
Client to Authenticator Protocol (CTAP)

https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2-rd-
20230321.html

https://fidoalliance.org/specs/fido-v2.1-ps-20210615/

GitHub

John Bradley (Yubico)
Jeff Hodges (Google)
Michael B. Jones (Microsoft)
Akshay Kumar (Microsoft)
Rolf Lindemann (Nok Nok Labs)
Johan Verrept (OneSpan)

Matthieu Antoine (Gemalto)
Vijay Bharadwaj (Microsoft)
Arnar Birgisson (Google)
Christiaan Brand (Google)
Alexei Czeskis (Google)
Thomas Duboucher (Thales Group)
Jakob Ehrensvärd (Yubico)
Mirko J. Ploch (SurePassID)
Adam Powers (FIDO Alliance)

Chad Armstrong (Google)
Konstantinos Georgantas (Yubico)
Fabian Kaczmarczyck (Google)
Kim Paulhamus (Google)
Nina Satragno (Google)
Nuno Sung (AuthenTrend)

Copyright © 2023 FIDO Alliance. All Rights Reserved.

This specification describes an application layer protocol for communication between a roaming authenticator
and another client/platform, as well as bindings of this application protocol to a variety of transport protocols
using different physical media. The application layer protocol defines requirements for such transport protocols.
Each transport binding defines the details of how such transport layer connections should be set up, in a manner
that meets the requirements of the application layer protocol.

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft Specification. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of
reviewing the Specification. No rights are granted to prepare derivative works of this Specification. Entities
seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to
determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Review Draft, March 21, 2023

This version:

Previous Versions:

Issue Tracking:

Editors:

Former Editors:

Contributors:

Abstract

REVIEW
 DRAFT

REVIEW
 DRAFT

Status of This Document

1/137

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2-rd-20230321.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/
https://github.com/fido-alliance/fido-2-specs
mailto:jbradley@yubico.com
mailto:jdhodges@google.com
mailto:mbj@microsoft.com
mailto:akshayku@microsoft.com
mailto:rolf@noknok.com
mailto:johan.verrept@onespan.com
mailto:matthieu.antoine@gemalto.com
mailto:vijay.bharadwaj@microsoft.com
mailto:arnarb@google.com
mailto:cbrand@google.com
mailto:aczeskis@google.com
mailto:thomas.duboucher@thalesgroup.com
mailto:jakob@yubico.com
mailto:mirko.ploch@surepassid.com
mailto:adam@fidoalliance.org
mailto:chadarmstrong@google.com
mailto:kostas@yubico.com
mailto:kaczmarczyck@google.com
mailto:kpaulhamus@google.com
mailto:nso@google.com
mailto:nuno.sung@authentrend.com
https://fidoalliance.org
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1 Introduction
1.1 Relationship to Other Specifications
1.2 Data Elements Referenced by Other Specifications

2 Conformance

3 Protocol Structure

4 Protocol Overview

5 Terminology

6 Authenticator API
6.1 authenticatorMakeCredential (0x01)
6.1.1 Platform Actions for authenticatorMakeCredential (non-normative)

6.1.2 authenticatorMakeCredential Algorithm

6.1.3 Discoverable credentials
6.2 authenticatorGetAssertion (0x02)
6.2.1 Platform Actions for authenticatorGetAssertion (non-normative)

6.2.2 authenticatorGetAssertion Algorithm

6.3 authenticatorGetNextAssertion (0x08)
6.3.1 Client Logic
6.4 authenticatorGetInfo (0x04)
6.5 authenticatorClientPIN (0x06)
6.5.1 PIN Composition Requirements
6.5.2 PIN/UV Auth Protocol Global State
6.5.2.1 pinUvAuthToken State
6.5.2.2 PIN-Entry and User Verification Retries Counters

6.5.3 Utility Functions
6.5.3.1 Perform Built-in User Verification Algorithm
6.5.3.2 pinUvAuthToken State Maintenance Functions

6.5.4 PIN/UV Auth Protocol Abstract Definition
6.5.5 authenticatorClientPIN (0x06) Command Definition
6.5.5.1 Authenticator Configuration Operations Upon Power Up
6.5.5.2 Platform getting PIN retries from Authenticator
6.5.5.3 Platform getting UV Retries from Authenticator
6.5.5.4 Obtaining the Shared Secret
6.5.5.5 Setting a New PIN
6.5.5.6 Changing existing PIN
6.5.5.7 Operations to Obtain a pinUvAuthToken
6.5.5.7.1 Getting pinUvAuthToken using getPinToken (superseded)

6.5.5.7.2 Getting pinUvAuthToken using getPinUvAuthTokenUsingPinWithPermissions (ClientPIN)

6.5.5.7.3 Getting pinUvAuthToken using getPinUvAuthTokenUsingUvWithPermissions (built-in user verification methods)

6.5.6 PIN/UV Auth Protocol One
6.5.7 PIN/UV Auth Protocol Two
6.5.8 PRF values used
6.6 authenticatorReset (0x07)
6.7 authenticatorBioEnrollment (0x09)
6.7.1 Feature detection
6.7.2 Get bio modality
6.7.3 Get fingerprint sensor info
6.7.4 Enrolling fingerprint
6.7.5 Cancel current enrollment
6.7.6 Enumerate enrollments
6.7.7 Rename/Set FriendlyName
6.7.8 Remove enrollment
6.8 authenticatorCredentialManagement (0x0A)
6.8.1 Feature detection
6.8.2 Getting Credentials Metadata
6.8.3 Enumerating RPs
6.8.4 Enumerating Credentials for an RP
6.8.5 DeleteCredential
6.8.6 Updating user information
6.8.7 Truncation of relying party identifiers
6.9 authenticatorSelection (0x0B)
6.10 authenticatorLargeBlobs (0x0C)
6.10.1 Feature detection
6.10.2 Reading and writing serialised data
6.10.3 Large, per-credential blobs
6.10.4 Reading per-credential large-blob data
6.10.5 Writing per-credential large-blob data for a new credential
6.10.6 Updating per-credential large-blob data
6.10.7 Garbage collection of large-blob data
6.11 authenticatorConfig (0x0D)
6.11.1 Enable Enterprise Attestation

2/137

6.11.2 Toggle Always Require User Verification
6.11.3 Vendor Prototype Command
6.11.4 Setting a minimum PIN Length
6.12 Prototype authenticatorBioEnrollment (0x40) (For backwards compatibility with "FIDO_2_1_PRE")
6.13 Prototype authenticatorCredentialManagement (0x41) (For backwards compatibility with

"FIDO_2_1_PRE")

7 Feature-Specific Descriptions and Actions
7.1 Enterprise Attestation
7.1.1 Feature detection
7.1.2 Platform Actions
7.1.3 Authenticator Actions
7.2 Always Require User Verification
7.2.1 Feature detection
7.2.2 Platform Actions
7.2.3 Authenticator Actions
7.2.4 Disabling CTAP1/U2F
7.3 Authenticator Certifications
7.3.1 Authenticator Actions
7.4 Set Minimum PIN Length
7.4.1 Feature detection
7.4.2 Platform Actions
7.4.3 Authenticator Actions

8 Message Encoding
8.1 Command Codes
8.2 Status codes
8.3 Utility functions

9 Mandatory features

10 Interoperating with CTAP1/U2F authenticators
10.1 Framing of U2F commands
10.1.1 U2F Request Message Framing
10.1.2 U2F Response Message Framing
10.2 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
10.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators
10.4 Cross-version Credential Compatibility

11 Transport-specific Bindings
11.1 Secure protocol implementation
11.2 USB Human Interface Device (USB HID)
11.2.1 Design rationale
11.2.2 Protocol structure and data framing
11.2.3 Concurrency and channels
11.2.4 Message and packet structure
11.2.5 Arbitration
11.2.5.1 Transaction atomicity, idle and busy states.
11.2.5.2 Transaction timeout
11.2.5.3 Transaction abort and re-synchronization
11.2.5.4 Packet sequencing

11.2.6 Channel locking
11.2.7 Protocol version and compatibility
11.2.8 HID device implementation
11.2.8.1 Interface and endpoint descriptors
11.2.8.2 HID report descriptor and device discovery

11.2.9 CTAPHID commands
11.2.9.1 Mandatory commands
11.2.9.1.1 CTAPHID_MSG (0x03)

11.2.9.1.2 CTAPHID_CBOR (0x10)

11.2.9.1.3 CTAPHID_INIT (0x06)

11.2.9.1.4 CTAPHID_PING (0x01)

11.2.9.1.5 CTAPHID_CANCEL (0x11)

11.2.9.1.6 CTAPHID_ERROR (0x3F)

11.2.9.1.7 CTAPHID_KEEPALIVE (0x3B)

11.2.9.2 Optional commands
11.2.9.2.1 CTAPHID_WINK (0x08)

11.2.9.2.2 CTAPHID_LOCK (0x04)

11.2.9.3 Vendor specific commands

11.3 ISO7816, ISO14443 and Near Field Communication (NFC)
11.3.1 Conformance
11.3.2 Protocol
11.3.3 Applet selection
11.3.4 Applet deselection
11.3.5 Framing
11.3.5.1 Commands
11.3.5.2 Response

11.3.6 Fragmentation

3/137

This section is not normative.

This protocol is intended to be used in scenarios where a user interacts with a Relying Party (a website or native
app) on some platform (e.g., a PC) which prompts the user to interact with a roaming authenticator (e.g., a
smartphone).

In order to provide evidence of user interaction, a roaming authenticator implementing this protocol may have a
built-in mechanism to obtain a "user gesture", allowing the platform to collect a PIN on behalf of the authenticator.

This specification is part of the FIDO2 project, which includes this specification and is related to the W3C [WebAu
thn] specification. This specification refers to two CTAP protocol versions:

11.3.7 Commands
11.3.7.1 NFCCTAP_MSG (0x10)
11.3.7.2 NFCCTAP_GETRESPONSE (0x11)

11.4 Bluetooth Smart / Bluetooth Low Energy Technology
11.4.1 Conformance
11.4.2 Pairing
11.4.3 Link Security
11.4.4 Framing
11.4.4.1 Request from Client to Authenticator
11.4.4.2 Response from Authenticator to Client
11.4.4.3 Command, Status, and Error constants

11.4.5 GATT Service Description
11.4.5.1 FIDO Service
11.4.5.2 Device Information Service
11.4.5.3 Generic Access Profile Service

11.4.6 Protocol Overview
11.4.7 Authenticator Advertising Format
11.4.8 Requests
11.4.9 Responses
11.4.10 Framing fragmentation
11.4.11 Notifications
11.4.12 Request Collisions
11.4.13 Implementation Considerations
11.4.13.1 Bluetooth pairing: Client considerations
11.4.13.2 Bluetooth pairing: Authenticator considerations

11.4.14 Handling command completion
11.4.15 Data throughput
11.4.16 Advertising
11.4.17 Authenticator Address Type
11.5 Hybrid transports
11.5.1 QR-initiated Transactions
11.5.2 State-assisted Transactions

12 Defined Extensions
12.1 Credential Protection (credProtect)
12.1.1 Feature detection
12.2 Credential Blob (credBlob)
12.2.1 Feature detection
12.3 Large Blob Key (largeBlobKey)
12.4 Minimum PIN Length Extension (minPinLength)
12.5 HMAC Secret Extension (hmac-secret)
12.6 Third-Party Payment authentication (thirdPartyPayment)

13 Related Documents

14 IANA Considerations
14.1 WebAuthn Extension Identifier Registrations

15 Security Considerations

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

IDL Index

1. Introduction

1.1. Relationship to Other Specifications

4/137

Both CTAP1 and CTAP2 share the same underlying transports: USB Human Interface Device (USB HID), Near
Field Communication (NFC), and Bluetooth Smart / Bluetooth Low Energy Technology (BLE).

Whole documents or specific features may be superseded by this document. A superseded document or feature
MAY be implemented if optional, but it exists purely for backwards compatibility with older platforms or
authenticators. Thus a superseded document or feature SHOULD NOT be used unless the replacement is not
implemented by the counterparty. (Superseded features are not automatically optional, e.g. a CTAP 2.1
authenticator MUST still support authenticatorClientPIN's getPinToken subcommand if it supports clientPIN and
CTAP 2.0.)

The [U2FUsbHid], [U2FNfc], [U2FBle], and [U2FRawMsgs] specifications, specifically, are superseded by this
specification.

CTAP2 authenticators SHOULD also implement CTAP1/U2F. See § 10 Interoperating with CTAP1/U2F
authenticators for details on how these protocols interoperate from the perspective of authenticators, platforms,
and RPs.

Occasionally, the term "CTAP" may be used without clarifying whether it is referring to CTAP1 or CTAP2. In such
cases, it should be understood to be referring to the entirety of this specification or portions of this specification
that are not specific to either CTAP1 or CTAP2. For example, some error messages begin with the term "CTAP"
without clarifying whether they are CTAP1- or CTAP2-specific because they are applicable to both CTAP
protocol versions. CTAP protocol-specific error messages are prefixed with either "CTAP1" or "CTAP2" as
appropriate.

The following data elements might be referenced by other specifications and hence should not be changed in
their fundamental data type or high-level semantics without liaising with the other specifications:

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this
specification are non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in [RFC2119].

Authenticators and Platforms may implement additional constraints on these specifications to meet the
certification requirements of programs like [CMVP], [CSPN], and [CommonCriteria].

1. The CTAP1/U2F protocol, which is defined by the U2F Raw Messages specification [U2FRawMsgs].
CTAP1/U2F messages are recognizable by their APDU-like binary structure. CTAP1/U2F may also be
referred to as CTAP 1.2 or U2F 1.2. The latter was the U2F specification version used as the basis for
several portions of this specification. Authenticators implementing CTAP1/U2F are typically referred to as
U2F authenticators or CTAP1 authenticators.

2. The CTAP2 protocol, whose messages are encoded in the CTAP2 canonical CBOR encoding form.
Authenticators implementing CTAP2 are referred to as CTAP2 authenticators, FIDO2 authenticators, or
WebAuthn authenticators.

Note: For certifications, other requirements than those specified in this specification may apply, for example
with respect to security and privacy requirements. Those seeking authenticator certifications can refer to the
applicable certification documentation, from the certifying organization in question (e.g., the FIDO Alliance,
FIPS, Common Criteria, etc.), for additional information and requirements.
In particular, see here for FIDO Alliance’s certification programs.

1.2. Data Elements Referenced by Other Specifications

1. aaguid, data type byte string and identifying the authenticator model, i.e. identical values mean that they
refer to the same authenticator model and different values mean they refer to different authenticator models.

2. RP ID, data type string representing the Relying party identifier, i.e. identical values mean that they refer to
the same Relying Party.

3. credentialID, data type byte string identifying a specific public key credential source, i.e. identical values
mean that they refer to the same credential and different values mean they refer to different credentials.
Note that there might be a very small probability that different credentials get assigned the same
credentialID.

4. up and uv, data type boolean indicating whether user presence (up) or user verification (uv) was performed
by the authenticator.

NOTE: Some of the data elements might have an internal structure that might change. Other specifications
shall not rely on such internal structure.

2. Conformance

3. Protocol Structure
5/137

https://fidoalliance.org/certification/
https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#public-key-credential-source

This protocol is specified in three parts:

This document specifies all three of the above pieces for roaming FIDO2 authenticators.

The general protocol between a Relying Party application, a client platform, and an authenticator is as follows:

The authenticator supports a built-in on-device user verification method like fingerprint or has a input UI with
secure communication to the authenticator.

Collection of evidence of user interaction establishes a state of user presence. Also, if it is collected along
with displaying a particular prompt to a user it may be considered collecting user consent. The general
notion is that the user interacts with the authenticator in some fashion, also known as supplying a "user
gesture"—e.g., touches a consent button, enters a password or a PIN, or supplies a biometric—in order to at
least confirm their presence and possibly consent to some proposed action. Some "user gesture"
approaches provide user verification in addition to establishing user presence, e.g., a fingerprint-based built-
in user verification method.

Platform-mediated user interactions such as clientPin may provide user verification but are not considered to
assert user presence. Thus, there are transport-based affordances affecting when and for how long user
presence is established on a per-transport basis:

For authenticators without a method to collect a user gesture inside the authenticator boundary other
than through a power on gesture, the act of a user placing an NFC authenticator into the NFC reader’s
field is considered a user gesture that establishes user presence and provides evidence of user
interaction. This powers-up the authenticator, who then starts an NFC powered-up timer, and sets an
NFC userPresent flag to true. There is an associated NFC user presence maximum time limit of
two minutes (120 seconds).

Upon the platform subsequently invoking either authenticatorMakeCredential or
authenticatorGetAssertion (e.g., with the "up" option key set to 'true'):

Authenticator API: At this level of abstraction, each authenticator operation is defined similarly to an API
call - it accepts input parameters and returns either an output or error code. Note that this API level is
conceptual and does not represent actual APIs. The actual APIs will be provided by each implementing
platform.

Message Encoding: In order to invoke a method in the authenticator API, the host must construct and
encode a request and send it to the authenticator over the chosen transport protocol. The authenticator will
then process the request and return an encoded response.

Transport-specific Binding: Requests and responses are conveyed to roaming authenticators over
specific transports (e.g., USB, NFC, Bluetooth). For each transport technology, message bindings are
specified for this protocol.

4. Protocol Overview

1. In Relying Party-oriented use cases involving credential registration or user authentication, a Relying Party
application calls navigator.credentials.create() or navigator.credentials.get() if it is a
website, or the client platform’s equivalent API methods if it is a native application. Other use cases, such as
credential management, PIN establishment/maintenance, or biometric enrollment, are typically initiated by
the client platform itself.

2. The platform establishes a connection with a nominally appropriate available authenticator, having used
criteria passed in by the Relying Party application and possibly other information it has to select the
authenticator.

3. The platform gets information about the authenticator using the authenticatorGetInfo command, which helps
it determine the authenticator’s capabilities.

4. Depending upon the operation the Relying Party application, or the platform itself, initiated (in step 1), the
options it supplied, and the authenticator’s capabilities, the platform will invoke one or more further
Authenticator API commands.

5. Terminology

Built-in User Verification method

NOTE: clientPin is not a built-in user verification method.

Evidence of user interaction

NFC

1. If evidence of user interaction is requested then:

1. If the platform sends a zero length pinUvAuthParam then return either
CTAP2_ERR_PIN_NOT_SET if PIN is not set or CTAP2_ERR_PIN_INVALID if PIN has been
set.

6/137

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://www.w3.org/TR/webauthn-2#user-verification

Upon expiry of the NFC user presence maximum time limit, the NFC userPresent flag is set to false if it
is not already false.

For example, in an authentication scenario, the user places an NFC authenticator on an NFC reading
device having a keyboard and display, and is prompted to enter a PIN. If PIN entry is completed (e.g.,
by pressing Enter) before the NFC user presence maximum time limit expires, the authenticator will
return an assertion with the "UP" bit in authenticator data set to true and the NFC userPresent flag is
then set to false.

If a user lays an NFC authenticator on an NFC reader and for whatever reason ignores it for greater
than the NFC user presence maximum time limit they will need to remove the authenticator from the
NFC field and re-insert it and start over to complete any interaction requiring user presence.

If evidence of user interaction is explicitly requested (i.e., even if a pinUvAuthToken is in use) it is
interactively collected at that time in an authenticator-specific manner.

In order to determine whether authenticatorMakeCredential's excludeList or authenticatorGetAssertion's
allowList contain credential IDs that are already present on an authenticator, a platform typically invokes
authenticatorGetAssertion with the "up" option key set to false and optionally pinUvAuthParam one or more
times. If a credential is found an assertion is returned. If a valid pinUvAuthParam was also provided, the
response will contain "up"=0 and "uv"=1 within the "flags bits" of the authenticator data structure, otherwise
the "flag bits" will contain "up"=0 and "uv"=0.

Either or both clientPin or built-in user verification methods are supported and enabled. I.e., in the
authenticatorGetInfo response the pinUvAuthToken option ID is present and set to true, and either clientPin
option ID is present and set to true or uv option ID is present and set to true or both.

This term refers to either clientPin or built-in user verification methods.

This refers to a timeout that occurs when the authenticator is waiting for direct action from the user, like a
touch. (I.e. not a command from the platform.) The duration of this timeout is chosen by the authenticator but
MUST be at least 10 seconds. Thirty seconds is a reasonable value.

Each operation in the authenticator API can be performed independently of the others, and all operations are
asynchronous. The authenticator may enforce a limit on outstanding operations to limit resource usage - in this
case, the authenticator is expected to return a busy status and the host is expected to retry the operation later.
Additionally, this protocol does not enforce in-order or reliable delivery of requests and responses; if these
properties are desired, they must be provided by the underlying transport protocol or implemented at a higher
layer by applications.

Note that this API level is conceptual and does not represent actual APIs. The actual APIs will be provided by
each implementing platform.

Some commands or subcommands require the authenticator to maintain state. For example, the
authenticatorCredentialManagement subcommand enumerateRPsGetNextRP implicitly assumes that the
authenticator remembers which RP is next to return. The following (sub)commands require such state and are
called stateful commands. Each such command uses and updates state that is initialized by a corresponding
state initializing command:

NOTE: This is done for backwards compatibility with CTAP2.0 platforms in the case
where multiple authenticators are attached to the platform. In this case the authenticator
must not consume the NFC userPresent flag or it will prevent authentication with some
CTAP2.0 platforms.

2. If the NFC userPresent flag's value is true, then consider the user as having granted
permission, and set the NFC userPresent flag to false.

3. Otherwise, do not consider the user as having granted permission. End the operation by
returning CTAP2_ERR_UP_REQUIRED.

NOTE: This notion of user presence establishment is distinct due to the physical proximity and
user action characteristics of devices employing NFC to communicate, i.e., the user placing the
authenticator in the NFC field, also known as the "NFC tap". Thus, user presence is asserted even if
the platform and authenticator then use a form of user verification that does not itself provide user
presence, such as clientPin-based user verification (clientPin does not assert user presence when
used over other transports).

All other transports

pre-flight

Protected by some form of User Verification

Some form of User Verification

User action timeout

6. Authenticator API

1. authenticatorGetNextAssertion, with state initialized by authenticatorGetAssertion.

2. authenticatorCredentialManagement/enumerateRPsGetNextRP, with state initialized by enumerateRPsBegin.

7/137

https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#authenticator-data

In order to accommodate authenticators with limited capacity, the following accommodations are made:

The authenticator API has the following methods and data structures.

This method is invoked by the host to request generation of a new credential in the authenticator. It takes the
following input parameters, several of which correspond to those defined in the authenticatorMakeCredential
operation section of the Web Authentication specification:

Parameter name Data type Required? Definition

clientDataHash (0x01) Byte String Required
Hash of the ClientData
contextual binding specified by
host. See [WebAuthn].

rp (0x02) PublicKeyCredentialRpEntity Required

This
PublicKeyCredentialRpEntity
data structure describes a
Relying Party with which the
new public key credential will be
associated. It contains the
relying party identifier (rp.id of
type text string, (optionally) a
human-friendly RP name of type
text string. The RP name is to
be used by the authenticator
when displaying the credential
to the user for selection and
usage authorization. The RP
name and URL are OPTIONAL
so that the RP can be more
privacy friendly if it chooses to.
For example, for authenticators
with a display, RP may not want
to display name for single-factor
scenarios.

This
PublicKeyCredentialUserEntity
data structure describes the
user account to which the new
public key credential will be
associated at the RP.

It contains an RP-specific user

3. authenticatorCredentialManagement/enumerateCredentialsGetNextCredential, with state initialized by
enumerateCredentialsBegin.

4. authenticatorLargeBlobs where the parameter set is given and the parameter offset is non-zero, with state
initialized by a prior authenticatorLargeBlobs command with set given and a zero offset.

1. The state SHOULD NOT be maintained across power cycles.

2. The authenticator MAY maintain state based on the assumption that each stateful command is exclusively
preceded by either another instance of the same command, or by the corresponding state initializing
command, and no more than 30 seconds will elapse between such commands. If this pattern is violated then
the authenticator MAY fail any stateful command with the error CTAP2_ERR_NOT_ALLOWED. Here,
“exclusively preceded” means that no other authenticator operation occurs in between. An authenticator
MAY assume this globally, even when the transport-specific binding provides for independent streams of
platform commands (e.g. § 11.2.3 Concurrency and channels).

3. An authenticator MUST discard the state for a stateful command command if the pinUvAuthToken that
authenticated the state initializing command expires since the stateful commands do not themselves always
verify a pinUvAuthToken.

6.1. authenticatorMakeCredential (0x01)

NOTE: [WebAuthn-2] has
removed the optional icon
member. Authenticators
MUST NOT error if the icon
member is present, they
MAY not store this value.

8/137

https://www.w3.org/TR/webauthn-2#op-make-cred
https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://www.w3.org/TR/webauthn-2#public-key-credential
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#public-key-credential

user (0x03) PublicKeyCredentialUserEntity Required

account identifier of type byte
string, (optionally) a user name
of type text string, (optionally) a
user display name of type text
string, and (optionally) a URL of
type text string, referencing a
user icon image (of a user
avatar, for example). Note that
while an empty account
identifier is valid, it has known
interoperability hurdles in
practice and platforms are
RECOMMENDED to avoid
sending them.

The authenticator associates
the created public key credential
with the account identifier, and
MAY also associate any or all of
the user name, and user display
name. The user name and
display name are OPTIONAL for
privacy reasons for single-factor
scenarios where only user
presence is required. For
example, in certain closed
physical environments like
factory floors, user presence
only authenticators can satisfy
RP’s productivity and security
needs. In these environments,
omitting user name and display
name makes the credential
more privacy friendly. Although
this information is not available
without user verification,
devices which support user
verification but do not have it
configured, can be tricked into
releasing this information by
configuring the user verification.

pubKeyCredParams (0x04)
Array of

PublicKeyCredentialParameters
Required

List of supported algorithms for
credential generation, as
specified in [WebAuthn]. The
array is ordered from most
preferred to least preferred and
MUST NOT include duplicate
entries.
PublicKeyCredentialParameters'
algorithm identifiers are values
that SHOULD be registered in
the IANA COSE Algorithms
registry
[IANA-COSE-ALGS-REG].

excludeList (0x05)
Array of

PublicKeyCredentialDescriptor
Optional

An array of
PublicKeyCredentialDescriptor
structures, as specified in
[WebAuthn]. The authenticator
returns an error if the
authenticator already contains
one of the credentials
enumerated in this array. This
allows RPs to limit the creation
of multiple credentials for the

Parameter name Data type Required? Definition

NOTE: [WebAuthn-2] has
removed the optional icon
member. Authenticators
MUST NOT error if the icon
member is present, they
MAY not store this value.

9/137

https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialparameters
https://w3c.github.io/webauthn/#dictdef-publickeycredentialdescriptor

same account on a single
authenticator.

extensions (0x06)
CBOR map of extension identifier →
authenticator extension input values

Optional

Parameters to influence
authenticator operation, as
specified in [WebAuthn]. These
parameters might be
authenticator specific.

options (0x07) Map of authenticator options Optional
Parameters to influence
authenticator operation, as
specified in in the table below.

pinUvAuthParam (0x08) Byte String Optional
Result of calling
authenticate(pinUvAuthToken,
clientDataHash)

pinUvAuthProtocol (0x09) Unsigned Integer Optional
PIN/UV protocol version chosen
by the platform

enterpriseAttestation (0x0A) Unsigned Integer optional

An authenticator supporting this
enterprise attestation feature is
enterprise attestation capable
and signals its support via the
ep Option ID in the
authenticatorGetInfo command
response.

If the enterpriseAttestation
parameter is absent,
attestation’s privacy
characteristics are unaffected,
regardless of whether the
enterprise attestation feature is
presently enabled.

If present with a valid value, the
usual privacy concerns around
attestation batching may not
apply to the results of this
operation and the platform is
requesting an enterprise
attestation that includes
uniquely identifying information.

attestationFormatsPreference
(0x0B) Array of String optional

A prioritized list of attestation
statement format identifiers that
the client and/or RP prefers.
Authenticators that support
multiple formats may use this
list to select a format compatible
with the caller. Clients may
request omission of attestation
by including a single element
with the string value "none".

Parameter name Data type Required? Definition

The following option keys are defined for use in authenticatorMakeCredential's options parameter. All option keys
have boolean values.

Option
Key

Default
value

Definition

rk false Specifies whether this credential is to be discoverable or not.

up true

user presence: Instructs the authenticator to require user consent to complete the
operation. Platforms MAY send the "up" option key to CTAP2.1 authenticators, and
its value MUST be true if present. The value false will cause a
CTAP2_ERR_INVALID_OPTION response regardless of authenticator version.

user verification: If true, instructs the authenticator to require a user-verifying
gesture in order to complete the request. Examples of such gestures are fingerprint
scan or a PIN.

NOTE: For brevity, individual option keys are often referred to as simply an "option", below.

10/137

https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-2#authenticator-extension-input
https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier

uv false

Platforms MUST NOT include the "uv" option key if the authenticator does not
support built-in user verification.

Platforms MUST NOT include both the "uv" option key and the pinUvAuthParam
parameter in the same request.

Option
Key

Default
value

Definition

[WebAuthn]
authenticatorMakeCredential
operation

CTAP authenticatorMakeCredential operation

hash clientDataHash

rpEntity rp

userEntity user

requireResidentKey options.rk

requireUserPresence

options.up

requireUserVerification options.uv or pinUvAuthParam

credTypesAndPubKeyAlgs pubKeyCredParams

excludeCredentialDescriptorList excludeList

attestationFormats attestationFormatsPreference

extensions extensions

To invoke authenticatorMakeCredential, the platform performs the following steps, in general. Here, we are
assuming that the platform has already queried the authenticator for its particulars using the authenticatorGetInfo
command, and has determined that the authenticator’s present characteristics are likely sufficient to be able to
satisfy the request(s) the platform will send it. In other words, this is only a brief sketch of plausible platform
behavior.

For example, if the authenticator is not protected by some form of user verification and user verification is
required for the present usage scenario, e.g., the Relying Party set

NOTE: Use of this "uv" option key is deprecated in CTAP2.1. Instead,
platforms SHOULD create a pinUvAuthParam by obtaining pinUvAuthToken via
getPinUvAuthTokenUsingUvWithPermissions or
getPinUvAuthTokenUsingPinWithPermissions, as appropriate.

NOTE: For backwards compatibility, platforms must be aware that FIDO_2_0 (aka CTAP2.0) authenticators
always require some form of user verification for authenticatorMakeCredential operations. If a platform
attempts to create a non-discoverable credential on a CTAP2.0 authenticator without including the "uv" option
key or the pinUvAuthToken parameter that authenticator will return an error. In contrast, a FIDO_2_1 (aka
CTAP2.1) authenticator with the makeCredUvNotRqd option ID (set to true) in the authenticatorGetInfo
response structure, will allow creation of non-discoverable credentials without requiring some form of user
verification.

NOTE: For backwards compatibility, platforms must be aware that FIDO_2_0 (aka CTAP2.0) authenticators
will return a CTAP2_ERR_INVALID_OPTION response if "up" is present. Platforms SHOULD NOT send "up"
to a CTAP2.0 authenticator.

NOTE: The [WebAuthn] specification defines an abstract authenticatorMakeCredential operation, which
corresponds to the operation described in this section. The parameters in the abstract [WebAuthn]
authenticatorMakeCredential operation map to the above parameters as follows:

NOTE: [WebAuthn-2] defines requireUserPresence as a
constant Boolean value true. options.up is required to be absent for
backwards comparability with CTAP2.0.

NOTE: Icon values used with authenticators can employ [RFC2397] "data" URLs so that the image data is
passed by value, rather than by reference. This can enable authenticators with a display but no Internet
connection to display icons.

NOTE: Text strings are UTF-8 encoded (CBOR major type 3).

6.1.1. Platform Actions for authenticatorMakeCredential (non-normative)

11/137

options.authenticatorSelection.userVerification to "required" in the WebAuthn API, then the
platform recovers in some fashion out of scope of these actions.

Upon receipt of an authenticatorMakeCredential request, the authenticator performs the following procedure:

1. The platform marshals the necessary and appropriate input parameters given the present usage scenario,
and additionally:

1. If the authenticator is protected by some form of user verification, or the Relying Party prefers enforcing
user verification (e.g., by setting options.authenticatorSelection.userVerification to
"required", or "preferred" in the WebAuthn API):

1. If the platform has already created a pinUvAuthParam parameter during this overall scenario, it
uses that along with the other marshalled input parameters to invoke the authenticator operation:
either authenticatorMakeCredential or possibly authenticatorGetAssertion. For example, in
some situations (e.g., with CTAP2 authenticators) when an "exclude list" was provided by the
Relying Party, the platform may first invoke the authenticatorGetAssertion operation multiple
times to "pre-flight" the "exclude list" (i.e., to determine if any of the exclude list’s credential IDs are
already present on the authenticator), prior to invoking authenticatorMakeCredential to create a
new credential on this authenticator.

2. Otherwise, the platform examines various option IDs in the authenticatorGetInfo response to
determine its course of action:

1. If the uv option ID is present and set to true:

1. If the pinUvAuthToken option ID is present and true then plan to use
getPinUvAuthTokenUsingUvWithPermissions to obtain a pinUvAuthToken, and let it be the
selected operation. Go to Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is set to false or absent) use the "uv" option
key when invoking the authenticatorMakeCredential operation and terminate these
steps. (Note that if the authenticator returns a 0x36 error code
(CTAP2_ERR_PUAT_REQUIRED (aka CTAP2_ERR_PIN_REQUIRED in CTAP2.0)) then
"fall back" and go to Step 1.1.2.2.2.1)

2. Else (implying the uv option ID is present and set to false or absent):

1. If the pinUvAuthToken option ID is present and true:

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinUvAuthTokenUsingPinWithPermissions to obtain a pinUvAuthToken, and let it
be the selected operation. Go to Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is absent):

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinToken to obtain a pinUvAuthToken, and let it be the selected operation.

3. In preparation for obtaining pinUvAuthToken, the platform:

1. Obtains a shared secret.

2. Sets the pinUvAuthProtocol parameter to the value as selected when it obtained the
shared secret.

4. Then the platform obtains a pinUvAuthToken from the authenticator, with the mc (and likely
also with the ga) permission (see "pre-flight", mentioned above), using the selected operation.

5. If pinUvAuthToken was obtained successfully:

1. The platform creates the pinUvAuthParam parameter by calling
authenticate(pinUvAuthToken, clientDataHash), and goes to Step 1.1.1.

6. Else (implying pinUvAuthToken was not obtained successfully):

1. If the error code when attempting to obtain the pinUvAuthToken is one of the following:
CTAP2_ERR_NOT_ALLOWED, CTAP2_ERR_UV_BLOCKED or
CTAP2_ERR_UNAUTHORIZED_PERMISSION, and the selected operation is
getPinUvAuthTokenUsingUvWithPermissions:

1. The platform falls back to PIN authentication, and goes to Step 1.1.2.2.

2. Else:

1. Fails this overall scenario

2. Otherwise, implying the authenticator is not presently protected by some form of user verification, or the
Relying Party wants to create a non-discoverable credential and not require user verification (e.g., by
setting options.authenticatorSelection.userVerification to "discouraged" in the WebAuthn
API), the platform invokes the authenticatorMakeCredential operation using the marshalled input
parameters along with the "uv" option key set to false and terminate these steps.

6.1.2. authenticatorMakeCredential Algorithm

12/137

https://w3c.github.io/webauthn/#dom-publickeycredentialcreationoptions-authenticatorselection
https://w3c.github.io/webauthn/#dom-authenticatorselectioncriteria-userverification
https://w3c.github.io/webauthn/#dom-publickeycredentialcreationoptions-authenticatorselection
https://w3c.github.io/webauthn/#dom-authenticatorselectioncriteria-userverification
https://w3c.github.io/webauthn/#dom-publickeycredentialcreationoptions-authenticatorselection
https://w3c.github.io/webauthn/#dom-authenticatorselectioncriteria-userverification

1. If authenticator supports either pinUvAuthToken or clientPin features and the platform sends a zero length
pinUvAuthParam:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED light).

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. If evidence of user interaction is provided in this step then return either CTAP2_ERR_PIN_NOT_SET if
PIN is not set or CTAP2_ERR_PIN_INVALID if PIN has been set.

NOTE: This is done for backwards compatibility with CTAP2.0 platforms in the case where multiple
authenticators are attached to the platform and the platform wants to enforce pinUvAuthToken feature
semantics, but the user has to select which authenticator to get the pinUvAuthToken from. CTAP2.1
platforms SHOULD use § 6.9 authenticatorSelection (0x0B).

2. If the pinUvAuthParam parameter is present:

1. If the pinUvAuthProtocol parameter’s value is not supported, return
CTAP1_ERR_INVALID_PARAMETER error.

2. If the pinUvAuthProtocol parameter is absent, return CTAP2_ERR_MISSING_PARAMETER error.

3. Validate pubKeyCredParams with the following steps:

1. For each element of pubKeyCredParams:

1. If the element is missing required members, including members that are mandatory only for the
specific type, then return an error, for example CTAP2_ERR_INVALID_CBOR.

2. If the values of any known members have the wrong type then return an error, for example
CTAP2_ERR_CBOR_UNEXPECTED_TYPE.

3. If the element specifies an algorithm that is supported by the authenticator, and no algorithm has
yet been chosen by this loop, then let the algorithm specified by the current element be the chosen
algorithm.

2. If the loop completes and no algorithm was chosen then return
CTAP2_ERR_UNSUPPORTED_ALGORITHM.

NOTE: This loop chooses the first occurrence of an algorithm identifier supported by this authenticator
but always iterates over every element of pubKeyCredParams to validate them.

4. Create a new authenticatorMakeCredential response structure and initialize both its "uv" bit and "up" bit as
false.

5. If the options parameter is present, process all option keys and values present in the parameter. Treat any
option keys that are not understood as absent.

NOTE: As this specification defines normative behaviours for the "rk", "up", and "uv" option keys, they
MUST be understood by all authenticators.

1. If the "uv" option is absent, let the "uv" option be treated as being present with the value false. (This is
the default)

2. If the pinUvAuthParam is present, let the "uv" option be treated as being present with the value false.

NOTE: pinUvAuthParam and the "uv" option are processed as mutually exclusive with
pinUvAuthParam taking precedence.

3. If the "uv" option is true then:

1. If the authenticator does not support a built-in user verification method end the operation by
returning CTAP2_ERR_INVALID_OPTION.

2. If the built-in user verification method has not yet been enabled, end the operation by returning
CTAP2_ERR_INVALID_OPTION.

4. If the "rk" option is present then:

1. If the rk option ID is not present in authenticatorGetInfo response, end the operation by returning
CTAP2_ERR_UNSUPPORTED_OPTION.

5. Else: (the "rk" option is absent)

1. Let the "rk" option be treated as being present with the value false. (This is the default.)

6. If the "up" option is present then:

1. If the "up" option is false, end the operation by returning CTAP2_ERR_INVALID_OPTION.

7. If the "up" option is absent, let the "up" option be treated as being present with the value true (i.e., this
is the default for both CTAP2.0 and CTAP2.1 authenticators).

6. If the alwaysUv option ID is present and true then:

1. Let the makeCredUvNotRqd option ID be treated as false.

13/137

https://w3c.github.io/webauthn/#dom-publickeycredentialparameters-type

2. If the authenticator is not protected by some form of user verification:

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or
false (clientPin is supported for the mc permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

3. If the pinUvAuthParam is not present, and the uv option ID is true, let the "uv" option be treated as
being present with the value true.

NOTE: The above step 6.3 is for backwards compatibility with CTAP2.0 platforms who are not
aware of the Always UV feature.

4. If the pinUvAuthParam is not present, and the "uv" option is false or absent:

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or
false (clientPin is supported for the mc permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

7. If the makeCredUvNotRqd option ID is present and set to true in the authenticatorGetInfo response:

1. If the following statements are all true:

Then:

NOTE: This step returns an error if the platform tries to create a discoverable credential without
performing some form of user verification.

1. The authenticator is protected by some form of user verification.

2. The "uv" option is set to false.

3. The pinUvAuthParam parameter is not present.

4. The "rk" option is present and set to true.

1. If ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent or
false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

8. Else: (the makeCredUvNotRqd option ID in authenticatorGetInfo's response is present with the value false
or is absent):

1. If the following statements are all true:

Then:

NOTE: This step returns an error if the platform tries to create a credential without performing
some form of user verification when the makeCredUvNotRqd option ID in authenticatorGetInfo's
response is present with the value false or is absent.

1. The authenticator is protected by some form of user verification.

2. The "uv" option is set to false.

3. The pinUvAuthParam parameter is not present.

1. If the ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent or
false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

9. If the enterpriseAttestation parameter is present:

1. If the authenticator is not enterprise attestation capable, or the authenticator is enterprise attestation
capable but enterprise attestation is disabled, then end the operation by returning
CTAP1_ERR_INVALID_PARAMETER.

2. Else: (the authenticator is enterprise attestation capable and enterprise attestation is enabled; see also
§ 7.1.2 Platform Actions):

1. If the enterpriseAttestation parameter’s value is not 1 or 2, then end the operation by returning
CTAP2_ERR_INVALID_OPTION.

2. Consider the following cases in order, until one matches, to learn whether the authenticator may
return an enterprise attestation. (These substeps define when an authenticator is permitted to return
an enterprise attestation. Authenticators MUST NOT do so in any other cases.)

1. If the authenticator supports only vendor-facilitated enterprise attestation and the request’s

14/137

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

rp.id matches an entry on the authenticator’s pre-configured RP ID list, then the authenticator
MAY return an enterprise attestation.

NOTE: An authenticator that only supports vendor-facilitated enterprise attestation is
obliged to treat enterpriseAttestation parameter values 1 and 2 equivalently, otherwise it will
yield unexpected results if used with an enterprise-managed platform (which will be setting
enterpriseAttestation to 2).

2. If the authenticator supports vendor-facilitated enterprise attestation at all, the
enterpriseAttestation parameter’s value is 1, and the request’s rp.id matches an entry on the
authenticator’s pre-configured RP ID list, then the authenticator MAY return an enterprise
attestation.

3. If the authenticator supports platform-managed enterprise attestation (whether or not vendor-
facilitated enterprise attestation is also supported), and the enterpriseAttestation parameter’s
value is 2, then the platform MUST have performed the necessary vetting of the request’s rp.id
(e.g., via local policy lookup), and the authenticator MAY return an enterprise attestation
without checking whether the request’s rp.id matches an entry on the authenticator’s pre-
configured RP ID list (if any).

3. If, by considering the substeps of the previous step, the authenticator did not conclude that it may
return an enterprise attestation then let the enterpriseAttestation parameter be treated as absent,
terminate these steps, and go to Step 10. A non-enterprise attestation will be returned with the
credential.

4. Apply any additional constraints that may prohibit returning an enterprise attestation. An
authenticator has unlimited discretion to apply additional constraints which can further limit the
contexts in which enterprise attestation is returned. They may be based on other parameters from
the request or, indeed, on any other factor the authenticator wishes. It is the job of enterprise
Relying Party to know the authenticators that it has deployed and thus to arrange the request so as
to get its desired result.

5. If, by considering any additional constraints in the previous step, the authenticator concluded that it
did not wish to return an enterprise attestation then let the enterpriseAttestation parameter be
treated as absent, terminate these steps, and go to Step 10. A non-enterprise attestation will be
returned with the credential.

6. If the authenticator has a display, then the authenticator SHOULD display an explicit warning to the
user, including the rp.id, notifying the user that they are being uniquely identified to this Relying
Party.

7. Let epAtt in the authenticatorMakeCredential response structure be set to true and return an
enterprise attestation.

10. If the following statements are all true:

Then go to Step 12.

NOTE: This step allows the authenticator to create a non-discoverable credential without requiring
some form of user verification under the below specific criteria.

1. "rk" and "uv" options are both set to false or omitted.

2. the makeCredUvNotRqd option ID in authenticatorGetInfo's response is present with the value true.

3. the pinUvAuthParam parameter is not present.

NOTE: Step 4 has already ensured that the "uv" bit is false in the response.

11. If the authenticator is protected by some form of user verification, then:

1. If pinUvAuthParam parameter is present (implying the "uv" option is false (see Step 5)):

1. Call verify(pinUvAuthToken, clientDataHash, pinUvAuthParam).

1. If the verification returns error, then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID error.

2. Verify that the pinUvAuthToken has the mc permission, if not, then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID.

3. If the pinUvAuthToken has a permissions RP ID associated:

1. If the permissions RP ID does not match the rp.id in this request, then end the operation by
returning CTAP2_ERR_PIN_AUTH_INVALID.

4. Let userVerifiedFlagValue be the result of calling getUserVerifiedFlagValue().

5. If userVerifiedFlagValue is false then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID.

6. If userVerifiedFlagValue is true then set the "uv" bit to true in the response.

7. If the pinUvAuthToken does not have a permissions RP ID associated:

15/137

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

1. Associate the request’s rp.id parameter value with the pinUvAuthToken as its permissions RP
ID.

8. Go to Step 12.

2. If the "uv" option is present and set to true (implying the pinUvAuthParam parameter is not present,
and that the authenticator supports an enabled built-in user verification method, see Step 5):

NOTE: This step provides backwards compatibility for CTAP2.0 platforms.

1. Let internalRetry be true.

2. Let uvState be the result of calling performBuiltInUv(internalRetry)

3. If uvState is error:

1. If the error reason is a user action timeout, then return
CTAP2_ERR_USER_ACTION_TIMEOUT.

2. If the ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent
or false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.

3. If the uvRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED.

4. Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

4. If uvState is success:

1. Set the "uv" bit to true in the response.

NOTE: If Step 11 was skipped, then the authenticator is NOT protected by some form of user
verification, and Step 4 has already ensured that the "uv" bit is false in the response.

12. If the excludeList parameter is present and contains a credential ID created by this authenticator, that is
bound to the specified rp.id:

1. If the credential’s credProtect value is not userVerificationRequired, then:

1. Let userPresentFlagValue be false.

2. If the pinUvAuthParam parameter is present then let userPresentFlagValue be the result of calling
getUserPresentFlagValue().

