining pinUvAuthToken via
getPinUvAuthTokenUsingUvWithPermissions or
getPinUvAuthTokenUsingPinWithPermissions, as appropriate.

uv false

Platforms MUST NOT include the "uv" option parameter if the authenticator does
not support built-in user verification.

Platforms MUST NOT include both "uv" and pinUvAuthParam parameters in same
request.

NOTE: Platforms MUST NOT send the "rk" option key.

NOTE: For backwards compatibility with CTAP2.0 platforms, the authenticator MAY perform abuilt-in user
verification method even if not requested to enhance its security offering. Thus, platforms SHOULD be
prepared to receive a CTAP2_ERR_PUAT_REQUIRED error even if the platform did not include the "uv"
option key, or did include it and set it tofalse. CTAP2.1 and later authenticators SHOULD use the
authenticator always requires some form of user verificationfeature to signal this behaviour.

NOTE: The [WebAuthn] specification defines an abstract authenticatorGetAssertion operation, which
corresponds to the operation described in this section. The parameters in the abstract [WebAuthn
authenticatorGetAssertion operation map to the above parameters as follows:

WebAuthn
authenticatorGetAssertion CTAP authenticatorGetAssertion operation
operation
hash clientDataHash
rpld rpld

allowCredentialDescriptorList allowList

options.up

20/148

https://w3c.github.io/webauthn/#dictdef-publickeycredentialdescriptor
https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-2#authenticator-extension-input

[WebAuthn NOTE: [WebAuthn-2] defines requireUserPresence as a constant

authenticatorGetAssertion Boolean value true. options.up may be set to false in CTAP "pre-
operation flight" commands but is always set totrue for any

authenticatorGetAssertion request that is intended to generate an —

requireUserPresence assertion that will be returned to an Relying Party via the WebAuthn

API. This is because such an assertion must have the "user present”
bit of the "flags bits" of the authenticator data set to true to be
considered valid by clients of the WebAuthn API.

requireUserVerification options.uv or pinUvAuthParam

extensions extensions

6.2.1. Platform Actions for authenticatorGetAssertion (non-normative)

To invoke authenticatorGetAssertion, the platform performs the following steps, in general. Here, we are
assuming that the platform has already queried the authenticator for its particularsusing the authenticatorGetInfo
command, and has determined that the authenticator’s present characteristics are likely sufficient to be able to
satisfy the request(s) the platform will send it. In other words, this is only a brief sketch of plausible platform
behavior.

For example, if the authenticator is notprotected by some form of user verificationand user verification is
required for the present usage scenario, e.g., the Relying Party set options.userVerification to "required”
in the WebAuthn API, then the platform recovers in some fashion out of scope of these actions.

1. The platform marshals the necessary and appropriate input parameters given the present usage scenario,
and additionally:

1.

If the authenticator is protected by some form of user verificationor the Relying Party prefers enforcing

user verification (e.g., by setting options.userVerification to "required", or "preferred" in the
WebAuthn API):

1. If the platform has already created apinUvAuthParam parameter during this overall scenario, it
uses that along with the other marshalled input parameters to invoke the
authenticatorGetAssertion. Or, in some situations (e.g., with CTAP2 authenticators) the platform
may invoke the authenticatorGetAssertion operation multiple times using thepinUvAuthParam
parameter to "pre-flight" an "allow list" (i.e., to determine if any of the allow list's credential IDs are
already present on the authenticator), prior to invoking authenticatorGetAssertion to have this
authenticator issue an assertion using the selected credential.

2. Otherwise, the platform examines various option IDs in the authenticatorGetInfo response to
determine its course of action:

1. If the uv option ID is present and set totrue:

1. If the pinUvAuthToken option ID is present and true then plan to use
getPinUvAuthTokenUsingUvWithPermissions to obtain a pinUvAuthToken, and let it be the
selected operation. Go toStep 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is set to false or absent) use the 'uv" option
key when invoking the authenticatorGetAssertion operation and terminate these steps.
(Note that if the authenticator returns a 0x36 error code (CTAP2_ERR_PUAT_REQUIRED
(aka CTAP2_ERR_PIN_REQUIRED in CTAP2.0)) then "fall back" and go to Step
1.1.2.2.2.1)

2. Else (implying the uv option ID is present and set to false or absent):

1. If the pinUvAuthToken option ID is present and true:

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinUvAuthTokenUsingPinWithPermissions to obtain a pinUvAuthToken, and let it
be the selected operation. Go to Step 1.1.2.3.

2. ‘Else (implying the pinUvAuthToken option ID is absent):

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinToken to obtain a pinUvAuthToken, and let it be the selected operation.
3. fIn preparation for obtaining pinUvAuthToken, the platform:
1. Obtains a shared secret.
2. Sets the pinUvAuthProtocol parameter to the value as selected whenit obtained the

shared secret.

4. Then the platform obtains a pinUvAuthToken from the authenticator, with thega permission
using the selected operation.

21/148

https://www.w3.org/TR/webauthn-2#authenticator-data
https://w3c.github.io/webauthn/#dom-publickeycredentialrequestoptions-userverification
https://w3c.github.io/webauthn/#dom-publickeycredentialrequestoptions-userverification

5. If pinUvAuthToken was obtained successfully:

1. The platform creates the pinUvAuthParam parameter by calling
authenticate(pinUvAuthToken, clientDataHash), and goes to Step 1.1.1 to use it.

6. Else (implying pinUvAuthToken was not obtained successfully):

1. If the error code when attempting to obtain thepinUvAuthToken is one of the following:
CTAP2_ERR_NOT_ALLOWED, CTAP2_ERR_UV_BLOCKED or
CTAP2_ERR_UNAUTHORIZED_PERMISSION, and the selected operation is
getPinUvAuthTokenUsingUvWithPermissions:

1. The platform falls back to PIN authentication, and goes to Step 1.1.2.2.1.
2. Else:

1. Fails this overall scenario

2. Otherwise, implying the authenticator is not presentlyprotected by some form of user verification or the

Relying Party does not wish to require user verification (e.g., by settingoptions.userVerification
to "discouraged" in the WebAuthn API), the platform invokes the authenticatorGetAssertion
operation using the marshalled input parameters along with an absent 'uv" option key.

6.2.2. authenticatorGetAssertion Algorithm
Upon receipt of aauthenticatorGetAssertion request, the authenticator performs the following procedure:

1. If authenticator supports either pinUvAuthToken or clientPin features and the platform sends a zero length
pinUvAuthParam:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED light).

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. If evidence of user interaction is provided in this step then return either CTAP2_ERR_PIN_NOT_SET if
PIN is not set or CTAP2_ERR_PIN_INVALID if PIN has been set.

NOTE: This is done for backwards compatibility with CTAP2.0 platforms in the case where multiple
authenticators are attached to the platform and the platform wants to enforce pinUvAuthToken
semantics, but the user has to select which authenticator to get the pinUvAuthToken from. CTAP2.1 and
later platforms SHOULD use § 6.9 authenticatorSelection (0x0B).

2. If the pinUvAuthParam parameter is present:
1. If the pinUvAuthProtocol parameter’s value is not supported, return
CTAP1_ERR_INVALID_PARAMETER error.
2. If the pinUvAuthProtocol parameter is absent, return CTAP2_ERR_MISSING_PARAMETER error.

3. Create a new authenticatorGetAssertion response structure and initialize both its "uv" bit and "up” bit as
false.

4. 'If the options parameter is present, process all option keys and values present in the parameter. Treat any
option keys that are not understood as absent.

NOTE: As this specification defines normative behaviours for the 'tk", "up"”, and "uv" option keys, they
MUST be understood by all authenticators.

1. If the "uv" option is absent, let the "uv" option be treated as being present with the valuefatse. (This is
the default)

2. If the pinUvAuthParam is present, let the "uv" option be treated as being present with the valuefalse.

NOTE: pinUvAuthParam and the "uv" option are processed as mutually exclusive with
pinUvAuthParam taking precedence.

3. If the "uv" option is present and true then:

1. If the authenticator does not support abuilt-in user verification method end the operation by
returning CTAP2_ERR_INVALID_OPTION.

2. If the built-in user verification method has not yet been enabled, end the operation by returning
CTAP2_ERR_INVALID_OPTION.

4. If the "rk" option is present then:

1. Return CTAP2_ERR_UNSUPPORTED_OPTION.
5. If the "up" option is not present then:

1. Let the "up" option be treated as being present with the valuetrue. (This is the default)
5. If the alwaysUv option ID is present and true and the "up" option is present and true then:

22/148

https://w3c.github.io/webauthn/#dom-publickeycredentialrequestoptions-userverification

1. If the authenticator is not protected by some form of user verificationt

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or
false (clientPin is supported for the ga permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.
2. Else (clientPin is not supported):
1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.
2. If the pinUvAuthParam is present then go to Step 6.
3. If the "uv" option is true then go to Step 6.

4. If the "uv" option is false and the authenticator supports abuilt-in user verification method, and the
user verification method is enabled then:
1. Let the "uv" option be treated as being present with the valuetrue.
2. Go To Step 6.

5. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or false,
then:

NOTE: This is to address the case of CTAP2.0 platforms not being aware of and ignoring the
alwaysUv option ID.

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.
6. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

6. 'If the authenticator is protected by some form of user verification then:

1. If pinUvAuthParam parameter is present (implying the 'uv" option is treated as false, see Step 4):

1. Call verify(pinUvAuthToken, clientDataHash, pinUvAuthParam).

1. If the verification returnserror, return CTAP2_ERR_PIN_AUTH_INVALID error.
2. If the verification returns success, set the "uv" bit totrue in the response.

2. Let userVerifiedFlagValue be the result of callinggetUserVerifiedFlagValue().

3. If userVerifiedFlagValue is false then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID.

4. Verify that the pinUvAuthToken has the ga permission, if not, return
CTAP2_ERR_PIN_AUTH_INVALID.

5. If the pinUvAuthToken has a permissions RP ID associated:
1. If the permissions RP ID does not match the rpId in this request, return
CTAP2_ERR_PIN_AUTH_INVALID.
6. If the pinUvAuthToken does not have a permissions RP ID associated:
1. Associate the request’s rpId parameter value with the pinUvAuthToken as its permissions RP
ID.
7. GotoStep 7.

2. If the "uv" option is present and set to true (implying the pinUvAuthParam parameter is not present,
and that the authenticator supports an enabled built-in user verification method, see Step 4):

NOTE: This step provides backwards compatibility for CTAP2.0 platforms.

1. LetinternalRetry be true.

2. Let uvState be the result of callingperformBuiltinUv(internalRetry)

3. IfuvStateiserror:
1. If the error reason is a user action timeout, then return
CTAP2_ERR_USER_ACTION_TIMEOUT.

2. If the ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent
or false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.

3. If the uvRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED.
4. Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

4. If uvState is success:

1. Set the "uv" bit totrue in the response.

NOTE: If Step 6 was skipped, then the authenticator is NOT protected by some form of user
verification, and Step 3 has already ensured that the "uv" bit isfalse in the response.

23/148

7. "Locate all credentials that are eligible for retrieval under the specified criteria:

1. If the allowList parameter is present and is non-empty, locate all denoted credentials created by this
authenticator and bound to the specified rpId.

2. If an allowList is not present, locate all discoverable credentials that are created by this authenticator
and bound to the specified rpId.

3. Create an applicable credentials list populated with the located credentials.

4. lterate through the applicable credentials list, and if credential protection for a credential is marked as
userVerificationRequired, and the "uv" bit is false in the response, remove that credential from the
applicable credentials list.

5. Ilterate through the applicable credentials list, and if credential protection for a credential is marked as
userVerificationOptionalWithCredentialIDList and there is no allowList passed by the client and
the "uv" bit is false in the response, remove that credential from the applicable credentials list.

6. If the applicable credentials list is empty, return CTAP2_ERR_NO_CREDENTIALS.
7. Let numberOfCredentials be the number of applicable credentials found.

8. If evidence of user interaction was provided as part of Step 6.2 (i.e., by invoking performBuiltinUv()):

NOTE: This step’s criteria implies that the 'uv" option is present and set totrue and the
pinUvAuthParam parameter is not present. l.e., the pinUvAuthToken feature is not in use.

1. Set the "up” bit to true in the response.
2. GotoStep 10

9. If the "up" option is set to true or not present:

1. If the pinUvAuthParam parameter is present then:

1. Let userPresentFlagValue be the result of callinggetUserPresentFlagValue().

2. If userPresentFlagValue is false:

NOTE: An authenticator may be configured to collect user presence whenever the Up" option
is true by setting the defaultuser present time limitto zero.

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the rpId parameter value to the user, and
request permission to create an assertion.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

2. Else (implying the pinUvAuthParam parameter is not present):
1. If the "up” bit is false in the response:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the rpId parameter value to the user, and
request permission to create an assertion.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. Set the "up" bit to true in the response.

4. Call clearUserPresentFlag(), clearUserVerifiedFlag(), and
clearPinUvAuthTokenPermissionsExceptLbw().

NOTE: This consumes both the "user present state", sometimes referred to as the "cached UP",
and the "user verified state", sometimes referred to as "cached UV". These functions are no-ops if
there is not an in-use pinUvAuthToken.

10. If the extensions parameter is present:
1. Process any extensions that this authenticator supports, ignoring any that it does not support.

2. Authenticator extension outputs generated by the authenticator extension processing are returned in the
authenticator data. The set of keys in theauthenticator extension outputs map MUST be equal to, or a
subset of, the keys of the authenticator extension inputs map.

NOTE: Some extensions may produce different output depending on the state of the "uv" and/or "up"
bits set in the response.

11. If the allowList parameter is present:

1. Select any credential from the applicable credentials list.
2. Delete the number0fCredentials member.
3. Go to Step 13.

12. If allowList is not present:

24/148

https://www.w3.org/TR/webauthn-2#authenticator-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#authenticator-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-extension-input

1. If numberOfCredentials is one:

1. Select that credential.
2. If number0fCredentials is more than one:
1. Order the credentials in theapplicable credentials list by the time when they were created in

reverse order. (l.e. the first credential is the most recently created.)

2. If the authenticator does not have a display, or the authenticator does have a display and the tiv'
and "up" options are false:
1. Remember the authenticatorGetAssertion parameters.

2. Create a credential counter (credentialCounter) and set it to 1. This counter signifies the
next credential to be returned by the authenticator, assuming zero-based indexing.

3. Start a timer. This is used during authenticatorGetNextAssertion command. This step is
OPTIONAL if transport is done over NFC.

4. Select the first credential.
3. If the authenticator has a display and at least one of the Liv" and "up" options is true:
1. Display all the credentials in theapplicable credentials list to the user, using their friendly name
along with other stored account information.

2. Also, display the rpId of the requester (specified in the request) and ask the user to select a
credential.

3. If the user declines to select a credential or takes too long (as determined by the
authenticator), terminate this procedure and return the CTAP2_ERR_OPERATION_DENIED
error.

4. Update the response to set theuserSelected member to true and to delete the
numberOfCredentials member.

5. Select the credential indicated by the user.

3. Update the response to include the selected credential’s publicKeyCredentialUserEntity information.
User identifiable information (name, DisplayName, icon) inside the publicKeyCredentialUserEntity
MUST NOT be returned if user verification is not done by the authenticator.

13. 'Sign the clientDataHash along with authData with the selected credential, using the structure specified in [

WebAuthn].

On success, the authenticator returns the followingauthenticatorGetAssertion response structure:

Member name Data type Required? Definition

PublicKeyCredentialDescriptor
structure containing the credential
identifier whose private key was
used to generate the assertion.

credential (0x01) PublicKeyCredentialDescriptor Required

The signed-over contextual
bindings made by the
authenticator, as specified in

WebAuthn].

authData (0x02) Byte String Required

The assertion signature produced
signature (0x03) Byte String Required by the authenticator, as specified

in [WebAuthn].

PublicKeyCredentialUserEntity
structure containing the user
account information. User
identifiable information (name,
DisplayName, icon) MUST NOT
be returned if user verification is
not done by the authenticator.

U2F Devices: For U2F devices,
this parameter is not returned as
this user information is not
present for U2F credentials.

FIDO Devices - server-side
credentials: For server-side
credentials on FIDO devices, this
parameter is OPTIONAL as
server-side credentials behave the
same as U2F credentials where
they are discovered given the

25/148

https://w3c.github.io/webauthn/#dictdef-publickeycredentialdescriptor
https://www.w3.org/TR/webauthn-2#assertion-signature
https://www.w3.org/TR/webauthn-2#server-side-credential

Member name Data type Required?

user inform iop on.the RP.
. efinition
Authenticators MAY store user

PublicKeyCredentialUserEntity

user (0x04) Optional

numberOfCredentials

Int
(0x05) nteger

Optional

userSelected (0x06) Boolean Optional

largeBlobKey (0x07) Byte string Optional

unsignedExtensionOutputs
(0x08)

CBOR map of extension identifier —

)) Optional
unsigned extension output values

information inside the credential
ID.

FIDO Devices - discoverable
credentials: For discoverable
credentials on FIDO devices, at
least user "id" is mandatory.

For single account per RP case,
the authenticator returns "id" field
to the platform which will be
returned to the [WebAuthn] layer.

For multiple accounts per RP
case, where the authenticator
does not have a display, the
authenticator returns "id" as well
as other fields to the platform.
Platform will use this information
to show the account selection UX
to the user and for the user
selected account, it will ONLY
return "id" back to the [WebAuthn
layer and discard other user
details.

Total number of account
credentials for the RP. Optional;
defaults to one. This member is
required when more than one
credential is found for an RP, and
the authenticator does not have a
display or the UV & UP flags are
false. Omitted when returned for
the authenticatorGetNextAssertion
method.

Indicates that a credential was
selected by the user via
interaction directly with the
authenticator, and thus the
platform does not need to confirm
the credential. Optional; defaults
to false. MUST NOT be present
in response to a request where an
allowList was given, where
numberOfCredentials is greater
than one, nor in response to an
authenticatorGetNextAssertion
request.

The contents of the associated
largeBlobKey if present for the
asserted credential, and if
largeBlobKey was true in the
extensions input.

A map, keyed by extension
identifiers, to unsigned outputs of
extensions, if any. Authenticators
SHOULD omit this field if no
processed extensions define
unsigned outputs. Clients MUST
treat an empty map the same as
an omitted field.

Within the "flags bits" of theauthenticator data structure returned, the authenticator will report what was actually
done within the authenticator boundary. The meanings of the combinations of the User Present (UP) and User

Verified (UV) bit flags are as follows:

Flags Meaning

26/148

https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-data

"=0 Silent authentication A
nagg Meaning
uv'=

"up"=1 Physical user presence verified, but no user verification

"uv"=0
User verification performed, but physical user presence not verified.
"up"=0 ! N P : ; :
e NOTE: Returning an assertion with the "up” bit set tofalse is not considered valid at the
B WebAuthn API layer [WebAuthn-2], and typically is only used for "pre-flighting".
"up"=1 User verification performed and physical user presence verified
"oy

The client calls this method when the authenticatorGetAssertion response contains the numberOfCredentials
member and the number of credentials exceeds 1. This method is used to obtain the next per-credential
signature for a given authenticatorGetAssertion request. It takes no arguments.

NOTE: this is a stateful command and the specified implementation accommodations apply to it.

When this command is received, the authenticator performs the following procedure:
1. If the authenticator does not remember any authenticatorGetAssertion parameters, return
CTAP2_ERR_NOT_ALLOWED.

2. If the credentialCounter is equal to or greater thannumberO0fCredentials, return
CTAP2_ERR_NOT_ALLOWED.

3. If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is greater than 30
seconds, discard the current authenticatorGetAssertion state and return CTAP2_ERR_NOT_ALLOWED.
This step is OPTIONAL if transport is done over NFC.

NOTE: the section on stateful commands makes this timeout OPTIONAL for any stateful command.
This section supersedes that and makes it mandatory in this instance, except over NFC, where
maintaining timers for that length of time can be problematic.

4. Select the credential indexed by credentialCounter. (l.e. credentials[n] assuming a zero-based array.)

5. Update the response to include the selected credential’s publicKeyCredentialUserEntity information. User
identifiable information (name, DisplayName, icon) inside the publicKeyCredentialUserEntity MUST NOT be
returned if user verification was not done by the authenticator in the original authenticatorGetAssertion call.

6. Sign the clientDataHash along with authData with the selected credential, using the structure specified ifW.
ebAuthn].
7. Reset the timer. This step is OPTIONAL if transport is done over NFC.

8. Increment credentialCounter.

On success, the authenticator returns the same structure as returned by the authenticatorGetAssertion method.
The numberOfCredentials member is omitted.

6.3.1. Client Logic

If client receives numberOfCredentials member value exceeding 1 in response to the authenticatorGetAssertion
call:

1. Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.

o Make sure ‘rp’ member matches the current request.
o Remember the ‘response’ member.
o Add credential user information to the ‘credentiallnfo’ list.
2. Draw a UX that displays credentiallnfo list.
3. Let user select which credential to use.
4. Return the value of the ‘response’ member associated with the user choice.

5. Discard all other responses.

Using this method, platforms can request that the authenticator report a list of its supported protocol versions and
extensions, its AAGUID, and other aspects of its overall capabilities. Platforms should use this information to
tailor their command parameters choices.

27/148

NOTE:

The values of various authenticatorGetInfo response structure members andoption IDs may

change over time depending upon the commands the platform sends to the authenticator.

This method takes no inputs.

On success, the authenticator returns the followingauthenticatorGetinfo response structure:

Member name

Data type

Required?

Definition

versions (0x01)

extensions (0x02)

aaguid (0x03)

options (0x04)

maxMsgSize (0x05)

pinUvAuthProtocols (0x06)

maxCredentialCountinList (0x07)

maxCredentialldLength (0x08)

transports (0x09)

algorithms (0x0A)

maxSerializedLargeBlobArray
(0x0B)

forcePINChange (0x0C)

Array of strings

Array of strings

Byte String

Map

Unsigned Integer

Array of Unsigned Integers

Unsigned Integer

Unsigned Integer

Array of strings

Array of
PublicKeyCredentialParameters

Unsigned Integer

Boolean

28/148

Required

Optional

Required

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

List of supported versions. Supporte
"FIDO_2_3" for CTAP2.3, "FIDO_2.
"FIDO_2_0" for CTAP2.0, "FIDO_2
CTAP2.1 Preview features and "U2
CTAP1/U2F authenticators.

List of supported extensions.

The claimed AAGUID. 16 bytes in l¢
the same as MakeCredential Authe

specified in [WebAuthn].
List of supported options.

Maximum message size supported
authenticator.

List of supported PIN/UV auth proto
decreasing authenticator preference

contain duplicate values nor be emg

Maximum number of credentials su|
credentiallD list at a time by the autl
be greater than zero if present.

Maximum Credential ID Length sup
authenticator. MUST be greater tha

List of supported transports. Values
AuthenticatorTransport enum in [We
MUST NOT include duplicate value:
present. Platforms MUST tolerate u

List of supported algorithms for crec
as specified in [WebAuthn]. The arr
most preferred to least preferred an
include duplicate entries nor be emj
PublicKeyCredentialParameters' al¢
are values that SHOULD be registe
COSE Algorithms registry [IANA-C(

The maximum size, in bytes, of the
blob array that this authenticator ca
authenticatorLargeBlobs command
MUST be specified. Otherwise it MU
specified, the value MUST be > 102
bytes is the least amount of storage
must make available for per-creden
blob arrays if it supports thelarge, p
feature. This value is not specified ¢
the authenticator implements the lai

If this member is:

< present and set to true
getPinToken and
getPinUvAuthTokenUsingt
will return errors until after

Change.

< present and set to false, or a
no PIN Change is required

This specifies the current minimun
Unicode code points, the authentice
ClientPIN. This is applicable for Clie
minPINLength member MUST be al

https://www.w3.org/TR/webauthn-3/#enumdef-authenticatortransport
https://w3c.github.io/webauthn/#dictdef-publickeycredentialparameters

Member name

Data type

Required?

lientPin option ID i it MUS
client |r10 tion ID is aBsé?Prt\itlllan
authenticator supports authenticato

minPINLength (0x0D)

firmwareVersion (0xOE)

maxCredBlobLength (0x0F)

maxRPIDsForSetMinPINLength
(0x10)

preferredPlatformUvAttempts
(0x11)

uvModality (0x12)

certifications (0x13)

remainingDiscoverableCredentials
(0x14)

Unsigned Integer

Unsigned Integer

Unsigned Integer

Unsigned Integer

Unsigned Integer. (CBOR major type
0)

Unsigned Integer. (CBOR major type
0)

Map

Unsigned Integer

29/148

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

The default pre-configured minimi
at least 4 Unicode code points. Autt
have a pre-configured default minP|
than 4 code points in certain offerin
minPINLength reverts to its original
value. Authenticators MAY also hav
configured list of RP IDs authoriz
current minimum PIN length value v
minPinLength extension.

Indicates the firmware version of the
model identified by AAGUID. When
code change to the authenticator fir
authenticator MUST increase the ve

Maximum credBlob length in bytes :
authenticator. Must be present if, ar
is included in the supported extens
this value MUST be at least 32 byte

This specifies the max number of R
authenticator will accept via setMinf
subcommand. The platform MUST |
than this number of RP_ID to the set
subcommand. This is in addition to
the authenticator may have. If the a
not support adding additional RP ID
This MUST ONLY be present if, anc
authenticator supports the setMinPI|
subcommand.

This specifies the preferred number
the getPinUvAuthTokenUsingUvWi
subCommand the platform may atte
back to the
getPinUvAuthTokenUsingPinWithP:
subCommand or displaying an errol
than zero. If the value is 1 then all u
internal and the platform MUST only
getPinUvAuthTokenUsingUvWithPe
subCommand a single time. If the v
authenticator MUST only decremen
each iteration.

This specifies the user verification n
by the authenticator via authenticat:
getPinUvAuthTokenUsingUvWithPe
subcommand. This is a hint to help
construct user dialogs. The values ¢
FIDORegistry] Section 3.1 User Ve
Combining multiple bit-flags from th
allowed. If clientPin is supported it N
included in the bit-flags, as clientPIl
user verification method.

This specifies a list of authenticator

If this member is present it indicates
number of additional discoverable ¢
be stored. If this value is zero then |
create non-discoverable credentials

This estimate SHOULD be based o
that all future discoverable credenti
maximally-sized fields and SHOULL
an attempt to create a discoverable
due to lack of space, even if it's pos
specific request might succeed. For
specific request might include fields
than the maximum possible size an
this value should be zero if a requet
sized fields would fail. Also, a speci

https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#rp-id

Member name

Data type

Required?

hfave an rp.id and uts%’].rlldiililgrt‘mz
discoverable credential and thus ov

vendorPrototypeConfigCommands
(0x15)

attestationFormats (0x16)

uvCountSinceLastPinEntry (0x17)

longTouchForReset (0x18)

encldentifier (0x19)

transportsForReset (0x1A)

pinComplexityPolicy (0x1B)

pinComplexityPolicyURL (0x1C)

Array of Unsigned Integers

Array of strings

Unsigned Integer. (CBOR major type
0)

Boolean

Byte String

Array of strings

Boolean

Byte String

30/148

Optional

See
definition

Optional

Optional

Optional

Optional

Optional

Optional

value should be set assuming that v

If present the authenticator supports
authenticatorConfig vendorPrototyp
and its value is a list of authenticato
vendorCommandld values supporte
empty.

List of supported attestation formats
that support multiple attestation forr
"none", MUST set this field. Otherw

Values are taken from the "WebAut
Statement Format Identifiers” regist
IANA-WebAuthn-Registries] establ
RFC8809]. The list MUST NOT inc
values nor be empty if present. Plat
tolerate unknown values. Support fc
attestation is implied and MUST be

If present the number of internal Us
operations since the last pin entry ir
attempts. This allows the platform tc
prompt the user for PIN on a biome'
don’t forget the PIN. This is optiona
and the interval is at the discretion ¢

If this member is:

< present and set to true
the feature is supported ar
of >= 5 sec is required for

< present and set to false.
the feature is supported ar

< absent.
the feature is unsupported

The value is a byte value containing
is the AES-128-CBC encryption of (
identifier) using HKDF-SHA-256(s¢
IKM = persistentPinUvAuthToken, L
"encldentifier"). The encryption ivm
for each output of getinfo.

List of transports that support there:
Values are taken from the Authentic
enum in [WebAuthn]. The list MUST
duplicate values nor be empty if pre
MUST tolerate unknown values.

If present, whether the authenticato
additional current PIN complexity
minPINLength. PIN complexity polic
authenticators are listed in the FIDC
authenticator may have a pre-confi
complexity policy value that is apj

If present, a URL that the platform ¢
the user more information about the

policy.

This specifies the maximum PIN le
code points, the authenticator enfor
An authenticator setting this value s

https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://www.w3.org/TR/webauthn/#enumdef-authenticatortransport

Member name

the PIN to be represerBe(#.in. 63 or f
; y efinition
applicable for ClientPIN only: the m:

maxPINLength (0x1D)

encCredStoreState (0x1E)

authenticatorConfigCommands
(0x1F)

NOTE:

Data type Required?
Unsigned Integer Optional
Byte String Optional
Array of Unsigned Integers Optional

member MUST be absent if the clie
not supported. If the authenticator s
authenticatorClientPIN and the max
member is absent, the effective defi
is 63 code points.

If specified, the maximum PIN lengt
8 Unicode code points. Authenticatc
pre-configured default maxPINLeng
code points in certain offerings. UTI
points may be represented by 1-4 o
maximum length passed in the PIN
always be less than 63 octets.

The value is a byte value containing
is the AES-128-CBC encryption of (
store state) using HKDF-SHA-256(
bytes, IKM = persistentPinUvAuthT:
"encCredStoreState"). The encrypti
regenerated for each output of getlr

If present the authenticator supports
authenticatorConfig command, and
authenticatorConfig subcommand v
which MAY be empty.

The string "FIDO_2_2" was not defined for CTAP2.2 and MUST not be present inversions member.

All options are in the form key-value pairs with string IDs and boolean values. When anoption ID is not present,

the default is applied per table below. The following table lists all defined option IDs as of CTAP version

"FIDO_2_3":

Option ID

Definition

Default

plat

rk

clientPin

up

platform device: Indicates that the device is attached
to the client and therefore can’t be removed and used
on another client.

Specifies whether this authenticator can create
discoverable credentials, and therefore can satisfy
authenticatorGetAssertion requests with the allowList
parameter omitted.

ClientPIN feature support:

If present and set to true, it indicates that the device is

capable of accepting a PIN from the clientand PIN has
been set.

If present and set to false, it indicates that the device

is capable of accepting a PIN from the clientand PIN
has not been set yet.

If absent, it indicates that the device is not capable of
accepting a PIN from the client

ClientPIN is one of the overall ways to do user
verification, although ClientPIN is not considered a
built-in user verification method.

user presence: Indicates that the device is capable of
testing user presence.

user verification: Indicates that the authenticator

supports a built-in user verification method For

example, devices with Ul, biometrics fall into this
category.

If present and set to true, it indicates that the device is
capable of built-in user verification and its user
verification feature is presently configured.

31/148

false

false

Not
supported

true

Not
Supported

Option ID

If present and set&éfﬁﬁ,ﬁo“ indicates that the
authenticator is capable of built-in user verification and

Default

uv

pinUvAuthToken

noMcGaPermissionsWithClientPin

largeBlobs

its user verification feature is not presently configured.
For example, an authenticator featuring a built-in
biometric user verification feature that is not presently
configured will return this "uv" option id set to false.

If absent, it indicates that the authenticator does not
have a built-in user verification capability.

A device that can only do Client PIN will not return the
"uv" option id.

If a device is capable of bothbuilt-in user verification
and Client PIN, the authenticator will return both the
"uv" and the "clientPin" option ids.

If pinUvAuthToken is: Not

Supported
< present and set to true

if the clientPin option id is present and set to
true, then the authenticator supports
authenticatorClientPIN’s
getPinUvAuthTokenUsingPinWithPermissions
subcommand. If the uv option id is present
and set to true, then the authenticator
supports authenticatorClientPIN’s
getPinUvAuthTokenUsingUvWithPermissions
subcommand.

- present and set to false, or absent.
the authenticator does not support
authenticatorClientPIN’s
getPinUvAuthTokenUsingPinWithPermissions
and
getPinUvAuthTokenUsingUvWithPermissions
subcommands.

If this noMcGaPermissionsWithClientPin is: false

< present and set to true
A pinUvAuthToken obtained via
getPinUvAuthTokenUsingPinWithPermissions
(or getPinToken) cannot be used for
authenticatorMakeCredential or
authenticatorGetAssertion commands,
because it will lack the necessary mc and ga
permissions. In this situation, platforms
SHOULD NOT attempt to use
getPinUvAuthTokenUsingPinWithPermissions
if using
getPinUvAuthTokenUsingUvWithPermissions
fails.

< present and set to false, or absent.
A pinUvAuthToken obtained via
getPinUvAuthTokenUsingPinWithPermissions
(or getPinToken) can be used for
authenticatorMakeCredential or
authenticatorGetAssertion commands.

Note: noMcGaPermissionsWithClientPin MUST only
be present if the clientPin option ID is present.

If largeBlobs is: Not

supported
< present and set to true

the authenticator supports the
authenticatorLargeBlobs command.

- present and set to false, or absent.
The authenticatorLargeBlobs command is

NOT supported.

32/148

This option MUST Nq;e%ﬁﬁ;'t‘ot rue if the largeBlob Default
E . A vt barrd | e .

Option ID
Not

CEAUNS

HOE0

supported.
Ifepis:

< Present and set to true
The authenticator is enterprise attestation
capable, and enterprise attestation is
enabled.

ep < Present and set to false
The authenticator is enterprise attestation
capable, and enterprise attestation is
disabled.

< Absent

The Enterprise Attestation feature is NOT
supported.

If bioEnroll is: Not

Supported
< present and set to true

the authenticator supports the
authenticatorBioEnrollment commands, and
has at least one bio enroliment presently
provisioned.

bioEnroll < present and set to false
the authenticator supports the

authenticatorBioEnrollment commands, and
does not yet have any bio enroliments
provisioned.

< absent
the authenticatorBioEnrollment commands

are NOT supported.

"FIDO_2_1_PRE" Prototype Bio enrollment support: Not
Supported

If userVerificationMgmtPreview is:

< present and set to true
the authenticator supports the Prototype
authenticatorBioEnroliment (0x40)
commands, and has at least one bio
enroliment presently provisioned.

userVerificationMgmtPreview
< present and set to false

the authenticator supports the Prototype
authenticatorBioEnroliment (0x40)
commands, and does not yet have any bio
enrollments provisioned.

< absent
the Prototype authenticatorBioEnrollment

(0x40) commands are not supported.

getPinUvAuthTokenUsingUvWithPermissions support Not
for requesting the be permission: Supported

This option ID MUST only be present ifbioEnroll is
also present.

If uvBioEnroll is:

BioE [l < present and set to true
uvBioEnro requesting the be permission when invoking

getPinUvAuthTokenUsingUvWithPermissions
is supported.

< present and set to false, or absent.
requesting the be permission when invoking
getPinUvAuthTokenUsingUvWithPermissions
is NOT supported.

authenticatorConfig command support: Not
Supported
If authnrCfq is:

< present and set to true

33/148

Mhﬂf‘m’ the authgwﬁ' ﬁmmonﬁg command is Default

supported.

< present and set to false, or absent.
the authenticatorConfig command is NOT
supported.

getPinUvAuthTokenUsingUvWithPermissions support Not
for requesting the acfg permission: Supported

This option ID MUST only be present ifauthnrCfg is
also present.

If uvAcfq is:

< present and set to true
requesting the acfg permission when invoking
getPinUvAuthTokenUsingUvWithPermissions
is supported.

uvAcfg

< present and set to false, or absent.
requesting the acfg permission when invoking
getPinUvAuthTokenUsingUvWithPermissions
is NOT supported.

Credential management support: Not

Supported
If credMgmt is:

< present and set to true
the authenticatorCredentialManagement
command is supported.

credMgmt

< present and set to false, or absent.
the authenticatorCredentialManagement

command is NOT supported.

Credential management Read Only support: Not

Supported
If perCredMgmtRO is:

< present and set to true
requesting the pcmr permission when
invoking
getPinUvAuthTokenUsingUvWithPermissions
or
getPinUvAuthTokenUsingPinWithPermissions
is supported.

perCredMgmtRO

< present and set to false, or absent.
requesting the pcmr permission when
invoking
getPinUvAuthTokenUsingUvWithPermissions
or
getPinUvAuthTokenUsingPinWithPermissions
is NOT supported.

"FIDO_2_1_PRE" Prototype Credential management Not
support: Supported

If credentialMgmtPreview is:

< present and set to true
the Prototype
credentialMgmtPreview authenticatorCredentialManagement (0x41)

command is supported.

< present and set to false, or absent.
the Prototype
authenticatorCredentialManagement (0x41)
command is NOT supported.

Support for the Set Minimum PIN Length feature. Not
Supported

If setMinPINLength is:

< present and set to true

34/148

Option ID the setMiBP}hlh,ﬁHgth subcommand is Default

s supported.
—setiinPiNtength
< present and set to false, or absent.
the setMinPINLength subcommand is NOT
supported.

Note: setMinPINLength MUST only be present if the
clientPin option ID is present or if the Authenticator
supports PIN entry via built-in UV.
Support for making non-discoverable credentials false
without requiring User Verification.

If nakeCredUvNotRqd is:

< present and set to true
the authenticator allows creation of non-

discoverable credentials without requiring any
form of user verification, if the platform

makeCredUvNotRqd requests this behaviour.

< present and set to false, or absent.
the authenticator requires some form of user

verification for creating non-discoverable
credentials, regardless of the parameters the
platform supplies for the
authenticatorMakeCredential command.

Authenticators SHOULD include this option with the

value true.
Support for the Always Require User Verification Not
feature: Supported

If alwaysUv is

< present and set to true
the authenticator supports the Always
Require User Verification feature and it is
enabled.

< present and set to false
the authenticator supports the Always
Require User Verification feature but it is
disabled.

alwaysUv

< absent
the authenticator does not support the Always
Require User Verification feature.

NOTE: If the alwaysUv option ID is present and
true the authenticator MUST set the value of
makeCredUvNotRqd to false.

This command exists so that plaintext PINs are not sent to the authenticator. Instead, aPIN/UV auth protocol
(aka pinUvAuthProtocol) ensures that PINs are encrypted when sent to an authenticator and are exchanged for
a pinUvAuthToken that serves to authenticate subsequent commands. Additionally, authenticators supporting
built-in user verification methods can provide a pinUvAuthToken upon user verification.

The pinUvAuthToken and persistentPinUvAuthToken are randomly-generated, opaque bytestrings that are
large enough to be effectively unguessable. See § 6.5.2.1 pinUvAuthToken State for details.

Two PIN/UV auth protocols are defined herein:

¢ §6.5.6 PIN/UV Auth Protocol One
» §6.5.7 PIN/UV Auth Protocol Two

Each PIN/UV auth protocol:

¢ maintains its own pinUvAuthToken and persistentPinUvAuthToken so that no unexpected, cross-protocol
interactions occur, and

e is a concrete instantiation of § 6.5.4 PIN/UV Auth Protocol Abstract Definition.

35/148

NOTE: The platform MAY flexibly manage the lifetime of its copy of thepinUvAuthToken based on the
usage scenario. However, it SHOULD erase its copy of the pinUvAuthToken as soon as possible when it is no
longer needed. The authenticator can also expire the pinUvAuthToken based on certain conditions such as
changing a PIN, authenticator timeouts, when returning CTAP2_ERR_OPERATION_DENIED or
CTAP2_ERR_CREDENTIAL_EXCLUDED errors, the platform system waking up from a suspend state, the
platform sending commands with no optional pinUvAuthParam, etc. If the pinUvAuthToken has expired, the
authenticator will return CTAP2_ERR_PIN_AUTH_INVALID and the platform can act on the error accordingly,
e.g., by getting a new pinUvAuthToken from the authenticator

4 |2

NOTE: The authenticator is only required to manage onepinUvAuthToken, though it MAY manage one per
transport interface in the case that it supports multiple simultaneous transport protocols.

6.5.1. PIN Composition Requirements
Platforms MUST enforce the following, baseline, requirements on PINs used with this specification:

o Minimum PIN Length: 4 Unicode characters
o Maximum PIN Length: UTF-8 representation MUST NOT exceed 63 bytes
o PIN are in Unicode normalization form C.

o PIN MUST NOT end in a 0x00 byte
Authenticators MUST enforce the following, baseline, requirements on PINs:

» Minimum PIN Length: 4 code points.

NOTE: Authenticators can enforce a greater minimum length.

o Maximum PIN Length: 63 bytes

« PIN storage on the device has to provide the same, or better, security assurances as provided for private
keys.

Note: [FIPS140-3] references "memorized secret" requirements from SP_800-63B section 5.1.1.2. The latter
states that at AAL2 and above:

"Any memorized secret used by the authenticator for activation SHALL be a randomly-chosen numeric
value at least 6 decimal digits in length or other memorized secret [at least 8 ASCII or Unicode characters
in length]."

This specification attempts to countcode points as an approximation of Unicode characters. It is understood

that some scripts have multiple code points per character and may need to have additional procedural
controls to conform with [FIPS140-3] or other security standards.

6.5.2. PIN/UV Auth Protocol Global State

Authenticators keep the following global state, independent of any specificPIN/UV auth protocol:

6.5.2.1. pinUvAuthToken State

A pinUvAuthToken has the following associated state variables. When initially generated via
resetPinUvAuthToken(), the pinUvAuthToken'’s state variables are set to the initial values given below. Thestate
variables values are managed via the interface given in§ 6.5.3.2 pinUvAuthToken State Maintenance Functions.

NOTE: The pinUvAuthToken-issuing operations call beginUsingPinUvAuthToken() to update the
pinUvAuthToken’s state variables' values prior to issuing thepinUvAuthToken to the platform. For example,
they will use the latter function to set both or either the userVerified flag and/or the userPresent flag to true,
and start the usage timer.

A pinUvAuthToken is associated with these state variables:

o A permissions RP ID, initially null.
» A permissions setwhose possible values are those ofpinUvAuthToken permissions. It is initially empty.

« A usage timer, initially not running.

NOTE: Once running, the timer is observed by pinUvAuthTokenUsageTimerObserver().

« Anin use flag, initially set to false, meaning that the pinUvAuthToken is not in use. When thein use flag is
set to true, the pinUvAuthToken is said to bein use.

« Ainitial usage time limit, initially not set. beginUsingPinUvAuthToken() sets this value according to the

36/148

https://www.unicode.org/glossary/#character
https://unicode.org/reports/tr15/
https://www.unicode.org/glossary/#code_point
https://pages.nist.gov/800-63-3/sp800-63b.html#-5112-memorized-secret-verifiers
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#character
https://www.unicode.org/glossary/#code_point

transport the platform is using to communicate with it. The platform MUST invoke an authenticator operation
using the pinUvAuthToken within this time limit for thepinUvAuthToken to remain valid for the fullmax usage
time period. The default maximum pertransport initial usage time limit values are:

o usb: 30 seconds

o nfc: 19.8 seconds (16 bit counter with 3311hz clock: max time before overflow)

o

smart-card: 19.8 seconds (16 bit counter with 3311hz clock: max time before overflow)
o ble: 30 seconds

internal: 30 seconds

o

Authenticators MAY use other values that are less than the default maximum values.

Authenticators MAY implement a rolling timer, initialized to the periransport initial usage time limit, where
the pinUvAuthToken and its state variables remain valid as long as the platform again uses the
pinUvAuthToken in an operation before therolling timer expires. If so, theralling timer is again initialized to

the initial usage time limit This continues until themax usage time period expires. See
pinUvAuthTokenUsageTimerObserver().

NOTE: Authenticators should utilize therolling timer approach judiciously, e.g., because some
features, such as authenticatorBioEnrollment and authenticatorCredentialManagement, may need to
accommodate infrequent user interactions. Thus the rolling timer approach may be most applicable to
authenticatorMakeCredential and authenticatorGetAssertion operations.

