
Client to Authenticator Protocol (CTAP)

https://fidoalliance.org/specs/fido2/fido-client-to-authenticator-protocol-v2.1-rd-20191217.html

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/

GitHub

Christiaan Brand (Google)
Alexei Czeskis (Google)
Jakob Ehrensvärd (Yubico)
Michael B. Jones (Microsoft)
Akshay Kumar (Microsoft)
Rolf Lindemann (Nok Nok Labs)
Adam Powers (FIDO Alliance)
Johan Verrept (OneSpan)

Matthieu Antoine (Gemalto)
Arnar Birgisson (Google)
Vijay Bharadwaj (Microsoft)
Mirko J. Ploch (SurePassID)

Jeff Hodges (Google)

Copyright © 2020 FIDO Alliance. All Rights Reserved.

This specification describes an application layer protocol for communication between a roaming authenticator and another
client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical
media. The application layer protocol defines requirements for such transport protocols. Each transport binding defines the
details of how such transport layer connections should be set up, in a manner that meets the requirements of the application
layer protocol.

Review Draft, December 17, 2019

This version:

Previous Versions:

Issue Tracking:

Editors:

Former Editors:

Contributors:

Abstract

↑
→

https://fidoalliance.org/
https://fidoalliance.org/specs/fido2/fido-client-to-authenticator-protocol-v2.1-rd-20191217.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/
https://github.com/fido-alliance/fido-2-specs
mailto:cbrand@google.com
mailto:aczeskis@google.com
mailto:jakob@yubico.com
mailto:mbj@microsoft.com
mailto:akshayku@microsoft.com
mailto:rolf@noknok.com
mailto:adam@fidoalliance.org
mailto:johan.verrept@onespan.com
mailto:matthieu.antoine@gemalto.com
mailto:arnarb@google.com
mailto:vijay.bharadwaj@microsoft.com
mailto:mirko.ploch@surepassid.com
mailto:jdhodges@google.com
https://fidoalliance.org/

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us . All comments are
welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the
Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate
license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance , Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

Status of This Document

1 Introduction
1.1 Relationship to Other Specifications
1.2 Data Elements Referenced by Other Specifications

2 Conformance

3 Protocol Structure

4 Protocol Overview

5 Authenticator API
5.1 authenticatorMakeCredential (0x01)
5.2 authenticatorGetAssertion (0x02)
5.3 authenticatorGetNextAssertion (0x08)
5.3.1 Client Logic

https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

5.4 authenticatorGetInfo (0x04)
5.5 authenticatorClientPIN (0x06)
5.5.1 Client PIN/UV Requirements
5.5.2 Authenticator Configuration Operations Upon Power Up
5.5.3 Platform getting PIN retries from Authenticator
5.5.4 Platform getting UV Retries from Authenticator
5.5.5 Platform generating sharedSecret
5.5.6 Setting a New PIN
5.5.7 Changing existing PIN
5.5.8 Getting pinUvAuthToken from the Authenticator
5.5.9 Using pinUvAuthToken
5.5.9.1 Using pinUvAuthToken in authenticatorMakeCredential

5.5.9.2 Using pinUvAuthToken in authenticatorGetAssertion

5.5.9.3 Without pinUvAuthToken in authenticatorGetAssertion

5.6 authenticatorReset (0x07)
5.7 authenticatorBioEnrollment (0x09)
5.7.1 Feature detection
5.7.2 Get bio modality
5.7.3 Get fingerprint sensor info
5.7.4 Enrolling fingerprint
5.7.5 Cancel current enrollment
5.7.6 Enumerate enrollments
5.7.7 Rename/Set FriendlyName
5.7.8 Remove enrollment

5.8 authenticatorCredentialManagement (0x0A)
5.8.1 Feature detection
5.8.2 Getting Credentials Metadata
5.8.3 Enumerating RPs
5.8.4 Enumerating Credentials for an RP
5.8.5 DeleteCredential

5.9 authenticatorSelection (0x0B)
5.10 authenticatorConfig (0x0C)
5.10.1 resetPreserve

6 Message Encoding
6.1 Commands
6.2 Responses
6.3 Status codes

7 Interoperating with CTAP1/U2F authenticators
7.1 Framing of U2F commands

7.1.1 U2F Request Message Framing
7.1.2 U2F Response Message Framing

7.2 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
7.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

8 Transport-specific Bindings
8.1 Secure protocol implementation
8.2 USB Human Interface Device (USB HID)
8.2.1 Design rationale
8.2.2 Protocol structure and data framing
8.2.3 Concurrency and channels
8.2.4 Message and packet structure
8.2.5 Arbitration
8.2.5.1 Transaction atomicity, idle and busy states.

8.2.5.2 Transaction timeout

8.2.5.3 Transaction abort and re-synchronization

8.2.5.4 Packet sequencing

8.2.6 Channel locking
8.2.7 Protocol version and compatibility
8.2.8 HID device implementation
8.2.8.1 Interface and endpoint descriptors

8.2.8.2 HID report descriptor and device discovery

8.2.9 CTAPHID commands
8.2.9.1 Mandatory commands

8.2.9.1.1 CTAPHID_MSG (0x03)

8.2.9.1.2 CTAPHID_CBOR (0x10)

8.2.9.1.3 CTAPHID_INIT (0x06)

8.2.9.1.4 CTAPHID_PING (0x01)

8.2.9.1.5 CTAPHID_CANCEL (0x11)

8.2.9.1.6 CTAPHID_ERROR (0x3F)

8.2.9.1.7 CTAPHID_KEEPALIVE (0x3B)

8.2.9.2 Optional commands

8.2.9.2.1 CTAPHID_WINK (0x08)

8.2.9.2.2 CTAPHID_LOCK (0x04)

8.2.9.3 Vendor specific commands

8.3 ISO7816, ISO14443 and Near Field Communication (NFC)
8.3.1 Conformance
8.3.2 Protocol
8.3.3 Applet selection
8.3.4 Applet deselection

8.3.5 Framing
8.3.5.1 Commands

8.3.5.2 Response

8.3.6 Fragmentation
8.3.7 Commands
8.3.7.1 NFCCTAP_MSG (0x10)

8.3.7.2 NFCCTAP_GETRESPONSE (0x11)

8.4 Bluetooth Smart / Bluetooth Low Energy Technology
8.4.1 Conformance
8.4.2 Pairing
8.4.3 Link Security
8.4.4 Framing
8.4.4.1 Request from Client to Authenticator

8.4.4.2 Response from Authenticator to Client

8.4.4.3 Command, Status, and Error constants

8.4.5 GATT Service Description
8.4.5.1 FIDO Service

8.4.5.2 Device Information Service

8.4.5.3 Generic Access Profile Service

8.4.6 Protocol Overview
8.4.7 Authenticator Advertising Format
8.4.8 Requests
8.4.9 Responses
8.4.10 Framing fragmentation
8.4.11 Notifications
8.4.12 Request Collisions
8.4.13 Implementation Considerations
8.4.13.1 Bluetooth pairing: Client considerations

8.4.13.2 Bluetooth pairing: Authenticator considerations

8.4.14 Handling command completion
8.4.15 Data throughput
8.4.16 Advertising
8.4.17 Authenticator Address Type

9 Defined Extensions
9.1 Credential Protection (credProtect)
9.1.1 Feature detection

9.2 HMAC Secret Extension (hmac-secret)

10 IANA Considerations
10.1 WebAuthn Extension Identifier Registrations

This section is not normative.

This protocol is intended to be used in scenarios where a user interacts with a relying party (a website or native app) on
some platform (e.g., a PC) which prompts the user to interact with a roaming authenticator (e.g., a smartphone).

In order to provide evidence of user interaction, a roaming authenticator implementing this protocol is expected to have a
mechanism to obtain a user gesture. Possible examples of user gestures include: as a consent button, password, a PIN, a
biometric or a combination of these.

Prior to executing this protocol, the client/platform (referred to as host hereafter) and roaming authenticator (referred to as
authenticator hereafter) must establish a confidential and mutually authenticated data transport channel. This specification
does not specify the details of how such a channel is established, nor how transport layer security must be achieved.

This specification is part of the FIDO2 project which includes this CTAP and the [FIDOServerGuidelines] specifications,
and is related to the W3C [WebAuthn] specification. This specification refers to two CTAP protocol versions:

Both CTAP1 and CTAP2 share the same underlying transports: USB Human Interface Device (USB HID), Near Field
Communication (NFC), and Bluetooth Smart / Bluetooth Low Energy Technology (BLE) .

11 Security Considerations

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

IDL Index

1. Introduction§

1.1. Relationship to Other Specifications§

1. The CTAP1/U2F protocol, which is defined by the U2F Raw Messages specification [U2FRawMsgs]. CTAP1/U2F
messages are recognizable by their APDU-like binary structure. CTAP1/U2F may also be referred to as CTAP 1.2 or
U2F 1.2. The latter was the U2F specification version used as the basis for several portions of this specification.
Authenticators implementing CTAP1/U2F are typically referred to as U2F authenticators or CTAP1 authenticators.

2. The CTAP2 protocol, whose messages are encoded in the CTAP2 canonical CBOR encoding form. Authenticators
implementing CTAP2 are referred to as CTAP2 authenticators, FIDO2 authenticators, or WebAuthn Authenticators.

The [U2FUsbHid], [U2FNfc], [U2FBle], and [U2FRawMsgs] specifications, specifically, are superseded by this
specification.

Occasionally, the term "CTAP" may be used without clarifying whether it is referring to CTAP1 or CTAP2. In such cases, it
should be understood to be referring to the entirety of this specification or portions of this specification that are not specific
to either CTAP1 or CTAP2. For example, some error messages begin with the term "CTAP" without clarifying whether they
are CTAP1- or CTAP2-specific because they are applicable to both CTAP protocol versions. CTAP protocol-specific error
messages are prefixed with either "CTAP1" or "CTAP2" as appropriate.

Using CTAP2 with CTAP1/U2F authenticators is defined in Interoperating with CTAP1/U2F authenticators.

The following data elements might be referenced by other specifications and hence should not be changed in their
fundamental data type or high-level semantics without liaising with the other specifications:

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as
described in [RFC2119].

1.2. Data Elements Referenced by Other Specifications§

1. aaguid, data type byte string and identifying the authenticator model, i.e. identical values mean that they refer to the
same authenticator model and different values mean they refer to different authenticator models.

2. rpId, data type string representing the Relying party identifier , i.e. identical values mean that they refer to the same
relying party.

3. credentialID, data type byte string identifying a specific public key credential source, i.e. identical values mean that
they refer to the same credential and different values mean they refer to different credentials. Note that there might be a
very small probability that different credentials get assigned the same credentialID.

4. up and uv, data type boolean indicating whether user presence (up) or user verification (uv) was performed by the
authenticator.

Note: Some of the data elements might have an internal structure that might change. Other specifications shall not rely
on such internal structure.

2. Conformance§

3. Protocol Structure§

https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#public-key-credential-source

This protocol is specified in three parts:

This document specifies all three of the above pieces for roaming FIDO2 authenticators.

The general protocol between a Relying Party application, a client platform , and an authenticator is as follows:

Each operation in the authenticator API can be performed independently of the others, and all operations are asynchronous.
The authenticator may enforce a limit on outstanding operations to limit resource usage - in this case, the authenticator is
expected to return a busy status and the host is expected to retry the operation later. Additionally, this protocol does not
enforce in-order or reliable delivery of requests and responses; if these properties are desired, they must be provided by the
underlying transport protocol or implemented at a higher layer by applications.

Note that this API level is conceptual and does not represent actual APIs. The actual APIs will be provided by each
implementing platform.

The authenticator API has the following methods and data structures.

Authenticator API: At this level of abstraction, each authenticator operation is defined similarly to an API call - it
accepts input parameters and returns either an output or error code. Note that this API level is conceptual and does not
represent actual APIs. The actual APIs will be provided by each implementing platform.

Message Encoding: In order to invoke a method in the authenticator API, the host must construct and encode a
request and send it to the authenticator over the chosen transport protocol. The authenticator will then process the
request and return an encoded response.

Transport-specific Binding: Requests and responses are conveyed to roaming authenticators over specific
transports (e.g., USB, NFC, Bluetooth). For each transport technology, message bindings are specified for this protocol.

4. Protocol Overview§

1. A Relying Party application calls navigator.credentials.create() or navigator.credentials.get() (if
it is a website), or the platform’s equivalent API methods, if it is a native application.

2. The platform establishes a connection with a nominally appropriate available authenticator, having used criteria passed
in by the Relying Party application and possibly other information it has to select the authenticator.

3. The platform gets information about the authenticator using the authenticatorGetInfo command, which helps it
determine the authenticator’s capabilities.

4. Depending upon the operation the Relying Party application invoked (in step 1), the options it supplied, and the
authenticator’s capabilities, the platform will invoke one or more further Authenticator API commands.

5. Authenticator API§

https://www.w3.org/TR/webauthn#relying-party
https://www.w3.org/TR/webauthn#client-platform
https://www.w3.org/TR/webauthn#authenticator
https://www.w3.org/TR/webauthn#relying-party
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://www.w3.org/TR/webauthn#relying-party
https://www.w3.org/TR/webauthn#relying-party

This method is invoked by the host to request generation of a new credential in the authenticator. It takes the following input
parameters, which explicitly correspond to those defined in The authenticatorMakeCredential operation section of the Web
Authentication specification:

Parameter name Data type Required? Definition

clientDataHash
(0x01)

Byte Array Required
Hash of the ClientData contextual
binding specified by host. See
[WebAuthn].

rp (0x02) PublicKeyCredentialRpEntity Required

This
PublicKeyCredentialRpEntity
data structure describes a Relying
Party with which the new public
key credential will be associated.
It contains the Relying party
identifier of type text string,
(optionally) a human-friendly RP
name of type text string, and
(optionally) a URL of type text
string, referencing a RP icon
image. The RP name is to be used
by the authenticator when
displaying the credential to the
user for selection and usage
authorization. The RP name and
URL are optional so that the RP
can be more privacy friendly if it
chooses to. For example, for
authenticators with a display, RP
may not want to display
name/icon for single-factor
scenarios.

This
PublicKeyCredentialUserEntity
data structure describes the user
account to which the new public
key credential will be associated
at the RP. It contains an RP-
specific user account identifier of

5.1. authenticatorMakeCredential (0x01)§

https://www.w3.org/TR/webauthn/#op-make-cred
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#public-key-credential

user (0x03) PublicKeyCredentialUserEntity Required

type byte array, (optionally) a
user name of type text string,
(optionally) a user display name
of type text string, and
(optionally) a URL of type text
string, referencing a user icon
image (of a user avatar, for
example). The authenticator
associates the created public key
credential with the account
identifier, and MAY also
associate any or all of the user
name, user display name, and
image data (pointed to by the
URL, if any). The user name,
display name, and URL are
optional for privacy reasons for
single-factor scenarios where
only user presence is required.
For example, in certain closed
physical environments like
factory floors, user presence only
authenticators can satisfy RP’s
productivity and security needs.
In these environments, omitting
user name, display name and
URL makes the credential more
privacy friendly. Although this
information is not available
without user verification, devices
which support user verification
but do not have it configured, can
be tricked into releasing this
information by configuring the
user verification.

A sequence of CBOR maps
consisting of pairs of
PublicKeyCredentialType (a
string) and cryptographic
algorithm (a positive or negative
integer), where algorithm

pubKeyCredParams
(0x04)

CBOR Array Required identifiers are values that
SHOULD be registered in the
IANA COSE Algorithms registry
[IANA-COSE-ALGS-REG]. This
sequence is ordered from most
preferred (by the RP) to least
preferred.

excludeList (0x05)
Sequence of

PublicKeyCredentialDescriptors
Optional

A sequence of
PublicKeyCredentialDescriptor
structures, as specified in
[WebAuthn]. The authenticator
returns an error if the
authenticator already contains
one of the credentials enumerated
in this sequence. This allows RPs
to limit the creation of multiple
credentials for the same account
on a single authenticator.

extensions (0x06)
CBOR map of extension identifier
→ authenticator extension input

values
Optional

Parameters to influence
authenticator operation, as
specified in [WebAuthn]. These
parameters might be authenticator
specific.

options (0x07) Map of authenticator options Optional
Parameters to influence
authenticator operation, as
specified in in the table below.

pinUvAuthParam
(0x08)

Byte Array Optional

First 16 bytes of HMAC-SHA-
256 of clientDataHash using
pinUvAuthToken which
platform got from the
authenticator: HMAC-SHA-
256(pinUvAuthToken,

clientDataHash).

pinUvAuthProtocol
(0x09)

Unsigned Integer Optional
PIN/UV protocol version chosen
by the client

The following values are defined for use in the options parameter. All options are booleans.

https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input

Key
Default
value

Definition

rk false resident key: Instructs the authenticator to store the key material on the device.

uv false
user verification: Instructs the authenticator to require a gesture that verifies the user to
complete the request. Examples of such gestures are fingerprint scan or a PIN.

Note that the Authenticator may perform user verification even if not requested to enhance its security offering.

Note that the [WebAuthn] specification defines an abstract authenticatorMakeCredential operation, which corresponds to
the operation described in this section. The parameters in the abstract [WebAuthn] authenticatorMakeCredential
operation map to the above parameters as follows:

[WebAuthn]
authenticatorMakeCredential

operation
CTAP authenticatorMakeCredential operation

hash clientDataHash

rpEntity rp

userEntity user

requireResidentKey options.rk

requireUserPresence
Not present in the current version of CTAP. Authenticators are assumed to
always check user presence.

requireUserVerification options.uv or pinUvAuthParam/pinUvAuthProtocol

credTypesAndPubKeyAlgs pubKeyCredParams

excludeCredentialDescriptorList excludeList

extensions extensions

Note that icon values used with authenticators can employ [RFC2397] "data" URLs so that the image data is passed by
value, rather than by reference. This can enable authenticators with a display but no Internet connection to display icons.

Note that a text string is a UTF-8 encoded string (CBOR major type 3).

When an authenticatorMakeCredential request is received, the authenticator performs the following procedure:

1. If authenticator supports clientPin and platform sends a zero length pinUvAuthParam , wait for user touch and then
return either CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set.

This is done for the case where multiple authenticators are attached to the platform and the platform wants to
enforce clientPin semantics, but the user has to select which authenticator to send the pinUvAuthToken to.

2. If authenticator supports clientPin and pinUvAuthParam parameter is present and the pinUvAuthProtocol is not
supported, return CTAP2_ERR_PIN_AUTH_INVALID error.

3. If the pubKeyCredParams parameter does not contain a valid COSEAlgorithmIdentifier value that is supported by the
authenticator, terminate this procedure and return error code CTAP2_ERR_UNSUPPORTED_ALGORITHM.

4. If the options parameter is present, process all the options. If the option is known but not supported, terminate this
procedure and return CTAP2_ERR_UNSUPPORTED_OPTION. If the option is known but not valid for this
command, terminate this procedure and return CTAP2_ERR_INVALID_OPTION. Ignore any options that are not
understood. Note that because this specification defines normative behaviors for them, all authenticators MUST
understand the "rk", "up", and "uv" options.

5. Optionally, if the extensions parameter is present, process any extensions that this authenticator supports. Authenticator
extension outputs generated by the authenticator extension processing are returned in the authenticator data .

6. If the excludeList parameter is present and contains a credential ID that is present on this authenticator and bound to the
specified rpId:

If the credential does not have credProtect value userVerificationRequired, wait for user presence, then terminate
this procedure and return error code CTAP2_ERR_CREDENTIAL_EXCLUDED. User presence check is required
for CTAP2 authenticators before the RP gets told that the token is already registered to behave similarly to
CTAP1/U2F authenticators.

If the credential does have credProtect value userVerificationRequired:

If userVerification was performed as part of this request, wait for user presence and return
CTAP2_ERR_CREDENTIAL_EXCLUDED.

If userVerification was not performed as part of this request, remove the credential from the exclude list and
continue.

7. If authenticator is not protected by some form of user verification and platform has set "uv" or pinUvAuthParam to
get the user verification, return CTAP2_ERR_INVALID_OPTION.

8. If both "rk" and "uv" parameter values are set to false or omitted go to Step 10 .

9. If authenticator is protected by some form of user verification:

In authenticatorGetInfo , this being reflected by either "clientPin" is present and set to true or "uv" is present and
set to true or both.

If the request is passed with "uv" option, use built-in user verification method and verify the user.

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

If pinUvAuthParam parameter is present and pinUvAuthProtocol is 1, verify it by matching it against first 16
bytes of HMAC-SHA-256 of clientDataHash parameter using pinUvAuthToken : HMAC-SHA-

https://www.w3.org/TR/webauthn/#authenticator-extension-output
https://www.w3.org/TR/webauthn/#authenticator-extension-output
https://www.w3.org/TR/webauthn/#sec-authenticator-data

On success, the authenticator returns an attestation object in its response as defined in [WebAuthn]:

Member
name

Data type Required? Definition

fmt
(0x01)

String Required
The attestation statement
format identifier.

authData
(0x02)

Byte Array Required
The authenticator data
object.

attStmt
(0x03)

CBOR Map, the structure of which depends on the
attestation statement format identifier

Required
The attestation statement,
as specified in
[WebAuthn].

This method is used by a host to request cryptographic proof of user authentication as well as user consent to a given

256(pinUvAuthToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

If user is not verified via above steps return CTAP2_ERR_PIN_REQUIRED.

10. Perform authenticator processing steps for the credProtect extension.¶

Note: This extension is called out here because such steps may involve action even if no credProtect extension is
present in the request.

11. If the authenticator has a display, show the items contained within the user and rp parameter structures to the user.
Alternatively, request user interaction in an authenticator-specific way (e.g., flash the LED light). Request permission
to create a credential. If the user declines permission, return the CTAP2_ERR_OPERATION_DENIED error.