3. Else, if evidence of user interaction was provided as part of Step 11 let userPresentFlagValue be
true.

4. If userPresentFlagValue is false, then:

1. Wait for user presence.

2. Regardless of whether user presence is obtained or the authenticator times out, terminate this
procedure and return CTAP2_ERR_CREDENTIAL_EXCLUDED.

5. Else, (implying userPresentFlagValue is true) terminate this procedure and return
CTAP2_ERR_CREDENTIAL_EXCLUDED.

NOTE: A user presence test is required for CTAP2 authenticators, before the RP is told that
the authenticator is already registered, to behave similarly to CTAP1/U2F authenticators.

2. Else (implying the credential’s credProtect value is userVerificationRequired):

1. If the "uv" bit is true in the response:

1. Let userPresentFlagValue be false.

2. If the pinUvAuthParam parameter is present then let userPresentFlagValue be the result of
calling getUserPresentFlagValue().

3. Else, if evidence of user interaction was provided as part of Step 11 let userPresentFlagValue
be true.

4. If userPresentFlagValue is false, then:

1. Wait for user presence.

2. Regardless of whether user presence is obtained or the authenticator times out, terminate
this procedure and return CTAP2_ERR_CREDENTIAL_EXCLUDED.

5. Else, (implying userPresentFlagValue is true) terminate this procedure and return
CTAP2_ERR_CREDENTIAL_EXCLUDED.

2. Else (implying user verification was not collected in Step 11), remove the credential from the
excludeList and continue parsing the rest of the list.

13. If evidence of user interaction was provided as part of Step 11 (i.e., by invoking performBuiltInUv()):

NOTE: This step’s criteria implies that the "uv" option is present and set to true and the
pinUvAuthParam parameter is not present. I.e., the pinUvAuthToken feature is not in use.

1. Set the "up" bit to true in the response.

16/137

2. Go to Step 15

14. If the "up" option is set to true:

1. If the pinUvAuthParam parameter is present then:

1. Let userPresentFlagValue be the result of calling getUserPresentFlagValue().

2. If userPresentFlagValue is false:

NOTE: An authenticator may be configured to collect user presence whenever the "up" option
is true by setting the default user present time limit to zero.

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the items contained within the user and rp
parameter structures to the user, and request permission to create a credential.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

2. Else (implying the pinUvAuthParam parameter is not present):

1. If the "up" bit is false in the response :

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the items contained within the user and rp
parameter structures to the user, and request permission to create a credential.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. Set the "up" bit to true in the response.

4. Call clearUserPresentFlag(), clearUserVerifiedFlag(), and
clearPinUvAuthTokenPermissionsExceptLbw().

NOTE: This consumes both the "user present state", sometimes referred to as the "cached UP",
and the "user verified state", sometimes referred to as "cached UV". These functions are no-ops if
there is not an in-use pinUvAuthToken.

15. If the extensions parameter is present:

1. Process any extensions that this authenticator supports, ignoring any that it does not support.

2. Authenticator extension outputs generated by the authenticator extension processing are returned in the
authenticator data. The set of keys in the authenticator extension outputs map MUST be equal to, or a
subset of, the keys of the authenticator extension inputs map.

NOTE: Some extensions may produce different output depending on the state of the "uv" bit and/or
"up" bit in the response.

16. Generate a new credential key pair for the algorithm chosen in step 3.

17. If the "rk" option is set to true:

1. The authenticator MUST create a discoverable credential.

2. If a credential for the same rp.id and account ID already exists on the authenticator:

1. If the existing credential contains a largeBlobKey, an authenticator MAY erase any associated
large-blob data. Platforms MUST NOT assume that authenticators will do this. Platforms can later
garbage collect any orphaned large-blobs.

2. Overwrite that credential.

3. Store the user parameter along with the newly-created key pair.

4. If authenticator does not have enough internal storage to persist the new credential, return
CTAP2_ERR_KEY_STORE_FULL.

18. Otherwise, if the "rk" option is false: the authenticator MUST create a non-discoverable credential.

NOTE: This step is a change from CTAP2.0 where if the "rk" option is false the authenticator could
optionally create a discoverable credential.

19. If the authenticator doesn’t support multiple attestation formats or the attestationFormatsPreference is
absent or its value is the empty list, generate an attestation statement for the newly-created credential using
clientDataHash, taking into account the value of the enterpriseAttestation parameter, if present, as described
above in Step 9.

If attestationFormatsPreference is present and contains only one entry with the value "none", omit
attestation from the output.

If the authenticator supports multiple attestation formats and the attestationFormatsPreference parameter is
present, the authenticator MUST choose a supported format whose attestation statement format identifier
appears with the lowest index in the supplied array. If no supported format identifier appears on the list, the
authenticator may select a format by any other means.

17/137

https://www.w3.org/TR/webauthn-2#authenticator-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#authenticator-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-extension-input
https://www.w3.org/TR/webauthn-2#credential-key-pair
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier

On success, the authenticator returns the following authenticatorMakeCredential response structure which
contains an attestation object plus additional information.

Member name Data type Required? Definition

fmt (0x01) String Required
The attestation statement format
identifier.

authData (0x02) Byte String Required The authenticator data object.

attStmt (0x03)

CBOR Map, the
structure of

which depends
on the

attestation
statement

format identifier

Optional

The attestation statement, as specified
in [WebAuthn], if one is provided.

epAtt (0x04) Boolean Optional

Indicates whether an enterprise
attestation was returned for this
credential. If epAtt is absent or present
and set to false, then an enterprise
attestation was not returned. If epAtt is
present and set to true, then an
enterprise attestation was returned.

largeBlobKey (0x05) Byte string Optional
Contains the largeBlobKey for the
credential, if requested with the
largeBlobKey extension.

unsignedExtensionOutputs
(0x06)

CBOR map of
extension

identifier →
unsigned
extension

output values

Optional

A map, keyed by extension identifiers,
to unsigned outputs of extensions, if
any. Authenticators SHOULD omit this
field if no processed extensions define
unsigned outputs. Clients MUST treat
an empty map the same as an omitted
field.

A credential may, or may not, be discoverable. A discoverable credential [WebAuthn] has the property that, in
response to an authenticatorGetAssertion request where the allowList parameter is omitted, the authenticator
is able to discover the appropriate public key credential source given only an RP ID, possibly with user
assistance.

Each credential has a credential protection policy. For backwards compatibility with CTAP2.0 platforms, the
default credential creation policy is userVerificationOptional (0x01). If a credential was created with credential
protection values of userVerificationOptionalWithCredentialIDList (0x02) or userVerificationRequired (0x03) it will
not be discoverable unless the platform invokes authenticatorGetAssertion with a valid pinUvAuthParam or the
"uv" option key with a value of true.

In contrast, server-side credentials (also known as non-discoverable credentials) have the property that their
credential IDs MUST be supplied by the Relying Party in authenticatorGetAssertion's allowList parameter in
order for the authenticator to discover and employ them.

Note that this definition does not speak to whether a credential is statefully maintained or not.

An authenticator may choose to keep state, such as the private key, whether a credential is discoverable or not
(see also public key credential source). A discoverable credential, however, always involves maintaining some
state because it must be discoverable using only the RP ID and the user id (also known as the user handle)
must always be returned.

All state that is kept for a discoverable credential MUST be stored client side—i.e., such that the authenticator
working together with the client platform, if necessary, can satisfy requested authenticator operations.

An authenticator specifies whether it is capable of creating discoverable credentials via the rk option ID in the
authenticatorGetInfo response. A discoverable credential will be created if, and only if, the rk option key of the
options parameter of an authenticatorMakeCredential request is true.

If the authenticatorCredentialManagement command is supported by an authenticator then it can be used to
manage discoverable credentials.

If a discoverable credential's state is deleted, e.g., by the authenticatorCredentialManagement command or

6.1.3. Discoverable credentials

NOTE: Regarding user assistance, for example, the authenticator may provide the user a pick-list of
credentials scoped to the RP ID.

18/137

https://www.w3.org/TR/webauthn-2#attestation-object
https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier
https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#public-key-credential-source
https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#server-side-credential
https://www.w3.org/TR/webauthn-2#public-key-credential-source-privatekey
https://www.w3.org/TR/webauthn-2#public-key-credential-source
https://www.w3.org/TR/webauthn-2#rp-id
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://www.w3.org/TR/webauthn-2#user-handle
https://www.w3.org/TR/webauthn-2#client-side
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#discoverable-credential

overwritten by authenticatorMakeCredential, the associated credentialID MUST no longer yield a public key
credential source, e.g., when processed by the authenticator’s equivalent of the Lookup Credential Source by
Credential ID Algorithm including cases where the credential source is encoded within the credentialID. This
means, for example, that any such deleted credentials whose credentialIDs may have been stored server-side
and subsequently are provided in an allowList to authenticatorGetAssertion, will no longer be "located" in the
latter’s Step 7 when the allowList is processed.

This method is used by a host to request cryptographic proof of user authentication as well as user consent to a
given transaction, using a previously generated credential that is bound to the authenticator and relying party
identifier. It takes the following input parameters, several of which correspond to those defined in the
authenticatorGetAssertion operation section of the Web Authentication specification:

Parameter name Data type Required? Definition

rpId (0x01) String Required
relying party identifier. See
[WebAuthn].

clientDataHash (0x02) Byte String Required
Hash of the serialized client
data collected by the host.
See [WebAuthn].

allowList (0x03)
Array of

PublicKeyCredentialDescriptor Optional

An array of
PublicKeyCredentialDescriptor
structures, each denoting a
credential, as specified in
[WebAuthn]. A platform MUST
NOT send an empty allowList
—if it would be empty it MUST
be omitted. If this parameter is
present the authenticator
MUST only generate an
assertion using one of the
denoted credentials.

extensions (0x04)
CBOR map of extension identifier →
authenticator extension input values

Optional

Parameters to influence
authenticator operation. These
parameters might be
authenticator specific.

options (0x05) Map of authenticator options Optional
Parameters to influence
authenticator operation, as
specified in the table below.

pinUvAuthParam (0x06) Byte String Optional
Result of calling
authenticate(pinUvAuthToken,
clientDataHash)

pinUvAuthProtocol (0x07) Unsigned Integer Optional
PIN/UV protocol version
selected by platform.

enterpriseAttestation (0x08) Unsigned Integer Optional

An authenticator supporting
this enterprise attestation
feature is enterprise
attestation capable and
signals its support via the ep
Option ID in the
authenticatorGetInfo
command response.

If the enterpriseAttestation
parameter is absent,
attestation’s privacy
characteristics are unaffected,
regardless of whether the
enterprise attestation feature
is presently enabled.

NOTE: Historically discoverable credentials have been called "resident keys", and this terminology can still
be found in aspects of the protocol. (For example the name of the rk option key comes from the term
“resident key”.) However, the word “resident” conflated the concepts of being discoverable and being
statefully maintained by the authenticator, when it’s only the former that is externally observable and thus
important.

6.2. authenticatorGetAssertion (0x02)

19/137

https://www.w3.org/TR/webauthn-2#public-key-credential-source
https://www.w3.org/TR/webauthn-2#sctn-op-lookup-credsource-by-credid
https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#op-get-assertion
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#collectedclientdata-hash-of-the-serialized-client-data
https://w3c.github.io/webauthn/#dictdef-publickeycredentialdescriptor
https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-2#authenticator-extension-input

If present with a valid value,
the usual privacy concerns
around attestation batching
may not apply to the results of
this operation and the platform
is requesting an enterprise
attestation that includes
uniquely identifying
information.

attestationFormatsPreference
(0x09)

Array of String Optional

A prioritized list of attestation
statement format identifiers
that the client and/or RP
prefers. Authenticators that
support multiple formats may

Parameter name Data type Required? Definition

The following option keys are defined for use in authenticatorGetAssertion's options parameter. All option keys
have boolean values.

Option
Key

Default
value

Definition

up true
user presence: Instructs the authenticator to require user consent to complete the
operation.

uv false

user verification: If true, instructs the authenticator to require a user-verifying
gesture in order to complete the request. Examples of such gestures are fingerprint
scan or a PIN.

Platforms MUST NOT include the "uv" option parameter if the authenticator does
not support built-in user verification.

Platforms MUST NOT include both "uv" and pinUvAuthParam parameters in same
request.

[WebAuthn]
authenticatorGetAssertion
operation

CTAP authenticatorGetAssertion operation

hash clientDataHash

rpId rpId

allowCredentialDescriptorList allowList

options.up

NOTE: For brevity, individual option keys are often referred to as simply an "option", below.

NOTE: Use of this "uv" option key is deprecated in CTAP2.1. Instead,
platforms SHOULD create a pinUvAuthParam by obtaining pinUvAuthToken via
getPinUvAuthTokenUsingUvWithPermissions or
getPinUvAuthTokenUsingPinWithPermissions, as appropriate.

NOTE: Platforms MUST NOT send the "rk" option key.

NOTE: For backwards compatibility with CTAP2.0 platforms, the authenticator MAY perform a built-in user
verification method even if not requested to enhance its security offering. Thus, platforms SHOULD be
prepared to receive a CTAP2_ERR_PUAT_REQUIRED error even if the platform did not include the "uv"
option key, or did include it and set it to false. CTAP2.1 authenticators SHOULD use the authenticator
always requires some form of user verification feature to signal this behaviour.

NOTE: The [WebAuthn] specification defines an abstract authenticatorGetAssertion operation, which
corresponds to the operation described in this section. The parameters in the abstract [WebAuthn]
authenticatorGetAssertion operation map to the above parameters as follows:

20/137

https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier

requireUserPresence

requireUserVerification options.uv or pinUvAuthParam

extensions extensions

[WebAuthn]
authenticatorGetAssertion
operation

CTAP authenticatorGetAssertion operation

To invoke authenticatorGetAssertion, the platform performs the following steps, in general. Here, we are
assuming that the platform has already queried the authenticator for its particulars using the authenticatorGetInfo
command, and has determined that the authenticator’s present characteristics are likely sufficient to be able to
satisfy the request(s) the platform will send it. In other words, this is only a brief sketch of plausible platform
behavior.

For example, if the authenticator is not protected by some form of user verification and user verification is
required for the present usage scenario, e.g., the Relying Party set options.userVerification to "required"
in the WebAuthn API, then the platform recovers in some fashion out of scope of these actions.

NOTE: [WebAuthn-2] defines requireUserPresence as a constant
Boolean value true. options.up may be set to false in CTAP "pre-
flight" commands but is always set to true for any
authenticatorGetAssertion request that is intended to generate an
assertion that will be returned to an Relying Party via the WebAuthn
API. This is because such an assertion must have the "user present"
bit of the "flags bits" of the authenticator data set to true to be
considered valid by clients of the WebAuthn API.

6.2.1. Platform Actions for authenticatorGetAssertion (non-normative)

1. The platform marshals the necessary and appropriate input parameters given the present usage scenario,
and additionally:

1. If the authenticator is protected by some form of user verification or the Relying Party prefers enforcing
user verification (e.g., by setting options.userVerification to "required", or "preferred" in the
WebAuthn API):

1. If the platform has already created a pinUvAuthParam parameter during this overall scenario, it
uses that along with the other marshalled input parameters to invoke the
authenticatorGetAssertion. Or, in some situations (e.g., with CTAP2 authenticators) the platform
may invoke the authenticatorGetAssertion operation multiple times using the pinUvAuthParam
parameter to "pre-flight" an "allow list" (i.e., to determine if any of the allow list’s credential IDs are
already present on the authenticator), prior to invoking authenticatorGetAssertion to have this
authenticator issue an assertion using the selected credential.

2. Otherwise, the platform examines various option IDs in the authenticatorGetInfo response to
determine its course of action:

1. If the uv option ID is present and set to true:

1. If the pinUvAuthToken option ID is present and true then plan to use
getPinUvAuthTokenUsingUvWithPermissions to obtain a pinUvAuthToken, and let it be the
selected operation. Go to Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is set to false or absent) use the "uv" option
key when invoking the authenticatorGetAssertion operation and terminate these steps.
(Note that if the authenticator returns a 0x36 error code (CTAP2_ERR_PUAT_REQUIRED
(aka CTAP2_ERR_PIN_REQUIRED in CTAP2.0)) then "fall back" and go to Step
1.1.2.2.2.1)

2. Else (implying the uv option ID is present and set to false or absent):

1. If the pinUvAuthToken option ID is present and true:

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinUvAuthTokenUsingPinWithPermissions to obtain a pinUvAuthToken, and let it
be the selected operation. Go to Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is absent):

1. To continue, ensure the clientPin option ID is present and true. Plan to use
getPinToken to obtain a pinUvAuthToken, and let it be the selected operation.

3. In preparation for obtaining pinUvAuthToken, the platform:

1. Obtains a shared secret.

2. Sets the pinUvAuthProtocol parameter to the value as selected when it obtained the
shared secret.

4. Then the platform obtains a pinUvAuthToken from the authenticator, with the ga permission
using the selected operation.

5. If pinUvAuthToken was obtained successfully:

1. The platform creates the pinUvAuthParam parameter by calling
authenticate(pinUvAuthToken, clientDataHash), and goes to Step 1.1.1 to use it.

6. Else (implying pinUvAuthToken was not obtained successfully):

21/137

https://www.w3.org/TR/webauthn-2#authenticator-data
https://w3c.github.io/webauthn/#dom-publickeycredentialrequestoptions-userverification
https://w3c.github.io/webauthn/#dom-publickeycredentialrequestoptions-userverification

Upon receipt of a authenticatorGetAssertion request, the authenticator performs the following procedure:

1. If the error code when attempting to obtain the pinUvAuthToken is one of the following:
CTAP2_ERR_NOT_ALLOWED, CTAP2_ERR_UV_BLOCKED or
CTAP2_ERR_UNAUTHORIZED_PERMISSION, and the selected operation is
getPinUvAuthTokenUsingUvWithPermissions:

1. The platform falls back to PIN authentication, and goes to Step 1.1.2.2.1.

2. Else:

1. Fails this overall scenario

2. Otherwise, implying the authenticator is not presently protected by some form of user verification, or the
Relying Party does not wish to require user verification (e.g., by setting options.userVerification
to "discouraged" in the WebAuthn API), the platform invokes the authenticatorGetAssertion
operation using the marshalled input parameters along with an absent "uv" option key.

6.2.2. authenticatorGetAssertion Algorithm

1. If authenticator supports either pinUvAuthToken or clientPin features and the platform sends a zero length
pinUvAuthParam:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED light).

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. If evidence of user interaction is provided in this step then return either CTAP2_ERR_PIN_NOT_SET if
PIN is not set or CTAP2_ERR_PIN_INVALID if PIN has been set.

NOTE: This is done for backwards compatibility with CTAP2.0 platforms in the case where multiple
authenticators are attached to the platform and the platform wants to enforce pinUvAuthToken
semantics, but the user has to select which authenticator to get the pinUvAuthToken from. CTAP2.1
platforms SHOULD use § 6.9 authenticatorSelection (0x0B).

2. If the pinUvAuthParam parameter is present:

1. If the pinUvAuthProtocol parameter’s value is not supported, return
CTAP1_ERR_INVALID_PARAMETER error.

2. If the pinUvAuthProtocol parameter is absent, return CTAP2_ERR_MISSING_PARAMETER error.

3. Create a new authenticatorGetAssertion response structure and initialize both its "uv" bit and "up" bit as
false.

4. If the options parameter is present, process all option keys and values present in the parameter. Treat any
option keys that are not understood as absent.

NOTE: As this specification defines normative behaviours for the "rk", "up", and "uv" option keys, they
MUST be understood by all authenticators.

1. If the "uv" option is absent, let the "uv" option be treated as being present with the value false. (This is
the default)

2. If the pinUvAuthParam is present, let the "uv" option be treated as being present with the value false.

NOTE: pinUvAuthParam and the "uv" option are processed as mutually exclusive with
pinUvAuthParam taking precedence.

3. If the "uv" option is present and true then:

1. If the authenticator does not support a built-in user verification method end the operation by
returning CTAP2_ERR_INVALID_OPTION.

2. If the built-in user verification method has not yet been enabled, end the operation by returning
CTAP2_ERR_INVALID_OPTION.

4. If the "rk" option is present then:

1. Return CTAP2_ERR_UNSUPPORTED_OPTION.

5. If the "up" option is not present then:

1. Let the "up" option be treated as being present with the value true. (This is the default)

5. If the alwaysUv option ID is present and true and the "up" option is present and true then:

1. If the authenticator is not protected by some form of user verification:

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or
false (clientPin is supported for the ga permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

22/137

https://w3c.github.io/webauthn/#dom-publickeycredentialrequestoptions-userverification

2. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

2. If the pinUvAuthParam is present then go to Step 6.

3. If the "uv" option is true then go to Step 6.

4. If the "uv" option is false and the authenticator supports a built-in user verification method, and the
user verification method is enabled then:

1. Let the "uv" option be treated as being present with the value true.

2. Go To Step 6.

5. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID is absent or false,
then:

NOTE: This is to address the case of CTAP2.0 platforms not being aware of and ignoring the
alwaysUv option ID.

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

6. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

6. If the enterpriseAttestation parameter is present:

1. If the authenticator is not enterprise attestation capable, or the authenticator is enterprise attestation
capable but enterprise attestation is disabled, then end the operation by returning
CTAP1_ERR_INVALID_PARAMETER.

2. Else: (the authenticator is enterprise attestation capable and enterprise attestation is enabled; see also
§ 7.1.2 Platform Actions):

1. If the enterpriseAttestation parameter’s value is not 1 or 2, then end the operation by returning
CTAP2_ERR_INVALID_OPTION.

2. Consider the following cases in order, until one matches, to learn whether the authenticator may
return an enterprise attestation. (These substeps define when an authenticator is permitted to return
an enterprise attestation. Authenticators MUST NOT do so in any other cases.)

1. If the authenticator supports only vendor-facilitated enterprise attestation and the request’s rpId
matches an entry on the authenticator’s pre-configured RP ID list, then the authenticator MAY
return an enterprise attestation.

NOTE: An authenticator that only supports vendor-facilitated enterprise attestation is
obliged to treat enterpriseAttestation parameter values 1 and 2 equivalently, otherwise it will
yield unexpected results if used with an enterprise-managed platform (which will be setting
enterpriseAttestation to 2).

2. If the authenticator supports vendor-facilitated enterprise attestation at all, the
enterpriseAttestation parameter’s value is 1, and the request’s rpId matches an entry on the
authenticator’s pre-configured RP ID list, then the authenticator MAY return an enterprise
attestation.

3. If the authenticator supports platform-managed enterprise attestation (whether or not vendor-
facilitated enterprise attestation is also supported), and the enterpriseAttestation parameter’s
value is 2, then the platform MUST have performed the necessary vetting of the request’s rpId
(e.g., via local policy lookup), and the authenticator MAY return an enterprise attestation
without checking whether the request’s rpId matches an entry on the authenticator’s pre-
configured RP ID list (if any).

3. If, by considering the substeps of the previous step, the authenticator did not conclude that it may
return an enterprise attestation then let the enterpriseAttestation parameter be treated as absent,
terminate these steps, and go to Step 7. A non-enterprise attestation will be returned with the
credential.

4. Apply any additional constraints that may prohibit returning an enterprise attestation. An
authenticator has unlimited discretion to apply additional constraints which can further limit the
contexts in which enterprise attestation is returned. They may be based on other parameters from
the request or, indeed, on any other factor the authenticator wishes. It is the job of enterprise
Relying Party to know the authenticators that it has deployed and thus to arrange the request so as
to get its desired result.

5. If, by considering any additional constraints in the previous step, the authenticator concluded that it
did not wish to return an enterprise attestation then let the enterpriseAttestation parameter be
treated as absent, terminate these steps, and go to Step 7. A non-enterprise attestation will be
returned with the credential.

6. If the authenticator has a display, then the authenticator SHOULD display an explicit warning to the
user, including the rpId, notifying the user that they are being uniquely identified to this Relying
Party.

23/137

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

7. Let epAtt in the authenticatorGetAssertion response structure be set to true and return an
enterprise attestation.

7. If authenticator is protected by some form of user verification, then:

1. If pinUvAuthParam parameter is present (implying the "uv" option is treated as false, see Step 4):

1. Call verify(pinUvAuthToken, clientDataHash pinUvAuthParam).

1. If the verification returns error, return CTAP2_ERR_PIN_AUTH_INVALID error.

2. If the verification returns success, set the "uv" bit to true in the response.

2. Let userVerifiedFlagValue be the result of calling getUserVerifiedFlagValue().

3. If userVerifiedFlagValue is false then end the operation by returning
CTAP2_ERR_PIN_AUTH_INVALID.

4. Verify that the pinUvAuthToken has the ga permission, if not, return
CTAP2_ERR_PIN_AUTH_INVALID.

5. If the pinUvAuthToken has a permissions RP ID associated:

1. If the permissions RP ID does not match the rpId in this request, return
CTAP2_ERR_PIN_AUTH_INVALID.

6. If the pinUvAuthToken does not have a permissions RP ID associated:

1. Associate the request’s rpId parameter value with the pinUvAuthToken as its permissions RP
ID.

7. Go to Step 7.

2. If the "uv" option is present and set to true (implying the pinUvAuthParam parameter is not present,
and that the authenticator supports an enabled built-in user verification method, see Step 4):

NOTE: This step provides backwards compatibility for CTAP2.0 platforms.

1. Let internalRetry be true.

2. Let uvState be the result of calling performBuiltInUv(internalRetry)

3. If uvState is error:

1. If the error reason is a user action timeout, then return
CTAP2_ERR_USER_ACTION_TIMEOUT.

2. If the ClientPin option ID is true and the noMcGaPermissionsWithClientPin option ID is absent
or false, end the operation by returning CTAP2_ERR_PUAT_REQUIRED.

3. If the uvRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED.

4. Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

4. If uvState is success:

1. Set the "uv" bit to true in the response.

NOTE: If Step 7 was skipped, then the authenticator is NOT protected by some form of user
verification, and Step 3 has already ensured that the "uv" bit is false in the response.

8. Locate all credentials that are eligible for retrieval under the specified criteria:

1. If the allowList parameter is present and is non-empty, locate all denoted credentials created by this
authenticator and bound to the specified rpId.

2. If an allowList is not present, locate all discoverable credentials that are created by this authenticator
and bound to the specified rpId.

3. Create an applicable credentials list populated with the located credentials.

4. Iterate through the applicable credentials list, and if credential protection for a credential is marked as
userVerificationRequired, and the "uv" bit is false in the response, remove that credential from the
applicable credentials list.

5. Iterate through the applicable credentials list, and if credential protection for a credential is marked as
userVerificationOptionalWithCredentialIDList and there is no allowList passed by the client and
the "uv" bit is false in the response, remove that credential from the applicable credentials list.

6. If the applicable credentials list is empty, return CTAP2_ERR_NO_CREDENTIALS.

7. Let numberOfCredentials be the number of applicable credentials found.

9. If evidence of user interaction was provided as part of Step 7.2 (i.e., by invoking performBuiltInUv()):

NOTE: This step’s criteria implies that the "uv" option is present and set to true and the
pinUvAuthParam parameter is not present. I.e., the pinUvAuthToken feature is not in use.

1. Set the "up" bit to true in the response.

2. Go to Step 10

10. If the "up" option is set to true or not present:

24/137

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

1. If the pinUvAuthParam parameter is present then:

1. Let userPresentFlagValue be the result of calling getUserPresentFlagValue().

2. If userPresentFlagValue is false:

NOTE: An authenticator may be configured to collect user presence whenever the "up" option
is true by setting the default user present time limit to zero.

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the rpId parameter value to the user, and
request permission to create an assertion.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

2. Else (implying the pinUvAuthParam parameter is not present):

1. If the "up" bit is false in the response:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the LED
light). If the authenticator has a display, show the rpId parameter value to the user, and
request permission to create an assertion.

2. If the user declines permission, or the operation times out, then end the operation by returning
CTAP2_ERR_OPERATION_DENIED.

3. Set the "up" bit to true in the response.

4. Call clearUserPresentFlag(), clearUserVerifiedFlag(), and
clearPinUvAuthTokenPermissionsExceptLbw().

NOTE: This consumes both the "user present state", sometimes referred to as the "cached UP",
and the "user verified state", sometimes referred to as "cached UV". These functions are no-ops if
there is not an in-use pinUvAuthToken.

11. If the extensions parameter is present:

1. Process any extensions that this authenticator supports, ignoring any that it does not support.

2. Authenticator extension outputs generated by the authenticator extension processing are returned in the
authenticator data. The set of keys in the authenticator extension outputs map MUST be equal to, or a
subset of, the keys of the authenticator extension inputs map.

NOTE: Some extensions may produce different output depending on the state of the "uv" and/or "up"
bits set in the response.

12. If the allowList parameter is present:

1. Select any credential from the applicable credentials list.

2. Delete the numberOfCredentials member.

3. Go to Step 13.

13. If allowList is not present:

1. If numberOfCredentials is one:

1. Select that credential.

2. If numberOfCredentials is more than one:

1. Order the credentials in the applicable credentials list by the time when they were created in
reverse order. (I.e. the first credential is the most recently created.)

2. If the authenticator does not have a display, or the authenticator does have a display and the "uv"
and "up" options are false:

1. Remember the authenticatorGetAssertion parameters.

2. Create a credential counter (credentialCounter) and set it to 1. This counter signifies the
next credential to be returned by the authenticator, assuming zero-based indexing.

3. Start a timer. This is used during authenticatorGetNextAssertion command. This step is
OPTIONAL if transport is done over NFC.

4. Select the first credential.

3. If authenticator has a display and at least one of the "uv" and "up" options is true:

1. Display all the credentials in the applicable credentials list to the user, using their friendly name
along with other stored account information.

2. Also, display the rpId of the requester (specified in the request) and ask the user to select a
credential.

3. If the user declines to select a credential or takes too long (as determined by the

25/137

https://www.w3.org/TR/webauthn-2#authenticator-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-data
https://www.w3.org/TR/webauthn-2#authenticator-extension-output
https://www.w3.org/TR/webauthn-2#authenticator-extension-input

On success, the authenticator returns the following authenticatorGetAssertion response structure:

Member name Data type Required? Definition

credential (0x01) PublicKeyCredentialDescriptor Required

PublicKeyCredentialDescriptor
structure containing the credential
identifier whose private key was
used to generate the assertion.

authData (0x02) Byte String Required

The signed-over contextual
bindings made by the
authenticator, as specified in
[WebAuthn].

signature (0x03) Byte String Required
The assertion signature produced
by the authenticator, as specified
in [WebAuthn].

user (0x04) PublicKeyCredentialUserEntity Optional

PublicKeyCredentialUserEntity
structure containing the user
account information. User
identifiable information (name,
DisplayName, icon) MUST NOT
be returned if user verification is
not done by the authenticator.

U2F Devices: For U2F devices,
this parameter is not returned as
this user information is not
present for U2F credentials.

FIDO Devices - server-side
credentials: For server-side
credentials on FIDO devices, this
parameter is OPTIONAL as
server-side credentials behave the
same as U2F credentials where
they are discovered given the
user information on the RP.
Authenticators MAY store user
information inside the credential
ID.

FIDO Devices - discoverable
credentials: For discoverable
credentials on FIDO devices, at
least user "id" is mandatory.

For single account per RP case,

authenticator), terminate this procedure and return the CTAP2_ERR_OPERATION_DENIED
error.

4. Update the response to set the userSelected member to true and to delete the
numberOfCredentials member.

5. Select the credential indicated by the user.

3. Update the response to include the selected credential’s publicKeyCredentialUserEntity information.
User identifiable information (name, DisplayName, icon) inside the publicKeyCredentialUserEntity
MUST NOT be returned if user verification is not done by the authenticator.

14. If attestationFormatsPreference is absent or a single element list of the string "none", omit attestation from
the output.

Otherwise, if attestations for getAssertion are supported, generate an attestation statement for the existing
credential using clientDataHash, taking into account the value of the enterpriseAttestation parameter, if
present, as described above in Step 6.

If the authenticator supports multiple attestation formats and the attestationFormatsPreference parameter is
present, the authenticator MUST choose a supported format whose attestation statement format identifier
appears with the lowest index in the supplied array. If no supported format identifier appears on the list, the
authenticator may select a format by any other means.

NOTE: The above implies that if attestationFormatsPreference is the empty list, the authenticator
should generate an attestation response with its default attestation format.

15. Sign the clientDataHash along with authData with the selected credential, using the structure specified in [
WebAuthn].

26/137

https://www.w3.org/TR/webauthn-2#attestation-statement-format-identifier
https://w3c.github.io/webauthn/#dictdef-publickeycredentialdescriptor
https://www.w3.org/TR/webauthn-2#assertion-signature
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://www.w3.org/TR/webauthn-2#server-side-credential
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id

authenticator returns "id" field to
the platform which will be returned
to the [WebAuthn] layer.

For multiple accounts per RP
case, where the authenticator
does not have a display,
authenticator returns "id" as well
as other fields to the platform.
Platform will use this information
to show the account selection UX
to the user and for the user
selected account, it will ONLY
return "id" back to the [WebAuthn]
layer and discard other user
details.

numberOfCredentials
(0x05)

Integer Optional

Total number of account
credentials for the RP. Optional;
defaults to one. This member is
required when more than one
credential is found for an RP, and
the authenticator does not have a
display or the UV & UP flags are
false. Omitted when returned for
the authenticatorGetNextAssertion
method.

userSelected (0x06) Boolean Optional

Indicates that a credential was
selected by the user via
interaction directly with the
authenticator, and thus the
platform does not need to confirm
the credential. Optional; defaults
to false. MUST NOT be present
in response to a request where an
allowList was given, where
numberOfCredentials is greater
than one, nor in response to an
authenticatorGetNextAssertion
request.

largeBlobKey (0x07) Byte string Optional

The contents of the associated
largeBlobKey if present for the
asserted credential, and if
largeBlobKey was true in the
extensions input.

unsignedExtensionOutputs
(0x08)

CBOR map of extension identifier →
unsigned extension output values

Optional

A map, keyed by extension
identifiers, to unsigned outputs of
extensions, if any. Authenticators
SHOULD omit this field if no
processed extensions define
unsigned outputs. Clients MUST
treat an empty map the same as
an omitted field.

epAtt (0x09) Boolean Optional

Indicates whether an enterprise
attestation was returned for this
credential. If epAtt is absent or
present and set to false, then an
enterprise attestation was not
returned. If epAtt is present and
set to true, then an enterprise
attestation was returned.

attStmt (0x0A)
CBOR Map, the structure of which

depends on the attestation statement
format identifier

Optional
The attestation statement, as
specified in [WebAuthn], if one is
provided.

Member name Data type Required? Definition

Within the "flags bits" of the authenticator data structure returned, the authenticator will report what was actually
done within the authenticator boundary. The meanings of the combinations of the User Present (UP) and User
Verified (UV) bit flags are as follows:

27/137

https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://www.w3.org/TR/webauthn-2#sctn-extension-id
https://www.w3.org/TR/webauthn-3#unsigned-extension-output
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#authenticator-data

Flags Meaning

"up"=0
"uv"=0

Silent authentication

"up"=1
"uv"=0

Physical user presence verified, but no user verification

"up"=0
"uv"=1

User verification performed, but physical user presence not verified.

"up"=1
"uv"=1

User verification performed and physical user presence verified

The client calls this method when the authenticatorGetAssertion response contains the numberOfCredentials
member and the number of credentials exceeds 1. This method is used to obtain the next per-credential
signature for a given authenticatorGetAssertion request. It takes no arguments.

When this command is received, the authenticator performs the following procedure:

On success, the authenticator returns the same structure as returned by the authenticatorGetAssertion method.
The numberOfCredentials member is omitted.

If client receives numberOfCredentials member value exceeding 1 in response to the authenticatorGetAssertion
call:

Using this method, platforms can request that the authenticator report a list of its supported protocol versions and

NOTE: Returning an assertion with the "up" bit set to false is not considered valid at the
WebAuthn API layer [WebAuthn-2], and typically is only used for "pre-flighting".

6.3. authenticatorGetNextAssertion (0x08)

NOTE: this is a stateful command and the specified implementation accommodations apply to it.

1. If authenticator does not remember any authenticatorGetAssertion parameters, return
CTAP2_ERR_NOT_ALLOWED.

2. If the credentialCounter is equal to or greater than numberOfCredentials, return
CTAP2_ERR_NOT_ALLOWED.

3. If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is greater than 30
seconds, discard the current authenticatorGetAssertion state and return CTAP2_ERR_NOT_ALLOWED.
This step is OPTIONAL if transport is done over NFC.

NOTE: the section on stateful commands makes this timeout OPTIONAL for any stateful command.
This section supersedes that and makes it mandatory in this instance, except over NFC, where
maintaining timers for that length of time can be problematic.

4. Select the credential indexed by credentialCounter. (I.e. credentials[n] assuming a zero-based array.)

5. Update the response to include the selected credential’s publicKeyCredentialUserEntity information. User
identifiable information (name, DisplayName, icon) inside the publicKeyCredentialUserEntity MUST NOT be
returned if user verification was not done by the authenticator in the original authenticatorGetAssertion call.

6. Sign the clientDataHash along with authData with the selected credential, using the structure specified in [W
ebAuthn].

7. Reset the timer. This step is OPTIONAL if transport is done over NFC.

8. Increment credentialCounter.

6.3.1. Client Logic

1. Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.

Make sure ‘rp’ member matches the current request.

Remember the ‘response’ member.

Add credential user information to the ‘credentialInfo’ list.

2. Draw a UX that displays credentialInfo list.

3. Let user select which credential to use.

4. Return the value of the ‘response’ member associated with the user choice.

5. Discard all other responses.

6.4. authenticatorGetInfo (0x04)

28/137

extensions, its AAGUID, and other aspects of its overall capabilities. Platforms should use this information to
tailor their command parameters choices.

This method takes no inputs.

On success, the authenticator returns the following authenticatorGetInfo response structure:

>

Member name Data type Required? Definition

versions (0x01) Array of strings Required

List of supported versions. Supported versions are:
"FIDO_2_1" for CTAP2.1 / FIDO2 / Web
Authentication authenticators, "FIDO_2_0" for
CTAP2.0 / FIDO2 / Web Authentication authenticators,
"FIDO_2_1_PRE" for CTAP2.1 Preview features and
"U2F_V2" for CTAP1/U2F authenticators.

extensions (0x02) Array of strings Optional List of supported extensions.

aaguid (0x03) Byte String Required
The claimed AAGUID. 16 bytes in length and encoded
the same as MakeCredential AuthenticatorData, as
specified in [WebAuthn].

options (0x04) Map Optional List of supported options.

maxMsgSize (0x05) Unsigned Integer Optional
Maximum message size supported by the
authenticator.

pinUvAuthProtocols (0x06) Array of Unsigned Integers Optional
List of supported PIN/UV auth protocols
decreasing authenticator preference. MUST NOT
contain duplicate values nor be empty if present.

maxCredentialCountInList (0x07) Unsigned Integer Optional
Maximum number of credentials supported in
credentialID list at a time by the authenticator. MUST
be greater than zero if present.

maxCredentialIdLength (0x08) Unsigned Integer Optional
Maximum Credential ID Length supported by the
authenticator. MUST be greater than zero if present.

transports (0x09) Array of strings Optional

List of supported transports. Values are taken from the
AuthenticatorTransport enum in [WebAuthn]
MUST NOT include duplicate values nor be empty if
present. Platforms MUST tolerate unknown values.

algorithms (0x0A)
Array of

PublicKeyCredentialParameters
Optional

List of supported algorithms for credential generation,
as specified in [WebAuthn]. The array is ordered from
most preferred to least preferred and MUST NOT
include duplicate entries nor be empty if present.
PublicKeyCredentialParameters' algorithm identifiers
are values that SHOULD be registered in the IANA
COSE Algorithms registry [IANA-COSE-ALGS-REG]

maxSerializedLargeBlobArray
(0x0B)

Unsigned Integer Optional

The maximum size, in bytes, of the
blob array that this authenticator can store.
authenticatorLargeBlobs command is supported, this
MUST be specified. Otherwise it MUST NOT be.
specified, the value MUST be ≥ 1024. Thus, 1024
bytes is the least amount of storage an authenticator
must make available for per-credential
blob arrays if it supports the large, per-credential blobs
feature.

forcePINChange (0x0C) Boolean Optional

If this member is:

getPinToken and
getPinUvAuthTokenUsingPinWithPermissions
will return errors until after a successful
Change.

no PIN Change is required.

This specifies the current minimum PIN length

NOTE: The values of various authenticatorGetInfo response structure members and option IDs may
change over time depending upon the commands the platform sends to the authenticator.

↪ present and set to true

↪ present and set to false, or absent.

29/137

https://www.w3.org/TR/webauthn/#enumdef-authenticatortransport
https://w3c.github.io/webauthn/#dictdef-publickeycredentialparameters

minPINLength (0x0D) Unsigned Integer Optional

Unicode code points, the authenticator enforces for
ClientPIN. This is applicable for ClientPIN only: the
minPINLength member MUST be absent if the
clientPin option ID is absent; it MUST be present if the
authenticator supports authenticatorClientPIN

The default pre-configured minimum PIN length
at least 4 Unicode code points. Authenticators MAY
have a pre-configured default minPINLength of more
than 4 code points in certain offerings.
minPINLength reverts to its original pre-configured
value. Authenticators MAY also have a
configured list of RP IDs authorized to receive
current minimum PIN length value via the
minPinLength extension.

firmwareVersion (0x0E) Unsigned Integer Optional

Indicates the firmware version of the authenticator
model identified by AAGUID. Whenever releasing any
code change to the authenticator firmware,
authenticator MUST increase the version.

maxCredBlobLength (0x0F) Unsigned Integer Optional

Maximum credBlob length in bytes supported by the
authenticator. Must be present if, and only if, credBlob
is included in the supported extensions
this value MUST be at least 32 bytes.

maxRPIDsForSetMinPINLength
(0x10)

Unsigned Integer Optional

This specifies the max number of RP ID
authenticator will accept via setMinPINLength
subcommand. The platform MUST NOT send more
than this number of RP ID to the setMinPINLength
subcommand. This is in addition to pre-configured list
authenticator may have. If the authenticator does not
support adding additional RP IDs, its value is 0.
MUST ONLY be present if, and only if, the
authenticator supports the setMinPINLength
subcommand.

preferredPlatformUvAttempts
(0x11)

Unsigned Integer. (CBOR major type
0)

Optional

This specifies the preferred number of invocations of
the getPinUvAuthTokenUsingUvWithPermissions
subCommand the platform may attempt before falling
back to the
getPinUvAuthTokenUsingPinWithPermissions
subCommand or displaying an error. MUST be greater
than zero. If the value is 1 then all uvRetries
internal and the platform MUST only invoke the
getPinUvAuthTokenUsingUvWithPermissions
subCommand a single time. If the value is > 1 the
authenticator MUST only decrement
each iteration.

uvModality (0x12)
Unsigned Integer. (CBOR major type

0)
Optional

This specifies the user verification modality supported
by the authenticator via authenticatorClientPIN
getPinUvAuthTokenUsingUvWithPermissions
subcommand. This is a hint to help the platform
construct user dialogs. The values are defined in
[FIDORegistry] Section 3.1 User Verification Methods.
Combining multiple bit-flags from the
allowed. If clientPin is supported it MUST NOT be
included in the bit-flags, as clientPIN is not a
user verification method.

certifications (0x13) Map Optional This specifies a list of authenticator certifications

remainingDiscoverableCredentials
(0x14)

Unsigned Integer Optional

If this member is present it indicates the estimated
number of additional discoverable credentials that can
be stored. If this value is zero then platforms SHOULD
create non-discoverable credentials if possible.

This estimate SHOULD be based on the assumption
that all future discoverable credentials will have
maximally-sized fields and SHOULD be zero whenever
an attempt to create a discoverable credential may fail
due to lack of space, even if it’s possible that some
specific request might succeed. For example, a

Member name Data type Required? Definition

30/137

https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#rp-id

specific request might include fields that are smaller
than the maximum possible size and thus succeed, but
this value should be zero if a request with maximum-
sized fields would fail. Also, a specific request might
have an rp.id and user.id that match an existing
discoverable credential and thus overwrite it, but this
value should be set assuming that will not happen.

vendorPrototypeConfigCommands
(0x15)

Array of Unsigned Integers Optional

If present the authenticator supports the
authenticatorConfig vendorPrototype
and its value is a list of authenticatorConfig
vendorCommandId values supported, which MAY be
empty.

attestationFormats (0x16) Array of strings
See

definition

List of supported attestation formats. Authenticators
that support multiple attestation formats, not counting
"none", MUST set this field. Otherwise it is optional.

Values are taken from the "WebAuthn Attestation
Statement Format Identifiers" registry
[IANA-WebAuthn-Registries] established by
[RFC8809]. The list MUST NOT include duplicate
values nor be empty if present. Platforms MUST
tolerate unknown values. Support for
attestation is implied and MUST be omitted.

uvCountSinceLastPinEntry (0x17)
Unsigned Integer. (CBOR major type

0)
Optional

If present the number of internal User Verification
operations since the last pin entry including all failed
attempts. This allows the platform to periodically
prompt the user for PIN on a biometric device so they
don’t forget the PIN. This is optional platform behavior
and the interval is at the discretion of the platform.

longTouchForReset (0x18) Boolean Optional
If present the authenticator requires a 10 second touch
for reset.

Member name Data type Required? Definition

All options are in the form key-value pairs with string IDs and boolean values. When an option ID is not present,
the default is applied per table below. The following table lists all defined option IDs as of CTAP version
"FIDO_2_1":

Option ID Definition Default

plat
platform device: Indicates that the device is attached
to the client and therefore can’t be removed and used

on another client.

false

rk

Specifies whether this authenticator can create
discoverable credentials, and therefore can satisfy

authenticatorGetAssertion requests with the allowList
parameter omitted.

false

clientPin

ClientPIN feature support:

If present and set to true, it indicates that the device is
capable of accepting a PIN from the client and PIN has

been set.