A user present time limit defining the length of time the user is considered "present", as represented by the
userPresent flag, after user presence is collected. The user present time limitdefaults to the same default
maximum per-transport values as the initial usage time limit, although authenticators MAY use other values
that are less than the default maximum values, including zero.

NOTE: The user present time limitvalue of zero accommodates the case where an authenticator does
not wish to support maintaining "user present" state (i.e., "cached user presence").

A max usage time period value, which SHOULD default to a maximum of 10 minutes (600 seconds),
though authenticators MAY use other values less than the latter default, possibly depending upon the use
case, e.g., which transport is in use.

» A userVerified flag, initially false.

» A userPresent flag, initially false.

6.5.2.2. PersistentPinUvAuthToken State

When initially generated via resetPersistentPinUvAuthToken(), the persistentPinUvAuthToken’s state variables

are set to the initial values given below.

A persistentPinUvAuthToken is associated with these state variables:

» A permissions set whose possible values are those ofpinUvAuthToken permissions. It is initially empty.

6.5.2.3. PIN-Entry and User Verification Retries Counters

1. pinRetries counter:

o

pinRetries counter is an unsigned integer, representing the number of attempts left before PIN is
disabled.

Authenticators MUST allow no more than 8 retries but MAY set a lower maximum.

o

o

Each correct PIN entry resets the pinRetries and theuvRetries counters back to their maximum values
unless the PIN is already disabled.

o

Each incorrect PIN entry decrements the pinRetries by 1.

o

Once the pinRetries counter reaches 0, bothClientPin as well as built-in user verification are disabled
and can only be enabled if the authenticator is reset.

2. uvRetries counter:

o The uvRetries counter is an unsigned integer, representing the number of user verification attempts left
before built-in user verification is disabled.

o maxUvRetries is a global value statically configured into an authenticator; it is the maximum number of
retries that a user can experience. uvRetries is initialized to this value. Its value MUST be in the range of
1 to 25, inclusive.

NOTE: This value is determined by the authenticator vendor based on the desired FIDO security
certification level. This limit protects against brute force attacks. It is the total number of attempts
allowed for all built-in user verification methods.

o maxUvAttemptsForinternalRetries is a global value configured into an authenticator. It is the
37/148

maximum number of times the authenticator will retry internally when internalRetry is true as part of the
performBuiltinUv() algorithm. This is used for older platforms when the 'uv" parameter is set as true
OR when an authenticator vendor wants the platform to try calling it only once as indicated by the
preferredPlatformUvAttempts value. If preferredPlatformUvAttempts is 1,
maxUvAttemptsForlnternalRetries value MUST be in range of 1 tomaxUvRetries inclusive. If
preferredPlatformUvAttempts is NOT 1, maxUvAttemptsForinternalRetries value MUST be in range of 1
to 5 inclusive.

Once the uvRetries counter reaches 0, built-in user verification MUST be disabled and can only be re-
enabled if the authenticator is reset or the correct clientPIN is provided via theauthenticatorClientPIN’s
getPinUvAuthTokenUsingPinWithPermissions or getPinToken subCommands.

o

o

internalRetry is a authenticator-internal boolean parameter. It defaults tofalse. It is explicitly set to
true if the authenticator intends to perform multiple internal uv retries before returning an error to the
platform.

6.5.3. Utility Functions

These utility functions are independent of the particularPIN/UV auth protocol in use.

6.5.3.1. Perform Built-in User Verification Algorithm

performBuiltinUv(internalRetry) — success | error:

1.

o © 0 N O

If internalRetry is true then let attemptsBeforeReturning be set tomaxUvAttemptsForInternalRetries.

. Else let attemptsBeforeReturning be set to 1.
. If clientPIN is true and pinRetries is 0, then let the uvRetries counter be set to 0 and return error.

2
3
4.
5

If uvRetries is 0 then return error.

. Decrement the uvRetries counter by 1.

NOTE: ltis best practice to decrement the counter before performingbuilt-in user verification. This
prevents some hardware attacks that could provide an attacker with a unlimited number of presentation
attempts. If the sample input times out the authenticator may re-increment the uvRetries counter to its
previous value, if no matching is preformed by the authenticator. Some platforms will send
authenticatorGetAssertion requests in parallel to multiple authenticators causing the ones not touched by
the user to decrement uvRetries to 0 over time unless theuvRetries is re-incremented to the previous
value after an input time out.

. Decrement attemptsBeforeReturning by 1.

. Perform built-in user verification.

. If auser action timeout occurs, return error.

. If built-in user verification succeeds then set theuvRetries counter to maxUvRetries and return success.
. Else (built-in user verification failed), if attemptsBeforeReturning > 0, go to Step 4.

. Otherwise, return error.

6.5.3.2. pinUvAuthToken State Maintenance Functions

beginUsingPinUvAuthToken(userlsPresent)

This function prepares the pinUvAuthToken for use by the platform, which has invoked one of the
pinUvAuthToken-issuing operations, by setting particular pinUvAuthToken state variables to given use-case-
specific values. See also § 6.5.5.7 Operations to Obtain a pinUvAuthToken

1. Set the userPresent flag to the value of userlsPresent.
2. Set the userVerified flag to true.

3. Set the initial usage time limit to a transport-specific value, as described in§ 6.5.2.1 pinUvAuthToken
State.

4. Start the pinUvAuthToken usage timer, set thein use flag to true, and assign
pinUvAuthTokenUsageTimerObserver() to observe the usage timer. The pinUvAuthToken is now in use.

pinUvAuthTokenUsageTimerObserver()

This function observes the pinUvAuthToken usage timer and takes appropriate action upon the specified
conditions:
1. If the usage timer is not running, return.
2. While the overall usage timer has not reached the max usage time period, perform the following
substeps:
1. If the current user present time limitis reached, call clearUserPresentFlag().

2. If the initial usage time limitis reached without the platform using the pinUvAuthToken in an
authenticator operation then call stopUsingPinUvAuthToken(), and terminate these steps.

38/148

3. If the authenticator does not utilize arolling timer then continue.
4. If the authenticator utilizes arolling timer then:
1. If the platform uses the pinUvAuthToken in an authenticator operation before therolling timer
expires then:
1. Set the rolling timer to the applicable initial usage time limit and continue.
2. Otherwise (implying the rolling timer expires) call stopUsingPinUvAuthToken(), and terminate

these steps.
3. Call stopUsingPinUvAuthToken(), and terminate these steps.
getUserPresentFlagValue() — userPresentFlagValue
1. If the pinUvAuthToken is in use then set the userPresentFlagValue to the current value of the
pinUvAuthToken'’s userPresent flag.

2. Otherwise (implying a pinUvAuthToken exists and is not in use, or does not exist), set
userPresentFlagValue to false.

NOTE: The pinUvAuthToken may not exist because thepinUvAuthToken feature is not in use or is
not supported.

3. Return userPresentFlagValue.

getUserVerifiedFlagValue() — userVerifiedFlagValue
1. If the pinUvAuthToken is in use then set the userVerifiedFlagValue to the current value of the
pinUvAuthToken’s userVerified flag.

2. Otherwise (implying a pinUvAuthToken exists and is not in use, or does not exist), set
userVerifiedFlagValue to false.

NOTE: The pinUvAuthToken may not exist because thepinUvAuthToken feature is not in use or is
not supported.

3. Return userVerifiedFlagValue.

clearUserPresentFlag()
1. If the pinUvAuthToken is in use then set the pinUvAuthToken’s userPresent flag to false, otherwise do
nothing.

clearUserVerifiedFlag()
1. If the pinUvAuthToken is in use then set the pinUvAuthToken’s userVerified flag to false, otherwise do
nothing.

clearPinUvAuthTokenPermissionsExceptLbw()
1. If the pinUvAuthToken is in use then clear all of the pinUvAuthToken’s permissions, except for lbw,
otherwise do nothing.

stopUsingPinUvAuthToken()
1. Set all of the pinUvAuthToken’s state variables to their initial values as given in§ 6.5.2.1
pinUvAuthToken State.

Note: This causes the pinUvAuthToken’s in use flag to be set to false, denoting the
pinUvAuthToken as not in use.

pinUvAuthToken that are not in use MUST NOT validate when verified in the context of the
Prototype authenticatorBioEnrollment or Prototype authenticatorCredentialManagement commands.

6.5.4. PIN/UV Auth Protocol Abstract Definition

A specific PIN/UV auth protocol defines an implementation of two interfaces to cryptographic services: one for
the authenticator, and one for the platform.

The authenticator interface is:
initialize()
This process is run by the authenticator at power-on.

regenerate()
Generates a fresh public key.

resetPinUvAuthToken()
Generates a fresh pinUvAuthToken.

resetPersistentPinUvAuthToken()
Generates a fresh persistentPinUvAuthToken.

getPublicKey() — coseKey
Returns the authenticator’s public key as a COSE_Key structure.

decapsulate(peerCoseKey) — sharedSecret | error
Processes the output of encapsulate from the peer and produces a shared secret, known to both the
platform and the authenticator.

decrypt(sharedSecret, ciphertext) — plaintext | error

39/148

Decrypts a ciphertext, using sharedSecret as a key, and returns the plaintext.

verify(key, message, sighature) — success | error
Verifies that the signature is a valid MAC for the given message. If the key parameter value is the current
pinUvAuthToken, it also checks whether thepinUvAuthToken is in use or not.

The platform interface is:
initialize()
This is run by the platform when starting a series of transactions with a specific authenticator.

encapsulate(peerCoseKey) — (coseKey, sharedSecret) | error
Generates an encapsulation for the authenticator’s public key and returns the message to transmit and the
shared secret.

encrypt(key, demPlaintext) — ciphertext
Encrypts a plaintext to produce a ciphertext, which may be longer than the plaintext. The plaintext is
restricted to being a multiple of the AES block size (16 bytes) in length.

decrypt(key, ciphertext) — plaintext | error
Decrypts a ciphertext and returns the plaintext.

authenticate(key, message) — signature
Computes a MAC of the given message.

(In the pseudocode function definitions, above, a function takes a number of arguments that are given in
parentheses and yields a result that is one of the types separated by a bar (‘). If a function doesn't yield any
meaningful result then it implicitly yields a value of the unit type, written “success”, which carries no information.)

The following PIN/UV auth protocols, specified herein, define concrete instantiations of the above interfaces:

e §6.5.6 PIN/UV Auth Protocol One

e §6.5.7 PIN/UV Auth Protocol Two

6.5.5. authenticatorClientPIN (0x06) Command Definition

This authenticatorClientPIN command allows a platform to use aPIN/UV auth protocol to perform a number of
actions:

» Performing key agreement to obtain the shared secret

» Setting a PIN
e Changing a PIN
« Obtaining the pinUvAuthToken

The command takes the following input parameters:

Parameter name Data type Required? Definition

PIN/UV protocol version chosen by the platform.
This MUST be a value supported by the

inUvAuthProtocol Unsigned
P 9 Optional authenticator, as determined by the

0x01 Integer
() o pinUvAuthProtocols field of the
authenticatorGetInfo response.
subCommand Unsigned . The specific action being requested.
Required
(0x02) Integer
The platform key-agreement key. This COSE_Key-
encoded public key MUST contain the optional
keyAgreement : 3
(0x03) COSE_Key Optional "alg" parameter and MUST NOT contain any other
optional parameters. The "alg" parameter MUST
contain a COSEAIgorithmldentifier value.
pinUvAuthParam Byie Strin Ovtional The output of calling authenticate on some context
(0x04) Y 9 P specific to the subcommand.
newPinEnc (0x05) Byte String Optional An encrypted PIN.

pinHashEnc (0x06) Byte String Optional An encrypted proof-of-knowledge of a PIN.

Bitfield of permissions. If present, MUST NOT be

Unsigned
permissions (0x09) Integ or Optional 0. See § 6.5.5.7 Operations to Obtain a
8 pinUvAuthToken.
rpld (Ox0A) String Optional The RP ID to assign as thepermissions RP ID.

The authenticatorClientPIN subCommands are:

subCommand

subCommand Name
Number

40/148

https://en.wikipedia.org/wiki/Unit_type
https://www.w3.org/TR/webauthn-2#rp-id

etPINRetries SybCommand
subCommand Name

Number
getKeyAgreement 0x02
setPIN 0x03
changePIN 0x04
getPinToken (superseded by getPinUvAuthTokenUsingUvWithPermissions or 0x05
getPinUvAuthTokenUsingPinWithPermissions, thus for backwards compatibility only)
getPinUvAuthTokenUsingUvWithPermissions 0x06
getUVRetries 0x07
getPinUvAuthTokenUsingPinWithPermissions 0x09

On success, the authenticator returns the following structure in its response:

Parameter
Data type Required? Definition
name
The result of the authenticator calling getPublicKey.
Used to convey the authenticator’s public key to the
latform so that the platform can call encapsulate. This
KeyAgreement) P 8) #
(0x01) COSE_Key Optional COSE_Key-encoded public key MUST contain the
optional "alg" parameter and MUST NOT contain any
other optional parameters. The "alg" parameter MUST
contain a COSEAIgorithmldentifier value.
pinUvAuthToken) 3 The pinUvAuthToken, encrypted by calling encrypt
Byte Strin Optional
(0x02) Y g P with the shared secret as the key.
Number of PIN attempts remaining before lockout.
pinRetries Unsigned Ovtional This is optionally used to show in Ul when collecting
(0x03) Integer P the PIN in setting a new PIN, changing existing PIN
and obtaining a pinUvAuthToken flows.
Present and true if the authenticator requires a power
cycle before any future PIN operation, false if no
power cycle needed. If the field is omitted, no
information is given about whether a power cycle is
needed or not.
owerCycleState This field is only valid in response to agetRetries
powerty Boolean Optional s field! yv I_ ! P I,)
(0x04) request and authenticators MUST NOT use this field
as an alternative to returning
CTAP2_ERR_PIN_AUTH_BLOCKED when that is
required by this specification: the power cycle
behaviour is a security property and cannot be
delegated to the platform to enforce.
uvRetries Unsigned Ovtional Number of uv attempts remaining before lockout.
(0x05) Integer P

6.5.5.1. Authenticator Configuration Operations Upon Power Up

At power-up, the authenticator callsinitialize for each pinUvAuthProtocol that it supports.

6.5.5.2. Platform getting PIN retries from Authenticator

PIN retries count is the number of PIN attempts remaining before PIN is disabled on the device. When the PIN
retries count nears zero, the platform can optionally warn the user to be careful while entering the PIN.

Platform performs the following operations to getpinRetries:
1. Platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. subCommand: getPINRetries(0x01)

2. Authenticator responds back with pinRetries and, optionally, powerCycleState.

6.5.5.3. Platform getting UV Retries from Authenticator

41/148

UV retries count is the number of built-in UV attempts remaining before built-in UV is disabled on the device.
When the UV retries count nears zero, the platform can optionally warn the user to be careful while performing
user verification.

Platform performs the following operations to getuvRetries:
1. Platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. subCommand: getUVRetries(0x07)

2. Authenticator responds back with uvRetries.

6.5.5.4. Obtaining the Shared Secret

Platforms obtain a shared secret for each transaction. The authenticator does not have to keep a list of
sharedSecrets for all active sessions. If there are subsequent authenticatorClientPIN transactions, a new
sharedSecret is generated every time.

Platform performs the following operations to arrive at the sharedSecret:

1. The platform selects a mutually supported PIN/UV auth protocol by considering the list of protocols
supported by the authenticator, as reported in the pinUvAuthProtocols member of the authenticatorGetlnfo
response. If there are multiple mutually supported protocols, and the platform has no preference, it SHOULD
select the one listed first in pinUvAuthProtocols.

2. The platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. pinUvAuthProtocol: as chosen above
2. subCommand: getKeyAgreement(0x02)

3. If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

4. If the authenticator does not support the selectedpinUvAuthProtocol, it returns
CTAP1_ERR_INVALID_PARAMETER.

5. Otherwise the authenticator sends a response with the following parameters:

1. keyAgreement: the result of calling getPublicKey for the selected pinUvAuthProtocol.
6. The platform calls encapsulate with the public key that the authenticator returned in order to generate the

platform key-agreement key and the shared secret.
6.5.5.5. Setting a New PIN
The following operations are performed to set up a new PIN:

The below applies to both § 6.5.5.5 Setting a New PIN and § 6.5.5.6 Changing existing PIN:

An arbitrary Unicode character corresponds to one or more Unicode code points. While the platform enforces
a user-visible limit of at least four Unicode characters for the PIN length (e.g., by countinggrapheme
clusters), this results in actually collecting at the very minimum fourUnicode code points, and perhaps (many)
more, depending on the script employed.

1. The platform collects the new PIN (newPinUnicode) from the user asUnicode characters in Normalization
Form C.

2. Let platformCollectedPinLengthinCodePoints be the length in code points of newPinUnicode after
normalization is applied.
1. If the minPINLength member of the authenticatorGetlnfo response is absent, then let
platformMinPINLengthInCodePoints be 4. (The default minimum value)

2. Else let platformMinPINLengthinCodePoints be the value of theminPINLength member of the
authenticatorGetInfo response.

3. If platformCollectedPinLengthinCodePoints is less than platformMinPINLengthinCodePoints then the
platform SHOULD display a "PIN too short" error message to the user.

4. Let "newPin" be the UTF-8 representation of newPinUnicode.

5. If the byte length of "newPin" is greater than the max UTF-8 representation limit of 63 bytes, then the
platform SHOULD display a "PIN too long" error message to the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

3. The Platform obtains the shared secret from the authenticator.

4. Platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.
42/148

https://www.unicode.org/glossary/#character
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#character
https://www.unicode.org/glossary/#grapheme_cluster
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#script
https://www.unicode.org/glossary/#character
https://unicode.org/reports/tr15/

2. subCommand: setPIN(0x03).

3. keyAgreement: the platform key-agreement key.

4. newPinEnc: the result of callingencrypt(shared secret, paddedPin) where paddedPin is newPin padded
on the right with 0x00 bytes to make it 64 bytes long. (Since the maximum length of newPin is 63 bytes,
there is always at least one byte of padding.)

5. pinUvAuthParam: the result of callingauthenticate(shared secret, newPinEnc).
5. Authenticator performs following operations upon receiving the request:
1. If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.
2. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.
3. If a PIN has already been set, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

4. The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared
secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

5. The authenticator calls verify(shared secret, newPinEnc, pinUvAuthParam)

1. If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

6. The authenticator calls decrypt(shared secret, newPinEnc) to produce paddedNewPin. If an error results,
it returns CTAP2_ERR_PIN_AUTH_INVALID.

7. If paddedNewPin is NOT 64 bytes long, it returns CTAP1_ERR_INVALID_PARAMETER.
8. The authenticator drops all trailing 0x00 bytes frompaddedNewPin to produce newPin.

9. The authenticator checks the length of newPin against the current minimum PIN length, returning
CTAP2_ERR_PIN_POLICY_VIOLATION if it is too short.

10. An authenticator MAY impose arbitrary, additional constraints on PINs. If newPin fails to satisfy such
additional constraints, the authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION.

11. The authenticator remembers newPin length internally as PINCodePointLength.

12. The authenticator stores LEFT (SHA-256 (newPin), 16) internally as CurrentStoredPIN, sets the
pinRetries counter to maximum count, and returns CTAP2_OK.

6.5.5.6. Changing existing PIN

The following operations are performed to change an existing PIN:

1. The Platform collects the current PIN (curPinUnicode) and new PIN (newPinUnicode) from the user as
Unicode characters in Normalization Form C.

2. Let platformCollectedNewPinLengthInCodePoints be the length in code points of newPinUnicode after
applying normalization.

1. If the minPINLength member of the authenticatorGetlnfo response is absent, then let
platformMinPINLengthinCodePoints be 4. (The default minimum value)

2. Else let platformMinPINLengthinCodePoints be the value of theminPINLength member of the
authenticatorGetInfo response.

3. If platformCollectedNewPinLengthinCodePoints is less than platformMinPINLengthinCodePoints then
the platform SHOULD display a "PIN too short" error message to the user.

4. Let "newPin" be the UTF-8 representation of newPinUnicode.
1. If the byte length of "newPin" is greater than the max UTF-8 representation limit of 63 bytes, then
the platform SHOULD display a "New PIN too long" error message to the user.
5. Let "curPin" be the UTF-8 representation of curPinUnicode.

1. If the byte length of "curPin" is greater than the max UTF-8 representation limit of 63 bytes, then
the platform SHOULD display a "Current PIN too long" error message to the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

3. Platform obtains the shared secret from the authenticator.

4. Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.
. subCommand: changePIN(0x04).

. keyAgreement: the platform key-agreement key.

2
3
4. pinHashEnc: The result of calling encrypt(shared secret, LEFT(SHA-256(curPin), 16)).
5

. newPinEnc: the result of callingencrypt(shared secret, paddedPin) where paddedPin is newPin padded
on the right with 0x00 bytes to make it 64 bytes long. (Since the maximum length of newPin is 63 bytes,

43/148

https://www.unicode.org/glossary/#character
https://unicode.org/reports/tr15/
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/authenticatorClientPIN

6.

there is always at least one byte of padding.)

pinUvAuthParam: the result of callingauthenticate(shared secret, newPinEnc || pinHashEnc).

5. Authenticator performs following operations upon receiving the request:

1.

15.
16.

17.
18.
19.

20.

21.

If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.
. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

. The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared

secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

. The authenticator calls verify(shared secret, newPinEnc || pinHashEnc, pinUvAuthParam)

1. If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

. The authenticator decrements the pinRetries counter by 1.

. The authenticator decrypts pinHashEnc usingdecrypt(shared secret, pinHashEnc) and verifies against

its internal stored LEFT (SHA-256 (curPin), 16).
1. If an error results, or a mismatch is detected, the authenticator performs the following operations:

1. Calls regenerate for the selected pinUvAuthProtocol.

2. The authenticator returns errors according to following conditions:

1. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

2. If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.

3. Else return CTAP2_ERR_PIN_INVALID error.

. The authenticator sets the pinRetries counter to maximum value.

. The authenticator calls decrypt(shared secret, newPinEnc) to produce paddedNewPin. If an error results,

it returns CTAP2_ERR_PIN_AUTH_INVALID.

. If paddedNewPin is NOT 64 bytes long, it returns CTAP1_ERR_INVALID_PARAMETER.

. The authenticator drops all trailing 0x00 bytes frompaddedNewPin to produce newPin.

. The authenticator checks the length of newPin against the current minimum PIN length, returning

CTAP2_ERR_PIN_POLICY_VIOLATION if it is too short.

. If the forcePINChange member of the authenticatorGetInfo response is true and LEFT (SHA-

256(newPin), 16) is equal to its internal storedLEFT (SHA-256 (curPin), 16) then authenticator
returns CTAP2_ERR_PIN_POLICY_VIOLATION.

. An authenticator MAY impose arbitrary, additional constraints on PINs. If newPin fails to satisfy such

additional constraints, the authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION.
The authenticator remembers newPin length internally as PINCodePointlLength.

The authenticator sets the value of theforcePINChange member of the authenticatorGetinfo response
to false,

The authenticator stores LEFT (SHA-256 (newPin), 16) internally as the new value ofCurrentStoredPIN.
The authenticator sets the pinRetries counter to maximum count.

The authenticator calls resetPinUvAuthToken() for all pinUvAuthProtocols supported by this
authenticator. (l.e. all existing pinUvAuthTokens are invalidated.)

The authenticator calls resetPersistentPinUvAuthToken() (all persistent permissions are cleared on pin
change).

The authenticator returns CTAP2_OK.

6.5.5.7. Operations to Obtain a pinUvAuthToken

Invoking one of the below operations only has to be performed once for the lifetime of thepinUvAuthToken.
Obtaining a pinUvAuthToken once allows high security without any additional roundtrips each time a subsequent
authenticator operation is invoked (except for the first key-agreement phase) and its overhead is minimal.

To obtain a pinUvAuthToken, the platform SHOULD use getPinUvAuthTokenUsingUvWithPermissions,
getPinUvAuthTokenUsingPinWithPermissions or getPinToken based on authenticator capabilities as returned by

authenticatorGetInfo, and considering the permissions that the platform intends to request:

getPinUvAuthTokenUsingUvWithPermissions and getPinUvAuthTokenUsingPinWithPermissions can only be

used if the pinUvAuthToken Option ID is present and true.

getPinUvAuthTokenUsingUvWithPermissions can only be used if theuv Option ID is present and true.

getPinUvAuthTokenUsingPinWithPermissions and getPinToken can only be used if theclientPin Option ID is

present and true.

44/148

» When requesting the be permission, getPinUvAuthTokenUsingUvWithPermissions can only be used if the
uvBioEnroll Option ID is present and true.

» When requesting the acfg permission, getPinUvAuthTokenUsingUvWithPermissions can only be used if the
uvAcfg Option ID is present and true.

» When requesting the mc or ga permissions, getPinUvAuthTokenUsingPinWithPermissions can only be used
if the noMcGaPermissionsWithClientPin Option ID is absent or set to false.

When both getPinUvAuthTokenUsingUvWithPermissions and getPinUvAuthTokenUsingPinWithPermissions can
be used, the platform SHOULD use getPinUvAuthTokenUsingUvWithPermissions and in case this fails, fall back
to using getPinUvAuthTokenUsingPinWithPermissions.

Expected platform behavior to obtain apinUvAuthToken is outlined in § 6.1.1 Platform Actions for
authenticatorMakeCredential (non-normative) and § 6.2.1 Platform Actions for authenticatorGetAssertion (non-

normative).

NOTE: Some permissions require the presence of therpId parameter, known as apermissions RP ID.
See also § 6.5.2.1 pinUvAuthToken State.

The following pinUvAuthToken permissions are defined:

Permission
name

Role Value RP ID Definition

This allows the pinUvAuthToken to be used for
mc MakeCredential 0x01 Required authenticatorMakeCredential operations with
the provided rpld parameter.

This allows the pinUvAuthToken to be used for
ga GetAssertion 0x02 Required authenticatorGetAssertion operations with the
provided rpId parameter.

This allows the pinUvAuthToken to be used
with the authenticatorCredentialManagement

Credential . command. The rpId parameter is optional, if it
cm 0x04 Optional) i
Management is present, the pinUvAuthToken can only be

used for Credential Management operations
on Credentials associated with that RP ID.

This allows the pinUvAuthToken to be used
with the authenticatorBioEnrollment command.
The rpId parameter is ignored for this
permission.

be Bio Enroliment 0x08 Ignored

This allows the pinUvAuthToken to be used

Large Blob with the authenticatorLargeBlobs command.

Ibw ; 0x10 Ignored . % .
Write The rpId parameter is ignored for this

permission.

a This allows the pinUvAuthToken to be used
Authenticator .))
acfg Confiquration 0x20 Ignored with the authenticatorConfig command. The
g rpId parameter is ignored for this permission.

This allows the persistentPinUvAuthToken to
be used with the

Persistent
Credential authenticatorCredentialManagement

pcmr Management 0x40 Ignored command. If this permission is present, the
Reac? Only persistentPinUvAuthToken can only be used

for Read Credential Management operations
on Credentials.

When a pinUvAuthToken is used with an operation that tests user presence, it is updated to remove all
permissions except lbw. If low was not originally requested then thepinUvAuthToken becomes permission-less
and cannot be used for future operations. However, the platform can fetch a fresh pinUvAuthToken in order to
perform any future operations.

If authenticatorClientPIN’s getPinToken subcommand is invoked, default permissions of mc and ga (value
0x03) are granted for the returned pinUvAuthToken. Other pinUvAuthToken permissions can only be acquired by
providing the permissions parameter to the getPinUvAuthTokenUsingPinWithPermissions (0x09) or
getPinUvAuthTokenUsingUvWithPermissions (0x06) subcommands.

Note: if default permissions are used, it is possible that the permissions RP ID is not set even though it is
required for some of the permissions. It will be set on first use of the pinUvAuthToken with an RP ID (formc
and ga only). default permissions are only used with the getPinToken (0x05) subcommand.

Following operations are performed to get pinUvAuthToken:
45/148

6.5.5.7.1. GETTING PINUVAUTHTOKEN USING GETPINTOKEN (SUPERSEDED)

« Platform collects PIN from the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

« Platform obtains the shared secret from the authenticator.

« Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

o pinUvAuthProtocol: as selected when getting the shared secret.

o subCommand: getPinToken (0x05).

o keyAgreement: the platform key-agreement key.

o pinHashEnc: the result of callingencrypt(shared secret, LEFT(SHA-256(PIN), 16)).
« Authenticator performs following operations upon receiving the request:
If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.
If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

o

o

o

If authenticatorClientPIN’s permissions parameter is present in the getPinToken (0x05)
subcommand, return CTAP1_ERR_INVALID_PARAMETER.

If authenticatorClientPIN’s rpId parameter is present in the getPinToken (0x05) subcommand,
return CTAP1_ERR_INVALID_PARAMETER.

o

If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

o

The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared
secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

o

If the authenticator has a display, request user consent for thedefault permissions. If this is not
approved, return CTAP2_ERR_OPERATION_DENIED.

o

The authenticator decrements the pinRetries counter by 1.

o

The authenticator decrypts pinHashEnc usingdecrypt and verifies against its internally stored
CurrentStoredPIN.

o

= [f an error results, or a mismatch is detected, the authenticator performs the following operations:

= Calls regenerate for the selected pinUvAuthProtocol.

= The authenticator returns errors according to following conditions:

= [f the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

= [f the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.

= Else return CTAP2_ERR_PIN_INVALID error.
o The authenticator sets the pinRetries counter to maximum value.

o If the value of theforcePINChange member of the authenticatorGetInfo response is true, authenticator
returns CTAP2_ERR_PIN_INVALID error.

NOTE: The above error value is for backwards compatibility with CTAP2.0 platforms where the
authenticator implements the forcePINChange feature as part of the setMinPINLength command. A
pinUvAuthToken MUST NOT be returned if PINCodePointLength is less than current minimum PIN
length. This is intended to force a user to change their PIN to one that conforms to the current
authenticator policy. A CTAP2.1 or later platform will check the forcePINChange member of the
authenticatorGetInfo response, and not invoke this command without forcing the user to change PIN
first.

o Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all pinUvAuthProtocols supported
by this authenticator. (l.e. all existing pinUvAuthTokens are invalidated.)

o Call beginUsingPinUvAuthToken(userlsPresent: false).

o If the noMcGaPermissionsWithClientPin option ID is present and set to false, or absent, then assign
the pinUvAuthToken the default permissions.

NOTE: If noMcGaPermissionsWithClientPin option ID is true, default permissions of mc and ga are
not given, but the token is still used by older CTAP 2.0 platforms for userVerificationMgmtPreview

and credentialMgmtPreview commands.

46/148

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/authenticatorClientPIN

o The authenticator returns the encrypted pinUvAuthToken for the specified pinUvAuthProtocol, i.e.
encrypt(shared secret, pinUvAuthToken).

6.5.5.7.2. GeTTING PINUVAUTHTOKEN USING GETPINUVAUTHTOKENUSINGPINWITHPERMISSIONS (CLIENTPIN)

This subCommand MUST be implemented if the authenticator includes bothclientPin and pinUvAuthToken
Option IDs set to true in the authenticatorGetInfo response.

1. Platform collects PIN from the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

2. Platform obtains the shared secret from the authenticator.

3. Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.
. subCommand: getPinUvAuthTokenUsingPinWithPermissions (0x09).

. keyAgreement: the platform key-agreement key.

2
3
4. pinHashEnc: the result of callingencrypt(shared secret, LEFT(SHA-256(PIN), 16)).
5

. permissions: mandatory, the permissions associated with this pinUvAuthToken.

NOTE: The platform SHOULD request only the permissions absolutely necessary.

6. rpId: Required for some permissions, optional for others.

4. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

3. If the authenticator receives a permissions parameter with value 0, return
CTAP1_ERR_INVALID_PARAMETER.

4. The below statements each relate a pinUvAuthToken permission to a given state for a
authenticatorGetInfo option ID. For each pinUvAuthToken permission present in the permissions
parameter, if the statement corresponding to the permission is currently true, terminate these steps and
return CTAP2_ERR_UNAUTHORIZED_PERMISSION. Undefined permissions present in the
permissions parameter are ignored.

= cm: credMgmt is false or absent.

[}
(on

be: biocEnrall is absent.
= |bw: largeBlobs is false or absent.
= acfg: authnrCfg is false or absent.

= mc: noMcGaPermissionsWithClientPin is present and set to true.

= ga:noMcGaPermissionsWithClientPin is present and set to true.

= pcmr: perCredMgmtRO is false or absent, or any otherpinUvAuthToken permission is requested.
. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

(6]

6. The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared
secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

7. If the authenticator has a display, request user consent for the requestedpermissions. If this is not
approved, return CTAP2_ERR_OPERATION_DENIED.

©

. The authenticator decrements the pinRetries counter by 1.
9. The authenticator decrypts pinHashEnc usingdecrypt and verifies against its internally stored
CurrentStoredPIN.

1. If an error results, or a mismatch is detected, the authenticator performs the following operations:

1. Calls regenerate for the selected pinUvAuthProtocol.

2. The authenticator returns errors according to following conditions:

1. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

2. If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.

3. Else return CTAP2_ERR_PIN_INVALID error.

10. The authenticator sets the pinRetries counter to maximum value.

47/148

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/authenticatorClientPIN

14.
15.
16.
17.

. If the value of theforcePINChange member of the authenticatorGetInfo response is true, authenticator

returns CTAP2_ERR_PIN_POLICY_VIOLATION. Platform on receiving such error response SHOULD
direct the user to change the PIN.

. If the value of the requestedpermissions is pcmr:

1. Assign pcmr permission to the persistentPinUvAuthToken.

2. The authenticator returns the encrypted persistentPinUvAuthToken for the specified
pinUvAuthProtocol, i.e. encrypt(shared secret, persistentPinUvAuthToken).

. Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all pinUvAuthProtocols supported

by this authenticator. (l.e. all existing pinUvAuthTokens are invalidated.)

Call beginUsingPinUvAuthToken(userlsPresent: false).

Assign the requested permissions to the pinUvAuthToken, ignoring any undefined permissions.
If the rpId parameter is present, associate the permissions RP ID with the pinUvAuthToken.

The authenticator returns the encrypted pinUvAuthToken for the specified pinUvAuthProtocol, i.e.
encrypt(shared secret, pinUvAuthToken).

6.5.5.7.3. GETTING PINUVAUTHTOKEN USING GETPINUVAUTHTOKENUSINGUVWITHPERMISSIONS (BUILT-IN USER VERIFICATION

METHODS)

This subCommand is only applicable when the authenticator supportsbuilt-in user verification methods. This
subCommand MUST be implemented if the authenticator returns both uv and pinUvAuthToken option IDs set to
true in the authenticatorGetlInfo response.

1. Platform obtains the shared secret from the authenticator.

2. Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

1.

pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: getPinUvAuthTokenUsingUvWithPermissions (0x06).

3. keyAgreement: the platform key-agreement key.

4. permissions: mandatory, the permissions associated with this pinUvAuthToken.

NOTE: The platform SHOULD request only the permissions absolutely necessary.

5. rpld: Required for some permissions, optional for others.

3. Authenticator performs following operations upon receiving the request:

1.

7.

If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

. If the authenticator receives a permissions parameter with value 0, return

CTAP1_ERR_INVALID_PARAMETER.

. The below statements each relate a pinUvAuthToken permission to a given state for a

authenticatorGetInfo option ID. For each pinUvAuthToken permission present in the permissions
parameter, if the statement corresponding to the permission is currently true, terminate these steps and
return CTAP2_ERR_UNAUTHORIZED_PERMISSION. The mc and ga permissions are always
considered authorized, thus they are not listed below. Undefined permissions present in the

permissions are ignored.
= cm: credMgmt is false or absent.
= be: uvBioEnroll is false or absent.
= |bw: largeBlobs is false or absent.
= acfg: uvAcfg is false or absent.
= pcmr: perCredMgmtRO is false or absent, or any otherpinUvAuthToken permission is requested.

NOTE: Some authenticators with multiple built-in user verification methods may wish to support
the uvBioEnroll and authnrCfg features that enable the getPinUvAuthTokenUsingUvWithPermissions
subcommand to return the be and acfg permissions, allowing the platform to enroll fingerprints or
perform authenticatorConfig subCommands based, e.g., on a built-in PIN or other modality.

. If abuilt-in user verification methodis supported but not configured, the authenticator returns

CTAP2_ERR_NOT_ALLOWED.

. If preferredPlatformUvAttempts > 1 then letinternalRetry be false. This indicates that the platform will

try invoking this sub command preferably about preferredPlatformUvAttempts times. Else let
internalRetry be true.
If the uvRetries counter is 0, return CTAP2_ERR_UV_BLOCKED error.

48/148

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/authenticatorClientPIN

15.
16.

. If the authenticator has a display, request user consent for the requestedpermissions. If this is not

approved, return CTAP2_ERR_OPERATION_DENIED.

. Let uvState be the result of callingperformBuiltinUv(internalRetry)

. If uvState iserror:

1. If the error reason is a user action timeout, then return CTAP2_ERR_USER_ACTION_TIMEOUT.
2. If the uvRetries counter is 0, return CTAP2_ERR_UV_BLOCKED.
3. Otherwise, return CTAP2_ERR_UV_INVALID.

NOTE: The platform, upon receipt of CTAP2_ERR_UV_INVALID, SHOULD check the
uvRetries value using authenticatorClientPIN’s getUVRetries subCommand. If uvRetries > 0 and
preferredPlatformUvAttempts > 1, platforms can materialize a Ul to inform the user (if
appropriate) of the number of remaining retries remaining before user verification is blocked, in
conjunction with retrying getPinUvAuthTokenUsingUvWithPermissions. If either the platform
receives CTAP2_ERR_UV_BLOCKED or uvRetries is 0, and clientPin option ID is set to true,
then the platform MAY fall back to invoking getPinUvAuthTokenUsingPinWithPermissions.

. If the value of the requestedpermissions is pcmr:

1. Assign pcmr permission to the persistentPinUvAuthToken.

2. The authenticator returns the encrypted persistentPinUvAuthToken for the specified
pinUvAuthProtocol, i.e. encrypt(shared secret, persistentPinUvAuthToken).

. Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all pinUvAuthProtocols supported

by this authenticator. (l.e. all existing pinUvAuthTokens are invalidated.)

. If the employed built-in user verification method supplied evidence of user interaction, then call

beginUsingPinUvAuthToken(userlsPresent: true).

NOTE: Whether or not a particularbuilt-in user verification method supplies user presence can
vary between authenticators.

. Otherwise (implying that user presence was not collected), call

beginUsingPinUvAuthToken(userlsPresent: false).

Assign the requested permissions to the pinUvAuthToken, ignoring any undefined permissions.

If the rpId parameter is present, use its value as the permissions RP ID and associate it with the
pinUvAuthToken.

. The authenticator returns the encrypted pinUvAuthToken for the specified pinUvAuthProtocol, i.e.

encrypt(shared secret, pinUvAuthToken).

49/148

—
Generate ECDH authenticatorKeyAgreementKey (a, G).
Let oG represents its public key.
Generate random "pinToken" (multiple of 16 bytes) at powerup
<+

TientPIN

pinProtocol = 1, subCommand =1 >
Getting Retries
R authenticatorClientPIN
retries = retriesCount 77777
lientPIN
. pinProtocol = 1, subCommand = 2 >
Getting Shared
Secret K e ___ authenticatorClientPIN.
keyAgreement = aG. T
—
Generate ECDH platformKeyAgreementKey (b, bG).
Let bG represents its public key.
Generate sharedSecret = SHA-256((baG) x)
-
authenticatorClientPIN
pinProtocol = 1, subCommand = 3,
——»

keyAgreement = bG, newPinEnc = AES256-CBC(sharedSecret, IV=0, newPin),
pinAuth = LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16)
) Generate sharedSecret = SHA-256((abG).x),
Set New Pin Validate pinAuth, Decrypt newPinEnc, checks newPin length,
Store LEFT(SHA-256(newPin), 16)

. authenticatorClientN
CTAP.OK T TTTTTTToTTTTTmTmmTm e
authenticatorClientPIN
pinProtocol = 1, subCommand = 4,
- b6, = AES256-CBC 1V=0, LEFT(SHA-256(curPin), 16)),
newPinEnc = AES256-CBC(sharcdSccret, IV=0, newPin),
pinAuth = LEFT(HMAC-SHA- newPinEnc |l pis 16) |
Generate sharedSecret = SHA-256(abG).x),
Change Pin Validate pinAuth, Decrypt pinHashEnc and validate it,
Decrypt newPinEnc, Checks newPin minimum length,
Store LEFT(SHA-256(newPin), 16)
. athenticatorClient N
CIAP.OK T TTTTTTTTToTommoomoooeen
authenticatorClientPIN
pi = 1, subCommand = 5, keyAgreement = bG,
pinHashEnc = AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(PIN), 16))
Getting Pin
Generate sharedSecret = SHA-256((abG).x),
Token Decrypts pinHashEnc and validate it
L authenticatorClien® N
pinTokenEnc = AES256_CBC(sharedSecet, IV=0, pinToken) ~~~ =~~~ """ ""T7T7777
authenticatorMakeCredential
e RPID = rpld, CLIENT_DATA_HASH = clientDataHash, e
pinAuth = LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16), pinProtocol = 1
e authenticatorMakeCredential

uvitrue

. . authenticatorGetAssertion
Using Pin Token =~ +———— RPID = rpld, CLIENT_DATA_HASH = clientDataHash, >
pinAuth = LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16), pinProtocol = 1

€ m e authenticatorGetAssertion

authenticatorGetAssertion o
RPID = rpld, CLIENT_DATA_HASH = clientDataHash

authenticatorGetAssertion
uv:false

Figure 1 Client PIN

6.5.6. PIN/UV Auth Protocol One"

This section specifies a concrete instance of the abstractPIN/UV auth protocol interfaces. It is given the numeric
identifier 1, and that is the value to pass in thepinUvAuthProtocol parameter in various commands, to select it.

NOTE: This PIN protocol was essentially defined in CTAP2.0, the difference between the original definition
and this updated definition is that originally the pinToken (herein termed a pinUvAuthToken) length was
unlimited. The definition given here states specific lengths for pinUvAuthTokens in both this PIN/UV Auth
Protocol 1, and in PIN/UV Auth Protocol 2.

This PIN/UV auth protocol maintains the following state:

« Key agreement key: a P-256 private key, x, and the associated public point xB, which is the result of a
scalar-multiplication of the P-256 base point, B, by the private key.

« pinUvAuthToken, a random, opaque byte string that MUST be either 16 or 32 bytes long. This is generated
afresh at power-on and reset when specified below.

This PIN/UV auth protocol defines the following internal functions:
50/148

ecdh(peerCoseKey) — sharedSecret | error
1. Parse peerCoseKey as specified for getPublicKey, below, and produce a P-256 point, Y. If
unsuccessful, or if the resulting point is not on the curve, return error.

2. Calculate xY, the shared point. (l.e. the scalar-multiplication of the peer’s point,Y, with the localprivate
key agreement key.)
3. Let Z be the 32-byte, big-endian encoding of the x-coordinate of the shared point.
4. Return kdf(Z).
kdf(Z) — sharedSecret
Return SHA-256(2)

(See [REC6090] Section 4.1 and appendix (C.2) of[SP800-56A] for more ECDH key agreement protocol details
and key representation.)

The operations of PIN/UV auth protocol 1 are defined as follows:
initialize()
Calls regenerate followed by resetPinUvAuthToken.

regenerate()
Generate a fresh, random P-256 private key, x, and compute the associated public point.

resetPinUvAuthToken()
1. Generate a fresh, random, pinUvAuthToken of either 16 or 32 bytes in length.