12. Generate a new credential key pair for the algorithm specified.

13. If "rk" in options parameter is set to true:

If a credential for the same RP ID and account ID already exists on the authenticator, overwrite that credential.

Store the user parameter along the newly-created key pair.

If authenticator does not have enough internal storage to persist the new credential, return
CTAP2_ERR_KEY_STORE_FULL.

14. Generate an attestation statement for the newly-created key using clientDataHash.

5.2. authenticatorGetAssertion (0x02)§

https://www.w3.org/TR/webauthn/#attestation-objects
https://www.w3.org/TR/webauthn/#attestation-statement-format
https://www.w3.org/TR/webauthn/#attestation-statement-format
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#credential-key-pair

transaction, using a previously generated credential that is bound to the authenticator and relying party identifier. It takes the
following input parameters, which explicitly correspond to those defined in The authenticatorGetAssertion operation section
of the Web Authentication specification:

Parameter name Data type Required? Definition

rpId (0x01) String Required
Relying party identifier . See
[WebAuthn].

clientDataHash
(0x02)

Byte Array Required
Hash of the serialized client data
collected by the host. See
[WebAuthn].

allowList (0x03)
Sequence of

PublicKeyCredentialDescriptors
Optional

A sequence of
PublicKeyCredentialDescriptor
structures, each denoting a
credential, as specified in
[WebAuthn]. A platform MUST
NOT send an empty allowList—if
it would be empty it MUST be
omitted. If this parameter is present
the authenticator MUST only
generate an assertion using one of
the denoted credentials.

extensions (0x04)
CBOR map of extension identifier
→ authenticator extension input

values
Optional

Parameters to influence
authenticator operation. These
parameters might be authenticator
specific.

options (0x05) Map of authenticator options Optional
Parameters to influence
authenticator operation, as
specified in the table below.

pinUvAuthParam
(0x06)

Byte Array Optional

First 16 bytes of HMAC-SHA-256
of clientDataHash using
pinUvAuthToken which platform
got from the authenticator: HMAC-
SHA-256(pinUvAuthToken,

clientDataHash).

pinUvAuthProtocol
(0x07)

Unsigned Integer Optional
PIN/UV protocol version selected
by client.

https://www.w3.org/TR/webauthn/#op-get-assertion
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#collectedclientdata-hash-of-the-serialized-client-data
https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input

The following values are defined for use in the options parameter. All options are booleans.

Key
Default
value

Definition

up true user presence: Instructs the authenticator to require user consent to complete the operation.

uv false
user verification: Instructs the authenticator to require a gesture that verifies the user to
complete the request. Examples of such gestures are fingerprint scan or a PIN.

Note that the Authenticator may perform user verification even if not requested to enhance its security offering.

Note that the [WebAuthn] specification defines an abstract authenticatorGetAssertion operation, which corresponds to
the operation described in this section. The parameters in the abstract [WebAuthn] authenticatorGetAssertion operation
map to the above parameters as follows:

[WebAuthn] authenticatorGetAssertion operation CTAP authenticatorGetAssertion operation

hash clientDataHash

rpId rpId

allowCredentialDescriptorList allowList

requireUserPresence options.up

requireUserVerification options.uv or pinUvAuthParam/pinUvAuthProtocol

extensions extensions

When an authenticatorGetAssertion request is received, the authenticator performs the following procedure:

1. If authenticator supports clientPin and platform sends a zero length pinUvAuthParam , wait for user touch and then
return either CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set.

This is done for the case where multiple authenticators are attached to the platform and the platform wants to
enforce clientPin semantics, but the user has to select which authenticator to send the pinUvAuthToken to.

2. If authenticator supports clientPin and pinUvAuthParam parameter is present and the pinUvAuthProtocol is not
supported, return CTAP2_ERR_PIN_AUTH_INVALID error.

3. If the options parameter is present, process all the options. If the option is known but not supported, terminate this
procedure and return CTAP2_ERR_UNSUPPORTED_OPTION. If the option is known but not valid for this
command, terminate this procedure and return CTAP2_ERR_INVALID_OPTION. Ignore any options that are not
understood. Note that because this specification defines normative behaviors for them, all authenticators MUST
understand the "rk", "up", and "uv" options.

4. Optionally, if the extensions parameter is present, process any extensions that this authenticator supports. Authenticator
extension outputs generated by the authenticator extension processing are returned in the authenticator data.

5. If authenticator is not protected by some form of user verification and platform has set "uv" or pinUvAuthParam to
get the user verification, return CTAP2_ERR_UNSUPPORTED_OPTION.

6. If authenticator is protected by some form of user verification:

In authenticatorGetInfo , this being reflected by either "clientPin" is present and set to true or "uv" is present and
set to true or both.

If the request is passed with "uv" option, use built-in user verification method and verify the user.

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_OPERATION_DENIED error.

If pinUvAuthParam parameter is present and pinUvAuthProtocol is 1, verify it by matching it against first 16
bytes of HMAC-SHA-256 of clientDataHash parameter using pinUvAuthToken : HMAC-SHA-
256(pinUvAuthToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

7. Locate all credentials that are eligible for retrieval under the specified criteria:

If an allowList is present and is non-empty, locate all denoted credentials present on this authenticator and bound
to the specified rpId.

If an allowList is not present, locate all credentials that are present on this authenticator and bound to the specified
rpId.

Iterate through the applicable credentials, and if credential protection for a credential is marked as
userVerificationRequired, and user verification is not done with above steps, remove that credential from the
applicable credentials list.

Iterate through the applicable credentials, and if credential protection for a credential is marked as
userVerificationOptionalWithCredentialIDList and there is no allowlist passed by the client or there has not
been any user verification happened in above steps, remove that credential from the applicable credentials list.

If no applicable credentials were found, return CTAP2_ERR_NO_CREDENTIALS

Let numberOfCredentials be the number of applicable credentials found.

8. Collect user presence if required:

If the "up" option is specified and user is already verified by built in user verification method, proceed to next
step. Else, wait for user presence.

When timeout occurs without user presence, return CTAP2_ERR_OPERATION_DENIED error.

9. If allowList is present:

https://www.w3.org/TR/webauthn/#sec-authenticator-data

On success, the authenticator returns the following structure in its response:

Select any applicable credential

Sign the clientDataHash along with authData with the selected credential, using the structure specified in
[WebAuthn].

10. If allowlist is not present:

If numberOfCredentials is one:

Select that credential.

If numberOfCredentials is more than one:

Order the credentials by the time when they were created in reverse order. (I.e. the first credential is the most
recently created.)

If authenticator does not have a display or the authenticator does have a display but the UV and UP options
are false:

Remember the authenticatorGetAssertion parameters.

Create a credential counter (credentialCounter) and set it to 1. This counter signifies the next
credential to be returned by the authenticator, assuming zero-based indexing.

Start a timer. This is used during authenticatorGetNextAssertion command. This step is optional if
transport is done over NFC.

Select the first credential.

If authenticator has a display and at least one of the UV and UP options is true:

Display all these credentials to the user, using their friendly name along with other stored account
information.

Also, display the rpId of the requester (specified in the request) and ask the user to select a credential.

If the user declines to select a credential or takes too long (as determined by the authenticator), terminate
this procedure and return the CTAP2_ERR_OPERATION_DENIED error.

Update the response to set the userSelected member to true and to delete the numberOfCredentials

member.

Select the credential indicated by the user.

Update the response to include the selected credential’s publicKeyCredentialUserEntity information. User
identifiable information (name, DisplayName, icon) inside the publicKeyCredentialUserEntity MUST NOT be
returned if user verification is not done by the authenticator.

Sign the clientDataHash along with authData with the selected credential, using the structure specified in
[WebAuthn].

Member name Data type Required? Definition

credential (0x01) PublicKeyCredentialDescriptor Optional

PublicKeyCredentialDescriptor
structure containing the credential
identifier whose private key was
used to generate the assertion.
May be omitted if the allowList
has exactly one Credential.

authData (0x02) Byte Array Required

The signed-over contextual
bindings made by the
authenticator, as specified in
[WebAuthn].

signature (0x03) Byte Array Required
The assertion signature produced
by the authenticator, as specified
in [WebAuthn].

user (0x04) PublicKeyCredentialUserEntity Optional

PublicKeyCredentialUserEntity
structure containing the user
account information. User
identifiable information (name,
DisplayName, icon) MUST not be
returned if user verification is not
done by the authenticator.

U2F Devices: For U2F devices,
this parameter is not returned as
this user information is not present
for U2F credentials.

FIDO Devices - server resident
credentials: For server resident
credentials on FIDO devices, this
parameter is optional as server
resident credentials behave same
as U2F credentials where they are
discovered given the user
information on the RP.
Authenticators optionally MAY
store user information inside the
credential ID.

FIDO devices - device resident

https://www.w3.org/TR/webauthn/#assertion-signature
https://www.w3.org/TR/webauthn/#assertion-signature

credentials: For device resident
keys on FIDO devices, at least
user "id" is mandatory.

For single account per RP case,
authenticator returns "id" field to
the platform which will be
returned to the [WebAuthn] layer.

For multiple accounts per RP case,
where the authenticator does not
have a display, authenticator
returns "id" as well as other fields
to the platform. Platform will use
this information to show the
account selection UX to the user
and for the user selected account,
it will ONLY return "id" back to
the [WebAuthn] layer and discard
other user details.

numberOfCredentials
(0x05)

Integer Optional

Total number of account
credentials for the RP. Optional;
defaults to one. This member is
required when more than one
credential is found for an RP, and
the authenticator does not have a
display or the UV & UP flags are
false. Omitted when returned for
the authenticatorGetNextAssertion
method.

userSelected (0x06) Boolean Optional

Indicates that a credential was
selected by the user via interaction
directly with the authenticator, and
thus the platform does not need to
confirm the credential. Optional;
defaults to false. MUST NOT be
present in response to a request
where an allowList was given,
where numberOfCredentials is
greater than one, nor in response

to an
authenticatorGetNextAssertion

request.

Within the "flags" bits of the authenticator data structure returned, the authenticator will report what was actually done
within the authenticator boundary. The meanings of the combinations of the User Present (UP) and User Verified (UV) flags
are as follows:

Flags Meaning

"up"=0
"uv"=0

Silent authentication

"up"=1
"uv"=0

Physical user presence verified, but no user verification

"up"=0
"uv"=1

User verification performed, but physical user presence not verified (a typical "smartcard scenario")

"up"=1
"uv"=1

User verification performed and physical user presence verified

The client calls this method when the authenticatorGetAssertion response contains the numberOfCredentials member and
the number of credentials exceeds 1. This method is used to obtain the next per-credential signature for a given
authenticatorGetAssertion request.

This method takes no arguments as it is always follows a call to authenticatorGetAssertion or
authenticatorGetNextAssertion.

When such a request is received, the authenticator performs the following procedure:

5.3. authenticatorGetNextAssertion (0x08)§

1. If authenticator does not remember any authenticatorGetAssertion parameters, return
CTAP2_ERR_NOT_ALLOWED.

2. If the credentialCounter is equal to or greater than numberOfCredentials, return CTAP2_ERR_NOT_ALLOWED.

3. If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is greater than 30 seconds,
discard the current authenticatorGetAssertion state and return CTAP2_ERR_NOT_ALLOWED. This step is optional if
transport is done over NFC.

4. Select the credential indexed by credentialCounter. (I.e. credentials[n] assuming a zero-based array.)

5. Update the response to include the selected credential’s publicKeyCredentialUserEntity information. User identifiable
information (name, DisplayName, icon) inside the publicKeyCredentialUserEntity MUST not be returned if user

On success, the authenticator returns the same structure as returned by the authenticatorGetAssertion method. The
numberOfCredentials member is omitted.

If client receives numberOfCredentials member value exceeding 1 in response to the authenticatorGetAssertion call:

Using this method, the host can request that the authenticator report a list of all supported protocol versions, supported
extensions, AAGUID of the device, and its capabilities. This method takes no inputs.

On success, the authenticator returns:

Member name Data type Required? Definition

versions (0x01) Sequence of strings Required

List of supported
versions. Supported
versions are:
"FIDO_2_0" for CTAP2
/ FIDO2 / Web
Authentication
authenticators and
"U2F_V2" for

verification was not done by the authenticator in the original authenticatorGetAssertion call.

6. Sign the clientDataHash along with authData with the selected credential, using the structure specified in [WebAuthn].

7. Reset the timer. This step is optional if transport is done over NFC.

8. Increment credentialCounter.

5.3.1. Client Logic§

1. Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.

Make sure ‘rp’ member matches the current request.

Remember the ‘response’ member.

Add credential user information to the ‘credentialInfo’ list.

2. Draw a UX that displays credentialInfo list.

3. Let user select which credential to use.

4. Return the value of the ‘response’ member associated with the user choice.

5. Discard all other responses.

5.4. authenticatorGetInfo (0x04)§

CTAP1/U2F
authenticators.

extensions (0x02) Sequence of strings Optional
List of supported
extensions.

aaguid (0x03) Byte String Required

The claimed AAGUID.
16 bytes in length and
encoded the same as
MakeCredential
AuthenticatorData, as
specified in
[WebAuthn].

options (0x04) Map Optional
List of supported
options.

maxMsgSize (0x05) Unsigned Integer Optional
Maximum message size
supported by the
authenticator.

pinUvAuthProtocols (0x06) Array of Unsigned Integers Optional
List of supported
PIN/UV protocol
versions.

maxCredentialCountInList (0x07) Unsigned Integer Optional

Maximum number of
credentials supported in
credentialID list at a time
by the authenticator.

maxCredentialIdLength (0x08) Unsigned Integer Optional
Maximum Credential ID
Length supported by the
authenticator.

transports (0x09) Sequence of strings Optional

List of supported
transports. Values are
taken from the
AuthenticatorTransport
enum in [WebAuthn].
The list MUST NOT
include duplicate values.
Platforms MUST tolerate
unknown values.

List of supported

https://www.w3.org/TR/webauthn/#enumdef-authenticatortransport
https://www.w3.org/TR/webauthn/#enumdef-authenticatortransport

algorithms (0x0A)
Sequence of

PublicKeyCredentialParameters
Optional

algorithms for credential
generation. The
sequence is ordered from
most preferred to least
preferred and MUST
NOT include duplicate
entries.

maxAuthenticatorConfigLength
(0x0B)

Unsigned Integer Optional

The maximum size, in
bytes, of the serialized
config map array that
this authenticator can
store. If the
authenticatorConfig
command is not
supported, this should be
omitted rather than
specified as zero. If the
authenticatorConfig
command is supported,
this value defaults to
1024 if omitted. If
specified, the value must
be ≥ 1024.

defaultCredProtect (0x0C) Unsigned Integer Optional

The default credProtect
level used by this
authenticator when a
level is not explicitly
requested by the
platform. MUST NOT
be present unless
credProtect is included
in the supported
extensions list. If
present, MUST have the
value 2 or 3. (This is
purely for informational
purposes and is not
expected to control any
platform behavior.)

All options are in the form key-value pairs with string IDs and boolean values. When an option is not present, the default is
applied per table below. The following is a list of supported options:

Option
ID

Definition Default

plat
platform device: Indicates that the device is attached to the client and therefore can’t be

removed and used on another client.
false

rk
resident key: Indicates that the device is capable of storing keys on the device itself and
therefore can satisfy the authenticatorGetAssertion request with the allowList parameter

omitted.

false

clientPin

Client PIN:

If present and set to true, it indicates that the device is capable of accepting a PIN from
the client and PIN has been set.

If present and set to false, it indicates that the device is capable of accepting a PIN from
the client and PIN has not been set yet.

If absent, it indicates that the device is not capable of accepting a PIN from the client.

Client PIN is one of the ways to do user verification.

Not
supported

up user presence: Indicates that the device is capable of testing user presence. true

uv

user verification: Indicates that the device is capable of verifying the user within itself.
For example, devices with UI, biometrics fall into this category.

If present and set to true, it indicates that the device is capable of user verification
within itself and has been configured.

If present and set to false, it indicates that the device is capable of user verification
within itself and has not been yet configured. For example, a biometric device that has

not yet been configured will return this parameter set to false.

If absent, it indicates that the device is not capable of user verification within itself.

A device that can only do Client PIN will not return the "uv" parameter.

If a device is capable of verifying the user within itself as well as able to do Client PIN,
it will return both "uv" and the Client PIN option.

Not
Supported

uvToken
user verification token: Indicates that the device is capable of performing built in user false

verification based token feature.

config
configuration support: Indicates that the device supports the authenticatorConfig

command.
false

One of the design goals of this command is to have minimum burden on the authenticator and to not send actual encrypted
PIN to the authenticator in normal authenticator usage scenarios to have more security. Hence, below design only sends PIN
in encrypted format while setting or changing a PIN. On normal PIN usage scenarios, design uses randomized
pinUvAuthToken which gets generated every power cycle.

This command is used by the platform to establish key agreement with authenticator and getting sharedSecret, setting a new
PIN on the authenticator, changing existing PIN on the authenticator and getting "pinUvAuthToken" from the authenticator
which can be used in subsequent authenticatorMakeCredential and authenticatorGetAssertion operations.

It takes the following input parameters:

Parameter name Data type Required? Definition

pinUvAuthProtocol
(0x01)

Unsigned
Integer

Required
PIN/UV protocol version chosen by the client. For this
version of the spec, this SHALL be the number 1.

subCommand
(0x02)

Unsigned
Integer

Required
The authenticator Client PIN sub command currently
being requested

keyAgreement
(0x03)

COSE_Key Optional

Public key of platformKeyAgreementKey . The
COSE_Key-encoded public key MUST contain the
optional "alg" parameter and MUST NOT contain any
other optional parameters. The "alg" parameter MUST
contain a COSEAlgorithmIdentifier value.

pinUvAuthParam
(0x04)

Byte Array Optional

First 16 bytes of HMAC-SHA-256 of encrypted contents
using sharedSecret . See Setting a new PIN , Changing
existing PIN and Getting pinUvAuthToken from the
authenticator for more details.

newPinEnc (0x05) Byte Array Optional
Encrypted new PIN using sharedSecret . Encryption is
done over UTF-8 representation of new PIN.

pinHashEnc (0x06) Byte Array Optional
Encrypted first 16 bytes of SHA-256 of PIN using
sharedSecret .

The list of sub commands for PIN/UV protocol version 1 is:

5.5. authenticatorClientPIN (0x06)§

subCommand Name subCommand Number

getPINRetries 0x01

getKeyAgreement 0x02

setPIN 0x03

changePIN 0x04

getPinUvAuthTokenUsingPin 0x05

getPinUvAuthTokenUsingUv 0x06

getUVRetries 0x07

On success, authenticator returns the following structure in its response:

Parameter
name

Data type Required? Definition

KeyAgreement
(0x01)

COSE_Key Optional

Authenticator key agreement public key in COSE_Key
format. This will be used to establish a sharedSecret
between platform and the authenticator. The COSE_Key-
encoded public key MUST contain the optional "alg"
parameter and MUST NOT contain any other optional
parameters. The "alg" parameter MUST contain a
COSEAlgorithmIdentifier value.

pinUvAuthToken
(0x02)

Byte Array Optional
Encrypted pinUvAuthToken using sharedSecret to be
used in subsequent authenticatorMakeCredential and
authenticatorGetAssertion operations.

pinRetries
(0x03)

Unsigned
Integer

Optional

Number of PIN attempts remaining before lockout. This is
optionally used to show in UI when collecting the PIN in
Setting a new PIN , Changing existing PIN and Getting
pinUvAuthToken from the authenticator flows.

Note: The COSEAlgorithmIdentifier used is -25
(ECDH-ES + HKDF-256) although this is NOT the
algorithm actually used. Setting this to a different value
may result in compatibility issues.

powerCycleState
(0x04)

Boolean Optional

Present and true if the authenticator requires a power cycle
before any future PIN operation, false if no power cycle
needed. If the field is omitted, no information is given about
whether a power cycle is needed or not.

This field is only valid in response to a getRetries request
and authenticators MUST NOT use this field as an
alternative to returning
CTAP2_ERR_PIN_AUTH_BLOCKED when that is
required by this specification: the power cycle behaviour is
a security property and cannot be delegated to the platform
to enforce.

uvRetries
(0x05)

Unsigned
Integer

Optional
Number of uv attempts remaining before lockout.

5.5.1. Client PIN/UV Requirements§

Platform has to fulfill following PIN support requirements while gathering input from the user:

Minimum PIN Length: 4 Unicode characters

Maximum PIN Length: UTF-8 representation must not exceed 63 bytes

PIN must not end in a 0x00 byte

Authenticator has to fulfill following PIN support requirements:

Minimum PIN Length: 4 bytes

Note: Authenticators can implement minimum PIN lengths that are longer than 4 bytes.

Maximum PIN Length: 63 bytes

PIN storage on the device has to be of the same or better security assurances as of private keys on the device.

pinRetries counter:

pinRetries counter represents the number of attempts left before PIN is blocked.

Authenticators must allow no more than 8 retries but may set a lower maximum.

Each correct PIN entry resets the pinRetries and uvRetries back to the maximum unless the PIN is already
blocked.

Each incorrect PIN entry decrements the pinRetries by 1.

Once the pinRetries counter reaches 0, both PIN as well as on-device user verification are disabled and can only

Authenticator generates following configuration at power up. This is to have less burden on the authenticator as key
agreement is an expensive operation. This also ensures randomness across power cycles.

Following are the operations authenticator performs on each powerup:

PIN retries count is the number of PIN attempts remaining before PIN is disabled on the device. When the PIN retries count
nears zero, the platform can optionally warn the user to be careful while entering the PIN.

be enabled if authenticator is reset.

uvRetries counter:

uvRetries counter represents the number of attempts left before on-device user verification is blocked.

Authenticators must allow no more than 5 retries but may set a lower maximum.