If present and set to false, it indicates that the device
is capable of accepting a PIN from the client and PIN

has not been set yet.

If absent, it indicates that the device is not capable of
accepting a PIN from the client.

ClientPIN is one of the overall ways to do user
verification, although ClientPIN is not considered a

built-in user verification method.

Not
supported

up
user presence: Indicates that the device is capable of

testing user presence.
true

31/137

https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id

uv

user verification: Indicates that the authenticator
supports a built-in user verification method. For

example, devices with UI, biometrics fall into this
category.

If present and set to true, it indicates that the device is
capable of built-in user verification and its user

verification feature is presently configured.

If present and set to false, it indicates that the
authenticator is capable of built-in user verification and
its user verification feature is not presently configured.

For example, an authenticator featuring a built-in
biometric user verification feature that is not presently

configured will return this "uv" option id set to false.

If absent, it indicates that the authenticator does not
have a built-in user verification capability.

A device that can only do Client PIN will not return the
"uv" option id.

If a device is capable of both built-in user verification
and Client PIN, the authenticator will return both the

"uv" and the "clientPin" option ids.

Not
Supported

pinUvAuthToken

If pinUvAuthToken is:

if the clientPin option id is present and set to
true, then the authenticator supports

authenticatorClientPIN's
getPinUvAuthTokenUsingPinWithPermissions

subcommand. If the uv option id is present
and set to true, then the authenticator

supports authenticatorClientPIN's
getPinUvAuthTokenUsingUvWithPermissions

subcommand.

the authenticator does not support
authenticatorClientPIN's

getPinUvAuthTokenUsingPinWithPermissions
and

getPinUvAuthTokenUsingUvWithPermissions
subcommands.

Not
Supported

noMcGaPermissionsWithClientPin

If this noMcGaPermissionsWithClientPin is:

A pinUvAuthToken obtained via
getPinUvAuthTokenUsingPinWithPermissions

(or getPinToken) cannot be used for
authenticatorMakeCredential or

authenticatorGetAssertion commands,
because it will lack the necessary mc and ga

permissions. In this situation, platforms
SHOULD NOT attempt to use

getPinUvAuthTokenUsingPinWithPermissions
if using

getPinUvAuthTokenUsingUvWithPermissions
fails.

A pinUvAuthToken obtained via
getPinUvAuthTokenUsingPinWithPermissions

(or getPinToken) can be used for
authenticatorMakeCredential or

authenticatorGetAssertion commands.

Note: noMcGaPermissionsWithClientPin MUST only
be present if the clientPin option ID is present.

false

If largeBlobs is: Not
supported

Option ID Definition Default

↪ present and set to true

↪ present and set to false, or absent.

↪ present and set to true

↪ present and set to false, or absent.

present and set to true32/137

largeBlobs
the authenticator supports the

authenticatorLargeBlobs command.

The authenticatorLargeBlobs command is
NOT supported.

ep

Enterprise Attestation feature support:

If ep is:

The authenticator is enterprise attestation
capable, and enterprise attestation is

enabled.

The authenticator is enterprise attestation
capable, and enterprise attestation is

disabled.

The Enterprise Attestation feature is NOT
supported.

Not
supported.

bioEnroll

If bioEnroll is:

the authenticator supports the
authenticatorBioEnrollment commands, and

has at least one bio enrollment presently
provisioned.

the authenticator supports the
authenticatorBioEnrollment commands, and

does not yet have any bio enrollments
provisioned.

the authenticatorBioEnrollment commands
are NOT supported.

Not
Supported

userVerificationMgmtPreview

"FIDO_2_1_PRE" Prototype Bio enrollment support:

If userVerificationMgmtPreview is:

the authenticator supports the Prototype
authenticatorBioEnrollment (0x40)

commands, and has at least one bio
enrollment presently provisioned.

the authenticator supports the Prototype
authenticatorBioEnrollment (0x40)

commands, and does not yet have any bio
enrollments provisioned.

the Prototype authenticatorBioEnrollment
(0x40) commands are not supported.

Not
Supported

uvBioEnroll

getPinUvAuthTokenUsingUvWithPermissions support
for requesting the be permission:

This option ID MUST only be present if bioEnroll is
also present.

If uvBioEnroll is:

requesting the be permission when invoking
getPinUvAuthTokenUsingUvWithPermissions

is supported.

requesting the be permission when invoking
getPinUvAuthTokenUsingUvWithPermissions

Not
Supported

Option ID Definition Default↪ present and set to true

↪ present and set to false, or absent.

↪ Present and set to true

↪ Present and set to false

↪ Absent

↪ present and set to true

↪ present and set to false

↪ absent

↪ present and set to true

↪ present and set to false

↪ absent

↪ present and set to true

↪ present and set to false, or absent.

33/137

is NOT supported.

authnrCfg

authenticatorConfig command support:

If authnrCfg is:

the authenticatorConfig command is
supported.

the authenticatorConfig command is NOT
supported.

Not
Supported

uvAcfg

getPinUvAuthTokenUsingUvWithPermissions support
for requesting the acfg permission:

This option ID MUST only be present if authnrCfg is
also present.

If uvAcfg is:

requesting the acfg permission when invoking
getPinUvAuthTokenUsingUvWithPermissions

is supported.

requesting the acfg permission when invoking
getPinUvAuthTokenUsingUvWithPermissions

is NOT supported.

Not
Supported

credMgmt

Credential management support:

If credMgmt is:

the authenticatorCredentialManagement
command is supported.

the authenticatorCredentialManagement
command is NOT supported.

Not
Supported

credentialMgmtPreview

"FIDO_2_1_PRE" Prototype Credential management
support:

If credentialMgmtPreview is:

the Prototype
authenticatorCredentialManagement (0x41)

command is supported.

the Prototype
authenticatorCredentialManagement (0x41)

command is NOT supported.

Not
Supported

setMinPINLength

Support for the Set Minimum PIN Length feature.

If setMinPINLength is:

the setMinPINLength subcommand is
supported.

the setMinPINLength subcommand is NOT
supported.

Note: setMinPINLength MUST only be present if the
clientPin option ID is present.

Not
Supported

Support for making non-discoverable credentials
without requiring User Verification.

If makeCredUvNotRqd is:

false

Option ID Definition Default

↪ present and set to true

↪ present and set to false, or absent.

↪ present and set to true

↪ present and set to false, or absent.

↪ present and set to true

↪ present and set to false, or absent.

↪ present and set to true

↪ present and set to false, or absent.

↪ present and set to true

↪ present and set to false, or absent.

↪ present and set to true

34/137

makeCredUvNotRqd

the authenticator allows creation of non-
discoverable credentials without requiring any

form of user verification, if the platform
requests this behaviour.

the authenticator requires some form of user
verification for creating non-discoverable

credentials, regardless of the parameters the
platform supplies for the

authenticatorMakeCredential command.

Authenticators SHOULD include this option with the
value true.

alwaysUv

Support for the Always Require User Verification
feature:

If alwaysUv is

the authenticator supports the Always
Require User Verification feature and it is

enabled.

the authenticator supports the Always
Require User Verification feature but it is

disabled.

the authenticator does not support the Always
Require User Verification feature.

Not
Supported

Option ID Definition Default

This command exists so that plaintext PINs are not sent to the authenticator. Instead, a PIN/UV auth protocol
(aka pinUvAuthProtocol) ensures that PINs are encrypted when sent to an authenticator and are exchanged for
a pinUvAuthToken that serves to authenticate subsequent commands. Additionally, authenticators supporting
built-in user verification methods can provide a pinUvAuthToken upon user verification.

The pinUvAuthToken is a randomly-generated, opaque bytestring that is large enough to be effectively
unguessable. See § 6.5.2.1 pinUvAuthToken State for details.

Two PIN/UV auth protocols are defined herein:

Each PIN/UV auth protocol:

Platforms MUST enforce the following, baseline, requirements on PINs used with this specification:

↪ present and set to false, or absent.

↪ present and set to true

↪ present and set to false

↪ absent

NOTE: If the alwaysUv option ID is present and
true the authenticator MUST set the value of

makeCredUvNotRqd to false.

6.5. authenticatorClientPIN (0x06)

§ 6.5.6 PIN/UV Auth Protocol One

§ 6.5.7 PIN/UV Auth Protocol Two

maintains its own pinUvAuthToken so that no unexpected, cross-protocol interactions occur, and

is a concrete instantiation of § 6.5.4 PIN/UV Auth Protocol Abstract Definition.

NOTE: The platform MAY flexibly manage the lifetime of its copy of the pinUvAuthToken based on the
usage scenario. However, it SHOULD erase its copy of the pinUvAuthToken as soon as possible when it is no
longer needed. The authenticator can also expire the pinUvAuthToken based on certain conditions such as
changing a PIN, authenticator timeouts, when returning CTAP2_ERR_OPERATION_DENIED or
CTAP2_ERR_CREDENTIAL_EXCLUDED errors, the platform system waking up from a suspend state, the
platform sending commands with no optional pinUvAuthParam, etc. If the pinUvAuthToken has expired, the
authenticator will return CTAP2_ERR_PIN_AUTH_INVALID and the platform can act on the error accordingly,
e.g., by getting a new pinUvAuthToken from the authenticator.

NOTE: The authenticator is only required to manage one pinUvAuthToken, though it MAY manage one per
transport interface in the case that it supports multiple simultaneous transport protocols.

6.5.1. PIN Composition Requirements

35/137

Authenticators MUST enforce the following, baseline, requirements on PINs:

Authenticators keep the following global state, independent of any specific PIN/UV auth protocol:

A pinUvAuthToken has the following associated state variables. When initially generated via
resetPinUvAuthToken(), the pinUvAuthToken's state variables are set to the initial values given below. The state
variables values are managed via the interface given in § 6.5.3.2 pinUvAuthToken State Maintenance Functions.

A pinUvAuthToken is associated with these state variables:

Minimum PIN Length: 4 Unicode characters

Maximum PIN Length: UTF-8 representation MUST NOT exceed 63 bytes

PIN are in Unicode normalization form C.

PIN MUST NOT end in a 0x00 byte

Minimum PIN Length: 4 code points.

NOTE: Authenticators can enforce a greater minimum length.

Maximum PIN Length: 63 bytes

PIN storage on the device has to provide the same, or better, security assurances as provided for private
keys.

Note: [FIPS140-3] references "memorized secret" requirements from SP 800-63B section 5.1.1.2. The latter
states that at AAL2 and above:

"Any memorized secret used by the authenticator for activation SHALL be a randomly-chosen numeric
value at least 6 decimal digits in length or other memorized secret [at least 8 ASCII or Unicode characters
in length]."

This specification attempts to count code points as an approximation of Unicode characters. It is understood
that some scripts have multiple code points per character and may need to have additional procedural
controls to conform with [FIPS140-3] or other security standards.

6.5.2. PIN/UV Auth Protocol Global State

6.5.2.1. pinUvAuthToken State

NOTE: The pinUvAuthToken-issuing operations call beginUsingPinUvAuthToken() to update the
pinUvAuthToken's state variables' values prior to issuing the pinUvAuthToken to the platform. For example,
they will use the latter function to set both or either the userVerified flag and/or the userPresent flag to true,
and start the usage timer.

A permissions RP ID, initially null.

A permissions set whose possible values are those of pinUvAuthToken permissions. It is initially empty.

A usage timer, initially not running.

NOTE: Once running, the timer is observed by pinUvAuthTokenUsageTimerObserver().

An in use flag, initially set to false, meaning that the pinUvAuthToken is not in use. When the in use flag is
set to true, the pinUvAuthToken is said to be in use.

A initial usage time limit, initially not set. beginUsingPinUvAuthToken() sets this value according to the
transport the platform is using to communicate with it. The platform MUST invoke an authenticator operation
using the pinUvAuthToken within this time limit for the pinUvAuthToken to remain valid for the full max usage
time period. The default maximum per-transport initial usage time limit values are:

Authenticators MAY use other values that are less than the default maximum values.

Authenticators MAY implement a rolling timer, initialized to the per-transport initial usage time limit, where
the pinUvAuthToken and its state variables remain valid as long as the platform again uses the
pinUvAuthToken in an operation before the rolling timer expires. If so, the rolling timer is again initialized to
the initial usage time limit. This continues until the max usage time period expires. See
pinUvAuthTokenUsageTimerObserver().

usb: 30 seconds

nfc: 19.8 seconds (16 bit counter with 3311hz clock: max time before overflow)

ble: 30 seconds

internal: 30 seconds

36/137

https://www.unicode.org/glossary/#character
https://unicode.org/reports/tr15/
https://www.unicode.org/glossary/#code_point
https://pages.nist.gov/800-63-3/sp800-63b.html#-5112-memorized-secret-verifiers
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#character
https://www.unicode.org/glossary/#code_point

These utility functions are independent of the particular PIN/UV auth protocol in use.

performBuiltInUv(internalRetry) → success | error:

NOTE: Authenticators should utilize the rolling timer approach judiciously, e.g., because some
features, such as authenticatorBioEnrollment and authenticatorCredentialManagement, may need to
accommodate infrequent user interactions. Thus the rolling timer approach may be most applicable to
authenticatorMakeCredential and authenticatorGetAssertion operations.

A user present time limit defining the length of time the user is considered "present", as represented by the
userPresent flag, after user presence is collected. The user present time limit defaults to the same default
maximum per-transport values as the initial usage time limit, although authenticators MAY use other values
that are less than the default maximum values, including zero.

NOTE: The user present time limit value of zero accommodates the case where an authenticator does
not wish to support maintaining "user present" state (i.e., "cached user presence").

A max usage time period value, which SHOULD default to a maximum of 10 minutes (600 seconds),
though authenticators MAY use other values less than the latter default, possibly depending upon the use
case, e.g., which transport is in use.

A userVerified flag, initially false.

A userPresent flag, initially false.

6.5.2.2. PIN-Entry and User Verification Retries Counters

1. pinRetries counter:

pinRetries counter is an unsigned integer, representing the number of attempts left before PIN is
disabled.

Authenticators MUST allow no more than 8 retries but MAY set a lower maximum.

Each correct PIN entry resets the pinRetries and the uvRetries counters back to their maximum values
unless the PIN is already disabled.

Each incorrect PIN entry decrements the pinRetries by 1.

Once the pinRetries counter reaches 0, both ClientPin as well as built-in user verification are disabled
and can only be enabled if authenticator is reset.

2. uvRetries counter:

The uvRetries counter is an unsigned integer, representing the number of user verification attempts left
before built-in user verification is disabled.

maxUvRetries is a global value statically configured into an authenticator; it is the maximum number of
retries that a user can experience. uvRetries is initialized to this value. Its value MUST be in the range of
1 to 25, inclusive.

NOTE: This value is determined by the authenticator vendor based on the desired FIDO security
certification level. This limit protects against brute force attacks. It is the total number of attempts
allowed for all built-in user verification methods.

maxUvAttemptsForInternalRetries is a global value configured into an authenticator. It is the
maximum number of times the authenticator will retry internally when internalRetry is true as part of the
performBuiltInUv() algorithm. This is used for older platforms when the "uv" parameter is set as true
OR when an authenticator vendor wants the platform to try calling it only once as indicated by the
preferredPlatformUvAttempts value. If preferredPlatformUvAttempts is 1,
maxUvAttemptsForInternalRetries value MUST be in range of 1 to maxUvRetries inclusive. If
preferredPlatformUvAttempts is NOT 1, maxUvAttemptsForInternalRetries value MUST be in range of 1
to 5 inclusive.

Once the uvRetries counter reaches 0, built-in user verification MUST be disabled and can only be re-
enabled if the authenticator is reset or the correct clientPIN is provided via the authenticatorClientPIN's
getPinUvAuthTokenUsingPinWithPermissions or getPinToken subCommands.

internalRetry is a authenticator-internal boolean parameter. It defaults to false. It is explicitly set to
true if the authenticator intends to perform multiple internal uv retries before returning an error to the
platform.

6.5.3. Utility Functions

6.5.3.1. Perform Built-in User Verification Algorithm

1. If internalRetry is true then let attemptsBeforeReturning be set to maxUvAttemptsForInternalRetries.

2. Else let attemptsBeforeReturning be set to 1.

37/137

This function prepares the pinUvAuthToken for use by the platform, which has invoked one of the
pinUvAuthToken-issuing operations, by setting particular pinUvAuthToken state variables to given use-case-
specific values. See also § 6.5.5.7 Operations to Obtain a pinUvAuthToken.

This function observes the pinUvAuthToken usage timer and takes appropriate action upon the specified
conditions:

3. If clientPIN is true and pinRetries is 0, then let the uvRetries counter be set to 0 and return error.

4. If uvRetries is 0 then return error.

5. Decrement the uvRetries counter by 1.

NOTE: It is best practice to decrement the counter before performing built-in user verification. This
prevents some hardware attacks that could provide an attacker with a unlimited number of presentation
attempts. If the sample input times out the authenticator may re-increment the uvRetries counter to its
previous value, if no matching is preformed by the authenticator. Some platforms will send
authenticatorGetAssertion requests in parallel to multiple authenticators causing the ones not touched by
the user to decrement uvRetries to 0 over time unless the uvRetries is re-incremented to the previous
value after an input time out.

6. Decrement attemptsBeforeReturning by 1.

7. Perform built-in user verification.

8. If a user action timeout occurs, return error.

9. If built-in user verification succeeds then set the uvRetries counter to maxUvRetries and return success.

10. Else (built-in user verification failed), if attemptsBeforeReturning > 0, go to Step 4.

11. Otherwise, return error.

6.5.3.2. pinUvAuthToken State Maintenance Functions

beginUsingPinUvAuthToken(userIsPresent)

1. Set the userPresent flag to the value of userIsPresent.

2. Set the userVerified flag to true.

3. Set the initial usage time limit to a transport-specific value, as described in § 6.5.2.1 pinUvAuthToken
State.

4. Start the pinUvAuthToken usage timer, set the in use flag to true, and assign
pinUvAuthTokenUsageTimerObserver() to observe the usage timer. The pinUvAuthToken is now in use.

pinUvAuthTokenUsageTimerObserver()

1. If the usage timer is not running, return.

2. While the overall usage timer has not reached the max usage time period, perform the following
substeps:

1. If the current user present time limit is reached, call clearUserPresentFlag().

2. If the initial usage time limit is reached without the platform using the pinUvAuthToken in an
authenticator operation then call stopUsingPinUvAuthToken(), and terminate these steps.

3. If the authenticator does not utilize a rolling timer then continue.

4. If the authenticator utilizes a rolling timer then:

1. If the platform uses the pinUvAuthToken in an authenticator operation before the rolling timer
expires then:

1. Set the rolling timer to the applicable initial usage time limit and continue.

2. Otherwise (implying the rolling timer expires) call stopUsingPinUvAuthToken(), and terminate
these steps.

3. Call stopUsingPinUvAuthToken(), and terminate these steps.

getUserPresentFlagValue() → userPresentFlagValue
1. If the pinUvAuthToken is in use then set the userPresentFlagValue to the current value of the

pinUvAuthToken's userPresent flag.

2. Otherwise (implying a pinUvAuthToken exists and is not in use, or does not exist), set
userPresentFlagValue to false.

NOTE: The pinUvAuthToken may not exist because the pinUvAuthToken feature is not in use or is
not supported.

3. Return userPresentFlagValue.

getUserVerifiedFlagValue() → userVerifiedFlagValue
1. If the pinUvAuthToken is in use then set the userVerifiedFlagValue to the current value of the

pinUvAuthToken's userVerified flag.

2. Otherwise (implying a pinUvAuthToken exists and is not in use, or does not exist), set
userVerifiedFlagValue to false.

38/137

A specific PIN/UV auth protocol defines an implementation of two interfaces to cryptographic services: one for
the authenticator, and one for the platform.

The authenticator interface is:

This process is run by the authenticator at power-on.

Generates a fresh public key.

Generates a fresh pinUvAuthToken.

Returns the authenticator’s public key as a COSE_Key structure.

Processes the output of encapsulate from the peer and produces a shared secret, known to both platform
and authenticator.

Decrypts a ciphertext, using sharedSecret as a key, and returns the plaintext.

Verifies that the signature is a valid MAC for the given message. If the key parameter value is the current
pinUvAuthToken, it also checks whether the pinUvAuthToken is in use or not.

The platform interface is:

This is run by the platform when starting a series of transactions with a specific authenticator.

Generates an encapsulation for the authenticator’s public key and returns the message to transmit and the
shared secret.

Encrypts a plaintext to produce a ciphertext, which may be longer than the plaintext. The plaintext is
restricted to being a multiple of the AES block size (16 bytes) in length.

Decrypts a ciphertext and returns the plaintext.

Computes a MAC of the given message.

(In the pseudocode function definitions, above, a function takes a number of arguments that are given in
parentheses and yields a result that is one of the types separated by a bar (‘|’). If a function doesn’t yield any
meaningful result then it implicitly yields a value of the unit type, written “success”, which carries no information.)

The following PIN/UV auth protocols, specified herein, define concrete instantiations of the above interfaces:

NOTE: The pinUvAuthToken may not exist because the pinUvAuthToken feature is not in use or is
not supported.

3. Return userVerifiedFlagValue.

clearUserPresentFlag()
1. If the pinUvAuthToken is in use then set the pinUvAuthToken's userPresent flag to false, otherwise do

nothing.

clearUserVerifiedFlag()
1. If the pinUvAuthToken is in use then set the pinUvAuthToken's userVerified flag to false, otherwise do

nothing.

clearPinUvAuthTokenPermissionsExceptLbw()
1. If the pinUvAuthToken is in use then clear all of the pinUvAuthToken's permissions, except for lbw,

otherwise do nothing.

stopUsingPinUvAuthToken()
1. Set all of the pinUvAuthToken's state variables to their initial values as given in § 6.5.2.1

pinUvAuthToken State.

Note: This causes the pinUvAuthToken's in use flag to be set to false, denoting the
pinUvAuthToken as not in use.

pinUvAuthToken that are not in use MUST NOT validate when verified in the context of the
Prototype authenticatorBioEnrollment or Prototype authenticatorCredentialManagement commands.

6.5.4. PIN/UV Auth Protocol Abstract Definition

initialize()

regenerate()

resetPinUvAuthToken()

getPublicKey() → coseKey

decapsulate(peerCoseKey) → sharedSecret | error

decrypt(sharedSecret, ciphertext) → plaintext | error

verify(key, message, signature) → success | error

initialize()

encapsulate(peerCoseKey) → (coseKey, sharedSecret) | error

encrypt(key, demPlaintext) → ciphertext

decrypt(key, ciphertext) → plaintext | error

authenticate(key, message) → signature

§ 6.5.6 PIN/UV Auth Protocol One

§ 6.5.7 PIN/UV Auth Protocol Two

6.5.5. authenticatorClientPIN (0x06) Command Definition39/137

https://en.wikipedia.org/wiki/Unit_type

This authenticatorClientPIN command allows a platform to use a PIN/UV auth protocol to perform a number of
actions:

The command takes the following input parameters:

Parameter name Data type Required? Definition

pinUvAuthProtocol
(0x01)

Unsigned
Integer

Optional

PIN/UV protocol version chosen by the platform.
This MUST be a value supported by the
authenticator, as determined by the

subCommand
(0x02)

Unsigned
Integer

Required
The specific action being requested.

keyAgreement
(0x03)

COSE_Key Optional

The platform key-agreement key. This COSE_Key-
encoded public key MUST contain the optional
"alg" parameter and MUST NOT contain any other
optional parameters. The "alg" parameter MUST
contain a COSEAlgorithmIdentifier value.

pinUvAuthParam
(0x04)

Byte String Optional
The output of calling authenticate on some context
specific to the subcommand.

newPinEnc (0x05) Byte String Optional An encrypted PIN.

pinHashEnc (0x06) Byte String Optional An encrypted proof-of-knowledge of a PIN.

permissions (0x09)
Unsigned

Integer
Optional

Bitfield of permissions. If present, MUST NOT be
0. See § 6.5.5.7 Operations to Obtain a
pinUvAuthToken.

rpId (0x0A) String Optional The RP ID to assign as the permissions RP ID.

The authenticatorClientPIN subCommands are:

subCommand Name
subCommand

Number

getPINRetries 0x01

getKeyAgreement 0x02

setPIN 0x03

changePIN 0x04

getPinToken (superseded by getPinUvAuthTokenUsingUvWithPermissions or
getPinUvAuthTokenUsingPinWithPermissions, thus for backwards compatibility only)

0x05

getPinUvAuthTokenUsingUvWithPermissions 0x06

getUVRetries 0x07

getPinUvAuthTokenUsingPinWithPermissions 0x09

On success, authenticator returns the following structure in its response:

Parameter
name

Data type Required? Definition

KeyAgreement
(0x01)

COSE_Key Optional

The result of the authenticator calling getPublicKey.
Used to convey the authenticator’s public key to the
platform so that the platform can call encapsulate. This
COSE_Key-encoded public key MUST contain the
optional "alg" parameter and MUST NOT contain any
other optional parameters. The "alg" parameter MUST
contain a COSEAlgorithmIdentifier value.

pinUvAuthToken The pinUvAuthToken, encrypted by calling encrypt

6.5.5. authenticatorClientPIN (0x06) Command Definition

Performing key agreement to obtain the shared secret

Setting a PIN

Changing a PIN

Obtaining the pinUvAuthToken

40/137

https://www.w3.org/TR/webauthn-2#rp-id

(0x02) Byte String Optional with the shared secret as the key.

pinRetries
(0x03)

Unsigned
Integer

Optional

Number of PIN attempts remaining before lockout.
This is optionally used to show in UI when collecting
the PIN in setting a new PIN, changing existing PIN
and obtaining a pinUvAuthToken flows.

powerCycleState
(0x04)

Boolean Optional

Present and true if the authenticator requires a power
cycle before any future PIN operation, false if no
power cycle needed. If the field is omitted, no
information is given about whether a power cycle is
needed or not.

This field is only valid in response to a getRetries
request and authenticators MUST NOT use this field
as an alternative to returning
CTAP2_ERR_PIN_AUTH_BLOCKED when that is
required by this specification: the power cycle
behaviour is a security property and cannot be
delegated to the platform to enforce.

uvRetries
(0x05)

Unsigned
Integer

Optional
Number of uv attempts remaining before lockout.

Parameter
name

Data type Required? Definition

At power-up, the authenticator calls initialize for each pinUvAuthProtocol that it supports.

PIN retries count is the number of PIN attempts remaining before PIN is disabled on the device. When the PIN
retries count nears zero, the platform can optionally warn the user to be careful while entering the PIN.

Platform performs the following operations to get pinRetries:

UV retries count is the number of built-in UV attempts remaining before built-in UV is disabled on the device.
When the UV retries count nears zero, the platform can optionally warn the user to be careful while performing
user verification.

Platform performs the following operations to get uvRetries:

Platforms obtain a shared secret for each transaction. The authenticator does not have to keep a list of
sharedSecrets for all active sessions. If there are subsequent authenticatorClientPIN transactions, a new
sharedSecret is generated every time.

Platform performs the following operations to arrive at the sharedSecret:

6.5.5.1. Authenticator Configuration Operations Upon Power Up

6.5.5.2. Platform getting PIN retries from Authenticator

1. Platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. subCommand: getPINRetries(0x01)

2. Authenticator responds back with pinRetries and, optionally, powerCycleState.

6.5.5.3. Platform getting UV Retries from Authenticator

1. Platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. subCommand: getUVRetries(0x07)

2. Authenticator responds back with uvRetries.

6.5.5.4. Obtaining the Shared Secret

1. The platform selects a mutually supported PIN/UV auth protocol by considering the list of protocols
supported by the authenticator, as reported in the pinUvAuthProtocols member of the authenticatorGetInfo
response. If there are multiple mutually supported protocols, and the platform has no preference, it SHOULD
select the one listed first in pinUvAuthProtocols.

2. The platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. pinUvAuthProtocol: as chosen above

2. subCommand: getKeyAgreement(0x02)

3. If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

41/137

The following operations are performed to set up a new PIN:

4. If the authenticator does not support the selected pinUvAuthProtocol, it returns
CTAP1_ERR_INVALID_PARAMETER.

5. Otherwise the authenticator sends a response with the following parameters:

1. keyAgreement: the result of calling getPublicKey for the selected pinUvAuthProtocol.

6. The platform calls encapsulate with the public key that the authenticator returned in order to generate the
platform key-agreement key and the shared secret.

6.5.5.5. Setting a New PIN

The below applies to both § 6.5.5.5 Setting a New PIN and § 6.5.5.6 Changing existing PIN:

An arbitrary Unicode character corresponds to one or more Unicode code points. While the platform enforces
a user-visible limit of at least four Unicode characters for the PIN length (e.g., by counting grapheme
clusters), this results in actually collecting at the very minimum four Unicode code points, and perhaps (many)
more, depending on the script employed.

1. The platform collects the new PIN (newPinUnicode) from the user as Unicode characters in Normalization
Form C.

2. Let platformCollectedPinLengthInCodePoints be the length in code points of newPinUnicode after
normalization is applied.

1. If the minPINLength member of the authenticatorGetInfo response is absent, then let
platformMinPINLengthInCodePoints be 4. (The default minimum value)

2. Else let platformMinPINLengthInCodePoints be the value of the minPINLength member of the
authenticatorGetInfo response.

3. If platformCollectedPinLengthInCodePoints is less than platformMinPINLengthInCodePoints then the
platform SHOULD display a "PIN too short" error message to the user.

4. Let "newPin" be the UTF-8 representation of newPinUnicode.

5. If the byte length of "newPin" is greater than the max UTF-8 representation limit of 63 bytes, then the
platform SHOULD display a "PIN too long" error message to the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

3. The Platform obtains the shared secret from the authenticator.

4. Platform sends authenticatorClientPIN command with following parameters to the authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: setPIN(0x03).

3. keyAgreement: the platform key-agreement key.

4. newPinEnc: the result of calling encrypt(shared secret, paddedPin) where paddedPin is newPin padded
on the right with 0x00 bytes to make it 64 bytes long. (Since the maximum length of newPin is 63 bytes,
there is always at least one byte of padding.)

5. pinUvAuthParam: the result of calling authenticate(shared secret, newPinEnc).

5. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

3. If a PIN has already been set, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

4. The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared
secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

5. The authenticator calls verify(shared secret, newPinEnc, pinUvAuthParam)

1. If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

6. The authenticator calls decrypt(shared secret, newPinEnc) to produce paddedNewPin. If an error results,
it returns CTAP2_ERR_PIN_AUTH_INVALID.

7. If paddedNewPin is NOT 64 bytes long, it returns CTAP1_ERR_INVALID_PARAMETER.

8. The authenticator drops all trailing 0x00 bytes from paddedNewPin to produce newPin.

9. The authenticator checks the length of newPin against the current minimum PIN length, returning
CTAP2_ERR_PIN_POLICY_VIOLATION if it is too short.

10. An authenticator MAY impose arbitrary, additional constraints on PINs. If newPin fails to satisfy such
additional constraints, the authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION.

42/137

https://www.unicode.org/glossary/#character
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#character
https://www.unicode.org/glossary/#grapheme_cluster
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#script
https://www.unicode.org/glossary/#character
https://unicode.org/reports/tr15/

The following operations are performed to change an existing PIN:

11. Authenticator remembers newPin length internally as PINCodePointLength.

12. Authenticator stores LEFT(SHA-256(newPin), 16) internally as CurrentStoredPIN, sets the pinRetries
counter to maximum count, and returns CTAP2_OK.

6.5.5.6. Changing existing PIN

1. The Platform collects the current PIN (curPinUnicode) and new PIN (newPinUnicode) from the user as
Unicode characters in Normalization Form C.

2. Let platformCollectedNewPinLengthInCodePoints be the length in code points of newPinUnicode after
applying normalization.

1. If the minPINLength member of the authenticatorGetInfo response is absent, then let
platformMinPINLengthInCodePoints be 4. (The default minimum value)

2. Else let platformMinPINLengthInCodePoints be the value of the minPINLength member of the
authenticatorGetInfo response.

3. If platformCollectedNewPinLengthInCodePoints is less than platformMinPINLengthInCodePoints then
the platform SHOULD display a "PIN too short" error message to the user.

4. Let "newPin" be the UTF-8 representation of newPinUnicode.

1. If the byte length of "newPin" is greater than the max UTF-8 representation limit of 63 bytes, then
the platform SHOULD display a "New PIN too long" error message to the user.

5. Let "curPin" be the UTF-8 representation of curPinUnicode.

1. If the byte length of "curPin" is greater than the max UTF-8 representation limit of 63 bytes, then
the platform SHOULD display a "Current PIN too long" error message to the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

3. Platform obtains the shared secret from the authenticator.

4. Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: changePIN(0x04).

3. keyAgreement: the platform key-agreement key.

4. pinHashEnc: The result of calling encrypt(shared secret, LEFT(SHA-256(curPin), 16)).

5. newPinEnc: the result of calling encrypt(shared secret, paddedPin) where paddedPin is newPin padded
on the right with 0x00 bytes to make it 64 bytes long. (Since the maximum length of newPin is 63 bytes,
there is always at least one byte of padding.)

6. pinUvAuthParam: the result of calling authenticate(shared secret, newPinEnc || pinHashEnc).

5. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

3. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

4. The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared
secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

5. The authenticator calls verify(shared secret, newPinEnc || pinHashEnc, pinUvAuthParam)

1. If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

6. Authenticator decrements the pinRetries counter by 1.

7. Authenticator decrypts pinHashEnc using decrypt(shared secret, pinHashEnc) and verifies against its
internal stored LEFT(SHA-256(curPin), 16).

1. If an error results, or a mismatch is detected, the authenticator performs the following operations:

1. Calls regenerate for the selected pinUvAuthProtocol.

2. Authenticator returns errors according to following conditions:

1. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

2. If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.

43/137

https://www.unicode.org/glossary/#character
https://unicode.org/reports/tr15/
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.2-rd-20230321/authenticatorClientPIN

Invoking one of the below operations only has to be performed once for the lifetime of the pinUvAuthToken.
Obtaining a pinUvAuthToken once allows high security without any additional roundtrips each time a subsequent
authenticator operation is invoked (except for the first key-agreement phase) and its overhead is minimal.

To obtain a pinUvAuthToken, the platform SHOULD use getPinUvAuthTokenUsingUvWithPermissions,
getPinUvAuthTokenUsingPinWithPermissions or getPinToken based on authenticator capabilities as returned by
authenticatorGetInfo, and considering the permissions that the platform intends to request:

When both getPinUvAuthTokenUsingUvWithPermissions and getPinUvAuthTokenUsingPinWithPermissions can
be used, the platform SHOULD use getPinUvAuthTokenUsingUvWithPermissions and in case this fails, fall back
to using getPinUvAuthTokenUsingPinWithPermissions.

Expected platform behavior to obtain a pinUvAuthToken is outlined in § 6.1.1 Platform Actions for
authenticatorMakeCredential (non-normative) and § 6.2.1 Platform Actions for authenticatorGetAssertion (non-
normative).

The following pinUvAuthToken permissions are defined:

Permission
name

Role Value RP ID Definition

mc MakeCredential 0x01 Required
This allows the pinUvAuthToken to be used for
authenticatorMakeCredential operations with
the provided rpId parameter.

ga GetAssertion 0x02 Required
This allows the pinUvAuthToken to be used for
authenticatorGetAssertion operations with the
provided rpId parameter.

3. Else return CTAP2_ERR_PIN_INVALID error.

8. Authenticator sets the pinRetries counter to maximum value.

9. The authenticator calls decrypt(shared secret, newPinEnc) to produce paddedNewPin. If an error results,
it returns CTAP2_ERR_PIN_AUTH_INVALID.

10. If paddedNewPin is NOT 64 bytes long, it returns CTAP1_ERR_INVALID_PARAMETER.

11. The authenticator drops all trailing 0x00 bytes from paddedNewPin to produce newPin.

12. The authenticator checks the length of newPin against the current minimum PIN length, returning
CTAP2_ERR_PIN_POLICY_VIOLATION if it is too short.

13. If the forcePINChange member of the authenticatorGetInfo response is true and LEFT(SHA-
256(newPin), 16) is equal to its internal stored LEFT(SHA-256(curPin), 16) then authenticator
returns CTAP2_ERR_PIN_POLICY_VIOLATION.

14. An authenticator MAY impose arbitrary, additional constraints on PINs. If newPin fails to satisfy such
additional constraints, the authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION.

15. Authenticator remembers newPin length internally as PINCodePointLength.

16. Authenticator sets the value of the forcePINChange member of the authenticatorGetInfo response to
false,

17. Authenticator stores LEFT(SHA-256(newPin), 16) internally as the new value of CurrentStoredPIN.

18. Authenticator sets the pinRetries counter to maximum count.

19. Authenticator calls resetPinUvAuthToken() for all pinUvAuthProtocols supported by this authenticator.
(I.e. all existing pinUvAuthTokens are invalidated.)

20. Authenticator returns CTAP2_OK.

6.5.5.7. Operations to Obtain a pinUvAuthToken

getPinUvAuthTokenUsingUvWithPermissions and getPinUvAuthTokenUsingPinWithPermissions can only be
used if the pinUvAuthToken Option ID is present and true.

getPinUvAuthTokenUsingUvWithPermissions can only be used if the uv Option ID is present and true.

getPinUvAuthTokenUsingPinWithPermissions and getPinToken can only be used if the clientPin Option ID is
present and true.

When requesting the be permission, getPinUvAuthTokenUsingUvWithPermissions can only be used if the
uvBioEnroll Option ID is present and true.

When requesting the acfg permission, getPinUvAuthTokenUsingUvWithPermissions can only be used if the
uvAcfg Option ID is present and true.

When requesting the mc or ga permissions, getPinUvAuthTokenUsingPinWithPermissions can only be used
if the noMcGaPermissionsWithClientPin Option ID is absent or set to false.

NOTE: Some permissions require the presence of the rpId parameter, known as a permissions RP ID.
See also § 6.5.2.1 pinUvAuthToken State.

44/137

cm
Credential

Management
0x04 Optional

This allows the pinUvAuthToken to be used
with the authenticatorCredentialManagement
command. The rpId parameter is optional, if it
is present, the pinUvAuthToken can only be
used for Credential Management operations
on Credentials associated with that RP ID.

be Bio Enrollment 0x08 Ignored

This allows the pinUvAuthToken to be used
with the authenticatorBioEnrollment command.
The rpId parameter is ignored for this
permission.

lbw
Large Blob

Write
0x10 Ignored

This allows the pinUvAuthToken to be used
with the authenticatorLargeBlobs command.
The rpId parameter is ignored for this
permission.

acfg
Authenticator
Configuration

0x20 Ignored
This allows the pinUvAuthToken to be used
with the authenticatorConfig command. The
rpId parameter is ignored for this permission.

Permission
name

Role Value RP ID Definition

When a pinUvAuthToken is used with an operation that tests user presence, it is updated to remove all
permissions except lbw. If lbw was not originally requested then the pinUvAuthToken becomes permission-less
and cannot be used for future operations. However, the platform can fetch a fresh pinUvAuthToken in order to
perform any future operations.

If authenticatorClientPIN's getPinToken subcommand is invoked, default permissions of mc and ga (value
0x03) are granted for the returned pinUvAuthToken. Other pinUvAuthToken permissions can only be acquired by
providing the permissions parameter to the getPinUvAuthTokenUsingPinWithPermissions (0x09) or
getPinUvAuthTokenUsingUvWithPermissions (0x06) subcommands.

Following operations are performed to get pinUvAuthToken:

Note: if default permissions are used, it is possible that the permissions RP ID is not set even though it is
required for some of the permissions. It will be set on first use of the pinUvAuthToken with an RP ID (for mc
and ga only). default permissions are only used with the getPinToken (0x05) subcommand.

6.5.5.7.1. GETTING PINUVAUTHTOKEN USING GETPINTOKEN (SUPERSEDED)

Platform collects PIN from the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

Platform obtains the shared secret from the authenticator.

Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

pinUvAuthProtocol: as selected when getting the shared secret.

subCommand: getPinToken (0x05).

keyAgreement: the platform key-agreement key.

pinHashEnc: the result of calling encrypt(shared secret, LEFT(SHA-256(PIN), 16)).

Authenticator performs following operations upon receiving the request:

If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

If authenticatorClientPIN's permissions parameter is present in the getPinToken (0x05)
subcommand, return CTAP1_ERR_INVALID_PARAMETER.

If authenticatorClientPIN's rpId parameter is present in the getPinToken (0x05) subcommand,
return CTAP1_ERR_INVALID_PARAMETER.

If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared
secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

If the authenticator has a display, request user consent for the default permissions. If this is not
approved, return CTAP2_ERR_OPERATION_DENIED.

Authenticator decrements the pinRetries counter by 1.

Authenticator decrypts pinHashEnc using decrypt and verifies against its internally stored
CurrentStoredPIN.

45/137

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.2-rd-20230321/authenticatorClientPIN

This subCommand MUST be implemented if the authenticator includes both clientPin and pinUvAuthToken
Option IDs set to true in the authenticatorGetInfo response.

If an error results, or a mismatch is detected, the authenticator performs the following operations:

Calls regenerate for the selected pinUvAuthProtocol.

Authenticator returns errors according to following conditions:

If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.

Else return CTAP2_ERR_PIN_INVALID error.

Authenticator sets the pinRetries counter to maximum value.

If the value of the forcePINChange member of the authenticatorGetInfo response is true, authenticator
returns CTAP2_ERR_PIN_INVALID error.

NOTE: The above error value is for backwards compatibility with CTAP2.0 platforms where the
authenticator implements the forcePINChange feature as part of the setMinPINLength command. A
pinUvAuthToken MUST NOT be returned if PINCodePointLength is less than current minimum PIN
length. This is intended to force a user to change their PIN to one that conforms to the current
authenticator policy. A CTAP2.1 platform will check the forcePINChange member of the
authenticatorGetInfo response, and not invoke this command without forcing the user to change PIN
first.

Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all pinUvAuthProtocols supported
by this authenticator. (I.e. all existing pinUvAuthTokens are invalidated.)

Call beginUsingPinUvAuthToken(userIsPresent: false).

If the noMcGaPermissionsWithClientPin option ID is present and set to false, or absent, then assign
the pinUvAuthToken the default permissions.

NOTE: If noMcGaPermissionsWithClientPin option ID is true, default permissions of mc and ga are
not given, but the token is still used by older CTAP 2.0 platforms for userVerificationMgmtPreview
and credentialMgmtPreview commands.

The authenticator returns the encrypted pinUvAuthToken for the specified pinUvAuthProtocol, i.e.
encrypt(shared secret, pinUvAuthToken).

6.5.5.7.2. GETTING PINUVAUTHTOKEN USING GETPINUVAUTHTOKENUSINGPINWITHPERMISSIONS (CLIENTPIN)

1. Platform collects PIN from the user.

NOTE: The platform collects the PIN before obtaining the shared secret. This prevents the shared
secret from being reset if a NFC transport is used and the user removes the authenticator from the NFC
reader’s field while typing the PIN.

2. Platform obtains the shared secret from the authenticator.

3. Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: getPinUvAuthTokenUsingPinWithPermissions (0x09).

3. keyAgreement: the platform key-agreement key.

4. pinHashEnc: the result of calling encrypt(shared secret, LEFT(SHA-256(PIN), 16)).

5. permissions: mandatory, the permissions associated with this pinUvAuthToken.

NOTE: The platform SHOULD request only the permissions absolutely necessary.

6. rpId: Required for some permissions, optional for others.

4. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

3. If the authenticator receives a permissions parameter with value 0, return
CTAP1_ERR_INVALID_PARAMETER.

4. The below statements each relate a pinUvAuthToken permission to a given state for a
authenticatorGetInfo option ID. For each pinUvAuthToken permission present in the permissions
parameter, if the statement corresponding to the permission is currently true, terminate these steps and

46/137

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.2-rd-20230321/authenticatorClientPIN

This subCommand is only applicable when the authenticator supports built-in user verification methods. This
subCommand MUST be implemented if the authenticator returns both uv and pinUvAuthToken option IDs set to
true in the authenticatorGetInfo response.

return CTAP2_ERR_UNAUTHORIZED_PERMISSION. Undefined permissions present in the
permissions parameter are ignored.

cm: credMgmt is false or absent.

be: bioEnroll is absent.

lbw: largeBlobs is false or absent.

acfg: authnrCfg is false or absent.

mc: noMcGaPermissionsWithClientPin is present and set to true.

ga: noMcGaPermissionsWithClientPin is present and set to true.

5. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

6. The authenticator calls decapsulate on the provided platform key-agreement key to obtain the shared
secret. If an error results, it returns CTAP1_ERR_INVALID_PARAMETER.

7. If the authenticator has a display, request user consent for the requested permissions. If this is not
approved, return CTAP2_ERR_OPERATION_DENIED.

8. Authenticator decrements the pinRetries counter by 1.

9. Authenticator decrypts pinHashEnc using decrypt and verifies against its internally stored
CurrentStoredPIN.

1. If an error results, or a mismatch is detected, the authenticator performs the following operations:

1. Calls regenerate for the selected pinUvAuthProtocol.

2. Authenticator returns errors according to following conditions:

1. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

2. If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.

3. Else return CTAP2_ERR_PIN_INVALID error.

10. Authenticator sets the pinRetries counter to maximum value.

11. If the value of the forcePINChange member of the authenticatorGetInfo response is true, authenticator
returns CTAP2_ERR_PIN_POLICY_VIOLATION. Platform on receiving such error response SHOULD
direct the user to change the PIN.

12. Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all pinUvAuthProtocols supported
by this authenticator. (I.e. all existing pinUvAuthTokens are invalidated.)

13. Call beginUsingPinUvAuthToken(userIsPresent: false).

14. Assign the requested permissions to the pinUvAuthToken, ignoring any undefined permissions.

15. If the rpId parameter is present, associate the permissions RP ID with the pinUvAuthToken.

16. The authenticator returns the encrypted pinUvAuthToken for the specified pinUvAuthProtocol, i.e.
encrypt(shared secret, pinUvAuthToken).