2. Associate pinUvAuthToken state variables with the newpinUvAuthToken, initialized per § 6.5.2.1
pinUvAuthToken State.

getPublicKey()
Return a COSE_Key with the following header parameters:

« 1 (kty) =2 (EC2)
» 3 (alg) = -25 (although this is not the algorithm actually used)
« -1 (crv) =1 (P-256)

» -2 (x) = 32-byte, big-endian encoding of the x-coordinate ofxB (the key agreement key's public point)
« -3 (y) = 32-byte, big-endian encoding of the y-coordinate ofxB
encapsulate(peerCoseKey) — (coseKey, sharedSecret) | error
1. Let sharedSecret be the result of calling ecdh(peerCoseKey). Return any resulting error.
2. Return (getPublicKey(), sharedSecret)

decapsulate(peerCoseKey) — sharedSecret | error
Return ecdh(peerCoseKey)

encrypt(key, demPlaintext) — ciphertext
Return the AES-256-CBC encryption of demPlaintext using an all-zero IV. (No padding is performed as the
size of demPlaintext is required to be a multiple of the AES block length.)
decrypt(key, demCiphertext) — plaintext | error
If the size of demCiphertext is not a multiple of the AES block length, return error. Otherwise return the AES-
256-CBC decryption of demCiphertext using an all-zero IV.
authenticate(key, message) — signature
Return the first 16 bytes of the result of computing HMAC-SHA-256 with the given key and message.
verify(key, message, signature) — success | error
1. If the key parameter value is the currentpinUvAuthToken and it is not in use, then return error.

2. Compute HMAC-SHA-256 with the given key and message. Return success if signature is 16 bytes and
is equal to the first 16 bytes of the result, otherwise return error.

6.5.7. PIN/UV Auth Protocol Two

This section provides a PIN/UV auth protocol that is intended to aid FIPS[CMVP] certification of authenticators. It
is given the numeric identifier 2, and that is the value to pass in thepinUvAuthProtocol parameter in various
commands, to select it.

NOTE: support for this is mandatory in some cases. See§ 9 Mandatory features.

The length of the pinUvAuthToken for PIN/UV auth protocol two MUST be 32 bytes. Otherwise, it inherits all the
behavior of PIN protocol one and overrides only these functions:

kdf(Z) — sharedSecret
Return

HKDF-SHA-256(salt = 32 zero bytes, IKM = Z, L = 32, info = "CTAP2 HMAC key") ||
HKDF-SHA-256(salt = 32 zero bytes, IKM = Z, L = 32, info = "CTAP2 AES key")
(see [REC5869] for the definition of HKDF).

NOTE: This is two separate invocations of HKDF whose results are concatenated together. It can NOT
be equivalently performed using a single invocation with L=64.

resetPinUvAuthToken()
51/148

1.
2.

encrypt(
1.

2.
3.

4.

decrypt(
1.

2.
3.
4.

Generate a fresh, random, 32-byte, pinUvAuthToken.

Associate pinUvAuthToken state variables with the newpinUvAuthToken, initialized per § 6.5.2.1
pinUvAuthToken State.

key, demPlaintext) — ciphertext

Discard the first 32 bytes of key. (This selects the AES-key portion of theshared secret.)

Let iv be a 16-byte, random bytestring.

Let ct be the AES-256-CBC encryption of demPlaintext using key and iv. (No padding is performed as
the size of demPlaintext is required to be a multiple of the AES block length.)

Return iv || ct.

key, demCiphertext) — plaintext | error
Discard the first 32 bytes of key. (This selects the AES-key portion of theshared secret.)

If demPlaintext is less than 16 bytes in length, return an error
Split demPlaintext after the 16 byte to produce two subspans, iv and ct.

Return the AES-256-CBC decryption of ct using key and iv.

authenticate(key, message) — signature

1.

2.

If key is longer than 32 bytes, discard the excess. (This selects the HMAC-key portion of theshared
secret. When key is the pinUvAuthToken, it is exactly 32 bytes long and thus this step has no effect.)

Return the result of computing HMAC-SHA-256 on key and message.

verify(key, message, signature) — success | error

1.
2.

If the key parameter value is the currentpinUvAuthToken and it is not in use, then return error.

If key is longer than 32 bytes, discard the excess. (This selects the HMAC-key portion of theshared
secret. When key is the pinUvAuthToken, it is exactly 32 bytes long and thus this step has no effect.)

. Compute HMAC-SHA-256 with the given key and message. Return success if the signature is equal to

the result, otherwise return an error.

6.5.8. PRF values used

Throughout this protocol, the pseudo-random function defined by HMAC-SHA-256 and the pinUvAuthToken is
evaluated for various values in order to authenticate requests from the platform. It is important that these values

uniquely

identify the salient parameters of the requests that they authenticate otherwise a PRF output from one

context could be observed by an attacker and replayed in a different context.

(It is a known weakness that, within the scope of a single pinUvAuthToken value, requests may be reordered or

replayed

For clarit

by an attacker.)

y, all the patterns of values used by this protocol are enumerated in the following table:

Context Pattern of PRF argument
authenticatorMakeCredential 32 arbitrary bytes
authenticatorGetAssertion 32 arbitrary bytes

authenticatorClientPIN 32x0xff || 0608 || 32-bit value || CBOR array
authenticatorBioEnrollment 0101 || CBOR map

0102 || CBOR map
0104
0105 || CBOR map

authenticatorCredentialManagement 01

authenticatorLargeBlobs

02

04 || CBOR map

06 || CBOR map

32x0xff || 0c00 || 32-bit value || SHA-256(contents ofset byte string, i.e.
notincluding an outer CBOR tag with major type two)

authenticatorConfig 32x0xff || 0d || 8-bit value || CBOR map

In order to avoid collisions with values already used the following pattern will be used for future commands: 32
0xff bytes, followed by the command code as a single byte, followed by an unambiguous substructure defined by
each command.

The lead

ing Oxff bytes in the pattern separate the value from any possible value used in an

authenticatorMakeCredential or authenticatorGetAssertion command. As motivation, consider the
authenticatorBioEnrollment command which does not use this pattern. The argument to
authenticatorGetAssertion is a clientDataHash which, in a WebAuthn context, is the hash of a potentially
predictable JSON string containing an attacker-controlled nonce. Offline, an attacker can iterate over many
nonces until they find one which will produce a clientDataHash that starts with 8101al, is followed by a CBOR

string or
requires
for an au
enrolime

integer not equal to three, and then by a CBOR value that exactly fills the remaining space. This
around 232 offline hash evaluations but, if the attacker can observe the PRF output sent by the platform
thenticatorGetAssertion command using that nonce, then they can replay it to start a fingerprint

nt as the PRF argument also matches the pattern for enrolling a fingerprint. (Although note that more

work is required to complete the enroliment as that requires further commands to be authenticated.)

52/148

Resetting an authenticator is a potentially destructive operation. Authenticators MAY thus choose, for each
transport they support, whether this command will be supported when received on that transport. For example,
an authenticator may choose not to support this command over NFC, fearing that coincidentally nearby readers
may send malicious reset commands.

However this command SHOULD be supported on at least onetransport. If the USB HID transport is supported,
then this command SHOULD be supported on that transport. If this command is not supported, the vendor MUST
provide an alternate way for users to perform a reset of the device back to a factory default state.

Resetting the authenticator back to afactory default state is done by performing at least the following steps:

Invalidates all generated credentials, including those created over CTAP1/U2F.

Erases all discoverable credentials.

Resets the serialized large-blob array storage, if any, to theinitial serialized large-blob array value.

Generate a new 128-bit random value for thedevice identifier.

Generate a new 128-bit random value forcredential store state.

Disables those features that are denoted as being subject to disablement by authenticatorReset:

o Enterprise attestation

Resets those features that are denoted as being subject to reset by authenticatorReset:

o Always Require User Verification

o Set Minimum PIN Length
o Persistent PUAT state

o Long touch for reset
Additionally:

« In order to prevent an accidental triggering of this mechanism.evidence of user interaction is required.

« In case of authenticators with no display, request MUST have come to the authenticator within 10 seconds
of powering up of the authenticator.

« If the Long touch for resetfeature is present and enabled, then user presence confirmation requires a long
touch.

If all conditions are met, the authenticator returns CTAP2_OK. If this command is disabled for the transport used,
the authenticator returns CTAP2_ERR_OPERATION_DENIED. If user presence is explicitly denied, the
authenticator returns CTAP2_ERR_OPERATION_DENIED. If a user action timeout occurs, the authenticator
returns CTAP2_ERR_USER_ACTION_TIMEOUT. If the request comes after 10 seconds of powering up, the
authenticator returns CTAP2_ERR_NOT_ALLOWED.

This command is used by the platform to provision/enumerate/delete bio enroliments in the authenticator.

It takes the following input parameters:

Data
Parameter name type Required? Definition
Unsigned The user verification modality being requested
modality (0x01) 9 Optional user vertiicat 1y being requ
Integer
Unsigned The authenticator user verification sub command
subCommand (0x02) 9 Optional . _I P 3
Integer currently being requested
Map of subCommands parameters. This parameter
subCommandParams CBOR . P) P P
(0x03) Ma Optional MAY be omitted when the subCommand does not
8 take any arguments.
pinUvAuthProtocol Unsigned Ovtional PIN/UV protocol version chosen by the platform.
(0x04) Integer P
pinUvAuthParam Byte Ovtional The output of calling authenticate on some context
(0x05) String P specific to the subcommand.
Get the user verification type modality. This MUST
getModality (0x06) Boolean Optional MSLVEITatan L o

be set to true.
The type of modalities supported are as under:

modality Name modality Number

53/148

modxitypName 0x01 modality Number

The list of sub commands for fingerprint(0x01) modality is:

subCommand Name subCommand Number
enrollBegin 0x01
enrollCaptureNextSample 0x02
cancelCurrentEnrollment 0x03
enumerateEnroliments 0x04
setFriendlyName 0x05
removeEnrollment 0x06
getFingerprintSensorinfo 0x07

subCommandParams Fields:

Field name Data type Required? Definition
templateld (0x01) Byte String Optional Template Identifier.
templateFriendlyName (0x02) String Optional Template Friendly Name.
timeoutMilliseconds (0x03) Unsigned Integer Optional Timeout in milliSeconds.

On success, the authenticator returns the following structure in its response:

Data
Parameter name type Required? Definition
Unsigned The user verification modality.
modality (0x01) 9 Optional ¥
Integer
Indicates the type of fingerprint
) o Unsigned ; sensor. For touch type sensor, its
fingerprintKind (0x02) Optional))
Integer value is 1. For swipe type sensor
its value is 2.
maxCaptureSamplesRequiredForEnroll Unsigned Ovtional Indicates the maximum good
(0x03) Integer P samples required for enroliment.
Byte Template Identifier.
templateld (0x04) Y Optional P
String
Unsigned Last enrollment sample status.
lastEnrollSampleStatus (0x05) '9 Optional P .
Integer
Unsigned Number of more sample required
remainingSamples (0x06) '9 Optional . P qut
Integer for enroliment to complete
CBOR) Array of templatelnfo’s
It latelnfos (0x07 Optional
emplatelnfos (0x07) ARRAY ptiona
Unsianed Indicates the maximum number of
maxTemplateFriendlyName (0x08) Integ £ Optional bytes the authenticator will accept
g as a templateFriendlyName.
Templatelnfo definition:
Field name Data type Required? Definition
templateld (0x01) Byte String Required Template Identifier.
templateFriendlyName (0x02) String Optional Template Friendly Name.
lastEnrollSampleStatus types:
lastEnrollISampleStatus
lastEnroliISampleStatus Name P Definition
Value
Good
CTAP2_ENROLL_FEEDBACK_FP_GOOD 0x00 fingerprint
capture.

54/148

CTAP2 EMBRISHRRIRSRIuE RahRO_HIGH lastEnrollggmpleStatus ;‘gg‘ﬁg‘ﬁ%_

Value

Fingerprint

CTAP2_ENROLL_FEEDBACK_FP_TOO_LOW 0x02
was too low.

Fingerprint

CTAP2_ENROLL_FEEDBACK_FP_TOO_LEFT 0x03
was too left.

Fingerprint

CTAP2_ENROLL_FEEDBACK_FP_TOO_RIGHT 0x04 .
was too right.

Fingerprint

CTAP2_ENROLL_FEEDBACK_FP_TOO_FAST 0x05
was too fast.

Fingerprint

CTAP2_ENROLL_FEEDBACK_FP_TOO_SLOW 0x06
was too slow.

Fingerprint
CTAP2_ENROLL_FEEDBACK_FP_POOR_QUALITY 0x07 was of poor
quality.

Fingerprint
CTAP2_ENROLL_FEEDBACK_FP_TOO_SKEWED 0x08 was too
skewed.

Fingerprint
CTAP2_ENROLL_FEEDBACK_FP_TOO_SHORT 0x09 was too
short.

Merge failure
CTAP2_ENROLL_FEEDBACK_FP_MERGE_FAILURE 0x0A of the
capture.

Fingerprint
CTAP2_ENROLL_FEEDBACK_FP_EXISTS 0x0B already
exists.

(this error
(unused) 0x0C number is
available)

User did not
touch/swipe
the
authenticator.

CTAP2_ENROLL_FEEDBACK_NO_USER_ACTIVITY 0x0D

User did not
lift the finger
off the
sensor.

CTAP2_ENROLL_FEEDBACK_NO_USER_PRESENCE_TRANSITION 0x0E

NOTE: In order to support the authenticator performingauthenticatorMakeCredential or
authenticatorGetAssertion immediately after bio enrollment, authenticators SHOULD NOT expire the
pinUvAuthToken at the completion of bio enroliment.

6.7.1. Feature detection

The bioEnroll option ID in the authenticatorGetInfo response defines feature support detection for this feature.

6.7.2. Get bio modality
Following operations are performed to get bio modality supported by the authenticator:
» Platform sends authenticatorBioEnrollment command with following parameters:

o getModality (0x06): true.

« Authenticator returns authenticatorBioEnroliment response with following parameters:

o modality (0x01): It represents the type of modality the authenticator supports. For fingerprint, its value is
1.

6.7.3. Get fingerprint sensor info

Following operations are performed to get fingerprint sensor information:
55/148

» Platform sends authenticatorBioEnroliment command with following parameters:

o modality (0x01): fingerprint (0x01).
o subCommand (0x02): getFingerprintSensorinfo (0x07)

« Authenticator returns authenticatorBioEnrollment response with following parameters:
o fingerprintKind (0x02):

= For touch type fingerprints, its value is 1.
» For swipe type fingerprints, its value is 2.

o maxCaptureSamplesRequiredForEnroll (0x03): Indicates the maximum good samples required for
enrollment.

o maxTemplateFriendlyName (0x08): Indicates the maximum number of bytes the authenticator will
accept as a templateFriendlyName.

6.7.4. Enrolling fingerprint
Following operations are performed to enroll a fingerprint:

« Platform gets pinUvAuthToken from the authenticator with thebe permission.

» Platform sends authenticatorBioEnrollment command with following parameters to begin the enroliment:

o

modality (0x01): fingerprint (0x01).
subCommand (0x02): enrollBegin (0x01).

o

o

subCommandParams (0x03): Map containing following parameters

» timeoutMilliseconds (0x03) (optional): timeout in milliseconds

o

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || enroliBegin (0x01) ||
subCommandParams).

o

» Authenticator on receiving such request performs following procedures.

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

o

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

o

o

The authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enrollBegin (0x01)
subCommandParams, pinUvAuthParam)

= |f the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

o

The authenticator verifies that the token hasbe permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there is no space available, the authenticator returns CTAP2_ERR_FP_DATABASE_FULL.

o

o

The authenticator cancels any unfinished ongoing enroliment.

o

The authenticator generates templateld for new enroliment.

o

The authenticator sends the command to the sensor to capture the sample.

o

The authenticator returns authenticatorBioEnroliment response with following parameters:

= templateld (0x04): template identifier of the new template being enrolled.
= lastEnrollSampleStatus (0x05) : Status of enroliment of last sample.
= remainingSamples (0x06) : Number of sample remaining to complete the enroliment.

« Platform sends authenticatorBioEnrollment command with following parameters to continue enrollment in a
loop till remainingSamples is zero or the authenticator errors out with unrecoverable error or platform wants
to cancel current enroliment:

o Platform sends authenticatorBioEnrollment command with following parameters

= modality (0x01): fingerprint (0x01).
= subCommand (0x02): enrollCaptureNextSample (0x02).

= subCommandParams (0x03): Map containing following parameters

= templateld (0x01) : template identifier platform received from enrollBegin subCommand.
= timeoutMilliseconds (0x03) (optional): timeout in milliseconds

= pinUvAuthProtocol (0x04): as selected when getting the shared secret.

56/148

= pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) ||
enrollCaptureNextSample (0x02) || subCommandParams).

o Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the
operation by returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

The authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enrollCaptureNextSample
(0x02) || subCommandParams, pinUvAuthParam)

= [f the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

The authenticator verifies that the pinUvAuthToken has be permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there is no space available, authenticator returns CTAP2_ERR_FP_DATABASE_FULL.

If fingerprint is already present on the sensor, authenticator waits for user to lift finger from the
sensor.

The authenticator sends the command to the sensor to capture the sample.

The authenticator returns authenticatorBioEnrollment response with following parameters:

= lastEnrollSampleStatus (0x05) : Status of enrollment of last sample.

= remainingSamples (0x06) : Number of sample remaining to complete the enroliment.

6.7.5. Cancel current enroliment

Following operations are performed to cancel current enroliment:

« Platform sends authenticatorBioEnroliment command with following parameters:

°

o

modality (0x01): fingerprint (0x01).

subCommand (0x02): cancelCurrentEnroliment (0x03).

« Authenticator on receiving such command, cancels current ongoing enroliment, if any, and returns
CTAP2_OK.

6.7.6. Enumerate enrollments

Following operations are performed to enumerate enrollments:

o Platform gets pinUvAuthToken from the authenticator with thebe permission.

» Platform sends authenticatorBioEnrollment command with following parameters:

°

modality (0x01): fingerprint (0x01).

subCommand (0x02): enumerateEnroliments (0x04).

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || enumerateEnroliments
(0x04)).

» Authenticator on receiving such request performs following procedures.

o

o

o

o

o

o

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

The authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enumerateEnroliments (0x04),
pinUvAuthParam)

= |f the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

The authenticator verifies that the token hasbe permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there are no enroliments existing on the authenticator, it returns CTAP2_ERR_INVALID_OPTION.

The authenticator returns authenticatorBioEnrollment response following parameters:

» templatelnfos (0x07) : Array of templatelnfo’s for all the enroliments available on the authenticator.

6.7.7. Rename/Set FriendlyName

57/148

Following operations are performed to rename a fingerprint:

o Platform gets pinUvAuthToken from the authenticator with thebe permission.

« Platform sends authenticatorBioEnrollment command with following parameters:

o

o

o

o

o

modality (0x01): fingerprint (0x01).
subCommand (0x02): setFriendlyName (0x05).

subCommandParams (0x03): Map containing following parameters

= templateld (0x01) : template identifier.

» templateFriendlyName (0x02): Friendly name of the template. (The maximum size SHOULD be the
lessor of 64 bytes or the value of maxTemplateFriendlyName)

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || setFriendlyName (0x05) ||
subCommandParams).

« Authenticator on receiving such request performs following procedures.

o

o

o

o

o

o

o

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

If templateFriendlyName is longer than specified by maxTemplateFriendlyName, return an error e.g.,
CTAP1_ERR_INVALID_LENGTH.

The authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || setFriendlyName (0x05) ||
subCommandParams, pinUvAuthParam)

= |f the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

The authenticator verifies that the token hasbe permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there are no enrolliments existing on the authenticator for the passed templateld, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an existing enrollment with that identifier, rename its friendly name and return CTAP2_OK.

6.7.8. Remove enroliment

Following operations are performed to remove a fingerprint:

« Platform gets pinUvAuthToken from the authenticator with thebe permission.

« Platform sends authenticatorBioEnrollment command with following parameters:

o

o

o

o

o

modality (0x01): fingerprint (0x01).
subCommand (0x02): removeEnroliment (0x06).

subCommandParams (0x03): Map containing following parameters

= templateld (0x01) : template identifier.

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || removeEnroliment (0x06) ||
subCommandParams).

« Authenticator on receiving such request performs following procedures.

o

o

o

o

o

o

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

The authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || removeEnroliment (0x06)
subCommandParams, pinUvAuthParam)

= [f the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

The authenticator verifies that the token hasbe permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there are no enrollments existing on the authenticator for passed templateld, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an exiting enrollment with passed in templatelnfo, delete that enroliment and return
CTAP2_OK.

58/148

Platform Authenticator

authenticatorGetinfo >
Feature
Detection authenticatorGetinfo

["FIDO_2_1_PRE"), { "userVerificationMgmt"true/false }

authenticatorUserVerification
getModality = true

GetModality . . .
authenticatorUserVerification

modality =fingerprint

authenticatorUserVerification

GetFingerprint modality=fingerprint, subCommand = getFingerprintSensorinfo
Sensorinfo authenticatorUserVerification

fingerprintKind = <Swipe/Touch>, maxCaptureSamplesRequiredForEnroll = <Unsigned Integer>

authenticatorUserVerification
modality=fingerprint, subCommand = enrollBegin,
subCommandParams = {timeoutMilliseconds(optional) = <Unsigned Integer>},
pinProtocol = 1, pinAuth = LEFT(HMAC-SHA-256(pinToken, fingerprint || enrollBegin|| subCommandParams), 16)
Begin Enroll Validate pTAuth,
Capture sample
authenticatorUserVerification -
fffffffffffffffffffff templateld = <templateld>, lastEnrollSampleStatus = <StatusLastEnroll>, -~ ------------——-——~
remainingSamples = <Unsigned Integer>

authenticatorUserVerification
modality=fingerprint, subCommand = enrollCaptureNextSample,
subCommandParams = {templateld = <templateld>, timeoutMilliseconds(optional) = <Unsigned Integer>}, —»-
pinProtocol = 1,
pinAuth = LEFT(HMAC-SHA-256(pinToken, fingerprint || enrollCaptureNextSample || subCommandParams), 16)

1
Capture Samples Validate pinAuth,
Validate templateld,
Capture sample
J

<
77777777777777 authenticatorUserVerification e
lastEnrollSampleStatus = <StatusLastEnroll>, remainingSamples = <Unsigned Integer>
authenticatorUserVerification
modality=fingerprint, subCommand = cancelCurrentEnrollment >
En‘r:jll?r?elnt Cancel enrollment
777777777777777777777777777777777777777 authenticatorUserVerificaton |
CTAP2_OK
authenticatorUserVerification
modality=fingerprint, subCommand = enumerateTemplates, >
pinProtocol = 1, pinAuth = LEFT(HMAC-SHA-256(pinToken, fingerPrint || enumerateTemplates), 16)
Enumerate Validate pinAuth
Templates
77777 authenticatorUserVerification -
templatelnfos = [Sequence of {tempalteld = <templateld>, templateFriendlyName = <templateFriendlyName>}]
authenticatorUserVerification
L modality=fingerprint, subCommand = setFriendlyName, >
subCommandParams = {templateld = <Byte Array>, templateFriendlyName = <Text String>}
pinProtocol = 1, pinAuth = LEFT(HMAC-SHA-256(pinToken, fingerprint || setFriendlyname || subCommandParams), 16)
Rename/Set T
FriendlyName Validate pinAuth
<!
777777777777777777777777777777777777777 authenticatorUserVerificaton |
CTAP2_OK
authenticatorUserVerification
. modality=fingerprint, subCommand = removeTemplate, >
subCommandParams = {templateld = <Byte Array>},
pinAuth = LEFT(HMAC-SHA-256(pinToken, fingerprint || removeTemplate || subCommandParams), 16), pinProtocol = 1
Remove . j
Template Validate pinAuth

<

authenticatorUserVerification

CTAP2_OK

Figure 2 User Verification Modality - Fingerprint

This command is used by the platform to managediscoverable credentials on the authenticator.

NOTE: support for this command is mandatory in some cases. See§ 9 Mandatory features.

It takes the following input parameters:

Parameter name Data type Definition

59/148

SPGameihame) | aRdype

subCommand currently be'Bgf quested

Integer
subCommandParams Map of subCommands parameters.
CBOR Map P P
(0x02)
pinUvAuthProtocol Unsigned PIN/UV protocol version chosen by the platform.
(0x03) Integer
pinUvAuthParam) The output of calling authenticate on some context specific to
Byte String
(0x04) the subcommand.

The list of sub commands for credential management is:

subCommand Name

subCommand Number

getCredsMetadata
enumerateRPsBegin
enumerateRPsGetNextRP

enumerateCredentialsBegin

enumerateCredentialsGetNextCredential

deleteCredential

updateUserInformation

subCommandParams Fields:

Field name

0x01

0x02

0x03

0x04

0x05

0x06

0x07

Data type

Definition

rpIDHash (0x01)
credentiallD (0x02)

user (0x03)

Byte String
PublicKeyCredentialDescriptor

PublicKeyCredentialUserEntity

On success, authenticator returns the following structure in its response:

Parameter name

Data type

RP ID SHA-256 hash
Credential Identifier

User Entity

Definition

existingResidentCredentialsCount (0x01)

maxPossibleRemainingResidentCredentialsCount
(0x02)

p (0x03)

rpIDHash (0x04)

totalRPs (0x05)

user (0x06)
credentiallD (0x07)

publicKey (0x08)

totalCredentials (0x09)

credProtect (0x0A)

largeBlobKey (0x0B)

thirdPartyPayment (0x0C)

Unsigned Integer

Unsigned Integer

PublicKeyCredentialRpEntity

Byte String

Unsigned Integer

PublicKeyCredentialUserEntity
PublicKeyCredentialDescriptor

COSE_Key

Unsigned Integer

Unsigned Integer

Byte string

Boolean

60/148

Number of existing
discoverable credentials
present on the authenticator.

Number of maximum possible
remaining discoverable
credentials which can be
created on the authenticator.

RP Information
RP ID SHA-256 hash

total number of RPs present
on the authenticator

User Information
PublicKeyCredentialDescriptor
Public key of the credential.

Total number of credentials
present on the authenticator
for the RP in question

Credential protection policy.

Large blob encryption key.

Whether the credential is third-

party payment enabled, if
supported by the authenticator

https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity

Here are some example scenarios where credential management might be used:

The platform may want to do actual credential management, e.qg. list, update, or delete credentials. In this
case, a permissions RP ID is not associated with thepinUvAuthToken and all credentials can be
enumerated and retrieved.

The platform may need to fetch the public key of a credential for use in some protocols like SSH. When
making the authenticatorGetAssertion request, a permissions RP ID is present (because it is required for
the ga permission) but now thecm permission will only allow you to retrieve credentials related to that
authenticatorGetAssertion request. This works because you do not need access to all credentials, just
the ones relevant for the request’s associated RP ID.

The platform may want to garbage collect large-blobs because it finds that there is insufficient space to
store a desired blob. Since it's possible that a credential has been deleted without also deleting its large
blob, the platform may be able to free up enough space with garbage collection. In this case, additional
user interaction may be needed because a permissions RP ID needs to be associated with the
pinUvAuthToken for the ga or mc permission to be obtained, but a full enumeration needs thecm
permission without any RP ID limitation. Thus the user may need to perform user verification a second
time if garbage collection of just the single RP ID is insufficient.

6.8.1. Feature detection

The credMgmt option ID in the authenticatorGetInfo response defines feature support detection for this feature.

6.8.2. Getting Credentials Metadata

NOTE: Platforms can use the getinfo encldentifier to identify a specific authenticator and getinfo
encCredStoreState to tell if the state of the credential store in an that authenticator has changed since the
last time they were cached.

Following operations are performed to get credentials metadata information :

« Platform gets pinUvAuthToken from the authenticator with thecm or pcmr permission, and MUST NOT
include a permissions RP_ID parameter.

« Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): getCredsMetadata (0x01).

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, getCredsMetadata (0x01)).

» Authenticator on receiving such request performs following procedures.

6.8.3.

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

o

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

o

o

The authenticator calls verify(persistentPinUvAuthToken, getCredsMetadata (0x01), pinUvAuthParam).

o

If pinUvAuthParam verification succeeds. (platform used persistentPinUvAuthToken)

1. The authenticator verifies that the persistentPinUvAuthToken has the pcmr permission. If not, return
CTAP2_ERR_PIN_AUTH_INVALID.

o

Else: (try to validate with pinUvAuthToken)

1. The authenticator calls verify(pinUvAuthToken, getCredsMetadata (0x01), pinUvAuthParam).

2. If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

3. The authenticator verifies that the pinUvAuthToken has the cm permission and no associated
permissions RP ID. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

o

Authenticator returns authenticatorCredentialManagement response with following parameters:

= existingResidentCredentialsCount (0x01) : total number ofdiscoverable credentials existing on the
authenticator.

= maxPossibleRemainingResidentCredentialsCount (0x02) : maximum number of possible remaining
discoverable credentials that can be created on the authenticator. Note that this number is an
estimate as actual space consumed to create a credential depends on various conditions such as
which algorithm is picked, user entity information etc.

Enumerating RPs

Following operations are performed to enumerate RPs present on the authenticator:

61/148

« Platform gets pinUvAuthToken from the authenticator with thecm or pcmr permission, and MUST NOT
include a permissions RP ID parameter.

« Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): enumerateRPsBegin (0x02).

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, enumerateRPsBegin (0x02)).

« Authenticator on receiving such request performs following procedures.

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

o

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

o

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

o

The authenticator calls verify(persistentPinUvAuthToken, enumerateRPsBegin (0x02),
pinUvAuthParam).

o

If pinUvAuthParam verification succeeds. (platform used persistentPinUvAuthToken)

1. The authenticator verifies that the persistentPinUvAuthToken has the pcmr permission. If not, return
CTAP2_ERR_PIN_AUTH_INVALID.

Else: (try to validate with PinUvAuthToken)

o

1. The authenticator calls verify(pinUvAuthToken, enumerateRPsBegin (0x02), pinUvAuthParam).
2. If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

3. The authenticator verifies that the pinUvAuthToken has the cm permission and no associated
permissions RP ID. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

o

If no discoverable credentials exist on this authenticator, return CTAP2_ERR_NO_CREDENTIALS.

o

The authenticator returns an authenticatorCredentialManagement response with following parameters:

rp (0x03): PublicKeyCredentialRpEntity, where the id field SHOULD be included and other
fields MAY be included. (See § 6.8.7 Truncation of relying party identifiers about possible truncation
of the id field and [WebAuthn] about other fields.)

rpIDHash (0x04) : RP ID SHA-256 hash.

totalRPs (0x05) : Total number of RPs present on the authenticator.

« Platform on receiving more than 1 totalRPs, performs following procedure for (totalRPs - 1) number of
times:

o Platform sends authenticatorCredentialManagement command with following parameters:

= subCommand (0x01): enumerateRPsGetNextRP (0x03).

NOTE: this is a stateful command and the specified implementation accommodations apply to it.

o The authenticator on receiving such enumerateCredentialsGetNext subCommand returns
authenticatorCredentialManagement response with following parameters:

= rp (0x03): PublicKeyCredentialRpEntity
= rpIDHash (0x04) : RP ID SHA-256 hash.

6.8.4. Enumerating Credentials for an RP:
Following operations are performed to enumerate credentials for an RP:

« Platform gets pinUvAuthToken from the authenticator with thecm or pcmr permission.

« Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): enumerateCredentialsBegin (0x04).

o subCommandParams (0x02): Map containing following parameters

= rplDHash (0x01): RP ID SHA-256 hash.

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, enumerateCredentialsBegin (0x04) ||
subCommandParams).

« Authenticator on receiving such request performs following procedures.
o If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

o If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
62/148

https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity

returning CTAP2_ERR_MISSING_PARAMETER.
If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

o

The authenticator calls verify(persistentPinUvAuthToken, enumerateCredentialsBegin (0x04) ||
subCommandParams, pinUvAuthParam).

o

o

If pinUvAuthParam verification succeeds. (platform used persistentPinUvAuthToken)

1. The authenticator verifies that the persistentPinUvAuthToken has the pcmr permission. If not, return

CTAP2_ERR_PIN_AUTH_INVALID.

o

Else: (try to validate with PinUvAuthToken)

1. The authenticator calls verify(pinUvAuthToken, enumerateCredentialsBegin (0x04) ||
subCommandParams, pinUvAuthParam).

2. If pinUvAuthParam verification fails, the authenticator returns a CTAP2_ERR_PIN_AUTH_INVALID

error.

3. The authenticator verifies that the pinUvAuthToken has the cm permission and no associated
permissions RP ID. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

o If no discoverable credentials for this RP ID hash exist on this authenticator, return
CTAP2_ERR_NO_CREDENTIALS.

o The authenticator returns authenticatorCredentialManagement response with following parameters:

user (0x06): PublicKeyCredentialUserEntity

credentiallD (0x07): PublicKeyCredentialDescriptor

publicKey (0x08): public key of the credential in COSE_Key format

totalCredentials (0x09): total number of credentials for this RP

credProtect (0x0A): credential protection policy

largeBlobKey (0x0B): the contents, if any, of the storedlargeBlobKey.

thirdPartyPayment (0x0C): present only if the authenticator supports thethirdPartyPayment
extension. True if the credential isthird-party payment enabled, false otherwise.

« Platform on receiving more than 1 totalCredentials, performs following procedure for (totalCredentials - 1)

number of times:
o Platform sends authenticatorCredentialManagement command with following parameters:

= subCommand (0x01): enumerateCredentialsGetNextCredential (0x05).

NOTE: this is a stateful command and the specified implementation accommodations apply to it.

o Authenticator on receiving such enumerateCredentialsGetNext subCommand returns with following

parameters:

user (0x06): PublicKeyCredentialUserEntity

credentiallD (0x07): PublicKeyCredentialDescriptor

publicKey (0x08): public key of the credential in COSE_Key format

credProtect (0x0A): credential protection policy

largeBlobKey (0x0B): the contents, if any, of the storedlargeBlobKey.

thirdPartyPayment (0x0C): present only if the authenticator supports thethirdPartyPayment
extension. True if the credential isthird-party payment enabled, false otherwise.

NOTE: when enumerating credentials, platforms SHOULD take the opportunity to performlarge-blob
garbage collection, if applicable.

6.8.5. DeleteCredential
Following operations are performed to delete a credential:

» Platform gets pinUvAuthToken from the authenticator with thecm permission.

« Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): deleteCredential (0x06).

o subCommandParams (0x02): Map containing following parameters

= credentialld (0x02): PublicKeyCredentialDescriptor of the credential to be deleted.

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, deleteCredential (0x06) ||
subCommandParams).

» Authenticator on receiving such request performs following procedures.

63/148

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

o

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

o

o

The authenticator calls verify(pinUvAuthToken, deleteCredential (0x06) || subCommandParams,
pinUvAuthParam)

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

o

o

The authenticator verifies that the pinUvAuthToken has the cm permission and that the pinUvAuthToken
does not have a permissions RP ID associated or that the pinUvAuthTokenpermissions RP _ID matches
the RP ID of the credential. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

o

If there are not credential existing matching credentialDescriptor, return
CTAP2_ERR_NO_CREDENTIALS.

Generate a new 128-bit random value forcredential store state.

o

o

Delete the credential and return CTAP2_OK.

NOTE: when deleting a credential, platforms SHOULD alsodelete any associated large blobs.

6.8.6. Updating user information
Following operations are performed to update user information associated to a credential:

« Platform gets pinUvAuthToken from the authenticator with thecm permission.

« Platform sends authenticatorCredentialManagement command with following parameters:

o

subCommand (0x01): updateUserInformation (0x07).

o subCommandParams (0x02): Map containing the parameters that need to be updated.

= credentialld (0x02): PublicKeyCredentialDescriptor of the credential to be updated.

= user (0x03): aPublicKeyCredentialUserEntity with the updated information.

o

pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o

pinUvAuthParam (0x04): authenticate(pinUvAuthToken, updateUserInformation (0x07) ||
subCommandParams).

« Authenticator on receiving such request performs following procedures.

o

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

o

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

o

o

The authenticator calls verify(pinUvAuthToken, updateUserInformation (0x07) || subCommandParams,
pinUvAuthParam)

If pinUvAuthParam verification fails, the authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

o

o

The authenticator verifies that the pinUvAuthToken has the cm permission and that the pinUvAuthToken
does not have a permissions RP ID associated or that the pinUvAuthTokenpermissions RP _ID matches
the RP ID of the credential. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

o

The authenticator searches for an existing credential matchingcredentialId.

o

If no matching credential is found, return CTAP2_ERR_NO_CREDENTIALS.

o

If the authenticator does not have enough internal storage to update the matching credential, return
CTAP2_ERR_KEY_STORE_FULL.

o

If the supplied user parameter’s id field is not the same as the matching credential’sid field then
return CTAP1_ERR_INVALID_PARAMETER.

o

Replace the matching credential’s PublicKeyCredentialUserEntity’s name, displayName with
the passed-in user details. If a field is not present in the passeduser details, or it is present and empty,

remove it from the matching credential’s PublicKeyCredentialUserEntity.

Generate a new 128-bit random value forcredential store state.

Return CTAP2_OK.

o

o

6.8.7. Truncation of relying party identifiers

An authenticator MAY store relying party identifiers in order to implementauthenticatorCredentialManagement.
As there is no bound on their length, authenticators MAY truncate them using a procedure that produces the
same results as the code included below. If authenticators store relying party identifiers at all, they MUST store
at least 32 bytes. Truncation of relying party identifiers only applies to returning a

64/148

https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialentity-name
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-displayname
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#relying-party-identifier

PublicKeyCredentialRpEntity structure in the context of this command. I.e. authenticators MUST NOT
use truncated relying party identifiers for comparisons at any time, including in the context of this command.

#define MAX_STORED_RPID_LENGTH 32 /* MUST be >= 32 */

void maybe_truncate_rpid(uint8 t stored_ rpid[MAX STORED_RPID_LENGTH],
size t *stored_len, const uint8_t *rpid,
size t rpid_len) {
if (rpid_len <= MAX STORED_RPID LENGTH) {
memcpy (stored_rpid, rpid, rpid_len);
*stored_len = rpid_len;
return;

size t used = 0;
const uint8 t *colon position = memchr(rpid, ':', rpid_len);
if (colon_position != NULL) {
const size t protocol len = colon_position - rpid + 1;
const size t to copy = protocol len <= MAX STORED RPID LENGTH
? protocol len
: MAX_STORED RPID_LENGTH;
memcpy (stored rpid, rpid, to copy);
used += to_copy;

}

if (MAX_STORED_RPID LENGTH - used < 3) {
*stored_len = used;
return;

// U+2026, horizontal ellipsis.
stored_rpid[used++] = 0xe2;
stored_rpid[used++] = 0x80;
stored_rpid[used++] = 0xa6;

const size t to copy = MAX STORED RPID LENGTH - used;
memcpy (&stored_rpid[used], rpid + rpid_len - to_copy, to copy);
assert(used + to_copy == MAX STORED_RPID LENGTH);
*stored len = MAX STORED RPID LENGTH;
}

For illutrative purposes, here are some examples of the truncation in effect:

Input RP ID Stored RP ID

example.com example.com

myfidousingwebsite.hostingprovider.net ...ngwebsite.hostingprovider.net

mygreatsite.hostingprovider.info mygreatsite.hostingprovider.info

otherprotocol://myfidousingwebsite.hostingprovider.net otherprotocol:...ingprovider.net

veryexcessivelylargeprotocolname://example.com

Comment
No truncation applied

Truncation applied on
the left

No truncation applied
to strings of length
32; any sentinel
values (e.g. NUL
bytes in C) are
internal to the
authenticator
implementation and
do not count towards
the protocol defined
length

Protocol strings are
preserved if possible

veryexcessivelylargeprotocolname Protocol strings may

consume the entire
space

This command allows the platform to let a user select a certain authenticator by asking for user presence.

The command has no input parameters.

When the authenticatorSelection command is received, the authenticator will ask for user presence:

« If User Presence is received, the authenticator will return CTAP2_OK.

o If User Presence is explicitly denied by the user, the authenticator will return

CTAP2_ERR_OPERATION_DENIED. The platform SHOULD NOT repeat the command for this

authenticator.

65/148

https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://www.w3.org/TR/webauthn-2#relying-party-identifier

« If a user action timeout occurs, the authenticator will return CTAP2_ERR_USER_ACTION_TIMEOUT. The
platform MAY repeat the command for this authenticator.

If an authenticator is selected, the platform SHOULD send a cancel to all other authenticators.

The credBlob extension allows for a small amount of additional, secret information to be stored with a credential.
There are two options for storing a larger amount of data: this command allows a platform to store information on
an authenticator and to protect credential-specific parts of it with a key that is then stored and accessed using the
largeBlobKey extension. Alternatively the largeBlob extension carries the data directly in
authenticatorGetAssertion requests. This section is about the former.

This command allows at least 1024 bytes of large blob data to be stored on CTAP2 authenticators. For the
purposes of this command, this data is serialized as a CBOR-encoded array (called the large-blob array) of
large-blob maps, concatenated with 16 following bytes. Those final 16 bytes are the truncated SHA-256 hash of
the preceding bytes. This concatenation is referred to as the serialized large-blob array. The opaque large-
blob data that is stored for a credential with this command is a byte string with RP-specific structure. This is only
applicable to discoverable credentials so that garbage collection is possible.

The initial serialized large-blob array is the value of theserialized large-blob array on a fresh authenticator, as
well as immediately after a reset. It is the byte string h’8076be8b528d0075f7aae98d6fa57a6d3c ', which is an
empty CBOR array (80) followed by LEFT(SHA-256(h’80"'), 16).

NOTE: the minimum length of aserialized large-blob array is 17 bytes. Omitting 16 bytes for the trailing
SHA-256 hash, this leaves just one byte. This is the size of an empty CBOR array.

6.10.1. Feature detection

The largeBlobs option ID in the authenticatorGetInfo response defines feature support detection for this feature.

6.10.2. Reading and writing serialised data

The command takes the following input parameters:

Data
Parameter name Required? Notes
type
Unsigned The number of bytes requested to read. MUST NOT
get (0x01) g Optional { 0TS 2
integer be present if set is present.
Byte A fragment to write. MUST NOT be present ifget is
set (0x02) y Optional g P ge
String present.
Unsigned The byte offset at which to read/write.
offset (0x03) nsig Required y il 2
integer
Unsigned The total length of a write operation. Present if, and
length (0x04) s Optional oy eng wrieroperario '
integer only if, set is present and offset is zero.

authenticate(pinUvAuthToken, 32x0xff || h’0c00" ||
pinUvAuthParam Byte uint32LittleEndian(offset) || SHA-256(contents ofset

Optional
(0x05) String P byte string, i.e. notincluding an outer CBOR tag with
major type two))
pinUvAuthProtocol Unsigned Optional PIN/UV protocol version chosen by the platform.

(0x06) integer

A per-authenticator constant, maxFragmentLength, is here defined as the value ofmaxMsgSize (from the
authenticatorGetInfo response) minus 64. The value 64 is a comfortable over-estimate of the encoding overhead
of the messages defined in this section such that a byte string of length maxFragmentLength can be transferred
without exceeding the maximum message size of the authenticator. If no maxMsgSize is given in the
authenticatorGetInfo response) then it defaults to 1024, leavingmaxF ragmentLength to default to 960.

In addition to persistently storing theserialized large-blob array, authenticators implementing this command are
required to maintain two unsigned integers in volatile memory named expectedNext0ffset and expectedLength,
both initially zero. This makes this command a stateful command and the specified implementation
accommodations apply to it.

An authenticator performs the following actions upon receipt of this command:

1. If offset is not present in the input map, return CTAP1_ERR_INVALID_PARAMETER.
2. If neither get nor set are present in the input map, return CTAP1_ERR_INVALID_PARAMETER.

3. If both get and set are present in the input map, return CTAP1_ERR_INVALID_PARAMETER.
66/148

https://www.w3.org/TR/webauthn-2#discoverable-credential

4. If get is present in the input map:

1. If length is present, return CTAP1_ERR_INVALID_PARAMETER.

2. If either of pinUvAuthParam or pinUvAuthProtocol are present, return
CTAP1_ERR_INVALID_PARAMETER.

3. If the value of get is greater than maxFragmentLength, return CTAP1_ERR_INVALID_LENGTH.

4. If the value of of fset is greater than the length of the storedserialized large-blob array, return
CTAP1_ERR_INVALID_PARAMETER.