Each correct built-in user verification resets the pinRetries as well as uvRetries counter back to the maximum
unless the uv is already blocked.

Incorrect uv decrements the uvRetries by 1.

For best user experience, fingerprint-based authenticators should try at least 3 times before decrementing the
counter by 1 and returning the error to the platform.

Once the uvRetries counter reaches 0, built in user verification is disabled and can only be enabled if authenticator
is reset or correct PIN is entered by the user.

5.5.2. Authenticator Configuration Operations Upon Power Up§

Generate "authenticatorKeyAgreementKey":

Generate an ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a, aG) where "a"
denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Generate pinUvAuthToken:

Generate a random integer of length which is multiple of 16 bytes (AES block length).

"pinUvAuthToken" is used so that there is minimum burden on the authenticator and platform does not have to not
send actual encrypted PIN to the authenticator in normal authenticator usage scenarios. This also provides more
security as we are not sending actual PIN even in encrypted form.

"pinUvAuthToken" is also interchangeably called "uvToken" when retreived from the authenticator with built-in
user verification methods like fingerprint or UI based ones.

5.5.3. Platform getting PIN retries from Authenticator§

Platform performs the following operations to get pinRetries :

UV retries count is the number of built-in UV attempts remaining before built-in UV is disabled on the device. When the
UV retries count nears zero, the platform can optionally warn the user to be careful while performing user verification.

Platform performs the following operations to get uvRetries :

Platform does the ECDH key agreement to arrive at sharedSecret to be used only during that transaction.

Authenticator does not have to keep a list of sharedSecrets for all active sessions. If there are subsequent
authenticatorClientPIN transactions, a new sharedSecret is generated every time.

Platform performs the following operations to arrive at the sharedSecret:

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinUvAuthProtocol: 0x01

subCommand: getPINRetries(0x01)

Authenticator responds back with pinRetries and, optionally, powerCycleState .

5.5.4. Platform getting UV Retries from Authenticator§

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinUvAuthProtocol: 0x01

subCommand: getUVRetries(0x07)

Authenticator responds back with uvRetries and, optionally, powerCycleState .

5.5.5. Platform generating sharedSecret§

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinUvAuthProtocol: 0x01

subCommand: getKeyAgreement(0x02)

Authenticator responds back with public key of authenticatorKeyAgreementKey, "aG".

Platform generates "platformKeyAgreementKey":

Platform generates ECDH P-256 key pair called "platformKeyAgreementKey" denoted by (b, bG) where "b"
denotes the private key and "bG" denotes the public key.

Platform generates "sharedSecret"
Platform generates "sharedSecret" using SHA-256 over ECDH key agreement protocol using private key of
platformKeyAgreementKey, "b" and public key of authenticatorKeyAgreementKey, "aG": .

Following operations are performed to set up a new PIN:

SHA-256((baG).x)

SHA-256 is done over only "x" curve point of baG.

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol
details and key representation.

5.5.6. Setting a New PIN§

Platform gets sharedSecret from the authenticator.

Platform collects new PIN ("newPinUnicode") from the user in Unicode format.

Platform checks the Unicode character length of "newPinUnicode" against the minimum 4 Unicode character
requirement and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Let "newPin" be the UTF-8 representation of "newPinUnicode".

Platform checks the byte length of "newPin" against the max UTF-8 representation limit of 63 bytes and
returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends § 5.5 authenticatorClientPIN (0x06) command with following parameters to the authenticator:

pinUvAuthProtocol: 0x01.

subCommand: setPIN(0x03).

keyAgreement: public key of platformKeyAgreementKey, "bG" .

newPinEnc: Encrypted newPin using sharedSecret : AES256-CBC(sharedSecret, IV=0, newPin).

To avoid disclosing length of newPin, it is padded prior to encryption with 0x00 bytes until it is 64 bytes
long. Since the maximum length of a PIN is 63 bytes, there is always at least one byte of padding. No
PKCS#7 padding is performed during encryption, therefore newPinEnc is always 64 bytes long.

pinUvAuthParam: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

If a PIN has already been set, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey,
"a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

Following operations are performed to change an existing PIN:

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol
details and key representation.

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16)

and matching against input pinUvAuthParam parameter.

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and checks newPin length
against minimum PIN length of 4 bytes.

The decrypted padded newPin should be of at least 64 bytes length and authenticator determines actual PIN
length by looking for first 0x00 byte which terminates the PIN.

If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION error.

Authenticator may have additional constraints for PIN policy. The current spec only enforces minimum
length of 4 bytes.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device, sets the pinRetries counter to maximum count,
and returns CTAP2_OK.

5.5.7. Changing existing PIN§

Platform gets sharedSecret from the authenticator.

Platform collects current PIN ("curPinUnicode") and new PIN ("newPinUnicode") from the user.

Platform checks the Unicode character length of "newPinUnicode" against the minimum 4 Unicode character
requirement and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Let "curPin" be the UTF-8 representation of "curPinUnicode" and "newPin" be the UTF-8 representation of
"newPinUnicode"

Platform checks the byte length of "curPin" and "newPin" against the max UTF-8 representation limit of 63
bytes and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinUvAuthProtocol: 0x01.

subCommand: changePIN(0x04).

keyAgreement: public key of platformKeyAgreementKey, "bG" .

pinHashEnc: Encrypted first 16 bytes of SHA-256 hash of curPin using sharedSecret : AES256-
CBC(sharedSecret, IV=0, LEFT(SHA-256(curPin),16)).

newPinEnc: Encrypted "newPin" using sharedSecret : AES256-CBC(sharedSecret, IV=0, newPin).

file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2021%20RD/authenticatorClientPIN

To avoid disclosing length of newPin, it is padded prior to encryption with 0x00 bytes until it is 64 bytes
long. Since the maximum length of a PIN is 63 bytes, there is always at least one byte of padding. No
PKCS#7 padding is performed during encryption, therefore newPinEnc is always 64 bytes long.

pinUvAuthParam: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey,
"a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol
details and key representation.

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc ||

pinHashEnc), 16) and matching against input pinUvAuthParam parameter.

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator decrements the pinRetries counter by 1.

Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin), 16).

If a mismatch is detected, the authenticator performs the following operations:

Authenticator generates a new "authenticatorKeyAgreementKey".

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a,
aG), where "a" denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Authenticator returns errors according to following conditions:

If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to block the
device without user interaction.

Else return CTAP2_ERR_PIN_INVALID error.

This step only has to be performed once for the lifetime of the authenticator/platform handle. Getting pinUvAuthToken once
allows high security without any additional roundtrips every time (except for the first key-agreement phase) and its overhead
is minimal.

Following operations are performed to get pinUvAuthToken:

Authenticator sets the pinRetries counter to maximum value.

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and checks newPin length
against minimum PIN length of 4 bytes.

The decrypted padded newPin should be of at least 64 bytes length and authenticator determines actual PIN
length by looking for first 0x00 byte which terminates the PIN.

If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION error.

Authenticator may have additional constraints for PIN policy. The current spec only enforces minimum
length of 4 bytes.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device.

Authenticator generates a new pinToken.

Authenticator returns CTAP2_OK.

5.5.8. Getting pinUvAuthToken from the Authenticator§

Getting pinUvAuthToken using ClientPin:

Platform gets sharedSecret from the authenticator.

Platform collects PIN from the user.

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinUvAuthProtocol: 0x01.

subCommand: getPinUvAuthTokenUsingPin(0x05).

keyAgreement: public key of platformKeyAgreementKey, "bG".

pinHashEnc: AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(PIN),16)).

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of
authenticatorKeyAgreementKey, "a" and public key of platformKeyAgreementKey, "bG" .

file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2021%20RD/authenticatorClientPIN

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement
protocol details and key representation.

Authenticator decrements the pinRetries counter by 1.

Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin), 16).

If a mismatch is detected, the authenticator performs the following operations:

Authenticator generates a new "authenticatorKeyAgreementKey".

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by
(a, aG), where "a" denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol
details.

Authenticator returns errors according to following conditions:

If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to block
the device without user interaction.

Else return CTAP2_ERR_PIN_INVALID error.

Authenticator sets the pinRetries counter to maximum value.

Authenticator returns encrypted pinUvAuthToken using "sharedSecret": AES256-CBC(sharedSecret, IV=0,
pinUvAuthToken).

pinUvAuthToken should be a multiple of 16 bytes (AES block length) without any padding or IV. There
is no PKCS #7 padding used in this scheme.

Getting pinUvAuthToken using built-in user verification methods: This method is only applicable when
authenticator supports built-in on-device user verification method like fingerprint or has a UI having its own
protections. Specifically, authenticator MUST return "uv" and "uvToken" option set to true in authenticatorGetInfo.
"uvToken" in authenticatorGetInfo signifies that authenticator support uvToken feature.

Platform gets sharedSecret from the authenticator.

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinUvAuthProtocol: 0x01.

subCommand: getUvToken(0x06).

keyAgreement: public key of platformKeyAgreementKey, "bG".

file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2021%20RD/authenticatorClientPIN

Platform has the flexibility to manage the lifetime of pinUvAuthToken based on the scenario however it should get rid of the
pinUvAuthToken as soon as possible when not required. Authenticator also can expire pinUvAuthToken based on certain
conditions like changing a PIN, timeout happening on authenticator, machine waking up from a suspend state etc. If
pinUvAuthToken has expired, authenticator will return CTAP2_ERR_PIN_TOKEN_EXPIRED and platform can act on the
error accordingly.

Following operations are performed to use pinUvAuthToken in authenticatorMakeCredential API:

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.

If User Verification is supported but not configured, the authenticator returns
CTAP2_ERR_NOT_ALLOWED.

If the uvRetries counter is 0, return CTAP2_ERR_UV_BLOCKED error.

Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of
authenticatorKeyAgreementKey, "a" and public key of platformKeyAgreementKey, "bG" .

Authenticator decrements the uvRetries counter by 1.

Authenticator performs built in user verification.

If user verification fails, authenticator returns CTAP2_ERR_PIN_INVALID.

Authenticator sets the uvRetries counter to maximum value.

Authenticator returns encrypted authToken using "sharedSecret": AES256-CBC(sharedSecret, IV=0,
authToken).

5.5.9. Using pinUvAuthToken§

5.5.9.1. Using pinUvAuthToken in authenticatorMakeCredential§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorMakeCredential command with following additional optional parameter:

pinUvAuthProtocol: 0x01.

pinUvAuthParam: LEFT(HMAC-SHA-256(pinUvAuthToken, clientDataHash), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, clientDataHash), 16)

and matching against input pinUvAuthParam parameter.

If platform sends zero length pinUvAuthParam, authenticator needs to wait for user touch and then returns either
CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for the case
where multiple authenticators are attached to the platform and the platform wants to enforce clientPin semantics, but the
user has to select which authenticator to send the pinUvAuthToken to.

Following operations are performed to use pinUvAuthToken in authenticatorGetAssertion API:

If platform sends zero length pinUvAuthParam, authenticator needs to wait for user touch and then returns either
CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for the case
where multiple authenticators are attached to the platform and the platform wants to enforce clientPin semantics, but the
user has to select which authenticator to send the pinUvAuthToken to.

Following operations are performed without using pinUvAuthToken in authenticatorGetAssertion API:

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED indicating that
power recycle is needed for further operations. This is done so that malware running on the platform should not be
able to block the device without user interaction.

Authenticator returns authenticatorMakeCredential response with "uv" bit set to 1.

5.5.9.2. Using pinUvAuthToken in authenticatorGetAssertion§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorGetAssertion command with following additional optional parameter:

pinUvAuthProtocol: 0x01.

pinUvAuthParam: LEFT(HMAC-SHA-256(pinUvAuthToken, clientDataHash), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, clientDataHash), 16)

and matching against input pinUvAuthParam parameter.

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED indicating that
power recycle is needed for further operations. This is done so that malware running on the platform should not be
able to block the device without user interaction.

Authenticator returns authenticatorGetAssertion response with "uv" bit set to 1.

5.5.9.3. Without pinUvAuthToken in authenticatorGetAssertion§

Platform sends authenticatorGetAssertion command without pinUvAuthParam optional parameter.

Authenticator returns authenticatorGetAssertion response with "uv" bit set to 0.

Figure 1 Client PIN

This method is used by the client to reset an authenticator back to a factory default state, invalidating all generated
credentials and any configuration maps. In order to prevent accidental trigger of this mechanism, user presence is required.
In case of authenticators with no display, request MUST have come to the authenticator within 10 seconds of powering up
of the authenticator

If all conditions are met, authenticator returns CTAP2_OK. If user presence is explicitly denied, authenticator returns
CTAP2_ERR_OPERATION_DENIED. If timeout happens, authenticator returns
CTAP2_ERR_USER_ACTION_TIMEOUT. If request comes after 10 seconds of powering up, authenticator returns
CTAP2_ERR_NOT_ALLOWED.

A platform SHOULD perform the following actions to invoke this command. (It may choose not to based on explicit user
intent, i.e. if it’s an administrative tool that wishes to also erase all configuration .)

5.6. authenticatorReset (0x07)§

1. If the authenticator does not list “config” in the options field of the response to an authenticatorGetInfo command:

1. Issue the authenticatorReset command.

2. This process is complete.

2. Use the authenticatorConfig command, and the get field of its input, to fetch the current authenticator and platform
config maps.

3. If the platform config map is empty, or is ill-formed, or does not contain the key resetPreserve:

1. Issue the authenticatorReset command.

2. This process is complete.

This command is used by the platform to provision/enumerate/delete bio enrollments in the authenticator.

It takes the following input parameters:

Parameter name
Data
type

Required? Definition

modality (0x01)
Unsigned

Integer
Optional

The user verification modality being requested

subCommand (0x02)
Unsigned

Integer
Optional

The authenticator user verification sub command
currently being requested

subCommandParams
(0x03)

CBOR
Map

Optional
Map of subCommands parameters. This parameter is
optional and may be omitted when the subCommand
does not take any arguments.

pinUvAuthProtocol
(0x04)

Unsigned
Integer

Optional
PIN/UV protocol version chosen by the client. For this
version of the spec, this SHALL be the number 1.

pinUvAuthParam
(0x05)

Byte
Array

Optional
First 16 bytes of HMAC-SHA-256 of contents using
pinUvAuthToken.

getModality (0x06) Boolean Optional
Get the user verification type modality. This MUST be
set to true.

The type of modalities supported are as under:

4. Construct a new authenticator config map by making a copy of the current authenticator config map and then erasing
all keys not listed in the value of resetPreserve .

5. Construct a new platform config map by making a copy of the current platform config map and then erasing all keys
not listed in the value of resetPreserve.

6. Issue the authenticatorReset command.

7. If the reset command was successful:

1. Use the authenticatorConfig command, and the set field of its input, to write the updated authenticator and
platform config maps.

Note: Resetting the device clears any configured user verification and thus the authenticatorConfig command will
complete without additional user interaction.

5.7. authenticatorBioEnrollment (0x09)§

modality Name modality Number

fingerprint 0x01

The list of sub commands for fingerprint(0x01) modality is:

subCommand Name subCommand Number

enrollBegin 0x01

enrollCaptureNextSample 0x02

cancelCurrentEnrollment 0x03

enumerateEnrollments 0x04

setFriendlyName 0x05

removeEnrollment 0x06

getFingerprintSensorInfo 0x07

subCommandParams Fields:

Field name Data type Required? Definition

templateId (0x01) Byte Array Optional Template Identifier.

templateFriendlyName (0x02) String Optional Template Friendly Name.

timeoutMilliseconds (0x03) Unsigned Integer Optional Timeout in milliSeconds.

On success, authenticator returns the following structure in its response:

Parameter name
Data
type

Required? Definition

modality (0x01)
Unsigned

Integer
Optional

The user verification modality.

fingerprintKind (0x02)
Unsigned

Integer
Optional

Indicates the type of fingerprint
sensor. For touch type sensor, its
value is 1. For swipe type sensor its
value is 2.

maxCaptureSamplesRequiredForEnroll
(0x03)

Unsigned
Integer

Optional
Indicates the maximum good
samples required for enrollment.

templateId (0x04)
Byte
Array

Optional
Template Identifier.

lastEnrollSampleStatus (0x05)
Unsigned

Integer
Optional

Last enrollment sample status.

remainingSamples (0x06)
Unsigned

Integer
Optional

Number of more sample required for
enrollment to complete

templateInfos (0x07)
CBOR

ARRAY
Optional

Sequence of templateInfo’s

TemplateInfo definition:

Field name Data type Required? Definition

templateId (0x01) Byte Array Required Template Identifier.

templateFriendlyName (0x02) String Optional Template Friendly Name.

lastEnrollSampleStatus types:

lastEnrollSampleStatus Name
lastEnrollSampleStatus

Value
Definition

CTAP2_ENROLL_FEEDBACK_FP_GOOD 0x00
Good
fingerprint
capture.

CTAP2_ENROLL_FEEDBACK_FP_TOO_HIGH 0x01
Fingerprint
was too high.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LOW 0x02
Fingerprint
was too low.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LEFT 0x03
Fingerprint
was too left.

CTAP2_ENROLL_FEEDBACK_FP_TOO_RIGHT 0x04
Fingerprint
was too right.

CTAP2_ENROLL_FEEDBACK_FP_TOO_FAST 0x05
Fingerprint

was too fast.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SLOW 0x06
Fingerprint
was too slow.

CTAP2_ENROLL_FEEDBACK_FP_POOR_QUALITY 0x07
Fingerprint
was of poor
quality.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SKEWED 0x08
Fingerprint
was too
skewed.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SHORT 0x09
Fingerprint
was too short.

CTAP2_ENROLL_FEEDBACK_FP_MERGE_FAILURE 0x0A
Merge failure
of the capture.

CTAP2_ENROLL_FEEDBACK_FP_EXISTS 0x0B
Fingerprint
already exists.

CTAP2_ENROLL_FEEDBACK_FP_DATABASE_FULL 0x0C
Fingerprint
database
storage is full.

CTAP2_ENROLL_FEEDBACK_NO_USER_ACTIVITY 0x0D

User did not
touch/swipe
the
authenticator.

CTAP2_ENROLL_FEEDBACK_NO_USER_PRESENCE_TRANSITION 0x0E
User did not
lift the finger
off the sensor.

To detect whether authenticator supports this preview feature, following conditions MUST be met:

5.7.1. Feature detection§

Authenticator MUST return "FIDO_2_1_PRE" in authenticatorGetInfo as one of version it supports.

Note: "FIDO_2_1_PRE" is a placeholder till we decide what the final spec version string in authenticatorGetInfo will
look like in next version of the spec.

Following operations are performed to get bio modality supported by the authenticator:

Following operations are performed to get fingerprint sensor information:

Following operations are performed to enroll a fingerprint:

Authenticator MUST return "bioEnroll" in options fields of authenticatorGetInfo.

Presence of this key indicates that the authenticator supports authenticatorBioEnrollment commands.

True value indicates that authenticator has atleast one bio enrollment already provisioned.

False value indicates that authenticator has not been provisioned with any bio enrollment yet.

For this feature, authenticatorBioEnrollment command MUST be 0x09.

5.7.2. Get bio modality§

Platform sends authenticatorBioEnrollment command with following parameters:

getModality (0x06): true.

Authenticator returns authenticatorBioEnrollment response with following parameters:

modality (0x01): It represents the type of modality authenticator supports. For fingerprint, its value is 1.

5.7.3. Get fingerprint sensor info§

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): getFingerprintSensorInfo (0x07)

Authenticator returns authenticatorBioEnrollment response with following parameters:

fingerprintKind (0x02):

For touch type fingerprints, its value is 1.

For swipe type fingerprints, its value is 2.

maxCaptureSamplesRequiredForEnroll (0x03): Indicates the maximum good samples required for enrollment.

5.7.4. Enrolling fingerprint§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorBioEnrollment command with following parameters to begin the enrollment:

modality (0x01): fingerprint (0x01).

subCommand (0x02): enrollBegin (0x01).

subCommandParams (0x03): Map containing following parameters

timeoutMilliseconds (0x03) (optional): timeout in milliseconds

pinUvAuthProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x05): LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint (0x01) || enrollBegin

(0x01) || subCommandParams), 16).

Authenticator on receiving such request performs following procedures.

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint

(0x01) || enrollBegin (0x01) || subCommandParams), 16) and matching against input pinUvAuthParam
parameter.

Authenticator does same semantics checks for pinUvAuthParam protection as done in authenticatorClientPin
command.

If there is no space available, authenticator returns CTAP2_ERR_KEY_STORE_FULL.

Authenticator cancels any unfinished ongoing enrollment.

Authenticator generates templateId for new enrollment.

Authenticator sends the command to the sensor to capture the sample.

Authenticator returns authenticatorBioEnrollment response with following parameters:

templateId (0x04): template identifier of the new template being enrolled.

lastEnrollSampleStatus (0x05) : Status of enrollment of last sample.

remainingSamples (0x06) : Number of sample remaining to complete the enrollment.

Platform sends authenticatorBioEnrollment command with following parameters to continue enrollment in a loop till
remainingSamples is zero or authenticator errors out with unrecoverable error or platform wants to cancel current
enrollment:

Platform sends authenticatorBioEnrollment command with following parameters

modality (0x01): fingerprint (0x01).

subCommand (0x02): enrollCaptureNextSample (0x02).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifer platform received from enrollBegin subCommand.

timeoutMilliseconds (0x03) (optional): timeout in milliseconds

pinUvAuthProtocol (0x04): Pin Protocol used. Currently this is 0x01.

Following operations are performed to cancel current enrollment:

Following operations are performed to enumerate enrollments:

pinUvAuthParam (0x05): LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint (0x01) ||

enrollCaptureNextSample (0x02) || subCommandParams), 16).

Authenticator on receiving such request performs following procedures.