6.5.5.7.3. GETTING PINUVAUTHTOKEN USING GETPINUVAUTHTOKENUSINGUVWITHPERMISSIONS (BUILT-IN USER VERIFICATION

METHODS)

1. Platform obtains the shared secret from the authenticator.

2. Platform sends authenticatorClientPIN command. with following parameters to the authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: getPinUvAuthTokenUsingUvWithPermissions (0x06).

3. keyAgreement: the platform key-agreement key.

4. permissions: mandatory, the permissions associated with this pinUvAuthToken.

NOTE: The platform SHOULD request only the permissions absolutely necessary.

5. rpId: Required for some permissions, optional for others.

3. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

47/137

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.2-rd-20230321/authenticatorClientPIN

3. If the authenticator receives a permissions parameter with value 0, return
CTAP1_ERR_INVALID_PARAMETER.

4. The below statements each relate a pinUvAuthToken permission to a given state for a
authenticatorGetInfo option ID. For each pinUvAuthToken permission present in the permissions
parameter, if the statement corresponding to the permission is currently true, terminate these steps and
return CTAP2_ERR_UNAUTHORIZED_PERMISSION. The mc and ga permissions are always
considered authorized, thus they are not listed below. Undefined permissions present in the
permissions are ignored.

cm: credMgmt is false or absent.

be: uvBioEnroll is false or absent.

lbw: largeBlobs is false or absent.

acfg: uvAcfg is false or absent.

NOTE: Some authenticators with multiple built-in user verification methods may wish to support
the uvBioEnroll and authnrCfg features that enable the getPinUvAuthTokenUsingUvWithPermissions
subcommand to return the be and acfg permissions, allowing the platform to enroll fingerprints or
perform authenticatorConfig subCommands based, e.g., on a built-in PIN or other modality.

5. If a built-in user verification method is supported but not configured, the authenticator returns
CTAP2_ERR_NOT_ALLOWED.

6. If preferredPlatformUvAttempts > 1 then let internalRetry be false. This indicates that the platform will
try invoking this sub command preferably about preferredPlatformUvAttempts times. Else let
internalRetry be true.

7. If the uvRetries counter is 0, return CTAP2_ERR_UV_BLOCKED error.

8. If the authenticator has a display, request user consent for the requested permissions. If this is not
approved, return CTAP2_ERR_OPERATION_DENIED.

9. Let uvState be the result of calling performBuiltInUv(internalRetry)

10. If uvState is error:

1. If the error reason is a user action timeout, then return CTAP2_ERR_USER_ACTION_TIMEOUT.

2. If the uvRetries counter is 0, return CTAP2_ERR_UV_BLOCKED.

3. Otherwise, return CTAP2_ERR_UV_INVALID.

NOTE: The platform, upon receipt of CTAP2_ERR_UV_INVALID, SHOULD check the
uvRetries value using authenticatorClientPIN's getUVRetries subCommand. If uvRetries > 0 and
preferredPlatformUvAttempts > 1, platforms can materialize a UI to inform the user (if
appropriate) of the number of remaining retries remaining before user verification is blocked, in
conjunction with retrying getPinUvAuthTokenUsingUvWithPermissions. If either the platform
receives CTAP2_ERR_UV_BLOCKED or uvRetries is 0, and clientPin option ID is set to true,
then the platform MAY fall back to invoking getPinUvAuthTokenUsingPinWithPermissions.

11. Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all pinUvAuthProtocols supported
by this authenticator. (I.e. all existing pinUvAuthTokens are invalidated.)

12. If the employed built-in user verification method supplied evidence of user interaction, then call
beginUsingPinUvAuthToken(userIsPresent: true).

NOTE: Whether or not a particular built-in user verification method supplies user presence can
vary between authenticators.

13. Otherwise (implying that user presence was not collected), call
beginUsingPinUvAuthToken(userIsPresent: false).

14. Assign the requested permissions to the pinUvAuthToken, ignoring any undefined permissions.

15. If the rpId parameter is present, use its value as the permissions RP ID and associate it with the
pinUvAuthToken.

16. The authenticator returns the encrypted pinUvAuthToken for the specified pinUvAuthProtocol, i.e.
encrypt(shared secret, pinUvAuthToken).

48/137

Figure 1 Client PIN

This section specifies a concrete instance of the abstract PIN/UV auth protocol interfaces. It is given the numeric
identifier 1, and that is the value to pass in the pinUvAuthProtocol parameter in various commands, to select it.

This PIN/UV auth protocol maintains the following state:

This PIN/UV auth protocol defines the following internal functions:

6.5.6. PIN/UV Auth Protocol One

NOTE: This PIN protocol was essentially defined in CTAP2.0, the difference between the original definition
and this updated definition is that originally the pinToken (herein termed a pinUvAuthToken) length was
unlimited. The definition given here states specific lengths for pinUvAuthTokens in both this PIN/UV Auth
Protocol 1, and in PIN/UV Auth Protocol 2.

Key agreement key: a P-256 private key, x, and the associated public point xB, which is the result of a
scalar-multiplication of the P-256 base point, B, by the private key.

pinUvAuthToken, a random, opaque byte string that MUST be either 16 or 32 bytes long. This is generated
afresh at power-on and reset when specified below.

49/137

Return SHA-256(Z)

(See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol details
and key representation.)

The operations of PIN/UV auth protocol 1 are defined as follows:

Calls regenerate followed by resetPinUvAuthToken.

Generate a fresh, random P-256 private key, x, and compute the associated public point.

Return a COSE_Key with the following header parameters:

Return ecdh(peerCoseKey)

Return the AES-256-CBC encryption of demPlaintext using an all-zero IV. (No padding is performed as the
size of demPlaintext is required to be a multiple of the AES block length.)

If the size of demCiphertext is not a multiple of the AES block length, return error. Otherwise return the AES-
256-CBC decryption of demCiphertext using an all-zero IV.

Return the first 16 bytes of the result of computing HMAC-SHA-256 with the given key and message.

This section provides a PIN/UV auth protocol that is intended to aid FIPS [CMVP] certification of authenticators. It
is given the numeric identifier 2, and that is the value to pass in the pinUvAuthProtocol parameter in various
commands, to select it.

The length of the pinUvAuthToken for PIN/UV auth protocol two MUST be 32 bytes. Otherwise, it inherits all the
behavior of PIN protocol one and overrides only these functions:

Return
HKDF-SHA-256(salt = 32 zero bytes, IKM = Z, L = 32, info = "CTAP2 HMAC key") ||
HKDF-SHA-256(salt = 32 zero bytes, IKM = Z, L = 32, info = "CTAP2 AES key")
(see [RFC5869] for the definition of HKDF).

ecdh(peerCoseKey) → sharedSecret | error
1. Parse peerCoseKey as specified for getPublicKey, below, and produce a P-256 point, Y. If

unsuccessful, or if the resulting point is not on the curve, return error.

2. Calculate xY, the shared point. (I.e. the scalar-multiplication of the peer’s point, Y, with the local private
key agreement key.)

3. Let Z be the 32-byte, big-endian encoding of the x-coordinate of the shared point.

4. Return kdf(Z).

kdf(Z) → sharedSecret

initialize()

regenerate()

resetPinUvAuthToken()
1. Generate a fresh, random, pinUvAuthToken of either 16 or 32 bytes in length.

2. Associate pinUvAuthToken state variables with the new pinUvAuthToken, initialized per § 6.5.2.1
pinUvAuthToken State.

getPublicKey()

1 (kty) = 2 (EC2)

3 (alg) = -25 (although this is not the algorithm actually used)

-1 (crv) = 1 (P-256)

-2 (x) = 32-byte, big-endian encoding of the x-coordinate of xB (the key agreement key's public point)

-3 (y) = 32-byte, big-endian encoding of the y-coordinate of xB

encapsulate(peerCoseKey) → (coseKey, sharedSecret) | error
1. Let sharedSecret be the result of calling ecdh(peerCoseKey). Return any resulting error.

2. Return (getPublicKey(), sharedSecret)

decapsulate(peerCoseKey) → sharedSecret | error

encrypt(key, demPlaintext) → ciphertext

decrypt(key, demCiphertext) → plaintext | error

authenticate(key, message) → signature

verify(key, message, signature) → success | error
1. If the key parameter value is the current pinUvAuthToken and it is not in use, then return error.

2. Compute HMAC-SHA-256 with the given key and message. Return success if signature is 16 bytes and
is equal to the first 16 bytes of the result, otherwise return error.

6.5.7. PIN/UV Auth Protocol Two

NOTE: support for this is mandatory in some cases. See § 9 Mandatory features.

kdf(Z) → sharedSecret

NOTE: This is two separate invocations of HKDF whose results are concatenated together. It can NOT
be equivalently performed using a single invocation with L=64.

resetPinUvAuthToken()

50/137

Throughout this protocol, the pseudo-random function defined by HMAC-SHA-256 and the pinUvAuthToken is
evaluated for various values in order to authenticate requests from the platform. It is important that these values
uniquely identify the salient parameters of the requests that they authenticate otherwise a PRF output from one
context could be observed by an attacker and replayed in a different context.

(It is a known weakness that, within the scope of a single pinUvAuthToken value, requests may be reordered or
replayed by an attacker.)

For clarity, all the patterns of values used by this protocol are enumerated in the following table:

Context Pattern of PRF argument

authenticatorMakeCredential 32 arbitrary bytes

authenticatorGetAssertion 32 arbitrary bytes

authenticatorClientPIN 32×0xff || 0608 || 32-bit value || CBOR array

authenticatorBioEnrollment 0101 || CBOR map
0102 || CBOR map
0104
0105 || CBOR map

authenticatorCredentialManagement 01
02
04 || CBOR map
06 || CBOR map

authenticatorLargeBlobs
32×0xff || 0c00 || 32-bit value || SHA-256(contents of set byte string, i.e.
not including an outer CBOR tag with major type two)

authenticatorConfig 32×0xff || 0d || 8-bit value || CBOR map

In order to avoid collisions with values already used the following pattern will be used for future commands: 32
0xff bytes, followed by the command code as a single byte, followed by an unambiguous substructure defined by
each command.

The leading 0xff bytes in the pattern separate the value from any possible value used in an
authenticatorMakeCredential or authenticatorGetAssertion command. As motivation, consider the
authenticatorBioEnrollment command which does not use this pattern. The argument to
authenticatorGetAssertion is a clientDataHash which, in a WebAuthn context, is the hash of a potentially
predictable JSON string containing an attacker-controlled nonce. Offline, an attacker can iterate over many
nonces until they find one which will produce a clientDataHash that starts with 0101a1, is followed by a CBOR
string or integer not equal to three, and then by a CBOR value that exactly fills the remaining space. This

requires around 232 offline hash evaluations but, if the attacker can observe the PRF output sent by the platform
for an authenticatorGetAssertion command using that nonce, then they can replay it to start a fingerprint
enrollment as the PRF argument also matches the pattern for enrolling a fingerprint. (Although note that more
work is required to complete the enrollment as that requires further commands to be authenticated.)

1. Generate a fresh, random, 32-byte, pinUvAuthToken.

2. Associate pinUvAuthToken state variables with the new pinUvAuthToken, initialized per § 6.5.2.1
pinUvAuthToken State.

encrypt(key, demPlaintext) → ciphertext
1. Discard the first 32 bytes of key. (This selects the AES-key portion of the shared secret.)

2. Let iv be a 16-byte, random bytestring.

3. Let ct be the AES-256-CBC encryption of demPlaintext using key and iv. (No padding is performed as
the size of demPlaintext is required to be a multiple of the AES block length.)

4. Return iv || ct.

decrypt(key, demCiphertext) → plaintext | error
1. Discard the first 32 bytes of key. (This selects the AES-key portion of the shared secret.)

2. If demPlaintext is less than 16 bytes in length, return an error

3. Split demPlaintext after the 16th byte to produce two subspans, iv and ct.

4. Return the AES-256-CBC decryption of ct using key and iv.

authenticate(key, message) → signature
1. If key is longer than 32 bytes, discard the excess. (This selects the HMAC-key portion of the shared

secret. When key is the pinUvAuthToken, it is exactly 32 bytes long and thus this step has no effect.)

2. Return the result of computing HMAC-SHA-256 on key and message.

verify(key, message, signature) → success | error
1. If the key parameter value is the current pinUvAuthToken and it is not in use, then return error.

2. If key is longer than 32 bytes, discard the excess. (This selects the HMAC-key portion of the shared
secret. When key is the pinUvAuthToken, it is exactly 32 bytes long and thus this step has no effect.)

3. Compute HMAC-SHA-256 with the given key and message. Return success if the signature is equal to
the result, otherwise return an error.

6.5.8. PRF values used

51/137

Resetting an authenticator is a potentially destructive operation. Authenticators MAY thus choose, for each
transport they support, whether this command will be supported when received on that transport. For example,
an authenticator may choose not to support this command over NFC, fearing that coincidentally nearby readers
may send malicious reset commands.

However this command MUST be supported on at least one transport. If the USB HID transport is supported then
this command MUST be supported on that transport.

This method is used by the client to reset an authenticator back to a factory default state. Specifically this action
at least:

Additionally:

If all conditions are met, authenticator returns CTAP2_OK. If this command is disabled for the transport used, the
authenticator returns CTAP2_ERR_OPERATION_DENIED. If user presence is explicitly denied, the
authenticator returns CTAP2_ERR_OPERATION_DENIED. If a user action timeout occurs, the authenticator
returns CTAP2_ERR_USER_ACTION_TIMEOUT. If the request comes after 10 seconds of powering up, the
authenticator returns CTAP2_ERR_NOT_ALLOWED.

This command is used by the platform to provision/enumerate/delete bio enrollments in the authenticator.

It takes the following input parameters:

Parameter name
Data
type

Required? Definition

modality (0x01)
Unsigned

Integer
Optional

The user verification modality being requested

subCommand (0x02)
Unsigned

Integer
Optional

The authenticator user verification sub command
currently being requested

subCommandParams
(0x03)

CBOR
Map Optional

Map of subCommands parameters. This parameter
MAY be omitted when the subCommand does not
take any arguments.

pinUvAuthProtocol
(0x04)

Unsigned
Integer

Optional
PIN/UV protocol version chosen by the platform.

pinUvAuthParam
(0x05)

Byte
String

Optional
First 16 bytes of HMAC-SHA-256 of contents using
pinUvAuthToken.

getModality (0x06) Boolean Optional
Get the user verification type modality. This MUST
be set to true.

The type of modalities supported are as under:

modality Name modality Number

fingerprint 0x01

The list of sub commands for fingerprint(0x01) modality is:

subCommand Name subCommand Number

enrollBegin 0x01

6.6. authenticatorReset (0x07)

Invalidates all generated credentials, including those created over CTAP1/U2F.

Erases all discoverable credentials.

Resets the serialized large-blob array storage, if any, to the initial serialized large-blob array value.

Disables those features that are denoted as being subject to disablement by authenticatorReset:

Enterprise attestation

Resets those features that are denoted as being subject to reset by authenticatorReset:

Always Require User Verification

Set Minimum PIN Length

In order to prevent an accidental triggering of this mechanism, evidence of user interaction is required.

In case of authenticators with no display, request MUST have come to the authenticator within 10 seconds
of powering up of the authenticator.

6.7. authenticatorBioEnrollment (0x09)

52/137

enrollCaptureNextSample 0x02

cancelCurrentEnrollment 0x03

enumerateEnrollments 0x04

setFriendlyName 0x05

removeEnrollment 0x06

getFingerprintSensorInfo 0x07

subCommand Name subCommand Number

subCommandParams Fields:

Field name Data type Required? Definition

templateId (0x01) Byte String Optional Template Identifier.

templateFriendlyName (0x02) String Optional Template Friendly Name.

timeoutMilliseconds (0x03) Unsigned Integer Optional Timeout in milliSeconds.

On success, authenticator returns the following structure in its response:

Parameter name
Data
type

Required? Definition

modality (0x01)
Unsigned

Integer
Optional

The user verification modality.

fingerprintKind (0x02)
Unsigned

Integer
Optional

Indicates the type of fingerprint
sensor. For touch type sensor, its
value is 1. For swipe type sensor
its value is 2.

maxCaptureSamplesRequiredForEnroll
(0x03)

Unsigned
Integer

Optional
Indicates the maximum good
samples required for enrollment.

templateId (0x04)
Byte

String
Optional

Template Identifier.

lastEnrollSampleStatus (0x05)
Unsigned

Integer
Optional

Last enrollment sample status.

remainingSamples (0x06)
Unsigned

Integer
Optional

Number of more sample required
for enrollment to complete

templateInfos (0x07)
CBOR

ARRAY
Optional

Array of templateInfo’s

maxTemplateFriendlyName (0x08)
Unsigned

Integer
Optional

Indicates the maximum number of
bytes the authenticator will accept
as a templateFriendlyName.

TemplateInfo definition:

Field name Data type Required? Definition

templateId (0x01) Byte String Required Template Identifier.

templateFriendlyName (0x02) String Optional Template Friendly Name.

lastEnrollSampleStatus types:

lastEnrollSampleStatus Name
lastEnrollSampleStatus

Value
Definition

CTAP2_ENROLL_FEEDBACK_FP_GOOD 0x00
Good
fingerprint
capture.

CTAP2_ENROLL_FEEDBACK_FP_TOO_HIGH 0x01
Fingerprint
was too high.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LOW 0x02
Fingerprint
was too low.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LEFT 0x03
Fingerprint
was too left.

53/137

CTAP2_ENROLL_FEEDBACK_FP_TOO_RIGHT 0x04
Fingerprint
was too right.

CTAP2_ENROLL_FEEDBACK_FP_TOO_FAST 0x05
Fingerprint
was too fast.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SLOW 0x06
Fingerprint
was too slow.

CTAP2_ENROLL_FEEDBACK_FP_POOR_QUALITY 0x07
Fingerprint
was of poor
quality.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SKEWED 0x08
Fingerprint
was too
skewed.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SHORT 0x09
Fingerprint
was too
short.

CTAP2_ENROLL_FEEDBACK_FP_MERGE_FAILURE 0x0A
Merge failure
of the
capture.

CTAP2_ENROLL_FEEDBACK_FP_EXISTS 0x0B
Fingerprint
already
exists.

(unused) 0x0C
(this error
number is
available)

CTAP2_ENROLL_FEEDBACK_NO_USER_ACTIVITY 0x0D

User did not
touch/swipe
the
authenticator.

CTAP2_ENROLL_FEEDBACK_NO_USER_PRESENCE_TRANSITION 0x0E

User did not
lift the finger
off the
sensor.

lastEnrollSampleStatus Name
lastEnrollSampleStatus

Value
Definition

The bioEnroll option ID in the authenticatorGetInfo response defines feature support detection for this feature.

Following operations are performed to get bio modality supported by the authenticator:

Following operations are performed to get fingerprint sensor information:

NOTE: In order to support the authenticator performing authenticatorMakeCredential or
authenticatorGetAssertion immediately after bio enrollment, authenticators SHOULD NOT expire the
pinUvAuthToken at the completion of bio enrollment.

6.7.1. Feature detection

6.7.2. Get bio modality

Platform sends authenticatorBioEnrollment command with following parameters:

getModality (0x06): true.

Authenticator returns authenticatorBioEnrollment response with following parameters:

modality (0x01): It represents the type of modality authenticator supports. For fingerprint, its value is 1.

6.7.3. Get fingerprint sensor info

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): getFingerprintSensorInfo (0x07)

Authenticator returns authenticatorBioEnrollment response with following parameters:

fingerprintKind (0x02):

54/137

Following operations are performed to enroll a fingerprint:

For touch type fingerprints, its value is 1.

For swipe type fingerprints, its value is 2.

maxCaptureSamplesRequiredForEnroll (0x03): Indicates the maximum good samples required for
enrollment.

maxTemplateFriendlyName (0x08): Indicates the maximum number of bytes the authenticator will
accept as a templateFriendlyName.

6.7.4. Enrolling fingerprint

Platform gets pinUvAuthToken from the authenticator with the be permission.

Platform sends authenticatorBioEnrollment command with following parameters to begin the enrollment:

modality (0x01): fingerprint (0x01).

subCommand (0x02): enrollBegin (0x01).

subCommandParams (0x03): Map containing following parameters

timeoutMilliseconds (0x03) (optional): timeout in milliseconds

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || enrollBegin (0x01) ||
subCommandParams).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enrollBegin (0x01) ||
subCommandParams, pinUvAuthParam)

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

Authenticator verifies that the token has be permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there is no space available, authenticator returns CTAP2_ERR_FP_DATABASE_FULL.

Authenticator cancels any unfinished ongoing enrollment.

Authenticator generates templateId for new enrollment.

Authenticator sends the command to the sensor to capture the sample.

Authenticator returns authenticatorBioEnrollment response with following parameters:

templateId (0x04): template identifier of the new template being enrolled.

lastEnrollSampleStatus (0x05) : Status of enrollment of last sample.

remainingSamples (0x06) : Number of sample remaining to complete the enrollment.

Platform sends authenticatorBioEnrollment command with following parameters to continue enrollment in a
loop till remainingSamples is zero or authenticator errors out with unrecoverable error or platform wants to
cancel current enrollment:

Platform sends authenticatorBioEnrollment command with following parameters

modality (0x01): fingerprint (0x01).

subCommand (0x02): enrollCaptureNextSample (0x02).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifier platform received from enrollBegin subCommand.

timeoutMilliseconds (0x03) (optional): timeout in milliseconds

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) ||
enrollCaptureNextSample (0x02) || subCommandParams).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the
operation by returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

55/137

Following operations are performed to cancel current enrollment:

Following operations are performed to enumerate enrollments:

Following operations are performed to rename a fingerprint:

Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enrollCaptureNextSample (0x02) ||
subCommandParams, pinUvAuthParam)

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

Authenticator verifies that the pinUvAuthToken has be permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there is no space available, authenticator returns CTAP2_ERR_FP_DATABASE_FULL.

If fingerprint is already present on the sensor, authenticator waits for user to lift finger from the
sensor.

Authenticator sends the command to the sensor to capture the sample.

Authenticator returns authenticatorBioEnrollment response with following parameters:

lastEnrollSampleStatus (0x05) : Status of enrollment of last sample.

remainingSamples (0x06) : Number of sample remaining to complete the enrollment.

6.7.5. Cancel current enrollment

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): cancelCurrentEnrollment (0x03).

Authenticator on receiving such command, cancels current ongoing enrollment, if any, and returns
CTAP2_OK.

6.7.6. Enumerate enrollments

Platform gets pinUvAuthToken from the authenticator with the be permission.

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): enumerateEnrollments (0x04).

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || enumerateEnrollments
(0x04)).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enumerateEnrollments (0x04),
pinUvAuthParam)

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

Authenticator verifies that the token has be permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there are no enrollments existing on authenticator, it returns CTAP2_ERR_INVALID_OPTION.

Authenticator returns authenticatorBioEnrollment response following parameters:

templateInfos (0x07) : Array of templateInfo’s for all the enrollments available on the authenticator.

6.7.7. Rename/Set FriendlyName

Platform gets pinUvAuthToken from the authenticator with the be permission.

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): setFriendlyName (0x05).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifier.

56/137

Following operations are performed to remove a fingerprint:

templateFriendlyName (0x02): Friendly name of the template. (The maximum size SHOULD be the
lessor of 64 bytes or the value of maxTemplateFriendlyName)

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || setFriendlyName (0x05) ||
subCommandParams).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

If templateFriendlyName is longer than specified by maxTemplateFriendlyName, return an error e.g.,
CTAP1_ERR_INVALID_LENGTH.

Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || setFriendlyName (0x05) ||
subCommandParams, pinUvAuthParam)

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

Authenticator verifies that the token has be permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there are no enrollments existing on authenticator for the passed templateId, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an existing enrollment with that identifier, rename its friendly name and return CTAP2_OK.

6.7.8. Remove enrollment

Platform gets pinUvAuthToken from the authenticator with the be permission.

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): removeEnrollment (0x06).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifier.

pinUvAuthProtocol (0x04): as selected when getting the shared secret.

pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) || removeEnrollment (0x06) ||
subCommandParams).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || removeEnrollment (0x06) ||
subCommandParams, pinUvAuthParam)

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

Authenticator verifies that the token has be permission, if not, it returns
CTAP2_ERR_PIN_AUTH_INVALID.

If there are no enrollments existing on authenticator for passed templateId, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an exiting enrollment with passed in templateInfo, delete that enrollment and return
CTAP2_OK.

57/137

Figure 2 User Verification Modality - Fingerprint

This command is used by the platform to manage discoverable credentials on the authenticator.

It takes the following input parameters:

Parameter name Data type Definition

6.8. authenticatorCredentialManagement (0x0A)

NOTE: support for this command is mandatory in some cases. See § 9 Mandatory features.

58/137

subCommand (0x01) Unsigned
Integer

subCommand currently being requested

subCommandParams
(0x02)

CBOR Map
Map of subCommands parameters.

pinUvAuthProtocol
(0x03)

Unsigned
Integer

PIN/UV protocol version chosen by the platform.

pinUvAuthParam (0x04) Byte String
First 16 bytes of HMAC-SHA-256 of contents using
pinUvAuthToken.

Parameter name Data type Definition

The list of sub commands for credential management is:

subCommand Name subCommand Number

getCredsMetadata 0x01

enumerateRPsBegin 0x02

enumerateRPsGetNextRP 0x03

enumerateCredentialsBegin 0x04

enumerateCredentialsGetNextCredential 0x05

deleteCredential 0x06

updateUserInformation 0x07

subCommandParams Fields:

Field name Data type Definition

rpIDHash (0x01) Byte String RP ID SHA-256 hash

credentialID (0x02) PublicKeyCredentialDescriptor Credential Identifier

user (0x03) PublicKeyCredentialUserEntity User Entity

On success, authenticator returns the following structure in its response:

Parameter name Data type Definition

existingResidentCredentialsCount (0x01) Unsigned Integer
Number of existing
discoverable credentials
present on the authenticator.

maxPossibleRemainingResidentCredentialsCount
(0x02)

Unsigned Integer

Number of maximum possible
remaining discoverable
credentials which can be
created on the authenticator.

rp (0x03) PublicKeyCredentialRpEntity RP Information

rpIDHash (0x04) Byte String RP ID SHA-256 hash

totalRPs (0x05) Unsigned Integer
total number of RPs present
on the authenticator

user (0x06) PublicKeyCredentialUserEntity User Information

credentialID (0x07) PublicKeyCredentialDescriptor PublicKeyCredentialDescriptor

publicKey (0x08) COSE_Key Public key of the credential.

totalCredentials (0x09) Unsigned Integer
Total number of credentials
present on the authenticator
for the RP in question

credProtect (0x0A) Unsigned Integer Credential protection policy.

largeBlobKey (0x0B) Byte string Large blob encryption key.

thirdPartyPayment (0x0C) Boolean
Whether the credential is third-
party payment enabled, if
supported by the authenticator

59/137

https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity

The credMgmt option ID in the authenticatorGetInfo response defines feature support detection for this feature.

Following operations are performed to get credentials metadata information :

Following operations are performed to enumerate RPs present on the authenticator:

Here are some example scenarios where credential management might be used:

The platform may want to do actual credential management, e.g. list, update, or delete credentials. In this
case, a permissions RP ID is not associated with the pinUvAuthToken and all credentials can be
enumerated and retrieved.

The platform may need to fetch the public key of a credential for use in some protocols like SSH. When
making the authenticatorGetAssertion request, a permissions RP ID is present (because it is required for
the ga permission) but now the cm permission will only allow you to retrieve credentials related to that
authenticatorGetAssertion request. This works because you do not need access to all credentials, just
the ones relevant for the request’s associated RP ID.

The platform may want to garbage collect large-blobs because it finds that there is insufficient space to
store a desired blob. Since it’s possible that a credential has been deleted without also deleting its large
blob, the platform may be able to free up enough space with garbage collection. In this case, additional
user interaction may be needed because a permissions RP ID needs to be associated with the
pinUvAuthToken for the ga or mc permission to be obtained, but a full enumeration needs the cm
permission without any RP ID limitation. Thus the user may need to perform user verification a second
time if garbage collection of just the single RP ID is insufficient.

6.8.1. Feature detection

6.8.2. Getting Credentials Metadata

Platform gets pinUvAuthToken from the authenticator with the cm permission, and MUST NOT include a
permissions RP ID parameter.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): getCredsMetadata (0x01).

pinUvAuthProtocol (0x03): as selected when getting the shared secret.

pinUvAuthParam (0x04): authenticate(pinUvAuthToken, getCredsMetadata (0x01)).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, getCredsMetadata (0x01), pinUvAuthParam)

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

The authenticator verifies that the pinUvAuthToken has the cm permission and no associated
permissions RP ID. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

Authenticator returns authenticatorCredentialManagement response with following parameters:

existingResidentCredentialsCount (0x01) : total number of discoverable credentials existing on the
authenticator.

maxPossibleRemainingResidentCredentialsCount (0x02) : maximum number of possible remaining
discoverable credentials that can be created on the authenticator. Note that this number is an
estimate as actual space consumed to create a credential depends on various conditions such as
which algorithm is picked, user entity information etc.

6.8.3. Enumerating RPs

Platform gets pinUvAuthToken from the authenticator with the cm permission, and MUST NOT include a
permissions RP ID parameter.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateRPsBegin (0x02).

pinUvAuthProtocol (0x03): as selected when getting the shared secret.

pinUvAuthParam (0x04): authenticate(pinUvAuthToken, enumerateRPsBegin (0x02)).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning

60/137

Following operations are performed to enumerate credentials for an RP:

CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, enumerateRPsBegin (0x02), pinUvAuthParam).

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

The authenticator verifies that the pinUvAuthToken has the cm permission and no associated
permissions RP ID. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

If no discoverable credentials exist on this authenticator, return CTAP2_ERR_NO_CREDENTIALS.

Authenticator returns an authenticatorCredentialManagement response with following parameters:

rp (0x03): PublicKeyCredentialRpEntity, where the id field SHOULD be included and other
fields MAY be included. (See § 6.8.7 Truncation of relying party identifiers about possible truncation
of the id field and [WebAuthn] about other fields.)

rpIDHash (0x04) : RP ID SHA-256 hash.

totalRPs (0x05) : Total number of RPs present on the authenticator.

Platform on receiving more than 1 totalRPs, performs following procedure for (totalRPs - 1) number of
times:

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateRPsGetNextRP (0x03).

NOTE: this is a stateful command and the specified implementation accommodations apply to it.

Authenticator on receiving such enumerateCredentialsGetNext subCommand returns
authenticatorCredentialManagement response with following parameters:

rp (0x03): PublicKeyCredentialRpEntity

rpIDHash (0x04) : RP ID SHA-256 hash.

6.8.4. Enumerating Credentials for an RP

Platform gets pinUvAuthToken from the authenticator with the cm permission.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateCredentialsBegin (0x04).

subCommandParams (0x02): Map containing following parameters

rpIDHash (0x01): RP ID SHA-256 hash.

pinUvAuthProtocol (0x03): as selected when getting the shared secret.

pinUvAuthParam (0x04): authenticate(pinUvAuthToken, enumerateCredentialsBegin (0x04) ||
subCommandParams).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, enumerateCredentialsBegin (0x04) || subCommandParams,
pinUvAuthParam)

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

The authenticator verifies that the pinUvAuthToken has the cm permission and that the pinUvAuthToken
does not have an permissions RP ID associated or that the pinUvAuthToken permissions RP ID
matches the RP ID of this request. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

If no discoverable credentials for this RP ID hash exist on this authenticator, return
CTAP2_ERR_NO_CREDENTIALS.

Authenticator returns authenticatorCredentialManagement response with following parameters:

user (0x06): PublicKeyCredentialUserEntity

credentialID (0x07): PublicKeyCredentialDescriptor

publicKey (0x08): public key of the credential in COSE_Key format

totalCredentials (0x09): total number of credentials for this RP

61/137

https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity

Following operations are performed to delete a credential:

Following operations are performed to update user information associated to a credential:

credProtect (0x0A): credential protection policy

largeBlobKey (0x0B): the contents, if any, of the stored largeBlobKey.

thirdPartyPayment (0x0C): present only if the authenticator supports the thirdPartyPayment
extension. True if the credential is third-party payment enabled, false otherwise.

Platform on receiving more than 1 totalCredentials, performs following procedure for (totalCredentials - 1)
number of times:

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateCredentialsGetNextCredential (0x05).

NOTE: this is a stateful command and the specified implementation accommodations apply to it.

Authenticator on receiving such enumerateCredentialsGetNext subCommand returns with following
parameters:

user (0x06): PublicKeyCredentialUserEntity

credentialID (0x07): PublicKeyCredentialDescriptor

publicKey (0x08): public key of the credential in COSE_Key format

credProtect (0x0A): credential protection policy

largeBlobKey (0x0B): the contents, if any, of the stored largeBlobKey.

thirdPartyPayment (0x0C): present only if the authenticator supports the thirdPartyPayment
extension. True if the credential is third-party payment enabled, false otherwise.

NOTE: when enumerating credentials, platforms SHOULD take the opportunity to perform large-blob
garbage collection, if applicable.

6.8.5. DeleteCredential

Platform gets pinUvAuthToken from the authenticator with the cm permission.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): deleteCredential (0x06).

subCommandParams (0x02): Map containing following parameters

credentialId (0x02): PublicKeyCredentialDescriptor of the credential to be deleted.

pinUvAuthProtocol (0x03): as selected when getting the shared secret.

pinUvAuthParam (0x04): authenticate(pinUvAuthToken, deleteCredential (0x06) ||
subCommandParams).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, deleteCredential (0x06) || subCommandParams,
pinUvAuthParam)

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

The authenticator verifies that the pinUvAuthToken has the cm permission and that the pinUvAuthToken
does not have a permissions RP ID associated or that the pinUvAuthToken permissions RP ID matches
the RP ID of the credential. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

If there are not credential existing matching credentialDescriptor, return
CTAP2_ERR_NO_CREDENTIALS.

Delete the credential and return CTAP2_OK.

NOTE: when deleting a credential, platforms SHOULD also delete any associated large blobs.

6.8.6. Updating user information

Platform gets pinUvAuthToken from the authenticator with the cm permission.

Platform sends authenticatorCredentialManagement command with following parameters:

62/137

An authenticator MAY store relying party identifiers in order to implement authenticatorCredentialManagement.
As there is no bound on their length, authenticators MAY truncate them using a procedure that produces the
same results as the code included below. If authenticators store relying party identifiers at all, they MUST store
at least 32 bytes. Truncation of relying party identifiers only applies to returning a
PublicKeyCredentialRpEntity structure in the context of this command. I.e. authenticators MUST NOT
use truncated relying party identifiers for comparisons at any time, including in the context of this command.

subCommand (0x01): updateUserInformation (0x07).

subCommandParams (0x02): Map containing the parameters that need to be updated.

credentialId (0x02): PublicKeyCredentialDescriptor of the credential to be updated.

user (0x03): a PublicKeyCredentialUserEntity with the updated information.

pinUvAuthProtocol (0x03): as selected when getting the shared secret.

pinUvAuthParam (0x04): authenticate(pinUvAuthToken, updateUserInformation (0x07) ||
subCommandParams).

Authenticator on receiving such request performs following procedures.

If pinUvAuthParam is missing from the input map, end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

If the authenticator does not receive mandatory parameters for this subcommand, end the operation by
returning CTAP2_ERR_MISSING_PARAMETER.

If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

Authenticator calls verify(pinUvAuthToken, updateUserInformation (0x07) || subCommandParams,
pinUvAuthParam)

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

The authenticator verifies that the pinUvAuthToken has the cm permission and that the pinUvAuthToken
does not have a permissions RP ID associated or that the pinUvAuthToken permissions RP ID matches
the RP ID of the credential. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

The authenticator searches for an existing credential matching credentialId.

If no matching credential is found, return CTAP2_ERR_NO_CREDENTIALS.

If the authenticator does not have enough internal storage to update the matching credential, return
CTAP2_ERR_KEY_STORE_FULL.

If the supplied user parameter’s id field is not the same as the matching credential’s id field then
return CTAP1_ERR_INVALID_PARAMETER.

Replace the matching credential’s PublicKeyCredentialUserEntity's name, displayName with
the passed-in user details. If a field is not present in the passed user details, or it is present and empty,
remove it from the matching credential’s PublicKeyCredentialUserEntity.

Return CTAP2_OK.

6.8.7. Truncation of relying party identifiers

63/137

https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-id
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dom-publickeycredentialentity-name
https://w3c.github.io/webauthn/#dom-publickeycredentialuserentity-displayname
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://www.w3.org/TR/webauthn-2#relying-party-identifier
https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://www.w3.org/TR/webauthn-2#relying-party-identifier

#define MAX_STORED_RPID_LENGTH 32 /* MUST be >= 32 */

void maybe_truncate_rpid(uint8_t stored_rpid[MAX_STORED_RPID_LENGTH],
 size_t *stored_len, const uint8_t *rpid,
 size_t rpid_len) {
 if (rpid_len <= MAX_STORED_RPID_LENGTH) {
 memcpy(stored_rpid, rpid, rpid_len);
 *stored_len = rpid_len;
 return;
 }

 size_t used = 0;
 const uint8_t *colon_position = memchr(rpid, ':', rpid_len);
 if (colon_position != NULL) {
 const size_t protocol_len = colon_position - rpid + 1;
 const size_t to_copy = protocol_len <= MAX_STORED_RPID_LENGTH
 ? protocol_len
 : MAX_STORED_RPID_LENGTH;
 memcpy(stored_rpid, rpid, to_copy);
 used += to_copy;
 }

 if (MAX_STORED_RPID_LENGTH - used < 3) {
 *stored_len = used;
 return;
 }

 // U+2026, horizontal ellipsis.
 stored_rpid[used++] = 0xe2;
 stored_rpid[used++] = 0x80;
 stored_rpid[used++] = 0xa6;

 const size_t to_copy = MAX_STORED_RPID_LENGTH - used;
 memcpy(&stored_rpid[used], rpid + rpid_len - to_copy, to_copy);
 assert(used + to_copy == MAX_STORED_RPID_LENGTH);
 *stored_len = MAX_STORED_RPID_LENGTH;
}

For illutrative purposes, here are some examples of the truncation in effect:

Input RP ID Stored RP ID Comment

example.com example.com No truncation applied

myfidousingwebsite.hostingprovider.net …ngwebsite.hostingprovider.net Truncation applied on
the left

mygreatsite.hostingprovider.info mygreatsite.hostingprovider.info No truncation applied
to strings of length
32; any sentinel
values (e.g. NUL
bytes in C) are
internal to the
authenticator
implementation and
do not count towards
the protocol defined
length

otherprotocol://myfidousingwebsite.hostingprovider.net otherprotocol:…ingprovider.net Protocol strings are
preserved if possible

veryexcessivelylargeprotocolname://example.com veryexcessivelylargeprotocolname Protocol strings may
consume the entire
space

This command allows the platform to let a user select a certain authenticator by asking for user presence.

The command has no input parameters.

When the authenticatorSelection command is received, the authenticator will ask for user presence:

6.9. authenticatorSelection (0x0B)

If User Presence is received, the authenticator will return CTAP2_OK.

If User Presence is explicitly denied by the user, the authenticator will return
CTAP2_ERR_OPERATION_DENIED. The platform SHOULD NOT repeat the command for this
authenticator.

If a user action timeout occurs, the authenticator will return CTAP2_ERR_USER_ACTION_TIMEOUT. The
platform MAY repeat the command for this authenticator.

64/137

If an authenticator is selected, the platform SHOULD send a cancel to all other authenticators.

The credBlob extension allows for a small amount of additional, secret information to be stored with a credential.
In contrast, this command allows a platform to store a larger amount of information associated with a credential,
protected by a key that is then stored and accessed using the largeBlobKey extension. The opaque large-blob
data that is stored for a credential is a byte string with RP-specific structure. This is only applicable to
discoverable credentials so that garbage collection is possible.

This command allows at least 1024 bytes of large blob data to be stored on CTAP2 authenticators. For the
purposes of this command, this data is serialized as a CBOR-encoded array (called the large-blob array) of
large-blob maps, concatenated with 16 following bytes. Those final 16 bytes are the truncated SHA-256 hash of
the preceding bytes. This concatenation is referred to as the serialized large-blob array.

The initial serialized large-blob array is the value of the serialized large-blob array on a fresh authenticator, as
well as immediately after a reset. It is the byte string h'8076be8b528d0075f7aae98d6fa57a6d3c', which is an
empty CBOR array (80) followed by LEFT(SHA-256(h'80'), 16).

The largeBlobs option ID in the authenticatorGetInfo response defines feature support detection for this feature.

The command takes the following input parameters:

Parameter name
Data
type

Required? Notes

get (0x01)
Unsigned

integer
Optional

The number of bytes requested to read. MUST NOT
be present if set is present.

set (0x02)
Byte

String
Optional

A fragment to write. MUST NOT be present if get is
present.

offset (0x03)
Unsigned

integer
Required

The byte offset at which to read/write.

length (0x04)
Unsigned

integer
Optional

The total length of a write operation. Present if, and
only if, set is present and offset is zero.

pinUvAuthParam
(0x05)

Byte
String

Optional

authenticate(pinUvAuthToken, 32×0xff || h’0c00' ||
uint32LittleEndian(offset) || SHA-256(contents of set
byte string, i.e. not including an outer CBOR tag with
major type two))

pinUvAuthProtocol
(0x06)

Unsigned
integer

Optional
PIN/UV protocol version chosen by the platform.

A per-authenticator constant, maxFragmentLength, is here defined as the value of maxMsgSize (from the
authenticatorGetInfo response) minus 64. The value 64 is a comfortable over-estimate of the encoding overhead
of the messages defined in this section such that a byte string of length maxFragmentLength can be transferred
without exceeding the maximum message size of the authenticator. If no maxMsgSize is given in the
authenticatorGetInfo response) then it defaults to 1024, leaving maxFragmentLength to default to 960.

In addition to persistently storing the serialized large-blob array, authenticators implementing this command are
required to maintain two unsigned integers in volatile memory named expectedNextOffset and expectedLength,
both initially zero. This makes this command a stateful command and the specified implementation
accommodations apply to it.

An authenticator performs the following actions upon receipt of this command:

6.10. authenticatorLargeBlobs (0x0C)

NOTE: the minimum length of a serialized large-blob array is 17 bytes. Omitting 16 bytes for the trailing
SHA-256 hash, this leaves just one byte. This is the size of an empty CBOR array.

6.10.1. Feature detection

6.10.2. Reading and writing serialised data

1. If offset is not present in the input map, return CTAP1_ERR_INVALID_PARAMETER.

2. If neither get nor set are present in the input map, return CTAP1_ERR_INVALID_PARAMETER.

3. If both get and set are present in the input map, return CTAP1_ERR_INVALID_PARAMETER.

4. If get is present in the input map:

1. If length is present, return CTAP1_ERR_INVALID_PARAMETER.

65/137

https://www.w3.org/TR/webauthn-2#discoverable-credential

2. If either of pinUvAuthParam or pinUvAuthProtocol are present, return
CTAP1_ERR_INVALID_PARAMETER.

3. If the value of get is greater than maxFragmentLength, return CTAP1_ERR_INVALID_LENGTH.

4. If the value of offset is greater than the length of the stored serialized large-blob array, return
CTAP1_ERR_INVALID_PARAMETER.

5. Return a CBOR map, as defined below, where the value of config is a substring of the stored serialized
large-blob array. The substring SHOULD start at the offset given in offset and contain the number of
bytes specified as get's value. If too few bytes exist at that offset, return the maximum number
available. Note that if offset is equal to the length of the serialized large-blob array then this will result
in a zero-length substring.

5. Else (implying that set is present in the input map):

1. If the length of the value of set is greater than maxFragmentLength, return
CTAP1_ERR_INVALID_LENGTH. (The “value of set” means the contents of the byte string
corresponding to the key set (0x02), not including the outer CBOR tag with major type two.)

2. If the value of offset is zero:

1. If length is not present, return CTAP1_ERR_INVALID_PARAMETER.

2. If the value of length is greater than 1024 bytes and exceeds the capacity of the device, return
CTAP2_ERR_LARGE_BLOB_STORAGE_FULL. (Authenticators MUST be capable of storing at
least 1024 bytes.)

3. If the value of length is less than 17, return CTAP1_ERR_INVALID_PARAMETER. (See note
above about minimum lengths.)

4. Set expectedLength to the value of length.

5. Set expectedNextOffset to zero.

3. Else (i.e. the value of offset is not zero):

1. If length is present, return CTAP1_ERR_INVALID_PARAMETER.

4. If the value of offset is not equal to expectedNextOffset, return CTAP1_ERR_INVALID_SEQ.

5. If the authenticator is protected by some form of user verification or the alwaysUv option ID is present
and true:

1. If pinUvAuthParam is absent from the input map, then end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

2. If pinUvAuthProtocol is absent from the input map, then end the operation by returning
CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

4. The authenticator calls verify(pinUvAuthToken, 32×0xff || h’0c00' ||
uint32LittleEndian(offset) || SHA-256(contents of set byte string, i.e. not
including an outer CBOR tag with major type two), pinUvAuthParam).

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Check if the pinUvAuthToken has the lbw permission, if not, return
CTAP2_ERR_PIN_AUTH_INVALID.

6. If the sum of offset and the length of the value of set is greater than the value of expectedLength,
return CTAP1_ERR_INVALID_PARAMETER.

7. If the value of offset is zero, prepare a buffer to receive a new serialized large-blob array.

8. Append the value of set to the buffer containing the pending serialized large-blob array.

9. Update expectedNextOffset to be the new length of the pending serialized large-blob array.

10. If the length of the pending serialized large-blob array is equal to expectedLength:

1. Verify that the final 16 bytes in the buffer are the truncated SHA-256 hash of the preceding bytes. If
the hash does not match, return CTAP2_ERR_INTEGRITY_FAILURE.