5. Return a CBOR map, as defined below, where the value ofconfig is a substring of the storedserialized
large-blob array. The substring SHOULD start at the offset given inoffset and contain the number of
bytes specified as get’s value. If too few bytes exist at that offset, return the maximum number
available. Note that if offset is equal to the length of theserialized large-blob array then this will result
in a zero-length substring.

5. Else (implying that set is present in the input map):
1. If the length of the value ofset is greater than maxFragmentLength, return

CTAP1_ERR_INVALID_LENGTH. (The “value of set” means the contents of the byte string
corresponding to the key set (0x02), not including the outer CBOR tag with major type two.)

2. If the value of offset is zero:

1. If length is not present, return CTAP1_ERR_INVALID_PARAMETER.

2. If the value of length is greater than 1024 bytes and exceeds the capacity of the device, return
CTAP2_ERR_LARGE_BLOB_STORAGE_FULL. (Authenticators MUST be capable of storing at
least 1024 bytes.)

3. If the value of length is less than 17, return CTAP1_ERR_INVALID_PARAMETER. (See note
above about minimum lengths.)

4. Set expectedLength to the value oflength.
5. Set expectedNextOffset to zero.

3. Else (i.e. the value ofoffset is not zero):

1. If length is present, return CTAP1_ERR_INVALID_PARAMETER.
4. If the value of offset is not equal to expectedNext0ffset, return CTAP1_ERR_INVALID_SEQ.

5. If the authenticator is protected by some form of user verificationor the alwaysUv option ID is present
and true:

1. If pinUvAuthParam is absent from the input map, then end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

2. If pinUvAuthProtocol is absent from the input map, then end the operation by returning
CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

4. The authenticator calls verify (pinUvAuthToken, 32x0xff || h’0c00' ||
uint32littleEndian(offset) || SHA-256(contents of set byte string, i.e. not
including an outer CBOR tag with major type two), pinUvAuthParam).

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Check if the pinUvAuthToken has the lbw permission, if not, return
CTAP2_ERR_PIN_AUTH_INVALID.

6. If the sum of offset and the length of the value ofset is greater than the value ofexpectedLength,
return CTAP1_ERR_INVALID_PARAMETER.

7. If the value of of fset is zero, prepare a buffer to receive a newserialized large-blob array.
8. Append the value of set to the buffer containing the pendingserialized large-blob array.
9. Update expectedNext0ffset to be the new length of the pendingserialized large-blob array.
10. If the length of the pendingserialized large-blob array is equal to expectedLength:
1. Verify that the final 16 bytes in the buffer are the truncated SHA-256 hash of the preceding bytes. If
the hash does not match, return CTAP2_ERR_INTEGRITY_FAILURE.
2. Commit the contents of the buffer as the newserialized large-blob array for this authenticator.
3. Return CTAP2_OK and an empty response.
11. Else:

1. More data is needed to complete the pendingserialized large-blob array.
2. Return CTAP2_OK and an empty response. Await further writes.

NOTE: user verification is only checked above if user verification is configured on a device or the
authenticator always requires some form of user verificationfeature is enabled. This implies that aserialized
large-blob array can be written without user verification if user verification is not configured.

67/148

NOTE: Toread (i.e., "get") per-credential large-blob datagiven a credential ID, the platform must first use
an authenticatorGetAssertion operation to obtain the associatedlargeBlobKey in order to be able to decrypt
the large-blob data (if any). Thus the confidentiality of any large-blob data associated with the credential is
dependent upon the credential’s protection policy. This means that even though a platform may obtain the
large-blob array at will, it will be unable to obtain large-blob plaintexts if it cannot successfully perform
authenticatorGetAssertion operations using the associated credential(s), e.g., without obtaining user
verification. Also, the "trial decryption" approach employed for obtaining plaintext means that large-blobs do
not disclose a priori the existence of credentials having a credProtect level 3 userVerificationRequired policy.

The response to a get request, referenced above, takes the following form:

Parameter Data
Required? Notes
name type
Byte . Contains the requested substring of theserialized large-
config (0x01) y Required 9 g kingaciaiecage:
String blob array.

In order to read aserialized large-blob array, a platform is expected to first issue a request whereoffset is zero
and get equals the value ofmaxFragmentLength, which is maxMsgSize — 64 bytes, as defined above. If the length
of the response is equal to the value of get then more data may be available and the platform SHOULD
repeatedly issue requests, each time updating offset to equal the amount of data received so far. It stops once
a short (or empty) fragment is returned. Once complete, the platform MUST confirm that the embedded SHA-256
hash is correct, based on the definition above. If not, the configuration is corrupt and the platform MUST discard
it and act as if the initial serialized large-blob array was received.

In order to write aserialized large-blob array, a platform is expected to first issue a request whereoffset is zero,
length is the full length of the data to be written, andset contains a prefix of the data to be written, truncated at
maxFragmentLength bytes, if length is greater than maxFragmentLength. If truncation is needed then one or
more further requests are needed to complete the transfer, with offset updated each time to contain the amount
of data written so far and set containing consecutive substrings of the data. The authenticator will implicitly know
when the transfer is complete because of the length given in the first request.

The algorithm to be performed by the authenticator given above assumes that the authenticator double-buffers
the serialized large-blob array. (l.e. it writes proposed updates into a separate buffer and only overwrites the
effective config once validation has completed.) A compliant authenticator MAY be implemented using only a
single buffer as follows: when appending to the buffer, use expectedLength to buffer the final 16 bytes of the
serialized large-blob array in volatile storage. Once the transfer is complete, perform validation and only write the
final 16 bytes to persistent storage if successful. This prevents the SHA-256 checksum of an invalid serialized
large-blob array from being persisted.

NOTE: even with double-buffering, the copy from the temporary buffer might be interrupted, resulting in a
“torn write”. This will be detected by the platform when reading because the checksum won’t match, but
results in an unusable config. Thus double-buffering minimises the chance of corruption, but does not always
eliminate it.

Despite best efforts, torn writes, platform errors, and storage corruption may result in a situation where an
authenticator finds itself having stored an invalid serialized large-blob array. (l.e. the SHA-256 hash does not
match.) In this case, the authenticator MAY reset the stored value with the initial serialized large-blob array.

An authenticator MUST NOT act on the contents of theserialized large-blob array except for checking the trailing
hash: it is purely for platforms to adjust their behavior in response to.

Authenticators MUST set the serialized large-blob array to the initial serialized large-blob array byte string when
reset.

Platforms MUST ensure that the large-blob array (i.e. without the trailing 16 bytes) is a CBOR array where all
entries conform to the large-blob map structure defined below. The maps and array MUST be encoded using the
canonical rules. Platforms MUST NOT attempt to write aserialized large-blob array that exceeds the
maxSerializedLargeBlobArray reported by the authenticator in theauthenticatorGetlnfo response. Platforms
SHOULD take care to preserve existing entries in a large-blob array where space permits. For example,
platforms should read, and then insert values into, an existing large-blob array as opposed to blindly writing a
fresh array.

6.10.3. Large, per-credential blobs

The elements of the large-blob array MUST conform to the followinglarge-blob map structure. Conformance, in
this context, means that a map MUST include all required elements, MAY include optional elements, and MAY
include unknown elements. The values of all documented elements present MUST match the specified type and
MUST comply with any additional restrictions documented for them.

Element
Data type Required? Notes
name
ciphertext Byte AEAD_AES_256_GCM ciphertext, implicitly including the
P y Required - - - P plicitly 9

68/148

Eﬁ%)r(l%r)'nt String AEAD “authentication tag” at the end.

i ?
name Dajatype Required? -)p AES 256 GCM nonbSRRIST be exactly 12 bytes
L0502\ Strina ReqUIred lana
\ 7 . > °N
origSize Unsigned Contains the length, in bytes, of th d data.
[e]S1V4 (o] Required ontains the leng In pbytes, O € uncompresse ata.
(0x03) Integer

The ciphertext member contains the output of encrypting theopaque large-blob data with the
AEAD_AES_256_GCM algorithm from [REC5116]. The inputs to the AEAD are:

6.1

Nonce: the 12-byte value fromnonce.

Plaintext: the compressed opaque large-blob data.

Associated data: The value 0x626¢6f62 ("blob") ||uint64LittleEndian(origSize).

Key: the 32-byte value stored using thelargeBlobKey extension.

0.4. Reading per-credential large-blob data

The platform SHOULD perform the following steps in order to read theopaque large-blob data for a given

cre

dential. The platform must know the credential ID of the intended credential a priori, which it might have been

given, or might have learnt from performing an authenticatorGetAssertion operation without an allowList
parameter.

1.
2.

7

If the authenticator does not support thelargeBlobKey extension, as defined in that section, return an error.

Perform an authenticatorGetAssertion operation with "largeBlobKey": true in the extensions map in order
to fetch the largeBlobKey for the credential. (This step may be skipped if the pertinent output is already
known.)

. If largeBlobKey is not included in the authenticatorGetAssertion response structure (i.e., not in the

extensions field of the authenticator data) then return that no large blob exists.

. Let key be the value of largeBlobKey in the assertion result. If it is not 32 bytes long, return an error.
. Fetch the large-blob array. If this fails, return an error.

. For each element in that array:

1. If the element is not a mapconforming to the large-blob map structure defined above, skip this array
element.

2. Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using key, nonce, and the
associated data specified above. If the decryption fails, skip this array element.

3. Decompress the resulting plaintext with DEFLATE[RFC1951]. If decompression fails, return an error.
4. If the length of the decompression result is not equal toorigSize, return an error.
5. Return the decompression result as theopaque large-blob data for the credential.

Return that no large blob exists.

NOTE: DEFLATE has a maximum compression ratio of over 1000:1, thus the result of decompressing a
small amount of data can be extremely large which might cause excessive memory use. Platforms SHOULD

6.1

mit the maximum permitted value of origSize and that maximum SHOULD be at least 1MiB.

0.5. Writing per-credential large-blob data for a new credential

The platform SHOULD perform the following steps in order to write theopaque large-blob data for a new

cre

1.
2

© 0 N o O @ »

10.
11.
12.

dential.

If the authenticator does not support thelargeBlobKey extension, as defined in that section, return an error.

If the authenticatorMakeCredential operation for the new credential does not maprk to true in the options
map, return an error. (Large blobs are only applicable for discoverable credentials.)

. Perform the authenticatorMakeCredential operation for the new credential. In theextensions input

additionally map largeBlobKey to true.

. Let key be the largeBlobKey returned in the authenticatorMakeCredential response structure.

. Let origData equal the opaque large-blob data.

. LetorigSize be the length, in bytes, oforigData.

. Let plaintext equal origData after compression with DEFLATE [RFC1951].
. Let nonce be a fresh, random, 12-byte value.

. Let ciphertext be the AEAD_AES_256_GCM authenticated encryption ofplaintext using key, nonce, and

the associated data as specified above.
Fetch the large-blob array. If this fails, return an error.
Append an element to the array, following the structure above, containingnonce, origSize, and ciphertext.

Perform the actions for writing the newlarge-blob array.
69/148

https://www.w3.org/TR/webauthn-2#authenticator-data

6.10.6. Updating per-credential large-blob data

Unlike the underlying largeBlobKey data, the opaque large-blob data for a credential may be updated or deleted.
Given a credential, the platform SHOULD perform the following steps in order to update or delete it:

1.
2.

7.

If the authenticator does not support thelargeBlobKey extension, as defined in that section, return an error.

Perform an authenticatorGetAssertion operation with "largeBlobKey": true in the extensions map in order
to fetch the largeBlobKey for the credential. (This step may be skipped if the pertinent output is already
known.)

. If largeBlobKey is not included in the authenticatorGetAssertion response structure (i.e., not in the

extensions field of the authenticator data) then return that no large blob exists.

. Let key be the value of largeBlobKey in the authenticatorGetAssertion response structure. If it is not 32

bytes long, return an error.

. Fetch the large-blob array. If this fails, return an error.

. For each element in that array:

1. If the element is not a mapconforming to the large-blob map structure defined above, skip this array
element.

2. Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using key, nonce, and the
associated data specified above. If the decryption fails, skip this array element.

3. If the platform wishes to delete the opaque large-blob data:

1. Erase the current array element.

4. Else (i.e. the platform wishes to update theopaque large-blob data):

1. Let origData equal the newopaque large-blob data.

2. LetorigSize be the length, in bytes, oforigData.

3. Letplaintext equal origData after compression with DEFLATE [RFC1951].
4. Let nonce be a fresh, random, 12-byte value.
5

. Let ciphertext be the AEAD_AES_256_GCM authenticated encryption ofplaintext using key,
nonce, and the associated data as specified above.

6. Replace the current array element with a map, following the structure above, containingnonce,
origSize, and ciphertext.

5. Perform the actions for writing the newlarge-blob array.
6. Return success.

Return an error.

6.10.7. Garbage collection of large-blob data

Large blobs may remain even when the linked credential has been erased. This can occur when a platform that
doesn’t support large blobs deletes a credential, or when a credential is implicitly deleted because a new
credential with the same user ID and RP ID is created. Thus platform MAY perform a garbage collection at will
and SHOULD perform a garbage collection when a large-blob cannot be stored because of lack of space, or
when using credential management to enumerate credentials for other reasons.

Performing a garbage collection involves the following steps:

1.

If credMgmt is not present in theoptions field of the authenticatorGetInfo response, garbage collection is not
possible.

. Use the authenticatorCredentialManagement command to enumerate all RPs with discoverable credentials,

and then to enumerate all credentials for each of them.

. Collect the set of LargeBlobKey values returned, ignoring any that are not 32 bytes long.
. Fetch the large-blob array. If this fails, return an error.

. For each element in that array:

1. If the element is not a mapconforming to the large-blob map structure defined above, skip this array
element. (The large-blob map is permitted to include extra elements.)

2. Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using nonce, the associated
data specified above, and each of the largeBlobKey values in turn as the key. If the decryption fails in
every case, erase this array element.

. If any array elements were erased then perform the actions for writing the updatedlarge-blob array.

NOTE: Platforms MUST NOT invoke this command unless theauthnrCfg option ID is present and true in
the response to an authenticatorGetInfo command.

70/148

https://www.w3.org/TR/webauthn-2#authenticator-data

This command is used to configure various authenticator features through the use of its subcommands.

It takes the following input map containing its input parameters:

Parameter name Data type Required? Notes
Unsigned subCommand currently being requested
subCommand (0x01) '9 Required r S Y 2o Ry
Integer
subCommandParams CBOR Ovtional Map of subCommands parameters.
(0x02) Map P
pinUvAuthProtocol Unsigned Ovtional PIN/UV protocol version chosen by the platform.
(0x03) Integer P
pinUvAuthParam Byte Ovtional The output of calling authenticate on some context
(0x04) String P specific to the subcommand.

The currently defined authenticatorConfig subcommands are:

subCommand Name subCommand Number
enableEnterpriseAttestation 0x01
toggleAlwaysUv 0x02
setMinPINLength 0x03
enableLongTouchForReset 0x04
vendorPrototype OxFF

This authenticatorConfig command allows the platform to invoke various simple configuration operations on an
authenticator. Parameters may be passed into subcommands, and only status codes are returned (i.e. no
response map is defined). Typically, the platform may subsequently request and examine an
authenticatorGetInfo response, per directions given for each subcommand, in order to ascertain results of having
invoked the subcommand.

Authenticators MAY implement none, some, or allcurrently defined authenticatorConfig subcommands. The list
of sub-commands supported is in the authenticatorGetInfo authenticatorConfigCommands member.

NOTE: The vendorPrototype subCommand is reserved for vendor-specific authenticator configuration and
experimentation. Platforms are not expected to generally utilize this subCommand.

To invoke authenticatorConfig the platform performs the following actions:
1. The platform sends the authenticatorConfig command with the following parameters:

1. subCommand (0x01): The subcommand selected by the platform from the currently defined
authenticatorConfig subcommands.

2. subCommandParams (0x02): Map containing subcommand parameters, if the selected subcommand
takes parameters.

3. pinUvAuthProtocol (0x03): as selected when obtaining the shared secret.

4. pinUvAuthParam (0x04): the result of callingauthenticate(pinUvAuthToken, 32x0xff || 0x0d ||
uint8(subCommand) || subCommandParams).

The authenticator performs the following actions upon receipt of this command:

1. If subCommand is not present in the input map, return CTAP2_ERR_MISSING_PARAMETER.

2. If the authenticator does not support the subcommand being invoked, persubCommand’s value, return
CTAP1_ERR_INVALID_PARAMETER.

3. If the following statements are all true:

1. subCommand value is toggleAlwaysUv (0x02).

2. The authenticator is not protected by some form of user verification

3. The alwaysUv option ID is present and true.

then go to Step 5.

NOTE: This allows for initial configuration of authenticators that have theAlways UV feature enabled
by default.

4. If the authenticator is protected by some form of user verificationor the alwaysUv option ID is present and
true:

1. If pinUvAuthParam is absent from the input map, then end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.
71/148

2. If pinUvAuthProtocol is absent from the input map, then end the operation by returning
CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

4. Call verify(pinUvAuthToken, 32x0xff || 0x0d || uint8(subCommand) || subCommandParams,
pinUvAuthParam).

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Check whether the pinUvAuthToken has the acfg permission. If not, return
CTAP2_ERR_PIN_AUTH_INVALID.

5. “Invoke subCommand (see below subsections for each defined subcommand), passing it the
subCommandParams map.

6. Return the resulting status code as produced by subCommand, as defined in each subcommand subsection
below.

NOTE: User verification is only checked above if user verification is configured on a device. This implies
that authenticatorConfig can be invoked without user verification if user verification is not configured, and
the Always UV feature is disabled. This allows organisations to configure authenticators suitably for their
environment before distributing them to users. See also authenticatorLargeBlobs.

6.11.1. Enable Enterprise Attestation

This enableEnterpriseAttestation subcommand is only implemented if the enterprise attestation feature is
supported. This subcommand does not take any parameters: subCommandParanms is ignored.

The getinfo member authenticatorConfigCommands MUST contain an array member with the value 0x01 if this
subcommand is supported.

This subcommand performs the following steps:

1. If the enterprise attestation feature is disabled, then re-enable the enterprise attestation feature and return
CTAP2_OK.

NOTE: Upon re-enabling the enterprise attestation feature, the authenticator will return anep option id
with the value of true in the authenticatorGetinfo command response upon receipt of subsequent
authenticatorGetInfo commands.

2. Else (implying the enterprise attestation feature is enabled) take no action and return CTAP2_OK.

6.11.2. Toggle Always Require User Verification

This toggleAlwaysUv subcommand is only implemented if the Always Require User Verification feature is
supported. This subcommand does not take any parameters: subCommandParams is ignored.

The getinfo member authenticatorConfigCommands MUST contain an array member with the value 0x02 if this
subcommand is supported.

This subcommand performs the following steps:

1. If the alwaysUv feature is disabled:

1. If the makeCredUvNotRqd option ID is present and true, then disable the makeCredUvNotRaqd feature
and set the makeCredUvNotRqd option ID to false or absent.

2. Enable the alwaysUv feature and return CTAP2_OK.

NOTE: Upon enabling the Always Require User Verification feature, the authenticator will return an
alwaysUv option ID with the value oftrue in the authenticatorGetinfo command response upon receipt of
subsequent authenticatorGetinfo commands.

2. Else (implying the alwaysUv feature is enabled)

1. If disabling the feature is supported:

1. Set the makeCredUvNotRaqd option ID to its default.

2. Disable the alwaysUv feature and return CTAP2_OK.
2. Else return CTAP2_ERR_OPERATION_DENIED.

NOTE: Authenticators SHOULD support users disabling the Always Require User Verification feature
unless required not to by specific external certifications such as [CMVP].

6.11.3. Vendor Prototype Command

72/148

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

This subCommand allows vendors to test authenticator configuration features.

This vendorPrototype subcommand is only implemented if the vendorPrototypeConfigCommands member in
the authenticatorGetInfo response is present.

The getinfo member authenticatorConfigCommands MUST contain an array member with the value OxFF if this
subcommand is supported.

Vendors SHOULD place implemented vendorCommandld values in the vendorPrototypeConfigCommands array.

subCommandParams Fields:

Data

Field name Required? Definition
type
Vendor-assigned command ID
NOTE: If, and only if, this vendorCommandld
vendorCommandid Unsigned Required (0x01) appears in this subCommandParams map
(0x01) Integer d and has a non-empty value, then other fields

MAY also appear in the map, the map keys and
associated values of which are vendor-defined.

This subCommand MUST include a subCommandParams map that MUST containvendorCommandld as a
member. The vendor randomly selects a 64-bit Unsigned Integer value to use for the value of
vendorCommandld, e.g., by using a cryptographic random number generator. An example of such a
vendorCommandld value is (in hex): @x4e5al5aa89d2b8b6. This approach avoids collisions amongst different
vendors' vendorCommandlds. Thus there is no need for a registry of vendorCommandld values. One way to
easily generate such values is by using the commonly available openssl tool.

This subCommand performs the following steps:
1. If the vendorCommandld value is unknown:

1. return CTAP2_ERR_INVALID_SUBCOMMAND

2. Else: (implying the vendorCommandld value is known)

1. Extract any additional members form the subCommandParams map.

2. Perform Vendor Command specific processing and return any status code it generates. Success MUST
be indicated by returning CTAP2_OK.

NOTE: Vendors MUST NOT count on obscurity of thevendorCommandld value as any sort of security.

6.11.4. Setting a minimum PIN Length
This setMinPINLength subcommand is only implemented if the setMinPINLength option ID is present.

The getinfo member authenticatorConfigCommands MUST contain an array member with the value 0x03 if this
subcommand is supported.

This command sets the minimum PIN length inUnicode code points to be enforced by the authenticator while
changing/setting up a ClientPIN or PIN for built-in UV.

subCommandParams members defined for this subcommand:

Data i .
Parameter name Required? Definition
type
newMinPINLength Unsigned Ovtional Minimum PIN length in code points
I
(0x01) Integer P
RP IDs which are allowed to get this information via
minPinLengthRPIDs Array of Ovtional the minPinLength extension. This parameter MUST
(0x02) strings P NOT be used unless the minPinLength extension is

supported.

The authenticator returns

forceChangePin
Boolean Optional CTAP2_ERR_PIN_POLICY_VIOLATION until

(0x03)
changePIN is successful.
pinComplexityPolicy) If set to TRUE the authenticator enforces a PIN
Boolean Optional - i)) 3
(0x04) complexity policy until the authenticator is reset.

1. Platform sends the following subCommandParams (0x03) map containing following parameters:

1. newMinPINLength (0x01) (Optional): Minimum PIN length in code points
73/148

https://openssl.org/
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#code_point

3.

4
2. Au

1.

. minPinLengthRPIDs (0x02) (Optional): List of RP IDs allowed to get the currenmewMinPINLength via
minPinLength extension.

forceChangePin (0x03) (Optional): If true a PIN change is required after this command.

. pinComplexityPolicy (0x04) (Optional): If true a PIN complexity policy is enforced after this command.

thenticator performs following operations upon receiving the request:

If newMinPINLength is absent, then letnewMinPINLength be present with the value ofcurrent minimum
PIN length.

. If minPinLengthRPIDs is present and the authenticator does not support theminPinLength extension,
return CTAP1_ERR_INVALID_PARAMETER.

. If newMinPINLength is less than the current minimum PIN length, return
CTAP2_ERR_PIN_POLICY_VIOLATION.

NOTE: Minimum PIN lengths may only be increased; they cannot be made shorter.

NOTE: The authenticator must be reset to return the current minimum PIN length to thepre-
configured minimum PIN length.

. If the value offorceChangePin is true, then:
1. If the value ofclientPIN is false, then return CTAP2_ERR_PIN_NOT_SET.

2. Let the value of theforcePINChange member of the authenticatorGetlnfo response be true.

NOTE: This will force the user to change their PIN upon the next use of the authenticator, if a
PIN is set.

. If the value of pinComplexityPalicy is true, then:

1. Let the value of thepinComplexityPolicy authenticatorGetInfo response member be true.

. If the value of PINCodePointLength is less than newMinPINLength and the value ofclientPIN is true
then let the value of the forcePINChange member of the authenticatorGetlnfo response be true.

. If the value of theforcePINChange member of the authenticatorGetInfo response is true, then:
1. The authenticator calls resetPersistentPinUvAuthToken() (all persistent permissions are cleared on
pin change).

2. The authenticator calls resetPinUvAuthToken() for all pinUvAuthProtocols supported by this
authenticator. (l.e. all existing pinUvAuthTokens are invalidated.)

. If minPinLengthRPIDs is present and contains at least one string, then:

1. Platform can track how many RP IDs it can set, by checking value of the
maxRPIDsForSetMinPINLength member of the authenticatorGetlinfo. If the supplied list larger than
the maxRPIDsForSetMinPINLength, then authenticator must return an error.

2. If the authenticator does not have apre-configured list of RP IDs authorized to receivethe current
minimum PIN length value, the authenticator stores the minPinLengthRPIDs parameter’s list as the
entire list of RP IDs authorized to receive the current minimum PIN length value.

3. Otherwise, if the authenticator has apre-configured list of RP IDs authorized to receive the current
minimum PIN length value, it adds the minPinLengthRPIDs parameter’s list to the immutable pre-
configured list. Any previously added RP IDs are overwritten.

NOTE: How the authenticator "adds" theminPinLengthRPIDs parameter’s list to the pre-
configured list is an implementation detail.

4. If the authenticator cannot store or add theminPinLengthRPIDs, it returns
CTAP2_ERR_KEY_STORE_FULL.

9. The authenticator returns CTAP2_OK.

6.11.5.

Enable Long Touch For Reset

This enableLongTouchForReset subcommand is only implemented if the Long touch for reset feature is
supported. This subcommand does not take any parameters: subCommandParams is ignored.

The getinfo member authenticatorConfigCommands MUST contain an array member with the value 0x04 if this
subcommand is supported.

This subcommand performs the following steps:

1. If the Long touch for reset feature is disabled, then re-enable the Long touch for reset feature and return
CTAP2_OK.

NOTE: Upon enabling the longTouchForReset feature, subsequentauthenticatorGetlnfo command
responses will return a longTouchForReset value of true.

74/148

2. Else (implying the Long touch for reset feature is enabled) take no action and return CTAP2_OK.

This superseded command is OPTIONAL and ONLY provided for backwards compatibility with platforms that
implemented "FIDO_2_1_PRE" functionality, and have not been updated to "FIDO_2_1 or later". CTAP2.1 or
later platforms MUST NOT use this command if bioEnroll option ID is present in the authenticatorGetInfo
response.

If a CTAP2.1 or later authenticator implements this prototype (0x40) command:

1. The authenticator MUST also implement the authenticatorBioEnrollment (0x09) commands.

2. The authenticator MUST provide thebioEnroll option ID in the authenticatorGetInfo response for feature
detection of the CTAP2.1 or later feature.

3. The authenticator MUST utilize the appropriate PIN protocol’sverify() function to validate the
pinUvAuthParam (referred to as pinAuth in the Bio Enroliment Prototype specification), and MUST return
CTAP2_ERR_PIN_AUTH_INVALID if verify() returns error.

The feature detection logic for the Bio Enrollment Prototype vendor specific feature is:

1. "FIDO_2_1_PRE" is present in the authenticatorGetlnfo response versions member.

2. The userVerificationMgmtPreview option ID in the authenticatorGetlnfo response is present and true.

This preview command does not require permissions, thus it is compatible with apinUvAuthToken generated by
the getPinToken command. CTAP 2.1 platforms MUST use the newer authenticatorBioEnrollment (0x09)
command if the authenticator supports it.

This superseded command is OPTIONAL and ONLY provided for backwards compatibility with platforms that
implemented "FIDO_2_1_PRE" functionality, and have not been updated to "FIDO_2_1 or later". CTAP2.1 or
later platforms MUST NOT use this command if credMgmt option ID is present in the authenticatorGetInfo
response.

If a CTAP2.1 or later authenticator implements this prototype (0x41) command:

1. The authenticator MUST also implement theauthenticatorCredentialManagement (0x0A) commands.

2. The authenticator MUST provide thecredMgmt option ID in the authenticatorGetInfo response for feature
detection of the CTAP2.1 or later feature.

3. The authenticator MUST utilize the appropriate PIN protocol’sverify() function to validate the
pinUvAuthParam (referred to as pinAuth in the Credential Management Prototype specification), and MUST
return CTAP2_ERR_PIN_AUTH_INVALID if verify() returns error.

The feature detection logic for the Credential Management Prototype vendor specific feature is:

1. "FIDO_2_1_PRE" is present in the authenticatorGetInfo response versions member.

2. The credentialMgmtPreview option ID in the authenticatorGetlnfo response is present and true.

This preview command does not require permissions, thus it is compatible with apinUvAuthToken generated by
the getPinToken command. CTAP 2.1 platforms MUST use the newer authenticatorCredentialManagement
(0x0A) command if the authenticator supports it.

This section provides detailed descriptions of specific features along with normative feature-specific platform
(and possibly authenticator) actions whose specification is not appropriate to include in other parts of this
specification.

An enterprise is some form of organization, often a business entity. Anenterprise context is in effect when a
device, e.g., a computer, an authenticator, etc., is controlled by an enterprise.

An enterprise attestation is an attestation that may include uniquely identifying information. This is intended for
controlled deployments within an enterprise where the organization wishes to tie registrations to specific
authenticators.

The expectation is that enterprises will work directly with their authenticator vendor(s) in order to source their
enterprise attestation capable authenticators.

An enterprise attestation capable authenticator MAY be configured to support either or both:
75/148

https://fidoalliance.org/specs/fido2/vendor/BioEnrollmentPrototype.pdf
https://fidoalliance.org/specs/fido2/vendor/BioEnrollmentPrototype.pdf
https://fidoalliance.org/specs/fido2/vendor/CredentialManagementPrototype.pdf
https://fidoalliance.org/specs/fido2/vendor/CredentialManagementPrototype.pdf
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#attestation
https://www.w3.org/TR/webauthn-2#authenticator

« Vendor-facilitated enterprise attestation:

In this case, an enterprise attestation capable authenticator, on which enterprise attestation is enabled, upon
receiving the enterpriseAttestation parameter with a value of 1 (or 2, see Note below) on a

authenticatorMakeCredential command, will provide enterprise attestation to a non-updateable pre-
configured RP ID list, as identified by the enterprise and provided to the authenticator vendor, which is
"burned into" the authenticator by the vendor.

If enterprise attestation is requested for any RP ID other than thepre-configured RP ID(s), the attestation
returned along with the new credential is a regular privacy-preserving attestation, i.e., NOT an enterprise
attestation.

« Platform-managed enterprise attestation:

In this case, an enterprise attestation capable authenticator on which enterprise attestation is enabled, upon
receiving the enterpriseAttestation parameter with a value of 2 on aauthenticatorMakeCredential

command, will return an enterprise attestation. The platform is enterprise-managed and has already
performed the necessary vetting of the RP ID.

NOTE: Authenticators wishing to support onlyvendor-facilitated enterprise attestation MAY treat
enterpriseAttestation = 2the same asenterpriseAttestation = 1

7.1.1. Feature detection

The ep option ID in the authenticatorGetInfo response defines feature support detection for this feature.

7.1.2. Platform Actions

A platform wishing to obtain an enterprise attestation, e.g., when running in anenterprise context, SHOULD
invoke the authenticatorMakeCredential operation in the following manner:

1. Invoke the authenticatorGetInfo command and examine the returned response structure for theep Option
ID. If ep is not present or present and set to false, the platform SHOULD either terminate these steps or
invoke the authenticatorMakeCredential command without the enterpriseAttestation parameter, and
skip the following steps.

2. Invoke the authenticatorMakeCredential command and pass theenterpriseAttestation parameter with
a value of either 1 or 2.

3. If the platform is operating in a non-enterprise context, it SHOULD display an explicit warning to the user,
including the RP ID, notifying the user that they are being uniquely identified to this Relying Party.

7.1.3. Authenticator Actions

If an enterprise attestation capable authenticator receives an authenticatorReset command, it MUST disable the
enterprise attestation feature. The enterprise attestation feature may be re-enabled by invoking the
authenticatorConfig command’s enable-enterprise-attestation subcommand. If enterprise attestation is supported,
the authenticatorConfig command’s enable-enterprise-attestation subcommand MUST be supported.

This feature allows a user to protect the credentials on their authenticator withsome form of user verification
independent of the Relying Party requesting some form of user verificationin its higher-level API request, e.g.,

via [WebAuthn]. Platform authenticators and other authenticators with thealwaysUv feature enabled will always
perform user verification and set the "uv" bit to true in the response, e.g., even if theRelying Party sets user
verification to Discouraged in a[WebAuthn] request. Some external certification programs such as [CMVP] for [FI
PS140-3] prohibit the authenticator performing signing operations without authentication. This feature allows
authenticators to conform to such non FIDO certification requirements.

NOTE: Platform authenticators typically provide users and platforms this sort of behaviour via private API.

7.2.1. Feature detection

The alwaysUv option ID in the authenticatorGetInfo response defines feature support detection for this feature.

7.2.2. Platform Actions

1. If the feature is supported and enabled: @lwaysUv is present and true)

1. The platform SHOULD treat all Relying Party requests (e.g., those being made by a Relying Party vig
WebAuthn] or a platform API) as requiring user verification.

76/148

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

2. If the authenticator is notprotected by some form of user verification the platforms SHOULD help users
enroll a clientPin and or a built-in user verification method, if either or both are supported.

2. Platforms may enable or disable this feature by invoking theauthenticatorConfig command’s
toggleAlwaysUv subcommand.

7.2.3. Authenticator Actions

1. If the feature is supported and enabled: @lwaysUv is present and true)

1. The authenticator MUST require some form of user verification for the authenticatorMakeCredential and
authenticatorGetAssertion commands.

2. Authenticators supporting CTAP1/U2F MUST protect the credentials withbuilt-in user verification
methods, or disable CTAP1/U2F when the alwaysUv option ID is present and true.

3. If the "uv" bit set in the response isfalse some authenticators conforming to[FIPS140-3] or other
security requirements may return an syntactically-correct but invalid signature (i.e., one that no
credential public key minted by this authenticator, now or ever, will match) rather than a signature from
the private key from the selected credential. An example for a ECDSA signature is to return a fixed
value of (1, 1). Thus the returned signature will not be verifiable, which is up to the Relying Party to
handle. This approach avoids returning an error to the platform because doing that would interfere with
some platforms' approach of "pre-flighting" the allowList or excludeList.

2. If the feature is supported and disabled: @lwaysUv is present and false)

1. The authenticator does not always require user verification for its operations. It is dependent on the
parameters passed to individual operations as specified herein.

3. After an authenticator reset:

1. Set the makeCredUvNotRqd option ID to its default pre-configured state.

2. Set the alwaysUv option ID to its default pre-configured state (may be eithertrue or false).

7.2.4. Disabling CTAP1/U2F

Authenticators MUST disable CTAP1/U2F when thealwaysUv option ID is present and true in the
authenticatorGetInfo response, unless the CTAP1/U2F authenticator is protected by abuilt-in user verification
method. When CTAP1/U2F is disabled:

1. The authenticator MUST NOT return "U2F_V2" in theversions array.

2. The U2F_REGISTER and U2F_AUTHENTICATE commands MUST immediately fail and return
SW_COMMAND_NOT_ALLOWED.

The certifications member provides a hint to the platform with additional information about certifications that the
authenticator has received. Certification programs may revoke certification of specific devices at any time.
Relying partys are responsible for validating attestations and AAGUID via appropriate methods. Platforms may
alter their behaviour based on these hints such as selecting a PIN protocol or credProtect level.

7.3.1. Authenticator Actions

An authenticator’s supported certifications MAY be returned in the certifications member of an
authenticatorGetInfo response.

All certifications are in the form key-value pairs with string IDs and integer values. The following table lists all
defined certification types as of CTAP version "FIDO_2_3":

certification

D Definition

FIPS- The [FIPS140-2] Cryptographic-Module-Validation-Program overall certification level. This is a
CMVP-2 integer from 1 to 4.

FIPS- The [FIPS140-3] [CMVP] or ISO/IEC 19790:2012(E) and ISO/IEC 24759:2017(E) overall
CMVP-3 certification level. This is a integer from 1 to 4.

FIPS- The [FIPS140-2] Cryptographic-Module-Validation-Program physical certification level. This is
CMVP-2- ainteger from 1 to 4.

PHY

FIPS- The [FIPS140-3] [CMVP] or ISO/IEC 19790:2012(E) and ISO/IEC 24759:2017(E) physical
CMVP-3- certification level. This is a integer from 1 to 4.

PHY

77/148

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-request-message---u2f_register
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-request-message---u2f_authenticate

cefifiiEAlon Common Criteria Evaluation Assurance Level [CC1V3-1R5]. This is a integer from 1 to 7. The
intermediate-plus levels are not representBefinition

ID
HBoAdlisree—ce eatefrever—TAStS-afthtegeriom e-o—rRe-RHmBereeeve
FIDO mapped to the odd numbers, with the plus levels mapped to the even numbers e.g., level 3+
is mapped to 6.
CCN- Spanish National Cryptologic Center (CCN) STIC Products and Services Catalogue (CPSTIC).
CPSTIC This is set to the integer 1 if the authenticator is listed in CPSTIC.

This feature allows a Relying Party (e.g., an enterprise) to enforce a minimum pin length policy for authenticators
registering credentials by examining the return value of the Minimum PIN Length Extension (minPinLength). The
authenticatorConfig command’s setMinPINLength subCommand allows the platform to set the minimum pin
length policy for authenticator, force a change of PIN before allowing User Verification, and setting the list of
minPinLengthRPIDs that allow the specified RP ID to receive the extension response.

If this feature is supported, the authenticator MUST implement:

1. The ClientPIN feature or built-in UV PIN functionality.
2. The setMinPINLength subCommand of the authenticatorConfig command.
3. The Minimum PIN Length Extension (minPinLength).

7.4.1. Feature detection

The setMinPinLength option ID in the authenticatorGetlnfo response defines feature support detection for this
feature.

7.4.2. Platform Actions

NOTE: Because ClientPIN must be implemented for this set minimum PIN length feature to be
implemented, basic minimum PIN length enforcement already occurs. This feature is only about providing for
the minimum PIN length to be altered from its pre-configured value.

1. If the forcePINChange member of the authenticatorGetInfo response is present and true:

1. The platform should guide the user to change the PIN before invoking thegetPinToken or
getPinUvAuthTokenUsingPinWithPermissions subcommands.

2. Platforms may perform the following actions by invoking theauthenticatorConfig command’s
setMinPINLength subcommand:
1. Increase the minimum pin length for clientPin.

2. Set the minPinLengthRPIDs parameter’s list to allowRelying Parties receiving the minPinLength
extension.

3. Set the authenticator to require a PIN change before allowing clientPin based authentication.

4. Enable enforcement of a PIN complexity policy.

7.4.3. Authenticator Actions
1. If this feature is enabled:
1. The extension identifier minpinlength in the extensions member of the authenticatorGetinfo response
MUST be present.
2. The authenticatorConfig command’s setMinPINLength subcommand MUST be supported.

2. After an authenticator reset:

1. Set the minPINLength member of the authenticatorGetlnfo response to its default pre-configured
minimum PIN length.

2. Set the minPinLengthRPIDs parameter’s list to the immutable pre-configured list, if any. Any previously
added RP IDs are removed.

3. Set the forcePINChange member of the authenticatorGetlnfo response to false.

This feature allows a Relying Party (e.g., an enterprise) to enforce a pin complexity policy for authenticators
registering credentials by examining the return value of the PIN Complexity Policy Extension
(pinComplexityPolicy). The authenticatorConfig command’s setMinPINLength subCommand allows the platform
to enable the PIN Complexity Policy for the authenticator, force a change of PIN before allowing User

78/148

Verification, and setting the list of minPinLengthRPIDs that allow the specified RP ID to receive the extension
response.

If this feature is supported, the authenticator MUST implement:

1. The ClientPIN feature.
2. The setMinPINLength subCommand of the authenticatorConfig command.
3. The Minimum PIN Length Extension (minPinLength).

7.5.1. Feature detection

The pinComplexityPolicy option ID in the authenticatorGetlnfo response defines feature support detection for this
feature.

7.5.2. Platform Actions

NOTE: Because ClientPIN must be implemented for this set PIN complexity policy feature to be
implemented, basic minimum PIN length enforcement already occurs. This feature is only about providing for

the minimum PIN length to be altered from its pre-configured value.

1. If the forcePINChange member of the authenticatorGetInfo response is present and true:

1. The platform should guide the user to change the PIN before invoking thegetPinToken or
getPinUvAuthTokenUsingPinWithPermissions subcommands.

2. Platforms may perform the following actions by invoking theauthenticatorConfig command’s
setMinPINLength subcommand:
1. Increase the minimum pin length for clientPin.

2. Set the minPinLengthRPIDs parameter’s list to allowRelying Parties receiving the minPinLength
extension.

3. Set the authenticator to require a PIN change before allowing clientPin based authentication.

4. Enable enforcement of a PIN complexity policy.

7.5.3. Authenticator Actions

1. If this feature is enabled the extension identifierpinComplexityPolicy in the extensions member of the
authenticatorGetInfo response MUST be present.

2. After an authenticator reset:

1. Set the pinComplexityPolicy member of the authenticatorGetinfo response to its default pre-configured
PIN complexity policy value, if any.

2. Set the minPinLengthRPIDs parameter’s list to the immutable pre-configured list, if any. Any previously
added RP IDs are removed.

3. Set the forcePINChange member of the authenticatorGetInfo response to false.

7.6.1. Feature detection

Support for JSON-based messages, and more specifically Digital Credentials API requests using JSON-based
messages, is determined by the presence of the string dc in the array for key 3 of the post handshake message’s
CBOR map as defined in Hybrid Transports.