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint
(0x01) || enrollBegin (0x01) || subCommandParams), 16) and matching against input
pinUvAuthParam parameter.

Authenticator does same semantics checks for pinUvAuthParam protection as done in
authenticatorClientPin command.

If there is no space available, authenticator returns CTAP2_ERR_KEY_STORE_FULL.

If fingerprint is already present on the sensor, authenticator waits for user to lift finger from the sensor.

Authenticator sends the command to the sensor to capture the sample.

Authenticator returns authenticatorBioEnrollment response with following parameters:

lastEnrollSampleStatus (0x05) : Status of enrollment of last sample.

remainingSamples (0x06) : Number of sample remaining to complete the enrollment.

5.7.5. Cancel current enrollment§

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): cancelCurrentEnrollment (0x03).

Authenticator on receiving such command, cancels currnet ongoing enrollment, if any, and returns CTAP2_OK.

5.7.6. Enumerate enrollments§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): enumerateEnrollments (0x04).

pinUvAuthProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x05): LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint (0x01) ||

Following operations are performed to rename a fingerprint:

Following operations are performed to remove a fingerprint:

enumerateEnrollments (0x04)), 16).

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, enumerateEnrollments

(0x04)), 16) and matching against input pinUvAuthParam parameter.

Authenticator does same semantics checks for pinUvAuthParam protection as done in authenticatorClientPin
command.

If there are no enrollments existing on authenticator, it returns CTAP2_ERR_INVALID_OPTION.

Authenticator returns authenticatorBioEnrollment response following parameters:

templateInfos (0x07) : Sequence of templateInfo’s for all the enrollments available on the authenticator.

5.7.7. Rename/Set FriendlyName§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): setFriendlyName (0x05).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifer.

templateFriendlyName (0x02): Friendly name of the template

pinUvAuthProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x05): LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint (0x01) || setFriendlyName

(0x05) || subCommandParams), 16).

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint (0x01)

|| setFriendlyName (0x05) || subCommandParams), 16) and matching against input pinUvAuthParam parameter.

Authenticator does same semantics checks for pinUvAuthParam protection as done in authenticatorClientPin
command.

If there are no enrollments existing on authenticator for the passed templateId, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an existing enrollment with that identifier, rename its friendly name and return CTAP2_OK.

5.7.8. Remove enrollment§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorBioEnrollment command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): removeEnrollment (0x06).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifer.

pinUvAuthProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x05): LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint (0x01) || removeEnrollment

(0x05) || subCommandParams), 16).

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, fingerprint (0x01)

|| removeEnrollment (0x05) || subCommandParams), 16) and matching against input pinUvAuthParam parameter.

Authenticator does same semantics checks for pinUvAuthParam protection as done in authenticatorClientPin
command.

If there are no enrollments existing on authenticator for passed templateId, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an exiting enrollment with passed in templateInfo, delete that enrollment and return CTAP2_OK.

Figure 2 User Verification Modality - Fingerprint

This command is used by the platform to manage resident credentials on the authenticator.

It takes the following input parameters:

Parameter name Data type Definition

subCommand (0x01)
Unsigned

Integer
subCommand currently being requested

subCommandParams
(0x02)

CBOR Map
Map of subCommands parameters.

pinUvAuthProtocol (0x03)
Unsigned

Integer
PIN/UV protocol version chosen by the client.

pinUvAuthParam (0x04) Byte Array
First 16 bytes of HMAC-SHA-256 of contents using
pinUvAuthToken.

The list of sub commands for credential management is:

subCommand Name subCommand Number

getCredsMetadata 0x01

enumerateRPsBegin 0x02

enumerateRPsGetNextRP 0x03

enumerateCredentialsBegin 0x04

enumerateCredentialsGetNextCredential 0x05

deleteCredential 0x06

subCommandParams Fields:

Field name Data type Definition

rpIDHash (0x01) Byte Array RPID SHA-256 hash

credentialID (0x02) PublicKeyCredentialDescriptor Credential Identifier

5.8. authenticatorCredentialManagement (0x0A)§

On success, authenticator returns the following structure in its response:

Parameter name Data type Definition

existingResidentCredentialsCount (0x01) Unsigned Integer
Number of existing resident
credentials present on the
authenticator.

maxPossibleRemainingResidentCredentialsCount
(0x02)

Unsigned Integer

Number of maximum possible
remaining resident credentials
which can be created on the
authenticator.

rp (0x03) PublicKeyCredentialRpEntity RP Information

rpIDHash (0x04) Byte Array RPID SHA-256 hash

totalRPs (0x05) Unsigned Integer
total number of RPs present on
the authenticator

user (0x06) PublicKeyCredentialUserEntity User Information

credentialID (0x07) PublicKeyCredentialDescriptor PublicKeyCredentialDescriptor

publicKey (0x08) COSE_Key Public key of the credential.

totalCredentials (0x09) Unsigned Integer
Total number of credentials
present on the authenticator for
the RP in question

credProtect (0x0A) Unsigned Integer Credential protection policy.

To detect whether authenticator supports this preview feature, following conditions MUST be met:

5.8.1. Feature detection§

Authenticator MUST return "FIDO_2_1_PRE" in authenticatorGetInfo as one of the version it supports in addition to
"FIDO_2_0".

Note: "FIDO_2_1_PRE" is a placeholder till we decide what the final spec version string in authenticatorGetInfo will
look like in next version of the spec.

Authenticator MUST return "credMgmt" in options fields of authenticatorGetInfo and it MUST be set to true.

For this feature, authenticatorCredentialManagement command MUST be 0x0A.

Following operations are performed to get credentials metadata information :

Following operations are performed to enumerate RPs present on the authenticator:

5.8.2. Getting Credentials Metadata§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): getCredsMetadata (0x01).

pinUvAuthProtocol (0x03): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x04): LEFT(HMAC-SHA-256(pinUvAuthToken, getCredsMetadata (0x01)), 16).

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, getCredsMetadata

(0x01)), 16) and matching against input pinUvAuthParam parameter.

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED indicating that
power recycle is needed for further operations. This is done so that malware running on the platform should not be
able to block the device without user interaction.

Authenticator returns authenticatorCredentialManagement response with following parameters:

existingResidentCredentialsCount (0x01) : total number of resident credentials existing on the authenticator.

maxPossibleRemainingResidentCredentialsCount (0x02) : maximum number of possible remaining credentials
that can be created on the authetenticator. Note that this number is an estimate as actual space consumed to create
a credential depends on various conditions such as which algorithm is picked, user entity information etc.

5.8.3. Enumerating RPs§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateRPsBegin (0x02).

pinUvAuthProtocol (0x03): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x04): LEFT(HMAC-SHA-256(pinUvAuthToken, enumerateRPsBegin (0x02)), 16).

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, enumerateRPsBegin

(0x02)), 16) and matching against input pinUvAuthParam parameter.

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Following operations are performed to enumerate credentials for an RP:

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED indicating that
power recycle is needed for further operations. This is done so that malware running on the platform should not be
able to block the device without user interaction.

Authenticator returns authenticatorCredentialManagement response with following parameters:

rp (0x03): PublicKeyCredentialRpEntity

rpIDHash (0x04) : RP ID SHA-256 hash.

totalRPs (0x05) : Total number of RPs present on the authenticator.

Platform on receiving more than 1 totalRPs, performs following procedure for (totalRPs - 1) number of times:

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateRPsGetNextRP (0x03).

Authenticator on receiving such enumerateCredentialsGetNext subCommand returns
authenticatorCredentialManagement response with following parameters:

rp (0x03): PublicKeyCredentialRpEntity

rpIDHash (0x04) : RP ID SHA-256 hash.

5.8.4. Enumerating Credentials for an RP§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateCredentialsBegin (0x04).

subCommandParams (0x03): Map containing following parameters

rpIDHash (0x01): RPID SHA-256 hash.

pinUvAuthProtocol (0x03): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x04): LEFT(HMAC-SHA-256(pinUvAuthToken, enumerateCredentialsBegin (0x04) ||

subCommandParams), 16).

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken,

enumerateCredentialsBegin (0x04) || subCommandParams), 16) and matching against input pinUvAuthParam
parameter.

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED indicating that
power recycle is needed for further operations. This is done so that malware running on the platform should not be

Following operations are performed to delete a credential:

able to block the device without user interaction.

If no credentials were found for this RPID hash, authenticator returns CTAP2_ERR_NO_CREDENTIALS.

Authenticator returns authenticatorCredentialManagement response with following parameters:

user (0x06): PublicKeyCredentialUserEntity

credentialID (0x07): PublicKeyCredentialDescriptor

publicKey (0x08): public key of the credential in COSE_Key format

totalCredentials (0x09): total number of credentials for this RP

credProtect (0x0A): credential protection policy

Platform on receiving more than 1 totalCredentials, performs following procedure for (totalCredentials - 1) number of
times:

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): enumerateCredentialsGetNextCredential (0x05).

Authenticator on receiving such enumerateCredentialsGetNext subCommand returns with following parameters:

user (0x06): PublicKeyCredentialUserEntity

credentialID (0x07): PublicKeyCredentialDescriptor

publicKey (0x08): public key of the credential in COSE_Key format

credProtect (0x0A): credential protection policy

5.8.5. DeleteCredential§

Platform gets pinUvAuthToken from the authenticator.

Platform sends authenticatorCredentialManagement command with following parameters:

subCommand (0x01): deleteCredential (0x06).

subCommandParams (0x02): Map containing following parameters

credentialsId (0x02): PublicKeyCredentialDescriptor of the credential to be deleted.

pinUvAuthProtocol (0x03): Pin Protocol used. Currently this is 0x01.

pinUvAuthParam (0x04): LEFT(HMAC-SHA-256(pinUvAuthToken, deleteCredential (0x06) ||

subCommandParams), 16).

Authenticator verifies pinUvAuthParam by generating LEFT(HMAC-SHA-256(pinUvAuthToken, deleteCredential

(0x03) || subCommandParams), 16) and matching against input pinUvAuthParam parameter.

If pinUvAuthParam verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED indicating that
power recycle is needed for further operations. This is done so that malware running on the platform should not be
able to block the device without user interaction.

If there are not credential existing matching credentialDescriptor, return CTAP2_ERR_NO_CREDENTIALS.

Delete the credential and return CTAP2_OK.

Figure 3 Credential Management

This command allows the platform to let a user select a certain authenticator by asking for user presence.

The command has no input parameters.

When the authenticatorSelection command is received, the authenticator will ask for user presence:

If an authenticator is selected, the platform SHOULD send a cancel to all other authenticators.

5.9. authenticatorSelection (0x0B)§

If User Presence is received, the authenticator will return CTAP2_OK.

If User Presence is explicitly denied by the user, the authenticator will return CTAP2_ERR_OPERATION_DENIED.
The platform SHOULD NOT repeat the command for this authenticator.

If a timeout occurs, the authenticator will return CTAP2_ERR_USER_ACTION_TIMEOUT. The platform MAY
repeat the command for this authenticator.

5.10. authenticatorConfig (0x0C)§

This command allows at least 1024 bytes of configuration information to be stored on CTAP2 authenticators. The
configuration is split into two maps: the authenticator config map and the platform config map. Both have string
keys and arbitrary value types. They differ in that the platform config map is opaque to the authenticator, which simply acts
as storage for it, while the authenticator config map is parsed and understood by the authenticator. Platforms are able to get
and set both maps and accommodation is made to guide platforms in preserving some keys across authenticator resets.

For the purposes of this command, the two maps are serialized together as a two-element CBOR array, the first element
being the authenticator config map and the second being the platform config map. This conjuction is referred to as the
serialized config map array. (Authenticators need not use this format for storage internally, however.)

Platforms MUST NOT invoke this command unless the authenticator lists “config” in the options field, and
“FIDO_2_1_PRE” in the versions field, of the response to an authenticatorGetInfo command.

The command takes the following input parameters:

Parameter name
Data
type

Required? Notes

get (0x01) Boolean Optional
MUST be omitted unless the value is true. MUST NOT be
present if set is present.

set (0x02)
Byte

String
Optional

MUST NOT be present if get is present.

pinUvAuthParam
(0x03)

Byte
String

Optional
LEFT(HMAC-SHA-256(pinUvAuthToken, 32×0xff ⧺
h’0c00' ⧺ contents of set byte string, i.e. not including an
outer CBOR tag with major type two), 16)

pinUvAuthProtocol
(0x04)

Unsigned
integer

Optional
PIN/UV protocol version chosen by the client. For this
version of the spec, this SHALL be the number 1.

An authenticator performs the following actions upon receipt of this command:

Note: “FIDO_2_1_PRE” is a placeholder till we decide what the final spec version string in authenticatorGetInfo will
look like in next version of the spec.

1. If neither get nor set are present in the input map, return CTAP1_ERR_INVALID_PARAMETER.

2. If both get and set are present in the input map, return CTAP1_ERR_INVALID_PARAMETER.

3. If get is present in the input map:

1. If the value of get is false, return CTAP1_ERR_INVALID_PARAMETER.

2. Return a CBOR map, as defined below, where the value of config is the serialized config map array set on the
device, or the byte string 82a0a0 if no such value has been set.

The response to a get request, referenced above, takes the following form:

Parameter name Data type Required? Notes

config (0x01) Byte String Required Contains the serialized config map array .

An authenticator MUST NOT act on the contents of the platform configuration map: it is purely for platforms to adjust their
behavior in response to.

Authenticators MUST set the serialized config map array to the byte string 82a0a0 when reset . (These bytes are the CBOR
serialisation of a two-element array containing two empty maps.)

Platforms MUST ensure that the value of any set field is a two-element CBOR array where each element is a map where all
keys are strings, all encoded using the canonical rules . Platforms SHOULD take care to preserve existing entries in config

4. Else (implying that set is present in the input map):

1. If the length of the value of set is greater than 1024 bytes and exceeds the capacity of the device, return
CTAP2_ERR_KEY_STORE_FULL. (Authenticators MUST be capable of storing at least 1024 bytes.)

2. If the authenticator is protected by some form of user verification:

1. If either of pinUvAuthParam or pinUvAuthProtocol are missing from the input map, return
CTAP2_ERR_OPERATION_DENIED.

2. If pinUvAuthProtocol is not 1, return CTAP2_ERR_PIN_AUTH_INVALID.

3. Perform the same validation as specified for getting an assertion, but where the byte string 32×0xff ⧺
h’0c00', followed by the value of set, is the input to HMAC. Return error codes on failure as specified.

3. Parse the value of set as a two-element CBOR array where the elements are the authenticator and platform config
maps, respectively. Parse the authenticator config map and verify that every key/value pair contained is valid and
understood by the authenticator. If parsing fails, return CTAP1_ERR_INVALID_PARAMETER. If an unknown
key is present in the authenticator config map, return CTAP2_ERR_UNSUPPORTED_OPTION.

4. Store the value of set as the serialized config map array for this authenticator.

5. Return CTAP2_OK and an empty response.

Note: user verification is only checked above if user verification is configured on a device. This implies that the config
can be written without user verification or user presence if user verification is not configured. Firstly, this allows the
resetPreserve command, below, to function because no user verification will be configured after a reset. Secondly, it
allows organisations to write configurations suitable for their environment to authenticators before distributing them to
users.

Note: The platform may effectively preserve parts of the config maps across resets. See § 5.6 authenticatorReset (0x07)
for details.

maps. For example, platforms should read and insert values into the existing maps as opposed to blindly writing a fresh map.

Platforms MUST NOT set keys in the authenticator config map unless they have reason to believe that the authenticator will
understand them. The definition of each key may define ways (such as indications in the response to an
authenticatorGetInfo command) for an authenticator to signal this.

The semantics of particular keys in a specific map are defined in the following sections:

The value of any platform config map entry with the key resetPreserve MUST be an array of strings. The array MUST
NOT have duplicate values and MUST be ordered lexicographically by UTF-8 encoding (prior to CBOR encoding).

The elements of the array are keys in the authenticator and platform config maps that should be preserved by the platform
across resets. Details are specified in the description of the authenticatorReset command .

Many transports (e.g., Bluetooth Smart) are bandwidth-constrained, and serialization formats such as JSON are too heavy-
weight for such environments. For this reason, all encoding is done using the concise binary encoding CBOR [RFC7049].

To reduce the complexity of the messages and the resources required to parse and validate them, all messages MUST use the
CTAP2 canonical CBOR encoding form as specified below, which differs from the canonicalization suggested in Section
3.9 of [RFC7049]. All encoders MUST serialize CBOR in the CTAP2 canonical CBOR encoding form without duplicate
map keys. All decoders SHOULD reject CBOR that is not validly encoded in the CTAP2 canonical CBOR encoding form
and SHOULD reject messages with duplicate map keys.

The CTAP2 canonical CBOR encoding form uses the following rules:

5.10.1. resetPreserve§

6. Message Encoding§

Integers must be encoded as small as possible.

0 to 23 and -1 to -24 must be expressed in the same byte as the major type;

24 to 255 and -25 to -256 must be expressed only with an additional uint8_t;

256 to 65535 and -257 to -65536 must be expressed only with an additional uint16_t;

65536 to 4294967295 and -65537 to -4294967296 must be expressed only with an additional uint32_t.

The representations of any floating-point values are not changed.

The expression of lengths in major types 2 through 5 must be as short as possible. The rules for these lengths follow the
above rule for integers.

Indefinite-length items must be made into definite-length items.

The keys in every map must be sorted lowest value to highest. The sorting rules are:

Because some authenticators are memory constrained, the depth of nested CBOR structures used by all message encodings
is limited to at most four (4) levels of any combination of CBOR maps and/or CBOR arrays. Authenticators MUST support
at least 4 levels of CBOR nesting. Clients, platforms, and servers MUST NOT use more than 4 levels of CBOR nesting.

Likewise, because some authenticators are memory constrained, the maximum message size supported by an authenticator
MAY be limited. By default, authenticators MUST support messages of at least 1024 bytes. Authenticators MAY declare a
different maximum message size supported using the maxMsgSize authenticatorGetInfo result parameter. Clients, platforms,
and servers MUST NOT send messages larger than 1024 bytes unless the authenticator’s maxMsgSize indicates support for
the larger message size. Authenticators MAY return the CTAP2_ERR_REQUEST_TOO_LARGE error if size or memory
constraints are exceeded.

If map keys are present that an implementation does not understand, they MUST be ignored. Note that this enables
additional fields to be used as new features are added without breaking existing implementations.

Messages from the host to authenticator are called "commands" and messages from authenticator to host are called "replies".
All values are big endian encoded.

Authenticators SHOULD return the CTAP2_ERR_INVALID_CBOR error if received CBOR does not conform to the
requirements above.

All commands are structured as:

Name Length Required? Definition

Command
Value

1 byte Required
The value of the command to execute

Command
Parameters

variable Optional
CBOR [RFC7049] encoded set of parameters. Some commands
have parameters, while others do not (see below)

If the major types are different, the one with the lower value in numerical order sorts earlier.

If two keys have different lengths, the shorter one sorts earlier;

If two keys have the same length, the one with the lower value in (byte-wise) lexical order sorts earlier.

Note: These rules are equivalent to a lexicographical comparison of the canonical encoding of keys for major types
0-3 and 7 (integers, strings, and simple values). They differ for major types 4-6 (arrays, maps, and tags), which
CTAP2 does not use as keys in maps. These rules should be revisited if CTAP2 does start using the complex major
types as keys.

Tags as defined in Section 2.4 in [RFC7049] MUST NOT be present.

6.1. Commands§

The assigned values for commands and their descriptions are:

Command Name Command Value Has parameters?

authenticatorMakeCredential 0x01 yes

authenticatorGetAssertion 0x02 yes

authenticatorGetInfo 0x04 no

authenticatorClientPIN 0x06 yes

authenticatorReset 0x07 no

authenticatorGetNextAssertion 0x08 no

authenticatorBioEnrollment 0x09 yes

authenticatorCredentialManagement 0x0A yes

authenticatorPlatformConfig 0x0c yes

authenticatorVendorFirst 0x40 NA

Vendor - Bio Enrollment Prototype 0x40 yes

Vendor - Credential Management Prototype 0x41 yes

authenticatorVendorLast 0xBF NA

Command codes in the range between authenticatorVendorFirst and authenticatorVendorLast may be used for
vendor-specific implementations. For example, the vendor may choose to put in some testing commands. Note that the
FIDO client will never generate these commands. All other command codes are reserved for future use and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5). The CBOR map must be encoded using the
definite length variant.

Some commands have optional parameters. Therefore, the length of the parameter map for these commands may vary. For
example, authenticatorMakeCredential may have 4, 5, 6, or 7 parameters, while authenticatorGetAssertion may have 2, 3, 4,
or 5 parameters.

All command parameters are CBOR encoded following the JSON to CBOR conversion procedures as per the CBOR
specification [RFC7049]. Specifically, parameters that are represented as DOM objects in the Authenticator API layers
(formally defined in the Web API [WebAuthn]) are converted first to JSON and subsequently to CBOR.

EXAMPLE 1
A PublicKeyCredentialRpEntity DOM object defined as follows:

¶

file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2021%20RD/vendor/BioEnrollmentPrototype.pdf
file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2021%20RD/vendor/CredentialManagementPrototype.pdf

var rp = {
 name: "Acme"
 };

would be CBOR encoded as follows:

a1 # map(1)
 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"

EXAMPLE 2
A PublicKeyCredentialUserEntity DOM object defined as follows:

var user = {
 id: Uint8Array.from(window.atob("MIIBkzCCATigAwIBAjCCAZMwggE4oAMCAQIwggGTMII="),
c=>c.charCodeAt(0)),
 icon: "https://pics.example.com/00/p/aBjjjpqPb.png",
 name: "johnpsmith@example.com",
 displayName: "John P. Smith"
 };

would be CBOR encoded as follows:

a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 782b # text(43)
 68747470733a2f2f706963732e657861 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 6d706c652e636f6d2f30302f702f6142 # ...
 6a6a6a707150622e706e67 # ...
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d70 # "johnpsmith@example.com"
 6c652e636f6d # ...