2. Commit the contents of the buffer as the new serialized large-blob array for this authenticator.

3. Return CTAP2_OK and an empty response.

11. Else:

1. More data is needed to complete the pending serialized large-blob array.

2. Return CTAP2_OK and an empty response. Await further writes.

NOTE: user verification is only checked above if user verification is configured on a device or the
authenticator always requires some form of user verification feature is enabled. This implies that a serialized
large-blob array can be written without user verification if user verification is not configured.

66/137

The response to a get request, referenced above, takes the following form:

Parameter
name

Data
type

Required? Notes

config (0x01)
Byte

String
Required

Contains the requested substring of the serialized large-
blob array.

In order to read a serialized large-blob array, a platform is expected to first issue a request where offset is zero
and get equals the value of maxFragmentLength, which is maxMsgSize − 64 bytes, as defined above. If the length
of the response is equal to the value of get then more data may be available and the platform SHOULD
repeatedly issue requests, each time updating offset to equal the amount of data received so far. It stops once
a short (or empty) fragment is returned. Once complete, the platform MUST confirm that the embedded SHA-256
hash is correct, based on the definition above. If not, the configuration is corrupt and the platform MUST discard
it and act as if the initial serialized large-blob array was received.

In order to write a serialized large-blob array, a platform is expected to first issue a request where offset is zero,
length is the full length of the data to be written, and set contains a prefix of the data to be written, truncated at
maxFragmentLength bytes, if length is greater than maxFragmentLength. If truncation is needed then one or
more further requests are needed to complete the transfer, with offset updated each time to contain the amount
of data written so far and set containing consecutive substrings of the data. The authenticator will implicitly know
when the transfer is complete because of the length given in the first request.

The algorithm to be performed by the authenticator given above assumes that the authenticator double-buffers
the serialized large-blob array. (I.e. it writes proposed updates into a separate buffer and only overwrites the
effective config once validation has completed.) A compliant authenticator MAY be implemented using only a
single buffer as follows: when appending to the buffer, use expectedLength to buffer the final 16 bytes of the
serialized large-blob array in volatile storage. Once the transfer is complete, perform validation and only write the
final 16 bytes to persistent storage if successful. This prevents the SHA-256 checksum of an invalid serialized
large-blob array from being persisted.

Despite best efforts, torn writes, platform errors, and storage corruption may result in a situation where an
authenticator finds itself having stored an invalid serialized large-blob array. (I.e. the SHA-256 hash does not
match.) In this case, the authenticator MAY reset the stored value with the initial serialized large-blob array.

An authenticator MUST NOT act on the contents of the serialized large-blob array except for checking the trailing
hash: it is purely for platforms to adjust their behavior in response to.

Authenticators MUST set the serialized large-blob array to the initial serialized large-blob array byte string when
reset.

Platforms MUST ensure that the large-blob array (i.e. without the trailing 16 bytes) is a CBOR array where all
entries conform to the large-blob map structure defined below. The maps and array MUST be encoded using the
canonical rules. Platforms MUST NOT attempt to write a serialized large-blob array that exceeds the
maxSerializedLargeBlobArray reported by the authenticator in the authenticatorGetInfo response. Platforms
SHOULD take care to preserve existing entries in a large-blob array where space permits. For example,
platforms should read, and then insert values into, an existing large-blob array as opposed to blindly writing a
fresh array.

The elements of the large-blob array MUST conform to the following large-blob map structure. Conformance, in
this context, means that a map MUST include all required elements, MAY include optional elements, and MAY
include unknown elements. The values of all documented elements present MUST match the specified type and
MUST comply with any additional restrictions documented for them.

Element
name

Data type Required? Notes

ciphertext Byte
Required

AEAD_AES_256_GCM ciphertext, implicitly including the

NOTE: To read (i.e., "get") per-credential large-blob data given a credential ID, the platform must first use
an authenticatorGetAssertion operation to obtain the associated largeBlobKey in order to be able to decrypt
the large-blob data (if any). Thus the confidentiality of any large-blob data associated with the credential is
dependent upon the credential’s protection policy. This means that even though a platform may obtain the
large-blob array at will, it will be unable to obtain large-blob plaintexts if it cannot successfully perform
authenticatorGetAssertion operations using the associated credential(s), e.g., without obtaining user
verification. Also, the "trial decryption" approach employed for obtaining plaintext means that large-blobs do
not disclose a priori the existence of credentials having a credProtect level 3 userVerificationRequired policy.

NOTE: even with double-buffering, the copy from the temporary buffer might be interrupted, resulting in a
“torn write”. This will be detected by the platform when reading because the checksum won’t match, but
results in an unusable config. Thus double-buffering minimises the chance of corruption, but does not always
eliminate it.

6.10.3. Large, per-credential blobs

67/137

(0x01) String AEAD “authentication tag” at the end.

nonce
(0x02)

Byte
String

Required
AEAD_AES_256_GCM nonce. MUST be exactly 12 bytes
long.

origSize
(0x03)

Unsigned
Integer

Required
Contains the length, in bytes, of the uncompressed data.

Element
name

Data type Required? Notes

The ciphertext member contains the output of encrypting the opaque large-blob data with the
AEAD_AES_256_GCM algorithm from [RFC5116]. The inputs to the AEAD are:

The platform SHOULD perform the following steps in order to read the opaque large-blob data for a given
credential. The platform must know the credential ID of the intended credential a priori, which it might have been
given, or might have learnt from performing an authenticatorGetAssertion operation without an allowList
parameter.

The platform SHOULD perform the following steps in order to write the opaque large-blob data for a new
credential.

Nonce: the 12-byte value from nonce.

Plaintext: the compressed opaque large-blob data.

Associated data: The value 0x626c6f62 ("blob") || uint64LittleEndian(origSize).

Key: the 32-byte value stored using the largeBlobKey extension.

6.10.4. Reading per-credential large-blob data

1. If the authenticator does not support the largeBlobKey extension, as defined in that section, return an error.

2. Perform an authenticatorGetAssertion operation with "largeBlobKey": true in the extensions map in order
to fetch the largeBlobKey for the credential. (This step may be skipped if the pertinent output is already
known.)

3. If largeBlobKey is not included in the authenticatorGetAssertion response structure (i.e., not in the
extensions field of the authenticator data) then return that no large blob exists.

4. Let key be the value of largeBlobKey in the assertion result. If it is not 32 bytes long, return an error.

5. Fetch the large-blob array. If this fails, return an error.

6. For each element in that array:

1. If the element is not a map conforming to the large-blob map structure defined above, skip this array
element.

2. Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using key, nonce, and the
associated data specified above. If the decryption fails, skip this array element.

3. Decompress the resulting plaintext with DEFLATE [RFC1951]. If decompression fails, return an error.

4. If the length of the decompression result is not equal to origSize, return an error.

5. Return the decompression result as the opaque large-blob data for the credential.

7. Return that no large blob exists.

NOTE: DEFLATE has a maximum compression ratio of over 1000:1, thus the result of decompressing a
small amount of data can be extremely large which might cause excessive memory use. Platforms SHOULD
limit the maximum permitted value of origSize and that maximum SHOULD be at least 1MiB.

6.10.5. Writing per-credential large-blob data for a new credential

1. If the authenticator does not support the largeBlobKey extension, as defined in that section, return an error.

2. If the authenticatorMakeCredential operation for the new credential does not map rk to true in the options
map, return an error. (Large blobs are only applicable for discoverable credentials.)

3. Perform the authenticatorMakeCredential operation for the new credential. In the extensions input
additionally map largeBlobKey to true.

4. Let key be the largeBlobKey returned in the authenticatorMakeCredential response structure.

5. Let origData equal the opaque large-blob data.

6. Let origSize be the length, in bytes, of origData.

7. Let plaintext equal origData after compression with DEFLATE [RFC1951].

8. Let nonce be a fresh, random, 12-byte value.

9. Let ciphertext be the AEAD_AES_256_GCM authenticated encryption of plaintext using key, nonce, and
the associated data as specified above.

10. Fetch the large-blob array. If this fails, return an error.

11. Append an element to the array, following the structure above, containing nonce, origSize, and ciphertext.

12. Perform the actions for writing the new large-blob array.

68/137

https://www.w3.org/TR/webauthn-2#authenticator-data

Unlike the underlying largeBlobKey data, the opaque large-blob data for a credential may be updated or deleted.
Given a credential, the platform SHOULD perform the following steps in order to update or delete it:

Large blobs may remain even when the linked credential has been erased. This can occur when a platform that
doesn’t support large blobs deletes a credential, or when a credential is implicitly deleted because a new
credential with the same user ID and RP ID is created. Thus platform MAY perform a garbage collection at will
and SHOULD perform a garbage collection when a large-blob cannot be stored because of lack of space, or
when using credential management to enumerate credentials for other reasons.

Performing a garbage collection involves the following steps:

6.10.6. Updating per-credential large-blob data

1. If the authenticator does not support the largeBlobKey extension, as defined in that section, return an error.

2. Perform an authenticatorGetAssertion operation with "largeBlobKey": true in the extensions map in order
to fetch the largeBlobKey for the credential. (This step may be skipped if the pertinent output is already
known.)

3. If largeBlobKey is not included in the authenticatorGetAssertion response structure (i.e., not in the
extensions field of the authenticator data) then return that no large blob exists.

4. Let key be the value of largeBlobKey in the authenticatorGetAssertion response structure. If it is not 32
bytes long, return an error.

5. Fetch the large-blob array. If this fails, return an error.

6. For each element in that array:

1. If the element is not a map conforming to the large-blob map structure defined above, skip this array
element.

2. Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using key, nonce, and the
associated data specified above. If the decryption fails, skip this array element.

3. If the platform wishes to delete the opaque large-blob data:

1. Erase the current array element.

4. Else (i.e. the platform wishes to update the opaque large-blob data):

1. Let origData equal the new opaque large-blob data.

2. Let origSize be the length, in bytes, of origData.

3. Let plaintext equal origData after compression with DEFLATE [RFC1951].

4. Let nonce be a fresh, random, 12-byte value.

5. Let ciphertext be the AEAD_AES_256_GCM authenticated encryption of plaintext using key,
nonce, and the associated data as specified above.

6. Replace the current array element with a map, following the structure above, containing nonce,
origSize, and ciphertext.

5. Perform the actions for writing the new large-blob array.

6. Return success.

7. Return an error.

6.10.7. Garbage collection of large-blob data

1. If credMgmt is not present in the options field of the authenticatorGetInfo response, garbage collection is not
possible.

2. Use the authenticatorCredentialManagement command to enumerate all RPs with discoverable credentials,
and then to enumerate all credentials for each of them.

3. Collect the set of largeBlobKey values returned, ignoring any that are not 32 bytes long.

4. Fetch the large-blob array. If this fails, return an error.

5. For each element in that array:

1. If the element is not a map conforming to the large-blob map structure defined above, skip this array
element. (The large-blob map is permitted to include extra elements.)

2. Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using nonce, the associated
data specified above, and each of the largeBlobKey values in turn as the key. If the decryption fails in
every case, erase this array element.

6. If any array elements were erased then perform the actions for writing the updated large-blob array.

6.11. authenticatorConfig (0x0D)

NOTE: Platforms MUST NOT invoke this command unless the authnrCfg option ID is present and true in
the response to an authenticatorGetInfo command.

69/137

https://www.w3.org/TR/webauthn-2#authenticator-data

This command is used to configure various authenticator features through the use of its subcommands.

It takes the following input map containing its input parameters:

Parameter name Data type Required? Notes

subCommand (0x01)
Unsigned

Integer
Required

subCommand currently being requested

subCommandParams
(0x02)

CBOR Map Optional
Map of subCommands parameters.

pinUvAuthProtocol
(0x03)

Unsigned
Integer

Optional
PIN/UV protocol version chosen by the platform.

pinUvAuthParam
(0x04)

Byte String Optional
First 16 bytes of HMAC-SHA-256 of contents
using pinUvAuthToken.

The currently defined authenticatorConfig subcommands are:

subCommand Name subCommand Number

enableEnterpriseAttestation 0x01

toggleAlwaysUv 0x02

setMinPINLength 0x03

vendorPrototype 0xFF

This authenticatorConfig command allows the platform to invoke various simple configuration operations on an
authenticator. Parameters may be passed into subcommands, and only status codes are returned (i.e. no
response map is defined). Typically, the platform may subsequently request and examine an
authenticatorGetInfo response, per directions given for each subcommand, in order to ascertain results of having
invoked the subcommand.

Authenticators MAY implement none, some, or all currently defined authenticatorConfig subcommands.

To invoke authenticatorConfig the platform performs the following actions:

The authenticator performs the following actions upon receipt of this command:

NOTE: The vendorPrototype subCommand is reserved for vendor-specific authenticator configuration and
experimentation. Platforms are not expected to generally utilize this subCommand.

1. The platform sends the authenticatorConfig command with the following parameters:

1. subCommand (0x01): The subcommand selected by the platform from the currently defined
authenticatorConfig subcommands.

2. subCommandParams (0x02): Map containing subcommand parameters, if the selected subcommand
takes parameters.

3. pinUvAuthProtocol (0x03): as selected when obtaining the shared secret.

4. pinUvAuthParam (0x04): the result of calling authenticate(pinUvAuthToken, 32×0xff || 0x0d ||
uint8(subCommand) || subCommandParams).

1. If subCommand is not present in the input map, return CTAP2_ERR_MISSING_PARAMETER.

2. If the authenticator does not support the subcommand being invoked, per subCommand's value, return
CTAP1_ERR_INVALID_PARAMETER.

3. If the following statements are all true:

then go to Step 5.

1. subCommand value is toggleAlwaysUv (0x02).

2. The authenticator is not protected by some form of user verification.

3. The alwaysUv option ID is present and true.

NOTE: This allows for initial configuration of authenticators that have the Always UV feature enabled
by default.

4. If the authenticator is protected by some form of user verification or the alwaysUv option ID is present and
true:

1. If pinUvAuthParam is absent from the input map, then end the operation by returning
CTAP2_ERR_PUAT_REQUIRED.

2. If pinUvAuthProtocol is absent from the input map, then end the operation by returning
CTAP2_ERR_MISSING_PARAMETER.

70/137

This enableEnterpriseAttestation subcommand is only implemented if the enterprise attestation feature is
supported. This subcommand does not take any parameters: subCommandParams is ignored.

This subcommand performs the following steps:

This toggleAlwaysUv subcommand is only implemented if the Always Require User Verification feature is
supported. This subcommand does not take any parameters: subCommandParams is ignored.

This subcommand performs the following steps:

This subCommand allows vendors to test authenticator configuration features.

This vendorPrototype subcommand is only implemented if the vendorPrototypeConfigCommands member in
the authenticatorGetInfo response is present.

Vendors SHOULD place implemented vendorCommandId values in the vendorPrototypeConfigCommands array.

subCommandParams Fields:

3. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

4. Call verify(pinUvAuthToken, 32×0xff || 0x0d || uint8(subCommand) || subCommandParams,
pinUvAuthParam).

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Check whether the pinUvAuthToken has the acfg permission. If not, return
CTAP2_ERR_PIN_AUTH_INVALID.

5. Invoke subCommand (see below subsections for each defined subcommand), passing it the
subCommandParams map.

6. Return the resulting status code as produced by subCommand, as defined in each subcommand subsection
below.

NOTE: User verification is only checked above if user verification is configured on a device. This implies
that authenticatorConfig can be invoked without user verification if user verification is not configured, and
the Always UV feature is disabled. This allows organisations to configure authenticators suitably for their
environment before distributing them to users. See also authenticatorLargeBlobs.

6.11.1. Enable Enterprise Attestation

1. If the enterprise attestation feature is disabled, then re-enable the enterprise attestation feature and return
CTAP2_OK.

NOTE: Upon re-enabling the enterprise attestation feature, the authenticator will return an ep option id
with the value of true in the authenticatorGetInfo command response upon receipt of subsequent
authenticatorGetInfo commands.

2. Else (implying the enterprise attestation feature is enabled) take no action and return CTAP2_OK.

6.11.2. Toggle Always Require User Verification

1. If the alwaysUv feature is disabled:

1. If the makeCredUvNotRqd option ID is present and true, then disable the makeCredUvNotRqd feature
and set the makeCredUvNotRqd option ID to false or absent.

2. Enable the alwaysUv feature and return CTAP2_OK.

NOTE: Upon enabling the Always Require User Verification feature, the authenticator will return an
alwaysUv option ID with the value of true in the authenticatorGetInfo command response upon receipt of
subsequent authenticatorGetInfo commands.

2. Else (implying the alwaysUv feature is enabled)

1. If disabling the feature is supported:

1. Set the makeCredUvNotRqd option ID to its default.

2. Disable the alwaysUv feature and return CTAP2_OK.

2. Else return CTAP2_ERR_OPERATION_DENIED.

NOTE: Authenticators SHOULD support users disabling the Always Require User Verification feature
unless required not to by specific external certifications such as [CMVP].

6.11.3. Vendor Prototype Command

71/137

https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

Field name
Data
type

Required? Definition

vendorCommandId
(0x01)

Unsigned
Integer

Required

Vendor-assigned command ID

This subCommand MUST include a subCommandParams map that MUST contain vendorCommandId as a
member. The vendor randomly selects a 64-bit Unsigned Integer value to use for the value of
vendorCommandId, e.g., by using a cryptographic random number generator. An example of such a
vendorCommandId value is (in hex): 0x4e5a15aa89d2b8b6. This approach avoids collisions amongst different
vendors' vendorCommandIds. Thus there is no need for a registry of vendorCommandId values. One way to
easily generate such values is by using the commonly available openssl tool.

This subCommand performs the following steps:

This setMinPINLength subcommand is only implemented if the setMinPINLength option ID is present.

This command sets the minimum PIN length in Unicode code points to be enforced by the authenticator while
changing/setting up a ClientPIN.

subCommandParams members defined for this subcommand:

Parameter name
Data
type

Required? Definition

newMinPINLength
(0x01)

Unsigned
Integer

Optional
Minimum PIN length in code points

minPinLengthRPIDs
(0x02)

Array of
strings

Optional

RP IDs which are allowed to get this information via
the minPinLength extension. This parameter MUST
NOT be used unless the minPinLength extension is
supported.

forceChangePin
(0x03)

Boolean Optional
The authenticator returns
CTAP2_ERR_PIN_POLICY_VIOLATION until
changePIN is successful.

NOTE: If, and only if, this vendorCommandId
(0x01) appears in this subCommandParams map
and has a non-empty value, then other fields
MAY also appear in the map, the map keys and
associated values of which are vendor-defined.

1. If the vendorCommandId value is unknown:

1. return CTAP2_ERR_INVALID_SUBCOMMAND

2. Else: (implying the vendorCommandId value is known)

1. Extract any additional members form the subCommandParams map.

2. Perform Vendor Command specific processing and return any status code it generates. Success MUST
be indicated by returning CTAP2_OK.

NOTE: Vendors MUST NOT count on obscurity of the vendorCommandId value as any sort of security.

6.11.4. Setting a minimum PIN Length

NOTE: This is not applicable for any other type of PIN functionality the authenticator may have.

1. Platform sends the following subCommandParams (0x03) map containing following parameters:

1. newMinPINLength (0x01) (Optional): Minimum PIN length in code points

2. minPinLengthRPIDs (0x02) (Optional): List of RP IDs allowed to get the current newMinPINLength via
minPinLength extension.

3. forceChangePin (0x03) (Optional): If true a PIN change is required after this command.

2. Authenticator performs following operations upon receiving the request:

1. If newMinPINLength is absent, then let newMinPINLength be present with the value of current minimum
PIN length.

72/137

https://openssl.org/
https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#code_point

This superseded command is OPTIONAL and ONLY provided for backwards compatibility with platforms that
implemented "FIDO_2_1_PRE" functionality, and have not been updated to "FIDO_2_1". CTAP2.1 platforms
MUST NOT use this command if bioEnroll option ID is present in the authenticatorGetInfo response.

If a CTAP2.1 authenticator implements this prototype (0x40) command:

The feature detection logic for the Bio Enrollment Prototype vendor specific feature is:

This preview command does not require permissions, thus it is compatible with a pinUvAuthToken generated by
the getPinToken command. CTAP 2.1 platforms MUST use the newer authenticatorBioEnrollment (0x09)
command if the authenticator supports it.

This superseded command is OPTIONAL and ONLY provided for backwards compatibility with platforms that
implemented "FIDO_2_1_PRE" functionality, and have not been updated to "FIDO_2_1". CTAP2.1 platforms
MUST NOT use this command if credMgmt option ID is present in the authenticatorGetInfo response.

2. If minPinLengthRPIDs is present and the authenticator does not support the minPinLength extension,
return CTAP1_ERR_INVALID_PARAMETER.

3. If newMinPINLength is less than the current minimum PIN length, return
CTAP2_ERR_PIN_POLICY_VIOLATION.

NOTE: Minimum PIN lengths may only be increased; they cannot be made shorter.

NOTE: The authenticator must be reset to return the current minimum PIN length to the pre-
configured minimum PIN length.

4. If the value of forceChangePin is true, then:

1. If the value of clientPIN is false, then return CTAP2_ERR_PIN_NOT_SET.

2. Let the value of the forcePINChange authenticatorGetInfo response member be true.

NOTE: This will force the user to change their PIN upon the next use of the authenticator, if a
PIN is set.

5. If the value of PINCodePointLength is less than newMinPINLength and the value of clientPIN is true
then let the value of the forcePINChange member of the authenticatorGetInfo response be true.

6. Authenticator stores newMinPINLength as minPINLength.

7. If minPinLengthRPIDs is present and contains at least one string, then:

1. Platform can track how many RP IDs it can set, by checking value of the
maxRPIDsForSetMinPINLength member of the authenticatorGetInfo. If the supplied list larger than
the maxRPIDsForSetMinPINLength, then authenticator must return an error.

2. If the authenticator does not have a pre-configured list of RP IDs authorized to receive the current
minimum PIN length value, the authenticator stores the minPinLengthRPIDs parameter’s list as the
entire list of RP IDs authorized to receive the current minimum PIN length value.

3. Otherwise, if the authenticator has a pre-configured list of RP IDs authorized to receive the current
minimum PIN length value, it adds the minPinLengthRPIDs parameter’s list to the immutable pre-
configured list. Any previously added RP IDs are overwritten.

NOTE: How the authenticator "adds" the minPinLengthRPIDs parameter’s list to the pre-
configured list is an implementation detail.

4. If the authenticator cannot store or add the minPinLengthRPIDs, it returns
CTAP2_ERR_KEY_STORE_FULL.

8. Authenticator returns CTAP2_OK.

6.12. Prototype authenticatorBioEnrollment (0x40) (For backwards compatibility with
"FIDO_2_1_PRE")

1. The authenticator MUST also implement the authenticatorBioEnrollment (0x09) commands.

2. The authenticator MUST provide the bioEnroll option ID in the authenticatorGetInfo response for feature
detection of the CTAP2.1 feature.

3. The authenticator MUST utilize the appropriate PIN protocol’s verify() function to validate the
pinUvAuthParam (referred to as pinAuth in the Bio Enrollment Prototype specification), and MUST return
CTAP2_ERR_PIN_AUTH_INVALID if verify() returns error.

1. "FIDO_2_1_PRE" is present in the authenticatorGetInfo response versions member.

2. The userVerificationMgmtPreview option ID in the authenticatorGetInfo response is present and true.

6.13. Prototype authenticatorCredentialManagement (0x41) (For backwards compatibility with
"FIDO_2_1_PRE")

73/137

https://fidoalliance.org/specs/fido2/vendor/BioEnrollmentPrototype.pdf
https://fidoalliance.org/specs/fido2/vendor/BioEnrollmentPrototype.pdf

If a CTAP2.1 authenticator implements this prototype (0x41) command:

The feature detection logic for the Credential Management Prototype vendor specific feature is:

This preview command does not require permissions, thus it is compatible with a pinUvAuthToken generated by
the getPinToken command. CTAP 2.1 platforms MUST use the newer authenticatorCredentialManagement
(0x0A) command if the authenticator supports it.

This section provides detailed descriptions of specific features along with normative feature-specific platform
(and possibly authenticator) actions whose specification is not appropriate to include in other parts of this
specification.

An enterprise is some form of organization, often a business entity. An enterprise context is in effect when a
device, e.g., a computer, an authenticator, etc., is controlled by an enterprise.

An enterprise attestation is an attestation that may include uniquely identifying information. This is intended for
controlled deployments within an enterprise where the organization wishes to tie registrations to specific
authenticators.

The expectation is that enterprises will work directly with their authenticator vendor(s) in order to source their
enterprise attestation capable authenticators.

An enterprise attestation capable authenticator MAY be configured to support either or both:

The ep option ID in the authenticatorGetInfo response defines feature support detection for this feature.

A platform wishing to obtain an enterprise attestation, e.g., when running in an enterprise context, SHOULD
invoke the authenticatorMakeCredential or authenticatorGetAssertion operation in the following manner:

1. The authenticator MUST also implement the authenticatorCredentialManagement (0x0A) commands.

2. The authenticator MUST provide the credMgmt option ID in the authenticatorGetInfo response for feature
detection of the CTAP2.1 feature.

3. The authenticator MUST utilize the appropriate PIN protocol’s verify() function to validate the
pinUvAuthParam (referred to as pinAuth in the Credential Management Prototype specification), and MUST
return CTAP2_ERR_PIN_AUTH_INVALID if verify() returns error.

1. "FIDO_2_1_PRE" is present in the authenticatorGetInfo response versions member.

2. The credentialMgmtPreview option ID in the authenticatorGetInfo response is present and true.

7. Feature-Specific Descriptions and Actions

7.1. Enterprise Attestation

Vendor-facilitated enterprise attestation:

In this case, an enterprise attestation capable authenticator, on which enterprise attestation is enabled, upon
receiving the enterpriseAttestation parameter with a value of 1 (or 2, see Note below) on a
authenticatorMakeCredential or authenticatorGetAssertion command, will provide enterprise
attestation to a non-updateable pre-configured RP ID list, as identified by the enterprise and provided to
the authenticator vendor, which is "burned into" the authenticator by the vendor.

If enterprise attestation is requested for any RP ID other than the pre-configured RP ID(s), the attestation
returned along with the new credential is a regular privacy-preserving attestation, i.e., NOT an enterprise
attestation.

Platform-managed enterprise attestation:

In this case, an enterprise attestation capable authenticator on which enterprise attestation is enabled, upon
receiving the enterpriseAttestation parameter with a value of 2 on a authenticatorMakeCredential or
authenticatorGetAssertion command, will return an enterprise attestation. The platform is enterprise-
managed and has already performed the necessary vetting of the RP ID.

NOTE: Authenticators wishing to support only vendor-facilitated enterprise attestation MAY treat
enterpriseAttestation = 2 the same as enterpriseAttestation = 1.

7.1.1. Feature detection

7.1.2. Platform Actions

1. Invoke the authenticatorGetInfo command and examine the returned response structure for the ep Option
ID. If ep is not present or present and set to false, the platform SHOULD either terminate these steps or
invoke the appropriate command without the enterpriseAttestation parameter, and skip the following
steps.

74/137

https://fidoalliance.org/specs/fido2/vendor/CredentialManagementPrototype.pdf
https://fidoalliance.org/specs/fido2/vendor/CredentialManagementPrototype.pdf
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#attestation
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise
https://www.w3.org/TR/webauthn-2#dom-attestationconveyancepreference-enterprise

If an enterprise attestation capable authenticator receives an authenticatorReset command, it MUST disable the
enterprise attestation feature. The enterprise attestation feature may be re-enabled by invoking the
authenticatorConfig command’s enable-enterprise-attestation subcommand.

This feature allows a user to protect the credentials on their authenticator with some form of user verification
independent of the Relying Party requesting some form of user verification in its higher-level API request, e.g.,
via [WebAuthn]. Platform authenticators and other authenticators with the alwaysUv feature enabled will always
perform user verification and set the "uv" bit to true in the response, e.g., even if the Relying Party sets user
verification to Discouraged in a [WebAuthn] request. Some external certification programs such as [CMVP] for [FI
PS140-3] prohibit the authenticator performing signing operations without authentication. This feature allows
authenticators to conform to such non FIDO certification requirements.

The alwaysUv option ID in the authenticatorGetInfo response defines feature support detection for this feature.

Authenticators MUST disable CTAP1/U2F when the alwaysUv option ID is present and true in the
authenticatorGetInfo response, unless the CTAP1/U2F authenticator is protected by a built-in user verification
method. When CTAP1/U2F is disabled:

2. Invoke the appropriate command and pass the enterpriseAttestation parameter with a value of either 1
or 2.

3. If the platform is operating in a non-enterprise context, it SHOULD display an explicit warning to the user,
including the RP ID, notifying the user that they are being uniquely identified to this Relying Party.

7.1.3. Authenticator Actions

7.2. Always Require User Verification

NOTE: Platform authenticators typically provide users and platforms this sort of behaviour via private API.

7.2.1. Feature detection

7.2.2. Platform Actions

1. If the feature is supported and enabled: (alwaysUv is present and true)

1. The platform SHOULD treat all Relying Party requests (e.g., those being made by a Relying Party via [
WebAuthn] or a platform API) as requiring user verification.

2. If the authenticator is not protected by some form of user verification, the platforms SHOULD help users
enroll a clientPin and or a built-in user verification method, if either or both are supported.

2. Platforms may enable or disable this feature by invoking the authenticatorConfig command’s
toggleAlwaysUv subcommand.

7.2.3. Authenticator Actions

1. If the feature is supported and enabled: (alwaysUv is present and true)

1. The authenticator MUST require some form of user verification for the authenticatorMakeCredential and
authenticatorGetAssertion commands.

2. Authenticators supporting CTAP1/U2F MUST protect the credentials with built-in user verification
methods, or disable CTAP1/U2F when the alwaysUv option ID is present and true.

3. If the "uv" bit set in the response is false some authenticators conforming to [FIPS140-3] or other
security requirements may return an syntactically-correct but invalid signature (i.e., one that no
credential public key minted by this authenticator, now or ever, will match) rather than a signature from
the private key from the selected credential. An example for a ECDSA signature is to return a fixed
value of (1, 1). Thus the returned signature will not be verifiable, which is up to the Relying Party to
handle. This approach avoids returning an error to the platform because doing that would interfere with
some platforms' approach of "pre-flighting" the allowList or excludeList.

2. If the feature is supported and disabled: (alwaysUv is present and false)

1. The authenticator does not always require user verification for its operations. It is dependent on the
parameters passed to individual operations as specified herein.

3. After an authenticator reset:

1. Set the makeCredUvNotRqd option ID to its default pre-configured state.

2. Set the alwaysUv option ID to its default pre-configured state (may be either true or false).

7.2.4. Disabling CTAP1/U2F

75/137

The certifications member provides a hint to the platform with additional information about certifications that the
authenticator has received. Certification programs may revoke certification of specific devices at any time.
Relying partys are responsible for validating attestations and AAGUID via appropriate methods. Platforms may
alter their behaviour based on these hints such as selecting a PIN protocol or credProtect level.

An authenticator’s supported certifications MAY be returned in the certifications member of an
authenticatorGetInfo response.

All certifications are in the form key-value pairs with string IDs and integer values. The following table lists all
defined certification types as of CTAP version "FIDO_2_1":

certification
ID

Definition

FIPS-
CMVP-2

The [FIPS140-2] Cryptographic-Module-Validation-Program overall certification level. This
is a integer from 1 to 4.

FIPS-
CMVP-3

The [FIPS140-3] [CMVP] or ISO/IEC 19790:2012(E) and ISO/IEC 24759:2017(E) overall
certification level. This is a integer from 1 to 4.

FIPS-
CMVP-2-

PHY

The [FIPS140-2] Cryptographic-Module-Validation-Program physical certification level. This
is a integer from 1 to 4.

FIPS-
CMVP-3-

PHY

The [FIPS140-3] [CMVP] or ISO/IEC 19790:2012(E) and ISO/IEC 24759:2017(E) physical
certification level. This is a integer from 1 to 4.

CC-EAL
Common Criteria Evaluation Assurance Level [CC1V3-1R5]. This is a integer from 1 to 7.
The intermediate-plus levels are not represented.

FIDO
FIDO Alliance certification level. This is an integer from 1 to 6. The numbered levels are
mapped to the odd numbers, with the plus levels mapped to the even numbers e.g., level
3+ is mapped to 6.

This feature allows a Relying Party (e.g., an enterprise) to enforce a minimum pin length policy for authenticators
registering credentials by examining the return value of the Minimum PIN Length Extension (minPinLength). The
authenticatorConfig command’s setMinPINLength subCommand allows the platform to set the minimum pin
length policy for authenticator, force a change of PIN before allowing User Verification, and setting the list of
minPinLengthRPIDs that allow the specified RP ID to receive the extension response.

If this feature is supported, the authenticator MUST implement:

The setMinPinLength option ID in the authenticatorGetInfo response defines feature support detection for this
feature.

1. The authenticator MUST NOT return "U2F_V2" in the versions array.

2. The U2F_REGISTER and U2F_AUTHENTICATE commands MUST immediately fail and return
SW_COMMAND_NOT_ALLOWED.

7.3. Authenticator Certifications

7.3.1. Authenticator Actions

7.4. Set Minimum PIN Length

1. The ClientPIN feature.

2. The setMinPINLength subCommand of the authenticatorConfig command.

3. The Minimum PIN Length Extension (minPinLength).

7.4.1. Feature detection

7.4.2. Platform Actions

NOTE: Because ClientPIN must be implemented for this set minimum PIN length feature to be
implemented, basic minimum PIN length enforcement already occurs. This feature is only about providing for
the minimum PIN length to be altered from its pre-configured value.

1. If the forcePINChange member of the authenticatorGetInfo response is present and true:

76/137

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-request-message---u2f_register
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-request-message---u2f_authenticate

Many transports (e.g., Bluetooth Smart) are bandwidth-constrained, and serialization formats such as JSON are
too heavy-weight for such environments. For this reason, all encoding is done using the concise binary encoding
CBOR [RFC8949].

To reduce the complexity of the messages and the resources required to parse and validate them, all messages
MUST use the CTAP2 canonical CBOR encoding form as specified below, which differs from the
"Deterministically Encoded CBOR" suggested in Section 4.2 of [RFC8949]. All encoders MUST serialize CBOR
in the CTAP2 canonical CBOR encoding form without duplicate map keys. All decoders SHOULD reject CBOR
that is not validly encoded in the CTAP2 canonical CBOR encoding form and SHOULD reject messages with
duplicate map keys.

The CTAP2 canonical CBOR encoding form uses the following rules:

Because some authenticators are memory constrained, the depth of nested CBOR structures used by all
message encodings is limited to at most four (4) levels of any combination of CBOR maps and/or CBOR arrays.
Authenticators MUST support at least 4 levels of CBOR nesting. Clients, platforms, and servers MUST NOT use
more than 4 levels of CBOR nesting.

1. The platform should guide the user to change the PIN before invoking the getPinToken or
getPinUvAuthTokenUsingPinWithPermissions subcommands.

2. Platforms may perform the following actions by invoking the authenticatorConfig command’s
setMinPINLength subcommand:

1. Increase the minimum pin length for clientPin.

2. Set the minPinLengthRPIDs parameter’s list to allow Relying Parties receiving the minPinLength
extension.

3. Set the authenticator to require a PIN change before allowing clientPin based authentication.

7.4.3. Authenticator Actions

1. If this feature is enabled the extension identifier minpinlength in the extensions member of the
authenticatorGetInfo response MUST be present.

2. After an authenticator reset:

1. Set the minPINLength member of the authenticatorGetInfo response to its default pre-configured
minimum PIN length.

2. Set the minPinLengthRPIDs parameter’s list to the immutable pre-configured list, if any. Any previously
added RP IDs are removed.

3. Set the forcePINChange member of the authenticatorGetInfo response to false.

8. Message Encoding

Integers MUST be encoded as small as possible.

0 to 23 and -1 to -24 MUST be expressed in the same byte as the major type;

24 to 255 and -25 to -256 MUST be expressed only with an additional uint8_t;

256 to 65535 and -257 to -65536 MUST be expressed only with an additional uint16_t;

65536 to 4294967295 and -65537 to -4294967296 MUST be expressed only with an additional uint32_t.

The representations of any floating-point values are not changed.

NOTE: The size of a floating point value—16-, 32-, or 64-bits—is considered part of the value for the
purpose of CTAP2. E.g., a 16-bit value of 1.5, say, has different semantic meaning than a 32-bit value of
1.5, and both can be canonical for their own meanings.

The expression of lengths in major types 2 through 5 MUST be as short as possible. The rules for these
lengths follow the above rule for integers.

Indefinite-length items MUST be made into definite-length items.

The keys in every map MUST be sorted lowest value to highest. The sorting rules are:

If the major types are different, the one with the lower value in numerical order sorts earlier.

If two keys have different lengths, the shorter one sorts earlier;

If two keys have the same length, the one with the lower value in (byte-wise) lexical order sorts earlier.

NOTE: These rules are equivalent to a lexicographical comparison of the canonical encoding of keys
for major types 0-3 and 7 (integers, strings, and simple values). They differ for major types 4-6 (arrays,
maps, and tags), which CTAP2 does not use as keys in maps. These rules should be revisited if CTAP2
does start using the complex major types as keys.

Tags as defined in Section 3.4 in [RFC8949] MUST NOT be present.

77/137

Likewise, because some authenticators are memory constrained, the maximum message size supported by an
authenticator MAY be limited. By default, authenticators MUST support messages of at least 1024 bytes.
Authenticators MAY declare a different maximum message size supported using the maxMsgSize
authenticatorGetInfo result parameter. Clients, platforms, and servers MUST NOT send messages larger than
1024 bytes unless the authenticator’s maxMsgSize indicates support for the larger message size. Authenticators
MAY return the CTAP2_ERR_REQUEST_TOO_LARGE error if size or memory constraints are exceeded.

If map keys are present that an implementation does not understand, they MUST be ignored. Note that this
enables additional fields to be used as new features are added without breaking existing implementations.

Messages from the host to authenticator are called "commands" and messages from authenticator to host are
called "responses". All values are big endian encoded.

Authenticators SHOULD return the CTAP2_ERR_INVALID_CBOR error if received CBOR does not conform to
the requirements above.

Several commands reference externally-defined structures such as PublicKeyCredentialRpEntity which,
for the purposes of this protocol, are encoded as CBOR. The rules and behaviours for processing such CBOR
are defined above, but such structures can also be invalid because of missing required fields, or because values
have an incorrect type. If structures in messages from the host are missing required members, or the values of
those members have the wrong type, then the authenticator SHOULD return
CTAP2_ERR_CBOR_UNEXPECTED_TYPE.

The assigned values for vendor specific commands and their descriptions are:

Command Name Command Code Has parameters?

authenticatorVendorFirst 0x40 NA

Vendor - Bio Enrollment Prototype 0x40 yes

Vendor - Credential Management Prototype 0x41 yes

authenticatorVendorLast 0xBF NA

If an authenticator receives a command code it does not implement, it MUST return
CTAP1_ERR_INVALID_COMMAND. If the authenticator implements a command code having subcommands,
but does not implement an invoked subcommand, it MUST return CTAP2_ERR_INVALID_SUBCOMMAND.

Command codes in the range between authenticatorVendorFirst and authenticatorVendorLast may be used
for vendor-specific implementations. For example, the vendor may choose to put in some testing commands.
Note that the FIDO client will never generate these commands. All other command codes are reserved for future
use and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5). The CBOR map MUST be
encoded using the definite length variant.

Some commands have optional parameters. Therefore, the length of the parameter map for these commands
may vary. For example, authenticatorMakeCredential may have 4, 5, 6, or 7 parameters, while
authenticatorGetAssertion may have 2, 3, 4, or 5 parameters.

All command parameters are CBOR encoded following the JSON to CBOR conversion procedures as per the
CBOR specification [RFC8949]. Specifically, parameters that are represented as DOM objects in the
Authenticator API layers (formally defined in the Web API [WebAuthn]) are converted first to JSON and
subsequently to CBOR.

The error response values range from 0x01 - 0xff. This range is split based on error type.

Error response values in the range between CTAP2_OK and CTAP2_ERR_SPEC_LAST are reserved for spec
purposes.

Error response values in the range between CTAP2_ERR_VENDOR_FIRST and CTAP2_ERR_VENDOR_LAST
may be used for vendor-specific implementations. All other response values are reserved for future use and may
not be used. These vendor specific error codes are not interoperable and the platform SHOULD treat these
errors as any other unknown error codes.

Error response values in the range between CTAP2_ERR_EXTENSION_FIRST and
CTAP2_ERR_EXTENSION_LAST may be used for extension-specific implementations. These errors need to be
interoperable for vendors who decide to implement such optional extension.

8.1. Command Codes

NOTE: Some authenticators implementing earlier versions of this specification may not behave as specified
by the prior paragraph, because this behavior was only implied at that time.

8.2. Status codes

78/137

https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://fidoalliance.org/specs/fido2/vendor/BioEnrollmentPrototype.pdf
https://fidoalliance.org/specs/fido2/vendor/CredentialManagementPrototype.pdf

Code Name Description

0x00 CTAP1_ERR_SUCCESS, CTAP2_OK Indicates successful response.

0x01 CTAP1_ERR_INVALID_COMMAND
The command is not a valid CTAP
command.

0x02 CTAP1_ERR_INVALID_PARAMETER
The command included an invalid
parameter.

0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.

0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.

0x05 CTAP1_ERR_TIMEOUT Message timed out.

0x06 CTAP1_ERR_CHANNEL_BUSY

Channel busy. Client SHOULD retry the
request after a short delay. Note that the
client MAY abort the transaction if the
command is no longer relevant.

0x0A CTAP1_ERR_LOCK_REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this cid.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x17 CTAP2_ERR_FP_DATABASE_FULL
Fingerprint data base is full, e.g., during
enrollment.

0x18 CTAP2_ERR_LARGE_BLOB_STORAGE_FULL
Large blob storage is full. (See § 6.10.3
Large, per-credential blobs.)

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the exclude list.

0x21 CTAP2_ERR_PROCESSING
Processing (Lengthy operation is in
progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in progress.

0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM
Authenticator does not support requested
algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Not a valid option for current operation.

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT A user action timeout occurred.

0x30 CTAP2_ERR_NOT_ALLOWED
Continuation command, such as,
authenticatorGetNextAssertion not allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN Invalid.

0x32 CTAP2_ERR_PIN_BLOCKED PIN Blocked.

0x33 CTAP2_ERR_PIN_AUTH_INVALID
PIN authentication,pinUvAuthParam,
verification failed.

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED
PIN authentication using pinUvAuthToken
blocked. Requires power cycle to reset.

0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.

79/137

0x36 CTAP2_ERR_PUAT_REQUIRED
A pinUvAuthToken is required for the
selected operation. See also the
pinUvAuthToken option ID.

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION
PIN policy violation. Currently only enforces
minimum length.

0x38 Reserved for Future Use Reserved for Future Use

0x39 CTAP2_ERR_REQUEST_TOO_LARGE
Authenticator cannot handle this request due
to memory constraints.

0x3A CTAP2_ERR_ACTION_TIMEOUT The current operation has timed out.

0x3B CTAP2_ERR_UP_REQUIRED
User presence is required for the requested
operation.

0x3C CTAP2_ERR_UV_BLOCKED built-in user verification is disabled.

0x3D CTAP2_ERR_INTEGRITY_FAILURE A checksum did not match.

0x3E CTAP2_ERR_INVALID_SUBCOMMAND
The requested subcommand is either invalid
or not implemented.

0x3F CTAP2_ERR_UV_INVALID built-in user verification unsuccessful. The
platform SHOULD retry.

0x40 CTAP2_ERR_UNAUTHORIZED_PERMISSION
The permissions parameter contains an
unauthorized permission.

0x7F CTAP1_ERR_OTHER Other unspecified error.

0xDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.

0xE0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.

0xEF CTAP2_ERR_EXTENSION_LAST Extension specific error.

0xF0 CTAP2_ERR_VENDOR_FIRST Vendor specific error.

0xFF CTAP2_ERR_VENDOR_LAST Vendor specific error.

Code Name Description

This protocol uses the following utility functions for encoding various values in various algorithms:

Returns the least-significant eight bits of x as a single byte.

Returns a sequence of four bytes whose values are the least-significant eight bits of x, x >> 8, x >> 16, and
x >> 24, respectively.

Returns a sequence of eight bytes whose values are the least-significant eight bits of x, x >> 8, x >> 16, x >>
24, x >> 32, x >> 40, x >> 48, x >> 56, respectively.

Authenticators that include FIDO_2_1 in versions:

8.3. Utility functions

uint8(x)

uint32LittleEndian(x)

uint64LittleEndian(x)

9. Mandatory features

1. MUST support the hmac-secret extension.

2. MUST support PIN establishment/maintenance or a built-in user verification method (or both) if the option ID
for rk has the value true. The option ID values for clientPin and uv MUST have either the values true or
false, depending on if a pin has been set or a biometric template enrolled on the authenticator.

3. MUST either include the credMgmt option ID with the value true in the authenticatorGetInfo response’s
options member, or support all the same functionality via a built-in UI, if the rk option ID has the value true.

4. MUST support the credProtect extension if some form of user verification is supported, unless all credentials
are implicitly created at credProtect level three.

5. MUST include the pinUvAuthToken option ID with the value true in the authenticatorGetInfo response’s
options member if either the clientPin or uv option IDs have the value true.

6. MUST include an array element with the value 2 in the authenticatorGetInfo response’s pinUvAuthProtocols
member (i.e. support PIN/UV auth protocol two) if it includes any values at all.

10. Interoperating with CTAP1/U2F authenticators
80/137

This section defines:

Platforms MAY implement support for CTAP1/U2F, but authenticators SHOULD support it. Not supporting U2F
may result in an authenticator that does not function on all websites and thus may appear to be broken to users.
Thus authenticators that do not support CTAP1/U2F are not suitable for sale to the general public but may be
manufactured for specific cases where it is known that CTAP1/U2F support is unnecessary.

The U2F protocol is based on a request-response mechanism, where a requester sends a request message to a
U2F device, which always results in a response message being sent back from the U2F device to the requester.