7.6.2. Request Properties'

The following JSON schema defines the properties of a JSON-based request:

79/148

https://www.w3.org/TR/2025/WD-digital-credentials-20250701/#digital-credentials-api
https://json-schema.org/draft/2020-12/draft-bhutton-json-schema-01#json-schema

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "https://schemas.fidoalliance.org/ctap/json-request/v2_2.schema.json",
"title": "JSON-based Request",

"type": "object",

"properties": {

"origin": {

"type": "string",

"description": "The caller’s origin as determined by the client platform."
+

"requestType": {
"type": "string",

"description": "The type of request.",
"any0f": [
{
"const": "credential.get",
"description": "A get request from Credential Management or the app platform equivale
nt."
1,
{
"const": "credential.create",
"description": "A create request from Credential Management or the app platform equiv
alent."
}
1
I
"request": {
"type": "object",
"description": "One or more requests of the same requestType.",
"properties": {
"digital": {
"type": "object",
"description": "The [=Digital Credentials API=] request object."
}
}
}
I

"additionalProperties": false,
"required": [

"origin",
"requestType",
"request"
1
}
EXAMPLE 1]

JSON-based request for a digital credential

"origin": "https://verifyl.example.com"
"requestType": "credential.get",
"request": {
"digital": {
"protocol": "openid4vp-vl-unsigned",
"data": {
"response_type": "vp_ token",
"response _mode": "dc_api"
"nonce": "GqTvQNhCCFszZORB8MXJO1GqQOP3EhBQ7vele6j - 1Kk"
"dcql query": {
"credentials": [
{
"id": "age proof",
"format": "mso _mdoc"
"meta": {
"doctype value": "org.iso.18013.5.1.mDL"
}
"claims": [
{"path": ["org.is0.18013.5.1", "age over 21"]}
{"path": ["org.is0.18013.5.1", "family name"]}
{"path": ["org.iso0.18013.5.1", "given name"]}

7.6.3. Response Properties:

80/148

The following JSON schema defines the properties of a JSON-based response:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://schemas.fidoalliance.org/ctap/json-response/v2 2.schema.json",
"title": "JSON-based Response",
"type": "object",
"properties": {
"response": {
"type": "object",
"description”: "One or more responses matching the request.",
"properties": {
"digital": {
"type": "object",
"description": "A response to a Digital Credential request.",
"maxProperties": 1,
"properties": {
"data": {
"type": "object",
"description": "The [=Digital Credentials API=] response object."
I
"error": {
"type": "string",
"description": "For an unsuccessful ceremony, the error code describing the error
dition.",
"any0f": [
{
"const": "USER CANCELLED",
"description": "The user actively cancelled the request."
H
{
"const": "DEVICE_ABORTED",
"description": "The device aborted the request."
+
{
"const": "NO_CREDENTIAL",
"description": "No credential found to satisfy the request."
}
1
I
"additionalProperties": false
}
}
}
}
I
"additionalProperties": false,
"required": [
"response"
1
}
| EEEE |

81/148

https://json-schema.org/draft/2020-12/draft-bhutton-json-schema-01#json-schema

EXAMPLE 2
Successful JSON-based response for a digital credential:

{
"response": {
"digital": {
"data": {
"protocol": "openid4vp-vl-unsigned",
"data": {
"vp_token": {

"age_proof": "02d2ZXJzaW9uYzEuMGlkb2N1bWVudHOBo2dkb2NUeXBldW9yZy5pc28uMTgwMTMul
S4xLm1ETGxpc3N1ZXITaWduZWSiam5hbWVTcGFjZX0hcW9yZy5pc28uMTgwMTMuNS4xg9gYWFSkaGRpZ2VzdE1EAGZ)
W5kb21QpGwYPdo8unC7_AZnK-693HF1bGVtZW50SWR1bnRpZmllcmtmYW1pbHLfbmFtZWx1bGVtZW50VmFsdwWViU21¢
GjYGFhRpGhkaWdlc3RIRAFmcmFuZG9tUBDB1c8u3nJsVKpG8VUKc - hxZWx1bWVudElkZW50aWZpZX3qzZ212ZW5fbmF1
Wx1bGVtZW50VmFsdWVjSm9u2BhYT6R0ZG1nZXNOSUQCZnIhbmRvbVA83Kw692RRua44-G_JeysAcWVsZW1lbnRIZGVi
GlmaWVya2FnZV9vdmVyXzIxbGVsZW1lbnRWYWx1ZfVgaXNzdWVyQXVO@aIRDoQEmoRghWQILMIICRzCCAe2gAwIBAgIL
KOP_dVwQ5WfFEhbntqgZ9oynsUwCgYIKoZIzjOEAwIweTELMAKGALUEBhMCVVMXEZARBgNVBAgMCKNhbGLImb3JuaWE>
jJAUBgNVBACMDU1vdW50YWLuIFZpZXcxHDAaBgNVBAOMEORPZ210YWwgQ331ZGVudGlhbHMxHzAdBgNVBAMMFmMRpZ21(
Wxj cmVkZW50aWFscy5kZXYwHhcNMj QxMTEwMDEwWODAZzWhcNMzQxMDI5MDEwODAZzWj B5MQswCQYDVQQGEwIVUZETMBE(
1UECAwWKQ2FsaWZvcm5pYTEWMBQGA1IUEBwwNTWI91bnRhaW4gVml1ldzEcMBoGA1UECgwTRGLnaXRhbCBDcmVkZW50aWF
ZEfMBOGALUEAWWWZG1lnaXRhbGNyZWR1bnRpYWxzLmR1d j BZMBMGBYqGSM49AgEGCCqGSM49AWEHAOIABOtDgHrSdqv
CsalMxtFFgsG1lbJ-QfDaThDN1zjQSwEk140n5ZcrPz10mM2WgKwLsKRvWymKvFBOpU9bLZ5EGmjUzBRMBOGA1UdDgQY
BQLLHD8AxxsbwunUTBS45pEGTnbsDATBgNVHSMEGDAWGBQLLHD8AXxsbwunUTBS45pEGTnbsDAPBgNVHRMBAT8EBTAL
QH_MA0GCCqGSM49BAMCAOGAMEUCIQD81bryGFFjP2Xaxy7zJbnnGLVLKrvIweDpqtMfhvvnMwIgbkMANURtOaeiHqv
pR1cSHYSeyCMRGTq8fq7bljh8tZAbrYGFkBtazndmVyc2lvbmMxLjBvZGlnZXNOQWxnb3JIpdGhtZINIQSOYNTZnZG9
HlwZXVvemcuaXNvLjE4MDEZL jUuMS5tRExsdmFsdWVEaWdlc3RzoXFvemcuaXNvL jE4MDEzL jUuMaMAWCD5MaTvyx91
HER92NyQSYNJ - JVbM4YgjBOgbShB62hHwFYIBxfeIk3ALJg7LUF-X2wCO_WUS4PuJcjlO1uTA9QHr5HAlggYU5Dkca:
aGs1a4np5N0zY8L -UAgNHN_21ZSJGiClbBtZGY2aWN1S2V5SW5mb6FpZGV2aWN1S2V5pAECTAERWCBO7xfD2-9IWUN:
Ls13r0D-Nnx9to0Lnhf3aMhuQmbGiJYIAxMzD6K1l nY UykJ-qdykIqCacRAWEGuU42EotRizdWFbHZhbGlkaXR5SW5n
6Nmc21nbmVkwHgbMjAyNCOXMSOxN1QyMDo1MjoyMi45MTk30DJaaXZhbGlkRnIvbcB4GzIwMj QtMTEtMTAUMjAGNTIE
jIuOTE5NZzg5Wmp2YWxpZFVudGlswHgbMjAzNCOXMSOwWNVQyMDo1MjoyMi45MTk30D laWECXUu3Z3RIKxudyLOVORV4
vC5xqZXJISHIebo90bVbRhZcjF8sbA SsbtmGm6iaHmSki®zuVF1H8V2Qkdc7zUxbGRldmljZVNpZ251ZKIgbmFtZVNy
WN1c9gYQaBqZGV2aWN1QXVOaKFvZGV2aWN1U21nbmFOdXJIThEOhASag91lhAFsk536s1R2rWiCCsYe2ZeBLWBDIxS7at
oB81AD_HAOzAzR_0rnlwZmchGgxZkUoO-vYFKV1-T28KYyJFSEfeWZzdGFOdXMA"

EXAMPLE 3
Unsuccessful JSON-based response for a digital credential

{
"response": {
"digital": {
"error": "NO CREDENTIAL"
}
}
}

7.7. Long touch for Reseti

This feature allows the authenticator to communicate to the platform that the authenticator reset ceremony
requires a long touch.

7.7.1. Feature detection®

The longTouchForReset in the authenticatorGetinfo response defines feature support detection for this feature.

7.7.2. Platform Actions!
1. If the feature is supported and enabled: (ongTouchForReset is present and true)

1. The platform SHOULD inform the user that a long touch is required during authenticator reset.

2. Platforms may enable this feature by invoking the authenticatorConfig command’s longTouchForReset
subcommand.

7.7.3. Authenticator Actions’

1. If the feature is supported and enabled: (ongTouchForReset is present and true)

82/148

1. The authenticator MUST require a user presence confirmation with a touch of greater than or equal to 5
seconds.

2. If the feature is supported and disabled: (ongTouchForReset is present and false)

1. The authenticator requires only a single touch for user presence to confirm an authenticator reset.

3. After an authenticator reset:

1. Set the longTouchForReset to its default pre-configured state (may be eithertrue or false).

Many transports (e.g., Bluetooth Smart) are bandwidth-constrained, and serialization formats such as JSON are
too heavy-weight for such environments. For this reason, all encoding is done using the concise binary encoding

CBOR [REC8949].

To reduce the complexity of the messages and the resources required to parse and validate them, all messages
MUST use the CTAP2 canonical CBOR encoding form as specified below, which differs from the
"Deterministically Encoded CBOR" suggested in Section 4.2 of [RFC8949]. All encoders MUST serialize CBOR
in the CTAP2 canonical CBOR encoding form without duplicate map keys. All decoders SHOULD reject CBOR
that is not validly encoded in the CTAP2 canonical CBOR encoding form and SHOULD reject messages with
duplicate map keys.

The CTAP2 canonical CBOR encoding form uses the following rules:
« Integers MUST be encoded as small as possible.

o 0to 23 and-1to -24 MUST be expressed in the same byte as the major type;

o 24 to 255 and -25 to -256 MUST be expressed only with an additional uint8_t;

o 256 to 65535 and -257 to -65536 MUST be expressed only with an additional uint16_t;

o 65536 to 4294967295 and -65537 to -4294967296 MUST be expressed only with an additional uint32_t.

« The representations of any floating-point values are not changed.

NOTE: The size of a floating point value—16-, 32-, or 64-bits—is considered part of the value for the
purpose of CTAP2. E.g., a 16-bit value of 1.5, say, has different semantic meaning than a 32-bit value of
1.5, and both can be canonical for their own meanings.

« The expression of lengths in major types 2 through 5 MUST be as short as possible. The rules for these
lengths follow the above rule for integers.

« Indefinite-length items MUST be made into definite-length items.

» The keys in every map MUST be sorted lowest value to highest. The sorting rules are:

o If the major types are different, the one with the lower value in numerical order sorts earlier.
o If two keys have different lengths, the shorter one sorts earlier;

o If two keys have the same length, the one with the lower value in (byte-wise) lexical order sorts earlier.

NOTE: These rules are equivalent to a lexicographical comparison of the canonical encoding of keys
for major types 0-3 and 7 (integers, strings, and simple values). They differ for major types 4-6 (arrays,
maps, and tags), which CTAP2 does not use as keys in maps. These rules should be revisited if CTAP2
does start using the complex major types as keys.

» Tags as defined in Section 3.4 in[REC8949] MUST NOT be present.

Because some authenticators are memory constrained, the depth of nested CBOR structures used by all
message encodings is limited to at most four (4) levels of any combination of CBOR maps and/or CBOR arrays.
Authenticators MUST support at least 4 levels of CBOR nesting. Clients, platforms, and servers MUST NOT use
more than 4 levels of CBOR nesting.

Likewise, because some authenticators are memory constrained, the maximum message size supported by an
authenticator MAY be limited. By default, authenticators MUST support messages of at least 1024 bytes.
Authenticators MAY declare a different maximum message size supported using the maxMsgSize
authenticatorGetInfo result parameter. Clients, platforms, and servers MUST NOT send messages larger than
1024 bytes unless the authenticator's maxMsgSize indicates support for the larger message size. Authenticators
MAY return the CTAP2_ERR_REQUEST_TOO_LARGE error if size or memory constraints are exceeded.

If map keys are present that an implementation does not understand, they MUST be ignored. Note that this
enables additional fields to be used as new features are added without breaking existing implementations.

Messages from the host to the authenticator are called "commands" and messages from authenticator to host
are called "responses”. All values are big endian encoded.

Authenticators SHOULD return the CTAP2_ERR_INVALID _CBOR error if received CBOR does not conform to
the requirements above.

Several commands reference externally-defined structures such asPublicKeyCredentialRpEntity which,
83/148

https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity

for the purposes of this protocol, are encoded as CBOR. The rules and behaviours for processing such CBOR
are defined above, but such structures can also be invalid because of missing required fields, or because values
have an incorrect type. If structures in messages from the host are missing required members, or the values of
those members have the wrong type, then the authenticator SHOULD return
CTAP2_ERR_CBOR_UNEXPECTED_TYPE.

The assigned values for vendor specific commands and their descriptions are:

Command Name Command Code Has parameters?

authenticatorVendorFirst 0x40 NA

Vendor - Bio Enroliment Prototype 0x40 yes
Vendor - Credential Management Prototype 0x41 yes
authenticatorVendorLast 0xBF NA

If an authenticator receives a command code it does not implement, it MUST return
CTAP1_ERR_INVALID_COMMAND. If the authenticator implements a command code having subcommands,
but does not implement an invoked subcommand, it MUST return CTAP2_ERR_INVALID_SUBCOMMAND.

NOTE: Some authenticators implementing earlier versions of this specification may not behave as specified
by the prior paragraph, because this behavior was only implied at that time.

Command codes in the range betweenauthenticatorVendorFirst and authenticatorVendorLast may be used
for vendor-specific implementations. For example, the vendor may choose to put in some testing commands.
Note that the FIDO client will never generate these commands. All other command codes are reserved for future
use and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5). The CBOR map MUST be
encoded using the definite length variant.

Some commands have optional parameters. Therefore, the length of the parameter map for these commands
may vary. For example, authenticatorMakeCredential may have 4, 5, 6, or 7 parameters, while
authenticatorGetAssertion may have 2, 3, 4, or 5 parameters.

All command parameters are CBOR encoded following the JSON to CBOR conversion procedures as per the
CBOR specification [RFC8949]. Specifically, parameters that are represented as DOM objects in the
Authenticator APl layers (formally defined in the Web API[WebAuthn]) are converted first to JSON and
subsequently to CBOR.

The error response values range from 0x01 - Oxff. This range is split based on error type.

Error response values in the range betweenCTAP2_OK and CTAP2_ERR_SPEC_LAST are reserved for spec
purposes.

Error response values in the range betweenCTAP2_ERR_VENDOR_FIRST and CTAP2_ERR_VENDOR_LAST
may be used for vendor-specific implementations. All other response values are reserved for future use and may
not be used. These vendor specific error codes are not interoperable and the platform SHOULD treat these
errors as any other unknown error codes.

Error response values in the range betweenCTAP2_ERR_EXTENSION_FIRST and
CTAP2_ERR_EXTENSION_LAST may be used for extension-specific implementations. These errors need to be
interoperable for vendors who decide to implement such optional extension.

Code Name Description
0x00 CTAP1_ERR_SUCCESS, CTAP2 OK Indicates successful response.
Th i lid CTAP
0x01 CTAP1_ERR_INVALID_COMMAND e commandis not a valid C
command.
Th incl invalid
0x02 CTAP1_ERR_INVALID_PARAMETER 8 gommand jncluded ap inyal
parameter.
0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.
0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.
0x05 CTAP1_ERR_TIMEOUT Message timed out.

84/148

Channel busy. Client SHOULD retry the

https://fidoalliance.org/specs/fido2/vendor/BioEnrollmentPrototype.pdf
https://fidoalliance.org/specs/fido2/vendor/CredentialManagementPrototype.pdf

Ggle CTAP1_ERRNGMSNNEL BUSY request after a SRId dgiifph'ote that the
client MAY abort the transaction if the
command is no longer relevant.

0x0A CTAP1_ERR _LOCK_ REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this cid.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x17 CTAP2 ERR_FP_DATABASE FULL Fingerprint data base is full, e.g., during
enrollment.

L | is full. §6.10.

0x18 CTAP2 ERR LARGE BLOB_STORAGE FuLL -2r9e blobstorage is full. (See§6.10.3
Large, per-credential blobs.)

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the exclude list.

0x21 CTAP2 ERR_PROCESSING Processing (Lengthy operation is in
progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in progress.
0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.
Authenti

0x26 CTAP2 ERR_UNSUPPORTED ALGORITHM utoniicator goeg gt sybpeft Bouested
algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Not a valid option for current operation.

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT A user action timeout occurred.

0x30 CTAP2_ERR_NOT ALLOWED Contlnu.atlon command, suc.h as,
authenticatorGetNextAssertion not allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN Invalid.

0x32 CTAP2_ERR_PIN_BLOCKED PIN Blocked.

PIN authenticati inUvAuthP.

0x33 CTAP2_ERR_PIN_AUTH_INVALID ! authentication,pinUvAuthParam,
verification failed.

0x34 GTAP2 ERR PIN AUTH BLOCKED PIN authentlca.tlon using pinUvAuthToken

- & & - blocked. Requires power cycle to reset.
0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.
A pinUvAuthToken is required for the

0x36 CTAP2_ERR_PUAT_REQUIRED selected operation. See also the
pinUvAuthToken option ID.
PIN policy violation. Minimum PIN length or
PIN complexity may trigger this error. The

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION platform should check the minimum PIN
length in authenticatorGetInfo to discriminate
between the causes of this error.

0x38 Reserved for Future Use Reserved for Future Use

0x39 CTAP2 ERR_REQUEST TOO_LARGE Authenticator cann.Ot handle this request due
to memory constraints.

0x3A CTAP2_ERR_ACTION_TIMEOUT The current operation has timed out.

85/148

‘ ripti
Gode same User presence |sD (%%%ﬁ!%d%‘r the requested

036 SFAR—FERR—UP—REQUHRED
- F o operation.

0x3C CTAP2_ERR_UV_BLOCKED built-in user verification is disabled.

0x3D CTAP2_ERR_INTEGRITY_FAILURE A checksum did not match.
Th ted sub d is either invalid

OX3E CTAP2_ERR_INVALID_SUBCOMMAND QregqrogiagsLacommangss githgr igvad
or not implemented.

0x3F GTAP2 ERR_UV_INVALID built-in user verification unsuccessful. The

platform SHOULD retry.

The permissions parameter contains an

0x40 CTAP2_ERR_UNAUTHORIZED_PERMISSION) 9
& unauthorized permission.

0x7F CTAP1_ERR_OTHER Other unspecified error.
OxDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.
0xEO0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.
OxEF CTAP2_ERR_EXTENSION_LAST Extension specific error.
0xFO CTAP2_ERR_VENDOR_FIRST Vendor specific error.
OxFF CTAP2_ERR _VENDOR_LAST Vendor specific error.

This protocol uses the following utility functions for encoding various values in various algorithms:

uint8(x)
Returns the least-significant eight bits of x as a single byte.

uint32LittleEndian(x)
Returns a sequence of four bytes whose values are the least-significant eight bits of x, x >> 8, x >> 16, and
x >> 24, respectively.

uint64LittleEndian(x)
Returns a sequence of eight bytes whose values are the least-significant eight bits of x, x >> 8, x >> 16, x >>
24, x >> 32, x >> 40, x >> 48, x >> 56, respectively.

Authenticators that include FIDO_2_3 in versions:

1. MUST support the hmac-secret extension.

2. MUST support PIN establishment/maintenance or a built-in user verification method (or both) if the option 1D
for rk has the value true. The option ID values for clientPin and uv MUST have either the valuestrue or
false, depending on if a pin has been set or a biometric template enrolled on the authenticator.

3. MUST either include the credMgmt option ID with the value true in the authenticatorGetInfo response’s
options member, or support all the same functionality via a built-in Ul, if thek option ID has the value true.

4. MUST support the credProtect extension if some form of user verificationis supported, unless all credentials
are implicitly created at credProtect level three.

5. MUST include the pinUvAuthToken option ID with the value true in the authenticatorGetinfo response’s
options member if either the clientPin or uv option IDs have the value true.

6. MUST include an array element with the value2 in the authenticatorGetInfo response’s pinUvAuthProtocols
member (i.e. support PIN/UV auth protocol two) if it includes any values at all.

7. If the extension identifierminpinlength in the extensions member of the authenticatorGetlnfo is present, then
the authenticatorConfig command’s setMinPINLength subcommand MUST be supported.

8. If the ep option ID in the authenticatorGetInfo response is present, then the authenticatorConfig command’s
enable-enterprise-attestation subcommand MUST be supported.

This section defines:

1. How a platform maps a subset of CTAP2 requests to CTAP1/U2F requests and, conversely, how it maps
the CTAP1/U2F responses to CTAP2 responses. (Only requests that do not require CTAP2-only features
can be so mapped.)

2. How RPs verify CTAP1/U2F-based authenticatorMakeCredential and authenticatorGetAssertion responses.

3. How authenticators allow credentials to be exposed via both CTAP2 and CTAP1/U2F.
86/148

Platforms MAY implement support for CTAP1/U2F, but authenticators SHOULD support it. Not supporting U2F
may result in an authenticator that does not function on all websites and thus may appear to be broken to users.
Thus, authenticators that do not support CTAP1/U2F are not suitable for sale to the general public but may be
manufactured for specific cases where it is known that CTAP1/U2F support is unnecessary.

The U2F protocol is based on a request-response mechanism, where a requester sends a request message to a
U2F device, which always results in a response message being sent back from the U2F device to the requester.

The request message has to be "framed" to send to the lower layer. Taking the signature request as an example,
the "framing" is a way for the FIDO client to tell the lower transport layer that it is sending a signature request and
then send the raw message contents. The framing also specifies how the transport will carry back the response
raw message and any meta-information such as an error code if the command failed.

In this current version of U2F, the framing is defined based on the ISO7816-4:2005 extended APDU format. This
is very appropriate for the USB transport since devices are typically built around secure elements which
understand this format already. This same argument may apply for futures such as Bluetooth based devices. For
other futures based on other transports, such as a built-in u2f token on a mobile device TEE, this framing may
not be appropriate, and a different framing may need to be defined.

10.1.1. U2F Request Message Framing

The raw request message is framed as a command APDU:
CLAINS P1 P2 LC1 LC2 LC3 <request-data>

Where:

CLA: Reserved to be used by the underlying transport protocol (if applicable). The host application SHALL set
this byte to zero.

INS: U2F command code, defined in the following sections.
P1, P2: Parameter 1 and 2, defined by each command.

LC1-LC3: Length of the request data, big-endian coded, i.e. LC1 being MSB and LC3 LSB

10.1.2. U2F Response Message Framing

The raw response data is framed as a response APDU:

<response-data> SW1 SW2

Where:

SWA1, SW2: Status word bytes 1 and 2, forming a 16-bit status word, defined below. SW1 is MSB and SW2 LSB.
Status Codes

The following 1ISO7816-4 defined status words have a special meaning in U2F:

SW_NO_ERROR: The command completed successfully without error.
SW_CONDITIONS_NOT_SATISFIED: The request was rejected due to test-of-user-presence being required.
SW_WRONG_DATA: The request was rejected due to an invalid key handle.
SW_COMMAND_NOT_ALLOWED: The command is not allowed at this time, e.g. because U2F is disabled.

Each implementation may define any other vendor-specific status codes, providing additional information about
an error condition. Only the error codes listed above will be handled by U2F FIDO clients, whereas others will be
seen as general errors and logging of these is OPTIONAL.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorMakeCredential to and from
CTAP1/U2F Registration Messages):

1. Platform tries to get information about the authenticator by sending authenticatorGetinfo command as
specified in CTAP2 protocol overview.

o CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any
failure, platform MAY fall back to CTAP1/U2F protocol.

87/148

2. Map CTAP2 authenticatorMakeCredential request toU2F_REGISTER request.

o Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators
cannot fulfill.

= All of the below conditions MUST be true for the platform to proceed to next step. If any of the
below conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

= pubKeyCredParams MUST use the ES256 algorithm (-7).
= Options MUST NOT include "rk" set to true.
= Options MUST NOT include "uv" set to true.

= |f excludeList is not empty:

= |f the excludeList is not empty, the platform MUST send signing request with check-only control
byte to the CTAP1/U2F authenticator using each of the credential ids (key handles) in the
excludeList. If any of them does not result in an error, that means that this is a known device.
Afterwards, the platform MUST still send a dummy registration request (with a dummy appid
and invalid challenge) to CTAP1/U2F authenticators that it believes are excluded. This makes
it so the user still needs to touch the CTAP1/U2F authenticator before the RP gets told that the
token is already registered.

o Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

o Let rpIdHash be a byte string of size 32 initialized with SHA-256 hash ofrp.id parameter as
CTAP1/U2F application parameter (32 bytes).
3. Send the U2F_REGISTER request to the authenticator as specified ifU2FRawMsgs] spec.

4. If the authenticator response message contains the status code SW_COMMAND_NOT_ALLOWED, U2F is
disabled at this time. Abandon this operation. The platform SHOULD retry using CTAP2 if present in the
versions array.

5. Map the U2F registration response message (see:FIDO U2F Raw Message Formats v1.2 § registration-
response-message-success) to a CTAP2 authenticatorMakeCredential response message:

o Generate authenticatorData from the U2F registration response message EIDO U2F Raw Message
Formats v1.2 § registration-response-message-success) received from the authenticator:

= Initialize attestedCredData:
= Let credentialIdLength be a 2-byte unsigned big-endian integer representing length of the
Credential ID initialized with CTAP1/U2F response key handle length.

= Letcredentialld be a credentialldLength byte string initialized with CTAP1/U2F response
key handle bytes.

= Let x9encodedUserPublicKeybe the user public key returned in the U2F registration
response message [U2FRawMsgs]. Let coseEncodedCredentialPublicKey be the result of
converting x9encodedUserPublicKey’s value from ANS X9.62 / Sec-1 v2 uncompressed curve
point representation [SEC1V2] to COSE_Key representation (REC9052] Section 7).

= LetattestedCredData be a byte string with following structure:

Length (in bytes) Description Value

The AAGUID of the Initialized with all zeros.
16

authenticator.

5 Byte length L of Initialized with credentialIdLength
Credential ID bytes.

credentialldLength Credential ID. Initialized with credentialld bytes.

3 ; Initialized with
The credential public) .

77 ke coseEncodedCredentialPublicKey

4 bytes.

= Initialize authenticatorData:

= Let flags be a byte whose zeroth bit (bit 0, UP) is set, and whose sixth bit (bit 6, AT) is
set, and all other bits are zero (bit zero is the least significant bit). See also Authenticator
Data section of [WebAuthn].

= Let signCount be a 4-byte unsigned integer initialized to zero.

» LetauthenticatorData be a byte string with the following structure:

Length (i
gth (in Description Value
bytes)
32 SHA-256 hash of the Initialized with rpIdHash bytes.
rp.id.

88/148

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-request-message---u2f_register
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://www.w3.org/TR/webauthn-2#rp-id

1 Fl itiali i '
Length (in a.gs. Initialized with flags' value.

Description Value

byt4es) Signature counter Initialized with signCount bytes.
(signCount).

Variable . Initialized with attestedCredData’s

Attested credential data.
Length value.

o LetattestationStatement be a CBOR map (see "attStmtTemplate" inGenerating an Attestation
Object [WebAuthn]) with the following keys, whose values are as follows:

= Set "x5¢" as an array of the one attestation cert extracted from CTAP1/U2F response.

= Set "sig" to be the "signature" bytes from the U2F registration response message[lU2FRawMsgs].
Note: An ASN.1-encoded ECDSA signature value ranges over 8-72 bytes in length. [U2FRawMsgs
lincorrectly states a different length range.

o LetattestationObject be a CBOR map (see "attObj" inGenerating an Attestation Object [WebAuthn])
with the following keys, whose values are as follows:

= Set "authData" to authenticatorData.
= Set "fmt" to "fido-u2f".
= Set "attStmt" to attestationStatement

6. Return attestationObject to the caller.

EXAMPLE 4
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{1: h'687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DB9E6O2645F141 ",
2: {"id": "example.com",
"name": "example.com"},
3: {"id": "1098237235409872",
"name": "johnpsmith@example.com",
"icon": "https://pics.example.com/00/p/aBjjjpqPb.png",
"displayName": "John P. Smith"},
4: [{"type": "public-key", "alg": -7},
{"type": "public-key", "alg": -257}1}

CTAP1/U2F Request from above CTAP2 authenticatorMakeCredential request

687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DBIE6O2645F141 # clientDataHash
A379A6F6EEAFBOAS5E378C118034E2751E682FABIOF2D30AB13D2125586CE1947 # rpIdHash

Sample CTAP1/U2F Response from the device

05 # Reserved Byte (1 Byte
)
04E87625896EE4E46DC032766E8087962F36DFIDFE8B567F3763015B1990A60E # User Public Key (65

tes)

1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...

91 # ...

40 # Key Handle Length (1
yte)

3EBD89BF77EC509755EE9C2635EFAAAC7B2BIC5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Hand
Length Bytes)

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CDO8FE420038 # ...
3082024A30820132A0030201020204046C8822300D06092A864886F70D010108B # X.509 Cert (Variable
ength Cert)
0500302E312C302A0603550403132359756269636F2055324620526F6F742043 #
412053657269616€203435373230303633313020170D31343038303130303030 #
30305A180F32303530303930343030303030305A302C312A302806035504030C #
2159756269636F205532462045452053657269616C2032343931383233323437 #
37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 #
2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 #
E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDBIFF4A33B30 #
39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 #
322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...
4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABACIB651B # ...
BE5BDCDC8EFOAD2C1C1FFB36D18715D42E78B249224F92C7E6E7AOSCA49FOETES #
C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B #
8962COF410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 #
B65C99E7EB6919786703COD8CD41E8F75CCA44AABAB725AD8E799FF3A8696A6F #
1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD #
810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 #
3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CCIBIODFEACAE640FF #
1BBOF1FE5DB4EFF7A95F060733F5 #

#

30450220324779C68F3380288A1197B6095F7A6EBOB1B1C127F66AE12A99FE8S Signature (variable 1

ngth)
32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # .
AA7DO81DE341FA # .

89/148

https://www.w3.org/TR/webauthn-2#sec-attested-credential-data
https://www.w3.org/TR/webauthn-2#generating-an-attestation-object
https://www.w3.org/TR/webauthn-2#generating-an-attestation-object

4

Authenticator Data from CTAP1/U2F Response

A379A6F6EEAFBIAS5E378C118034E2751E682FAB9F2D30AB13D2125586CE1947
41

00000000

00000000000000000000000000000000

0040

yte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2BIC5CEF1736C3717DA48534C8C6B6
Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CDO8FE420038

A5010203262001215820E87625896EE4E46DC032766E8087962F36DFIDFE8B56
7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C
B14C22F8C97045F4612FB20C91

4

#* H* H O W W

oH W W

rpIdHash
flags

Sign Count
AAGUID

Key Handle Length (1

Key Handle (Key Handl

Public Key

Mapped CTAP2 authenticatorMakeCredential response(CBOR)

{1: "fido-u2f",

2: h'A379A6F6EEAFBOA5S5E378C118034E2751E682FABOF2D30AB13D2125586CE1947
4100403EBD89BF77EC509755
EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E
78055BDD396B64F78DA2C5F96200CCD415CDO8FE420038A50102032620012158
20E87625896EE4E46DC032766E8087962F36DFODFE8B567F3763015B1990A60E
1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461

2FB20C91',

3: {"sig": h’30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85
32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1

AA7DO81DE341FA",

"x5c": [h’'3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B
0500302E312C302A0603550403132359756269636F2055324620526F6F742043
412053657269616€203435373230303633313020170D31343038303130303030
30305A180F32303530303930343030303030305A302C312A302806035504030C
2159756269636F205532462045452053657269616C2032343931383233323437
37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9
2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1
E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDBIFF4A33B30
39302206092B0601040182C40A020415312E332E362E312E342E312E34313438
322E312E323013060B2B0601040182E51C020101040403020430300D06092A86
4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABACIB651B
BE5BDCDC8EFOAD2C1C1FFB36D18715D42E78B249224F92C7EGE7AO5C49FOE7E4
C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B
8962COF410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69
B65C99E7EB6919786703COD8CD41E8F75CCA44AABAB725ADBE799FF3A8696A6F
1B2656E631B1E40183CO8FDA53FA4A8F85A05693944AE179A1339D002D15CABD
810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3
3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CCIBIODFEACAEG640FF

1BBOF1FE5DB4EFF7A95F060733F5"'] }}

90/148

clientDataHash | RPID | authenticatorMakeCredential Parameters
\

| SHA-256 (RPID) | <+—— Performed by Platform
v h 4
32 bytes | 32 bytes | U2F Register Request
¥ - ¥ '
Challenge Parameter Application|Parameter

UZF Register Response

—>| Credential Public Key (COSE,KE*) <«—— Performed by Platform

ATTESTATION OBJECT

| “authData™: ... “fmt”: “fido-u2f” “attStmt™: ...

AUTHENTICATOR DATA

¥ 32 bytes 1 byte 4 bytes (big-endian wini32) variable length

RP ID Hash | FLAGS | ‘COUNTER = 0x00000000 ATTESTATION DATA

A
/ \ - v
0O 1 0 0 0 0 01 ‘

TED AT [

»

| AAGUID = 0x00..00 | L | Credential ID |Credential Public Key (COSE,K.E*Y)

ariable Tength T
16 bytes (varieble length)

ATTESTATION STATEMENT
(in "Fido-u2f" attestsion statement format)

authenticatorMakeCredential .
Response (returns a single _
Attestation Object) T +

Figure 3 Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F Registration Messages.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorGetAssertion to and from
CTAP1/U2F Authentication Messages):

1. Platform tries to get information about the authenticator by sending authenticatorGetinfo command as
specified in CTAP2 protocol overview.

o CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any
failure, platform MAY fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:

o Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators
cannot fulfill:

= All of the below conditions MUST be true for the platform to proceed to next step. If any of the
below conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.
= Options MUST NOT include "uv" set to true.
= allowList MUST have at least one credential.
o If allowList has more than one credential, platform has to loop over the list and send individual different

U2F_AUTHENTICATE commands to the authenticator. For each credential in credential list, map

91/148

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-request-message---u2f_authenticate

CTAP2 authenticatorGetAssertion request to U2F_ AUTHENTICATE as below:

= Let controlByte be a byte initialized as follows:

= |f "up" is set to false, set it to 0x08 (dont-enforce-user-presence-and-sign).

= For USB, set it to 0x07 (check-only). This should prevent call getting blocked on waiting for
user input. If response returns success, then call again setting the enforce-user-presence-and-
sign.

= For NFC, set it to 0x03 (enforce-user-presence-and-sign). The tap has already provided the
presence and won'’t block.

= Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

= Let rpIdHash be a byte string of size 32 initialized with SHA-256 hash ofrp. id parameter as
CTAP1/U2F application parameter (32 bytes).

» Let credentialld is the byte string initialized with the id for this PublicKeyCredentialDescriptor.
= Let keyHandleLength be a byte initialized with length ofcredentialld byte string.

» Letu2fAuthenticateRequest be a byte string with the following structure:

Length (in
gth (Description Value
bytes)
Initialized with clientDataHash parameter
32 Challenge parameter P
bytes.
32 Application Initialized with rpIdHash bytes.
parameter
1 Key handle length Initialized with keyHandleLength’s value.
keyHandleLength Key handle Initialized with credentialld bytes.

and let Control Byte be P1 of the framing.
. Send u2fAuthenticateRequest to the authenticator.

. If the authenticator response message contains the status code SW_COMMAND_NOT_ALLOWED, U2F is
disabled at this time. Abandon this operation. The platform SHOULD retry using CTAP2.

. Map the U2F authentication response message (see the "Authentication Response Message: Success"
section of [U2FRawMsgs]) to a CTAP2 authenticatorGetAssertion response message:

o Generate authenticatorData from the U2F authentication response message received from the
authenticator:

= Copy bits 0 (the UP bit) and bit 1 from the CTAP2/U2F response user presence byte to bits 0 and 1
of the CTAP2 flags, respectively. Set all other bits of flags to zero. Note: bit zero is the least
significant bit. See also Authenticator Data section of [WebAuthn].

» Let signCount be a 4-byte unsigned integer initialized with CTAP1/U2F response counter field.

» LetauthenticatorData is a byte string of following structure:

Il;;regst: (in Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4 Signature counter Initialized with signCount
(signCount) bytes.

o LetauthenticatorGetAssertionResponse be a CBOR map with the following keys whose values are
as follows:
= Set 0x01 with the credential fromallowList that whose response succeeded.

= Set 0x02 with authenticatorData bytes.

= Set 0x03 with signature field from CTAP1/U2F authentication response message. Note: An ASN.1-
encoded ECDSA signature value ranges over 8-72 bytes in length. [U2FRawMsgs] incorrectly
states a different length range.

92/148

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-request-message---u2f_authenticate
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-response-message-success
https://www.w3.org/TR/webauthn-2#rp-id

EXAMPLE 5
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{1: "example.com",
2: h'687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DBI9E602645F141
3: [{"type": "public-key",
"id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2BIC5CEF1736C3717DA485
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CDO8
5: {"up": true}}

CTAP1/U2F Request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DBIE602645F141 #

A379A6F6EEAFB9A5S5E378C118034E2751E682FABI9F2D30AB13D2125586CE1947 #

40 #

yte)

3EBD89BF77EC509755EE9C2635EFAAAC7B2BIC5CEF1736C3717DA48534C8C6B6 #
Length Bytes)

'
’

34C8C6B6
FE420038'}],

clientDataHash
rpIdHash
Key Handle Length (1

Key Handle (Key Handl

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CDO8FE420038 # ...

4

iz

Sample CTAP1/U2F Response from the device

01 #
)

0000003B #
)

304402207BDEOA52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C #
ngth)

User Presence (1 Byte

Sign Count (4 Bytes

Signature (variable L

68423FF702203C517B47877F85782DE10086A783D1E7DFAE3639E771F5F6AFA3 # ...
5AAD5373858E # ..

4

Authenticator Data from CTAP1/U2F Response

A379A6F6EEAFBOAS5E378C118034E2751E682FAB9F2D30AB13D2125586CE1947
01

)

0000003B #
)

4

3

rpIdHash
User Presence (1 Byte

Sign Count (4 Bytes

Fim

Mapped CTAP2 authenticatorGetAssertion response(CBOR)

{1: {"type": "public-key",

"id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2BIC5CEF1736C3717DA4853
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CDO8F

2: h'A379A6F6EEAFBYA55E378C118034E2751E682FABOF2D30AB13D2125586CE1947
010000003B",

3: h’304402207BDEOA52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C
68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3
5AAD5373858E '}

93/148

4C8C6B6
E420038'},

authenticatorGetAssertion

ClientDataHash | | RPID | ~| L‘ Credential ID
parameters
N
| SHA-256 RPID) | |[«———| |Performed by Platform
y A ¢ . .
U2F Authentication
1| 32bytes 32byes | 1 | Lbytes |<—
| | Y % | | Y ‘ Request
’\;34
R
Q@'*E & &”\@
& & e
o C S
Al AL Al
[ain's NV o icati
- U2F Authentication
: A
N N cesponse
| 32bytes | 1 | 4 bytes | 32 bytes |
& &
Q'\
ERE——
authenticatorGetAssertion
RPID Hash Flags Counter Response (returns three
[32byes | 1] 4byes | AUTHENTICATOR DATA different objects as depicted
A
|| £ T here)
¥

Figure 4 Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F Authentication Messages.

If an authenticator supports both CTAP1/U2F and CTAP2 then a credential created using CTAP1/U2F MUST be
assertable over CTAP2. (Credentials created over CTAP1/U2F MUST NOT be discoverable credentials though.)
From § 10.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators this means

that an authenticator MUST accept, over CTAP2, the credential ID of a credential that was created using U2F

where the application parameter at the time of creation was the SHA-256 digest of the RP_ID that is given at

assertion time.

In order to ensure that the interaction between the platform and any authenticators is secure, authenticators

SHALL:

« Ensure that all state (e.g. discoverable credentials, signature counters, PINs, etc) that is observable or
alterable over FIDO interfaces is not observable or alterable over any other interfaces on transports that

FIDO has not defined.

« Ensure that all non-discoverable credentials that are created over FIDO interfaces are not valid over any

other interfaces on transports that FIDO has not defined. (For example, if non-discoverable credentials store
state in the credential ID, protected by an authenticator-global secret, then that secret MUST only be used

for requests received over FIDO interfaces.)

NOTE:

FIDO interfaces are defined as:

Above recommendations are also valid for future transports.

« USB, when using USB HID and the FIDO_USAGE_PAGE/FIDO_USAGE_CTAPHID combination.

94/148

https://www.w3.org/TR/webauthn-2#rp-id

o LIGHTNING, when using USB HID and the FIDO_USAGE_PAGE/FIDO_USAGE_CTAPHID combination,
tunnelled over the Apple Interface Accessory Protocol.

¢ NFC, When ISO7816 messages are used over a ISO14443 transport and the applet is selectedas specified.
o Authenticator SHALL NOT allow FIDO applet to be implicitly selected or enabled.

= Recommended: Authenticator SHALL NOT have default applet selected on power cycle. All CTAP
commands SHALL be preceded by an explicit applet selection command as described in Applet
selection section.

= Alternative: If authenticator has a FIDO applet selected for some reason at power cycle, it SHALL
be in disabled mode and SHALL ONLY be enabled once it receives explicit applet selection
command as described in Applet selection section.

o Authenticator SHALL disable FIDO interface when it receivesapplet deselect command.
« smart-card, When 1ISO7816 messages are used over a contact interface to an embedded or detached card
reader, when the applet is selected as specified.
o Authenticator SHALL NOT allow FIDO applet to be implicitly selected or enabled.

» Recommended: Authenticator SHALL NOT have default applet selected on power cycle. All CTAP
commands SHALL be preceded by an explicit applet selection command as described in Applet
selection section.

= Alternative: If the authenticator has a FIDO applet selected for some reason at power cycle, it
SHALL be in disabled mode and SHALL ONLY be enabled once it receives explicit applet selection
command as described in Applet selection section.

o Authenticator SHALL disable FIDO interface when it receivesapplet deselect command.
o BLE, when using the FIDO GATT service.
« HYBRID, when using the FIDO Hybrid service.

See also § 11.1 Secure protocol implementation.

11.2.1. Design rationale

CTAP messages are framed for USB transport using the HID (Human Interface Device) protocol. We henceforth
refer to the protocol as CTAPHID. The CTAPHID protocol is designed with the following design objectives in
mind

« Driver-less installation on all major host platforms

» Multi-application support with concurrent application access without the need for serialization and centralized
dispatching.

« Fixed latency response and low protocol overhead
« Scalable method for CTAPHID device discovery

Since HID data is sent as interrupt packets and multiple applications may access the HID stack at once, a non-
trivial level of complexity has to be added to handle this.

11.2.2. Protocol structure and data framing

The CTAP protocol is designed to be concurrent and state-less in such a way that each performed function is not
dependent on previous actions. However, there has to be some form of "atomicity" that varies between the
characteristics of the underlying transport protocol, which for the CTAPHID protocol introduces the following
terminology:

o Transaction

« Message

o Packet
A transaction is the highest level of aggregated functionality, which in turn consists of a request, followed by a
response message. Once a request has been initiated, the transaction has to be entirely completed or aborted

before a second transaction can take place and a response is never sent without a previous request.
Transactions exist only at the highest CTAP protocol layer.

Request and response messages are in turn divided into individual fragments, known aspackets. The packet is
the smallest form of protocol data unit, which in the case of CTAPHID are mapped into HID reports.

11.2.3. Concurrency and channels

Additional logic and overhead is required to allow a CTAPHID device to deal with multiple "clients", i.e. multiple

95/148

applications accessing the single resource through the HID stack. Each client communicates with a CTAPHID
device through a logical channel, where each application uses a unique 32-bitchannel identifier for routing and
arbitration purposes.

A channel identifier is allocated by the FIDO authenticator to ensure its system-wide uniqueness. The actual
algorithm for generation of channel identifiers is vendor specific and not defined by this specification.

Channel ID 0 is reserved and Oxffffffff is reserved for broadcast commands, i.e. at the time of channel
allocation.

11.2.4. Message and packet structure

Packets are one of two types, initialization packets and continuation packets. As the name suggests, the first
packet sent in a message is an initialization packet, which also becomes the start of a transaction. If the entire
message does not fit into one packet (including the CTAPHID protocol overhead), one or more continuation
packets have to be sent in strict ascending order to complete the message transfer.

A message sent from a host to a device is known as arequest and a message sent from a device back to the
host is known as a response. A request always triggers a response and response messages are never sent ad-
hoc, i.e. without a prior request message. However, a keep-alive message can be sent between a request and a
response message.

The request and response messages have an identical structure. A transaction is started with the initialization
packet of the request message and ends with the last packet of the response message. The client starting a
transaction may also abort it.

Packets are always fixed size (defined by the endpoint and HID report descriptors) and although all bytes may
not be needed in a particular packet, the full size always has to be sent. Unused bytes SHOULD be set to zero.

An initialization packet is defined as

Offset Length Mnemonic Description
0 4 CID Channel identifier
4 1 CMD Command identifier (bit 7 always set)
5 1 BCNTH High part of payload length
6 1 BCNTL Low part of payload length
7 (s-7) DATA Payload data (s is equal to the fixed packet size)

The command byte has always the highest bit set to distinguish it from a continuation packet, which is described
below.