¶

For each command that contains parameters, the parameter map keys and value types are specified below:

Command Parameter Name Key Value type

byte string (CBOR major

 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"

EXAMPLE 3
A DOM object that is a sequence of PublicKeyCredentialParameters defined as follows:

var pubKeyCredParams = [
 {
 type: "public-key",
 alg: -7 // "ES256" as registered in the IANA COSE Algorithms registry
 },
 {
 type: "public-key",
 alg: -257 // "RS256" as registered by WebAuthn
 }
];

would be CBOR encoded as:

82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"

¶

authenticatorMakeCredential clientDataHash 0x01
type 2).

rp 0x02
CBOR definite length map
(CBOR major type 5).

user 0x03
CBOR definite length map
(CBOR major type 5).

pubKeyCredParams 0x04

CBOR definite length array
(CBOR major type 4) of
CBOR definite length maps
(CBOR major type 5).

excludeList 0x05

CBOR definite length array
(CBOR major type 4) of
CBOR definite length maps
(CBOR major type 5).

extensions 0x06
CBOR definite length map
(CBOR major type 5).

options 0x07
CBOR definite length map
(CBOR major type 5).

pinUvAuthParam 0x08
byte string (CBOR major
type 2).

pinUvAuthProtocol 0x09

PIN/UV protocol version
chosen by the client. For this
version of the spec, this
SHALL be the number 1.

authenticatorGetAssertion rpId 0x01
UTF-8 encoded text string
(CBOR major type 3).

clientDataHash 0x02
byte string (CBOR major
type 2).

allowList 0x03

CBOR definite length array
(CBOR major type 4) of
CBOR definite length maps
(CBOR major type 5).

extensions 0x04
CBOR definite length map

(CBOR major type 5).

options 0x05
CBOR definite length map
(CBOR major type 5).

pinUvAuthParam 0x06
byte string (CBOR major
type 2).

pinUvAuthProtocol 0x07

PIN/UV protocol version
chosen by the client. For this
version of the spec, this
SHALL be the number 1.

authenticatorClientPIN pinUvAuthProtocol 0x01
Unsigned Integer. (CBOR
major type 0)

subCommand 0x02
Unsigned Integer. (CBOR
major type 0)

keyAgreement 0x03 COSE_Key

pinUvAuthParam 0x04
byte string (CBOR major
type 2).

newPinEnc 0x05

byte string (CBOR major
type 2). It is UTF-8
representation of encrypted
input PIN value.

pinHashEnc 0x06
byte string (CBOR major
type 2).

authenticatorBioEnrollment modality 0x01
Unsigned Integer. (CBOR
major type 0)

0x02

Unsigned
Integer.
(CBOR
major
type 0)

subCommandParams 0x03
CBOR definite length map
(CBOR major type 5).

pinUvAuthProtocol 0x04
Unsigned Integer. (CBOR
major type 0).

pinUvAuthParam 0x05
byte string (CBOR major
type 2).

getModality 0x06 Boolean

authenticatorCredentialManagement subCommand 0x01
Unsigned Integer. (CBOR
major type 0)

subCommandParams 0x02
CBOR definite length map
(CBOR major type 5)

pinUvAuthProtocol 0x03
Unsigned Integer. (CBOR
major type 0)

pinUvAuthParam 0x04
byte string (CBOR major
type 2).

EXAMPLE 4
The following is a complete encoding example of the authenticatorMakeCredential command (using same account
and crypto parameters as above) and the corresponding authenticatorMakeCredential_Response response:

01 # authenticatorMakeCredential command
a5 # map(5)
 01 # unsigned(1) - clientDataHash
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 #
h’687134968222ec17202e42505f8ed2b16ae22f16bb05b88c25db9e602645f141'
 6ae22f16bb05b88c25db9e602645f141 #
 02 # unsigned(2) - rp
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 6b # text(11)
 6578616d706c652e636f6d # "example.com"
 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"
 03 # unsigned(3) - user
 a4 # map(4)
 62 # text(2)
 6964 # "id"

¶

 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 78 2b # text(43)
 68747470733a2f2f706963732e6578 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 616d706c652e636f6d2f30302f702f #
 61426a6a6a707150622e706e67 #
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d # "johnpsmith@example.com"
 706c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 04 # unsigned(4) - pubKeyCredParams
 82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 07 # unsigned(7) - options
 a1 # map(1)
 62 # text(2)
 726b # "rk"
 f5 # primitive(21)

authenticatorMakeCredential_Response response:

00 # status = success
a3 # map(3)

 01 # unsigned(1)
 66 # text(6)
 7061636b6564 # "packed"
 02 # unsigned(2)
 58 9a # bytes(154)
 c289c5ca9b0460f9346ab4e42d842743 # authData
 404d31f4846825a6d065be597a87051d # ...
 410000000bf8a011f38c0a4d15800617 # ...
 111f9edc7d00108959cead5b5c48164e # ...
 8abcd6d9435c6fa363616c6765455332 # ...
 353661785820f7c4f4a6f1d79538dfa4 # ...
 c9ac50848df708bc1c99f5e60e51b42a # ...
 521b35d3b69a61795820de7b7d6ca564 # ...
 e70ea321a4d5d96ea00ef0e2db89dd61 # ...
 d4894c15ac585bd23684 # ...
 03 # unsigned(3)
 a3 # map(3)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 63 # text(3)
 736967 # "sig"
 58 47 # bytes(71)
 3045022013f73c5d9d530e8cc15cc9 # signature...
 bd96ad586d393664e462d5f0561235 # ...
 e6350f2b728902210090357ff910cc # ...
 b56ac5b596511948581c8fddb4a2b7 # ...
 9959948078b09f4bdc6229 # ...
 63 # text(3)
 783563 # "x5c"
 81 # array(1)
 59 0197 # bytes(407)
 3082019330820138a003020102 # certificate...
 020900859b726cb24b4c29300a # ...
 06082a8648ce3d040302304731 # ...
 0b300906035504061302555331 # ...
 143012060355040a0c0b597562 # ...
 69636f20546573743122302006 # ...
 0355040b0c1941757468656e74 # ...
 696361746f7220417474657374 # ...
 6174696f6e301e170d31363132 # ...
 30343131353530305a170d3236 # ...
 313230323131353530305a3047 # ...
 310b3009060355040613025553 # ...
 31143012060355040a0c0b5975 # ...
 6269636f205465737431223020 # ...
 060355040b0c1941757468656e # ...
 74696361746f72204174746573 # ...

 746174696f6e3059301306072a # ...
 8648ce3d020106082a8648ce3d # ...
 03010703420004ad11eb0e8852 # ...
 e53ad5dfed86b41e6134a18ec4 # ...
 e1af8f221a3c7d6e636c80ea13 # ...
 c3d504ff2e76211bb44525b196 # ...
 c44cb4849979cf6f896ecd2bb8 # ...
 60de1bf4376ba30d300b300906 # ...
 03551d1304023000300a06082a # ...
 8648ce3d040302034900304602 # ...
 2100e9a39f1b03197525f7373e # ...
 10ce77e78021731b94d0c03f3f # ...
 da1fd22db3d030e7022100c4fa # ...
 ec3445a820cf43129cdb00aabe # ...
 fd9ae2d874f9c5d343cb2f113d # ...
 a23723f3 # ...

EXAMPLE 5
The following is a complete encoding example of the authenticatorGetAssertion command and the corresponding
authenticatorGetAssertion_Response response:

02 # authenticatorGetAssertion command
a4 # map(4)
 01 # unsigned(1)
 6b # text(11)
 6578616d706c652e636f6d # "example.com"
 02 # unsigned(2)
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 # clientDataHash
 6ae22f16bb05b88c25db9e602645f141 # ...
 03 # unsigned(3)
 82 # array(2)
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f02 # credential ID
 4f2a5ece603d9c6d4b3df8be08 # ...
 ed01fc442646d034858ac75bed # ...
 3fd580bf9808d94fcbee82b9b2 # ...
 ef6677af0adcc35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)

¶

 62 # text(2)
 6964 # "id"
 58 32 # bytes(50)
 03030303030303030303030303 # credential ID
 03030303030303030303030303 # ...
 03030303030303030303030303 # ...
 0303030303030303030303 # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 05 # unsigned(5)
 a1 # map(1)
 62 # text(2)
 7576 # "uv"
 f5 # true

authenticatorGetAssertion_Response response:

00 # status = success
a5 # map(5)
 01 # unsigned(1) - Credential
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f02 # credential ID
 4f2a5ece603d9c6d4b3df8be08 # ...
 ed01fc442646d034858ac75bed # ...
 3fd580bf9808d94fcbee82b9b2 # ...
 ef6677af0adcc35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 02 # unsigned(2)
 58 25 # bytes(37)
 625ddadf743f5727e66bba8c2e387922 # authData
 d1af43c503d9114a8fba104d84d02bfa # ...
 0100000011 # ...
 03 # unsigned(3)
 58 47 # bytes(71)
 304502204a5a9dd39298149d904769b5 # signature
 1a451433006f182a34fbdf66de5fc717 # ...
 d75fb350022100a46b8ea3c3b933821c # ...
 6e7f5ef9daae94ab47f18db474c74790 # ...
 eaabb14411e7a0 # ...

All responses are structured as:

Name Length Required? Definition

Status 1 byte Required
The status of the response. 0x00 means success; all other values are
errors. See the table in the next section for valid values.

Response
Data

variable Optional
CBOR encoded set of values.

Response data is encoded using a CBOR map (CBOR major type 5). The CBOR map must be encoded using the definite
length variant.

For each response message, the map keys and value types are specified below:

Response Message Member Name Key Value type

 04 # unsigned(4) - publicKeyCredentialUserEntity
 a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 782b # text(43)
 68747470733a2f2f706963732e6578 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 616d706c652e636f6d2f30302f702f # ...
 61426a6a6a707150622e706e67 # ...
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d # "johnpsmith@example.com"
 706c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 05 # unsigned(5) - numberofCredentials
 01 # unsigned(1)

6.2. Responses§

authenticatorMakeCredential_Response fmt 0x01 text string (CBOR major type 3).

authData 0x02 byte string (CBOR major type 2).

attStmt 0x03
definite length map (CBOR major
type 5).

authenticatorGetAssertion_Response credential 0x01
definite length map (CBOR major
type 5).

authData 0x02 byte string (CBOR major type 2).

signature 0x03 byte string (CBOR major type 2).

publicKeyCredentialUserEntity 0x04
definite length map (CBOR major
type 5).

numberOfCredentials 0x05
unsigned integer(CBOR major type
0).

userSelected 0x06 boolean (CBOR simple value 21).

authenticatorGetNextAssertion_Response credential 0x01
definite length map (CBOR major
type 5).

authData 0x02 byte string (CBOR major type 2).

signature 0x03 byte string (CBOR major type 2).

publicKeyCredentialUserEntity 0x04
definite length map (CBOR major
type 5).

authenticatorGetInfo_Response versions 0x01
definite length array (CBOR major
type 4) of UTF-8 encoded strings
(CBOR major type 3).

extensions 0x02
definite length array (CBOR major
type 4) of UTF-8 encoded strings
(CBOR major type 3).

aaguid 0x03

byte string (CBOR major type 2).
16 bytes in length and encoded the
same as MakeCredential
AuthenticatorData, as specified in

[WebAuthn].

options 0x04

Definite length map (CBOR major
type 5) of key-value pairs where
keys are UTF8 strings (CBOR
major type 3) and values are
booleans (CBOR simple value 21).

maxMsgSize 0x05
unsigned integer(CBOR major type
0). This is the maximum message
size supported by the authenticator.

pinUvAuthProtocols 0x06

array of unsigned integers (CBOR
major type). This is the list of
pinUvAuthProtocols supported by
the authenticator.

maxCredentialCountInList 0x07
unsigned integer(CBOR major type
0).

maxCredentialIdLength 0x08
unsigned integer(CBOR major type
0).

transports 0x09

definite length array (CBOR major
type 4) of UTF-8 encoded strings
(CBOR major type 3). This is the
list of transports supported by the
authenticator.

algorithms 0x0A
definite length array (CBOR major
type 4) of
PublicKeyCredentialParameters.

maxAuthenticatorConfigLength 0x0B
unsigned integer(CBOR major type
0).

defaultCredProtect 0x0C
unsigned integer (CBOR major type
0).

authenticatorClientPIN_Response keyAgreement 0x01

Authenticator public key in
COSE_Key format. The
COSE_Key-encoded public key
MUST contain the optional "alg"
parameter and MUST NOT contain

any other optional parameters. The
"alg" parameter MUST contain a
COSEAlgorithmIdentifier value.

pinUvAuthToken 0x02 byte string (CBOR major type 2).

pinRetries 0x03
Unsigned integer (CBOR major
type 0). This is number of
pinRetries left before lockout.

uvRetries 0x04
Unsigned integer (CBOR major
type 0). This is number of uv retries
left before lockout.

authenticatorBioEnrollment_Response modality 0x01
Unsigned integer (CBOR major
type 0).

fingerprintKind 0x02
Unsigned integer (CBOR major
type 0).

maxCaptureSamplesRequiredForEnroll 0x03
Unsigned integer (CBOR major
type 0).

templateId 0x04 byte string (CBOR major type 2).

lastEnrollSampleStatus 0x05
Unsigned integer (CBOR major
type 0).

remainingSamples 0x06
Unsigned integer (CBOR major
type 0).

templateInfos 0x07
CBOR definite length map (CBOR
major type 5).

authenticatorCredentialManagement_Response existingResidentCredentialsCount 0x01
Unsigned integer (CBOR major
type 0).

maxPossibleRemainingResidentCredentialsCount 0x02
Unsigned integer (CBOR major
type 0).

rp 0x03
CBOR definite length map (CBOR
major type 5).

rpIDHash 0x04 byte string (CBOR major type 2).

totalRPs 0x05
Unsigned integer (CBOR major
type 0).

user 0x06
CBOR definite length map (CBOR
major type 5).

credentialID 0x07
CBOR definite length map (CBOR
major type 5).

publickKey 0x08
CBOR definite length map (CBOR
major type 5). COSE_Key.

totalCredentials 0x09
Unsigned integer (CBOR major
type 0).

credProtect 0x09
Unsigned integer (CBOR major
type 0).

The error response values range from 0x01 - 0xff. This range is split based on error type.

Error response values in the range between CTAP2_OK and CTAP2_ERR_SPEC_LAST are reserved for spec purposes.

Error response values in the range between CTAP2_ERR_VENDOR_FIRST and CTAP2_ERR_VENDOR_LAST may
be used for vendor-specific implementations. All other response values are reserved for future use and may not be used.
These vendor specific error codes are not interoperable and the platform should treat these errors as any other unknown error
codes.

Error response values in the range between CTAP2_ERR_EXTENSION_FIRST and
CTAP2_ERR_EXTENSION_LAST may be used for extension-specific implementations. These errors need to be
interoperable for vendors who decide to implement such optional extension.

Code Name Description

0x00 CTAP1_ERR_SUCCESS, CTAP2_OK Indicates successful response.

0x01 CTAP1_ERR_INVALID_COMMAND The command is not a valid CTAP command.

0x02 CTAP1_ERR_INVALID_PARAMETER The command included an invalid parameter.

0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.

0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.

6.3. Status codes§

0x05 CTAP1_ERR_TIMEOUT Message timed out.

0x06 CTAP1_ERR_CHANNEL_BUSY

Channel busy. Client SHOULD retry the request
after a short delay. Note that the client may abort
the transaction if the command is no longer
relevant.

0x0A CTAP1_ERR_LOCK_REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this cid.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION Unsupported extension.

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the exclude list.

0x21 CTAP2_ERR_PROCESSING Processing (Lengthy operation is in progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in progress.

0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM
Authenticator does not support requested
algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x2A CTAP2_ERR_NO_OPERATION_PENDING No outstanding operations.

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Not a valid option for current operation.

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT Timeout waiting for user interaction.

0x30 CTAP2_ERR_NOT_ALLOWED
Continuation command, such as,
authenticatorGetNextAssertion not allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN Invalid.

0x32 CTAP2_ERR_PIN_BLOCKED PIN Blocked.

0x33 CTAP2_ERR_PIN_AUTH_INVALID
PIN authentication, pinUvAuthParam , verification
failed.

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED
PIN authentication, pinUvAuthParam , blocked.
Requires power recycle to reset.

0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.

0x36 CTAP2_ERR_PIN_REQUIRED PIN is required for the selected operation.

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION
PIN policy violation. Currently only enforces
minimum length.

0x38 CTAP2_ERR_PIN_TOKEN_EXPIRED pinUvAuthToken expired on authenticator.

0x39 CTAP2_ERR_REQUEST_TOO_LARGE
Authenticator cannot handle this request due to
memory constraints.

0x3A CTAP2_ERR_ACTION_TIMEOUT The current operation has timed out.

0x3B CTAP2_ERR_UP_REQUIRED
User presence is required for the requested
operation.

0x3C CTAP2_ERR_UV_BLOCKED Built in UV is blocked.

0x7F CTAP1_ERR_OTHER Other unspecified error.

0xDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.

0xE0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.

0xEF CTAP2_ERR_EXTENSION_LAST Extension specific error.

0xF0 CTAP2_ERR_VENDOR_FIRST Vendor specific error.

0xFF CTAP2_ERR_VENDOR_LAST Vendor specific error.

This section defines how a platform maps CTAP2 requests to CTAP1/U2F requests and CTAP1/U2F responses to CTAP2
responses in order to support CTAP1/U2F authenticators via CTAP2. CTAP2 requests can be mapped to CTAP1/U2F
requests provided the CTAP2 request does not have parameters that only CTAP2 authenticators can fulfill. The processes
for RPs to use to verify CTAP1/U2F based authenticatorMakeCredential and authenticatorGetAssertion responses are also
defined below. Platform may choose to skip this feature and work only with CTAP devices.

The U2F protocol is based on a request-response mechanism, where a requester sends a request message to a U2F device,
which always results in a response message being sent back from the U2F device to the requester.

The request message has to be "framed" to send to the lower layer. Taking the signature request as an example, the
"framing" is a way for the FIDO client to tell the lower transport layer that it is sending a signature request and then send the
raw message contents. The framing also specifies how the transport will carry back the response raw message and any meta-
information such as an error code if the command failed.

In this current version of U2F, the framing is defined based on the ISO7816-4:2005 extended APDU format. This is very
appropriate for the USB transport since devices are typically built around secure elements which understand this format
already. This same argument may apply for futures such as Bluetooth based devices. For other futures based on other
transports, such as a built-in u2f token on a mobile device TEE, this framing may not be appropriate, and a different framing
may need to be defined.

The raw request message is framed as a command APDU:

CLA INS P1 P2 LC1 LC2 LC3

Where:

CLA: Reserved to be used by the underlying transport protocol (if applicable). The host application shall set this byte to
zero.

INS: U2F command code, defined in the following sections.

P1, P2: Parameter 1 and 2, defined by each command.

LC1-LC3: Length of the request data, big-endian coded, i.e. LC1 being MSB and LC3 LSB

7. Interoperating with CTAP1/U2F authenticators§

7.1. Framing of U2F commands§

7.1.1. U2F Request Message Framing§

The raw response data is framed as a response APDU:

SW1 SW2

Where:

SW1, SW2: Status word bytes 1 and 2, forming a 16-bit status word, defined below. SW1 is MSB and SW2 LSB. Status
Codes

The following ISO7816-4 defined status words have a special meaning in U2F:

SW_NO_ERROR: The command completed successfully without error.

SW_CONDITIONS_NOT_SATISFIED: The request was rejected due to test-of-user-presence being required.

SW_WRONG_DATA: The request was rejected due to an invalid key handle.

Each implementation may define any other vendor-specific status codes, providing additional information about an error
condition. Only the error codes listed above will be handled by U2F FIDO clients, whereas others will be seen as general
errors and logging of these is optional.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F
Registration Messages):

7.1.2. U2F Response Message Framing§

7.2. Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators§

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as specified in
CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any failure,
platform may fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorMakeCredential request to U2F_REGISTER request.

Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators cannot fulfill.

All of the below conditions must be true for the platform to proceed to next step. If any of the below
conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

pubKeyCredParams must use the ES256 algorithm (-7).

Options must not include "rk" set to true.

Options must not include "uv" set to true.

If excludeList is not empty:

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#registration-request-message---u2f_register

If the excludeList is not empty, the platform must send signing request with check-only control byte to
the CTAP1/U2F authenticator using each of the credential ids (key handles) in the excludeList. If any of
them does not result in an error, that means that this is a known device. Afterwards, the platform must
still send a dummy registration request (with a dummy appid and invalid challenge) to CTAP1/U2F
authenticators that it believes are excluded. This makes it so the user still needs to touch the
CTAP1/U2F authenticator before the RP gets told that the token is already registered.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id parameter as CTAP1/U2F
application parameter (32 bytes).

3. Send the U2F_REGISTER request to the authenticator as specified in [U2FRawMsgs] spec.

4. Map the U2F registration response message (see: FIDO U2F Raw Message Formats v1.2 §registration-response-
message-success) to a CTAP2 authenticatorMakeCredential response message:

Generate authenticatorData from the U2F registration response message (FIDO U2F Raw Message Formats
v1.2 §registration-response-message-success) received from the authenticator:

Initialize attestedCredData:

Let credentialIdLength be a 2-byte unsigned big-endian integer representing length of the Credential
ID initialized with CTAP1/U2F response key handle length.

Let credentialId be a credentialIdLength byte array initialized with CTAP1/U2F response key
handle bytes.