The request message has to be "framed" to send to the lower layer. Taking the signature request as an example,
the "framing" is a way for the FIDO client to tell the lower transport layer that it is sending a signature request and
then send the raw message contents. The framing also specifies how the transport will carry back the response
raw message and any meta-information such as an error code if the command failed.

In this current version of U2F, the framing is defined based on the ISO7816-4:2005 extended APDU format. This
is very appropriate for the USB transport since devices are typically built around secure elements which
understand this format already. This same argument may apply for futures such as Bluetooth based devices. For
other futures based on other transports, such as a built-in u2f token on a mobile device TEE, this framing may
not be appropriate, and a different framing may need to be defined.

The raw request message is framed as a command APDU:

CLA INS P1 P2 LC1 LC2 LC3

Where:

CLA: Reserved to be used by the underlying transport protocol (if applicable). The host application SHALL set
this byte to zero.

INS: U2F command code, defined in the following sections.

P1, P2: Parameter 1 and 2, defined by each command.

LC1-LC3: Length of the request data, big-endian coded, i.e. LC1 being MSB and LC3 LSB

The raw response data is framed as a response APDU:

SW1 SW2

Where:

SW1, SW2: Status word bytes 1 and 2, forming a 16-bit status word, defined below. SW1 is MSB and SW2 LSB.

Status Codes

The following ISO7816-4 defined status words have a special meaning in U2F:

SW_NO_ERROR: The command completed successfully without error.

SW_CONDITIONS_NOT_SATISFIED: The request was rejected due to test-of-user-presence being required.

SW_WRONG_DATA: The request was rejected due to an invalid key handle.

SW_COMMAND_NOT_ALLOWED: The command is not allowed at this time, e.g. because U2F is disabled.

Each implementation may define any other vendor-specific status codes, providing additional information about
an error condition. Only the error codes listed above will be handled by U2F FIDO clients, whereas others will be
seen as general errors and logging of these is OPTIONAL.

1. How a platform maps a subset of CTAP2 requests to CTAP1/U2F requests and, conversely, how it maps
the CTAP1/U2F responses to CTAP2 responses. (Only requests that do not require CTAP2-only features
can be so mapped.)

2. How RPs verify CTAP1/U2F-based authenticatorMakeCredential and authenticatorGetAssertion responses.

3. How authenticators allow credentials to be exposed via both CTAP2 and CTAP1/U2F.

10.1. Framing of U2F commands

10.1.1. U2F Request Message Framing

10.1.2. U2F Response Message Framing

10.2. Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F
authenticators

81/137

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorMakeCredential to and from
CTAP1/U2F Registration Messages):

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as
specified in CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any
failure, platform MAY fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorMakeCredential request to U2F_REGISTER request.

Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators
cannot fulfill.

All of the below conditions MUST be true for the platform to proceed to next step. If any of the
below conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

pubKeyCredParams MUST use the ES256 algorithm (-7).

Options MUST NOT include "rk" set to true.

Options MUST NOT include "uv" set to true.

If excludeList is not empty:

If the excludeList is not empty, the platform MUST send signing request with check-only control
byte to the CTAP1/U2F authenticator using each of the credential ids (key handles) in the
excludeList. If any of them does not result in an error, that means that this is a known device.
Afterwards, the platform MUST still send a dummy registration request (with a dummy appid
and invalid challenge) to CTAP1/U2F authenticators that it believes are excluded. This makes
it so the user still needs to touch the CTAP1/U2F authenticator before the RP gets told that the
token is already registered.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

Let rpIdHash be a byte string of size 32 initialized with SHA-256 hash of rp.id parameter as
CTAP1/U2F application parameter (32 bytes).

3. Send the U2F_REGISTER request to the authenticator as specified in [U2FRawMsgs] spec.

4. If the authenticator response message contains the status code SW_COMMAND_NOT_ALLOWED, U2F is
disabled at this time. Abandon this operation. The platform SHOULD retry using CTAP2 if present in the
versions array.

5. Map the U2F registration response message (see: FIDO U2F Raw Message Formats v1.2 § registration-
response-message-success) to a CTAP2 authenticatorMakeCredential response message:

Generate authenticatorData from the U2F registration response message (FIDO U2F Raw Message
Formats v1.2 § registration-response-message-success) received from the authenticator:

Initialize attestedCredData:

Let credentialIdLength be a 2-byte unsigned big-endian integer representing length of the
Credential ID initialized with CTAP1/U2F response key handle length.

Let credentialId be a credentialIdLength byte string initialized with CTAP1/U2F response
key handle bytes.

Let x9encodedUserPublicKeybe the user public key returned in the U2F registration
response message [U2FRawMsgs]. Let coseEncodedCredentialPublicKey be the result of
converting x9encodedUserPublicKey’s value from ANS X9.62 / Sec-1 v2 uncompressed curve
point representation [SEC1V2] to COSE_Key representation ([RFC9052] Section 7).

Let attestedCredData be a byte string with following structure:

Length (in bytes) Description Value

16
The AAGUID of the

authenticator.
Initialized with all zeros.

2
Byte length L of

Credential ID
Initialized with credentialIdLength
bytes.

credentialIdLength Credential ID. Initialized with credentialId bytes.

77
The credential public

key.

Initialized with
coseEncodedCredentialPublicKey
bytes.

Initialize authenticatorData:

Let flags be a byte whose zeroth bit (bit 0, UP) is set, and whose sixth bit (bit 6, AT) is
set, and all other bits are zero (bit zero is the least significant bit). See also Authenticator
Data section of [WebAuthn].

Let signCount be a 4-byte unsigned integer initialized to zero.

82/137

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-request-message---u2f_register
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success

Let authenticatorData be a byte string with the following structure:

Length (in
bytes)

Description Value

32
SHA-256 hash of the

rp.id.
Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4
Signature counter

(signCount).
Initialized with signCount bytes.

Variable
Length

Attested credential data.
Initialized with attestedCredData’s
value.

Let attestationStatement be a CBOR map (see "attStmtTemplate" in Generating an Attestation
Object [WebAuthn]) with the following keys, whose values are as follows:

Set "x5c" as an array of the one attestation cert extracted from CTAP1/U2F response.

Set "sig" to be the "signature" bytes from the U2F registration response message [U2FRawMsgs].
Note: An ASN.1-encoded ECDSA signature value ranges over 8–72 bytes in length. [U2FRawMsgs
] incorrectly states a different length range.

Let attestationObject be a CBOR map (see "attObj" in Generating an Attestation Object [WebAuthn])
with the following keys, whose values are as follows:

Set "authData" to authenticatorData.

Set "fmt" to "fido-u2f".

Set "attStmt" to attestationStatement.

6. Return attestationObject to the caller.

EXAMPLE 1
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 2: {"id": "example.com",
 "name": "example.com"},
 3: {"id": "1098237235409872",
 "name": "johnpsmith@example.com",
 "icon": "https://pics.example.com/00/p/aBjjjpqPb.png",
 "displayName": "John P. Smith"},
 4: [{"type": "public-key", "alg": -7},
 {"type": "public-key", "alg": -257}]}

CTAP1/U2F Request from above CTAP2 authenticatorMakeCredential request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash

Sample CTAP1/U2F Response from the device

05 # Reserved Byte (1 Byte
)
04E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E # User Public Key (65 By
tes)
1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...
91 # ...
40 # Key Handle Length (1 B
yte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
 Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B # X.509 Cert (Variable l
ength Cert)
0500302E312C302A0603550403132359756269636F2055324620526F6F742043 # ...
412053657269616C203435373230303633313020170D31343038303130303030 # ...
30305A180F32303530303930343030303030305A302C312A302806035504030C # ...
2159756269636F205532462045452053657269616C2032343931383233323437 # ...
37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 # ...
2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 # ...
E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30 # ...
39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 # ...
322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...
4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B # ...
BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4 # ...
C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B # ...
8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 # ...
B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...

83/137

https://www.w3.org/TR/webauthn-2#rp-id
https://www.w3.org/TR/webauthn-2#sec-attested-credential-data
https://www.w3.org/TR/webauthn-2#generating-an-attestation-object
https://www.w3.org/TR/webauthn-2#generating-an-attestation-object

B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...
1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD # ...
810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 # ...
3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF # ...
1BB0F1FE5DB4EFF7A95F060733F5 # ...
30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85 # Signature (variable Le
ngth)
32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # ...
AA7D081DE341FA # ...

Authenticator Data from CTAP1/U2F Response

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash
41 # flags
00000000 # Sign Count
00000000000000000000000000000000 # AAGUID
0040 # Key Handle Length (1 B
yte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
 Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
A5010203262001215820E87625896EE4E46DC032766E8087962F36DF9DFE8B56 # Public Key
7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C # ...
B14C22F8C97045F4612FB20C91 # ...

Mapped CTAP2 authenticatorMakeCredential response(CBOR)

{1: "fido-u2f",
 2: h’A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947
 4100403EBD89BF77EC509755
 EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E
 78055BDD396B64F78DA2C5F96200CCD415CD08FE420038A50102032620012158
 20E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E
 1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461
 2FB20C91',
 3: {"sig": h’30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85
 32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1
 AA7D081DE341FA',
 "x5c": [h’3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B
 0500302E312C302A0603550403132359756269636F2055324620526F6F742043
 412053657269616C203435373230303633313020170D31343038303130303030
 30305A180F32303530303930343030303030305A302C312A302806035504030C
 2159756269636F205532462045452053657269616C2032343931383233323437
 37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9
 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1
 E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30
 39302206092B0601040182C40A020415312E332E362E312E342E312E34313438
 322E312E323013060B2B0601040182E51C020101040403020430300D06092A86
 4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B
 BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4
 C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B
 8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69
 B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F
 1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD
 810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3
 3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF
 1BB0F1FE5DB4EFF7A95F060733F5']}}

84/137

Figure 3 Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F Registration Messages.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorGetAssertion to and from
CTAP1/U2F Authentication Messages):

10.3. Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as
specified in CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any
failure, platform MAY fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:

Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators
cannot fulfill:

All of the below conditions MUST be true for the platform to proceed to next step. If any of the
below conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

Options MUST NOT include "uv" set to true.

allowList MUST have at least one credential.

If allowList has more than one credential, platform has to loop over the list and send individual different
U2F_AUTHENTICATE commands to the authenticator. For each credential in credential list, map

85/137

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-request-message---u2f_authenticate

CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE as below:

Let controlByte be a byte initialized as follows:

If "up" is set to false, set it to 0x08 (dont-enforce-user-presence-and-sign).

For USB, set it to 0x07 (check-only). This should prevent call getting blocked on waiting for
user input. If response returns success, then call again setting the enforce-user-presence-and-
sign.

For NFC, set it to 0x03 (enforce-user-presence-and-sign). The tap has already provided the
presence and won’t block.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

Let rpIdHash be a byte string of size 32 initialized with SHA-256 hash of rp.id parameter as
CTAP1/U2F application parameter (32 bytes).

Let credentialId is the byte string initialized with the id for this PublicKeyCredentialDescriptor.

Let keyHandleLength be a byte initialized with length of credentialId byte string.

Let u2fAuthenticateRequest be a byte string with the following structure:

Length (in
bytes)

Description Value

32 Challenge parameter
Initialized with clientDataHash parameter
bytes.

32
Application
parameter

Initialized with rpIdHash bytes.

1 Key handle length Initialized with keyHandleLength’s value.

keyHandleLength Key handle Initialized with credentialId bytes.

and let Control Byte be P1 of the framing.

3. Send u2fAuthenticateRequest to the authenticator.

4. If the authenticator response message contains the status code SW_COMMAND_NOT_ALLOWED, U2F is
disabled at this time. Abandon this operation. The platform SHOULD retry using CTAP2.

5. Map the U2F authentication response message (see the "Authentication Response Message: Success"
section of [U2FRawMsgs]) to a CTAP2 authenticatorGetAssertion response message:

Generate authenticatorData from the U2F authentication response message received from the
authenticator:

Copy bits 0 (the UP bit) and bit 1 from the CTAP2/U2F response user presence byte to bits 0 and 1
of the CTAP2 flags, respectively. Set all other bits of flags to zero. Note: bit zero is the least
significant bit. See also Authenticator Data section of [WebAuthn].

Let signCount be a 4-byte unsigned integer initialized with CTAP1/U2F response counter field.

Let authenticatorData is a byte string of following structure:

Length (in
bytes)

Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4
Signature counter
(signCount)

Initialized with signCount
bytes.

Let authenticatorGetAssertionResponse be a CBOR map with the following keys whose values are
as follows:

Set 0x01 with the credential from allowList that whose response succeeded.

Set 0x02 with authenticatorData bytes.

Set 0x03 with signature field from CTAP1/U2F authentication response message. Note: An ASN.1-
encoded ECDSA signature value ranges over 8–72 bytes in length. [U2FRawMsgs] incorrectly
states a different length range.

86/137

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-request-message---u2f_authenticate
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-response-message-success
https://www.w3.org/TR/webauthn-2#rp-id

EXAMPLE 2
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{1: "example.com",
 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 3: [{"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'}],
 5: {"up": true}}

CTAP1/U2F Request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash
40 # Key Handle Length (1 B
yte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
 Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

Sample CTAP1/U2F Response from the device

01 # User Presence (1 Byte
)
0000003B # Sign Count (4 Bytes
)
304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C # Signature (variable Le
ngth)
68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3 # ...
5AAD5373858E # ...

Authenticator Data from CTAP1/U2F Response

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash
01 # User Presence (1 Byte
)
0000003B # Sign Count (4 Bytes
)

Mapped CTAP2 authenticatorGetAssertion response(CBOR)

{1: {"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'},
 2: h’A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947
 010000003B',
 3: h’304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C
 68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3
 5AAD5373858E'}

87/137

Figure 4 Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F Authentication Messages.

If an authenticator supports both CTAP1/U2F and CTAP2 then a credential created using CTAP1/U2F MUST be
assertable over CTAP2. (Credentials created over CTAP1/U2F MUST NOT be discoverable credentials though.)
From § 10.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators, this means
that an authenticator MUST accept, over CTAP2, the credential ID of a credential that was created using U2F
where the application parameter at the time of creation was the SHA-256 digest of the RP ID that is given at
assertion time.

In order to ensure that the interaction between the platform and any authenticators is secure, authenticators
SHALL:

FIDO interfaces are defined as:

10.4. Cross-version Credential Compatibility

11. Transport-specific Bindings

11.1. Secure protocol implementation

Ensure that all state (e.g. discoverable credentials, signature counters, PINs, etc) that is observable or
alterable over FIDO interfaces is not observable or alterable over any other interfaces on transports that
FIDO has defined.

Ensure that all non-discoverable credentials that are created over FIDO interfaces are not valid over any
other interfaces on transports that FIDO has defined. (For example, if non-discoverable credentials store
state in the credential ID, protected by an authenticator-global secret, then that secret MUST only be used
for requests received over FIDO interfaces.)

NOTE: Above recommendations are also valid for future transports.

USB, when using USB HID and the FIDO_USAGE_PAGE/FIDO_USAGE_CTAPHID combination.

NFC, when the applet is selected as specified.

88/137

https://www.w3.org/TR/webauthn-2#rp-id

See also § 11.1 Secure protocol implementation.

CTAP messages are framed for USB transport using the HID (Human Interface Device) protocol. We henceforth
refer to the protocol as CTAPHID. The CTAPHID protocol is designed with the following design objectives in
mind

Since HID data is sent as interrupt packets and multiple applications may access the HID stack at once, a non-
trivial level of complexity has to be added to handle this.

The CTAP protocol is designed to be concurrent and state-less in such a way that each performed function is not
dependent on previous actions. However, there has to be some form of "atomicity" that varies between the
characteristics of the underlying transport protocol, which for the CTAPHID protocol introduces the following
terminology:

A transaction is the highest level of aggregated functionality, which in turn consists of a request, followed by a
response message. Once a request has been initiated, the transaction has to be entirely completed or aborted
before a second transaction can take place and a response is never sent without a previous request.
Transactions exist only at the highest CTAP protocol layer.

Request and response messages are in turn divided into individual fragments, known as packets. The packet is
the smallest form of protocol data unit, which in the case of CTAPHID are mapped into HID reports.

Additional logic and overhead is required to allow a CTAPHID device to deal with multiple "clients", i.e. multiple
applications accessing the single resource through the HID stack. Each client communicates with a CTAPHID
device through a logical channel, where each application uses a unique 32-bit channel identifier for routing and
arbitration purposes.

A channel identifier is allocated by the FIDO authenticator to ensure its system-wide uniqueness. The actual
algorithm for generation of channel identifiers is vendor specific and not defined by this specification.

Channel ID 0 is reserved and 0xffffffff is reserved for broadcast commands, i.e. at the time of channel
allocation.

Packets are one of two types, initialization packets and continuation packets. As the name suggests, the first
packet sent in a message is an initialization packet, which also becomes the start of a transaction. If the entire
message does not fit into one packet (including the CTAPHID protocol overhead), one or more continuation
packets have to be sent in strict ascending order to complete the message transfer.

A message sent from a host to a device is known as a request and a message sent from a device back to the

Authenticator SHALL NOT allow FIDO applet to be implicitly selected or enabled.

Recommended: Authenticator SHALL NOT have default applet selected on power cycle. All CTAP
commands SHALL be preceded by an explicit applet selection command as described in Applet
selection section.

Alternative: If authenticator has a FIDO applet selected for some reason at power cycle, it SHALL
be in disabled mode and SHALL ONLY be enabled once it receives explicit applet selection
command as described in Applet selection section.

Authenticator SHALL disable FIDO interface when it receives applet deselect command.

BLE, when using the FIDO GATT service.

11.2. USB Human Interface Device (USB HID)

11.2.1. Design rationale

Driver-less installation on all major host platforms

Multi-application support with concurrent application access without the need for serialization and centralized
dispatching.

Fixed latency response and low protocol overhead

Scalable method for CTAPHID device discovery

11.2.2. Protocol structure and data framing

Transaction

Message

Packet

11.2.3. Concurrency and channels

11.2.4. Message and packet structure

89/137

host is known as a response. A request always triggers a response and response messages are never sent ad-
hoc, i.e. without a prior request message. However, a keep-alive message can be sent between a request and a
response message.

The request and response messages have an identical structure. A transaction is started with the initialization
packet of the request message and ends with the last packet of the response message. The client starting a
transaction may also abort it.

Packets are always fixed size (defined by the endpoint and HID report descriptors) and although all bytes may
not be needed in a particular packet, the full size always has to be sent. Unused bytes SHOULD be set to zero.

An initialization packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s - 7) DATA Payload data (s is equal to the fixed packet size)

The command byte has always the highest bit set to distinguish it from a continuation packet, which is described
below.

A continuation packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)

5 (s - 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7) may be sent as one packet. A larger
message is then divided into one or more continuation packets, starting with sequence number 0, which then
increments by one to a maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum message payload
length is 64 - 7 + 128 * (64 - 5) = 7609 bytes.

In order to handle multiple channels and clients concurrency, the CTAPHID protocol has to maintain certain
internal states, block conflicting requests and maintain protocol integrity. The protocol relies on each client
application (channel) behaves politely, i.e. does not actively act to destroy for other channels. With this said, a
malign or malfunctioning application can cause issues for other channels. Expected errors and potentially stalling
applications should however, be handled properly.

A transaction always consists of three stages:

The protocol is built on the assumption that a plurality of concurrent applications may try ad-hoc to perform
transactions at any time, with each transaction being atomic, i.e. it cannot be interrupted by another application
once started.

The application channel that manages to get through the first initialization packet when the device is in idle state
will keep the device locked for other channels until the last packet of the response message has been received
or the transaction is aborted. The device then returns to idle state, ready to perform another transaction for the
same or a different channel. Between two transactions, the device might need to keep some state. A host
application MUST assume that any other process may execute other transactions at any time and former state
will be dropped.

If an application tries to access the device from a different channel while the device is busy with a transaction,
that request will immediately fail with a busy-error message sent to the requesting channel.

11.2.5. Arbitration

11.2.5.1. Transaction atomicity, idle and busy states.

1. A message is sent from the host to the device

2. The device processes the message

3. A response is sent back from the device to the host

11.2.5.2. Transaction timeout 90/137

A transaction has to be completed within a specified period of time to prevent a stalling application to cause the
device to be completely locked out for access by other applications. If for example an application sends an
initialization packet that signals that continuation packets will follow and that application crashes, the device will
back out that pending channel request and return to an idle state.

If an application for any reason "gets lost", gets an unexpected response or error, it MAY at any time issue an
abort-and-resynchronize command. If the device detects an INIT command during a transaction that has the
same channel id as the active transaction, the transaction is aborted (if possible) and all buffered data flushed (if
any). The device then returns to idle state to become ready for a new transaction.

If an application wishes to abort a command after the request has been fully sent, e.g. while an authenticator is
waiting for user presence, the application MAY do this by sending a CTAPHID_CANCEL command.

The device keeps track of packets arriving in correct and ascending order and that no expected packets are
missing. The device will continue to assemble a message until all parts of it has been received or that the
transaction times out. Spurious continuation packets appearing without a prior initialization packet will be
ignored.

In order to deal with aggregated transactions that may not be interrupted, such as tunneling of vendor-specific
commands, a channel lock command MAY be implemented. By sending a channel lock command, the device
prevents other channels from communicating with the device until the channel lock has timed out or been
explicitly unlocked by the application.

This feature is optional and has not to be considered by general CTAP HID applications.

The CTAPHID protocol is designed to be extensible yet maintain backwards compatibility, to the extent it is
applicable. This means that a CTAPHID host SHALL support any version of a device with the command set
available in that particular version.

This description assumes knowledge of the USB and HID specifications and is intended to provide the basics for
implementing a CTAPHID device. There are several ways to implement USB devices and reviewing these
different methods is beyond the scope of this document. This specification targets the interface part, where a
device is regarded as either a single or multiple interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s). Although not
excluded per se, USB low-speed devices are not practical to use given the 8-byte report size limitation together
with the protocol overhead.

The device implements two endpoints (except the control endpoint 0), one for IN and one for OUT transfers. The
packet size is vendor defined, but the reference implementation assumes a full-speed device with two 64-byte
endpoints.

Interface Descriptor

Mnemonic Value Description

bNumEndpoints 2 One IN and one OUT endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

11.2.5.2. Transaction timeout

11.2.5.3. Transaction abort and re-synchronization

11.2.5.4. Packet sequencing

11.2.6. Channel locking

11.2.7. Protocol version and compatibility

11.2.8. HID device implementation

11.2.8.1. Interface and endpoint descriptors

91/137

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdress 0x01 1, OUT

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdress 0x81 1, IN

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be defined freely by the
vendor and the host application is responsible for querying these values and handle these accordingly. For the
sake of clarity, the values listed above are used in the following examples.

A HID report descriptor is required for all HID devices, even though the reports and their interpretation (scope,
range, etc.) makes very little sense from an operating system perspective. The CTAPHID just provides two "raw"
reports, which basically map directly to the IN and OUT endpoints. However, the HID report descriptor has an
important purpose in CTAPHID, as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

A unique Usage Page is defined (0xF1D0) for the FIDO alliance and under this realm, a CTAPHID Usage is
defined as well (0x01). During CTAPHID device discovery, all HID devices present in the system are examined
and devices that match this usage pages and usage are then considered to be CTAPHID devices.

The length values specified by the HID_INPUT_REPORT_BYTES and the HID_OUTPUT_REPORT_BYTES should
typically match the respective endpoint sizes defined in the endpoint descriptors.

The CTAPHID protocol implements the following commands.

The following list describes the minimum set of commands required by a CTAPHID device. Optional and vendor-
specific commands may be implemented as described in respective sections of this document.

11.2.8.2. HID report descriptor and device discovery

EXAMPLE 3
// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {
 HID_UsagePage (FIDO_USAGE_PAGE),
 HID_Usage (FIDO_USAGE_CTAPHID),
 HID_Collection (HID_Application),
 HID_Usage (FIDO_USAGE_DATA_IN),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_INPUT_REPORT_BYTES),
 HID_Input (HID_Data | HID_Absolute | HID_Variable),
 HID_Usage (FIDO_USAGE_DATA_OUT),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),
 HID_Output (HID_Data | HID_Absolute | HID_Variable),
HID_EndCollection
};

11.2.9. CTAPHID commands

11.2.9.1. Mandatory commands

11.2.9.1.1. CTAPHID_MSG (0X03)

92/137

This command sends an encapsulated CTAP1/U2F message to the device. The semantics of the data message
is defined in the U2F Raw Message Format encoding specification.

Request

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F command byte

DATA + 1 n bytes of data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F status code

DATA + 1 n bytes of data

This command sends an encapsulated CTAP CBOR encoded message. The semantics of the data message is
defined in the CTAP Message encoding specification. Please note that keep-alive messages MAY be sent from
the device to the client before the response message is returned.

Request

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP command byte

DATA + 1 n bytes of CBOR encoded data

Response at success

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP status code

DATA + 1 n bytes of CBOR encoded data

This command has two functions.

If sent on an allocated CID, it synchronizes a channel, discarding the current transaction, buffers and state as
quickly as possible. It will then be ready for a new transaction. The device then responds with the CID of the
channel it received the INIT on, using that channel.

If sent on the broadcast CID, it requests the device to allocate a unique 32-bit channel identifier (CID) that can be
used by the requesting application during its lifetime. The requesting application generates a nonce that is used
to match the response. When the response is received, the application compares the sent nonce with the
received one. After a positive match, the application stores the received channel id and uses that for subsequent
transactions.

To allocate a new channel, the requesting application SHALL use the broadcast channel
CTAPHID_BROADCAST_CID (0xFFFFFFFF). The device then responds with the newly allocated channel in the
response, using the broadcast channel.

Request

CMD CTAPHID_INIT

BCNT 8

DATA 8-byte nonce

11.2.9.1.2. CTAPHID_CBOR (0X10)

11.2.9.1.3. CTAPHID_INIT (0X06)

93/137

Response at success

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce

DATA+8 4-byte channel ID

DATA+12 CTAPHID protocol version identifier

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented by the device. This version of the CTAPHID
protocol is 2.

A CTAPHID host SHALL accept a response size that is longer than the anticipated size to allow for future
extensions of the protocol, yet maintaining backwards compatibility. Future versions will maintain the response
structure of the current version, but additional fields may be added.

The meaning and interpretation of the device version number is vendor defined.

The capability flags value is a bitfield where the following bits values are defined. Unused values are reserved for
future use and MUST be set to zero by device vendors.

Name Value Description

CAPABILITY_WINK 0x01 If set to 1, authenticator implements CTAPHID_WINK function

CAPABILITY_CBOR 0x04 If set to 1, authenticator implements CTAPHID_CBOR function

CAPABILITY_NMSG 0x08
If set to 1, authenticator DOES NOT implement CTAPHID_MSG
function

Sends a transaction to the device, which immediately echoes the same data back. This command is defined to
be a uniform function for debugging, latency and performance measurements.

Request

CMD CTAPHID_PING

BCNT 0..n

DATA n bytes

Response at success

CMD CTAPHID_PING

BCNT n

DATA N bytes

Cancel any outstanding requests on this CID. If there is an outstanding request that can be cancelled, the
authenticator MUST cancel it and that cancelled request will reply with the error
CTAP2_ERR_KEEPALIVE_CANCEL.

As the CTAPHID_CANCEL command is sent during an ongoing transaction, transaction semantics do not apply.
Whether a request was cancelled or not, the authenticator MUST NOT reply to the CTAPHID_CANCEL message
itself. The CTAPHID_CANCEL command MAY be sent by the client during ongoing processing of a
CTAPHID_CBOR request. The CTAP2_ERR_KEEPALIVE_CANCEL response MUST be the response to that
request, not an error response in the HID transport.

A CTAPHID_CANCEL received while no CTAPHID_CBOR request is being processed, or on a non-active CID
SHALL be ignored by the authenticator.

11.2.9.1.4. CTAPHID_PING (0X01)

11.2.9.1.5. CTAPHID_CANCEL (0X11)

94/137

CMD CTAPHID_CANCEL

BCNT 0

This command code is used in response messages only.

CMD CTAPHID_ERROR

BCNT 1

DATA Error code

The following error codes are defined

ERR_INVALID_CMD 0x01 The command in the request is invalid

ERR_INVALID_PAR 0x02 The parameter(s) in the request is invalid

ERR_INVALID_LEN 0x03 The length field (BCNT) is invalid for the request

ERR_INVALID_SEQ 0x04 The sequence does not match expected value

ERR_MSG_TIMEOUT 0x05 The message has timed out

ERR_CHANNEL_BUSY 0x06
The device is busy for the requesting channel. The client SHOULD
retry the request after a short delay. Note that the client MAY abort
the transaction if the command is no longer relevant.

ERR_LOCK_REQUIRED 0x0A Command requires channel lock

ERR_INVALID_CHANNEL 0x0B CID is not valid.

ERR_OTHER 0x7F Unspecified error

Note: These values are identical to the BLE transport values.

This command code is sent while processing a CTAPHID_MSG. It SHOULD be sent at least every 100ms and
whenever the status changes. A KEEPALIVE sent by an authenticator does not constitute a response and does
therefore not end an ongoing transaction.

CMD CTAPHID_KEEPALIVE

BCNT 1

DATA Status code

The following status codes are defined

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

The following commands are defined by this specification but are optional and does not have to be implemented.

The wink command performs a vendor-defined action that provides some visual or audible identification a
particular authenticator. A typical implementation will do a short burst of flashes with a LED or something similar.
This is useful when more than one device is attached to a computer and there is confusion which device is
paired with which connection.

Request

CMD CTAPHID_WINK

11.2.9.1.6. CTAPHID_ERROR (0X3F)

11.2.9.1.7. CTAPHID_KEEPALIVE (0X3B)

11.2.9.2. Optional commands

11.2.9.2.1. CTAPHID_WINK (0X08)

95/137

BCNT 0
DATA N/A

Response at success

CMD CTAPHID_WINK

BCNT 0

DATA N/A

The lock command places an exclusive lock for one channel to communicate with the device. As long as the lock
is active, any other channel trying to send a message will fail. In order to prevent a stalling or crashing
application to lock the device indefinitely, a lock time up to 10 seconds MAY be set. An application requiring a
longer lock has to send repeating lock commands to maintain the lock.

Request

CMD CTAPHID_LOCK

BCNT 1

DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock

Response at success

CMD CTAPHID_LOCK

BCNT 0

DATA N/A

A CTAPHID MAY implement additional vendor specific commands that are not defined in this specification, while
being CTAPHID compliant. Such commands, if implemented, MUST use a command in the range between
CTAPHID_VENDOR_FIRST (0x40) and CTAPHID_VENDOR_LAST (0x7F).

See also § 11.1 Secure protocol implementation.

Please refer to [ISO7816-4] for APDU definition.

The general protocol between a FIDO2 client and an authenticator over ISO7816/ISO14443 is as follows:

Because of timeouts that may otherwise occur on some platforms, it is RECOMMENDED that the authenticators
reply to APDU commands within 800 milliseconds.

A successful Select allows the client to know that the applet is present and active. A client SHALL send a Select
to the authenticator before any other command.

The FIDO2 AID consists of the following fields:

11.2.9.2.2. CTAPHID_LOCK (0X04)

11.2.9.3. Vendor specific commands

11.3. ISO7816, ISO14443 and Near Field Communication (NFC)

11.3.1. Conformance

11.3.2. Protocol

1. Client sends an applet selection command

2. Authenticator replies with success if the applet is present

3. Client sends a command for an operation

4. Authenticator replies with response data or error

5. Return to 3.

11.3.3. Applet selection

NOTE: See also § 11.1 Secure protocol implementation

96/137

Field Value

RID 0xA000000647

PIX 0x2F0001

The command to select the FIDO applet is:

CLA INS P1 P2 Data In Le

0x00 0xA4 0x04 0x00 AID Variable

In response to the applet selection command, the FIDO authenticator replies with its version information string in
the successful response.

Clients and authenticators MAY support additional selection mechanisms. Clients MUST fall back to the
previously defined selection process if the additional selection mechanisms fail to select the applet.
Authenticators MUST at least support the previously defined selection process.

Given legacy support for CTAP1/U2F, the client MUST determine the capabilities of the device at the selection
stage.

Conceptually, framing defines an encapsulation of FIDO2 commands. This encapsulation is done in an APDU
following [ISO7816-4]. Authenticators MUST support short and extended length encoding for this APDU.
Fragmentation, if needed, is discussed in the following paragraph.

Commands SHALL have the following format:

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00 CTAP Command Byte || CBOR Encoded Data Variable

Response SHALL have the following format in case of success:

Case Data Status word

CTAP
Status
code ||

Response

If the authenticator implements CTAP1/U2F, the version information SHALL be the string "U2F_V2", or
0x5532465f5632, to maintain backwards-compatibility with CTAP1/U2F-only clients.

If the authenticator ONLY implements CTAP2, the device SHALL respond with "FIDO_2_0", or
0x4649444f5f325f30.

If the authenticator implements both CTAP1/U2F and CTAP2, the version information SHALL be the string
"U2F_V2", or 0x5532465f5632, to maintain backwards-compatibility with CTAP1/U2F-only clients. CTAP2-
aware clients MAY then issue a CTAP authenticatorGetInfo command to determine if the device supports
CTAP2 or not.

11.3.4. Applet deselection

NOTE: See also § 11.1 Secure protocol implementation

Authenticator SHALL deselect or disable FIDO applet upon receiving below NFCCTAP_CONTROL END
CTAP_MSG command.

Authenticators SHALL ignore subsequent FIDO CTAP commands until it receives the next explicit FIDO
Applet selection command.

NFCCTAP_CONTROL END CTAP_MSG command is as follows:

CLA INS P1 P2

0x80 0x12 (NFCCTAP_CONTROL) 0x01 (End CTAP_MSG Control Byte) 0x00

11.3.5. Framing

11.3.5.1. Commands

11.3.5.2. Response

97/137

Success

data

"9000" - Success

Status
update

Status data

"9100" - OK
When receiving this, the ISO transport layer will immediately issue an

NFCCTAP_GETREPONSE command unless a cancel was issued. The ISO
transport layer will provide the status data to the higher layers.

Errors See [ISO7816-4]

Case Data Status word

APDU command may hold up to 255 or 65535 bytes of data using short or extended length encoding
respectively. APDU response may hold up to 256 or 65536 bytes of data using short or extended length
encoding respectively.

Some requests may not fit into a short APDU command, or the expected response may not fit in a short APDU
response. For this reason, FIDO2 client MAY encode APDU command in the following way:

Short APDU Chaining commands SHALL have the following format:

CLA INS P1 P2 Data In

0x90 0x10 0x00 0x00 CTAP Payload

11.3.6. Fragmentation

The request MAY be encoded using extended length APDU encoding.

The request MAY be encoded using short APDU encoding. If the request does not fit a short APDU
command, the client MUST use ISO 7816-4 APDU chaining.

EXAMPLE 4
Sample authenticatorMakeCredential request using short APDU encoding and chaining mode:

01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162726BF50850FC43AAA411D948CC6C3706
8B8DA1D5080901

would be sent to authenticator by platform in two short APDU commands:

APDU command 1:
98/137

Some responses may not fit into a short APDU response. For this reason, FIDO2 authenticators MUST respond
in the following way:

APDU command 1:

Platform Request:
90 10 00 00
F0
01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162

Authenticator Response:
9000

APDU command 2:

Platform Request:
80 10 00 00
17
726BF50850FC43AAA411D948CC6C37068B8DA1D5080901
00

Authenticator Response:
00
A301667061636B6564025900A20021F5FC0B85CD22E60623BCD7D1CA48948909
249B4776EB515154E57B66AE12C500000055F8A011F38C0A4D15800617111F9E
DC7D0010F4D57B23DD0CB785680CDAA7F7E44F60A5010203262001215820DF01
7D0B286795BEA153D166A0A15B4F6B67A3AF4A101E10E8496F3DD3C5D1A92258
2094B22551E6325D7733C41BB2F5A642ADEE417C97E0906197B5B0CD8B8D6C6B
A7A16B686D61632D736563726574F503A363616C672663736967584730450220
7CCAC57A1E43DF24B0847EEBF119D28DCDC5048F7DCD8EDD79E79721C41BCF2D
022100D89EC75B92CE8FF9E46FE7F8C87995694A63E5B78AB85C47B9DA
6100

APDU command 3:

Platform Request:
80 C0 00 00 00

Authenticator Response:
1C580A8EC83A63783563815901973082019330820138A003020102020900859B
726CB24B4C29300A06082A8648CE3D0403023047310B30090603550406130255
5331143012060355040A0C0B59756269636F205465737431223020060355040B
0C1941757468656E74696361746F72204174746573746174696F6E301E170D31
36313230343131353530305A170D3236313230323131353530305A3047310B30
0906035504061302555331143012060355040A0C0B59756269636F2054657374
31223020060355040B0C1941757468656E74696361746F722041747465737461
74696F6E3059301306072A8648CE3D020106082A8648CE3D030107034200
61A7

APDU command 4:

Platform Request:
80 C0 00 00 A7

Authenticator Response:
04AD11EB0E8852E53AD5DFED86B41E6134A18EC4E1AF8F221A3C7D6E636C80EA
13C3D504FF2E76211BB44525B196C44CB4849979CF6F896ECD2BB860DE1BF437
6BA30D300B30090603551D1304023000300A06082A8648CE3D04030203490030
46022100E9A39F1B03197525F7373E10CE77E78021731B94D0C03F3FDA1FD22D
B3D030E7022100C4FAEC3445A820CF43129CDB00AABEFD9AE2D874F9C5D343CB
2F113DA23723F3
9000

If the request was encoded using extended length APDU encoding, the authenticator MUST respond using
the extended length APDU response format.

If the request was encoded using short APDU encoding, the authenticator MUST respond using ISO 7816-4
APDU chaining.

11.3.7. Commands

11.3.7.1. NFCCTAP_MSG (0x10)

99/137

The NFCCTAP_MSG command send a CTAP message to the authenticator. This command SHALL return as
soon as processing is done. If the operation was not completed, it MAY return a 0x9100 result to trigger
NFCCTAP_GETRESPONSE functionality if the client indicated support by setting the relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

P1 Bits Meaning

0x80 The client supports NFCCTAP_GETRESPONSE

0x7F RFU, MUST be (0x00)

Values for P2 are all RFU and MUST be set to 0.

The NFCCTAP_GETRESPONSE command is issued up to receiving 0x9100 unless a cancel was issued. This
command SHALL return a 0x9100 result with a status indication if it has a status update, the reply to the request
with a 0x9000 result code to indicate success or an error value.

All values for P1 and P2 are RFU and MUST be set to 0x00.

See also § 11.1 Secure protocol implementation.

Authenticator and client devices using Bluetooth Low Energy Technology SHALL conform to Bluetooth Core
Specification 4.0 or later [BTCORE]. Bluetooth SIG specified UUID values SHALL be found on the Assigned
Numbers website [BTASSNUM].

Bluetooth Low Energy Technology is a long-range wireless protocol and thus has several implications for privacy,
security, and overall user-experience. Because it is wireless, Bluetooth Low Energy Technology may be subject
to monitoring, injection, and other network-level attacks.

For these reasons, clients and authenticators MUST create and use a long-term link key (LTK) and SHALL
encrypt all communications. Authenticator MUST never use short term keys.

Because Bluetooth Low Energy Technology has poor ranging (i.e., there is no good indication of proximity), it
may not be clear to a FIDO client with which Bluetooth Low Energy Technology authenticator it should
communicate. Pairing is the only mechanism defined in this protocol to ensure that FIDO clients are interacting
with the expected Bluetooth Low Energy Technology authenticator. As a result, authenticator manufacturers
SHOULD instruct users to avoid performing Bluetooth pairing in a public space such as a cafe, shop or train
station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most operating
systems. That is, if an authenticator is paired to a FIDO client which resides on an operating system where
Bluetooth pairing is "system-wide", then any application on that device might be able to interact with an
authenticator. This issue is discussed further in Implementation Considerations.

For Bluetooth Low Energy Technology connections, the authenticator SHALL enforce Security Mode 1, Level
2 (unauthenticated pairing with encryption) or Security Mode 1, Level 3 (authenticated pairing with
encryption) before any FIDO messages are exchanged.

Conceptually, framing defines an encapsulation of FIDO raw messages responsible for correct transmission of a
single request and its response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of the requests and
responses is given first as complete frames. Fragmentation is discussed next for each type of transport layer.

Request frames MUST have the following format

11.3.7.2. NFCCTAP_GETRESPONSE (0x11)

11.4. Bluetooth Smart / Bluetooth Low Energy Technology

11.4.1. Conformance

11.4.2. Pairing

11.4.3. Link Security

11.4.4. Framing

11.4.4.1. Request from Client to Authenticator

100/137

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

Supported commands are PING, MSG and CANCEL. The constant values for them are described below.

The CANCEL command cancels any outstanding MSG commands.

The data format for the MSG command is defined in § 8 Message Encoding.

Response frames MUST have the following format, which share a similar format to the request frames:

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request, the response is a
successful response. The value ERROR indicates an error, and the response data contains an error code as a
variable-length, big-endian integer. The constant value for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g., indicating an incorrectly
formatted request, or possibly an error communicating with the authenticator’s FIDO message processing layer.
Errors reported by the FIDO message processing layer itself are considered a success from the encapsulation
layer’s point of view and are reported as a complete MSG response.

Data format is defined in § 8 Message Encoding.

The COMMAND constants and values are:

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

CANCEL 0xbe

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

Status Constant Value

PROCESSING 0x01

UP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error Constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID_SEQ 0x04 The sequence number is invalid

11.4.4.2. Response from Authenticator to Client

11.4.4.3. Command, Status, and Error constants

101/137

ERR_REQ_TIMEOUT 0x05 The request timed out

ERR_BUSY 0x06
The device is busy and can’t accept commands at this time. The client
SHOULD retry the request after a short delay. Note that the client MAY
abort the transaction if the command is no longer relevant.

NA 0x0a Value reserved (HID)

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

Error Constant Value Meaning

Note: These values are identical to the HID transport values.

This profile defines two roles: FIDO Authenticator and FIDO Client.

The following figure illustrates the mandatory services and characteristics that SHALL be offered by a FIDO
Authenticator as part of its GATT server:

Figure 5 Mandatory GATT services and characteristics that MUST be offered by a FIDO Authenticator. Note that the Generic
Access Profile Service ([BTGAS]) is not present as it is already mandatory for any Bluetooth Low Energy Technology compliant

device.

The table below summarizes additional GATT sub-procedure requirements for a FIDO Authenticator (GATT
Server) beyond those required by all GATT Servers.

GATT Sub-Procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements for a FIDO Client (GATT Client)
beyond those required by all GATT Clients.

GATT Sub-Procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service UUID (*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

11.4.5. GATT Service Description

The FIDO Client SHALL be a GATT Client.

The FIDO Authenticator SHALL be a GATT Server.

102/137

Write Characteristic Descriptors MandatoryGATT Sub-Procedure Requirements

(*): Mandatory to support at least one of these sub-procedures. (**): Mandatory to support at least one of these
sub-procedures. Other GATT sub-procedures MAY be used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values are big-endian coded, all
strings are in UTF-8 encoding, and any characteristics not mentioned explicitly are optional.

An authenticator SHALL implement the FIDO Service described below. The UUID for the FIDO GATT service is
0xFFFD; it SHALL be declared as a Primary Service. The service contains the following characteristics:

Characteristic
Name

Mnemonic Property Length UUID

FIDO Control
Point

fidoControlPoint Write

Defined by
Vendor
(20-512
bytes)

F1D0FFF1-
DEAA-ECEE-
B42F-
C9BA7ED623BB

FIDO Status fidoStatus Notify N/A

F1D0FFF2-
DEAA-ECEE-
B42F-
C9BA7ED623BB

FIDO Control
Point Length

fidoControlPointLength Read 2 bytes

F1D0FFF3-
DEAA-ECEE-
B42F-
C9BA7ED623BB

FIDO Service
Revision Bitfield

fidoServiceRevisionBitfield Read/Write
Defined by
Vendor (1+

bytes)

F1D0FFF4-
DEAA-ECEE-
B42F-
C9BA7ED623BB

FIDO Service
Revision

fidoServiceRevision Read

Defined by
Vendor
(20-512
bytes)

0x2A28

fidoControlPoint is a write-only command buffer.

fidoStatus is a notify-only response attribute. The authenticator will send a series of notifications on this
attribute with a maximum length of (ATT_MTU-3) using the response frames defined above. This mechanism is
used because this results in a faster transfer speed compared to a notify-read combination.

fidoControlPointLength defines the maximum size in bytes of a single write request to fidoControlPoint.
This value SHALL be between 20 and 512.

fidoServiceRevision is superseded and is only relevant to U2F 1.0 support. It defines the revision of the U2F
Service. The value is a UTF-8 string. For version 1.0 of the specification, the value fidoServiceRevision
SHALL be 1.0 or in raw bytes: 0x312e30. This field SHALL be omitted if protocol version 1.0 is not supported.

The fidoServiceRevision Characteristic MAY include a Characteristic Presentation Format descriptor with
format value 0x19, UTF-8 String.

fidoServiceRevisionBitfield defines the revision of the FIDO Service. The value is a bit field which each bit
representing a version. For each version bit the value is 1 if the version is supported, 0 if it is not. The length of
the bitfield is 1 or more bytes. All bytes that are 0 are omitted if all the following bytes are 0 too. The byte order is
big endian. The client SHALL write a value to this characteristic with exactly 1 bit set before sending any FIDO
commands unless u2fServiceRevision is present and U2F 1.0 compatibility is desired. If only U2F version 1.0 is
supported, this characteristic SHALL be omitted.

Byte (left to right) Bit Version

0 7 U2F 1.1

0 6 U2F 1.2

0 5 FIDO2

0 4-0 Reserved

For example, a device that only supports FIDO2 Rev 1 will only have a fidoServiceRevisionBitfield characteristic
of length 1 with value 0x20.