A continuation packet is defined as

Offset Length Mnemonic Description
0 4 CID Channel identifier
4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)
5 (s-5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7) may be sent as one packet. A larger
message is then divided into one or more continuation packets, starting with sequence number 0, which then
increments by one to a maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum message payload
length is 64 - 7 + 128 * (64 - 5) = 7609 bytes.

11.2.5. Arbitration

In order to handle multiple channels and clients concurrency, the CTAPHID protocol has to maintain certain
internal states, block conflicting requests and maintain protocol integrity. The protocol relies on each client
application (channel) behaves politely, i.e. does not actively act to destroy for other channels. With this said, a
malign or malfunctioning application can cause issues for other channels. Expected errors and potentially stalling
applications should however, be handled properly.

11.2.5.1. Transaction atomicity, idle and busy states.

A transaction always consists of three stages:
1. A message is sent from the host to the device

96/148

2. The device processes the message

3. Aresponse is sent back from the device to the host

The protocol is built on the assumption that a plurality of concurrent applications may try ad-hoc to perform
transactions at any time, with each transaction being atomic, i.e. it cannot be interrupted by another application
once started.

The application channel that manages to get through the first initialization packet when the device is in idle state
will keep the device locked for other channels until the last packet of the response message has been received
or the transaction is aborted. The device then returns to idle state, ready to perform another transaction for the
same or a different channel. Between two transactions, the device might need to keep some state. A host
application MUST assume that any other process may execute other transactions at any time and former state
will be dropped.

If an application tries to access the device from a different channel while the device is busy with a transaction,
that request will immediately fail with a busy-error message sent to the requesting channel.

11.2.5.2. Transaction timeout

A transaction has to be completed within a specified period of time to prevent a stalling application to cause the
device to be completely locked out for access by other applications. If for example an application sends an
initialization packet that signals that continuation packets will follow and that application crashes, the device will
back out that pending channel request and return to an idle state.

11.2.5.3. Transaction abort and re-synchronization

If an application for any reason "gets lost", gets an unexpected response or error, it MAY at any time issue an
abort-and-resynchronize command. If the device detects an INIT command during a transaction that has the
same channel id as the active transaction, the transaction is aborted (if possible) and all buffered data flushed (if
any). The device then returns to idle state to become ready for a new transaction.

If an application wishes to abort a command after the request has been fully sent, e.g. while an authenticator is
waiting for user presence, the application MAY do this by sending a CTAPHID_CANCEL command.

11.2.5.4. Packet sequencing

The device keeps track of packets arriving in correct and ascending order and that no expected packets are
missing. The device will continue to assemble a message until all parts of it has been received or that the
transaction times out. Spurious continuation packets appearing without a prior initialization packet will be
ignored.

11.2.6. Channel locking

In order to deal with aggregated transactions that may not be interrupted, such as tunneling of vendor-specific
commands, a channel lock command MAY be implemented. By sending a channel lock command, the device
prevents other channels from communicating with the device until the channel lock has timed out or been
explicitly unlocked by the application.

This feature is optional and has not to be considered by general CTAP HID applications.

11.2.7. Protocol version and compatibility

The CTAPHID protocol is designed to be extensible yet maintain backwards compatibility, to the extent it is
applicable. This means that a CTAPHID host SHALL support any version of a device with the command set
available in that particular version.

11.2.8. HID device implementation

This description assumes knowledge of the USB and HID specifications and is intended to provide the basics for
implementing a CTAPHID device. There are several ways to implement USB devices and reviewing these
different methods is beyond the scope of this document. This specification targets the interface part, where a
device is regarded as either a single or multiple interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s). Although not
excluded per se, USB low-speed devices are not practical to use given the 8-byte report size limitation together
with the protocol overhead.

11.2.8.1. Interface and endpoint descriptors

97/148

The device implements two endpoints (except the control endpoint 0), one for IN and one for OUT transfers. The
packet size is vendor defined, but the reference implementation assumes a full-speed device with two 64-byte
endpoints.

Interface Descriptor

Mnemonic Value Description
bNumEndpoints 2 One IN and one OUT endpoint
binterfaceClass 0x03 HID

binterfaceSubClass 0x00 No interface subclass
binterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description
bmAttributes 0x03 Interrupt transfer
bEndpointAdress 0x01 1, OUT
bMaxPacketSize 64 64-byte packet max
binterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description
bmAttributes 0x03 Interrupt transfer
bEndpointAdress 0x81 1,IN
bMaxPacketSize 64 64-byte packet max
binterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be defined freely by the
vendor and the host application is responsible for querying these values and handle these accordingly. For the
sake of clarity, the values listed above are used in the following examples.

11.2.8.2. HID report descriptor and device discovery:

A HID report descriptor is required for all HID devices, even though the reports and their interpretation (scope,
range, etc.) makes very little sense from an operating system perspective. The CTAPHID just provides two "raw"
reports, which basically map directly to the IN and OUT endpoints. However, the HID report descriptor has an
important purpose in CTAPHID, as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

EXAMPLE 6
// HID report descriptor

const uint8_ t HID ReportDescriptor[] = {
HID UsagePage (FIDO USAGE_PAGE),
HID Usage (FIDO_USAGE_CTAPHID),
HID Collection (HID Application),
HID Usage (FIDO_USAGE_DATA IN),
HID LogicalMin (0),
HID LogicalMaxS (Oxff),
HID ReportSize (8),
HID ReportCount (HID_ INPUT_REPORT_BYTES),
HID Input (HID Data | HID Absolute | HID Variable),
HID Usage (FIDO_USAGE_DATA OUT),
HID LogicalMin (0),
HID LogicalMaxS (Oxff),
HID ReportSize (8),
HID ReportCount (HID_OUTPUT REPORT_BYTES),
HID Output (HID Data | HID_Absolute | HID Variable),
HID EndCollection
1

A unique Usage Page is defined (0xF1D0) for the FIDO alliance and under this realm, a CTAPHIDUsage is
defined as well (0x01). During CTAPHID device discovery, all HID devices present in the system are examined
and devices that match this usage pages and usage are then considered to be CTAPHID devices.

98/148

The length values specified by the HID INPUT REPORT BYTES and the HID OUTPUT REPORT BYTES should
typically match the respective endpoint sizes defined in the endpoint descriptors.

11.2.9. CTAPHID commands

The CTAPHID protocol implements the following commands.

11.2.9.1. Mandatory commands

The following list describes the minimum set of commands required by a CTAPHID device. Optional and vendor-
specific commands may be implemented as described in respective sections of this document.

11.2.9.1.1. CTAPHID_MSG (0x03)

This command sends an encapsulated CTAP1/U2F message to the device. The semantics of the data message
is defined in the U2F Raw Message Format encoding specification.

Request
CMD CTAPHID_MSG
BCNT 1.(n+1)
DATA U2F command byte
DATA + 1 n bytes of data

Response at success

CMD CTAPHID_MSG

BCNT 1.(n+1)

DATA U2F status code
DATA + 1 n bytes of data

11.2.9.1.2. CTAPHID_CBOR (0x10)

This command sends an encapsulated CTAP CBOR encoded message. The semantics of the data message is
defined in the CTAP Message encoding specification. Please note that keep-alive messages MAY be sent from
the device to the client before the response message is returned.

Request
CMD CTAPHID_CBOR
BCNT 1.(n+1)
DATA CTAP command byte
DATA +1 n bytes of CBOR encoded data

Response at success

CMD CTAPHID_CBOR
BCNT 1.(n+1)
DATA CTAP status code
DATA +1 n bytes of CBOR encoded data

11.2.9.1.3. CTAPHID_INIT (0x06)

This command has two functions.

If sent on an allocated CID, it synchronizes a channel, discarding the current transaction, buffers and state as
quickly as possible. It will then be ready for a new transaction. The device then responds with the CID of the
channel it received the INIT on, using that channel.

If sent on the broadcast CID, it requests the device to allocate a unique 32-bit channel identifier (CID) that can be
99/148

used by the requesting application during its lifetime. The requesting application generates a nonce that is used
to match the response. When the response is received, the application compares the sent nonce with the
received one. After a positive match, the application stores the received channel id and uses that for subsequent
transactions.

To allocate a new channel, the requesting application SHALL use the broadcast channel
CTAPHID_BROADCAST_CID (0xFFFFFFFF). The device then responds with the newly allocated channel in the
response, using the broadcast channel.

Request
CMD CTAPHID_INIT
BCNT 8
DATA 8-byte nonce

Response at success

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce
DATA+8 4-byte channel ID
DATA+12 CTAPHID protocol version identifier
DATA+13 Major device version number
DATA+14 Minor device version number
DATA+15 Build device version number
DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented by the device. This version of the CTAPHID
protocol is 2.

A CTAPHID host SHALL accept a response size that is longer than the anticipated size to allow for future
extensions of the protocol, yet maintaining backwards compatibility. Future versions will maintain the response
structure of the current version, but additional fields may be added.

The meaning and interpretation of the device version number is vendor defined.

The capability flags value is a bitfield where the following bits values are defined. Unused values are reserved for
future use and MUST be set to zero by device vendors.

Name Value Description

CAPABILITY_WINK 0x01 If set to 1, the authenticator implements CTAPHID_WINK function
CAPABILITY_CBOR 0x04 If set to 1, the authenticator implements CTAPHID_CBOR function

If set to 1, the authenticator DOES NOT implement CTAPHID_MSG

CAPABILITY_NMSG 0x08 .
function

11.2.9.1.4. CTAPHID_PING (0x01)

Sends a transaction to the device, which immediately echoes the same data back. This command is defined to
be a uniform function for debugging, latency and performance measurements.

Request
CMD CTAPHID_PING
BCNT 0..n
DATA n bytes

Response at success

CMD CTAPHID_PING
BCNT n
DATA N bytes

100/148

11.2.9.1.5. CTAPHID_CANCEL (0x11)

Cancel any outstanding requests on this CID. If there is an outstanding request that can be cancelled, the
authenticator MUST cancel it and that cancelled request will reply with the error
CTAP2_ERR_KEEPALIVE_CANCEL.

As the CTAPHID_CANCEL command is sent during an ongoing transaction, transaction semantics do not apply.
Whether a request was cancelled or not, the authenticator MUST NOT reply to the CTAPHID_CANCEL message
itself. The CTAPHID_CANCEL command MAY be sent by the client during ongoing processing of a
CTAPHID_CBOR request. The CTAP2_ERR_KEEPALIVE_CANCEL response MUST be the response to that
request, not an error response in the HID transport.

A CTAPHID_CANCEL received while no CTAPHID_CBOR request is being processed, or on a non-active CID
SHALL be ignored by the authenticator.

CMD CTAPHID_CANCEL

BCNT 0

11.2.9.1.6. CTAPHID_ERROR (0x3F)

This command code is used in response messages only.

CMD CTAPHID_ERROR
BCNT 1
DATA Error code

The following error codes are defined

ERR_INVALID_CMD 0x01 The command in the request is invalid
ERR_INVALID_PAR 0x02 The parameter(s) in the request is invalid
ERR_INVALID_LEN 0x03 The length field (BCNT) is invalid for the request
ERR_INVALID_SEQ 0x04 The sequence does not match expected value
ERR_MSG_TIMEOUT 0x05 The message has timed out

The device is busy for the requesting channel. The client SHOULD
ERR_CHANNEL_BUSY 0x06 retry the request after a short delay. Note that the client MAY abort
the transaction if the command is no longer relevant.

ERR_LOCK_REQUIRED 0x0A Command requires channel lock
ERR_INVALID_CHANNEL 0x0B CID is not valid.

ERR_OTHER 0x7F Unspecified error

Note: These values are identical to the BLE transport values.

11.2.9.1.7. CTAPHID_KEEPALIVE (0x3B)

This command code is sent while processing a CTAPHID_MSG. It SHOULD be sent at least every 100ms and
whenever the status changes. A KEEPALIVE sent by an authenticator does not constitute a response and does
therefore not end an ongoing transaction.

CMD CTAPHID_KEEPALIVE
BCNT 1
DATA Status code

The following status codes are defined

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

11.2.9.2. Optional commands

101/148

The following commands are defined by this specification but are optional and does not have to be implemented.

11.2.9.2.1. CTAPHID_WINK (0x08)

The wink command performs a vendor-defined action that provides some visual or audible identification a
particular authenticator. A typical implementation will do a short burst of flashes with a LED or something similar.
This is useful when more than one device is attached to a computer and there is confusion which device is
paired with which connection.

Request
CMD CTAPHID_WINK
BCNT 0
DATA N/A

Response at success

CMD CTAPHID_WINK
BCNT 0
DATA N/A

11.2.9.2.2. CTAPHID_LOCK (0x04)

The lock command places an exclusive lock for one channel to communicate with the device. As long as the lock
is active, any other channel trying to send a message will fail. In order to prevent a stalling or crashing
application to lock the device indefinitely, a lock time up to 10 seconds MAY be set. An application requiring a
longer lock has to send repeating lock commands to maintain the lock.

Request
CMD CTAPHID_LOCK
BCNT 1
DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock

Response at success

CMD CTAPHID_LOCK
BCNT 0
DATA N/A

11.2.9.3. Vendor specific commands
A CTAPHID MAY implement additional vendor specific commands that are not defined in this specification, while

being CTAPHID compliant. Such commands, if implemented, MUST use a command in the range between
CTAPHID_VENDOR_FIRST (0x40) and CTAPHID_VENDOR_LAST (0x7F).

See also § 11.1 Secure protocol implementation.

11.3.1. Conformance

Please refer to [ISO7816-4] for APDU definition.

11.3.2. Protocol

The general protocol between a FIDO2 client and an authenticator over ISO7816/1ISO14443 is as follows:

1. Client sends an applet selection command
2. Authenticator replies with success if the applet is present

3. Client sends a command for an operation

102/148

4. Authenticator replies with response data or error

5. Return to 3.

Because of timeouts that may otherwise occur on some platforms, it is RECOMMENDED that the authenticators
reply to APDU commands within 800 milliseconds.

11.3.3. Applet selection

NOTE: See also§ 11.1 Secure protocol implementation

A successful Select allows the client to know that the applet is present and active. A client SHALL send a Select
to the authenticator before any other command.

The FIDO2 AID consists of the following fields:

Field Value
RID 0xA000000647
PIX 0x2F0001

The command to select the FIDO applet is:

CLA INS P1 P2 Data In Le

0x00 0xA4 0x04 0x00 AID Variable

In response to the applet selection command, the FIDO authenticator replies with its version information string in
the successful response.

Clients and authenticators MAY support additional selection mechanisms. Clients MUST fall back to the
previously defined selection process if the additional selection mechanisms fail to select the applet.
Authenticators MUST at least support the previously defined selection process.

Given legacy support for CTAP1/U2F, the client MUST determine the capabilities of the device at the selection
stage.

« If the authenticator implements CTAP1/U2F, the version information SHALL be the string "U2F_V2", or
0x5532465f5632, to maintain backwards-compatibility with CTAP1/U2F-only clients.

If the authenticator ONLY implements CTAP2, the device SHALL respond with "FIDO_2_0", or
0x464944415f325f30.

If the authenticator implements both CTAP1/U2F and CTAP2, the version information SHALL be the string
"U2F_V2", or 0x5532465f5632, to maintain backwards-compatibility with CTAP1/U2F-only clients. CTAP2-
aware clients MAY then issue a CTAP authenticatorGetinfo command to determine if the device supports
CTAP2 or not.

11.3.4. Applet deselection

NOTE: See also§ 11.1 Secure protocol implementation

o Authenticator SHALL deselect or disable FIDO applet upon receiving below NFCCTAP_CONTROL END
CTAP_MSG command.

o Authenticators SHALL ignore subsequent FIDO CTAP commands until it receives the next explicit FIDO
Applet selection command.

o NFCCTAP_CONTROL END CTAP_MSGcommand is as follows:

CLA INS P1 P2

0x80 0x12 (NFCCTAP_CONTROL) 0x01 (End CTAP_MSG Control Byte) 0x00

11.3.5. Framing

Conceptually, framing defines an encapsulation of FIDO2 commands. This encapsulation is done in an APDU
following [ISO7816-4]. Authenticators MUST support short and extended length encoding for this APDU.
Fragmentation, if needed, is discussed in the following paragraph.

11.3.5.1. Commands.

Commands SHALL have the following format:

103/148

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00 CTAP Command Byte || CBOR Encoded Data Variable

11.3.5.2. Response

Response SHALL have the following format in case of success:

Case Data Status word
CTAP
Status
Success code || "9000" - Success
Response
data
"9100" - OK

Response Response
P P When receiving this, the ISO transport layer will immediately issue an

Status Status

Code Code NFCCTAP_GETREPONSE command unless a cancel was issued. The ISO
transport layer will provide the status data to the higher layers.

Errors See [ISO7816-4

The following Status Codes are defined

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

11.3.6. Fragmentation

APDU command may hold up to 255 or 65535 bytes of data using short or extended length encoding
respectively. APDU response may hold up to 256 or 65536 bytes of data using short or extended length
encoding respectively.

Some requests may not fit into a short APDU command, or the expected response may not fit in a short APDU
response. For this reason, FIDO2 client MAY encode APDU command in the following way:

o The request MAY be encoded using extended length APDU encoding.

» The request MAY be encoded using short APDU encoding. If the request does not fit a short APDU
command, the client MUST use ISO 7816-4 APDU chaining.

Short APDU Chaining commands SHALL have the following format:

CLA INS P1 P2 Data In
0x90 0x10 0x00 0x00 CTAP Payload
EXAMPLE 7

Sample authenticatorMakeCredential request using short APDU encoding and chaining mode:

01A8015820687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DBOE
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162726BF50850FC43AAA411D948CC6C3706
8B8DA1D5080901

would be sent to the authenticator by the platform in two short APDU commands:

e APDU command 1:

Platform Request:

90 10 00 00

FoO
01A8015820687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DBIE
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626(69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1

104/148

6B686D61632D736563726574F507A162

Authenticator Response:
9000

e APDU command 2:

Platform Request:

80 10 00 00

17
726BF50850FC43AAA411D948CC6C37068B8DA1D5080901
00

Authenticator Response:

00
A301667061636B6564025900A20021F5FCOB85CD22E60623BCD7D1CA48948909
249B4776EB515154E57B66AE12C500000055F8A011F38C0A4D15800617111F9E
DC7D0O10F4D57B23DDOCB785680CDAA7F7E44F60A5010203262001215820DF01
7D0B286795BEA153D166A0A15B4F6B67A3AF4A101E10E8496F3DD3C5D1A92258
2094B22551E6325D7733C41BB2F5A642ADEE417C97E0906197B5B0CD8B8D6C6B
A7A16B686D61632D736563726574F503A363616C672663736967584730450220
7CCAC57A1E43DF24B0847EEBF119D28DCDC5048F7DCDBEDD79E79721C41BCF2D
022100D89EC75B92CE8BFFIE46FE7F8C87995694A63E5B78AB85C47BIDA

6100

e APDU command 3:

Platform Request:
80 CO 00 00 00

Authenticator Response:
1C580A8EC83A63783563815901973082019330820138A003020102020900859B
726CB24B4C29300A06082A8648CE3D0403023047310B30090603550406130255
5331143012060355040A0C0B59756269636F205465737431223020060355040B
0C1941757468656E74696361746F72204174746573746174696F6E301E170D31
36313230343131353530305A170D3236313230323131353530305A3047310B30
0906035504061302555331143012060355040A0C0B59756269636F2054657374
31223020060355040B0C1941757468656E74696361746F722041747465737461
74696F6E3059301306072A8648CE3D020106082A8648CE3D030107034200
61A7

e APDU command 4:

Platform Request:
80 CO 00 00 A7

Authenticator Response:
04AD11EBOE8852E53AD5DFED86B41E6134A18ECAE1AF8F221A3C7D6E636C80EA
13C3D504FF2E76211BB44525B196C44CB4849979CF6F896ECD2BB860ODE1BF437
6BA30D300B30090603551D1304023000300A06082A8648CE3D04030203490030
46022100E9A39F1B03197525F7373E10CE77E78021731B94DOCO3F3FDALFD22D
B3DO30E7022100C4FAEC3445A820CF43129CDBOOAABEFDIAE2D874F9C5D343CB
2F113DA23723F3

9000

Some responses may not fit into a short APDU response. For this reason, FIDO2 authenticators MUST respond
in the following way:

« If the request was encoded usingextended length APDU encoding, the authenticator MUST respond using
the extended length APDU response format.

« If the request was encoded usingshort APDU encoding, the authenticator MUST respond using ISO 7816-4
APDU chaining.

11.3.7. Commands

11.3.7.1. NFCCTAP_MSG (0x10)

The NFCCTAP_MSG command send a CTAP message to the authenticator. This command SHALL return as
soon as processing is done. If the operation was not completed, it MAY return a 0x9100 result to trigger
NFCCTAP_GETRESPONSE functionality if the client indicated support by setting the relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

P1 Bits Meaning

0x80 The client supports NFCCTAP_GETRESPONSE

105/148

PP8Bls RFU, MUST be (0x00) Meaning

Vatues for P2are atrRFOand MOST be Setto 0-

11.3.7.2. NFCCTAP_GETRESPONSE (0x11)

The NFCCTAP_GETRESPONSE command is issued within 100ms upon receiving 0x9100 unless a cancel was
issued. An authenticator may time out if it has not received a NFCCTAP_GETRESPONSE in 500ms and error
out. This command SHALL return 0x9100 status word with a Status Code if it has a status update, alternatively
return a 0x9000 status word to indicate success or a CTAP status code.

If the client is issuing a cancel, the NFCCTAP_GETRESPONSE command is issued on receiving 0x9100. The
value for P1 is set to 0x11 and P2 is set to 0x00. This command SHALL return a 0x9000 status word, and a
CTAP status code of CTAP2_ERR_KEEPALIVE_CANCEL.

Otherwise, the NFCCTAP_GETRESPONSE command is issued on receiving 0x9100. All values for P1 and P2
are RFU and MUST be set to 0x00. the reply to the request with a 0x9000 result code to indicate success or an
error value.

See also § 11.1 Secure protocol implementation.

11.4.1. Conformance

Authenticator and client devices using Bluetooth Low Energy Technology SHALL conform to Bluetooth Core
Specification 4.0 or later [BTCORE]. Bluetooth SIG specified UUID values SHALL be found on the Assigned
Numbers website [BTASSNUM].

11.4.2. Pairing

Bluetooth Low Energy Technology is a long-range wireless protocol and thus has several implications for privacy,
security, and overall user-experience. Because it is wireless, Bluetooth Low Energy Technology may be subject
to monitoring, injection, and other network-level attacks.

For these reasons, clients and authenticators MUST create and use a long-term link key (LTK) and SHALL
encrypt all communications. The authenticator MUST never use short term keys.

Because Bluetooth Low Energy Technology has poor ranging (.e., there is no good indication of proximity), it
may not be clear to a FIDO client with which Bluetooth Low Energy Technology authenticator it should
communicate. Pairing is the only mechanism defined in this protocol to ensure that FIDO clients are interacting
with the expected Bluetooth Low Energy Technology authenticator. As a result, authenticator manufacturers
SHOULD instruct users to avoid performing Bluetooth pairing in a public space such as a cafe, shop or train
station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most operating
systems. That is, if an authenticator is paired to a FIDO client which resides on an operating system where
Bluetooth pairing is "system-wide", then any application on that device might be able to interact with an
authenticator. This issue is discussed further in Implementation Considerations.

11.4.3. Link Security’

For Bluetooth Low Energy Technology connections, the authenticator SHALL enforceSecurity Mode 1, Level
2 (unauthenticated pairing with encryption) orSecurity Mode 1, Level 3(authenticated pairing with
encryption) before any FIDO messages are exchanged.

11.4.4. Framing

Conceptually, framing defines an encapsulation of FIDO raw messages responsible for correct transmission of a
single request and its response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of the requests and
responses is given first as complete frames. Fragmentation is discussed next for each type of transport layer.
11.4.4.1. Request from Client to Authenticator:

Request frames MUST have the following format

Offset Length Mnemonic Description

106/148

1 i ifi
OfPset Length Mnecr“%nic Gomméndident I?)rescription

t 1 HEER Highpart-of-catatength
2 1 LLEN Low part of data length
3 s DATA Data (s is equal to the length)

Supported commands are PING, MSG and CANCEL. The constant values for them are described below.
The CANCEL command cancels any outstandingMSG commands.

The data format for theMSG command is defined in§ 8 Message Encoding.

11.4.4.2. Response from Authenticator to Client

Response frames MUST have the following format, which share a similar format to the request frames:

Offset Length Mnemonic Description
0 1 STAT Response status
1 1 HLEN High part of data length
2 1 LLEN Low part of data length
3 S DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request, the response is a
successful response. The value ERROR indicates an error, and the response data contains an error code as a
variable-length, big-endian integer. The constant value for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g., indicating an incorrectly
formatted request, or possibly an error communicating with the authenticator’s FIDO message processing layer.
Errors reported by the FIDO message processing layer itself are considered a success from the encapsulation
layer’s point of view and are reported as a complete MSG response.

Data format is defined in§ 8 Message Encoding.

11.4.4.3. Command, Status, and Error constants

The COMMAND constants and values are:

Constant Value
PING 0x81
KEEPALIVE 0x82
MSG 0x83
CANCEL Oxbe
ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

Status Constant Value
PROCESSING 0x01
UP_NEEDED 0x02
RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error Constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid
ERR_INVALID_ PAR 0x02 The parameter(s) of the command is/are invalid or missing
ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

107/148

The device is busy and can’t accept commands at this time. The client

Error Constant al eannag ;
ERR_BUSY X SHOULD retry the request after a short delay. Note that the client MAY
abort the transaction if the command is no longer relevant.
NA 0x0a Value reserved (HID)
NA 0x0b Value reserved (HID)
ERR_OTHER 0ox7f Other, unspecified error

Note: These values are identical to the HID transport values.

11.4.5. GATT Service Description
This profile defines two roles: FIDO Authenticator and FIDO Client.

e The FIDO Client SHALL be a GATT Client.
e The FIDO Authenticator SHALL be a GATT Server.

The following figure illustrates the mandatory services and characteristics that SHALL be offered by a FIDO
Authenticator as part of its GATT server:

FIDO 2.0 GATT Server

FIDOD 2.0 GATT Service P
[FIDO 2.0 Coiral Point MWt
[FIDO 2.0 Status Mty
[Fino 2.0 conrer ot Langtn]
[FIDO 2.0 Sarvica Ravision FRaad

Device Information Service

Manufacturer Name String Read
Modsl Humber String Fnad
Flrmware Revision String Fwd

Figure 5 Mandatory GATT services and characteristics that MUST be offered by a FIDO Authenticator. Note that the Generic
Access Profile Service ([BTGAS]) is not present as it is already mandatory for any Bluetooth Low Energy Technology compliant
device.

The table below summarizes additional GATT sub-procedure requirements for a FIDO Authenticator (GATT
Server) beyond those required by all GATT Servers.

GATT Sub-Procedure Requirements
Write Characteristic Value Mandatory
Notifications Mandatory
Read Characteristic Descriptors Mandatory
Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements for a FIDO Client (GATT Client)
beyond those required by all GATT Clients.

GATT Sub-Procedure Requirements
Discover All Primary Services (*)
Discover Primary Services by Service UUID (*)
Discover All Characteristics of a Service (%)
Discover Characteristics by UUID (**)
Discover All Characteristic Descriptors Mandatory
Read Characteristic Value Mandatory
Write Characteristic Value Mandatory
Notification Mandatory
Read Characteristic Descriptors Mandatory
Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures. (**): Mandatory to support at least one of these

108/148

sub-procedures. Other GATT sub-procedures MAY be used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values are big-endian coded, all
strings are in UTF-8 encoding, and any characteristics not mentioned explicitly are optional.
11.4.5.1. FIDO Service

An authenticator SHALL implement the FIDO Service described below. The UUID for the FIDO GATT service is
OxFFFD; it SHALL be declared as a Primary Service. The service contains the following characteristics:

Characteristic

Name Mnemonic Property Length uuib
Defined by F1DOFFF1-
FIDO Control A it orft repdLnd Write Vendor DEAA-ECEE-
Point (20-512 B42F-
bytes) C9BA7ED623BB
F1DOFFF2-
. a DEAA-ECEE-
FIDO Status fidoStatus Notify N/A BA2F.
C9BA7ED623BB
F1DOFFF3-
FIRO0 Lonira fidoControlPointLength Read 2 bytes DEALECEE,
Point Length B42F-
C9BA7ED623BB
: F1DOFFF4-
. Defined by
FIDO Service .) e . . DEAA-ECEE-
o e fidoServiceRevisionBitfield Read/Write Vendor (1+
Revision Bitfield bytes) B42F-
C9BA7ED623BB
Defined by 0x2A28
FBCSerice fidoServiceRevision Read venesr
Revision (20-512

bytes)

fidoControlPoint is a write-only command buffer.

fidoStatus is a notify-only response attribute. The authenticator will send a series of notifications on this
attribute with a maximum length of (ATT_MTU-3) using the response frames defined above. This mechanism is
used because this results in a faster transfer speed compared to a notify-read combination.

fidoControlPointLength defines the maximum size in bytes of a single write request tof idoControlPoint.
This value SHALL be between 20 and 512.

fidoServiceRevision is superseded and is only relevant to U2F 1.0 support. It defines the revision of the U2F
Service. The value is a UTF-8 string. For version 1.0 of the specification, the value fidoServiceRevision
SHALL be 1.0 or in raw bytes: ©x312e30. This field SHALL be omitted if protocol version 1.0 is not supported.

The fidoServiceRevision Characteristic MAY include a Characteristic Presentation Format descriptor with
format value 0x19, UTF-8 String.

fidoServiceRevisionBitfield defines the revision of the FIDO Service. The value is a bit field which each bit
representing a version. For each version bit the value is 1 if the version is supported, 0 if it is not. The length of
the bitfield is 1 or more bytes. All bytes that are 0 are omitted if all the following bytes are 0 too. The byte order is
big endian. The client SHALL write a value to this characteristic with exactly 1 bit set before sending any FIDO
commands unless u2fServiceRevision is present and U2F 1.0 compatibility is desired. If only U2F version 1.0 is
supported, this characteristic SHALL be omitted.

Byte (left to right) Bit Version
0 7 U2F 1.1
0 6 U2F 1.2
0 5 FIDO2
0 4-0 Reserved

For example, a device that only supports FIDO2 Rev 1 will only have a fidoServiceRevisionBitfield characteristic
of length 1 with value 0x20.

11.4.5.2. Device Information Service

109/148

An authenticator SHALL implement the Device Information Service[BTDIS] and it SHOULD contain the following
characteristics:

o Manufacturer Name String

» Model Number String

o Firmware Revision String

All values for the Device Information Service are left to the vendors. However, vendors SHOULD NOT create
uniquely identifiable values so that authenticators do not become a method of tracking users.

11.4.5.3. Generic Access Profile Service

Every authenticator SHALL implement the Generic Access Profile Service[BTGAS] with the following
characteristics:
» Device Name

o Appearance

11.4.6. Protocol Overview
The general overview of the communication protocol follows:

1. Authenticator advertises the FIDO Service.

2. Client scans for authenticator advertising the FIDO Service.
3. Client performs characteristic discovery on the authenticator.
4

. If not already paired, the client and authenticator SHALL perform BLE pairing and create a LTK. The
authenticator SHALL only allow connections from previously bonded clients without user intervention.

5. Client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the client selects a
supported version by writing a value with a single bit set.

. Client reads the fidoControlPointLength characteristic.
. Client registers for notifications on the fidoStatus characteristic.

. Client writes a request (e.g., an enroll request) into the fidoControlPoint characteristic.

© o N o

. Optionally, the client writes a CANCEL command to thefidoControlPoint characteristic to cancel the
pending request.

10. Authenticator evaluates the request and responds by sending notifications overfidoStatus characteristic.

11. The protocol completes when either:

o The client unregisters for notifications on the fidoStatus characteristic, or:

o The connection times out and is closed by the authenticator.

11.4.7. Authenticator Advertising Format
When advertising, the authenticator SHALL advertise the FIDO service UUID.
When advertising, the authenticator MAY include the TxPower value in the advertisement (seg BTXPLAD]).

When advertising in pairing mode, the authenticator SHALL either: (1) set the LE Limited Mode bit to zero and
the LE General Discoverable bit to one OR (2) set the LE Limited Mode bit to one and the LE General
Discoverable bit to zero. When advertising in non-pairing mode, the authenticator SHALL set both the LE Limited
Mode bit and the LE General Discoverable Mode bit to zero in the Advertising Data Flags.

The advertisement MAY also carry a device name which is distinctive and user-identifiable. For example, "ACME
Key" would be an appropriate name, while "XJS4" would not be.

The authenticator SHALL also implement the Generic Access Profile[BTGAP] and Device Information Service [B
TDIS], both of which also provide a user-friendly name for the device that could be used by the client.

It is not specified when or how often an authenticator should advertise, instead that flexibility is left to
manufacturers.

11.4.8. Requests

Clients SHOULD make requests by connecting to the authenticator and performing a write into the
fidoControlPoint characteristic.

Upon receiving a CANCEL request, if there is an outstanding request that can be cancelled, the authenticator
MUST cancel it and that cancelled request will reply with the error CTAP2_ERR_KEEPALIVE_CANCEL.
Whether a request was cancelled or not, the authenticator MUST NOT reply to the cancel message itself.

110/148

11.4.9. Responses
Authenticators SHOULD respond to clients by sending notifications on thefidoStatus characteristic.

Some authenticators might alert users or prompt them to complete the test of user presence €.g., via sound,
light, vibration) Upon receiving any request, the authenticators SHALL send KEEPALIVE commands every
kKeepAliveMillis milliseconds until completing processing the commands. While the authenticator is
processing the request the KEEPALIVE command will contain status PROCESSING. If the authenticator is waiting
to complete the Test of User Presence, the KEEPALIVE command will contains status UP_NEEDED. While waiting
to complete the Test of User Presence, the authenticator MAY alert the user (e.g., by flashing) in order to prompt
the user to complete the test of user presence. As soon the authenticator has completed processing and
confirmed user presence, it SHALL stop sending KEEPALIVE commands, and send the reply.

Upon receiving a KEEPALIVE command, the client SHALL assume the authenticator is still processing the
command; the client SHALL not resend the command. The authenticator SHALL continue sending KEEPALIVE
messages at least every kkeepAliveMillis to indicate that it is still handling the request. Until a client-defined
timeout occurs, the client SHALL NOT move on to other devices when it receives a KEEPALIVE with UP_NEEDED
status, as it knows this is a device that can satisfy its request.

11.4.10. Framing fragmentation

A single request/response sent over Bluetooth Low Energy Technology MAY be split over multiple writes and
notifications, due to the inherent limitations of Bluetooth Low Energy Technology which is not currently meant for
large messages. Frames are fragmented in the following way:

A frame is divided into an initialization fragment and zero or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description
0 1 CMD Command identifier
1 1 HLEN High part of data length
2 1 LLEN Low part of data length
3 0 to (maxLen - 3) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, the start of an initialization fragment is indicated by setting the high bit in the first byte. The
subsequent two bytes indicate the total length of the frame, in big-endian order. The first maxLen - 3 bytes of data
follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description
0 1 SEQ Packet sequence 0x00..0x7f (high bit always cleared)
1 0 to (maxLen - 1) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0, implicitly with the high bit
cleared. The sequence number MUST wraparound to 0 after reaching the maximum sequence number of 0x7f.

Example for sending a PING command with 40 bytes of data with amaxLen of 20 bytes:

Frame Bytes
0 [810028] [17 bytes of datal
1 [60] [19 bytes of datal
2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with anaxLen of 512 bytes:

Frame Bytes

0 [810190] [400 bytes of datal

11.4.11. Notifications

A client needs to register for notifications before it can receive them. Bluetooth Core Specification 4.0 or late{BT

111/148

CORE] forces a device to remember the notification registration status over different connections]BTCCC].
Unless a client explicitly unregisters for notifications, the registration will be automatically restored when
reconnecting. A client MAY therefor check the notification status upon connection and only register if notifications
aren't already registered. Please note that some clients MAY disable notifications from a power management
point of view (see below) and the notification registration is remembered per bond, not per client. A client MUST
NOT remember the notification status in its own data storage.

11.4.12. Request Collisions

Because there is no concept of a session between the authenticator and a client (only between the host and the
client), a BLE authenticator cannot distinguish between different clients. If two clients on the same host register
for notifications from an authenticator at the same time, some existing host platforms will allow this by reusing
the same underlying BLE connection. However, when the authenticator generates a notification, the host
platform has insufficient information to route it to a particular client. Depending on the host platform
implementation, the notification may be delivered to either or both clients. The result is undefined behavior which
will likely result in both requests failing.

11.4.13. Implementation Considerations

11.4.13.1. Bluetooth pairing: Client considerations

As noted in § 11.4.2 Pairing, a disadvantage of using standard Bluetooth pairing is that the pairing is "system-
wide" on most operating systems. That is, if an authenticator is paired to a FIDO client that resides on an
operating system where Bluetooth pairing is "system-wide", then any application on that device might be able to
interact with an authenticator. This poses both security and privacy risks to users.

While client operating system security is partly out of FIDO’s scope, further revisions of this specification MAY
propose mitigations for this issue.

11.4.13.2. Bluetooth pairing: Authenticator considerations

The method to put the authenticator into Pairing Mode should be such that it is not easy for the user to do
accidentally especially if the pairing method is Just Works. For example, the action could be pressing a
physically recessed button or pressing multiple buttons. A visible or audible cue that the authenticator is in
Pairing Mode should be considered. As a counter example, a silent, long press of a single non-recessed button is
not advised as some users naturally hold buttons down during regular operation.

Note that at times, authenticators may legitimately receive communication from an unpaired device. For example,
a user attempts to use an authenticator for the first time with a new client; he turns it on, but forgets to put the
authenticator into pairing mode. In this situation, after connecting to the authenticator, the client will notify the
user that he needs to pair his authenticator. The authenticator should make it easy for the user to do so, e.g., by
not requiring the user to wait for a timeout before being able to enable pairing mode.

Some client platforms (most notably iOS) do not expose the AD Flag LE Limited and General Discoverable Mode
bits to applications. For this reason, authenticators are also strongly RECOMMENDED to include the Service
Data field [BTSD] in the Scan Response. The Service Data field is 3 or more octets long. This allows the Flags
field to be extended while using the minimum number of octets within the data packet. All octets that are 0x00
are not transmitted as long as all other octets after that octet are also 0x00 and it is not the first octet after the
service UUID. The first 2 bytes contain the FIDO Service UUID, the following bytes are flag bytes.

To help clients show the correct UX, authenticators can use the Service Data field to specify whether or not
authenticators will require a Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)
7 Device is in pairing mode.
6 Device requires Passkey Entry [BTPESTK].

11.4.14. Handling command completion

It is important for low-power devices to be able to conserve power by shutting down or switching to a lower-
power state when they have satisfied a client’s requests. However, the FIDO protocol makes this hard as it
typically includes more than one command/response. This is especially true if a user has more than one key
handle associated with an account or identity, multiple key handles may need to be tried before getting a
successful outcome. Furthermore, clients that fail to send follow up commands in a timely fashion may cause the
authenticator to drain its battery by staying powered up anticipating more commands.

A further consideration is to ensure that a user is not confused about which command she is confirming by
completing the test of user presence. That is, if a user performs the test of user presence, that action SHOULD
perform exactly one operation.

We combine these considerations into the following series of recommendations:
112/148

Upon initial connection to an authenticator, and upon receipt of a response from an authenticator, if a client
has more commands to issue, the client MUST transmit the next command or fragment within
kMaxCommandTransmitDelayMillis milliseconds.

Upon final response from an authenticator, if the client decides it has no more commands to send it
SHOULD indicate this by disabling notifications on the fidoStatus characteristic. When the notifications are
disabled the authenticator MAY enter a low power state or disconnect and shut down.

Any time the client wishes to send a FIDO message, it MUST have first enabled notifications on the
fidoStatus characteristic and wait for the ATT acknowledgement to be sure the authenticator is ready to
process messages.

Upon successful completion of a command which required a test of user presence, e.g. upon a successful
authentication or registration command, the authenticator can assume the client is satisfied, and MAY reset
its state or power down.

NOTE: authenticators supporting large blobs SHOULD wait kMaxCommandTransmitDelayMillis if the
command response contained a largeBlobKey, even after consuming user presence, otherwise they may
miss such commands.

Upon sending a command response that did not consume a test of user presence, the authenticator MUST
assume that the client may wish to initiate another command and leave the connection open until the client
closes it or until a timeout of at least kErrorWwaitMillis elapses. Examples of command responses that do
not consume user presence include failed authenticate or register commands, as well as get version
responses, whether successful or not. After kErrorWaitMillis milliseconds have elapsed without further
commands from a client, an authenticator MAY reset its state or power down.

Constant Value
kMaxCommandTransmitDelayMillis 1500 milliseconds
KErrorWaitMillis 2000 milliseconds
kKeepAliveMillis 500 milliseconds

11.4.15. Data throughput

Bluetooth Low Energy Technology does not have particularly high throughput, this can cause noticeable latency
to the user if request/responses are large. Some ways that implementers can reduce latency are:

« Support the maximum MTU size allowable by hardware (up to the 512-byte max from the Bluetooth
specifications).

« Make the attestation certificate as small as possible; do not include unnecessary extensions.

11.4.16. Advertising

Though the standard does not appear to mandate it (in any way that we’ve found thus far), advertising and
device discovery seems to work better when the authenticators advertise on all 3 advertising channels and not
just one.

11.4.17. Authenticator Address Type

In order to enhance the user’s privacy and specifically to guard against tracking, it is RECOMMENDED that
authenticators use Resolvable Private Addresses (RPAs) instead of static addresses.

Hybrid transports decouple the proof that theclient platform is physically close to the authenticator orcredential
manager hosting device (CMHD), from the transport of messages (CTAP2, JSON etc.) between them. The
hybrid transport defined here is intended to connect authenticators with cameras, typically phones, to a client
platform. It involves a data transfer channel and proof of device proximity. Bluetooth LE (BLE) advertisements
are used for proof of proximity. The data transfer channel can either require network communication via a service
called a tunnel service, or use local communication (e.g. Bluetooth Low Energy (BLE), Ultra-wideband (UWB),
etc.). A tunnel service is a highly available network service with a domain name known to the authenticators that
use it.

11.5.1. QR-initiated Transactions'

When the client platform wishes to communicate with a hybrid authenticator it may display a QR code that
contains a public key and a shared secret key. The public key authenticates the client platform to any connecting
authenticator and knowledge of the secret key authenticates the connectingauthenticator to the client platform.

113/148

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform

var
grSecret [16]byte
// The ecdsa package is used for its convenient public/private key structures,
// but these are ECDH keys, not ECDSA.
identityKey *ecdsa.PrivateKey

func showQRCode
rand.Reader .Read (qrSecret

var err error
identityKey, err = ecdsa.GenerateKey(elliptic.P256 rand.Reader
if err nil

panic(err

identityKeyCompressed compressECKey (&identityKey.PublicKey

printQRCode(encodeQRContents (&identityKeyCompressed, &qrSecret

The contents of the QR code are a URI of the formFIDO:/ followed by digit-encoded data. The scheme is written
in uppercase because this is more efficient in QR codes. A single foreslash follows the colon because that is
required for some devices to recognise the QR contents as a URI, but it's not a double-slash as that would
indicate an authority, which this URI scheme does not use.

The encoded data is a CBOR map with integer keys mapping to key-specific values. The CBOR must be in
canonical form. The keys are:

« Key 0: a 33-byte, P-256, X9.62, compressed public key.

o Key 1: a 16-byte random QR secret.

« Key 2: the number of assigned tunnel server domains known to this implementation (see
decodeTunnelServerDomain for details).

» Key 3: (optional) the current time in epoch seconds.

» Key 4: (optional) a boolean that is true if the device displaying the QR code can perform state-assisted
transactions.