Let x9encodedUserPublicKeybe the user public key returned in the U2F registration response
message [U2FRawMsgs]. Let coseEncodedCredentialPublicKey be the result of converting
x9encodedUserPublicKey’s value from ANS X9.62 / Sec-1 v2 uncompressed curve point representation
[SEC1V2] to COSE_Key representation ([RFC8152] Section 7).

Let attestedCredData be a byte array with following structure:

Length (in bytes) Description Value

16
The AAGUID of the

authenticator.
Initialized with all zeros.

2
Byte length L of

Credential ID
Initialized with credentialIdLength
bytes.

credentialIdLength Credential ID. Initialized with credentialId bytes.

77
The credential public

key.

Initialized with
coseEncodedCredentialPublicKey

bytes.

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success

Initialize authenticatorData:

Let flags be a byte whose zeroth bit (bit 0, UP) is set, and whose sixth bit (bit 6, AT) is set, and all
other bits are zero (bit zero is the least significant bit). See also Authenticator Data section of
[WebAuthn].

Let signCount be a 4-byte unsigned integer initialized to zero.

Let authenticatorData be a byte array with the following structure:

Length (in
bytes)

Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4
Signature counter

(signCount).
Initialized with signCount bytes.

Variable Length Attested credential data .
Initialized with attestedCredData’s
value.

Let attestationStatement be a CBOR map (see "attStmtTemplate" in Generating an Attestation Object
[WebAuthn]) with the following keys, whose values are as follows:

Set "x5c" as an array of the one attestation cert extracted from CTAP1/U2F response.

Set "sig" to be the "signature" bytes from the U2F registration response message [U2FRawMsgs].

Let attestationObject be a CBOR map (see "attObj" in Attestation object [WebAuthn]) with the following keys,
whose values are as follows:

Set "authData" to authenticatorData.

Set "fmt" to "fido-u2f".

Set "attStmt" to attestationStatement.

5. Return attestationObject to the caller.

EXAMPLE 6
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 2: {"id": "example.com",
 "name": "example.com"},
 3: {"id": "1098237235409872",
 "name": "johnpsmith@example.com",
 "icon": "https://pics.example.com/00/p/aBjjjpqPb.png",

¶

https://www.w3.org/TR/webauthn/#rp-id
https://www.w3.org/TR/webauthn/#sec-attested-credential-data
https://www.w3.org/TR/webauthn/#generating-an-attestation-object
https://www.w3.org/TR/webauthn/#generating-an-attestation-object

 "displayName": "John P. Smith"},
 4: [{"type": "public-key", "alg": -7},
 {"type": "public-key", "alg": -257}]}

CTAP1/U2F Request from above CTAP2 authenticatorMakeCredential request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash

Sample CTAP1/U2F Response from the device

05 # Reserved Byte (1 Byte)
04E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E # User Public Key (65 Bytes)
1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...
91 # ...
40 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B # X.509 Cert (Variable length
Cert)
0500302E312C302A0603550403132359756269636F2055324620526F6F742043 # ...
412053657269616C203435373230303633313020170D31343038303130303030 # ...
30305A180F32303530303930343030303030305A302C312A302806035504030C # ...
2159756269636F205532462045452053657269616C2032343931383233323437 # ...
37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 # ...
2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 # ...
E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30 # ...
39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 # ...
322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...
4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B # ...
BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4 # ...
C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B # ...
8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 # ...
B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...
1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD # ...
810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 # ...
3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF # ...
1BB0F1FE5DB4EFF7A95F060733F5 # ...
30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85 # Signature (variable Length)
32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # ...
AA7D081DE341FA # ...

Authenticator Data from CTAP1/U2F Response

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash
41 # flags
00000000 # Sign Count
00000000000000000000000000000000 # AAGUID
0040 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
A5010203262001215820E87625896EE4E46DC032766E8087962F36DF9DFE8B56 # Public Key
7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C # ...
B14C22F8C97045F4612FB20C91 # ...

Mapped CTAP2 authenticatorMakeCredential response(CBOR)

{1: "fido-u2f",
 2: h’A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947
 4100403EBD89BF77EC509755
 EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E
 78055BDD396B64F78DA2C5F96200CCD415CD08FE420038A50102032620012158
 20E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E
 1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461
 2FB20C91',
 3: {"sig": h’30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85
 32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1
 AA7D081DE341FA',
 "x5c": [h’3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B
 0500302E312C302A0603550403132359756269636F2055324620526F6F742043
 412053657269616C203435373230303633313020170D31343038303130303030
 30305A180F32303530303930343030303030305A302C312A302806035504030C
 2159756269636F205532462045452053657269616C2032343931383233323437
 37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9
 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1
 E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30
 39302206092B0601040182C40A020415312E332E362E312E342E312E34313438
 322E312E323013060B2B0601040182E51C020101040403020430300D06092A86
 4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B
 BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4
 C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B
 8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69
 B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F
 1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD
 810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3
 3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF
 1BB0F1FE5DB4EFF7A95F060733F5']}}

Figure 4 Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F Registration Messages.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F
Authentication Messages):

7.3. Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators§

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as specified in
CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any failure,
platform may fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:

Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators cannot fulfill:

All of the below conditions must be true for the platform to proceed to next step. If any of the below
conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

Options must not include "uv" set to true.

allowList must have at least one credential.

If allowList has more than one credential, platform has to loop over the list and send individual different
U2F_AUTHENTICATE commands to the authenticator. For each credential in credential list, map CTAP2
authenticatorGetAssertion request to U2F_AUTHENTICATE as below:

Let controlByte be a byte initialized as follows:

If "up" is set to false, set it to 0x08 (dont-enforce-user-presence-and-sign).

For USB, set it to 0x07 (check-only). This should prevent call getting blocked on waiting for user input.
If response returns success, then call again setting the enforce-user-presence-and-sign.

For NFC, set it to 0x03 (enforce-user-presence-and-sign). The tap has already provided the presence and
won’t block.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id parameter as CTAP1/U2F
application parameter (32 bytes).

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate

Let credentialId is the byte array initialized with the id for this PublicKeyCredentialDescriptor.

Let keyHandleLength be a byte initialized with length of credentialId byte array.

Let u2fAuthenticateRequest be a byte array with the following structure:

Length (in
bytes)

Description Value

32 Challenge parameter Initialized with clientDataHash parameter bytes.

32 Application parameter Initialized with rpIdHash bytes.

1 Key handle length Initialized with keyHandleLength’s value.

keyHandleLength Key handle Initialized with credentialId bytes.

and let Control Byte be P1 of the framing.

3. Send u2fAuthenticateRequest to the authenticator.

4. Map the U2F authentication response message (see the "Authentication Response Message: Success" section of
[U2FRawMsgs]) to a CTAP2 authenticatorGetAssertion response message:

Generate authenticatorData from the U2F authentication response message received from the authenticator:

Copy bits 0 (the UP bit) and bit 1 from the CTAP2/U2F response user presence byte to bits 0 and 1 of the
CTAP2 flags, respectively. Set all other bits of flags to zero. Note: bit zero is the least significant bit. See also
Authenticator Data section of [WebAuthn].

Let signCount be a 4-byte unsigned integer initialized with CTAP1/U2F response counter field.

Let authenticatorData is a byte array of following structure:

Length (in bytes) Description Value
32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4 Signature counter (signCount) Initialized with signCount bytes.

Let authenticatorGetAssertionResponse be a CBOR map with the following keys whose values are as follows:

Set 0x01 with the credential from allowList that whose response succeeded.

Set 0x02 with authenticatorData bytes.

Set 0x03 with signature field from CTAP1/U2F authentication response message.

EXAMPLE 7
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

¶

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-response-message-success
https://www.w3.org/TR/webauthn/#rp-id

{1: "example.com",
 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 3: [{"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'}],
 5: {"up": true}}

CTAP1/U2F Request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash
40 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

Sample CTAP1/U2F Response from the device

01 # User Presence (1 Byte)
0000003B # Sign Count (4 Bytes)
304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C # Signature (variable Length)
68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3 # ...
5AAD5373858E # ...

Authenticator Data from CTAP1/U2F Response

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash
01 # User Presence (1 Byte)
0000003B # Sign Count (4 Bytes)

Mapped CTAP2 authenticatorGetAssertion response(CBOR)

{1: {"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'},
 2: h’A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947
 010000003B',
 3: h’304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C
 68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3
 5AAD5373858E'}

Figure 5 Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F Authentication Messages.

In order to ensure that the interaction between the platform and any authenticators is secure, authenticators SHALL:

FIDO interfaces are defined as:

See also § 8.1 Secure protocol implementation.

CTAP messages are framed for USB transport using the HID (Human Interface Device) protocol. We henceforth refer to the
protocol as CTAPHID. The CTAPHID protocol is designed with the following design objectives in mind

8. Transport-specific Bindings§

8.1. Secure protocol implementation§

Ensure that all state (e.g. resident credentials, signature counters, PINs, etc) that is observable or alterable over FIDO
interfaces is not observable or alterable over any other interfaces on transports that FIDO has defined.

Ensure that all non-resident credentials that are created over FIDO interfaces are not valid over any other interfaces on
transports that FIDO has defined. (For example, if non-resident credentials store state in the credential ID, protected by
an authenticator-global secret, then that secret must only be used for requests received over FIDO interfaces.)

Note: Above recommendations are also valid for future transports.

USB, when using USB HID and the FIDO_USAGE_PAGE/FIDO_USAGE_CTAPHID combination.

NFC, when the applet is selected as specified .

Authenticator SHALL NOT allow FIDO applet to be implicitly selected or enabled.

Recommended: Authenticator SHALL NOT have default applet selected on power cycle. All CTAP
commands SHALL be preceded by an explicit applet selection command as described in Applet selection
section.

Alternative: If authenticator has a FIDO applet selected for some reason at power cycle, it SHALL be in
disabled mode and SHALL ONLY be enabled once it receives explicit applet selection command as
described in Applet selection section.

Authenticator SHALL disable FIDO interface when it receives applet deselect command.

BLE, when using the FIDO GATT service.

8.2. USB Human Interface Device (USB HID)§

8.2.1. Design rationale§

Driver-less installation on all major host platforms

Since HID data is sent as interrupt packets and multiple applications may access the HID stack at once, a non-trivial level of
complexity has to be added to handle this.

The CTAP protocol is designed to be concurrent and state-less in such a way that each performed function is not dependent
on previous actions. However, there has to be some form of "atomicity" that varies between the characteristics of the
underlying transport protocol, which for the CTAPHID protocol introduces the following terminology:

A transaction is the highest level of aggregated functionality, which in turn consists of a request, followed by a response
message. Once a request has been initiated, the transaction has to be entirely completed or aborted before a second
transaction can take place and a response is never sent without a previous request. Transactions exist only at the highest
CTAP protocol layer.

Request and response messages are in turn divided into individual fragments, known as packets. The packet is the
smallest form of protocol data unit, which in the case of CTAPHID are mapped into HID reports.

Additional logic and overhead is required to allow a CTAPHID device to deal with multiple "clients", i.e. multiple
applications accessing the single resource through the HID stack. Each client communicates with a CTAPHID device
through a logical channel, where each application uses a unique 32-bit channel identifier for routing and arbitration
purposes.

A channel identifier is allocated by the FIDO authenticator to ensure its system-wide uniqueness. The actual algorithm for
generation of channel identifiers is vendor specific and not defined by this specification.

Channel ID 0 is reserved and 0xffffffff is reserved for broadcast commands, i.e. at the time of channel allocation.

Packets are one of two types, initialization packets and continuation packets. As the name suggests, the first packet

Multi-application support with concurrent application access without the need for serialization and centralized
dispatching.

Fixed latency response and low protocol overhead

Scalable method for CTAPHID device discovery

8.2.2. Protocol structure and data framing§

Transaction

Message

Packet

8.2.3. Concurrency and channels§

8.2.4. Message and packet structure§

sent in a message is an initialization packet, which also becomes the start of a transaction. If the entire message does not fit
into one packet (including the CTAPHID protocol overhead), one or more continuation packets have to be sent in strict
ascending order to complete the message transfer.

A message sent from a host to a device is known as a request and a message sent from a device back to the host is known
as a response. A request always triggers a response and response messages are never sent ad-hoc, i.e. without a prior
request message. However, a keep-alive message can be sent between a request and a response message.

The request and response messages have an identical structure. A transaction is started with the initialization packet of the
request message and ends with the last packet of the response message. The client starting a transaction may also abort it.

Packets are always fixed size (defined by the endpoint and HID report descriptors) and although all bytes may not be needed
in a particular packet, the full size always has to be sent. Unused bytes SHOULD be set to zero.

An initialization packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s - 7) DATA Payload data (s is equal to the fixed packet size)

The command byte has always the highest bit set to distinguish it from a continuation packet, which is described below.

A continuation packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)

5 (s - 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7) may be sent as one packet. A larger message is then
divided into one or more continuation packets, starting with sequence number 0, which then increments by one to a
maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum message payload length is 64 - 7 +
128 * (64 - 5) = 7609 bytes.

In order to handle multiple channels and clients concurrency, the CTAPHID protocol has to maintain certain internal states,
block conflicting requests and maintain protocol integrity. The protocol relies on each client application (channel) behaves
politely, i.e. does not actively act to destroy for other channels. With this said, a malign or malfunctioning application can
cause issues for other channels. Expected errors and potentially stalling applications should however, be handled properly.

A transaction always consists of three stages:

The protocol is built on the assumption that a plurality of concurrent applications may try ad-hoc to perform transactions at
any time, with each transaction being atomic, i.e. it cannot be interrupted by another application once started.

The application channel that manages to get through the first initialization packet when the device is in idle state will keep
the device locked for other channels until the last packet of the response message has been received or the transaction is
aborted. The device then returns to idle state, ready to perform another transaction for the same or a different channel.
Between two transactions, no state is maintained in the device and a host application must assume that any other process
may execute other transactions at any time.

If an application tries to access the device from a different channel while the device is busy with a transaction, that request
will immediately fail with a busy-error message sent to the requesting channel.

A transaction has to be completed within a specified period of time to prevent a stalling application to cause the device to be
completely locked out for access by other applications. If for example an application sends an initialization packet that
signals that continuation packets will follow and that application crashes, the device will back out that pending channel
request and return to an idle state.

If an application for any reason "gets lost", gets an unexpected response or error, it may at any time issue an abort-and-
resynchronize command. If the device detects an INIT command during a transaction that has the same channel id as the

8.2.5. Arbitration§

8.2.5.1. Transaction atomicity, idle and busy states.§

1. A message is sent from the host to the device

2. The device processes the message

3. A response is sent back from the device to the host

8.2.5.2. Transaction timeout§

8.2.5.3. Transaction abort and re-synchronization§

active transaction, the transaction is aborted (if possible) and all buffered data flushed (if any). The device then returns to
idle state to become ready for a new transaction.

If an application wishes to abort a command after the request has been fully sent, e.g. while an authenticator is waiting for
user presence, the application may do this by sending a CTAPHID_CANCEL command.

The device keeps track of packets arriving in correct and ascending order and that no expected packets are missing. The
device will continue to assemble a message until all parts of it has been received or that the transaction times out. Spurious
continuation packets appearing without a prior initialization packet will be ignored.

In order to deal with aggregated transactions that may not be interrupted, such as tunneling of vendor-specific commands, a
channel lock command may be implemented. By sending a channel lock command, the device prevents other channels from
communicating with the device until the channel lock has timed out or been explicitly unlocked by the application.

This feature is optional and has not to be considered by general CTAP HID applications.

The CTAPHID protocol is designed to be extensible yet maintain backwards compatibility, to the extent it is applicable.
This means that a CTAPHID host SHALL support any version of a device with the command set available in that particular
version.

This description assumes knowledge of the USB and HID specifications and is intended to provide the basics for
implementing a CTAPHID device. There are several ways to implement USB devices and reviewing these different methods
is beyond the scope of this document. This specification targets the interface part, where a device is regarded as either a
single or multiple interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s). Although not excluded per se,
USB low-speed devices are not practical to use given the 8-byte report size limitation together with the protocol overhead.

The device implements two endpoints (except the control endpoint 0), one for IN and one for OUT transfers. The packet size

8.2.5.4. Packet sequencing§

8.2.6. Channel locking§

8.2.7. Protocol version and compatibility§

8.2.8. HID device implementation§

8.2.8.1. Interface and endpoint descriptors§

is vendor defined, but the reference implementation assumes a full-speed device with two 64-byte endpoints.

Interface Descriptor

Mnemonic Value Description

bNumEndpoints 2 One IN and one OUT endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x01 1, OUT

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x81 1, IN

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be defined freely by the vendor and the
host application is responsible for querying these values and handle these accordingly. For the sake of clarity, the values
listed above are used in the following examples.

A HID report descriptor is required for all HID devices, even though the reports and their interpretation (scope, range, etc.)

8.2.8.2. HID report descriptor and device discovery§

makes very little sense from an operating system perspective. The CTAPHID just provides two "raw" reports, which
basically map directly to the IN and OUT endpoints. However, the HID report descriptor has an important purpose in
CTAPHID, as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

A unique Usage Page is defined (0xF1D0) for the FIDO alliance and under this realm, a CTAPHID Usage is defined as
well (0x01). During CTAPHID device discovery, all HID devices present in the system are examined and devices that match
this usage pages and usage are then considered to be CTAPHID devices.

The length values specified by the HID_INPUT_REPORT_BYTES and the HID_OUTPUT_REPORT_BYTES should typically match the
respective endpoint sizes defined in the endpoint descriptors.

The CTAPHID protocol implements the following commands.

The following list describes the minimum set of commands required by a CTAPHID device. Optional and vendor-specific
commands may be implemented as described in respective sections of this document.

EXAMPLE 8
// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {
 HID_UsagePage (FIDO_USAGE_PAGE),
 HID_Usage (FIDO_USAGE_CTAPHID),
 HID_Collection (HID_Application),
 HID_Usage (FIDO_USAGE_DATA_IN),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_INPUT_REPORT_BYTES),
 HID_Input (HID_Data | HID_Absolute | HID_Variable),
 HID_Usage (FIDO_USAGE_DATA_OUT),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),
 HID_Output (HID_Data | HID_Absolute | HID_Variable),
HID_EndCollection
};

¶

8.2.9. CTAPHID commands§

8.2.9.1. Mandatory commands§

This command sends an encapsulated CTAP1/U2F message to the device. The semantics of the data message is defined in
the U2F Raw Message Format encoding specification.

Request

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F command byte

DATA + 1 n bytes of data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F status code

DATA + 1 n bytes of data

This command sends an encapsulated CTAP CBOR encoded message. The semantics of the data message is defined in the
CTAP Message encoding specification. Please note that keep-alive messages MAY be sent from the device to the client
before the response message is returned.

Request

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP command byte

DATA + 1 n bytes of CBOR encoded data

Response at success

8.2.9.1.1. CTAPHID_MSG (0X03)§

8.2.9.1.2. CTAPHID_CBOR (0X10)§

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP status code

DATA + 1 n bytes of CBOR encoded data

This command has two functions.

If sent on an allocated CID, it synchronizes a channel, discarding the current transaction, buffers and state as quickly as
possible. It will then be ready for a new transaction. The device then responds with the CID of the channel it received the
INIT on, using that channel.

If sent on the broadcast CID, it requests the device to allocate a unique 32-bit channel identifier (CID) that can be used by
the requesting application during its lifetime. The requesting application generates a nonce that is used to match the
response. When the response is received, the application compares the sent nonce with the received one. After a positive
match, the application stores the received channel id and uses that for subsequent transactions.

To allocate a new channel, the requesting application SHALL use the broadcast channel CTAPHID_BROADCAST_CID
(0xFFFFFFFF). The device then responds with the newly allocated channel in the response, using the broadcast channel.

Request

CMD CTAPHID_INIT

BCNT 8

DATA 8-byte nonce

Response at success

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce

DATA+8 4-byte channel ID

DATA+12 CTAPHID protocol version identifier

8.2.9.1.3. CTAPHID_INIT (0X06)§

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented by the device. This version of the CTAPHID protocol is 2.

A CTAPHID host SHALL accept a response size that is longer than the anticipated size to allow for future extensions of the
protocol, yet maintaining backwards compatibility. Future versions will maintain the response structure of the current
version, but additional fields may be added.

The meaning and interpretation of the device version number is vendor defined.

The capability flags value is a bitfield where the following bits values are defined. Unused values are reserved for future use
and must be set to zero by device vendors.

Name Value Description

CAPABILITY_WINK 0x01 If set to 1, authenticator implements CTAPHID_WINK function

CAPABILITY_CBOR 0x04 If set to 1, authenticator implements CTAPHID_CBOR function

CAPABILITY_NMSG 0x08 If set to 1, authenticator DOES NOT implement CTAPHID_MSG function

Sends a transaction to the device, which immediately echoes the same data back. This command is defined to be a uniform
function for debugging, latency and performance measurements.

Request

CMD CTAPHID_PING

BCNT 0..n

DATA n bytes

Response at success

CMD CTAPHID_PING

8.2.9.1.4. CTAPHID_PING (0X01)§

BCNT n

DATA N bytes

Cancel any outstanding requests on this CID. If there is an outstanding request that can be cancelled, the authenticator
MUST cancel it and that cancelled request will reply with the error CTAP2_ERR_KEEPALIVE_CANCEL.

As the CTAPHID_CANCEL command is sent during an ongoing transaction, transaction semantics do not apply. Whether a
request was cancelled or not, the authenticator MUST NOT reply to the CTAPHID_CANCEL message itself. The
CTAPHID_CANCEL command MAY be sent by the client during ongoing processing of a CTAPHID_CBOR request. The
CTAP2_ERR_KEEPALIVE_CANCEL response MUST be the response to that request, not an error response in the HID
transport.

A CTAPHID_CANCEL received while no CTAPHID_CBOR request is being processed, or on a non-active CID SHALL
be ignored by the authenticator.