11.4.5.1. FIDO Service

103/137

An authenticator SHALL implement the Device Information Service [BTDIS] and it SHOULD contain the following
characteristics:

All values for the Device Information Service are left to the vendors. However, vendors SHOULD NOT create
uniquely identifiable values so that authenticators do not become a method of tracking users.

Every authenticator SHALL implement the Generic Access Profile Service [BTGAS] with the following
characteristics:

The general overview of the communication protocol follows:

When advertising, the authenticator SHALL advertise the FIDO service UUID.

When advertising, the authenticator MAY include the TxPower value in the advertisement (see [BTXPLAD]).

When advertising in pairing mode, the authenticator SHALL either: (1) set the LE Limited Mode bit to zero and
the LE General Discoverable bit to one OR (2) set the LE Limited Mode bit to one and the LE General
Discoverable bit to zero. When advertising in non-pairing mode, the authenticator SHALL set both the LE Limited
Mode bit and the LE General Discoverable Mode bit to zero in the Advertising Data Flags.

The advertisement MAY also carry a device name which is distinctive and user-identifiable. For example, "ACME
Key" would be an appropriate name, while "XJS4" would not be.

The authenticator SHALL also implement the Generic Access Profile [BTGAP] and Device Information Service [B
TDIS], both of which also provide a user-friendly name for the device that could be used by the client.

It is not specified when or how often an authenticator should advertise, instead that flexibility is left to
manufacturers.

Clients SHOULD make requests by connecting to the authenticator and performing a write into the
fidoControlPoint characteristic.

Upon receiving a CANCEL request, if there is an outstanding request that can be cancelled, the authenticator
MUST cancel it and that cancelled request will reply with the error CTAP2_ERR_KEEPALIVE_CANCEL.

11.4.5.2. Device Information Service

Manufacturer Name String

Model Number String

Firmware Revision String

11.4.5.3. Generic Access Profile Service

Device Name

Appearance

11.4.6. Protocol Overview

1. Authenticator advertises the FIDO Service.

2. Client scans for authenticator advertising the FIDO Service.

3. Client performs characteristic discovery on the authenticator.

4. If not already paired, the client and authenticator SHALL perform BLE pairing and create a LTK.
Authenticator SHALL only allow connections from previously bonded clients without user intervention.

5. Client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the client selects a
supported version by writing a value with a single bit set.

6. Client reads the fidoControlPointLength characteristic.

7. Client registers for notifications on the fidoStatus characteristic.

8. Client writes a request (e.g., an enroll request) into the fidoControlPoint characteristic.

9. Optionally, the client writes a CANCEL command to the fidoControlPoint characteristic to cancel the
pending request.

10. Authenticator evaluates the request and responds by sending notifications over fidoStatus characteristic.

11. The protocol completes when either:

The client unregisters for notifications on the fidoStatus characteristic, or:

The connection times out and is closed by the authenticator.

11.4.7. Authenticator Advertising Format

11.4.8. Requests

104/137

Whether a request was cancelled or not, the authenticator MUST NOT reply to the cancel message itself.

Authenticators SHOULD respond to clients by sending notifications on the fidoStatus characteristic.

Some authenticators might alert users or prompt them to complete the test of user presence (e.g., via sound,
light, vibration) Upon receiving any request, the authenticators SHALL send KEEPALIVE commands every
kKeepAliveMillis milliseconds until completing processing the commands. While the authenticator is
processing the request the KEEPALIVE command will contain status PROCESSING. If the authenticator is waiting
to complete the Test of User Presence, the KEEPALIVE command will contains status UP_NEEDED. While waiting
to complete the Test of User Presence, the authenticator MAY alert the user (e.g., by flashing) in order to prompt
the user to complete the test of user presence. As soon the authenticator has completed processing and
confirmed user presence, it SHALL stop sending KEEPALIVE commands, and send the reply.

Upon receiving a KEEPALIVE command, the client SHALL assume the authenticator is still processing the
command; the client SHALL not resend the command. The authenticator SHALL continue sending KEEPALIVE
messages at least every kKeepAliveMillis to indicate that it is still handling the request. Until a client-defined
timeout occurs, the client SHALL NOT move on to other devices when it receives a KEEPALIVE with UP_NEEDED
status, as it knows this is a device that can satisfy its request.

A single request/response sent over Bluetooth Low Energy Technology MAY be split over multiple writes and
notifications, due to the inherent limitations of Bluetooth Low Energy Technology which is not currently meant for
large messages. Frames are fragmented in the following way:

A frame is divided into an initialization fragment and zero or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 0 to (maxLen - 3) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, the start of an initialization fragment is indicated by setting the high bit in the first byte. The
subsequent two bytes indicate the total length of the frame, in big-endian order. The first maxLen - 3 bytes of data
follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ Packet sequence 0x00..0x7f (high bit always cleared)

1 0 to (maxLen - 1) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0, implicitly with the high bit
cleared. The sequence number MUST wraparound to 0 after reaching the maximum sequence number of 0x7f.

Example for sending a PING command with 40 bytes of data with a maxLen of 20 bytes:

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512 bytes:

Frame Bytes

0 [810190] [400 bytes of data]

11.4.9. Responses

11.4.10. Framing fragmentation

105/137

A client needs to register for notifications before it can receive them. Bluetooth Core Specification 4.0 or later [BT
CORE] forces a device to remember the notification registration status over different connections [BTCCC].
Unless a client explicitly unregisters for notifications, the registration will be automatically restored when
reconnecting. A client MAY therefor check the notification status upon connection and only register if notifications
aren’t already registered. Please note that some clients MAY disable notifications from a power management
point of view (see below) and the notification registration is remembered per bond, not per client. A client MUST
NOT remember the notification status in its own data storage.

Because there is no concept of a session between the authenticator and a client (only between the host and the
client), a BLE authenticator cannot distinguish between different clients. If two clients on the same host register
for notifications from an authenticator at the same time, some existing host platforms will allow this by reusing
the same underlying BLE connection. However, when the authenticator generates a notification, the host
platform has insufficient information to route it to a particular client. Depending on the host platform
implementation, the notification may be delivered to either or both clients. The result is undefined behavior which
will likely result in both requests failing.

As noted in § 11.4.2 Pairing, a disadvantage of using standard Bluetooth pairing is that the pairing is "system-
wide" on most operating systems. That is, if an authenticator is paired to a FIDO client that resides on an
operating system where Bluetooth pairing is "system-wide", then any application on that device might be able to
interact with an authenticator. This poses both security and privacy risks to users.

While client operating system security is partly out of FIDO’s scope, further revisions of this specification MAY
propose mitigations for this issue.

The method to put the authenticator into Pairing Mode should be such that it is not easy for the user to do
accidentally especially if the pairing method is Just Works. For example, the action could be pressing a
physically recessed button or pressing multiple buttons. A visible or audible cue that the authenticator is in
Pairing Mode should be considered. As a counter example, a silent, long press of a single non-recessed button is
not advised as some users naturally hold buttons down during regular operation.

Note that at times, authenticators may legitimately receive communication from an unpaired device. For example,
a user attempts to use an authenticator for the first time with a new client; he turns it on, but forgets to put the
authenticator into pairing mode. In this situation, after connecting to the authenticator, the client will notify the
user that he needs to pair his authenticator. The authenticator should make it easy for the user to do so, e.g., by
not requiring the user to wait for a timeout before being able to enable pairing mode.

Some client platforms (most notably iOS) do not expose the AD Flag LE Limited and General Discoverable Mode
bits to applications. For this reason, authenticators are also strongly RECOMMENDED to include the Service
Data field [BTSD] in the Scan Response. The Service Data field is 3 or more octets long. This allows the Flags
field to be extended while using the minimum number of octets within the data packet. All octets that are 0x00
are not transmitted as long as all other octets after that octet are also 0x00 and it is not the first octet after the
service UUID. The first 2 bytes contain the FIDO Service UUID, the following bytes are flag bytes.

To help clients show the correct UX, authenticators can use the Service Data field to specify whether or not
authenticators will require a Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)

7 Device is in pairing mode.

6 Device requires Passkey Entry [BTPESTK].

It is important for low-power devices to be able to conserve power by shutting down or switching to a lower-
power state when they have satisfied a client’s requests. However, the FIDO protocol makes this hard as it
typically includes more than one command/response. This is especially true if a user has more than one key
handle associated with an account or identity, multiple key handles may need to be tried before getting a
successful outcome. Furthermore, clients that fail to send follow up commands in a timely fashion may cause the
authenticator to drain its battery by staying powered up anticipating more commands.

A further consideration is to ensure that a user is not confused about which command she is confirming by

11.4.11. Notifications

11.4.12. Request Collisions

11.4.13. Implementation Considerations

11.4.13.1. Bluetooth pairing: Client considerations

11.4.13.2. Bluetooth pairing: Authenticator considerations

11.4.14. Handling command completion

106/137

completing the test of user presence. That is, if a user performs the test of user presence, that action SHOULD
perform exactly one operation.

We combine these considerations into the following series of recommendations:

Constant Value

kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kKeepAliveMillis 500 milliseconds

Bluetooth Low Energy Technology does not have particularly high throughput, this can cause noticeable latency
to the user if request/responses are large. Some ways that implementers can reduce latency are:

Though the standard does not appear to mandate it (in any way that we’ve found thus far), advertising and
device discovery seems to work better when the authenticators advertise on all 3 advertising channels and not
just one.

In order to enhance the user’s privacy and specifically to guard against tracking, it is RECOMMENDED that
authenticators use Resolvable Private Addresses (RPAs) instead of static addresses.

The transports that FIDO has defined are thus USB, NFC, and BLE.

Hybrid transports decouple the proof that the client platform is physically close to the authenticator, from the
transport of CTAP2 messages between them. The hybrid transport defined here is intended to connect
authenticators with cameras, typically phones, to a client platform. It involves both network communication via a
service called a tunnel service, and BLE transmissions to show proximity. A tunnel service is a high-availability
network service with a domain name known to the authenticators that use it.

When the client platform wishes to communicate with a hybrid authenticator it may display a QR code that

Upon initial connection to an authenticator, and upon receipt of a response from an authenticator, if a client
has more commands to issue, the client MUST transmit the next command or fragment within
kMaxCommandTransmitDelayMillis milliseconds.

Upon final response from an authenticator, if the client decides it has no more commands to send it
SHOULD indicate this by disabling notifications on the fidoStatus characteristic. When the notifications are
disabled the authenticator MAY enter a low power state or disconnect and shut down.

Any time the client wishes to send a FIDO message, it MUST have first enabled notifications on the
fidoStatus characteristic and wait for the ATT acknowledgement to be sure the authenticator is ready to
process messages.

Upon successful completion of a command which required a test of user presence, e.g. upon a successful
authentication or registration command, the authenticator can assume the client is satisfied, and MAY reset
its state or power down.

NOTE: authenticators supporting large blobs SHOULD wait kMaxCommandTransmitDelayMillis if the
command response contained a largeBlobKey, even after consuming user presence, otherwise they may
miss such commands.

Upon sending a command response that did not consume a test of user presence, the authenticator MUST
assume that the client may wish to initiate another command and leave the connection open until the client
closes it or until a timeout of at least kErrorWaitMillis elapses. Examples of command responses that do
not consume user presence include failed authenticate or register commands, as well as get version
responses, whether successful or not. After kErrorWaitMillis milliseconds have elapsed without further
commands from a client, an authenticator MAY reset its state or power down.

11.4.15. Data throughput

Support the maximum MTU size allowable by hardware (up to the 512-byte max from the Bluetooth
specifications).

Make the attestation certificate as small as possible; do not include unnecessary extensions.

11.4.16. Advertising

11.4.17. Authenticator Address Type

11.5. Hybrid transports

11.5.1. QR-initiated Transactions

107/137

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform

contains a public key and a shared secret key. The public key authenticates the client platform to any connecting
authenticator and knowledge of the secret key authenticates the connecting authenticator to the client platform.

var (
 qrSecret [16]byte
 // The ecdsa package is used for its convenient public/private key structures,
 // but these are ECDH keys, not ECDSA.
 identityKey *ecdsa.PrivateKey
)

func showQRCode() {
 rand.Reader.Read(qrSecret[:])

 var err error
 identityKey, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
 if err != nil {
 panic(err)
 }
 identityKeyCompressed := compressECKey(&identityKey.PublicKey)

 printQRCode(encodeQRContents(&identityKeyCompressed, &qrSecret))
}

The contents of the QR code are a URI of the form FIDO:/ followed by digit-encoded data. The scheme is written
in uppercase because this is more efficient in QR codes. A single foreslash follows the colon because that is
required for some devices to recognise the QR contents as a URI, but it’s not a double-slash as that would
indicate an authority, which this URI scheme does not use.

The encoded data is a CBOR map with integer keys mapping to key-specific values. The CBOR must be in
canonical form. The keys are:

(More fields can be added in the future as they will be ignored by older implementations.)

Key 0: a 33-byte, P-256, X9.62, compressed public key.

Key 1: a 16-byte random QR secret.

Key 2: the number of assigned tunnel server domains known to this implementation (see
decodeTunnelServerDomain for details).

Key 3: (optional) the current time in epoch seconds.

Key 4: (optional) a boolean that is true if the device displaying the QR code can perform state-assisted
transactions.

Key 5: either the string “ga” to hint that a getAssertion will follow, or “mc” to hint that a makeCredential will
follow. Implementations SHOULD treat unknown values as if they were “ga”. This field exists so that
guidance can be given to the user immediately upon scanning the QR code, prior to the authenticator
receiving any CTAP message. While this hint SHOULD be as accurate as possible, it does not constrain the
subsequent CTAP messages that the platform may send.

108/137

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.iana.org/assignments/uri-schemes/prov/fido
https://datatracker.ietf.org/doc/html/rfc3986#section-3

func encodeQRContents(compressedPublicKey *[33]byte, qrSecret *[16]byte) string {
 numMapElements := 6
 // GREASE QR code to ensure that keys can be added later.
 var randByte [1]byte
 rand.Reader.Read(randByte[:])
 extraKey := randByte[0]&3 == 0
 if extraKey {
 numMapElements++
 }

 var cbor []byte
 cbor = append(cbor, 0xa0+byte(numMapElements)) // CBOR map
 cbor = append(cbor, 0) // key 0
 cbor = append(cbor, (cborMajorByteString<<5)|24, 33) // 33 bytes
 cbor = append(cbor, compressedPublicKey[:]...)
 cbor = append(cbor, 1) // key 1
 cbor = append(cbor, (cborMajorByteString<<5)|16) // 16 bytes
 cbor = append(cbor, qrSecret[:]...)

 cbor = append(cbor, 2) // key 2
 n := len(assignedTunnelServerDomains)
 if n > 24 {
 panic("larger encoding needed")
 }
 cbor = append(cbor, byte(n))

 cbor = append(cbor, 3) // key 3
 cbor = append(cbor, cborEncodeInt64(time.Now().Unix())...)

 cbor = append(cbor, 4) // key 4
 cbor = append(cbor, 0xf5) // true

 cbor = append(cbor, 5) // key 5
 cbor = append(cbor, (cborMajorByteString<<5)|2, 'm', 'c')

 if extraKey {
 cbor = append(cbor, 0x19, 0xff, 0xff, 0) // key 65535, value 0
 }

 qr := "FIDO:/" + digitEncode(cbor)
 fmt.Println(qr)
 return qr
}

Authenticators must use a CBOR parser to parse this information as more keys may be added in the future. The
function above uses some [rfc8701] to try and ensure this.

The encoding is designed to be efficient when expressed in a QR code. Seven-byte chunks are interpreted as
little-endian values and encoded as 17-digit, base 10 numbers. Any remaining bytes are encoded likewise using
the minimum number of digits that some value of that number of bytes could need. Specifically, since the
remainder is known to be 1, 2, 3, 4, 5, or 6 bytes long, its encoded form will take 3, 5, 8, 10, 13, or 15 digits,
respectively.

109/137

func digitEncode(d []byte) string {
 const chunkSize = 7
 const chunkDigits = 17
 const zeros = "00000000000000000"

 var ret string
 for len(d) >= chunkSize {
 var chunk [8]byte
 copy(chunk[:], d[:chunkSize])
 v := strconv.FormatUint(binary.LittleEndian.Uint64(chunk[:]), 10)
 ret += zeros[:chunkDigits-len(v)]
 ret += v

 d = d[chunkSize:]
 }

 if len(d) != 0 {
 // partialChunkDigits is the number of digits needed to encode
 // each length of trailing data from 6 bytes down to zero. I.e.
 // it’s 15, 13, 10, 8, 5, 3, 0 written in hex.
 const partialChunkDigits = 0x0fda8530

 digits := 15 & (partialChunkDigits >> (4 * len(d)))
 var chunk [8]byte
 copy(chunk[:], d)
 v := strconv.FormatUint(binary.LittleEndian.Uint64(chunk[:]), 10)
 ret += zeros[:digits-len(v)]
 ret += v
 }

 return ret
}

Once the QR code has been displayed the client platform awaits a connection attempt from an authenticator. This
transport requires a proof of proximity to help prevent attacks, thus notification of the connection attempt comes
in the form of a BLE advertisement. (Without a proof of proximity a web site could, for example, display a QR
code and attempt to convince the user to scan it with their authenticator. By having the authenticator demand
that the client platform prove reception of a BLE advert such an attacker would have to have control of a
Bluetooth radio near to the victim.)

The UUID, 0000fff9-0000-1000-8000-00805f9b34fb, must be included in the advert and client platforms must
require that candidate devices are advertising this UUID. That UUID must also have a 20-byte service data
payload which is trial decrypted to search for a match to the displayed QR code.

func awaitAdvert(eidKey [64]byte) [16]byte {
 // uuidsChan is a channel of UUID sets observed from some BLE device.
 // Each UUID is represented as a string in the standard format, e.g.
 // 0000fde2-0000-1000-8000-00805f9b34fb.
 var (
 serviceDataChan chan map[string][]byte
 stopScanning func()
 err error
)

 if serviceDataChan, stopScanning, err = bleScanForServiceData(); err != nil {
 panic(err)
 }
 defer stopScanning()

 const UUID = "0000fff9-0000-1000-8000-00805f9b34fb"

 for serviceData := range serviceDataChan {
 cableData, ok := serviceData[UUID]
 if !ok {
 continue
 }

 if payload, ok := trialDecrypt(&eidKey, cableData); ok {
 return payload
 }
 }

 panic("UUID channel closed")
}

In order to derive the key needed to trial decrypt BLE adverts, the following key derivation is used. Whenever a
key is needed for a specific purpose it is always derived from a parent key in order to ensure domain separation.
The derivation uses [RFC5869] with SHA-256, where the input keying material is the parent key, the salt is an
optional input, and the info value is a 32-bit, little-endian, purpose identifier.

110/137

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform

type keyPurpose uint32

const (
 keyPurposeEIDKey keyPurpose = 1
 keyPurposeTunnelID keyPurpose = 2
 keyPurposePSK keyPurpose = 3
)

func derive(output, secret, salt []byte, purpose keyPurpose) {
 if uint32(purpose) >= 0x100 {
 panic("unsupported purpose")
 }

 var purpose32 [4]byte
 purpose32[0] = byte(purpose)

 h := hkdf.New(sha256.New, secret, salt, purpose32[:])
 if n, err := h.Read(output); err != nil || n != len(output) {
 panic("HKDF error")
 }
}

The key used to decrypt adverts is then a 64-byte value derived from the QR secret with keyPurposeEIDKey. The
term “EID” is historical and does not stand for anything here.

func awaitQRAdvert() [16]byte {
 var eidKey [32 + 32]byte
 derive(eidKey[:], qrSecret[:], nil, keyPurposeEIDKey)
 return awaitAdvert(eidKey)
}

When decrypting adverts, these 64 bytes of EID key are considered as a pair of 256-bit keys where the first 32
bytes are an AES key and the second 32 bytes are an HMAC-SHA256 key. A candidate BLE advert is valid if the
final four bytes are a correct HMAC tag of the other 16 bytes. For each valid BLE advert, those initial 16 bytes
are then taken to be an AES block and decrypted with the AES key.

This is a poor-man’s substitute for a wide-block mode, but wide-block modes are non-standard. There is no more
space in the BLE advert so a nonce cannot be included. Since it’s possible that two authenticators could scan the
same QR code and broadcast based on the same key, avoiding a mode that XORs plaintext with a keystream
avoids potential complications.

func trialDecrypt(eidKey *[64]byte, candidateAdvert []byte) (plaintext [16]byte, ok bool) {
 var zeros [16]byte
 if len(candidateAdvert) != 20 {
 return zeros, false
 }

 h := hmac.New(sha256.New, eidKey[32:])
 h.Write(candidateAdvert[:16])
 expectedTag := h.Sum(nil)

 if !hmac.Equal(expectedTag[:4], candidateAdvert[16:]) {
 return zeros, false
 }

 block, err := aes.NewCipher(eidKey[:32])
 if err != nil {
 panic(err)
 }

 block.Decrypt(plaintext[:], candidateAdvert[:16])
 if !reservedBitsAreZero(plaintext) {
 return zeros, false
 }

 return plaintext, true
}

Once successfully authenticated and decrypted, a BLE advert yields 16 bytes of plaintext. These 16 bytes consist
of (in order):

A flags byte, which is currently zero. This could be used for versioning in the future.

80 bits of connection nonce.

A 24-bit routing ID.

A 16-bit tunnel service identifier.

111/137

func reservedBitsAreZero(plaintext [16]byte) bool {
 return plaintext[0] == 0
}

func unpackDecryptedAdvert(plaintext [16]byte) (
 nonce [10]byte,
 routingID [3]byte,
 encodedTunnelServerDomain uint16) {

 copy(nonce[:], plaintext[1:])
 copy(routingID[:], plaintext[11:])
 encodedTunnelServerDomain = uint16(plaintext[14]) | (uint16(plaintext[15]) << 8)
 return
}

The connection nonce is the value that demonstrates possession of the BLE advert, and thus proximity to the
authenticator.

The tunnel service relays messages to and from the authenticator. It is a property of the authenticator because,
as detailed later, it can contact the authenticator on request when a client platform is “linked”. The protocol
between the authenticator and the tunnel service, and details about how the service later contacts the
authenticator, are a private detail of the authenticator's implementation.

The encoded tunnel service identifier is a uint16. Values zero through 255 are assigned, and values >= 256 are
translated into a domain name by hashing. A “cable” label is prepended to hashed domains to allow for use of
CNAME records.

Domains are assigned sequentially and the number of assigned domains is included in the QR code. Therefore
authenticators can know whether a peer will recognise an assigned domain or not and can potentially fall back to
a hashed domain for compatibility.

These are the currently assigned domains, in order:

var assignedTunnelServerDomains = []string{"cable.ua5v.com", "cable.auth.com"}

func decodeTunnelServerDomain(encoded uint16) (string, bool) {
 if encoded < 256 {
 if int(encoded) >= len(assignedTunnelServerDomains) {
 return "", false
 }
 return assignedTunnelServerDomains[encoded], true
 }

 shaInput := []byte{
 0x63, 0x61, 0x42, 0x4c, 0x45, 0x76, 0x32, 0x20,
 0x74, 0x75, 0x6e, 0x6e, 0x65, 0x6c, 0x20, 0x73,
 0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x64, 0x6f,
 0x6d, 0x61, 0x69, 0x6e,
 }
 shaInput = append(shaInput, byte(encoded), byte(encoded>>8), 0)
 digest := sha256.Sum256(shaInput)

 v := binary.LittleEndian.Uint64(digest[:8])
 tldIndex := uint(v & 3)
 v >>= 2

 ret := "cable."
 const base32Chars = "abcdefghijklmnopqrstuvwxyz234567"
 for v != 0 {
 ret += string(base32Chars[v&31])
 v >>= 5
 }

 tlds := []string{".com", ".org", ".net", ".info"}
 ret += tlds[tldIndex&3]

 return ret, true
}

The routing ID is an opaque value that must be provided to the tunnel service and which aids its operation.

The client platform is now in possession of everything needed to establish the tunnel to the authenticator. The
first step of doing so is to derive the tunnel ID, a 128-bit identifier that the tunnel service recognises and which
identifies the exchange separate from any others that the tunnel service might concurrently be facilitating. It is
derived, as detailed above, from the QR secret. It is not dependent on the nonce from the BLE advert because
that would mean that the tunnel service could try and brute-force the nonce from the tunnel ID. The tunnel
service is trusted by the authenticator, but no need to trust it more than necessary.

With the tunnel ID in hand, the tunnel service is contacted via WebSockets. In order to request a connection to a
given tunnel ID, the path of the WebSockets URL is set to /cable/connect/ followed by the lower-case, hex-

112/137

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://tools.ietf.org/html/rfc6455

encoded routing ID, another foreslash, then the lower-case, hex-encoded tunnel ID. The WebSocket connection
must set the subprotocol identifier to fido.cable.

Implementations must follow HTTP redirects when establishing the WebSocket connection.

var tunnelServerDomain string

const subprotocol = "fido.cable"

func connectToPhone(advertPlaintext [16]byte) {
 _, routingID, encodedTunnelServerDomain := unpackDecryptedAdvert(advertPlaintext)

 var ok bool
 if tunnelServerDomain, ok = decodeTunnelServerDomain(encodedTunnelServerDomain); !ok {
 panic("unknown tunnel server domain")
 }

 var tunnelID [16]byte
 derive(tunnelID[:], qrSecret[:], nil, keyPurposeTunnelID)

 connectURL := "wss://" +
 tunnelServerDomain +
 "/cable/connect/" +
 hex.EncodeToString(routingID[:]) +
 "/" +
 hex.EncodeToString(tunnelID[:])

 conn, _, err := (&websocket.Dialer{
 Subprotocols: []string{subprotocol},
 }).Dial(connectURL, nil)

 if err != nil {
 panic(err)
 }

 if conn.Subprotocol() != subprotocol {
 panic("tunnel service picked wrong subprotocol")
 }

 doQRHandshake(conn, advertPlaintext)
}

With the tunnel established, messages are exchanged in binary WebSocket frames and no other frame types are
permitted on the connection. The authenticator and client platform first perform a cryptographic handshake to
establish a forward-secure, authenticated connection. This handshake is Noise KNpsk0 using P-256, SHA-256,
and AES-256-GCM.

The client platform speaks first to prove possession of the BLE advert. The authenticator thus needs only to
receive the client platform's handshake message and send a reply in order to complete the handshake. The
KNpsk0 pattern requires that the initiator (the client platform) have shared a public key in advance with the
responder (the authenticator), and that both sides share a symmetric key. The pre-exchanged public key was
passed to the authenticator in the QR code, and the pre-shared symmetric key is derived from the QR secret and
decrypted BLE advert. (The full BLE advert is included in the PSK derivation to ensure that any future additions
to the advert format are automatically authenticated.)

113/137

https://tools.ietf.org/html/rfc6455#section-1.9
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
http://noiseprotocol.org/noise.html
https://noiseexplorer.com/patterns/KNpsk0/
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://noiseexplorer.com/patterns/KNpsk0/
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator

func doQRHandshake(websocketConn *websocket.Conn, advertPlaintext [16]byte) {
 var psk [32]byte
 derive(psk[:], qrSecret[:], advertPlaintext[:], keyPurposePSK)

 conn, handshakeHash := doHandshake(websocketConn, psk, identityKey, nil)
 readPostHandshakeMessage(conn, handshakeHash)
}

func doHandshake(websocketConn *websocket.Conn,
 psk [32]byte,
 identityKey *ecdsa.PrivateKey,
 // peerIdentity is not used until linked connections are discussed, below.
 peerIdentity *ecdsa.PublicKey) (

 conn io.ReadWriteCloser,
 handshakeHash [32]byte) {

 msg, ephemeralKey, noiseState := initialHandshakeMessage(psk, identityKey, peerIdentity)
 if err := websocketConn.WriteMessage(websocket.BinaryMessage, msg); err != nil {
 panic(err)
 }

 msgType, handshakeMessageFromPhone, err := websocketConn.ReadMessage()
 if err != nil {
 panic(err)
 }
 if msgType != websocket.BinaryMessage {
 panic("non-binary message received on WebSocket")
 }

 trafficKeys, handshakeHash := processHandshakeResponse(
 handshakeMessageFromPhone, ephemeralKey, identityKey, noiseState)

 conn = newCableConn(&websocketAdaptor{websocketConn}, trafficKeys)
 return conn, handshakeHash
}

As referenced above, the handshake itself is Noise NKpsk0. The following functions implement both NKpsk0 and
KNpsk0 because the latter will be needed below. The underlying Noise operations are specified in the Noise
specification. p256X962Length is the length of an uncompressed, X9.62, P-256 point, in bytes.

const p256X962Length = 1 + 32 + 32

func initialHandshakeMessage(
 psk [32]byte,
 priv *ecdsa.PrivateKey,
 peerPub *ecdsa.PublicKey) (

 msg []byte,
 ephemeralKey *ecdsa.PrivateKey,
 noise *noiseState) {

 if (priv == nil) == (peerPub == nil) {
 panic("exactly one of priv and peerPub must be given")
 }

 var ns *noiseState
 if peerPub != nil {
 ns = newNoise(noiseNKpsk0)
 ns.mixHash([]byte{0})
 ns.mixHashPoint(peerPub)
 } else {
 ns = newNoise(noiseKNpsk0)
 ns.mixHash([]byte{1})
 ns.mixHashPoint(&priv.PublicKey)
 }

 ns.mixKeyAndHash(psk[:])

 ephemeralKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
 if err != nil {
 panic(err)
 }

 ephemeralKeyBytes := elliptic.Marshal(ephemeralKey.Curve, ephemeralKey.X, ephemeralKey.Y)
 ns.mixHash(ephemeralKeyBytes)
 ns.mixKey(ephemeralKeyBytes)

 if peerPub != nil {
 ns.mixKey(ecdh(ephemeralKey, peerPub.X, peerPub.Y))
 }

114/137

http://noiseprotocol.org/noise.html
https://noiseexplorer.com/patterns/NKpsk0/
https://noiseexplorer.com/patterns/NKpsk0/
https://noiseexplorer.com/patterns/KNpsk0/
http://noiseprotocol.org/noise.html

 msg = append(msg, ephemeralKeyBytes...)
 msg = append(msg, ns.encryptAndHash(nil)...)

 return msg, ephemeralKey, ns
}

func processHandshakeResponse(
 peerHandshakeMessage []byte,
 ephemeralKey *ecdsa.PrivateKey,
 priv *ecdsa.PrivateKey,
 ns *noiseState) (

 keys trafficKeys,
 handshakeHash [32]byte) {

 if len(peerHandshakeMessage) < p256X962Length {
 panic("handshake too short")
 }

 peerPointBytes := peerHandshakeMessage[:p256X962Length]
 ciphertext := peerHandshakeMessage[p256X962Length:]

 ns.mixHash(peerPointBytes)
 ns.mixKey(peerPointBytes)

 peerPointX, peerPointY := elliptic.Unmarshal(ephemeralKey.Curve, peerPointBytes)
 if peerPointX == nil {
 panic("peer’s point is not on the curve")
 }

 ns.mixKey(ecdh(ephemeralKey, peerPointX, peerPointY))

 if priv != nil {
 ns.mixKey(ecdh(priv, peerPointX, peerPointY))
 }

 plaintext, ok := ns.decryptAndHash(ciphertext)
 if !ok || len(plaintext) != 0 {
 panic("bad handshake")
 }

 return ns.split(), ns.handshakeHash()
}

Once the handshake is complete, the traffic-keys that result from Noise’s Split operation are assigned to the
client platform-to-authenticator and authenticator-to-client platform flows, respectively. Future messages on the
tunnel are padded and AES-256-GCM encrypted. Padding is performed by setting the final byte of the plaintext
to the number of preceding bytes that are padding. Padding bytes can take any value but zero is recommended.
Implementations can use a padding granularity up to 256 bytes, but 32 is recommended. Nonces are per-
direction counters, big-endian encoded into 12 bytes. The additional data for every message is empty.

Implementations may terminate connections that exceed 24 bits of nonce to avoid worrying about nonce
overflow.

115/137

https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform

type cableConn struct {
 conn io.ReadWriteCloser
 readKey, writeKey [32]byte
 readSeq, writeSeq uint32
}

var additionalData []byte = nil

func setupAEAD(counter *uint32, key *[32]byte) (nonce [12]byte, aead cipher.AEAD) {
 if *counter > 1<<24 {
 // To avoid dealing with the nonce counter overflowing,
 // connections are capped at 2^24 messages.
 panic("too many messages")
 }

 binary.BigEndian.PutUint32(nonce[8:], *counter)
 *counter++

 block, err := aes.NewCipher(key[:])
 if err != nil {
 panic(err)
 }
 if aead, err = cipher.NewGCM(block); err != nil {
 panic(err)
 }

 return
}

func (c *cableConn) Write(msg []byte) (int, error) {
 const paddingGranularity = 32
 if len(msg) > 1<<20 {
 // 1MiB is comfortably larger than any valid CTAP2 message and
 // this limit moots possible overflows below.
 panic("plaintext too large")
 }

 extraBytes := paddingGranularity - (len(msg) % paddingGranularity)
 paddedLen := len(msg) + extraBytes

 paddedMsg := make([]byte, paddedLen, paddedLen)
 copy(paddedMsg, msg)
 paddedMsg[len(paddedMsg)-1] = byte(extraBytes) - 1

 nonce, aead := setupAEAD(&c.writeSeq, &c.writeKey)
 ciphertext := aead.Seal(paddedMsg[:0], nonce[:], paddedMsg, additionalData)

 if n, err := c.conn.Write(ciphertext); err != nil {
 return 0, err
 } else if n != len(ciphertext) {
 return 0, errors.New("unexpected short write")
 } else {
 return len(msg), nil
 }
}

Decryption consists of the reverse of the encryption steps:

116/137

func (c *cableConn) Read(buf []byte) (int, error) {
 n, err := c.conn.Read(buf)
 if err != nil {
 return n, err
 }
 buf = buf[:n]

 nonce, aead := setupAEAD(&c.readSeq, &c.readKey)
 plaintext, err := aead.Open(buf[:0], nonce[:], buf, additionalData)
 if err != nil {
 panic("decryption failure")
 }

 if len(plaintext) == 0 {
 panic("invalid message")
 }
 paddingBytes := int(plaintext[len(plaintext)-1])
 if paddingBytes+1 > len(plaintext) {
 panic("invalid message")
 }

 plaintext = plaintext[:len(plaintext)-1-paddingBytes]
 if len(plaintext) > len(buf) {
 panic("message too large")
 }
 n = copy(buf, plaintext)
 return n, nil
}

The first message from the authenticator is the “post handshake” message. This message contains the
authenticator’s getInfo response, to save a round-trip. This message contains a CBOR map, which must be in
CTAP2 canonical form.

The CBOR map contains the following:

type postHandshakeMessage struct {
 GetInfoReply []byte `cbor:"1"`
}

func readPostHandshakeMessage(conn io.ReadWriteCloser, handshakeHash [32]byte) {
 msgBytes := make([]byte, 128<<10)
 n, err := conn.Read(msgBytes)
 if err != nil {
 panic("read failure: " + err.Error())
 }

 var msg postHandshakeMessage
 if !cborParse(&msg, msgBytes[:n]) {
 fmt.Printf("%x\n", msgBytes)
 panic("invalid post-handshake message")
 }

 if msg.GetInfoReply == nil {
 panic("post-handshake message is missing getInfo response")
 }

 sendCTAP2Request(conn, handshakeHash)
}

With the tunnel now fully setup, the parties can exchange messages. Each message begins with a byte that
denotes the type of the message. An empty message is thus a protocol error. The following types are defined:

A shutdown message may only be sent by the client to the authenticator. The message must consist only of the
type byte. It indicates that the client will not send any further CTAP commands to the authenticator. The
authenticator may choose to close the connection upon receiving such a message. If it supports state-assisted
transactions then the client SHOULD accept messages from the authenticator for at least two minutes after
sending a shutdown message.

A CTAP message contains a CTAP2 payload for processing. For example, when sent from client to
authenticator, the bytes following the type byte will be a CTAP2 command.

An update message may be sent by either side at any time. The bytes following the type byte must be a CBOR

Key 0: (optional) a bytestring containing only zero bytes, for padding.

Key 1: the getInfo response, a bytestring.

0: a shutdown message.

1: a CTAP message.

2: an update message.

117/137

https://www.w3.org/TR/webauthn-2#authenticator

map encoded using the canonical rules. Unknown keys in the map must be ignored. The codespace of keys is
separate for each direction. Currently keys are only defined in the authenticator to client direction:

The linking map contains:

type authenticatorToClientUpdateMessage struct {
 LinkingData linkData `cbor:"1"`
}

type linkData struct {
 ContactID []byte `cbor:"1"`
 LinkID [8]byte `cbor:"2"`
 LinkSecret [32]byte `cbor:"3"`
 AuthenticatorPublicKey [65]byte `cbor:"4"`
 AuthenticatorName string `cbor:"5"`
 Signature [32]byte `cbor:"6"`

 authPublicKey *ecdsa.PublicKey
 tunnelServerDomain string
}

var initialLinkData *linkData

func parseUpdateMessage(payload []byte, handshakeHash [32]byte) {
 var msg authenticatorToClientUpdateMessage
 if !cborParse(&msg, payload) {
 fmt.Printf("%x\n", payload)
 panic("invalid update message")
 }

 // Linking data is optional.
 if msg.LinkingData.ContactID == nil {
 return
 }

 initialLinkData = &msg.LinkingData

 pubKey := &ecdsa.PublicKey{
 Curve: elliptic.P256(),
 }
 pubKey.X, pubKey.Y = elliptic.Unmarshal(pubKey.Curve, initialLinkData.AuthenticatorPublicKey
[:])
 if pubKey.X == nil {
 panic("bad link public key")
 }

 if !verifySignature(initialLinkData.Signature, handshakeHash, pubKey) {
 panic("invalid link signature")
 }

 initialLinkData.tunnelServerDomain = tunnelServerDomain
 initialLinkData.authPublicKey = pubKey

 fmt.Printf("Linking information received\n")
}

The signature in the linking data serves to prove possession of the claimed public key. This is needed because
that public key is an identifier and future linking messages that claim the same public key will replace older ones.
This allows a authenticator to update its linking information at the client platform, but authenticators should not be
able to replace another authenticator's data.

Key 0: (optional) a bytestring containing only zero bytes, for padding.

Key 1: (optional) a map containing linking information.

Key 1: the “contact ID”, an opaque value that can be presented to the tunnel service to identify this
authenticator. (For Android this an an FCM registration token.)

Key 2: the “link ID”, an opaque value that identifies this link to the authenticator. This must be sent back to
the authenticator when contacting it so that it knows what set of keys to use for this client platform.

Key 3: the “link secret”, a shared secret key.

Key 4: the authenticator's public key, X9.62 uncompressed. This value is global to the authenticator and
identifies it. If the same authenticator is used multiple times with a a QR-initiated transaction then this lets
the client platform deduplicate the linking information. Desktops may sync linking information using systems
like Chrome Sync and this public key prevents a client platform with linking information from impersonating
the authenticator to another client platform.

Key 5: the authenticator's name, for the purposes of identifying it to the user. For example “Pixel 3 XL”.

Key 6: the handshake signature. See below.

118/137

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator

The handshake hash is Noise’s channel binding value and hashes the handshake transcript. Since the
authenticator's public key is used as an ECDH key in later Nosie handshakes, we don’t want to overload it as an
ECDSA key too. Thus the “signature” in the linking message is actually an HMAC of the handshake hash under
the shared key between the authenticator's key and the key in the client platform's QR code.

func verifySignature(sig, handshakeHash [32]byte, pubKey *ecdsa.PublicKey) bool {
 sharedKey := ecdh(identityKey, pubKey.X, pubKey.Y)
 h := hmac.New(sha256.New, sharedKey)
 h.Write(handshakeHash[:])
 expectedSignature := h.Sum(nil)
 return hmac.Equal(expectedSignature, sig[:])
}

The client platform must send CTAP2 commands in order to direct the authenticator to perform some action.
Typically in a CTAP2 exchange that would be a getInfo request. However, since the response was already
provied in the post-handshake message, the client platform can immediately send a more substantial request.
The example below sends a superfluous authenticatorGetInfo request.

const (
 typeShutdown = 0
 typeCTAP = 1
 typeUpdate = 2
)

func sendCTAP2Request(conn io.ReadWriteCloser, handshakeHash [32]byte) {
 authenticatorGetInfoRequest := []byte{typeCTAP, 4}
 if _, err := conn.Write(authenticatorGetInfoRequest); err != nil {
 panic("write failed")
 }

 for {
 reply := make([]byte, 128<<10)
 n, err := conn.Read(reply)
 if err != nil {
 fmt.Printf("WebSocket closed\n");
 return
 }
 reply = reply[:n]

 if len(reply) == 0 {
 panic("invalid empty message received")
 }

 msgType, reply := reply[0], reply[1:]

 switch msgType {
 case typeShutdown:
 panic("shutdown message received from authenticator")

 case typeCTAP:
 fmt.Printf("CTAP reply: %x\n", reply)
 if _, err := conn.Write([]byte{typeShutdown}); err != nil {
 panic("write failed")
 }

 case typeUpdate:
 parseUpdateMessage(reply, handshakeHash)

 default:
 panic("invalid message type received")
 }
 }

 conn.Close()
}

If a client platform has linking information for a authenticator, from a previous QR-initiated transaction, then it
doesn’t need to show a QR code in order to contact that authenticator again. By making a WebSockets
connection to the cached tunnel service with the path /cable/contact/ followed by the base64url-encoded
contact ID, the tunnel service will attempt to establish a tunnel with the identified authenticator. If the tunnel
service believes that the authenticator is permanently uncontactable (e.g. because the user opted to unlink this
client platform on the authenticator) then the tunnel server returns HTTP status 410 and the client platform should
forget the link information.

The authenticator needs two values to start communicating on the tunnel: the link ID so that it knows which client
platform is contacting it (and thus which keys to use), and a nonce from the client platform. The latter diversifies

11.5.2. State-assisted Transactions

119/137

http://www.noiseprotocol.org/noise.html#channel-binding
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#client-platform

the key that encrypts the BLE advert and prevents anyone passively listening from being able the link the advert
to any set of link keys retrospectively. The two values are called the “client payload” and are hex-encoded in a X-
caBLE-Client-Payload HTTP header.

In order to aid the authenticator in displaying UI to the user, a third value is encoded in the client payload: a hint
about whether the following transaction will be a makeCredential or a getAssertion.

Once the tunnel is ready the authenticator will send its handshake message and start advertising over BLE as a
proximity challenge. The BLE advert in this case contains the same initial flags byte, which must be zero, and the
remaining 15 bytes are all nonce. Once the BLE advert is received, the client platform can calculate the
handshake PSK and respond.

The handshake in this case will be NKpsk0 because now it is the authenticator that has previously shared a
public key.

func performStateAssistedConnection(linkData *linkData) {
 contactURL := "wss://" +
 linkData.tunnelServerDomain +
 "/cable/contact/" +
 base64.RawURLEncoding.EncodeToString(linkData.ContactID)

 clientNonce, clientPayload := constructClientPayload(linkData)
 headers := make(http.Header)
 headers.Add("X-caBLE-Client-Payload", hex.EncodeToString(clientPayload))

 websocketConn, resp, err := (&websocket.Dialer{
 Subprotocols: []string{subprotocol},
 }).Dial(contactURL, headers)

 if err != nil {
 if resp != nil && resp.StatusCode == 410 {
 panic("device unlinked")
 }
 panic(err)
 }

 if websocketConn.Subprotocol() != subprotocol {
 panic("tunnel service picked wrong subprotocol")
 }

 var eidKey [64]byte
 derive(eidKey[:], linkData.LinkSecret[:], clientNonce[:], keyPurposeEIDKey)

 println("waiting for advert")
 advertPlaintext := awaitAdvert(eidKey)
 println("have advert")
 if !reservedBitsAreZero(advertPlaintext) {
 panic("bad link advert")
 }

 var psk [32]byte
 derive(psk[:], linkData.LinkSecret[:], advertPlaintext[:], keyPurposePSK)

 doHandshake(websocketConn, psk, nil, linkData.authPublicKey)
 println("State-assisted connection complete")
}

The client payload is encoded in a CBOR message (which must follow the encoding rules) using the following
format:

Key 1: the 8-byte link ID; a bytestring.

Key 2: a 16-byte nonce generated by the client platform; a bytestring.

Key 3: either the string “ga” to hint that a getAssertion will follow, or “mc” to hint that a makeCredential will
follow.

120/137

https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform
https://noiseexplorer.com/patterns/NKpsk0/
https://www.w3.org/TR/webauthn-2#authenticator
https://www.w3.org/TR/webauthn-2#client-platform

func constructClientPayload(linkData *linkData) (nonce [16]byte, payload []byte) {
 rand.Reader.Read(nonce[:])

 payload = append(payload, 0xa3) // Three-element CBOR map
 payload = append(payload, 1) // key 1
 payload = append(payload, cborMajorByteString<<5|8) // 8 bytes
 payload = append(payload, linkData.LinkID[:]...)
 payload = append(payload, 2) // key 2
 payload = append(payload, cborMajorByteString<<5|16) // 16 bytes
 payload = append(payload, nonce[:]...)
 payload = append(payload, 3) // key 3
 payload = append(payload, cborMajorString<<5|2) // two-byte string
 payload = append(payload, 'g', 'a') // getAssertion

 return nonce, payload
}

From this point, the connection works the same as the QR-initiated one. The authenticator can optionally send
linking information in the post-handshake message if it wishes to update any linking information and then CTAP2
messages flow as before.

This section defines authenticator extensions and any necessary corresponding client extension processing for
them.

credProtect

This registration extension allows relying parties to specify a credential protection policy when creating a
credential. Additionally, authenticators MAY choose to establish a default credential protection policy greater
than userVerificationOptional (the lowest level) and unilaterally enforce such policy. Authenticators not
supporting some form of user verification MUST NOT support this extension.