» Key 5: a value from the table below, representing the user flow to follow. Implementations SHOULD treat
unknown values as ga. This field exists so that guidance can be given to the user immediately upon
scanning the QR code, prior to the credential manager hosting device/authenticator receiving any CTAP
message or JSON request. While this hint SHOULD be as accurate as possible, it does not constrain the
subsequent CTAP messages or JSON requests that the platform may send.

Value Description
ga getAssertion (FIDO2)
mc makeCredential (FIDO2)
dcp credential presentation (Digital Credentials API)
dci credential issuance (Digital Credentials API)

» Key 6: (optional) a list of integers denoting transport channels supported by the client. If this value is not
present, it is assumed to be a list with a single element corresponding to Websockets for backwards
compatibility.

Value Description
0 Websockets
1 Bluetooth Low Energy

(More fields can be added in the future as they will be ignored by older implementations.)

114/148

https://www.iana.org/assignments/uri-schemes/prov/fido
https://datatracker.ietf.org/doc/html/rfc3986#section-3
https://www.w3.org/TR/2025/WD-digital-credentials-20250701/#digital-credentials-api
https://www.w3.org/TR/2025/WD-digital-credentials-20250701/#digital-credentials-api

func encodeQRContents(compressedPublicKey *[33]byte, qrSecret *[16]byte) string
numMapElements 7
// GREASE QR code to ensure that keys can be added later
var randByte [1]byte
rand .Reader .Read (randByte
extraKey randByte[0]&3 0
if extraKey
numMapElements

var cbor []byte

cbor = append(cbor, 0xa0+byte(numMapElements // CBOR map
cbor = append(cbor, 0 // key 0
cbor = append(cbor, (cborMajorByteString<<5)|24, 33) // 33 bytes
cbor = append(cbor, compressedPublicKey

cbor = append(cbor, 1 // key 1

cbor = append(cbor, (cborMajorByteString<<5)|16) // 16 bytes
cbor = append(cbor, gqrSecret

cbor = append(cbor, 2) // key 2
n len(assignedTunnelServerDomains
if n > 24

panic("larger encoding needed"

cbor = append(cbor, byte(n

cbor = append(cbor, 3) // key 3
cbor = append(cbor, cborEncodeInt64(time.Now().Unix

cbor = append(cbor, 4) // key 4
cbor = append(cbor, 0xf5) // true

cbor = append(cbor, 5) // key 5
cbor = append(cbor, (cborMajorByteString<<5)|2

m ©

cbor = append(cbor, 6 // key 6

cbor = append(cbor, (cborMajorArray<<5)|2) // array of 2 elements
cbor = append(cbor, 0 // first element of array
cbor = append(cbor, 1 // second element of array

if extraKey
cbor = append(cbor, 0x19, Oxff, Oxff, 0) // key 65535, value 0

qr "FIDO:/" + digitEncode(cbor
fmt.Println(qr
return qr

Authenticators must use a CBOR parser to parse this information as more keys may be added in the future. The
function above uses some [rfc8701] to try and ensure this.

The encoding is designed to be efficient when expressed in a QR code. Seven-byte chunks are interpreted as
little-endian values and encoded as 17-digit, base 10 numbers. Any remaining bytes are encoded likewise using
the minimum number of digits that some value of that number of bytes could need. Specifically, since the
remainder is known to be 1, 2, 3, 4, 5, or 6 bytes long, its encoded form will take 3, 5, 8, 10, 13, or 15 digits,
respectively.

115/148

func digitEncode(d byte) string
const chunkSize = 7
const chunkDigits = 17
const zeros = "00000000000000000"

var ret string

for len(d chunkSize
var chunk [8]byte
copy (chunk d[:chunkSize
v strconv.FormatUint(binary.LittleEndian.Uint64 (chunk 10
ret zeros | :chunkDigits-len(v
ret \Y

d = d[chunkSize

if len(d 0
// partialChunkDigits is the number of digits needed to encode
// each length of trailing data from 6 bytes down to zero. I.e.
// it's 15, 13, 10, 8, 5, 3, 0 written in hex.
const partialChunkDigits = 0x0fda8530

digits 15 partialChunkDigits 4 * len(d
var chunk [8]byte
copy (chunk d

v strconv.FormatUint(binary.LittleEndian.Uint64 (chunk 10
ret zeros | :digits-len(v
ret \

return ret

Once the QR code has been displayed, theclient platform awaits a connection attempt from anauthenticator.
This transport requires a proof of proximity to help prevent attacks, thus notification of the connection attempt
comes in the form of a BLE advertisement. (Without a proof of proximity a web site could, for example, display a
QR code and attempt to convince the user to scan it with their authenticator. By having the authenticator demand
that the client platform prove reception of a BLE advert such an attacker would have to have control of a
Bluetooth radio near to the victim.)

The UUID, 0000fff9-0000-1000-8000-00805f9b34fb, must be included in the advert andclient platforms must
require that candidate devices are advertising this UUID. That UUID must also have a 20-byte service data
payload which is trial decrypted to search for a match to the displayed QR code. The size of the payload may be
larger if the advertisement suffix is appended to it. The Bluetooth extended advertising capability is required to
support the advertisement suffix.

The advertisement suffix is a CBOR map containing extra information the data channel needs for establishing a
connection, serialized to bytes. This SHOULD not be sent if empty.

The format for the advertisement suffix is defined as:

<suffix:CborMap> = {
<transport_channel_identifier:CborInteger> : <channel _extra:CborValue>

}

transport_channel identifier is the integer identifier of the selected transport channel, as defined bykey 6
of the QR code CBOR map.

channel _extrais a CBOR value specific to the channel. In this version of the specification, this is only used for
the Bluetooth Low Energy channel.

116/148

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/[[!BTADVEXT]]

func awaitAdvert(eidKey [64]byte) [16]byte
// uuidsChan is a channel of UUID sets observed from some BLE device.
// Each UUID is represented as a string in the standard format, e.g.
// 0000fde2-0000-1000-8000-00805f9b34fb.

var
serviceDataChan chan map[string byte
stopScanning func
err error

if serviceDataChan, stopScanning, err = bleScanForServiceData err nil
panic(err

defer stopScanning

const UUID "0000fff9-0000-1000-8000-00805f9b34fb"

for serviceData range serviceDataChan
cableData, ok serviceData\ [UUID
if lok
continue

// Only first 20 bytes are decrypted. The advertisement suffix is parsed separately.
if payload, ok trialDecrypt(&eidKey, cableDatal:20 ok
return payload

panic("UUID channel closed"

If the client platform does not include BLE as one of the supported transport channels, then theauthenticator
parses the first 20-bytes of data and discards the rest if it exists. Otherwise, the service data can be parsed as
follows:

1. Parse first 20-bytes of service data as described in later sections.

2. Additional bytes are parsed as anadvertisement suffix.

In order to derive the key needed to trial decrypt BLE adverts, the following key derivation is used. Whenever a
key is needed for a specific purpose it is always derived from a parent key in order to ensure domain separation.
The derivation uses [RFC5869] with SHA-256, where the input keying material is the parent key, the salt is an
optional input, and the info value is a 32-bit, little-endian, purpose identifier.

type keyPurpose uint32

const
keyPurposeEIDKey keyPurpose = 1
keyPurposeTunnelID keyPurpose = 2
keyPurposePSK keyPurpose = 3

func derive(output, secret, salt byte, purpose keyPurpose
if uint32(purpose 0x100
panic("unsupported purpose"

var purpose32 [4]|byte
purpose32[0 byte(purpose

h hkdf.New(sha256 .New, secret, salt, purpose32
if n, err h.Read (output err nil n len (output
panic("HKDF error"

The key used to decrypt adverts is then a 64-byte value derived from the QR secret wittkeyPurposeEIDKey. The
term “EID” is historical and does not stand for anything here.

func awaitQRAdvert 16 |byte
var eidKey [32 + 32]byte
derive(eidKey qrSecret nil, keyPurposeEIDKey
return awaitAdvert(eidKey

When decrypting adverts, these 64 bytes of EID key are considered as a pair of 256-bit keys where the first 32
bytes are an AES key and the second 32 bytes are an HMAC-SHA256 key. A candidate BLE advert is valid if the
final four bytes are a correct HMAC tag of the other 16 bytes. For each valid BLE advert, those initial 16 bytes
are then taken to be an AES block and decrypted with the AES key.

117/148

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator

This is a poor-man’s substitute for a wide-block mode, but wide-block modes are non-standard. There is no more
space in the BLE advert so a nonce cannot be included. Since it's possible that two authenticators could scan the
same QR code and broadcast based on the same key, avoiding a mode that XORs plaintext with a keystream
avoids potential complications.

func trialDecrypt(eidKey *[64]byte, candidateAdvert [lbyte) (plaintext [16]byte, ok bool
var zeros [16]byte
if len(candidateAdvert 20
return zeros, false

h hmac.New(sha256 .New, eidKey[32
h.Write(candidateAdvert|:16
expectedTag h.Sum(nil

if 'hmac.Equal(expectedTagl:4], candidateAdvert[16
return zeros, false

block, err aes .NewCipher(eidKey| :32
if err nil
panic(err

block.Decrypt(plaintext candidateAdvert|:16
if !reservedBitsAreZero(plaintext
return zeros, false

return plaintext, true

Once successfully authenticated and decrypted, a BLE advert yields 16 bytes of plaintext. These 16 bytes consist
of (in order):

» A flags byte, which is currently zero. This could be used for versioning in the future.

» 80 bits of connection nonce.

« A 24-bit routing ID.

o A 16-bit tunnel service identifier.

func reservedBitsAreZero(plaintext [16]byte) bool
return plaintext[0 0

func unpackDecryptedAdvert(plaintext [16]byte
nonce [10]byte
routingID [3]byte
encodedTunnelServerDomain uint16

copy (nonce plaintext[1

copy (routingID plaintext[11

encodedTunnelServerDomain uintl6(plaintext[14 uintl6 (plaintext|[15 8
return

The connection nonce is the value that demonstrates possession of the BLE advert, and thus proximity to the
authenticator.

11.5.1.1. Data transfer channel

Hybrid supports multiple data transfer channels. Theclient platform advertises the supported channels in the QR
code. The authenticator device maintains a set of its supported channels. On scanning the QR code, it finds the
intersection between the two sets to find a set of common supported data transfer channels. The authenticator is
responsible for determining which available data transport channel is most appropriate to use for communication,
and MAY attempt start a connection through more than one data transfer channels from the intersection.

Once a connection is established through a data transfer channel, the authenticator SHOULD discard any other
attempted channels. Additional channels in hybrid transport are provided to help improve reliability in certain
environments, such as ones without a network connection. Data transfer over multiple channels concurrently is
not supported. The WebSocket data transfer channel SHOULD be supported by bothclient platform and
authenticator for fallback and backwards compatibility.

11.5.1.1.1. WEBSOCKETS

118/148

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator

The tunnel service relays messages to and from the authenticator. It is a property of theauthenticator because,
as detailed later, it can contact the authenticator on request when aclient platform is “linked”. The protocol
between the authenticator and the tunnel service, and details about how the service later contacts the
authenticator, are a private detail of theauthenticator’s implementation.

The encoded tunnel service identifier is a uint16. Values zero through 255 are assigned, and values >= 256 are
translated into a domain name by hashing. A “cable” label is prepended to hashed domains to allow for use of
CNAME records.

Domains are assigned sequentially and the number of assigned domains is included in the QR code. Therefore
authenticators can know whether a peer will recognise an assigned domain or not and can potentially fall back to
a hashed domain for compatibility.

These are the currently assigned domains, in order:

var assignedTunnelServerDomains string{"cable.ua5v.com", "cable.auth.com"

func decodeTunnelServerDomain (encoded uintl6) (string, bool
if encoded < 256
if int(encoded len(assignedTunnelServerDomains
return "", false

return assignedTunnelServerDomains[encoded], true

shaInput byte
0x63, O0x61, 0x42, Ox4c, 0x45, Ox76, O0x32, 0x20
0x74, O0x75, Ox6e, Ox6e, Ox65, Ox6¢C, 0x20, 0x73
0x65, 0x72, 0x76, Ox65, 0x72, 0x20, 0x64, Ox6f
0x6d, 0x61, 0x69, Ox6e

shaInput = append(shalnput, byte(encoded), byte(encoded>>8), 0
digest sha256.5um256 (shaInput

\Y binary.LittleEndian.Uint64 (digest[:8
tldIndex uint(v & 3

v 2
ret "cable."
const base32Chars "abcdefghijklmnopgrstuvwxyz234567"
for v 0
ret string(base32Chars[v&3l
Y 5
tlds string{".com", ".org", ".net", ".info"

ret tlds[tldIndex&3

return ret, true

The routing ID is an opaque value that must be provided to the tunnel service and which aids its operation.

The client platform is now in possession of everything needed to establish the tunnel to theauthenticator. The
first step of doing so is to derive the tunnel ID, a 128-bit identifier that the tunnel service recognises and which
identifies the exchange separate from any others that the tunnel service might concurrently be facilitating. It is
derived, as detailed above, from the QR secret. It is not dependent on the nonce from the BLE advert because
that would mean that the tunnel service could try and brute-force the nonce from the tunnel ID. The tunnel
service is trusted by the authenticator, but no need to trust it more than necessary.

With the tunnel ID in hand, the tunnel service is contacted viaWebSockets. In order to request a connection to a
given tunnel ID, the path of the WebSockets URL is set to /cable/connect/ followed by the lower-case, hex-
encoded routing ID, another foreslash, then the lower-case, hex-encoded tunnel ID. The WebSocket connection
must set the subprotocol identifier to fido. cable.

Implementations must follow HTTP redirects when establishing the WebSocket connection.

119/148

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455#section-1.9

var tunnelServerDomain string
const subprotocol "fido.cable"

func connectToPhone(advertPlaintext [16]byte
routingID, encodedTunnelServerDomain unpackDecryptedAdvert(advertPlaintext

var ok bool
if tunnelServerDomain, ok = decodeTunnelServerDomain(encodedTunnelServerDomain ok
panic("unknown tunnel server domain"

var tunnelID [16]byte
derive(tunnelID qrSecret nil, keyPurposeTunnellID

connectURL "wss://"
tunnelServerDomain
"/cable/connect/"
hex.EncodeToString(routingID
uyn
hex.EncodeToString(tunnelID

conn, _, err websocket.Dialer
Subprotocols string{subprotocol
Dial(connectURL, nil

if err nil
panic(err

if conn.Subprotocol subprotocol
panic("tunnel service picked wrong subprotocol"

doQRHandshake(conn, advertPlaintext

With the tunnel established, messages are exchanged in binary WebSocket frames and no other frame types are
permitted on the connection.

11.5.1.1.2. BLueToOTH Low ENERGY.

Similar to the WebSocket data transfer channel, a Bluetooth Low Energy (BLE) data transfer channel can be
established as well. The authenticator, after processing the contents of the QR code, checks if BLE is amongst
one of the supported transport channels by the client platform. If supported, the authenticator may choose to
create an insecure L2CAP Connection-oriented Channel (CoC) Bluetooth server socket. This socket can be used
to listen for incoming connections. A PSM value (henceforth called server psm) uniquely identifying this channel
is auto-generated. The authenticator then adds the server psm into the advertisement suffix under the
corresponding key, signalling the client that it can accepting BLE L2CAP connections. A server psm is an integer
value denoting Protocol/Service Multiplexer for L2CAP channel.

The BLE transport_channel identifier for advertisement suffix is 1. The BLE channel extrais a Cbor
integer whose value is the server PSM

The client parses the server PSM (if it exists) from the advertisement data, which can be used to connect to the
insecure Bluetooth L2ZCAP Connection-oriented Channel (CoC) socket. This channel can be used for further
message transfers. Bluetooth Low Energy L2CAP and extended advertising are optional features and may not be
available on all devices. Implementations SHOULD always include websockets as a fallback.

11.5.1.2. Data Transfer:

The authenticator and client platform first perform a cryptographic handshake to establish a forward-secure,
authenticated connection. This handshake is Noise KNpskQ using P-256, SHA-256, and AES-256-GCM.

The client platform speaks first to prove possession of the BLE advert. Theauthenticator thus needs only to
receive the client platform’s handshake message and send a reply in order to complete the handshake. The
KNpskO0 pattern requires that the initiator (the client platform) have shared a public key in advance with the
responder (the authenticator), and that both sides share a symmetric key. The pre-exchanged public key was
passed to the authenticator in the QR code, and the pre-shared symmetric key is derived from the QR secret and
decrypted BLE advert. (The full BLE advert is included in the PSK derivation to ensure that any future additions
to the advert format are automatically authenticated.)

120/148

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/[[!BTL2CAP]]
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/[[!BTL2CAP]]
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.3-rd-20251023/[[!BTADVEXT]]
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
http://noiseprotocol.org/noise.html
https://noiseexplorer.com/patterns/KNpsk0/
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://noiseexplorer.com/patterns/KNpsk0/
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator

func doQRHandshake (socketConn *socket.Conn, advertPlaintext [16]byte
var psk [32]byte
derive(psk qrSecret advertPlaintext keyPurposePSK

conn, handshakeHash doHandshake (socketConn, psk, identityKey, nil
readPostHandshakeMessage(conn, handshakeHash

func doHandshake(socketConn *socket.Conn
psk [32]byte
identityKey *ecdsa.PrivateKey
// peerldentity is not used until linked connections are discussed, below.
peerIdentity *ecdsa.PublicKey

conn io.ReadWriteCloser
handshakeHash [32]byte

msg, ephemeralKey, noiseState initialHandshakeMessage(psk, identityKey, peerIdentity
if err socketConn.WriteMessage(socket.BinaryMessage, msg err nil
panic(err
msgType, handshakeMessageFromPhone, err socketConn.ReadMessage
if err nil
panic(err
if msgType socket.BinaryMessage

panic("non-binary message received on Socket"

trafficKeys, handshakeHash processHandshakeResponse
handshakeMessageFromPhone, ephemeralKey, identityKey, noiseState

conn = newCableConn(&socketAdaptor{socketConn}, trafficKeys
return conn, handshakeHash

As referenced above, the handshake itself isNoise NKpsk0. The following functions implement both NKpsk0 and
KNpsk0 because the latter will be needed below. The underlying Noise operations are specified inthe Noise
specification. p256X962Length is the length of an uncompressed, X9.62, P-256 point, in bytes.

const p256X962Length = 1 + 32 + 32

func initialHandshakeMessage
psk [32]byte
priv *ecdsa.PrivateKey
peerPub *ecdsa.PublicKey

msg []byte
ephemeralKey *ecdsa.PrivateKey
noise *noiseState

if (priv nil peerPub nil
panic("exactly one of priv and peerPub must be given"

var ns *noiseState

if peerPub nil
ns newNoise (noiseNKpsk0O
ns.mixHash byte{0
ns.mixHashPoint (peerPub
else
ns newNoise (noiseKNpsk0O
ns.mixHash byte{l
ns.mixHashPoint (&priv.PublicKey

ns.mixKeyAndHash (psk
ephemeralKey, err ecdsa.GenerateKey (elliptic.P256 rand.Reader

if err nil
panic(err

ephemeralKeyBytes elliptic.Marshal(ephemeralKey.Curve, ephemeralKey.X, ephemeralKey.Y
ns.mixHash (ephemeralKeyBytes
ns.mixKey (ephemeralKeyBytes

if peerPub nil
ns .mixKey (ecdh (ephemeralKey, peerPub.X, peerPub.Y

121/148

http://noiseprotocol.org/noise.html
https://noiseexplorer.com/patterns/NKpsk0/
https://noiseexplorer.com/patterns/NKpsk0/
https://noiseexplorer.com/patterns/KNpsk0/
http://noiseprotocol.org/noise.html

msg = append(msg, ephemeralKeyBytes
msg = append(msg, ns.encryptAndHash(nil

return msg, ephemeralKey, ns

func processHandshakeResponse
peerHandshakeMessage byte
ephemeralKey *ecdsa.PrivateKey
priv *ecdsa.PrivateKey
ns *noiseState

keys trafficKeys
handshakeHash [32]byte

if len(peerHandshakeMessage p256X962Length
panic("handshake too short"

peerPointBytes peerHandshakeMessage| : p256X962Length
ciphertext peerHandshakeMessage [p256X962Length

ns.mixHash (peerPointBytes
ns.mixKey (peerPointBytes

peerPointX, peerPointY elliptic.Unmarshal (ephemeralKey.Curve, peerPointBytes
if peerPointX nil
panic("peer's point is not on the curve"

ns.mixKey (ecdh (ephemeralKey, peerPointX, peerPointY

if priv nil
ns.mixKey (ecdh(priv, peerPointX, peerPointY

plaintext, ok ns.decryptAndHash (ciphertext
if lok len(plaintext 0
panic("bad handshake"

return ns.split ns.handshakeHash

Once the handshake is complete, the traffic-keys that result from Noise’sSplit operation are assigned to the
client platform-to-authenticator and authenticator-to-client platform flows, respectively. Future messages on the
tunnel are padded and AES-256-GCM encrypted. Padding is performed by setting the final byte of the plaintext
to the number of preceding bytes that are padding. Padding bytes can take any value but zero is recommended.
Implementations can use a padding granularity up to 256 bytes, but 32 is recommended. Nonces are per-
direction counters, big-endian encoded into 12 bytes. The additional data for every message is empty.

Implementations may terminate connections that exceed 24 bits of nonce to avoid worrying about nonce
overflow.

122/148

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform

type cableConn struct {
conn io.ReadWriteCloser
readKey, writeKey [32]byte
readSeq, writeSeq uint32

var additionalData |[]byte = nil

func setupAEAD(counter *uint32, key *[32]byte) (nonce [12]byte, aead cipher.AEAD) {
if *counter > 1<<24 {
// To avoid dealing with the nonce counter overflowing,
// connections are capped at 2724 messages.
panic("too many messages")

}

binary.BigEndian.PutUint32(nonce(8:], *counter)
‘counter++

block, err := aes.NewCipher(key[:])

if err != nil {
panic(err)

}

if aead, err = cipher.NewGCM(block); err != nil {
panic(err)

}

return

func (c *cableConn) Write(msg []byte) (int, error) {
const paddingGranularity = 32
if len(msg) > 1<<20 {
// 1MiB is comfortably larger than any valid CTAP2 message and
// this limit moots possible overflows below.
panic("plaintext too large")

}

extraBytes := paddingGranularity - (len(msg) % paddingGranularity)
paddedLen := len(msg) + extraBytes

paddedMsg := make([]byte, paddedLen, paddedLen)
copy (paddedMsg, msg)
paddedMsg[len(paddedMsg)-1] = byte(extraBytes) - 1

nonce, aead := setupAEAD(&c.writeSeq, &c.writeKey)
ciphertext := aead.Seal(paddedMsg[:0], nonce[:], paddedMsg, additionalData)

if n, err := c.conn.Write(ciphertext); err != nil {
return 0, err

} else if n != len(ciphertext) {

return 0, errors.New("unexpected short write")
} else {

return len(msg), nil
}

Decryption consists of the reverse of the encryption steps:

123/148

func (c *cableConn) Read(buf byte) (int, error
n, err c.conn.Read (buf
if err nil
return n, err

buf = bufl:n

nonce, aead setupAEAD (&c.readSeq, &c.readKey

plaintext, err aead.Open(buf[:0], nonce buf, additionalData
if err nil

panic("decryption failure"

if len(plaintext 0
panic("invalid message"

paddingBytes int(plaintext[len(plaintext)-1
if paddingBytes+1l > len(plaintext
panic("invalid message"

plaintext plaintext|:len(plaintext)-1-paddingBytes
if len(plaintext len (buf
panic("message too large"

n copy (buf, plaintext
return n, nil

The first message from the authenticator is the “post handshake” message. This message contains the
authenticator’s getlnfo response, to save a round-trip. This message contains a CBOR map, which must be in
CTAP2 canonical form.

The CBOR map contains the following:

« Key 0: (optional) a bytestring containing only zero bytes, for padding.
» Key 1: the getinfo response, a bytestring.

o Key 2: reserved.

Key 3: (optional) an array of strings representing supported features, as defined in the table below. The
absense of this key MUST be treated as if it were present with the value ["ctap”].

Value Description

ctap The credential manager hosting device (CMHD) supports CTAP2 requests.

The credential manager hosting device (CMHD) supports Digital Credentials requests using
JSON-based messages.

dc

type postHandshakeMessage struct
GetInfoReply [lbyte \ chor:"1"\"

func readPostHandshakeMessage (conn io.ReadWriteCloser, handshakeHash [32]byte
msgBytes make([|byte, 128<<10
n, err conn.Read (msgBytes
if err nil
panic("read failure:

err.Error

var msg postHandshakeMessage

if !cborParse(&msg, msgBytes|:n
fmt.Printf ("%x\n", msgBytes
panic("invalid post-handshake message"

if msg.GetInfoReply nil
panic("post-handshake message is missing getInfo response"

sendCTAP2Request (conn, handshakeHash

With the tunnel now fully set up, the parties can exchange messages. Each message begins with a byte that
denotes the type of the message. An empty message is thus a protocol error. The following types are defined:
» 0: a shutdown message.
e 1:a CTAP message.

e 2:an update message.
124/148

https://www.w3.org/TR/webauthn-2#authenticator

o 3:aJSON-based message.

A shutdown message may only be sent by the client to the authenticator. The message must consist only of the
type byte. It indicates that the client will not send any further CTAP commands to the authenticator. The
authenticator may choose to close the connection upon receiving such a message. If it supports state-assisted
transactions then the client SHOULD accept messages from the authenticator for at least two minutes after
sending a shutdown message.

A CTAP message contains a CTAP2 payload for processing. For example, when sent from client to
authenticator, the bytes following the type byte will be a CTAP2 command.

An update message may be sent by either side at any time. The bytes following the type byte must be a CBOR
map encoded using the canonical rules. Unknown keys in the map must be ignored. The codespace of keys is
separate for each direction. Currently keys are only defined in the authenticator to client direction:

» Key 0: (optional) a bytestring containing only zero bytes, for padding.

« Key 1: (optional) a map containing linking information.

The linking map contains:

Key 1: the “contact ID”, an opaque value that can be presented to the tunnel service to identify this
authenticator. (For Android this an FCM registration token.)

Key 2: the “link ID”, an opaque value that identifies this link to theauthenticator. This must be sent back to
the authenticator when contacting it so that it knows what set of keys to use for thisclient platform.

Key 3: the “link secret”, a shared secret key.

Key 4: the authenticator’s public key, X9.62 uncompressed. This value is global to theauthenticator and
identifies it. If the same authenticator is used multiple times with a a QR-initiated transaction then this lets
the client platform deduplicate the linking information. Desktops may sync linking information using systems
like Chrome Sync and this public key prevents a client platform with linking information from impersonating
the authenticator to another client platform.

Key 5: the authenticator's name, for the purposes of identifying it to the user. For example “Pixel 3 XL”.

Key 6: the handshake signature. See below.

125/148

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator

type authenticatorToClientUpdateMessage struct
LinkingData linkData \ chor:"1"\"

type linkData struct

ContactID byte \'cbor:"1"\"
LinkID 8]byte \’'cbor:"2"\"
LinkSecret 32]byte \ cbor:"3"\"
AuthenticatorPublicKey [65]byte \ chor:"4"\"
AuthenticatorName string \'cbor:"5"\"
Signature 32]byte \'cbor:"6"\"
authPublicKey ecdsa.PublicKey

tunnelServerDomain string

var initialLinkData *linkData

func parseUpdateMessage(payload byte, handshakeHash [32]byte
var msg authenticatorToClientUpdateMessage
if !cborParse(&émsg, payload
fmt.Printf("%x\n", payload
panic("invalid update message"

// Linking data is optional.
if msg.LinkingData.ContactID nil
return

initiallLinkData msg.LinkingData

pubKey ecdsa.PublicKey
Curve: elliptic.P256

pubKey.X, pubKey.Y = elliptic.Unmarshal(pubKey.Curve, initiallLinkData.AuthenticatorPublicK

ey
if pubKey.X nil
panic("bad link public key"

if !verifySignature(initiallLinkData.Signature, handshakeHash, pubKey
panic("invalid link signature"

initiallLinkData.tunnelServerDomain = tunnelServerDomain
initialLinkData.authPublicKey = pubKey

fmt.Printf ("Linking information received\n"

The signature in the linking data serves to prove possession of the claimed public key. This is needed because
that public key is an identifier and future linking messages that claim the same public key will replace older ones.
This allows a authenticator to update its linking information at theclient platform, but authenticators should not be
able to replace another authenticator’s data.

The handshake hash is Noise’s channel binding value and hashes the handshake transcript. Since the
authenticator’s public key is used as an ECDH key in later Nosie handshakes, we don’t want to overload it as an
ECDSA key too. Thus the “signature” in the linking message is actually an HMAC of the handshake hash under
the shared key between the authenticator’s key and the key in theclient platform’s QR code.

func verifySignature(sig, handshakeHash [32]byte, pubKey *ecdsa.PublicKey) bool
sharedKey ecdh(identityKey, pubKey.X, pubKey.Y
h hmac.New(sha256 .New, sharedKey
h.Write(handshakeHash
expectedSignature h.Sum(nil
return hmac.Equal(expectedSignature, sig

The client platform must send CTAP2 commands in order to direct the authenticator to perform some action.
Typically in a CTAP2 exchange that would be a getinfo request. However, since the response was already
provided in the post-handshake message, the client platform can immediately send a more substantial request.
The example below sends a superfluous authenticatorGetInfo request.

126/148

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
http://www.noiseprotocol.org/noise.html#channel-binding
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform

const
typeShutdown = 0

typeCTAP =1
typeUpdate = 2
typelJSON = 3

func sendCTAP2Request(conn io.ReadWriteCloser, handshakeHash [32]byte
authenticatorGetInfoRequest byte{typeCTAP, 4
if _, err conn.Write(authenticatorGetInfoRequest); err nil
panic("write failed"

for
reply make([lbyte, 128<<10
n, err conn.Read (reply
if err nil
fmt.Printf ("Socket closed\n"
return

reply replyl:n

if len(reply 0
panic("invalid empty message received"

msgType, reply reply [0 reply[1l

switch msgType
case typeShutdown
panic ("shutdown message received from authenticator"

case typeCTAP
fmt . Printf ("CTAP reply: %x\n", reply
if _, err conn.Write([]byte{typeShutdown err nil
panic("write failed"

case typeUpdate
parseUpdateMessage(reply, handshakeHash

default
panic("invalid message type received"

conn.Close

11.5.2. State-assisted Transactions

If a client platform has linking information for a authenticator, from a previous QR-initiated transaction, then it
doesn’t need to show a QR code in order to contact that authenticator again. By making a WebSockets
connection to the cached tunnel service with the path /cable/contact/ followed by the base64url-encoded
contact ID, the tunnel service will attempt to establish a tunnel with the identified authenticator. If the tunnel
service believes that the authenticator is permanently uncontactable (e.g. because the user opted to unlink this
client platform on the authenticator) then the tunnel server returns HTTP status 410 and theclient platform should
forget the link information.

The authenticator needs two values to start communicating on the tunnel: the link ID so that it knows whichclient
platform is contacting it (and thus which keys to use), and a nonce from theclient platform. The latter diversifies
the key that encrypts the BLE advert and prevents anyone passively listening from being able to link the advert to
any set of link keys retrospectively. The two values are called the “client payload” and are hex-encoded in a X-
caBLE-Client-Payload HTTP header.

In order to aid theauthenticator in displaying Ul to the user, a third value is encoded in the client payload: a hint
about whether the following transaction will be a makeCredential or a getAssertion.

Once the tunnel is ready the authenticator will send its handshake message and start advertising over BLE as a
proximity challenge. The BLE advert in this case contains the same initial flags byte, which must be zero, and the
remaining 15 bytes are all nonce. Once the BLE advert is received, the client platform can calculate the
handshake PSK and respond.

The handshake in this case will be NKpskQ because now it is the authenticator that has previously shared a
public key.

127/148

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://noiseexplorer.com/patterns/NKpsk0/
https://www.w3.org/TR/webauthn-2#authenticator

func performStateAssistedConnection(linkData *linkData
contactURL "wss://"
linkData.tunnelServerDomain
"/cable/contact/"
base64.RawURLEncoding.EncodeToString(linkData.ContactID

clientNonce, clientPayload constructClientPayload (linkData
headers make (http.Header
headers.Add("X-caBLE-Client-Payload"”, hex.EncodeToString(clientPayload

websocketConn, resp, err websocket.Dialer
Subprotocols string{subprotocol
Dial(contactURL, headers

if err nil
if resp nil resp.StatusCode 410
panic("device unlinked"

panic(err

if websocketConn.Subprotocol subprotocol
panic("tunnel service picked wrong subprotocol"

var eidKey [64]byte
derive(eidKey linkData.LinkSecret clientNonce keyPurposeEIDKey

println("waiting for advert"

advertPlaintext awaitAdvert (eidKey

println("have advert"

if !reservedBitsAreZero(advertPlaintext
panic("bad link advert"

var psk [32]byte
derive(psk linkData.LinkSecret advertPlaintext keyPurposePSK

doHandshake (websocketConn, psk, nil, linkData.authPublicKey
println("State-assisted connection complete"

The client payload is encoded in a CBOR message (which must follow theencoding rules) using the following
format:

« Key 1: the 8-byte link ID; a bytestring.
» Key 2: a 16-byte nonce generated by theclient platform; a bytestring.

« Key 3: a value from the table below, representing the user flow to follow.

Value Description
ga getAssertion (FIDO2)
mc makeCredential (FIDO2)
dcp credential presentation (Digital Credentials)
dci credential issuance (Digital Credentials)

func constructClientPayload(linkData *linkData) (nonce [16]byte, payload byte
rand.Reader .Read (nonce

payload = append(payload, 0xa3 // Three-element CBOR map
payload = append(payload, 1 // key 1

payload = append(payload, cborMajorByteString<<5|8) // 8 bytes

payload = append(payload, linkData.LinkID

payload = append(payload, 2 // key 2

payload = append(payload, cborMajorByteString<<5|16) // 16 bytes

payload = append(payload, nonce

payload = append(payload, 3 // key 3
payload = append(payload, cborMajorString<<5|2) // two-byte string
payload = append(payload, 'g', 'a’ // getAssertion

return nonce, payload

From this point, the connection works the same as the QR-initiated one. Theauthenticator can optionally send
linking information in the post-handshake message if it wishes to update any linking information and then CTAP2
messages flow as before.

128/148

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator

This section defines authenticator extensions and any necessary corresponding client extension processing for
them.

NOTE: extensions may be defined such that extension processing may occur without any extension input.

12.1.1. Feature detection

Extension identifier
credProtect

This registration extension allows relying parties to specify a credential protection policy when creating a
credential. Additionally, authenticators MAY choose to establish a default credential protection policy greater
than userVerificationOptional (the lowest level) and unilaterally enforce such policy. Authenticators not
supporting some form of user verification MUST NOT support this extension.

Authenticators supporting some form of user verification MUST process this extension and persist the
credProtect value with the credential, even if the authenticator is notprotected by some form of user verification
at the time.

NOTE: support for this extension is mandatory in some cases. See§ 9 Mandatory features.

Client extension input
create() : A single USVString specifying a protection level of the credential to be created.

partial dictionary AuthenticationExtensionsClientInputs {
USVString credentialProtectionPolicy;
boolean enforceCredentialProtectionPolicy = false;

ke

Client extension processing
If this extension is not present in anauthenticatorMakeCredential request:

1. The platform MAY enforce its own defaultcredentialProtectionPolicy value by adding this
extension.

If this extension is present in anauthenticatorMakeCredential request:

1. Verify that the credentialProtectionPolicy string value is one of following:
o userVerificationOptional:

= This reflects "FIDO_2_0" semantics. In this configuration, performingsome form of user
verification is OPTIONAL with or withoutcredentiallD list. This is the default state of the
credential if the extension is not specified.

o userVerificationOptionalWithCredentiallDList:

= In this configuration, credential is discovered only when itscredentiallD is provided by the
platform or when some form of user verificationis performed.

o userVerificationRequired:

= This reflects that discovery and usage of the credential MUST be preceded bysome form of
user verification.

2. Evaluate the boolean enforceCredentialProtectionPolicy’s value. This controls whether it is better
to fail to create a credential rather than ignore the protection policy. When
enforceCredentialProtectionPolicy is true, and credentialProtectionPolicy’s value is either
userVerificationOptionalWithCredentialIDList or userVerificationRequired, the platform SHOULD NOT
create the credential in a way that does not implement the requested protection policy. (For example, by
creating it on an authenticator that does not support this extension.)

The platform SHOULD NOT alter the credentialProtectionPolicy value: the Relying Party’s desired
credential protection policy overrides any default credential protection policies imposed by the platform.

NOTE: Platforms may require enterprise policy, or other configuration to conform to standards likeg[FIP
S140-3]. Those may require modification of the Relying Party’s desired credential protection policy. The
Relying Party’s desired credential protection policy SHOULD NOT be modified in other circumstances.

NOTE: For non-discoverable credentials, credentialProtectionPolicy values
userVerificationOptional and user VerificationOptionalWithCredentiallDList will both have the same
authenticator behaviour since the Relying Party must always supply an allowList containing credential IDs
when attempting to use authenticatorGetAssertion with such credentials.

Client extension output

129/148

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-USVString
https://webidl.spec.whatwg.org/#idl-boolean

None. Authenticator returns the result in authenticator extension output.

Authenticator extension input
Map credentialProtectionPolicy value to credProtect and send it to the authenticator.

« authenticatorMakeCredential additional behaviours

The list of possible values for credProtect is:

credentialProtectionPolicy credProtect Value
userVerificationOptional 0x01
userVerificationOptionalWithCredentiallDList 0x02
userVerificationRequired 0x03

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

« "credProtect": <credProtect Value>

The value of the map entry MUST be the credProtect value the authenticator set for the created credential.

NOTE: Some authenticators for high-security environments may be configured to always set credProtect 3
for all created credentials regardless of what the platform requests. In this case if a Relying Party causes an
authenticatorMakeCredential request to be sent with credProtect 2 (using thecredProtect extension), the
authenticator will create the credential, set the credential’s credProtect policy to 3, and respond via the
credProtect extension result that it set the policy to 3.

EXAMPLE 8
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

6: {"credProtect": 0x01},

Authenticator extension processing
credProtect value is persisted with the credential. If no credProtect extension was included in the request

the authenticator SHOULD use the default value of 1 for compatibility with CTAP2.0 platforms. The
authenticator MUST NOT return an unsolicited credProtect extension output.

Authenticator extension output
« The authenticator responds with the following CBOR map entry in the "extensions" field of the
authenticator data object:

o "credProtect": <credProtect Value>

EXAMPLE 9
Sample "extensions" field value in the authenticatorData:

{"credProtect": 0x01}

This extension enables RPs to provide a small amount of extra credential configuration information¢redBlob
value) to the authenticator when a credential is made. This information is an opaque blob to the authenticator.
The authenticator MUST support at least 32 bytes to be stored. The authenticator reflects amount of byte
storage it supports as maxCredBlobLength parameter inauthenticatorGetInfo. If the authenticator supports
this extension,

1. If the rk option ID is present and true

o The authenticator MUST support it fordiscoverable credentials.
o The authenticator MAY choose to also support it fornon-discoverable credentials.

2. Else (implying the authenticator does not supportdiscoverable credentials)

o The authenticator MUST support it fornon-discoverable credentials.

If RPs want to put PII or sensitive information in this field, they MUST use thecredProtect extension, setting the
credentialProtectionPolicy as userVerificationRequired and enforceCredentialProtectionPolicy as
true. This will prevent a credential that is not protected bysome form of user verificationfrom being created.

Authenticators MUST support credProtect extension if they wish to supportcredBlob extension.

130/148

https://www.w3.org/TR/webauthn-2#authenticator-data

12.2.1. Feature detection
To detect whether the authenticator supports this feature, following conditions MUST be met:

« Authenticator MUST return credBlob in extensions field in authenticatorGetlnfo in addition to other
extensions it may support.
o The authenticator MUST also support dependent extensioncredProtect.
o Authenticator MUST returnmaxCredBlobLength (0x0F) in authenticatorGetinfo.
Extension identifier
credBlob

Client extension input
create() : ArrayBuffer containing opaque data in an RP-specific format.

partial dictionary AuthenticationExtensionsClientInputs {
ArrayBuffer credBlob;
};

get () : Aboolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
boolean getCredBlob;
};

Client extension processing
create() : If credBlob size is less than or equal to maxCredBlobLength, platform passes the information to
the authenticator. Otherwise, platform ignores it.

get () : None.

Client extension output
create() : Boolean indicating whether the requested blob was stored, mirroring the authenticator’s output.

partial dictionary AuthenticationExtensionsClientOutputs {
boolean credBlob;
i

get () : ArrayBuffer containing the requested blob, or empty if none was found, mirroring the authenticator’s
output.

partial dictionary AuthenticationExtensionsClientOutputs {
ArrayBuffer getCredBlob;
};

Authenticator extension input

« authenticatorMakeCredential authenticator extension input

o The platform sends the credBlob value in authenticatorMakeCredential request with the following CBOR
map entry in the "extensions" field to the authenticator:

= "credBlob": Byte String containing the credBlob value

« authenticatorGetAssertion authenticator extension input

o The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

= "credBlob":true

Authenticator extension processing
credBlob value is persisted with the Credential duringauthenticatorMakeCredential and returned during

authenticatorGetAssertion.

Authenticator extension output
« authenticatorMakeCredential authenticator extension output

o If the authenticator is able to store thecredBlob value, it returns the following CBOR map entry in the
"extensions" fields to the authenticator:

= "credBlob": true

o If the authenticator is not able to store thecredBlob value (e.g. credBlob exceeds maxCredBlobLength,
or extension is not supported for non-discoverable credentials), it returns the following CBOR map entry
in the "extensions" field to to the authenticator:

= "credBlob": false

« authenticatorGetAssertion authenticator extension output

131/148

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer

o |f the authenticator has thecredBlob value for the credential, it returns the credBlob value in the
following CBOR map entry in the "extensions" fields to the authenticator:

= "credBlob": Byte String.

o If the authenticator does NOT have thecredBlob value for the credential, it returns an empty Byte String
in the following CBOR map entry in the "extensions" fields to the authenticator:

= "credBlob": (empty) Byte String.

The credBlob extension allows for a small amount of opaque data to be stored with a credential. In contrast, this
extension allows for a much larger amount of data to be stored in the large-blob array, protected by a key that is
stored and accessed using this extension. Details of the interaction with the large-blob array are given in§ 6.10.3
Large, per-credential blobs. This extension is mutually exclusive with thelargeBlob extension.

Conceptually this extension extends the state of adiscoverable credential with 32 bytes of opaque storage that
may, or may not, be present for any given credential. This is called the largeBlobKey. Since this value is a
random key, an authenticator MAY derive it as needed from other key material, rather than storing the value
itself. If an authenticator does this, the same value MUST NOT be plausibly derivable via other means. For
example, it MUST NOT also be obtainable via the hmac-secret extension using any salt that is predictable or
constant across different credentials.

NOTE: Client platforms SHOULD use the largeBlobKey registration extension when creating the credential
if they wish to later use the largeBlobKey authentication extension to fetch the largeBlobKey. Authenticators
MAY optionally generate a largeBlobKey for a credential if the Large Blob Key (largeBlobKey) extension is
absent, but MUST NOT return an unsolicited largeBlobKey extension response or largeBlobKey (0x05) in the
authenticatorMakeCredential response structure.

Platforms can detect support for this extension by checking forall of the following in theauthenticatorGetlnfo
response:
1. largeBlobKey in the extensions field.

2. largeBlobs mapped to true in the options field.

Client extension input / output / processing
None. This extension is used to enablestorage of large blobs in the large-blob array, which requires

additional platform behaviour. It is not suitable to be directly exposed to RPs.

Authenticator input for authenticatorMakeCredential
"largeBlobKey": boolean.