CMD CTAPHID_CANCEL

BCNT 0

This command code is used in response messages only.

CMD CTAPHID_ERROR

BCNT 1

DATA Error code

The following error codes are defined

ERR_INVALID_CMD 0x01 The command in the request is invalid

ERR_INVALID_PAR 0x02 The parameter(s) in the request is invalid

ERR_INVALID_LEN 0x03 The length field (BCNT) is invalid for the request

ERR_INVALID_SEQ 0x04 The sequence does not match expected value

8.2.9.1.5. CTAPHID_CANCEL (0X11)§

8.2.9.1.6. CTAPHID_ERROR (0X3F)§

ERR_MSG_TIMEOUT 0x05 The message has timed out

ERR_CHANNEL_BUSY 0x06
The device is busy for the requesting channel. The client SHOULD retry
the request after a short delay. Note that the client may abort the
transaction if the command is no longer relevant.

ERR_LOCK_REQUIRED 0x0A Command requires channel lock

ERR_INVALID_CHANNEL 0x0B CID is not valid.

ERR_OTHER 0x7F Unspecified error

Note: These values are identical to the BLE transport values.

This command code is sent while processing a CTAPHID_MSG. It should be sent at least every 100ms and whenever the
status changes. A KEEPALIVE sent by an authenticator does not constitute a response and does therefore not end an
ongoing transaction.

CMD CTAPHID_KEEPALIVE

BCNT 1

DATA Status code

The following status codes are defined

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

The following commands are defined by this specification but are optional and does not have to be implemented.

The wink command performs a vendor-defined action that provides some visual or audible identification a particular
authenticator. A typical implementation will do a short burst of flashes with a LED or something similar. This is useful

8.2.9.1.7. CTAPHID_KEEPALIVE (0X3B)§

8.2.9.2. Optional commands§

8.2.9.2.1. CTAPHID_WINK (0X08)§

when more than one device is attached to a computer and there is confusion which device is paired with which connection.

Request

CMD CTAPHID_WINK

BCNT 0

DATA N/A

Response at success

CMD CTAPHID_WINK

BCNT 0

DATA N/A

The lock command places an exclusive lock for one channel to communicate with the device. As long as the lock is active,
any other channel trying to send a message will fail. In order to prevent a stalling or crashing application to lock the device
indefinitely, a lock time up to 10 seconds may be set. An application requiring a longer lock has to send repeating lock
commands to maintain the lock.

Request

CMD CTAPHID_LOCK

BCNT 1

DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock

Response at success

CMD CTAPHID_LOCK

BCNT 0

DATA N/A

8.2.9.2.2. CTAPHID_LOCK (0X04)§

8.2.9.3. Vendor specific commands§

A CTAPHID may implement additional vendor specific commands that are not defined in this specification, while being
CTAPHID compliant. Such commands, if implemented, must use a command in the range between
CTAPHID_VENDOR_FIRST (0x40) and CTAPHID_VENDOR_LAST (0x7F).

See also § 8.1 Secure protocol implementation.

Please refer to [ISO7816-4] for APDU definition.

The general protocol between a FIDO2 client and an authenticator over ISO7816/ISO14443 is as follows:

Because of timeouts that may otherwise occur on some platforms, it is RECOMMENDED that the Authenticators reply to
APDU commands within 800 milliseconds.

A successful Select allows the client to know that the applet is present and active. A client SHALL send a Select to the
authenticator before any other command.

The FIDO2 AID consists of the following fields:

Field Value

RID 0xA000000647

8.3. ISO7816, ISO14443 and Near Field Communication (NFC)§

8.3.1. Conformance§

8.3.2. Protocol§

1. Client sends an applet selection command

2. Authenticator replies with success if the applet is present

3. Client sends a command for an operation

4. Authenticator replies with response data or error

5. Return to 3.

8.3.3. Applet selection§

Note: See also § 8.1 Secure protocol implementation

PIX 0x2F0001

The command to select the FIDO applet is:

CLA INS P1 P2 Data In Le

0x00 0xA4 0x04 0x00 AID Variable

In response to the applet selection command, the FIDO authenticator replies with its version information string in the
successful response.

Clients and authenticators MAY support additional selection mechanisms. Clients MUST fall back to the previously defined
selection process if the additional selection mechanisms fail to select the applet. Authenticators MUST at least support the
previously defined selection process.

Given legacy support for CTAP1/U2F, the client must determine the capabilities of the device at the selection stage.

If the authenticator implements CTAP1/U2F, the version information SHALL be the string "U2F_V2", or
0x5532465f5632, to maintain backwards-compatibility with CTAP1/U2F-only clients.

If the authenticator ONLY implements CTAP2, the device SHALL respond with "FIDO_2_0", or
0x4649444f5f325f30.

If the authenticator implements both CTAP1/U2F and CTAP2, the version information SHALL be the string
"U2F_V2", or 0x5532465f5632, to maintain backwards-compatibility with CTAP1/U2F-only clients. CTAP2-aware
clients may then issue a CTAP authenticatorGetInfo command to determine if the device supports CTAP2 or not.

8.3.4. Applet deselection§

Note: See also § 8.1 Secure protocol implementation

Authenticator SHALL deselect or disable FIDO applet upon receiving below NFCCTAP_CONTROL END CTAP_MSG
command.

Authenticators SHALL ignore subsequent FIDO CTAP commands until it receives the next explicit FIDO Applet
selection command.

NFCCTAP_CONTROL END CTAP_MSG command is as follows:

CLA INS P1 P2

0x80 0x12 (NFCCTAP_CONTROL) 0x01 (End CTAP_MSG Control Byte) 0x00

8.3.5. Framing§

Conceptually, framing defines an encapsulation of FIDO2 commands. This encapsulation is done in an APDU following
[ISO7816-4]. Authenticators MUST support short and extended length encoding for this APDU. Fragmentation, if needed,
is discussed in the following paragraph.

Commands SHALL have the following format:

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00 CTAP Command Byte || CBOR Encoded Data Variable

Response SHALL have the following format in case of success:

Case Data Status word

Success

CTAP
Status code
|| Response

data

"9000" - Success

Status
update

Status data

"9100" - OK
When receiving this, the ISO transport layer will immediately issue an

NFCCTAP_GETREPONSE command unless a cancel was issued. The ISO transport
layer will provide the status data to the higher layers.

Errors See [ISO7816-4]

APDU command may hold up to 255 or 65535 bytes of data using short or extended length encoding respectively. APDU
response may hold up to 256 or 65536 bytes of data using short or extended length encoding respectively.

Some requests may not fit into a short APDU command, or the expected response may not fit in a short APDU response. For
this reason, FIDO2 client MAY encode APDU command in the following way:

8.3.5.1. Commands§

8.3.5.2. Response§

8.3.6. Fragmentation§

The request may be encoded using extended length APDU encoding.

Short APDU Chaining commands SHALL have the following format:

CLA INS P1 P2 Data In

0x90 0x10 0x00 0x00 CTAP Payload

The request may be encoded using short APDU encoding. If the request does not fit a short APDU command, the
client MUST use ISO 7816-4 APDU chaining.

EXAMPLE 9
Sample authenticatorMakeCredential request using short APDU encoding and chaining mode:

01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162726BF50850FC43AAA411D948CC6C3706
8B8DA1D5080901

would be sent to authenticator by platform in two short APDU commands:

¶

APDU command 1:

Platform Request:
90 10 00 00
F0
01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162

Authenticator Response:
9000

APDU command 2:

Platform Request:
80 10 00 00

17
726BF50850FC43AAA411D948CC6C37068B8DA1D5080901
00

Authenticator Response:
00
A301667061636B6564025900A20021F5FC0B85CD22E60623BCD7D1CA48948909
249B4776EB515154E57B66AE12C500000055F8A011F38C0A4D15800617111F9E
DC7D0010F4D57B23DD0CB785680CDAA7F7E44F60A5010203262001215820DF01
7D0B286795BEA153D166A0A15B4F6B67A3AF4A101E10E8496F3DD3C5D1A92258
2094B22551E6325D7733C41BB2F5A642ADEE417C97E0906197B5B0CD8B8D6C6B
A7A16B686D61632D736563726574F503A363616C672663736967584730450220
7CCAC57A1E43DF24B0847EEBF119D28DCDC5048F7DCD8EDD79E79721C41BCF2D
022100D89EC75B92CE8FF9E46FE7F8C87995694A63E5B78AB85C47B9DA
6100

APDU command 3:

Platform Request:
80 C0 00 00 00

Authenticator Response:
1C580A8EC83A63783563815901973082019330820138A003020102020900859B
726CB24B4C29300A06082A8648CE3D0403023047310B30090603550406130255
5331143012060355040A0C0B59756269636F205465737431223020060355040B
0C1941757468656E74696361746F72204174746573746174696F6E301E170D31
36313230343131353530305A170D3236313230323131353530305A3047310B30
0906035504061302555331143012060355040A0C0B59756269636F2054657374
31223020060355040B0C1941757468656E74696361746F722041747465737461
74696F6E3059301306072A8648CE3D020106082A8648CE3D030107034200
61A7

APDU command 4:

Platform Request:
80 C0 00 00 A7

Authenticator Response:
04AD11EB0E8852E53AD5DFED86B41E6134A18EC4E1AF8F221A3C7D6E636C80EA
13C3D504FF2E76211BB44525B196C44CB4849979CF6F896ECD2BB860DE1BF437
6BA30D300B30090603551D1304023000300A06082A8648CE3D04030203490030
46022100E9A39F1B03197525F7373E10CE77E78021731B94D0C03F3FDA1FD22D
B3D030E7022100C4FAEC3445A820CF43129CDB00AABEFD9AE2D874F9C5D343CB
2F113DA23723F3
9000

Some responses may not fit into a short APDU response. For this reason, FIDO2 authenticators MUST respond in the
following way:

The NFCCTAP_MSG command send a CTAP message to the authenticator. This command SHALL return as soon as
processing is done. If the operation was not completed, it MAY return a 0x9100 result to trigger
NFCCTAP_GETRESPONSE functionality if the client indicated support by setting the relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

P1 Bits Meaning

0x80 The client supports NFCCTAP_GETRESPONSE

0x7F RFU, must be (0x00)

Values for P2 are all RFU and MUST be set to 0.

The NFCCTAP_GETRESPONSE command is issued up to receiving 0x9100 unless a cancel was issued. This command
SHALL return a 0x9100 result with a status indication if it has a status update, the reply to the request with a 0x9000 result
code to indicate success or an error value.

All values for P1 and P2 are RFU and MUST be set to 0x00.

See also § 8.1 Secure protocol implementation.

If the request was encoded using extended length APDU encoding, the authenticator MUST respond using the
extended length APDU response format.

If the request was encoded using short APDU encoding, the authenticator MUST respond using ISO 7816-4 APDU
chaining.

8.3.7. Commands§

8.3.7.1. NFCCTAP_MSG (0x10)§

8.3.7.2. NFCCTAP_GETRESPONSE (0x11)§

8.4. Bluetooth Smart / Bluetooth Low Energy Technology§

8.4.1. Conformance§

Authenticator and client devices using Bluetooth Low Energy Technology SHALL conform to Bluetooth Core Specification
4.0 or later [BTCORE]. Bluetooth SIG specified UUID values SHALL be found on the Assigned Numbers website
[BTASSNUM].

Bluetooth Low Energy Technology is a long-range wireless protocol and thus has several implications for privacy, security,
and overall user-experience. Because it is wireless, Bluetooth Low Energy Technology may be subject to monitoring,
injection, and other network-level attacks.

For these reasons, clients and authenticators MUST create and use a long-term link key (LTK) and SHALL encrypt all
communications. Authenticator MUST never use short term keys.

Because Bluetooth Low Energy Technology has poor ranging (i.e., there is no good indication of proximity), it may not be
clear to a FIDO client with which Bluetooth Low Energy Technology authenticator it should communicate. Pairing is the
only mechanism defined in this protocol to ensure that FIDO clients are interacting with the expected Bluetooth Low Energy
Technology authenticator. As a result, authenticator manufacturers SHOULD instruct users to avoid performing Bluetooth
pairing in a public space such as a cafe, shop or train station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most operating systems. That
is, if an authenticator is paired to a FIDO client which resides on an operating system where Bluetooth pairing is "system-
wide", then any application on that device might be able to interact with an authenticator. This issue is discussed further in
Implementation Considerations.

For Bluetooth Low Energy Technology connections, the authenticator SHALL enforce Security Mode 1, Level 2
(unauthenticated pairing with encryption) or Security Mode 1, Level 3 (authenticated pairing with encryption) before any
FIDO messages are exchanged.

Conceptually, framing defines an encapsulation of FIDO raw messages responsible for correct transmission of a single
request and its response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of the requests and responses is given
first as complete frames. Fragmentation is discussed next for each type of transport layer.

8.4.2. Pairing§

8.4.3. Link Security§

8.4.4. Framing§

8.4.4.1. Request from Client to Authenticator§

Request frames must have the following format

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

Supported commands are PING, MSG and CANCEL. The constant values for them are described below.

The CANCEL command cancels any outstanding MSG commands.

The data format for the MSG command is defined in § 6 Message Encoding.

Response frames must have the following format, which share a similar format to the request frames:

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request, the response is a successful response.
The value ERROR indicates an error, and the response data contains an error code as a variable-length, big-endian integer. The
constant value for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g., indicating an incorrectly formatted
request, or possibly an error communicating with the authenticator’s FIDO message processing layer. Errors reported by the
FIDO message processing layer itself are considered a success from the encapsulation layer’s point of view and are reported
as a complete MSG response.

Data format is defined in § 6 Message Encoding.

8.4.4.2. Response from Authenticator to Client§

8.4.4.3. Command, Status, and Error constants§

The COMMAND constants and values are:

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

CANCEL 0xbe

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

Status Constant Value

PROCESSING 0x01

UP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error Constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID_SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

ERR_BUSY 0x06
The device is busy and can’t accept commands at this time. The client SHOULD
retry the request after a short delay. Note that the client may abort the transaction if
the command is no longer relevant.

NA 0x0a Value reserved (HID)

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

Note: These values are identical to the HID transport values.

This profile defines two roles: FIDO Authenticator and FIDO Client.

The following figure illustrates the mandatory services and characteristics that SHALL be offered by a FIDO Authenticator
as part of its GATT server:

Figure 6 Mandatory GATT services and characteristics that MUST be offered by a FIDO Authenticator. Note that the Generic
Access Profile Service ([BTGAS]) is not present as it is already mandatory for any Bluetooth Low Energy Technology compliant

device.

The table below summarizes additional GATT sub-procedure requirements for a FIDO Authenticator (GATT Server)
beyond those required by all GATT Servers.

GATT Sub-Procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

8.4.5. GATT Service Description§

The FIDO Client SHALL be a GATT Client.

The FIDO Authenticator SHALL be a GATT Server.

The table below summarizes additional GATT sub-procedure requirements for a FIDO Client (GATT Client) beyond those
required by all GATT Clients.

GATT Sub-Procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service UUID (*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures. (**): Mandatory to support at least one of these sub-
procedures. Other GATT sub-procedures may be used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values are big-endian coded, all strings are
in UTF-8 encoding, and any characteristics not mentioned explicitly are optional.

An authenticator SHALL implement the FIDO Service described below. The UUID for the FIDO GATT service is 0xFFFD;
it SHALL be declared as a Primary Service. The service contains the following characteristics:

Characteristic
Name

Mnemonic Property Length UUID

FIDO Control
Point

fidoControlPoint Write
Defined by
Vendor (20-
512 bytes)

F1D0FFF1-DEAA-
ECEE-B42F-
C9BA7ED623BB

F1D0FFF2-DEAA-

8.4.5.1. FIDO Service§

FIDO Status fidoStatus Notify N/A ECEE-B42F-
C9BA7ED623BB

FIDO Control
Point Length

fidoControlPointLength Read 2 bytes
F1D0FFF3-DEAA-
ECEE-B42F-
C9BA7ED623BB

FIDO Service
Revision Bitfield

fidoServiceRevisionBitfield Read/Write
Defined by
Vendor (1+

bytes)

F1D0FFF4-DEAA-
ECEE-B42F-
C9BA7ED623BB

FIDO Service
Revision

fidoServiceRevision Read
Defined by
Vendor (20-
512 bytes)

0x2A28

fidoControlPoint is a write-only command buffer.

fidoStatus is a notify-only response attribute. The authenticator will send a series of notifications on this attribute with a
maximum length of (ATT_MTU-3) using the response frames defined above. This mechanism is used because this results in
a faster transfer speed compared to a notify-read combination.

fidoControlPointLength defines the maximum size in bytes of a single write request to fidoControlPoint. This value
SHALL be between 20 and 512.

fidoServiceRevision is a deprecated field that is only relevant to U2F 1.0 support. It defines the revision of the U2F
Service. The value is a UTF-8 string. For version 1.0 of the specification, the value fidoServiceRevision SHALL be 1.0
or in raw bytes: 0x312e30. This field SHALL be omitted if protocol version 1.0 is not supported.

The fidoServiceRevision Characteristic MAY include a Characteristic Presentation Format descriptor with format value
0x19, UTF-8 String.

fidoServiceRevisionBitfield defines the revision of the FIDO Service. The value is a bit field which each bit
representing a version. For each version bit the value is 1 if the version is supported, 0 if it is not. The length of the bitfield
is 1 or more bytes. All bytes that are 0 are omitted if all the following bytes are 0 too. The byte order is big endian. The
client SHALL write a value to this characteristic with exactly 1 bit set before sending any FIDO commands unless
u2fServiceRevision is present and U2F 1.0 compatibility is desired. If only U2F version 1.0 is supported, this characteristic
SHALL be omitted.

Byte (left to right) Bit Version

0 7 U2F 1.1

0 6 U2F 1.2

0 5 FIDO2

0 4-0 Reserved

For example, a device that only supports FIDO2 Rev 1 will only have a fidoServiceRevisionBitfield characteristic of length
1 with value 0x20.

An authenticator SHALL implement the Device Information Service [BTDIS] with the following characteristics:

All values for the Device Information Service are left to the vendors. However, vendors should not create uniquely
identifiable values so that authenticators do not become a method of tracking users.

Every authenticator SHALL implement the Generic Access Profile Service [BTGAS] with the following characteristics:

The general overview of the communication protocol follows:

8.4.5.2. Device Information Service§

Manufacturer Name String

Model Number String

Firmware Revision String

8.4.5.3. Generic Access Profile Service§

Device Name

Appearance

8.4.6. Protocol Overview§

1. Authenticator advertises the FIDO Service.

2. Client scans for authenticator advertising the FIDO Service.

3. Client performs characteristic discovery on the authenticator.

4. If not already paired, the client and authenticator SHALL perform BLE pairing and create a LTK. Authenticator
SHALL only allow connections from previously bonded clients without user intervention.

5. Client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the client selects a supported
version by writing a value with a single bit set.

6. Client reads the fidoControlPointLength characteristic.

7. Client registers for notifications on the fidoStatus characteristic.

8. Client writes a request (e.g., an enroll request) into the fidoControlPoint characteristic.

When advertising, the authenticator SHALL advertise the FIDO service UUID.

When advertising, the authenticator MAY include the TxPower value in the advertisement (see [BTXPLAD]).

When advertising in pairing mode, the authenticator SHALL either: (1) set the LE Limited Mode bit to zero and the LE
General Discoverable bit to one OR (2) set the LE Limited Mode bit to one and the LE General Discoverable bit to zero.
When advertising in non-pairing mode, the authenticator SHALL set both the LE Limited Mode bit and the LE General
Discoverable Mode bit to zero in the Advertising Data Flags.

The advertisement MAY also carry a device name which is distinctive and user-identifiable. For example, "ACME Key"
would be an appropriate name, while "XJS4" would not be.

The authenticator SHALL also implement the Generic Access Profile [BTGAP] and Device Information Service [BTDIS],
both of which also provide a user-friendly name for the device that could be used by the client.

It is not specified when or how often an authenticator should advertise, instead that flexibility is left to manufacturers.

Clients SHOULD make requests by connecting to the authenticator and performing a write into the fidoControlPoint
characteristic.

Upon receiving a CANCEL request, if there is an outstanding request that can be cancelled, the authenticator MUST cancel
it and that cancelled request will reply with the error CTAP2_ERR_KEEPALIVE_CANCEL. Whether a request was
cancelled or not, the authenticator MUST NOT reply to the cancel message itself.

Authenticators SHOULD respond to clients by sending notifications on the fidoStatus characteristic.

Some authenticators might alert users or prompt them to complete the test of user presence (e.g., via sound, light, vibration)
Upon receiving any request, the authenticators SHALL send KEEPALIVE commands every

9. Optionally, the client writes a CANCEL command to the fidoControlPoint characteristic to cancel the pending
request.

10. Authenticator evaluates the request and responds by sending notifications over fidoStatus characteristic.

11. The protocol completes when either:

The client unregisters for notifications on the fidoStatus characteristic, or:

The connection times out and is closed by the authenticator.

8.4.7. Authenticator Advertising Format§

8.4.8. Requests§

8.4.9. Responses§

kKeepAliveMillis

milliseconds until completing processing the commands. While the authenticator is processing the request the KEEPALIVE
command will contain status PROCESSING. If the authenticator is waiting to complete the Test of User Presence, the
KEEPALIVE command will contains status UP_NEEDED. While waiting to complete the Test of User Presence, the
authenticator MAY alert the user (e.g., by flashing) in order to prompt the user to complete the test of user presence. As
soon the authenticator has completed processing and confirmed user presence, it SHALL stop sending KEEPALIVE
commands, and send the reply.