Authenticators supporting some form of user verification MUST process this extension and persist the
credProtect value with the credential, even if the authenticator is not protected by some form of user verification
at the time.

create() : A single USVString specifying a protection level of the credential to be created.

partial dictionary AuthenticationExtensionsClientInputs {
 USVString credentialProtectionPolicy;
 boolean enforceCredentialProtectionPolicy = false;
};

If this extension is not present in an authenticatorMakeCredential request:

If this extension is present in an authenticatorMakeCredential request:

12. Defined Extensions

NOTE: extensions may be defined such that extension processing may occur without any extension input.

12.1. Credential Protection (credProtect)

12.1.1. Feature detection

Extension identifier

NOTE: support for this extension is mandatory in some cases. See § 9 Mandatory features.

Client extension input

Client extension processing

1. The platform MAY enforce its own default credentialProtectionPolicy value by adding this
extension.

1. Verify that the credentialProtectionPolicy string value is one of following:

userVerificationOptional:

This reflects "FIDO_2_0" semantics. In this configuration, performing some form of user
verification is OPTIONAL with or without credentialID list. This is the default state of the
credential if the extension is not specified.

userVerificationOptionalWithCredentialIDList:

In this configuration, credential is discovered only when its credentialID is provided by the
platform or when some form of user verification is performed.

userVerificationRequired:

121/137

https://www.w3.org/TR/webauthn-2#authenticator
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-USVString
https://webidl.spec.whatwg.org/#idl-boolean

None. Authenticator returns the result in authenticator extension output.

Map credentialProtectionPolicy value to credProtect and send it to the authenticator.

The list of possible values for credProtect is:

credentialProtectionPolicy credProtect Value

userVerificationOptional 0x01

userVerificationOptionalWithCredentialIDList 0x02

userVerificationRequired 0x03

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

The value of the map entry MUST be the credProtect value the authenticator set for the created credential.

credProtect value is persisted with the credential. If no credProtect extension was included in the request
the authenticator SHOULD use the default value of 1 for compatibility with CTAP2.0 platforms. The
authenticator MUST NOT return an unsolicited credProtect extension output.

This reflects that discovery and usage of the credential MUST be preceded by some form of
user verification.

2. Evaluate the boolean enforceCredentialProtectionPolicy's value. This controls whether it is better
to fail to create a credential rather than ignore the protection policy. When
enforceCredentialProtectionPolicy is true, and credentialProtectionPolicy's value is either
userVerificationOptionalWithCredentialIDList or userVerificationRequired, the platform SHOULD NOT
create the credential in a way that does not implement the requested protection policy. (For example, by
creating it on an authenticator that does not support this extension.)

The platform SHOULD NOT alter the credentialProtectionPolicy value: the Relying Party's desired
credential protection policy overrides any default credential protection policies imposed by the platform.

NOTE: Platforms may require enterprise policy, or other configuration to conform to standards like [FIP
S140-3]. Those may require modification of the Relying Party's desired credential protection policy. The
Relying Party's desired credential protection policy SHOULD NOT be modified in other circumstances.

NOTE: For non-discoverable credentials, credentialProtectionPolicy values
userVerificationOptional and userVerificationOptionalWithCredentialIDList will both have the same
authenticator behaviour since the Relying Party must always supply an allowList containing credential IDs
when attempting to use authenticatorGetAssertion with such credentials.

Client extension output

Authenticator extension input

authenticatorMakeCredential additional behaviours

"credProtect": <credProtect Value>

NOTE: Some authenticators for high-security environments may be configured to always set credProtect 3
for all created credentials regardless of what the platform requests. In this case if a Relying Party causes an
authenticatorMakeCredential request to be sent with credProtect 2 (using the credProtect extension), the
authenticator will create the credential, set the credential’s credProtect policy to 3, and respond via the
credProtect extension result that it set the policy to 3.

EXAMPLE 5
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{
 ...
 6: {"credProtect": 0x01},
 ...
}

Authenticator extension processing

Authenticator extension output
The authenticator responds with the following CBOR map entry in the "extensions" field of the
authenticator data object:

"credProtect": <credProtect Value>

EXAMPLE 6
Sample "extensions" field value in the authenticatorData:

{"credProtect": 0x01}

122/137

https://www.w3.org/TR/webauthn-2#authenticator-data

This extension enables RPs to provide a small amount of extra credential configuration information(credBlob
value) to the authenticator when a credential is made. This information is an opaque blob to the authenticator.
Authenticator MUST support at least 32 bytes to be stored. Authenticator reflects amount of byte storage it
supports as maxCredBlobLength parameter in authenticatorGetInfo. If authenticator supports this extension,

If RPs want to put PII or sensitive information in this field, they MUST use the credProtect extension, setting the
credentialProtectionPolicy as userVerificationRequired and enforceCredentialProtectionPolicy as
true. This will prevent a credential that is not protected by some form of user verification from being created.

Authenticators MUST support credProtect extension if they wish to support credBlob extension.

To detect whether authenticator supports this feature, following conditions MUST be met:

credBlob

create() : ArrayBuffer containing opaque data in an RP-specific format.

partial dictionary AuthenticationExtensionsClientInputs {
 ArrayBuffer credBlob;
};

get() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
 boolean getCredBlob;
};

create() : If credBlob size is less than or equal to maxCredBlobLength, platform passes the information to
the authenticator. Otherwise, platform ignores it.

get() : None.

create() : Boolean indicating whether the requested blob was stored, mirroring the authenticator’s output.

partial dictionary AuthenticationExtensionsClientOutputs {
 boolean credBlob;
};

get() : ArrayBuffer containing the requested blob, or empty if none was found, mirroring the authenticator’s
output.

partial dictionary AuthenticationExtensionsClientOutputs {
 ArrayBuffer getCredBlob;
};

12.2. Credential Blob (credBlob)

1. If the rk option ID is present and true

Authenticator MUST support it for discoverable credentials.

Authenticator MAY choose to also support it for non-discoverable credentials.

2. Else (implying the authenticator does not support discoverable credentials)

Authenticator MUST support it for non-discoverable credentials.

12.2.1. Feature detection

Authenticator MUST return credBlob in extensions field in authenticatorGetInfo in addition to other
extensions it may support.

Authenticator MUST also support dependent extension credProtect.

Authenticator MUST return maxCredBlobLength (0x0F) in authenticatorGetInfo.

Extension identifier

Client extension input

Client extension processing

Client extension output

Authenticator extension input

authenticatorMakeCredential authenticator extension input

The platform sends the credBlob value in authenticatorMakeCredential request with the following CBOR
map entry in the "extensions" field to the authenticator:

"credBlob": Byte String containing the credBlob value

authenticatorGetAssertion authenticator extension input

The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

123/137

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer

credBlob value is persisted with the Credential during authenticatorMakeCredential and returned during
authenticatorGetAssertion.

The credBlob extension allows for a small amount of opaque data to be stored with a credential. In contrast, this
extension allows for a much larger amount of data to be stored in the large-blob array, protected by a key that is
stored and accessed using this extension. Details of the interaction with the large-blob array are given in § 6.10.3
Large, per-credential blobs.

Conceptually this extension extends the state of a discoverable credential with 32 bytes of opaque storage that
may, or may not, be present for any given credential. This is called the largeBlobKey. Since this value is a
random key, an authenticator MAY derive it as needed from other key material, rather than storing the value
itself. If an authenticator does this, the same value MUST NOT be plausibly derivable via other means. For
example, it MUST NOT also be obtainable via the hmac-secret extension using any salt that is predictable or
constant across different credentials.

Platforms can detect support for this extension by checking for all of the following in the authenticatorGetInfo
response:

None. This extension is used to enable storage of large blobs in the large-blob array, which requires
additional platform behaviour. It is not suitable to be directly exposed to RPs.

"largeBlobKey": boolean.

None. Since platforms cannot filter the content of the authenticator extension output, none is provided to
avoid internal details of large-blob support leaking out of the abstraction layer.

"credBlob":true

Authenticator extension processing

Authenticator extension output

authenticatorMakeCredential authenticator extension output

If the authenticator is able to store the credBlob value, it returns the following CBOR map entry in the
"extensions" fields to the authenticator:

"credBlob": true

If the authenticator is not able to store the credBlob value (e.g. credBlob exceeds maxCredBlobLength,
or extension is not supported for non-discoverable credentials), it returns the following CBOR map entry
in the "extensions" field to to the authenticator:

"credBlob": false

authenticatorGetAssertion authenticator extension output

If the authenticator has the credBlob value for the credential, it returns the credBlob value in the
following CBOR map entry in the "extensions" fields to the authenticator:

"credBlob": Byte String.

If the authenticator does NOT have the credBlob value for the credential, it returns an empty Byte String
in the following CBOR map entry in the "extensions" fields to the authenticator:

"credBlob": (empty) Byte String.

12.3. Large Blob Key (largeBlobKey)

NOTE: Client platforms SHOULD use the largeBlobKey registration extension when creating the credential
if they wish to later use the largeBlobKey authentication extension to fetch the largeBlobKey. Authenticators
MAY optionally generate a largeBlobKey for a credential if the Large Blob Key (largeBlobKey) extension is
absent, but MUST NOT return an unsolicited largeBlobKey extension response or largeBlobKey (0x05) in the
authenticatorMakeCredential response structure.

1. largeBlobKey in the extensions field.

2. largeBlobs mapped to true in the options field.

Client extension input / output / processing

Authenticator input for authenticatorMakeCredential

Authenticator processing for authenticatorMakeCredential:
1. If the value of largeBlobKey is not true, return CTAP2_ERR_INVALID_OPTION. (The extension

should be omitted rather than asserted to be false.)

2. If the options field of the authenticatorMakeCredential request does not map rk to true, return
CTAP2_ERR_INVALID_OPTION.

3. If other processing steps for authenticatorMakeCredential complete successfully then update the new
credential’s state to store a freshly generated 32-byte key as its largeBlobKey.

4. Set the value of largeBlobKey (0x05) in the authenticatorMakeCredential response structure (i.e., not in
the extensions field of the authenticator data) to the value of the generated largeBlobKey.

Authenticator authenticatorMakeCredential extension output

Authenticator authenticatorGetAssertion extension input

124/137

https://www.w3.org/TR/webauthn-2#discoverable-credential
https://www.w3.org/TR/webauthn-2#client-platform
https://www.w3.org/TR/webauthn-2#authenticator-data

"largeBlobKey": boolean

None. Since platforms cannot filter the content of the authenticator extension output, none is provided to
avoid internal details of large-blob support leaking out of the abstraction layer.

minPinLength

This extension returns the current minimum PIN length value. This value does not decrease unless the
authenticator is reset, in which case, all the credentials are reset. This extension is only applicable during
credential creation.

See also § 7.4 Set Minimum PIN Length for the overall feature description.

create() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
 boolean minPinLength;
};

get() : Not applicable.

None, except creating the authenticator extension input from the client extension input.

None. Authenticator returns the result in authenticator extension output.

Boolean asking for minimum PIN length value in Unicode code points. The platform sends the
authenticatorMakeCredential request with the following CBOR map entry in the "extensions" field to the
authenticator:

The authenticator checks whether the authenticatorMakeCredential's rp.id parameter is present on its
minPinLengthRPIDs list. If so, the RP is authorized to receive the current minimum PIN length value. If not,
the RP is not authorized to receive the current minimum PIN length value.

hmac-secret

This extension is used by the platform to retrieve a symmetric secret from the authenticator when it needs to
encrypt or decrypt data using that symmetric secret. This symmetric secret is scoped to a credential. The
authenticator and the platform each only have the part of the complete secret to prevent offline attacks. This
extension can be used to maintain different secrets on different machines. If authenticator supports this
extension, authenticator MUST support it for both discoverable and non-discoverable credentials.

Authenticator authenticatorGetAssertion extension processing
1. If the value of largeBlobKey is not true, return CTAP2_ERR_INVALID_OPTION. (The extension

should be omitted rather than asserted to be false.)

2. If other processing steps for authenticatorGetAssertion complete successfully, and the credential has an
associated largeBlobKey, then set the value of largeBlobKey (0x07) in the authenticatorGetAssertion
response structure (i.e., not in the extensions field of the authenticator data) to the stored
largeBlobKey.

Authenticator authenticatorGetAssertion extension output

12.4. Minimum PIN Length Extension (minPinLength)

Extension identifier

NOTE: An example use case for this extension is: an organization supplies configured authenticators to
their users, with a current minimum PIN length value tailored to the organization’s requirements. Upon users
registering their credentials with the organization’s systems using the authenticators, the organization may
use this extension to determine whether the current minimum PIN length continues to meet the organization’s
requirements.

Client extension input

Client extension processing

Client extension output

Authenticator extension input

"minPinLength": true

Authenticator extension processing

Authenticator extension output
If the RP is

CDDL:
"minPinLength": uint

↪ authorized, the authenticator sets the minPinLength return value to the current minimum PIN
length value.

↪ not authorized, the authenticator ignores the extension and does not return any
authenticator extension output.

12.5. HMAC Secret Extension (hmac-secret)

Extension identifier

Client extension input

125/137

https://www.w3.org/TR/webauthn-2#authenticator-data
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get

create() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
 boolean hmacCreateSecret;
};

get() : A JavaScript object defined as follows:

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

The salt2 input is OPTIONAL. It can be used when the platform wants to roll over the symmetric secret in
one operation.

create(): Boolean true value indicating that the authenticator has processed the extension.

partial dictionary AuthenticationExtensionsClientOutputs {
 boolean hmacCreateSecret;
};

get(): A dictionary with the following data:

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

Same as the client extension input, except represented in CBOR.

Client extension processing
1. If present in a create():

1. If set to true, pass a CBOR true value as the authenticator extension input.

2. If set to false, do not process this extension.

2. If present in a get():

1. Verify that salt1 is a 32-byte ArrayBuffer.

2. If salt2 is present, verify that it is a 32-byte ArrayBuffer.

3. Pass salt1 and, if present, salt2 as the authenticator extension input.

Client extension output

Authenticator extension input

Authenticator extension processing

authenticatorGetInfo additional behaviors

The authenticator indicates to the platform that it supports the "hmac-secret" extension via the "extensions"
parameter in the authenticatorGetInfo response.

EXAMPLE 7
Sample CTAP2 authenticatorGetInfo response (CBOR):

{
 1: ["FIDO_2_0"],
 2: ["hmac-secret"],
 ...
}

authenticatorMakeCredential additional behaviors

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret": true

126/137

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

EXAMPLE 8
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{
 1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 ...
 6: {"hmac-secret": true},
}

The authenticator generates two random 32-byte values (called CredRandomWithUV and
CredRandomWithoutUV) and associates them with the credential.

NOTE: Authenticator SHOULD generate CredRandomWithUV/CredRandomWithoutUV and associate
them with the credential, even if hmac-secret extension is not present in
authenticatorMakeCredential request.

If the platform has sent the hmac-secret extension to the authenticator, then

If the authenticator succeeded in above step of generating
CredRandomWithUV/CredRandomWithoutUV and associating it with the credential, it responds with
the following CBOR map entry in the "extensions" fields to the platform:

"hmac-secret": true

Else (The authenticator did not succeed in above step of generating
CredRandomWithUV/CredRandomWithoutUV and associating it with the credential), it responds with
the following CBOR map entry in the "extensions" fields to the platform:

"hmac-secret": false

Else (the platform has not sent the hmac-secret extension to the authenticator)

Authenticator does not add any response from this extension to the "extensions" field of the
authenticatorMakeCredential response.

authenticatorGetAssertion additional behaviors

The platform gets sharedSecret from the authenticator.

The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret":

keyAgreement(0x01): public key of platform key-agreement key.

saltEnc(0x02): Encryption of the one or two salts (called salt1 (32 bytes) and salt2 (32 bytes))
using the shared secret as follows:

One salt case: encrypt(shared secret, salt1)

Two salt case: encrypt(shared secret, salt1 || salt2)

saltAuth(0x03): authenticate(shared secret, saltEnc)

pinUvAuthProtocol(0x04): (optional) as selected when getting the shared secret. CTAP2.1
platforms MUST include this parameter if the value of pinUvAuthProtocol is not 1.

127/137

EXAMPLE 9
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{
 1: "example.com",
 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 ...
 4: {
 "hmac-secret":
 {
 1:
 {
 1: 2,
 3: -25,
 -1: 1,
 -2: h’0DE6479775C5B704BF780073809DE1B36A29132E187709C1E364F299F8847769'
,
 -3: h’3BBE9BEDCC1AC8328BA6397A5F46AF85FC7C51B35BEDFD9E3E47AC6F34248B35
'
 },
 2: h’59E195FC58C614C07C99F587495F374871E9873AD37D5BCA1EED200926C3C6BA528D77A
48AF9592BD7E7A88051887F214E13CFDF406C3A1C57D529BABF987D4A',
 3: h’17B93F3BDB95380ED512EC6F542CE140'
 }
 }
}

The authenticator performs the following operations when processing this extension:

If pinUvAuthProtocol is absent and a pinUvAuthProtocol value of 1 is supported by the
authenticator, let the value of pinUvAuthProtocol be 1

If pinUvAuthProtocol is absent and a pinUvAuthProtocol value of 1 is not supported by the
authenticator, then return CTAP2_ERR_PIN_AUTH_INVALID.

If "up" is set to false, authenticator returns CTAP2_ERR_UNSUPPORTED_OPTION.

The authenticator waits for user consent.

If request asks for user verification, authenticator waits for user verification.

If user verification is requested via Client PIN mechanism, verify the user by verifying the
Client PIN parameters in the request as mentioned in the authenticatorGetAssertion steps.

If user verification is requested via a built-in user verification method, verify the user by built-in
user verification method as mentioned in the authenticatorGetAssertion steps.

The authenticator calls decapsulate on the provided platform key-agreement key to obtain a shared
secret.

Authenticator calls verify(shared secret, saltEnc, saltAuth)

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

Authenticator obtains salt1 and salt2 by calling decrypt(shared secret, saltEnc). If the decryption
fails, or if the result is not 32 or 64 bytes long, return CTAP1_ERR_INVALID_PARAMETER.
Otherwise salt1 is the first 32 bytes of the result and salt2 is the remaining bytes, if any.

The authenticator chooses which CredRandom to use for next step based on whether user
verification was done or not in above steps.

If uv bit is set to 1 in the response, let CredRandom be CredRandomWithUV.

If uv bit is set to 0 in the response, let CredRandom be CredRandomWithoutUV.

If the authenticator cannot find corresponding CredRandom associated with the credential,
authenticator ignores this extension and does not add any response from this extension to
"extensions" field of the authenticatorGetAssertion response.

The authenticator generates one or two HMAC-SHA-256 values, depending upon whether it
received one salt (32 bytes) or two salts (64 bytes):

output1: HMAC-SHA-256(CredRandom, salt1)

output2: HMAC-SHA-256(CredRandom, salt2)

The authenticator returns output1 and (when there were two salts) output2, encrypted to the
platform using the shared secret, as part of "extensions" parameter:

One salt case: "hmac-secret": encrypt(shared secret, output1)

Two salt case: "hmac-secret": encrypt(shared secret, output1 || output2)

128/137

Same as the client extension output, except represented in CBOR.

This extension allows a Relying Party to indicate that a credential can be used for Payment authentication
initiated by a party (website or native application) that is not the Relying Party. The platform is responsible for
determining what constitutes a Payment authentication - the W3C [secure-payment-confirmation] specification
is one example that a platform may implement.

A credential marked this way is referred to as third-party payment enabled, and the authenticator stores this
information for future retrieval. If the authenticator supports this extension, the authenticator MUST support it for
both discoverable and non-discoverable credentials.

thirdPartyPayment

Figure 6 hmac-secret

EXAMPLE 10
Sample "extensions" field value in the authenticatorData:

{ "hmac-secret": h’1F91526CAE456E4CBB71C4DDE7BB877157E6E54DFED3015D7D4DBB2269AFCDE6A91B8
D267EBBF848EB95A68E79C7AC705E351D543DB0165887D6290FD47A40C4' }

Authenticator extension output

12.6. Third-Party Payment authentication (thirdPartyPayment)

Extension identifier

Client extension input / output / processing None. The client processing steps are platform-dependent,
e.g. see [secure-payment-confirmation] for the web platform.
Authenticator extension input

129/137

The thirdPartyPayment boolean is persisted with the Credential during authenticatorMakeCredential and
returned during authenticatorGetAssertion.

The following documents are published by other organisations and are not referenced by this specification but
may be relevant to the same audience. They are gathered here purely as informational resources and are not
necessarily endorsed by FIDO.

This section registers the extension identifier values defined in Section § 12 Defined Extensions in the IANA
"WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809].

authenticatorMakeCredential authenticator extension input

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

"thirdPartyPayment": true

authenticatorGetAssertion authenticator extension input

The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

"thirdPartyPayment" : true

Authenticator extension processing

Authenticator extension output

authenticatorMakeCredential authenticator extension output None.

authenticatorGetAssertion authenticator extension output

If the credential was created with the thirdPartyPayment extension specified, the authenticator returns
the following CBOR map entry in the "extensions" fields to the platform:

"thirdPartyPayment": true

Otherwise the authenticator returns the following CBOR map entry in the "extensions" fields to the
platform:

"thirdPartyPayment": false

13. Related Documents

1. Windows provides a WebAuthn-like API to applications.

2. Android provides a WebAuthn-like API and provides a mechanism for apps to claim domain names as valid
RP IDs.

14. IANA Considerations

14.1. WebAuthn Extension Identifier Registrations

WebAuthn Extension Identifier: credProtect

This registration extension allows relying parties to specify a credential protection policy when creating a
credential. Additionally, authenticators may choose to establish a default credential protection policy greater
than userVerificationOptional (the lowest level) and unilaterally enforce such policy.

Specification Document: Section § 12.1 Credential Protection (credProtect) of this specification

WebAuthn Extension Identifier: credBlob

Description: This registration extension and authentication extension enables RPs to provide a small amount
of extra credential configuration information (the credBlob value) to the authenticator when a credential is
made.

Specification Document: Section § 12.2 Credential Blob (credBlob) of this specification

WebAuthn Extension Identifier: largeBlobKey

Description: This client platform-only extension provides for storage and retrieval of a per-credential key that
is used by the client platform when writing and reading elements in the large-blob array.

Specification Document: Section § 12.3 Large Blob Key (largeBlobKey) of this specification

WebAuthn Extension Identifier: minPinLength

Description: This registration extension returns the current minimum PIN length value to the Relying Party.

Specification Document: Section § 12.4 Minimum PIN Length Extension (minPinLength) of this specification

WebAuthn Extension Identifier: hmac-secret

130/137

https://www.microsoft.com/en-us/windows
https://github.com/microsoft/webauthn
https://www.android.com/
https://developers.google.com/identity/fido/android/native-apps
https://developers.google.com/identity/smartlock-passwords/android/associate-apps-and-sites
https://www.w3.org/TR/webauthn-2#rp-id
https://w3c.github.io/webauthn/#sctn-extension-id
https://www.w3.org/TR/webauthn-2#client-platform

See FIDO Security Reference document [FIDOSecRef].

Description: This registration extension and authentication extension enables the platform to retrieve a
symmetric secret scoped to the credential from the authenticator.

Specification Document: Section § 12.5 HMAC Secret Extension (hmac-secret) of this specification

15. Security Considerations

Index

Terms defined by this specification

aaguid, in § 6.4

acfg, in § 6.5.5.7

allowList, in § 6.2

alwaysUv, in § 6.4

alwaysUv feature is disabled, in § 6.4

alwaysUv feature is enabled, in § 6.4

applicable credentials list, in § 6.2.2

attestationFormats, in § 6.4

attestationFormatsPreference
dfn for getAssert, in § 6.2

dfn for makeCred, in § 6.1

authenticate, in § 6.5.4

authenticatorGetAssertion response structure, in § 6.2.2

authenticatorGetInfo response structure, in § 6.4

authenticatorMakeCredential response structure, in § 6.1.2

authenticator operation, in § 3
authnrCfg, in § 6.4

be, in § 6.5.5.7

beginUsingPinUvAuthToken, in § 6.5.3.2

bioEnroll, in § 6.4

Built-in User Verification method, in § 5
certifications, in § 6.4

clearPinUvAuthTokenPermissionsExceptLbw, in § 6.5.3.2

clearUserPresentFlag, in § 6.5.3.2

clearUserVerifiedFlag, in § 6.5.3.2

clientPin, in § 6.4

cm, in § 6.5.5.7

config, in § 6.10.2

credBlob
dict-member for AuthenticationExtensionsClientInputs, in § 12.2.1

dict-member for AuthenticationExtensionsClientOutputs, in § 12.2.1

credBlob value, in § 12.2

credentialID, in § 1.2

credentialMgmtPreview, in § 6.4

credentialProtectionPolicy, in § 12.1.1

credMgmt, in § 6.4

credProtect value, in § 12.1.1

CTAP2 canonical CBOR encoding form, in § 8
currently defined authenticatorConfig subcommands, in § 6.11

current minimum PIN length, in § 6.4

CurrentStoredPIN, in § 6.5.5.5

decapsulate, in § 6.5.4

decrypt, in § 6.5.4

default permissions, in § 6.5.5.7

Discoverable, in § 6.1.3

131/137

encapsulate, in § 6.5.4

encrypt, in § 6.5.4

enforceCredentialProtectionPolicy, in § 12.1.1

enterprise, in § 7.1

enterpriseAttestation
dfn for getAssert, in § 6.2

dfn for makeCred, in § 6.1

enterprise attestation capable, in § 6.1

enterprise attestation is disabled, in § 6.4

enterprise attestation is enabled, in § 6.4

enterprise context, in § 7.1

ep, in § 6.4

epAtt
dfn for getAssertResponse, in § 6.2.2

dfn for makeCredentialResponse, in § 6.1.2

Evidence of user interaction, in § 5
excludeList, in § 6.1

extensions
dfn for getAssert, in § 6.2

dfn for getInfo, in § 6.4

dfn for makeCred, in § 6.1

FIDO interfaces, in § 11.1

forceChangePin, in § 6.11.4

forcePINChange, in § 6.4

ga, in § 6.5.5.7

getCredBlob
dict-member for AuthenticationExtensionsClientInputs, in § 12.2.1

dict-member for AuthenticationExtensionsClientOutputs, in § 12.2.1

getPublicKey, in § 6.5.4

getUserPresentFlagValue, in § 6.5.3.2

getUserVerifiedFlagValue, in § 6.5.3.2

hmacCreateSecret
dict-member for AuthenticationExtensionsClientInputs, in § 12.5

dict-member for AuthenticationExtensionsClientOutputs, in § 12.5

hmacGetSecret
dict-member for AuthenticationExtensionsClientInputs, in § 12.5

dict-member for AuthenticationExtensionsClientOutputs, in § 12.5

HMACGetSecretInput, in § 12.5

HMACGetSecretOutput, in § 12.5

initialize, in § 6.5.4

initial serialized large-blob array, in § 6.10

initial usage time limit, in § 6.5.2.1

input parameters
dfn for getAssert, in § 6.2

dfn for makeCred, in § 6.1

internalRetry, in § 6.5.2.2

in use, in § 6.5.2.1

in use flag, in § 6.5.2.1

Key agreement key, in § 6.5.6

large-blob array, in § 6.10

largeBlobKey, in § 12.3

large-blob map, in § 6.10.3

largeBlobMapConform, in § 6.10.3

largeBlobs, in § 6.4

lbw, in § 6.5.5.7

longTouchForReset, in § 6.4

makeCredUvNotRqd, in § 6.4

maxCredBlobLength, in § 6.4

maxRPIDsForSetMinPINLength, in § 6.4

132/137

maxSerializedLargeBlobArray, in § 6.4

maxTemplateFriendlyName, in § 6.7

max usage time period, in § 6.5.2.1

maxUvAttemptsForInternalRetries, in § 6.5.2.2

maxUvRetries, in § 6.5.2.2

mc, in § 6.5.5.7

minPINLength, in § 6.4

minPinLength, in § 12.4

minPinLengthRPIDs, in § 6.11.4

newMinPINLength, in § 6.11.4

NFC user presence maximum time limit, in § 5
NFC userPresent flag, in § 5
noMcGaPermissionsWithClientPin, in § 6.4

non-discoverable credentials, in § 6.1.3

not in use, in § 6.5.2.1

opaque large-blob data, in § 6.10

Option ID, in § 6.4

Option Key
dfn for getAssert, in § 6.2

dfn for makeCred, in § 6.1

options
dfn for getAssert, in § 6.2

dfn for getInfo, in § 6.4

dfn for makeCred, in § 6.1

output1, in § 12.5

output2, in § 12.5

Payment authentication, in § 12.6

performBuiltInUv(internalRetry), in § 6.5.3.1

permissions, in § 6.5.5

permissions RP ID, in § 6.5.5.7

PINCodePointLength, in § 6.5.5.5

pinRetries, in § 6.5.2.2

pinUvAuthParam
dfn for getAssert, in § 6.2

dfn for makeCred, in § 6.1

PIN/UV auth protocol, in § 6.5

pinUvAuthProtocol
dfn for authenticatorClientPIN, in § 6.5.5

dfn for getAssert, in § 6.2

dfn for makeCred, in § 6.1

pinUvAuthProtocols, in § 6.4

pinUvAuthToken
dfn for PUAToken, in § 6.5

dfn for getInfo, in § 6.4

pinUvAuthToken permissions, in § 6.5.5.7

pinUvAuthTokenUsageTimerObserver, in § 6.5.3.2

platform key-agreement key, in § 6.5.5.4

Platform-managed enterprise attestation, in § 7.1

pre-configured list of RP IDs authorized to receive, in § 6.4

pre-configured minimum PIN length, in § 6.4

pre-configured RP ID list, in § 7.1

preferredPlatformUvAttempts, in § 6.4

pre-flight, in § 5
Protected by some form of User Verification, in § 5
pubKeyCredParams, in § 6.1

public point, in § 6.5.6

regenerate, in § 6.5.4

Relying Party, in § 1

133/137

resetPinUvAuthToken, in § 6.5.4

rk
dfn for getAssert, in § 6.2

dfn for getInfo, in § 6.4

dfn for makeCred, in § 6.1

rolling timer, in § 6.5.2.1

rp.id, in § 6.1

rpId
dfn for authenticatorClientPIN, in § 6.5.5

dfn for getAssert, in § 6.2

salt1, in § 12.5

salt2, in § 12.5

serialized large-blob array, in § 6.10

setMinPINLength, in § 6.4

shared secret, in § 6.5.5.4

Some form of User Verification, in § 5
stateful commands, in § 6
state initializing command, in § 6
state variables, in § 6.5.2.1

stopUsingPinUvAuthToken, in § 6.5.3.2

superseded, in § 1.1

templateFriendlyName, in § 6.7

third-party payment enabled, in § 12.6

transports, in § 6.4

tunnel service, in § 11.5

uint32LittleEndian, in § 8.3

uint64LittleEndian, in § 8.3

uint8, in § 8.3

up
dfn for getAssert, in § 6.2

dfn for makeCred, in § 6.1

usage timer, in § 6.5.2.1

User action timeout, in § 5
user consent, in § 5
user presence, in § 5
userPresent flag, in § 6.5.2.1

user present time limit, in § 6.5.2.1

userVerificationMgmtPreview, in § 6.4

userVerificationOptional, in § 12.1.1

userVerificationOptionalWithCredentialIDList, in § 12.1.1

userVerificationRequired, in § 12.1.1

userVerified flag, in § 6.5.2.1

uv
dfn for getAssert, in § 6.2

dfn for getInfo, in § 6.4

dfn for makeCred, in § 6.1

uvAcfg, in § 6.4

uvBioEnroll, in § 6.4

uvCountSinceLastPinEntry, in § 6.4

uvRetries, in § 6.5.2.2

vendorCommandId, in § 6.11.3

Vendor-facilitated enterprise attestation, in § 7.1

vendorPrototypeConfigCommands, in § 6.4

verify, in § 6.5.4

versions, in § 6.4

Terms defined by reference

134/137

Bluetooth Assigned Numbers. URL: https://www.bluetooth.org/en-us/specification/assigned-numbers

Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume 3, Part G, Section 3.3.3.3.
URL: https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Bluetooth Core Specification 4.0. URL: https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?
doc_id=229737

Device Information Service v1.1. URL: https://www.bluetooth.com/specifications/adopted-specifications

Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[CREDENTIAL-MANAGEMENT-1] defines the following terms:
create()

get()

[WebAuthn-2] defines the following terms:
assertion signature

attestation

attestation object

attestation statement format identifier

attested credential data

authenticator

authenticator data

authenticator extension input

authenticator extension output

authenticatorgetassertion operation

authenticatormakecredential operation

client platform

client side

credential key pair

discoverable credential

enterprise attestation

extension identifier

generating an attestation object

hash of the serialized client data

lookup credential source by credential id algorithm

private key

public key credential

public key credential source

relying party identifier

rp id

server-side credential

user handle

user verification

[WEBAUTHN-3] defines the following terms:
AuthenticationExtensionsClientInputs

AuthenticationExtensionsClientOutputs

PublicKeyCredentialDescriptor

PublicKeyCredentialParameters

PublicKeyCredentialRpEntity

PublicKeyCredentialUserEntity

authenticatorSelection

displayName

id

name

type

unsigned extension output

userVerification (for AuthenticatorSelectionCriteria)

userVerification (for PublicKeyCredentialRequestOptions)

[WEBIDL] defines the following terms:
ArrayBuffer

USVString

boolean

References

Normative References

[BTASSNUM]

[BTCCC]

[BTCORE]

[BTDIS]

[BTGAP]

[BTGAS] 135/137

https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H, Section 2.3.5.3. URL:
https://www.bluetooth.com/specifications/adopted-specifications

Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

CCMB-2017-04-001 Common Criteria for Information Technology Security Evaluation, Part 1: Introduction
and general model. April 2017. URL: https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf

Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program - CMVP.
December 3, 2019. URL: https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-
Program/documents/fips140-2/FIPS1402IG.pdf

CCRA Members. Common Criteria Publications. Work in Progress. URL:
http://www.commoncriteriaportal.org/cc/

Mike West. Credential Management Level 1. URL: https://w3c.github.io/webappsec-credential-management/

CSPN certification, Produits, Formulaires et Méthodologies. URL:
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-procedures-formulaires-et-methodologies/

Rolf Lindemann; Dr. Joshua E. Hill; Douglas Biggs. FIDO Authenticator Security Requirements. November
2020. Final Draft. URL: https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-
requirements-v1.4-fd-20201102.html

R. Lindemann; et al. FIDO Registry of Predefined Values. 23 May 2022. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html

R. Lindemann; et al. FIDO Security Reference. 23 May 2022. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html

FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

FIPS PUB 140-3: Security Requirements for Cryptographic Modules. March 2019. URL:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

Jim Schaad; et al. IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry. URL:
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

IANA. Web Authentication (WebAuthn) registries. URL: https://www.iana.org/assignments/webauthn/

ISO 7816-4: Identification cards - Integrated circuit cards; Part 4: Organization, security and commands for
interchange. 2013-04. URL: https://www.iso.org/standard/54550.html

P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. May 1996. Informational. URL:
https://www.rfc-editor.org/rfc/rfc1951

L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc2397

D. McGrew. An Interface and Algorithms for Authenticated Encryption. January 2008. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc5116

H. Krawczyk; P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function (HKDF). May 2010.
Informational. URL: https://www.rfc-editor.org/rfc/rfc5869

Jeff Hodges; Giridhar Mandyam; Michael B. Jones. Registries for Web Authentication (WebAuthn). August
2020. IETF Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8809

C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). December 2020. RFC. URL:
https://www.rfc-editor.org/rfc/rfc8949.html

[BTGAS]

[BTPESTK]

[BTSD]

[BTXPLAD]

[CC1V3-1R5]

[CMVP]

[CommonCriteria]

[CREDENTIAL-MANAGEMENT-1]

[CSPN]

[FIDOAuthenticatorSecurityRequirements]

[FIDORegistry]

[FIDOSecRef]

[FIPS140-2]

[FIPS140-3]

[IANA-COSE-ALGS-REG]

[IANA-WebAuthn-Registries]

[ISO7816-4]

[RFC1951]

[RFC2397]

[RFC5116]

[RFC5869]

[RFC8809]

[RFC8949]

[RFC9052]

136/137

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
https://w3c.github.io/webappsec-credential-management/
https://w3c.github.io/webappsec-credential-management/
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-procedures-formulaires-et-methodologies/
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-procedures-formulaires-et-methodologies/
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/webauthn/
https://www.iana.org/assignments/webauthn/
https://www.iso.org/standard/54550.html
https://www.iso.org/standard/54550.html
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc8809
https://www.rfc-editor.org/rfc/rfc8809
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html

J. Schaad. CBOR Object Signing and Encryption (COSE): Structures and Process. August 2022. Internet
Standard. URL: https://www.rfc-editor.org/rfc/rfc9052

SEC1: Elliptic Curve Cryptography, Version 2.0. May 2009. URL: http://secg.org/download/aid-780/sec1-
v2.pdf

Rouslan Solomakhin (Google); Stephen McGruer (Google). Secure Payment Confirmation. 31 August 2021.
TR. URL: https://www.w3.org/TR/secure-payment-confirmation/

NIST Special Publication 800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography (Revised). March 2007 URL:
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

D. Balfanz. FIDO Bluetooth® Specification. Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html

D. Balfanz. FIDO NFC Protocol Specification. Proposed Standard. URL: https://fidoalliance.org/specs/fido-
u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html

D. Balfanz; J. Ehrensvard; J. Lang. FIDO U2F Raw Message Formats v1.2. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-
20170411.html

D. Balfanz. FIDO U2F HID Protocol Specification. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html

Dirk Balfanz (Google); et al. Web Authentication: An API for accessing Public Key Credentials Level 2. 8
April 2021. TR. URL: https://www.w3.org/TR/webauthn-2/

Jeff Hodges; et al. Web Authentication: An API for accessing Public Key Credentials - Level 2. URL:
https://w3c.github.io/webauthn/

Jeff Hodges; et al. Web Authentication: An API for accessing Public Key Credentials - Level 3. URL:
https://w3c.github.io/webauthn/

Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://webidl.spec.whatwg.org/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

D. McGrew; K. Igoe; M. Salter. Fundamental Elliptic Curve Cryptography Algorithms. February 2011.
Informational. URL: https://www.rfc-editor.org/rfc/rfc6090

D. Benjamin. Applying Generate Random Extensions And Sustain Extensibility (GREASE) to TLS
Extensibility. January 2020. Informational. URL: https://www.rfc-editor.org/rfc/rfc8701

[SEC1V2]

[SECURE-PAYMENT-CONFIRMATION]

[SP800-56A]

[U2FBle]

[U2FNfc]

[U2FRawMsgs]

[U2FUsbHid]

[WebAuthn]

[WebAuthn-2]

[WEBAUTHN-3]

[WEBIDL]

Informative References

[RFC2119]

[RFC6090]

[RFC8701]

IDL Index

137/137

https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9052
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
https://www.w3.org/TR/secure-payment-confirmation/
https://www.w3.org/TR/secure-payment-confirmation/
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://w3c.github.io/webauthn/
https://w3c.github.io/webauthn/
https://w3c.github.io/webauthn/
https://w3c.github.io/webauthn/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://www.rfc-editor.org/rfc/rfc6090
https://www.rfc-editor.org/rfc/rfc6090
https://www.rfc-editor.org/rfc/rfc8701
https://www.rfc-editor.org/rfc/rfc8701

partial dictionary AuthenticationExtensionsClientInputs {
 USVString credentialProtectionPolicy;
 boolean enforceCredentialProtectionPolicy = false;
};

partial dictionary AuthenticationExtensionsClientInputs {
 ArrayBuffer credBlob;
};

partial dictionary AuthenticationExtensionsClientInputs {
 boolean getCredBlob;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 boolean credBlob;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 ArrayBuffer getCredBlob;
};

partial dictionary AuthenticationExtensionsClientInputs {
 boolean minPinLength;
};

partial dictionary AuthenticationExtensionsClientInputs {
 boolean hmacCreateSecret;
};

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 boolean hmacCreateSecret;
};

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

↑
→

138/137

https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-USVString
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

	Client to Authenticator Protocol (CTAP)
	Review Draft, March 21, 2023
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	1.1. Relationship to Other Specifications
	1.2. Data Elements Referenced by Other Specifications

	2. Conformance
	3. Protocol Structure
	4. Protocol Overview
	5. Terminology
	6. Authenticator API
	6.1. authenticatorMakeCredential (0x01)
	6.1.1. Platform Actions for authenticatorMakeCredential (non-normative)
	6.1.2. authenticatorMakeCredential Algorithm
	6.1.3. Discoverable credentials

	6.2. authenticatorGetAssertion (0x02)
	6.2.1. Platform Actions for authenticatorGetAssertion (non-normative)
	6.2.2. authenticatorGetAssertion Algorithm

	6.3. authenticatorGetNextAssertion (0x08)
	6.3.1. Client Logic

	6.4. authenticatorGetInfo (0x04)
	6.5. authenticatorClientPIN (0x06)
	6.5.1. PIN Composition Requirements
	6.5.2. PIN/UV Auth Protocol Global State
	6.5.3. Utility Functions
	6.5.4. PIN/UV Auth Protocol Abstract Definition
	6.5.5. authenticatorClientPIN (0x06) Command Definition
	6.5.6. PIN/UV Auth Protocol One
	6.5.7. PIN/UV Auth Protocol Two
	6.5.8. PRF values used

	6.6. authenticatorReset (0x07)
	6.7. authenticatorBioEnrollment (0x09)
	6.7.1. Feature detection
	6.7.2. Get bio modality
	6.7.3. Get fingerprint sensor info
	6.7.4. Enrolling fingerprint
	6.7.5. Cancel current enrollment
	6.7.6. Enumerate enrollments
	6.7.7. Rename/Set FriendlyName
	6.7.8. Remove enrollment

	6.8. authenticatorCredentialManagement (0x0A)
	6.8.1. Feature detection
	6.8.2. Getting Credentials Metadata
	6.8.3. Enumerating RPs
	6.8.4. Enumerating Credentials for an RP
	6.8.5. DeleteCredential
	6.8.6. Updating user information
	6.8.7. Truncation of relying party identifiers

	6.9. authenticatorSelection (0x0B)
	6.10. authenticatorLargeBlobs (0x0C)
	6.10.1. Feature detection
	6.10.2. Reading and writing serialised data
	6.10.3. Large, per-credential blobs
	6.10.4. Reading per-credential large-blob data
	6.10.5. Writing per-credential large-blob data for a new credential
	6.10.6. Updating per-credential large-blob data
	6.10.7. Garbage collection of large-blob data

	6.11. authenticatorConfig (0x0D)
	6.11.1. Enable Enterprise Attestation
	6.11.2. Toggle Always Require User Verification
	6.11.3. Vendor Prototype Command
	6.11.4. Setting a minimum PIN Length

	6.12. Prototype authenticatorBioEnrollment (0x40) (For backwards compatibility with "FIDO_2_1_PRE")
	6.13. Prototype authenticatorCredentialManagement (0x41) (For backwards compatibility with "FIDO_2_1_PRE")

	7. Feature-Specific Descriptions and Actions
	7.1. Enterprise Attestation
	7.1.1. Feature detection
	7.1.2. Platform Actions
	7.1.3. Authenticator Actions

	7.2. Always Require User Verification
	7.2.1. Feature detection
	7.2.2. Platform Actions
	7.2.3. Authenticator Actions
	7.2.4. Disabling CTAP1/U2F

	7.3. Authenticator Certifications
	7.3.1. Authenticator Actions

	7.4. Set Minimum PIN Length
	7.4.1. Feature detection
	7.4.2. Platform Actions
	7.4.3. Authenticator Actions

	8. Message Encoding
	8.1. Command Codes
	8.2. Status codes
	8.3. Utility functions

	9. Mandatory features
	10. Interoperating with CTAP1/U2F authenticators
	10.1. Framing of U2F commands
	10.1.1. U2F Request Message Framing
	10.1.2. U2F Response Message Framing

	10.2. Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
	10.3. Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators
	10.4. Cross-version Credential Compatibility

	11. Transport-specific Bindings
	11.1. Secure protocol implementation
	11.2. USB Human Interface Device (USB HID)
	11.2.1. Design rationale
	11.2.2. Protocol structure and data framing
	11.2.3. Concurrency and channels
	11.2.4. Message and packet structure
	11.2.5. Arbitration
	11.2.6. Channel locking
	11.2.7. Protocol version and compatibility
	11.2.8. HID device implementation
	11.2.9. CTAPHID commands

	11.3. ISO7816, ISO14443 and Near Field Communication (NFC)
	11.3.1. Conformance
	11.3.2. Protocol
	11.3.3. Applet selection
	11.3.4. Applet deselection
	11.3.5. Framing
	11.3.6. Fragmentation
	11.3.7. Commands

	11.4. Bluetooth Smart / Bluetooth Low Energy Technology
	11.4.1. Conformance
	11.4.2. Pairing
	11.4.3. Link Security
	11.4.4. Framing
	11.4.5. GATT Service Description
	11.4.6. Protocol Overview
	11.4.7. Authenticator Advertising Format
	11.4.8. Requests
	11.4.9. Responses
	11.4.10. Framing fragmentation
	11.4.11. Notifications
	11.4.12. Request Collisions
	11.4.13. Implementation Considerations
	11.4.14. Handling command completion
	11.4.15. Data throughput
	11.4.16. Advertising
	11.4.17. Authenticator Address Type

	11.5. Hybrid transports
	11.5.1. QR-initiated Transactions
	11.5.2. State-assisted Transactions

	12. Defined Extensions
	12.1. Credential Protection (credProtect)
	12.1.1. Feature detection

	12.2. Credential Blob (credBlob)
	12.2.1. Feature detection

	12.3. Large Blob Key (largeBlobKey)
	12.4. Minimum PIN Length Extension (minPinLength)
	12.5. HMAC Secret Extension (hmac-secret)
	12.6. Third-Party Payment authentication (thirdPartyPayment)

	13. Related Documents
	14. IANA Considerations
	14.1. WebAuthn Extension Identifier Registrations

	15. Security Considerations
	Index
	Terms defined by this specification
	Terms defined by reference

	References
	Normative References
	Informative References

	IDL Index