Authenticator processing for authenticatorMakeCredential:
1. If the value of largeBlobKey is not true, return CTAP2_ERR_INVALID_OPTION. (The extension
should be omitted rather than asserted to be false.)

2. If the options field of the authenticatorMakeCredential request does not map rk to true, return
CTAP2_ERR_INVALID_OPTION.

3. If other processing steps forauthenticatorMakeCredential complete successfully then update the new
credential’s state to store a freshly generated 32-byte key as its largeBlobKey.

4. Set the value of LargeBlobKey (0x05) in the authenticatorMakeCredential response structure (i.e., notin
the extensions field of the authenticator data) to the value of the generatedlargeBlobKey.
Authenticator authenticatorMakeCredential extension output
None. Since platforms cannot filter the content of the authenticator extension output, none is provided to
avoid internal details of large-blob support leaking out of the abstraction layer.
Authenticator authenticatorGetAssertion extension input
"largeBlobKey": boolean
Authenticator authenticatorGetAssertion extension processing
1. If the value of largeBlobKey is not true, return CTAP2_ERR_INVALID_OPTION. (The extension
should be omitted rather than asserted to be false.)

2. If other processing steps forauthenticatorGetAssertion complete successfully, and the credential has an
associated largeBlobKey, then set the value oflargeBlobKey (0x07) in the authenticatorGetAssertion
response structure (i.e., notin the extensions field of theauthenticator data) to the stored
largeBlobKey.

Authenticator authenticatorGetAssertion extension output
None. Since platforms cannot filter the content of the authenticator extension output, none is provided to

avoid internal details of large-blob support leaking out of the abstraction layer.

This extension is an alternative to the toauthenticatorLargeBlobs command and the largeBlobKey extension for
authenticators that can accept the full contents of a largeBlob in an authenticatorGetAssertion message.
Authenticators MUST NOT support both extensions.

132/148

https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#authenticator-data

The largeBlob extension closely mirrors the stucture of theWebAuthn extension of the same name The major
difference is that blob data is compressed in the CTAP version and the uncompressed size is stored with it.

Outputs are put into unsigned extension outputs so that the RP-observable behaviour is identical between the
two styles of large blob support.

Authenticator input for authenticatorMakeCredential
"largeBlob": CBOR map matching the following CDDL:

largeblob-makeCredential-inputs = {
support: "required" / "preferred"
}
Authenticator processing for authenticatorMakeCredential:
1. If the input does not conform to the given CDDL, return CTAP2_ERR_INVALID_CBOR.

2. If the authenticator can support large blobs in the newly created credential:

1. Add an element to theunsigned extension outputs for this extension where the value is
{"supported": true}.

3. Else:
1. If support is “required” then return CTAP2_ERR_LARGE_BLOB_STORAGE_FULL.

(Authenticators MAY choose to always create new credentials with large blob capability, whether requested or
not. However they MUST NOT return unsolicited output.)

Authenticator authenticatorMakeCredential extension output
None, as the output is in theunsigned extension output.

Authenticator authenticatorGetAssertion extension input
"largeBlob": CBOR map matching the following CDDL:

largeblob-inputs = {
? read : true
? write : bstr
? originalSize : uint
}
Authenticator authenticatorGetAssertion extension processing
1. If the input does not conform to the given CDDL, return CTAP2_ERR_INVALID_CBOR.

2. If the input contains the read member and neither of write nororiginalSize members, or contains the
write and originalSize members but not the read member, then continue. Otherwise return
CTAP2_ERR_INVALID_CBOR.

3. If the read member is present:
1. Fetch any largeBlob data for selected credentials. If there is none then stop processing this
extension.

2. Add an element to the unsigned extension outputs for this extension that conforms to largeblob-
outputs, below, and which contains the compressed blob and its original size, as provided when it
was written.

4. Else:

1. Let the variablewritten be false.

2. If the authenticatorGetAssertion request included a non-empty allowList, and the selected
credential can store the large blob data, then save the contents of the write and originalSize
inputs in the selected credential and set written to true.

3. Add an element to the unsigned extension outputs for this extension that conforms to largeblob-
outputs, below, and which contains awritten member equal to the value of thewritten variable.

largeblob-outputs = {
? written : bool
? blob : bstr
? originalSize : uint
}
Authenticator authenticatorGetAssertion extension output
None, as the output is in theunsigned extension output.

Extension identifier
minPinLength

This extension returns the current minimum PIN length value. This value does not decrease unless the
authenticator is reset, in which case, all the credentials are reset. This extension is only applicable during
credential creation.

See also § 7.4 Set Minimum PIN Length for the overall feature description.

133/148

https://www.w3.org/TR/webauthn-3#sctn-large-blob-extension
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-3#unsigned-extension-output

NOTE: An example use case for this extension is: an organization supplies configured authenticators to
their users, with a current minimum PIN length value tailored to the organization’s requirements. Upon users
registering their credentials with the organization’s systems using the authenticators, the organization may
use this extension to determine whether the current minimum PIN length continues to meet the organization’s

requirements.

Client extension input
create() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
boolean minPinLength;
};

get () : Not applicable.

Client extension processing
None, except creating the authenticator extension input from the client extension input.

Client extension output
None. The authenticator returns the result in the authenticator extension output.

Authenticator extension input
Boolean asking for minimum PIN length value in Unicode code points. The platform sends the
authenticatorMakeCredential request with the following CBOR map entry in the "extensions" field to the
authenticator:

e "minPinLength": true
Authenticator extension processing
The authenticator checks whether the authenticatorMakeCredential’'s rp.id parameter is present on its
minPinLengthRPIDs list. If so, the RP is authorized to receive the current minimum PIN length value. If not,
the RP is not authorized to receive the current minimum PIN length value.

Authenticator extension output
o Ifthe RP is

< authorized, the authenticator sets theminPinLength return value to the current minimum PIN
length value.

< not authorized, the authenticator ignores the extension and does not return any
authenticator extension output.

CDDL:
"minPinLength": uint

Extension identifier
pinComplexityPolicy

This extension returns the current PIN complexity policy value. This value does not change from TRUE to FALSE
unless the authenticator is reset, in which case, all the credentials are reset. This extension is only applicable
during credential creation.

See also § 7.5 Set PIN Complexity Policy for the overall feature description.

NOTE: An example use case for this extension is: an organization supplies configured authenticators to
their users, with the current PIN complexity policy value tailored to the organization’s requirements. Upon
users registering their credentials with the organization’s systems using the authenticators, the organization
may use this extension to determine whether the current PIN complexity policy continues to meet the
organization’s requirements.

Client extension input
create() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
boolean pinComplexityPolicy;
};

get () : Not applicable.

Client extension processing
None, except creating the authenticator extension input from the client extension input.

Client extension output
None. The authenticator returns the result in the authenticator extension output.

Authenticator extension input
Boolean asking if there is acurrent PIN complexity policy configured. The platform sends the
authenticatorMakeCredential request with the following CBOR map entry in the "extensions" field to the
authenticator:

« "pinComplexityPolicy": true

134/148

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get

Authenticator extension processing
The authenticator checks whether the authenticatorMakeCredential’'s rp.id parameter is present on its
minPinLengthRPIDs list. If so, the RP is authorized to receive the current PIN complexity policy value. If not,
the RP is not authorized to receive the current PIN complexity policy value.

Authenticator extension output
« Ifthe RPis

< authorized, the authenticator sets the pinComplexityPolicy return value to the current
minimum PIN length value.

< not authorized, the authenticator ignores the extension and does not return any
authenticator extension output.

CDDL:
"pinComplexityPolicy": boolean

Extension identifier
hmac-secret

This extension is used by the platform to retrieve a symmetric secret from the authenticator when it needs to
encrypt or decrypt data using that symmetric secret. This symmetric secret is scoped to a credential. The
authenticator and the platform each only have the part of the complete secret to prevent offline attacks. This
extension can be used to maintain different secrets on different machines. If the authenticator supports this
extension, the authenticator MUST support it for both discoverable and non-discoverable credentials.

Client extension input
create() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
boolean hmacCreateSecret;
i

get () : A JavaScript object defined as follows:

dictionary HMACGetSecretInput {
required ArrayBuffer saltl; // 32-byte random data
ArrayBuffer salt2; // Optional additional 32-byte random data
}

partial dictionary AuthenticationExtensionsClientInputs {
HMACGetSecretInput hmacGetSecret;
};

The salt2 input is OPTIONAL. It can be used when the platform wants to roll over the symmetric secret in
one operation.

Client extension processing
1. If presentinacreate():
1. If set to true, pass a CBOR true value as the authenticator extension input.

2. If set to false, do not process this extension.
2. Ifpresentinaget():

1. Verify that salt1 is a 32-byte ArrayBuffer.
2. If salt2 is present, verify that it is a 32-byte ArrayBuffer.
3. Pass salt1 and, if present, salt2 as the authenticator extension input.

Client extension output
create(): Boolean true value indicating that the authenticator has processed the extension.

partial dictionary AuthenticationExtensionsClientQutputs {
boolean hmacCreateSecret;

ke

get (): A dictionary with the following data:

dictionary HMACGetSecretOutput {
required ArrayBuffer outputl;
ArrayBuffer output2;

I

partial dictionary AuthenticationExtensionsClientOutputs {
HMACGetSecretOutput hmacGetSecret;
};

Authenticator extension input

135/148

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

Same as the client extension input, except represented in CBOR.

Authenticator extension processing

« authenticatorGetinfo additional behaviors

The authenticator indicates to the platform that it supports the "hmac-secret" extension via the "extensions"
parameter in the authenticatorGetInfo response.

EXAMPLE 10
Sample CTAP2 authenticatorGetInfo response (CBOR):

1: ["FIDO 2 0"],
2: ["hmac-secret"],

« authenticatorMakeCredential additional behaviors

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

o "hmac-secret": true

EXAMPLE 11
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{
1: h’'687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DBIE602645F141 ",

6: {"hmac-secret": true},

}

o

The authenticator generates two random 32-byte values (calledCredRandomwithuV and
CredRandomWithoutUV) and associates them with the credential.

NOTE: The authenticator SHOULD generate CredRandomWithUV/CredRandomWithoutUV and
associate them with the credential, even if hmac-secret extension is not present in
authenticatorMakeCredential request.

o

If the platform has sent the hmac-secret extension to the authenticator, then

= |f the authenticator succeeded in above step of generating
CredRandomWithUV/CredRandomWithoutUV and associating it with the credential, it responds with
the following CBOR map entry in the "extensions" fields to the platform:
= "hmac-secret": true
= Else (The authenticator did not succeed in above step of generating
CredRandomWithUV/CredRandomWithoutUV and associating it with the credential), it responds with
the following CBOR map entry in the "extensions" fields to the platform:
= "hmac-secret": false
o Else (the platform has not sent the hmac-secret extension to the authenticator)
= The authenticator does not add any response from this extension to the "extensions" field of the
authenticatorMakeCredential response.

« authenticatorGetAssertion additional behaviors

o The platform gets sharedSecret from the authenticator.

o The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

= "hmac-secret™:

= keyAgreement(0x01): public key of platform key-agreement key.

saltEnc(0x02): Encryption of the one or two salts (called salt1 (32 bytes) and salt2 (32 bytes))
using the shared secret as follows:

» One salt case: encrypt(shared secret, salt1)

= Two salt case: encrypt(shared secret, salt1 || salt2)

saltAuth(0x03): authenticate(shared secret, saltEnc)

pinUvAuthProtocol(0x04): (optional) as selected when getting the shared secret. CTAP2.1 or
later platforms MUST include this parameter if the value of pinUvAuthProtocol is not 1.

136/148

EXAMPLE 12
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

1: "example.com",
2: h’'687134968222EC17202E42505F8ED2B16AE22F16BBO5B88C25DBI9E602645F141 ",
4: {

"hmac-secret":

{

i1 2,

3: -25,

-1: 1,

-2: h’ODE6479775C5B704BF780073809DE1B36A29132E187709C1E364F299F8847769"

-3: h’3BBE9BEDCC1AC8328BA6397A5F46AF85FC7C51B35BEDFDOE3E47AC6F34248B35

I
2: h’59E195FC58C614C07C99F587495F374871E9873AD37D5BCA1EED200926C3C6BA528D77
48AF9592BD7E7A88051887F214E13CFDF406C3A1C57D529BABF987D4A ",
3: h’17B93F3BDB95380ED512EC6F542CE140"

4 [

o The authenticator performs the following operations when processing this extension:

If pinUvAuthProtocol is absent and a pinUvAuthProtocol value of1 is supported by the
authenticator, let the value of pinUvAuthProtocol be 1

If pinUvAuthProtocol is absent and a pinUvAuthProtocol value of1 is not supported by the
authenticator, then return CTAP2_ERR_PIN_AUTH_INVALID.

If "up" is set to false, the authenticator returns CTAP2_ERR_UNSUPPORTED_OPTION.
The authenticator waits for user consent.
If request asks for user verification, the authenticator waits for user verification.
= If user verification is requested via Client PIN mechanism, verify the user by verifying the
Client PIN parameters in the request as mentioned in the authenticatorGetAssertion steps.

= [f user verification is requested via abuilt-in user verification method, verify the user bybuilt-in
user verification method as mentioned in the authenticatorGetAssertion steps.

The authenticator calls decapsulate on the provided platform key-agreement key to obtain a shared
secret.

The authenticator calls verify(shared secret, saltEnc, saltAuth)

= If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

The authenticator obtains salt1 and salt2 by calling decrypt(shared secret, saltEnc). If the
decryption fails, or if the result is not 32 or 64 bytes long, return
CTAP1_ERR_INVALID_PARAMETER. Otherwise salt1 is the first 32 bytes of the result and salt2 is
the remaining bytes, if any.

The authenticator chooses which CredRandom to use for next step based on whether user
verification was done or not in above steps.

= If uv bitis set to 1 in the response, letCredRandom be CredRandomWithuv.

= [f uv bit is set to 0 in the response, letCredRandom be CredRandomWithoutUV.

If the authenticator cannot find corresponding CredRandom associated with the credential,
authenticator ignores this extension and does not add any response from this extension to
"extensions" field of the authenticatorGetAssertion response.

The authenticator generates one or two HMAC-SHA-256 values, depending upon whether it
received one salt (32 bytes) or two salts (64 bytes):

= output1: HMAC-SHA-256(CredRandom, saltl)

= output2: HMAC-SHA-256 (CredRandom, salt2)
The authenticator returns output1 and (when there were two salts) output2, encrypted to the
platform using the shared secret, as part of "extensions" parameter:

= One salt case: "hmac-secret": encrypt(shared secret, output1)

= Two salt case: "hmac-secret": encrypt(shared secret, outputi || output2)

137/148

EXAMPLE 13
Sample "extensions" field value in the authenticatorData:

{ "hmac-secret": h’1F91526CAE456E4CBB71C4DDE7BB877157E6E54DFED3015D7D4DBB2269AFCDEGA9LE
D267EBBF848EB95A68E79C7AC705E351D543DB0165887D6290FD47A40C4" }

authenticatorGetlnfo————— —»

7777777777777777777777 2:{"hmac-secret"}------------- —mmmmmmmm

authenticatorMakeCredential(RP_ID, UserAccountinfo, clientDataHash,
— —»

Tl
Generate the credential.
Generate "CredRandomWithUV" (32 bytes),
"CredRandomWithoutUV" (32 bytes) and
associate them with the credential

extensions: {"hmac-secret": true})

ol authenticatorData: (.., extensions:("hmac-secret™: true}),
attestationStatement: {sig(authenticatorData || clientDataHash)}
authenticatorClientPIN(getKeyAgreement: true)— — >
Ko mm s m oo keyAgreement: pubA (aG) - -———--------- - -
Arrive at sharedSecret (SHA-256(baG))
authenticatorGetAssertion(RP_ID, credentiallD, ClientDataHash,
options: {"up™: true}... _

extensions: {"hmac-secret™: {

keyAgreement: PubB (bG),

saltEnc: AES256-CBC(sharedSecret, IV=0, salt1(32 bytes) || salt2(32 bytes)),
saltAuth: LEFT(HMAC-SHA-256(sharedSecret, saltEnc), 16)}

Wait for User consent, Optionally Wait for User verification,
Select appropriate CredRandom,

Derives sharedSecret, verifies saltAuth,

Generate output1 = HMAC-SHA-256(CredRandom, salt1)
Generate output2 = HMAC-SHA-256(CredRandom, salt2)

Sig(credentiallD, authenticatorData || ClientDataHash),
I ____AuthenticatorData: (...,

extensions: {"hmac-secret”
AES256-CBC(sharedSecret, V=0, output1(32 bytes) || output2(32 bytes))}

Figure 6 hmac-secret

Authenticator extension output
Same as the client extension output, except represented in CBOR.

Extension identifier
hmac-secret-mc

This extension is similar to the above hmac-secret extension where a symmetric secret can be obtained when
creating a key. If the authenticator supports this extension, the hmac-secret extension MUST be supported as
well, and the authenticator MUST support it for both discoverable and non-discoverable credentials. This
extension is only applicable for authenticatorMakeCredential, and the hmac-secret extension MUST also be
present with the value of "hmac-secret” set to true. The authenticator MUST return
CTAP2_ERR_MISSING_PARAMETER when they receive this extension without the "hmac-secret" extension.

Client extension input

« Not Applicable

138/148

Client extension output

* Not Applicable
Authenticator extension input

» authenticatorMakeCredential additional behaviors
o This extension input is the same as the hmac secret extension’s getAssertion input
Authenticator extension processing
« authenticatorMakeCredential additional behaviors
o This extension processing is the same as the hmac secret extension’s getAssertion processing

Authenticator extension output
Same as the hmac secret extension’s getAssertion output.

This extension allows aRelying Party to indicate that a credential can be used forPayment authentication
initiated by a party (website or native application) that is not the Relying Party. The platform is responsible for
determining what constitutes a Payment authentication - the W3C [secure-payment-confirmation] specification
is one example that a platform may implement.

A credential marked this way is referred to asthird-party payment enabled, and the authenticator stores this
information for future retrieval. If the authenticator supports this extension, the authenticator MUST support it for
both discoverable and non-discoverable credentials.

Extension identifier
thirdPartyPayment

Client extension input / output / processing None. The client processing steps are platform-dependent,

e.g. see [secure-payment-confirmation] for the web platform.
Authenticator extension input

« authenticatorMakeCredential authenticator extension input

o The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

» "thirdPartyPayment": true

« authenticatorGetAssertion authenticator extension input

o The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

» "thirdPartyPayment" : true

Authenticator extension processing
The thirdPartyPayment boolean is persisted with the Credential duringauthenticatorMakeCredential and
returned during authenticatorGetAssertion.

Authenticator extension output
« authenticatorMakeCredential authenticator extension output None.

« authenticatorGetAssertion authenticator extension output

o If the credential was created with thethirdPartyPayment extension specified, the authenticator returns
the following CBOR map entry in the "extensions" fields to the platform:
= "thirdPartyPayment": true
o Otherwise the authenticator returns the following CBOR map entry in the "extensions" fields to the

platform:

= "thirdPartyPayment": false

The following documents are published by other organisations and are not referenced by this specification but
may be relevant to the same audience. They are gathered here purely as informational resources and are not
necessarily endorsed by FIDO.

1. Android’s Credential Manager API provides a native abstraction of the WebAuthn APl and also provides a
mechanism for apps to claim domain names as valid RP IDs.

2. Apple provides a native abstraction of the WebAuthn APland provides a mechanism for apps toclaim
domain names as valid RP IDs.

3. Windows provides a native abstraction of the WebAuthn APIto applications.

139/148

https://www.android.com/
https://developer.android.com/identity/sign-in/credential-manager
https://developer.android.com/identity/sign-in/credential-manager#add-support-dal
https://www.w3.org/TR/webauthn-2#rp-id
https://apple.com/
https://developer.apple.com/documentation/authenticationservices/supporting-passkeys
https://developer.apple.com/documentation/Xcode/supporting-associated-domains
https://www.w3.org/TR/webauthn-2#rp-id
https://www.microsoft.com/en-us/windows
https://github.com/microsoft/webauthn

This section registers the extension identifier values defined in Section§ 12 Defined Extensions in the IANA
"WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [REC8809].

WebAuthn Extension Identifier: credProtect

This registration extension allows relying parties to specify a credential protection policy when creating a
credential. Additionally, authenticators may choose to establish a default credential protection policy greater
than userVerificationOptional (the lowest level) and unilaterally enforce such policy.

Specification Document: Section § 12.1 Credential Protection (credProtect) of this specification

WebAuthn Extension Identifier: credBlob

Description: This registration extension and authentication extension enables RPs to provide a small amount
of extra credential configuration information (the credBlob value) to the authenticator when a credential is
made.

Specification Document: Section § 12.2 Credential Blob (credBlob) of this specification

WebAuthn Extension Identifier: largeBlobKey

Description: This client platform-only extension provides for storage and retrieval of a per-credential key that
is used by the client platform when writing and reading elements in the large-blob array.

Specification Document: Section § 12.3 Large Blob Key (largeBlobKey) of this specification

WebAuthn Extension Identifier: minPinLength

Description: This registration extension returns thecurrent minimum PIN length value to the Relying Party.

Specification Document: Section § 12.5 Minimum PIN Length Extension (minPinLength) of this specification

WebAuthn Extension Identifier: hmac-secret

Description: This registration extension and authentication extension enables the platform to retrieve a
symmetric secret scoped to the credential from the authenticator.

Specification Document: Section § 12.7 HMAC Secret Extension (hmac-secret) of this specification

See FIDO Security Reference document[FIDOSecRef].

aaguid

acfg

advertisement suffix
allowList

alwaysUv

alwaysUv feature is disabled
alwaysUv feature is enabled
applicable credentials list
attestationFormats
attestationFormatsPreference
authenticate

authenticatorConfigCommands

authenticatorGetAssertion response structure

authenticatorGetInfo response structure

authenticatorMakeCredential response structure

authenticator operation

authnrCf
be

beginUsingPinUvAuthToken

bioEnroll

140/148

https://w3c.github.io/webauthn/#sctn-extension-id
https://www.w3.org/TR/webauthn-2#client-platform

Built-in User Verification method

certifications

clearPinUvAuthTokenPermissionsExceptlLbw

clearUserPresentFlag
clearUserVerifiedFlag
clientPin

cm

config

credBlob

dict-member for AuthenticationExtensionsClientinputs
dict-member for AuthenticationExtensionsClientOutputs

credBlob value

credentiallD

Credential Manager Hosting Device

credentialMgmtPreview

credentialProtectionPolicy

credential store state

credMgmt

credProtect value

CTAP2 canonical CBOR encoding form

currently defined authenticatorConfig subcommands

current minimum PIN length
current PIN complexity policy
CurrentStoredPIN
decapsulate

decrypt

default permissions

device identifier
Discoverable
encapsulate
encCredStoreState

encldentifier

encrypt

enforceCredentialProtectionPolicy

enterprise
enterpriseAttestation
enterprise attestation capable

enterprise attestation is disabled
enterprise attestation is enabled

enterprise context

ep

epAtt

Evidence of user interaction
excludel ist

extensions
dfn for getAssert

dfn for getinfo
dfn for makeCred

factory default state
FIDO interfaces
forceChangePin
forcePINChange
ga

getCredBlob

dict-member for AuthenticationExtensionsClientlnputs
dict-member for AuthenticationExtensionsClientOutputs

getPublicKey

141/148

getUserPresentFlagValue

etUserVerifiedFlagValue
hmacCreateSecret
dict-member for AuthenticationExtensionsClientinputs
dict-member for AuthenticationExtensionsClientOutputs
hmacGetSecret
dict-member for AuthenticationExtensionsClientinputs
dict-member for AuthenticationExtensionsClientOutputs
HMACGetSecretlnput
HMACGetSecretOutput

initialize
initial serialized large-blob array
initial usage time limit

input parameters

dfn for getAssert
dfn for makeCred

internalRetry

in use

in use flag

Key agreement key
large-blob array
largeBlobKey
large-blob map
largeBlobMapConform
largeBlobs

lbw
longTouchForReset
makeCredUvNotRagd
maxCredBloblLength
maximum PIN length

maxPINLength
maxRPIDsForSetMinPINLength

maxSerializedLargeBlobArra:
maxTemplateFriendlyName
max usage time period

maxUvAttemptsForlnternalRetries

maxUvRetries

mc

minPINLength
minPinLength
minPinLengthRPIDs
newMinPINLength

NEC user presence maximum time limit

NFC userPresent flag

noMcGaPermissionsWithClientPin

non-discoverable credentials
not in use

opaque large-blob data
Option ID

Option Key

dfn for getAssert
dfn for makeCred

options
dfn for getAssert

dfn for getinfo
dfn for makeCred

output1

output2
142/148

Payment authentication

cmr

perCredMgmtRO

performBuiltinUv(internalRetry)

permissions
ermissions RP |D

persistentPinUvAuthToken
PINCodePointLength
pinComplexityPolicy

dfn for authConfig

dfn for getinfo

dict-member for AuthenticationExtensionsClientinputs
pinComplexityPolicyURL
pinRetries
pinUvAuthParam

dfn for getAssert

dfn for makeCred
PIN/UV auth protocol
pinUvAuthProtocol

dfn for authenticatorClientPIN

dfn for getAssert

dfn for makeCred
pinUvAuthProtocols
pinUvAuthToken

dfn for PUAToken

dfn for getinfo
pinUvAuthToken permissions

pinUvAuthTokenUsageTimerObserver

platform key-agreement key

Platform-managed enterprise attestation

pre-configured list of RP_IDs authorized to receive

pre-configured minimum PIN length

pre-configured PIN complexity policy value

pre-configured RP ID list

preferredPlatformUvAttempts

pre-flight

Protected by some form of User Verification

pubKeyCredParams
public point
regenerate
Relying Party
resetPersistentPinUvAuthToken
resetPinUvAuthToken
Response Status Code
rk

dfn for getAssert

dfn for getinfo

dfn for makeCred
rolling timer
rp.id
rpld
dfn for authenticatorClientPIN

dfn for getAssert

=

salt

N

salt

serialized large-blob array
server psm
setMinPINLength
shared secret
143/148

Some form of User Verification

stateful commands

state initializing command

state variables
dfn for PPUAToken
dfn for PUAToken

stopUsingPinUvAuthToken
superseded

templateFriendlyName
third-party payment enabled

transports
transportsForReset
tunnel service
uint32LittleEndian
uint64LittleEndian

uint8

up
dfn for getAssert
dfn for makeCred

usage timer

User action timeout
user consent

user presence
userPresent flag

user present time limit

userVerificationMgmtPreview

userVerificationOptional

userVerificationOptionalWithCredentiallDList

userVerificationRequired

userVerified flag
uv
dfn for getAssert

dfn for getinfo
dfn for makeCred

uvAcf
uvBioEnroll

uvCountSincel astPinEntry

uvRetries
vendorCommandId

Vendor-facilitated enterprise attestation

vendorPrototypeConfigCommands

verify

versions

[CREDENTIAL-MANAGEMENT-1] defines the following terms:
create()
get()
[DIGITAL-CREDENTIALS] defines the following terms:
Digital Credentials API
[JSON-SCHEMA] defines the following terms:
JSON Schema
[WebAuthn-2] defines the following terms:
assertion signature
attestation
attestation object
attestation statement format identifier
attested credential data

authenticator

144/148

authenticator data

authenticator extension input
authenticator extension output
authenticatorGetAssertion operation
authenticatorMakeCredential operation
client platform

client side

credential key pair

discoverable credential

enterprise attestation

extension identifier

Generating an Attestation Object
Hash of the serialized client data
Lookup Credential Source by Credential ID Algorithm
private key

public key credential

public key credential source

relying party identifier

RP ID

server-side credential

user handle

user verification

[WEBAUTHN-3] defines the following terms:
AuthenticationExtensionsClientinputs
AuthenticationExtensionsClientOutputs
PublicKeyCredentialDescriptor
PublicKeyCredentialParameters
PublicKeyCredentialRpEntity
PublicKeyCredentialUserEntity
authenticatorSelection
displayName
id
largeBlob extension
name
type
unsigned extension output
userVerification (for AuthenticatorSelectionCriteria)

userVerification (for PublicKeyCredentialRequestOptions)

[WEBIDL] defines the following terms:

ArrayBuffer
USVString
boolean
[BTASSNUM]
Bluetooth Assigned Numbers. URL: https://www.bluetooth.org/en-us/specification/assigned-numbers

[BTCCC]
Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume 3, Part G, Section 3.3.3.3
URL: https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[BTCORE]
Bluetooth Core Specification 4.0. URL: https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?
doc_id=229737

[BTDIS]
Device Information Service v1.1. URL: https://www.bluetooth.com/specifications/adopted-specifications
[BTGAP]

Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12 URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[BTGAS]
Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12 URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[BTPESTK]
Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H, Section 2.3.5.3 URL:
https://www.bluetooth.com/specifications/adopted-specifications

[BTSD]
Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11 URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

145/148

https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[BTXPLAD]
Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0. Volume 3, Part C. Section 11 URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[CC1V3-1R5]
CCMB-2017-04-001 Common Criteria for Information Technology Security Evaluation, Part 1: Introduction
and general model. April 2017. URL: https://www.commoncriteriaportal.org/files/ccfiles/ CCPART1V3.1R5.pdf

[CCN-CPSTIC]
The CPSTIC (ICT Security Products and Services Catalog) is an initiative of the Spanish National
Cryptologic Center (CCN) aimed at ensuring that ICT products and services used in systems of Public
Administrations and entities of strategic interest comply with the security requirements of the National
Security Scheme (ENS).. URL: https://cpstic.ccn.cni.es/en/

[CMVP]
Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program - CMVP
December 3, 2019. URL: https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-
Program/documents/fips140-2/FIPS1402IG.pdf

[CommonCriteria]
CCRA Members. Common Criteria Publications. Work in Progress. URL:
http://www.commoncriteriaportal.org/cc/

[CREDENTIAL-MANAGEMENT-1]
Nina Satragno; Marcos Caceres. Credential Management Level 1. URL: https://w3c.github.io/webappsec-
credential-management/

[CSPN]
CSPN certification, Produits, Formulaires et Méthodologies URL:
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-procedures-formulaires-et-methodologies/

[DIGITAL-CREDENTIALS]
Marcos Caceres; Tim Cappalli; Mohamed Amir Yosef. Digital Credentials. URL: https://w3c-
fedid.qgithub.io/digital-credentials/

[FIDOAuthenticatorSecurityRequirements]
Rolf Lindemann; Dr. Joshua E. Hill; Douglas Biggs. FIDO Authenticator Security Requirements. November
2020. Final Draft. URL: https:/fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-
requirements-v1.4-fd-20201102.html

[FIDORegistry]
R. Lindemann; et al. FIDO Registry of Predefined Values 23 May 2022. Proposed Standard. URL:
https:/fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html

[FIDOSecRef]
R. Lindemann; et al. FIDO Security Reference. 23 May 2022. Proposed Standard. URL:
https:/fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS140-3]
FIPS PUB 140-3: Security Requirements for Cryptographic Modules. March 2019. URL:
https://nvilpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

[IANA-COSE-ALGS-REG]
Jim Schaad; et al. IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry. URL:
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

[IANA-WebAuthn-Registries]
IANA. Web Authentication (WebAuthn) registries. URL: https://www.iana.org/assignments/webauthn/

[ISO7816-4]
ISO 7816-4: Identification cards - Integrated circuit cards; Part 4: Organization, security and commands for
interchange. 2013-04. URL: https://www.iso.org/standard/54550.html

[JSON-SCHEMA]
Austin Wright; et al. JSON Schema: A Media Type for Describing JSON Documents. 10 June 2022. Internet-
Draft. URL: https:/datatracker.ietf.org/doc/html/draft-bhutton-json-schema

[RFC1951]
P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. May 1996. Informational. URL:
https://www.rfc-editor.org/rfc/rfc1951

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:https://www.rfc-
editor.org/rfc/rfc2397

[RFC5116]
D. McGrew. An Interface and Algorithms for Authenticated Encryption. January 2008. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc5116

[RFC5869]
H. Krawczyk; P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function (HKDF) May 2010.
Informational. URL: https://www.rfc-editor.org/rfc/rfc5869

[RFC8809]
Jeff Hodges; Giridhar Mandyam; Michael B. Jones. Registries for Web Authentication (WebAuthn). August
2020. IETF Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8809

[RFC8949]

146/148

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://cpstic.ccn.cni.es/en/
https://cpstic.ccn.cni.es/en/
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
https://w3c.github.io/webappsec-credential-management/
https://w3c.github.io/webappsec-credential-management/
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-procedures-formulaires-et-methodologies/
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-procedures-formulaires-et-methodologies/
https://w3c-fedid.github.io/digital-credentials/
https://w3c-fedid.github.io/digital-credentials/
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/webauthn/
https://www.iana.org/assignments/webauthn/
https://www.iso.org/standard/54550.html
https://www.iso.org/standard/54550.html
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc8809
https://www.rfc-editor.org/rfc/rfc8809

C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). December 2020. RFC. URL:
https://www.rfc-editor.org/rfc/rfc8949.html

[RFC9052]
J. Schaad. CBOR Object Signing and Encryption (COSE): Structures and Process August 2022. Internet
Standard. URL: https://www.rfc-editor.org/rfc/rfc9052

[SEC1V2]
SECI1: Elliptic Curve Cryptography. Version 2.0 May 2009. URL:http:/secg.org/download/aid-780/sec1-
v2.pdf

[SECURE-PAYMENT-CONFIRMATION]
Rouslan Solomakhin (Google); Stephen McGruer (Google). Secure Payment Confirmation. 31 August 2021.
TR. URL: https://www.w3.0org/TR/secure-payment-confirmation/

[SP800-56A]
NIST Special Publication 800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography (Revised). March 2007. URL:
https://csre.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

[U2FBle]
D. Balfanz. FIDO Bluetooth® Specification. Proposed Standard. URL:https:/fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html

[U2FNfc]
D. Balfanz. FIDO NFC Protocol Specification. Proposed Standard. URL:https:/fidoalliance.org/specs/fido-
u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html

[U2FRawMsgs]
D. Balfanz; J. Ehrensvard; J. Lang. FIDO U2F Raw Message Formats v1.2 Proposed Standard. URL:
https:/fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-
20170411 .html

[U2FUsbHid]
D. Balfanz. FIDO U2F HID Protocol Specification. Proposed Standard. URL:
https:/fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html

[WebAuthn]
Dirk Balfanz (Google); et al. Web Authentication: An API for accessing Public Key Credentials Level 2 8
April 2021. TR. URL: https:/www.w3.org/TR/webauthn-2/

[WebAuthn-2]
Jeff Hodges; et al. Web Authentication: An API for accessing Public Key Credentials - Level 2 URL:
https://w3c.github.io/webauthn/

[WEBAUTHN-3]
Tim Cappalli; et al. Web Authentication: An API for accessing Public Key Credentials - Level 3 URL:
https://w3c.qgithub.io/webauthn/

[WEBIDL]
Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://webidl.spec.whatwg.org/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice.
URL: https:/tools.ietf.org/html/rfc2119

[RFC6090]
D. McGrew; K. Igoe; M. Salter. Fundamental Elliptic Curve Cryptography Algorithms. February 2011.
Informational. URL: https:/www.rfc-editor.org/rfc/rfc6090

[RFC8701]
D. Benjamin. Applying Generate Random Extensions And Sustain Extensibility (GREASE) to TLS
Extensibility. January 2020. Informational. URL: https://www.rfc-editor.org/rfc/rfc8701

147/148

https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9052
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
https://www.w3.org/TR/secure-payment-confirmation/
https://www.w3.org/TR/secure-payment-confirmation/
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://w3c.github.io/webauthn/
https://w3c.github.io/webauthn/
https://w3c.github.io/webauthn/
https://w3c.github.io/webauthn/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://www.rfc-editor.org/rfc/rfc6090
https://www.rfc-editor.org/rfc/rfc6090
https://www.rfc-editor.org/rfc/rfc8701
https://www.rfc-editor.org/rfc/rfc8701

I

partial dictionary AuthenticationExtensionsClientInputs {
USVString credentialProtectionPolicy;
boolean enforceCredentialProtectionPolicy = false;

1

partial dictionary AuthenticationExtensionsClientInputs {
ArrayBuffer credBlob;
}

partial dictionary AuthenticationExtensionsClientInputs {
boolean getCredBlob;
}i

partial dictionary AuthenticationExtensionsClientOutputs {
boolean credBlob;

};

partial dictionary AuthenticationExtensionsClientOutputs {
ArrayBuffer getCredBlob;
};

partial dictionary AuthenticationExtensionsClientInputs {
boolean minPinLength;
1

partial dictionary AuthenticationExtensionsClientInputs {
boolean pinComplexityPolicy;
};

partial dictionary AuthenticationExtensionsClientInputs {
boolean hmacCreateSecret;
+

dictionary HMACGetSecretInput {
required ArrayBuffer saltl; // 32-byte random data
ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
HMACGetSecretInput hmacGetSecret;
};

partial dictionary AuthenticationExtensionsClientOutputs {
boolean hmacCreateSecret;
1

dictionary HMACGetSecretOutput {
required ArrayBuffer outputl;
ArrayBuffer output2;

};

partial dictionary AuthenticationExtensionsClientOutputs {
HMACGetSecretQutput hmacGetSecret;
}i

148/148

https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-USVString
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

	Client to Authenticator Protocol (CTAP)
	Review Draft, October 23, 2025
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	1.1. Relationship to Other Specifications
	1.2. Data Elements Referenced by Other Specifications

	2. Conformance
	3. Protocol Structure
	4. Protocol Overview
	5. Terminology
	6. Authenticator API
	6.1. authenticatorMakeCredential (0x01)
	6.1.1. Platform Actions for authenticatorMakeCredential (non-normative)
	6.1.2. authenticatorMakeCredential Algorithm
	6.1.3. Discoverable credentials

	6.2. authenticatorGetAssertion (0x02)
	6.2.1. Platform Actions for authenticatorGetAssertion (non-normative)
	6.2.2. authenticatorGetAssertion Algorithm

	6.3. authenticatorGetNextAssertion (0x08)
	6.3.1. Client Logic

	6.4. authenticatorGetInfo (0x04)
	6.5. authenticatorClientPIN (0x06)
	6.5.1. PIN Composition Requirements
	6.5.2. PIN/UV Auth Protocol Global State
	6.5.3. Utility Functions
	6.5.4. PIN/UV Auth Protocol Abstract Definition
	6.5.5. authenticatorClientPIN (0x06) Command Definition
	6.5.6. PIN/UV Auth Protocol One
	6.5.7. PIN/UV Auth Protocol Two
	6.5.8. PRF values used

	6.6. authenticatorReset (0x07)
	6.7. authenticatorBioEnrollment (0x09)
	6.7.1. Feature detection
	6.7.2. Get bio modality
	6.7.3. Get fingerprint sensor info
	6.7.4. Enrolling fingerprint
	6.7.5. Cancel current enrollment
	6.7.6. Enumerate enrollments
	6.7.7. Rename/Set FriendlyName
	6.7.8. Remove enrollment

	6.8. authenticatorCredentialManagement (0x0A)
	6.8.1. Feature detection
	6.8.2. Getting Credentials Metadata
	6.8.3. Enumerating RPs
	6.8.4. Enumerating Credentials for an RP
	6.8.5. DeleteCredential
	6.8.6. Updating user information
	6.8.7. Truncation of relying party identifiers

	6.9. authenticatorSelection (0x0B)
	6.10. authenticatorLargeBlobs (0x0C)
	6.10.1. Feature detection
	6.10.2. Reading and writing serialised data
	6.10.3. Large, per-credential blobs
	6.10.4. Reading per-credential large-blob data
	6.10.5. Writing per-credential large-blob data for a new credential
	6.10.6. Updating per-credential large-blob data
	6.10.7. Garbage collection of large-blob data

	6.11. authenticatorConfig (0x0D)
	6.11.1. Enable Enterprise Attestation
	6.11.2. Toggle Always Require User Verification
	6.11.3. Vendor Prototype Command
	6.11.4. Setting a minimum PIN Length
	6.11.5. Enable Long Touch For Reset

	6.12. Prototype authenticatorBioEnrollment (0x40) (For backwards compatibility with "FIDO_2_1_PRE")
	6.13. Prototype authenticatorCredentialManagement (0x41) (For backwards compatibility with "FIDO_2_1_PRE")

	7. Feature-Specific Descriptions and Actions
	7.1. Enterprise Attestation
	7.1.1. Feature detection
	7.1.2. Platform Actions
	7.1.3. Authenticator Actions

	7.2. Always Require User Verification
	7.2.1. Feature detection
	7.2.2. Platform Actions
	7.2.3. Authenticator Actions
	7.2.4. Disabling CTAP1/U2F

	7.3. Authenticator Certifications
	7.3.1. Authenticator Actions

	7.4. Set Minimum PIN Length
	7.4.1. Feature detection
	7.4.2. Platform Actions
	7.4.3. Authenticator Actions

	7.5. Set PIN Complexity Policy
	7.5.1. Feature detection
	7.5.2. Platform Actions
	7.5.3. Authenticator Actions

	7.6. JSON-based Messages
	7.6.1. Feature detection
	7.6.2. Request Properties
	7.6.3. Response Properties

	7.7. Long touch for Reset
	7.7.1. Feature detection
	7.7.2. Platform Actions
	7.7.3. Authenticator Actions

	8. Message Encoding
	8.1. Command Codes
	8.2. Status codes
	8.3. Utility functions

	9. Mandatory features
	10. Interoperating with CTAP1/U2F authenticators
	10.1. Framing of U2F commands
	10.1.1. U2F Request Message Framing
	10.1.2. U2F Response Message Framing

	10.2. Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
	10.3. Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators
	10.4. Cross-version Credential Compatibility

	11. Transport-specific Bindings
	11.1. Secure protocol implementation
	11.2. USB Human Interface Device (USB HID)
	11.2.1. Design rationale
	11.2.2. Protocol structure and data framing
	11.2.3. Concurrency and channels
	11.2.4. Message and packet structure
	11.2.5. Arbitration
	11.2.6. Channel locking
	11.2.7. Protocol version and compatibility
	11.2.8. HID device implementation
	11.2.9. CTAPHID commands

	11.3. ISO7816, ISO14443 and Near Field Communication (NFC)
	11.3.1. Conformance
	11.3.2. Protocol
	11.3.3. Applet selection
	11.3.4. Applet deselection
	11.3.5. Framing
	11.3.6. Fragmentation
	11.3.7. Commands

	11.4. Bluetooth Smart / Bluetooth Low Energy Technology
	11.4.1. Conformance
	11.4.2. Pairing
	11.4.3. Link Security
	11.4.4. Framing
	11.4.5. GATT Service Description
	11.4.6. Protocol Overview
	11.4.7. Authenticator Advertising Format
	11.4.8. Requests
	11.4.9. Responses
	11.4.10. Framing fragmentation
	11.4.11. Notifications
	11.4.12. Request Collisions
	11.4.13. Implementation Considerations
	11.4.14. Handling command completion
	11.4.15. Data throughput
	11.4.16. Advertising
	11.4.17. Authenticator Address Type

	11.5. Hybrid transports
	11.5.1. QR-initiated Transactions
	11.5.2. State-assisted Transactions

	12. Defined Extensions
	12.1. Credential Protection (credProtect)
	12.1.1. Feature detection

	12.2. Credential Blob (credBlob)
	12.2.1. Feature detection

	12.3. Large Blob Key (largeBlobKey)
	12.4. Large Blob (largeBlob)
	12.5. Minimum PIN Length Extension (minPinLength)
	12.6. PIN Complexity Extension (pinComplexityPolicy)
	12.7. HMAC Secret Extension (hmac-secret)
	12.8. HMAC Secret MakeCredential Extension (hmac-secret-mc)
	12.9. Third-Party Payment authentication (thirdPartyPayment)

	13. Related Documents
	14. IANA Considerations
	14.1. WebAuthn Extension Identifier Registrations

	15. Security Considerations
	Index
	Terms defined by this specification
	Terms defined by reference

	References
	Normative References
	Informative References

	IDL Index