Upon receiving a KEEPALIVE command, the client SHALL assume the authenticator is still processing the command; the
client SHALL not resend the command. The authenticator SHALL continue sending KEEPALIVE messages at least every
kKeepAliveMillis to indicate that it is still handling the request. Until a client-defined timeout occurs, the client SHALL
NOT move on to other devices when it receives a KEEPALIVE with UP_NEEDED status, as it knows this is a device that can
satisfy its request.

A single request/response sent over Bluetooth Low Energy Technology MAY be split over multiple writes and notifications,
due to the inherent limitations of Bluetooth Low Energy Technology which is not currently meant for large messages.
Frames are fragmented in the following way:

A frame is divided into an initialization fragment and zero or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 0 to (maxLen - 3) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, the start of an initialization fragment is indicated by setting the high bit in the first byte. The subsequent two
bytes indicate the total length of the frame, in big-endian order. The first maxLen - 3 bytes of data follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ Packet sequence 0x00..0x7f (high bit always cleared)

8.4.10. Framing fragmentation§

1 0 to (maxLen - 1) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0, implicitly with the high bit cleared.
The sequence number must wraparound to 0 after reaching the maximum sequence number of 0x7f.

Example for sending a PING command with 40 bytes of data with a maxLen of 20 bytes:

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512 bytes:

Frame Bytes

0 [810190] [400 bytes of data]

A client needs to register for notifications before it can receive them. Bluetooth Core Specification 4.0 or later [BTCORE]
forces a device to remember the notification registration status over different connections [BTCCC]. Unless a client
explicitly unregisters for notifications, the registration will be automatically restored when reconnecting. A client MAY
therefor check the notification status upon connection and only register if notifications aren’t already registered. Please note
that some clients MAY disable notifications from a power management point of view (see below) and the notification
registration is remembered per bond, not per client. A client MUST NOT remember the notification status in its own data
storage.

Because there is no concept of a session between the authenticator and a client (only between the host and the client), a BLE
Authenticator cannot distinguish between different clients. If two clients on the same host register for notifications from an
authenticator at the same time, some existing host platforms will allow this by reusing the same underlying BLE connection.
However, when the authenticator generates a notification, the host platform has insufficient information to route it to a
particular client. Depending on the host platform implementation, the notification may be delivered to either or both clients.
The result is undefined behavior which will likely result in both requests failing.

8.4.11. Notifications§

8.4.12. Request Collisions§

As noted in § 8.4.2 Pairing, a disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most
operating systems. That is, if an authenticator is paired to a FIDO client that resides on an operating system where Bluetooth
pairing is "system-wide", then any application on that device might be able to interact with an authenticator. This poses both
security and privacy risks to users.

While client operating system security is partly out of FIDO’s scope, further revisions of this specification MAY propose
mitigations for this issue.

The method to put the authenticator into Pairing Mode should be such that it is not easy for the user to do accidentally
especially if the pairing method is Just Works. For example, the action could be pressing a physically recessed button or
pressing multiple buttons. A visible or audible cue that the authenticator is in Pairing Mode should be considered. As a
counter example, a silent, long press of a single non-recessed button is not advised as some users naturally hold buttons
down during regular operation.

Note that at times, authenticators may legitimately receive communication from an unpaired device. For example, a user
attempts to use an authenticator for the first time with a new client; he turns it on, but forgets to put the authenticator into
pairing mode. In this situation, after connecting to the authenticator, the client will notify the user that he needs to pair his
authenticator. The authenticator should make it easy for the user to do so, e.g., by not requiring the user to wait for a timeout
before being able to enable pairing mode.

Some client platforms (most notably iOS) do not expose the AD Flag LE Limited and General Discoverable Mode bits to
applications. For this reason, authenticators are also strongly recommended to include the Service Data field [BTSD] in the
Scan Response. The Service Data field is 3 or more octets long. This allows the Flags field to be extended while using the
minimum number of octets within the data packet. All octets that are 0x00 are not transmitted as long as all other octets after
that octet are also 0x00 and it is not the first octet after the service UUID. The first 2 bytes contain the FIDO Service UUID,
the following bytes are flag bytes.

To help clients show the correct UX, authenticators can use the Service Data field to specify whether or not authenticators
will require a Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)

7 Device is in pairing mode.

6 Device requires Passkey Entry [BTPESTK].

8.4.13. Implementation Considerations§

8.4.13.1. Bluetooth pairing: Client considerations§

8.4.13.2. Bluetooth pairing: Authenticator considerations§

It is important for low-power devices to be able to conserve power by shutting down or switching to a lower-power state
when they have satisfied a client’s requests. However, the FIDO protocol makes this hard as it typically includes more than
one command/response. This is especially true if a user has more than one key handle associated with an account or identity,
multiple key handles may need to be tried before getting a successful outcome. Furthermore, clients that fail to send follow
up commands in a timely fashion may cause the authenticator to drain its battery by staying powered up anticipating more
commands.

A further consideration is to ensure that a user is not confused about which command she is confirming by completing the
test of user presence. That is, if a user performs the test of user presence, that action should perform exactly one operation.

We combine these considerations into the following series of recommendations:

Constant Value

kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kKeepAliveMillis 500 milliseconds

8.4.14. Handling command completion§

Upon initial connection to an authenticator, and upon receipt of a response from an authenticator, if a client has more
commands to issue, the client MUST transmit the next command or fragment within
kMaxCommandTransmitDelayMillis milliseconds.

Upon final response from an authenticator, if the client decides it has no more commands to send it should indicate this
by disabling notifications on the fidoStatus characteristic. When the notifications are disabled the authenticator may
enter a low power state or disconnect and shut down.

Any time the client wishes to send a FIDO message, it must have first enabled notifications on the fidoStatus
characteristic and wait for the ATT acknowledgement to be sure the authenticator is ready to process messages.

Upon successful completion of a command which required a test of user presence, e.g. upon a successful authentication
or registration command, the authenticator can assume the client is satisfied, and MAY reset its state or power down.

Upon sending a command response that did not consume a test of user presence, the authenticator MUST assume that
the client may wish to initiate another command and leave the connection open until the client closes it or until a
timeout of at least kErrorWaitMillis elapses. Examples of command responses that do not consume user presence
include failed authenticate or register commands, as well as get version responses, whether successful or not. After
kErrorWaitMillis milliseconds have elapsed without further commands from a client, an authenticator MAY reset its
state or power down.

8.4.15. Data throughput§

Bluetooth Low Energy Technology does not have particularly high throughput, this can cause noticeable latency to the user
if request/responses are large. Some ways that implementers can reduce latency are:

Though the standard does not appear to mandate it (in any way that we’ve found thus far), advertising and device discovery
seems to work better when the authenticators advertise on all 3 advertising channels and not just one.

In order to enhance the user’s privacy and specifically to guard against tracking, it is recommended that authenticators use
Resolvable Private Addresses (RPAs) instead of static addresses.

The transports that FIDO has defined are thus USB, NFC, and BLE.

This section defines authenticator extensions and any neccessary corresponding client extension processing for them.

To detect whether authenticator supports this feature, following conditions MUST be met:

Support the maximum MTU size allowable by hardware (up to the 512-byte max from the Bluetooth specifications).

Make the attestation certificate as small as possible; do not include unnecessary extensions.

8.4.16. Advertising§

8.4.17. Authenticator Address Type§

9. Defined Extensions§

Note: extensions may be defined such that an unsolicited extension response is generated. I.e. extension processing and
output may occur without any extension input.

9.1. Credential Protection (credProtect)§

9.1.1. Feature detection§

Authenticator MUST return "credProtect" in extensions field in authenticatorGetInfo in addition to other extensions it
may support.

Authenticator MUST return global maxCredentialCountInList (0x08) in authenticatorGetInfo.

Its value maximum number of credentials it can support in one call in a credentialId list.

Authenticator MUST return global maxCredentialIdLength (0x09) in authenticatorGetInfo.

Its value represents maximum credential ID length it supports.

This extension is only valid for an authenticator if it is protected by a user verification method.

credProtect

This extension indicates that the authenticator supports enhanced protection mode for the credentials created on the
authenticator.

create() : A single USVString specifying a protection level of the credential to be created.

partial dictionary AuthenticationExtensionsClientInputs {
 USVString credentialProtectionPolicy;
 boolean enforceCredentialProtectionPolicy = false;
};

If present, verify that the credentialProtectionPolicy value is one of following values:

enforceCredentialProtectionPolicy controls whether it is better to fail to create a credential rather than ignore the
protection policy. When enforceCredentialProtectionPolicy is true, and credentialProtectionPolicy is either
userVerificationOptionalWithCredentialIDList or userVerificationRequired, the platform SHOULD NOT create the
credential in a way that does not implement the requested protection policy. (For example, by creating it on an
authenticator that doesn’t support this extension.)

None.

Map credentialProtectionPolicy value to credProtect and send it to the authenticator.

The list of possible values for credProtect is:

Extension identifier

Client extension input

Client extension processing

userVerificationOptional:

This reflects "FIDO_2_0" semantics. In this configuration, user verification is optional with or without
credentialID list. This is the default state of the credential if the extension is not specified and the
authenticator does not report a defaultCredProtect value in the authenticatorGetInfo response.

userVerificationOptionalWithCredentialIDList:

In this configuration, credential is discovered only when its credentialID is provided by the platform or when
user verification is performed.

userVerificationRequired:

This reflects that discovery and usage of the credential MUST be preceeded by user verification.

Client extension output

Authenticator extension input

authenticatorMakeCredential additional behaviors

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#idl-boolean

credentialProtectionPolicy credProtect Value

userVerificationOptional 0x01

userVerificationOptionalWithCredentialIDList 0x02

userVerificationRequired 0x03

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the "extensions"
field to the authenticator:

credProtect value is persisted with the Credential. If no credProtect extension was included in the request and a
defaultCredProtect value was included in the authenticatorGetInfo response, then the authenticator MUST use that
value and MUST return an unsolicited credProtect extension output.

hmac-secret

This extension is used by the platform to retrieve a symmetric secret from the authenticator when it needs to encrypt or

"credProtect":

EXAMPLE 10
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{
 ...
 6: {"credProtect": 0x01},
 ...
}

¶

Authenticator extension processing

Authenticator extension output
The authenticator responds with the following CBOR map entry in the "extensions" fields to the client:

"credProtect":

EXAMPLE 11
Sample "extensions" field value in the authenticatorData:

{"credProtect": 0x01}

¶

9.2. HMAC Secret Extension (hmac-secret)§

Extension identifier

decrypt data using that symmetric secret. This symmetric secret is scoped to a credential. The authenticator and the platform
each only have the part of the complete secret to prevent offline attacks. This extension can be used to maintain different
secrets on different machines.

create() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
 boolean hmacCreateSecret;
};

get() : A JavaScript object defined as follows:

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

The salt2 input is optional. It can be used when the platform wants to roll over the symmetric secret in one operation.

create(): Boolean true value indicating that the authenticator has processed the extension.

partial dictionary AuthenticationExtensionsClientOutputs {
 boolean hmacCreateSecret;
};

get(): A dictionary with the following data:

Client extension input

Client extension processing
1. If present in a create():

1. If set to true, pass a CBOR true value as the authenticator extension input.

2. If set to false, do not process this extension.

2. If present in a get():

1. Verify that salt1 is a 32-byte ArrayBuffer.

2. If salt2 is present, verify that it is a 32-byte ArrayBuffer.

3. Pass salt1 and, if present, salt2 as the authenticator extension input.

Client extension output

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://heycam.github.io/webidl/#idl-boolean
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

Same as the client extension input, except represented in CBOR.
Authenticator extension input

Authenticator extension processing

authenticatorGetInfo additional behaviors

The authenticator indicates to the platform that it supports the "hmac-secret" extension via the "extensions" parameter
in the authenticatorGetInfo response.

EXAMPLE 12
Sample CTAP2 authenticatorGetInfo response (CBOR):

{
 1: ["FIDO_2_0"],
 2: ["hmac-secret"],
 ...
}

¶

authenticatorMakeCredential additional behaviors

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret": true

EXAMPLE 13
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{
 1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 ...
 6: {"hmac-secret": true},
 7: {"rk": true}
}

¶

The authenticator generates two random 32-byte values (called and)

https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

CredRandomWithUV CredRandomWithoutUV

and associates it with the credential.

The authenticator responds with the following CBOR map entry in the "extensions" fields to the authenticator:

"hmac-secret": true

EXAMPLE 14
Sample "extensions" field value in the authenticatorData:

{"hmac-secret": true}

¶

authenticatorGetAssertion additional behaviors

The platform gets sharedSecret from the authenticator.

The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret":

keyAgreement(0x01): public key of platformKeyAgreementKey , "bG".

saltEnc(0x02): Encrypt one or two salts (Called salt1 (32 bytes) and salt2 (32 bytes)) using
sharedSecret as follows:

One salt case: AES256-CBC(sharedSecret, IV=0, salt1 (32 bytes)).

Two salt case: AES256-CBC(sharedSecret, IV=0, salt1 (32 bytes) || salt2 (32 bytes)).

saltAuth(0x03): LEFT(HMAC-SHA-256(sharedSecret, saltEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

EXAMPLE 15
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{
 1: "example.com",
 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 ...
 4: {
 "hmac-secret":
 {
 1:
 {
 1: 2,
 3: -25,
 -1: 1,

¶

 -2: h’0DE6479775C5B704BF780073809DE1B36A29132E187709C1E364F299F8847769',
 -3: h’3BBE9BEDCC1AC8328BA6397A5F46AF85FC7C51B35BEDFD9E3E47AC6F34248B35'
 },
 2:
h’59E195FC58C614C07C99F587495F374871E9873AD37D5BCA1EED200926C3C6BA528D77A48AF9592BD7E7A8
8051887F214E13CFDF406C3A1C57D529BABF987D4A',
 3: h’17B93F3BDB95380ED512EC6F542CE140'
 }
 }
}

The authenticator performs the following operations when processing this extension:

If "up" is set to false, authenticator returns CTAP2_ERR_UNSUPPORTED_OPTION.

The authenticator waits for user consent.

If request asks for user verification, authenticator waits for user verification.

If user verification is requested via Client PIN mechanism, verify the user by verifying the Client PIN
parameters in the request as mentioned in the authenticatorGetAssertion steps.

If user verification is requested via built in "uv" method, verify the user by built-in user verification
method as mentioned in the authenticatorGetAssertion steps.

The authenticator generates "sharedSecret": SHA-256((abG).x) using the private key of
authenticatorKeyAgreementKey, "a" and the public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only the "x" curve point of "abG".

See [RFC6090] Section 4.1 and Appendix (C.2) of [SP800-56A] for more ECDH key agreement
protocol details and key representation information.

The authenticator verifies saltEnc by generating LEFT(HMAC-SHA-256(sharedSecret, saltEnc), 16) and
matching against the input saltAuth parameter.

The authenticator chooses which CredRandom to use for next step based on whether user verification was
done or not in above steps.

If uv bit is set to 1 in the response, let CredRandom be CredRandomWithUV.

If uv bit is set to 0 in the response, let CredRandom be CredRandomWithoutUV.

The authenticator generates one or two HMAC-SHA-256 values, depending upon whether it received one salt
(32 bytes) or two salts (64 bytes):

output1: HMAC-SHA-256(CredRandom, salt1)

output2: HMAC-SHA-256(CredRandom, salt2)

The authenticator returns output1 and, when there were two salts, output2 encrypted to the platform using

sharedSecret as part of "extensions" parameter:

One salt case: "hmac-secret": AES256-CBC(sharedSecret, IV=0, output1 (32 bytes))

Two salt case: "hmac-secret": AES256-CBC(sharedSecret, IV=0, output1 (32 bytes) ||

output2 (32 bytes))

EXAMPLE 16
Sample "extensions" field value in the authenticatorData:

{ "hmac-secret":
h’1F91526CAE456E4CBB71C4DDE7BB877157E6E54DFED3015D7D4DBB2269AFCDE6A91B8D267EBBF848EB95A68E79C
7AC705E351D543DB0165887D6290FD47A40C4' }

¶

Same as the client extension output, except represented in CBOR.

This section registers the extension identifier values defined in Section § 9 Defined Extensions in the IANA "WebAuthn
Extension Identifier" registry.

Figure 7 hmac-secret

Authenticator extension output

10. IANA Considerations§

10.1. WebAuthn Extension Identifier Registrations§

WebAuthn Extension Identifier: credProtect

This registration extension allows relying parties to specify a credential protection policy when creating a credential.
Additionally, authenticators may choose to establish a default credential protection policy greater than
userVerificationOptional (the lowest level) and unilateraly enforce such policy.

Specification Document: Section § 9.1 Credential Protection (credProtect) of this specification

WebAuthn Extension Identifier: hmac-secret

Description: This registration extension and authentication extension enables the platform to retrieve a symmetric
secret scoped to the credential from the authenticator.

Specification Document: Section § 9.2 HMAC Secret Extension (hmac-secret) of this specification

https://www.w3.org/TR/webauthn/#extension-identifier

See FIDO Security Reference document [FIDOSecRef].

11. Security Considerations§

Index§

Terms defined by this specification§

authenticator config map , in §5.10

credentialProtectionPolicy , in §9.1.1

CTAP2 canonical CBOR encoding form , in §6

enforceCredentialProtectionPolicy , in §9.1.1

FIDO interfaces , in §8.1

hmacCreateSecret
dict-member for AuthenticationExtensionsClientInputs, in §9.2

dict-member for AuthenticationExtensionsClientOutputs, in §9.2

hmacGetSecret
dict-member for AuthenticationExtensionsClientInputs, in §9.2

dict-member for AuthenticationExtensionsClientOutputs, in §9.2

HMACGetSecretInput , in §9.2

HMACGetSecretOutput , in §9.2

output1 , in §9.2

output2 , in §9.2

pinRetries , in §5.5.1

pinUvAuthToken , in §5.5.2

platform config map , in §5.10

salt1 , in §9.2

salt2 , in §9.2

serialized config map array , in §5.10

uvRetries , in §5.5.1

Terms defined by reference§

[credential-management-1] defines the following terms:
create()

Bluetooth Assigned Numbers . URL: https://www.bluetooth.org/en-us/specification/assigned-numbers

Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume 3, Part G, Section 3.3.3.3. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Bluetooth Core Specification 4.0 . URL: https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?
doc_id=229737

Device Information Service v1.1 . URL: https://www.bluetooth.com/specifications/adopted-specifications

Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H, Section 2.3.5.3. URL:
https://www.bluetooth.com/specifications/adopted-specifications

Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

get()

[WebAuthn] defines the following terms:
authenticator

client platform

relying party

[webauthn-1] defines the following terms:
AuthenticationExtensionsClientInputs

AuthenticationExtensionsClientOutputs

[WebIDL] defines the following terms:
ArrayBuffer

USVString

boolean

References§

Normative References§

[BTASSNUM]

[BTCCC]

[BTCORE]

[BTDIS]

[BTGAP]

[BTGAS]

[BTPESTK]

[BTSD]

https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Mike West. Credential Management Level 1 . 17 January 2019. WD. URL: https://www.w3.org/TR/credential-
management-1/

R. Lindemann; et al. FIDO Security Reference . Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-security-ref-v2.0-id-20180227.html

FIDO2 Server Guidelines . URL: https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html

Jim Schaad; et al. IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry. URL:
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

ISO 7816-4: Identification cards - Integrated circuit cards; Part 4: Organization, security and commands for
interchange. 2013-04. URL: https://www.iso.org/standard/54550.html

L. Masinter. The "data" URL scheme . August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

D. McGrew; K. Igoe; M. Salter. Fundamental Elliptic Curve Cryptography Algorithms. February 2011. Informational.
URL: https://tools.ietf.org/html/rfc6090

C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). October 2013. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7049

J. Schaad. CBOR Object Signing and Encryption (COSE) . July 2017. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8152

SEC1: Elliptic Curve Cryptography, Version 2.0 . May 2009. URL: http://secg.org/download/aid-780/sec1-v2.pdf

Elaine Barker; et al. Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography. May 2013. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

D. Balfanz. FIDO Bluetooth® Specification . Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-
20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html

D. Balfanz. FIDO NFC Protocol Specification . Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-
ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html

[BTXPLAD]

[CREDENTIAL-MANAGEMENT-1]

[FIDOSecRef]

[FIDOServerGuidelines]

[IANA-COSE-ALGS-REG]

[ISO7816-4]

[RFC2397]

[RFC6090]

[RFC7049]

[RFC8152]

[SEC1V2]

[SP800-56A]

[U2FBle]

[U2FNfc]

[U2FRawMsgs]

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html
https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iso.org/standard/54550.html
https://www.iso.org/standard/54550.html
https://www.iso.org/standard/54550.html
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html

D. Balfanz; J. Ehrensvard; J. Lang. FIDO U2F Raw Message Formats v1.2. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html

D. Balfanz. FIDO U2F HID Protocol Specification . Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html

Dirk Balfanz; et al. Web Authentication: An API for accessing Public Key Credentials Level 1. March 2019. TR. URL:
https://www.w3.org/TR/webauthn/

Dirk Balfanz; et al. Web Authentication:An API for accessing Public Key Credentials Level 1. 4 March 2019. REC.
URL: https://www.w3.org/TR/webauthn-1/

Boris Zbarsky. Web IDL. 15 December 2016. ED. URL: https://heycam.github.io/webidl/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels . March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

partial dictionary AuthenticationExtensionsClientInputs {
 USVString credentialProtectionPolicy;
 boolean enforceCredentialProtectionPolicy = false;
};

partial dictionary AuthenticationExtensionsClientInputs {
 boolean hmacCreateSecret;
};

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 boolean hmacCreateSecret;

[U2FUsbHid]

[WebAuthn]

[WEBAUTHN-1]

[WebIDL]

Informative References§

[RFC2119]

IDL Index§

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn-1/
https://www.w3.org/TR/webauthn-1/
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#idl-boolean
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://heycam.github.io/webidl/#idl-boolean

};

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

	Local Disk
	Client to Authenticator Protocol (CTAP)

