QD

A
4

YA,
N2
U
™ %
o \

ALLIANCE

FIDO Metadata Statements
FIDO Alliance Review Draft 02 July 2018

This version:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-statement-v2.0-rd-20180702.html
Previous version:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
Editors:
Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance
Contributors:
Brad Hill, PayPal. Inc.
Davit Baghdasaryan, Nok Nok Labs. Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

FIDO authenticators may have many different form factors, characteristics and capabilities. This document defines a
standard means to describe the relevant pieces of information about an authenticator in order to interoperate with it, or to
make risk-based policy decisions about transactions involving a particular authenticator.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https.//www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments are
welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the Specification
may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the Specification.
No rights are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce portions of
this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is
available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-statement-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents

e 1. Notation
o 1.1 Conformance

e 2. Overview
o 2.1 Scope
o 2.2 Audience
o 2.3 Architecture
e 3.Types
o 3.1 Authenticator Attestation GUID (AAGUID) typedef
o 3.2 CodeAccuracyDescriptor dictionary
= 3.2.1 Dictionary CodeAccuracyDescriptor Members
o 3.3 BiometricAccuracyDescriptor dictionary
= 3.3.1 Dictionary BiometricAccuracyDescriptor Members
o 3.4 PatternAccuracyDescriptor dictionary
= 3.4.1 Dictionary PatternAccuracyDescriptor Members

o 3.5 VerificationMethodDescriptor dictionary
= 3.5.1 Dictionary VerificationMethodDescriptor Members
o 3.6 verificationMethodANDCombinations typedef
o 3.7 rgbPaletteEntry dictionary
= 3.7.1 Dictionary rgbPaletteEntry Members
o 3.8 DisplayPNGCharacteristicsDescriptor dictionary
= 3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

o 3.9 EcdaaTrustAnchor dictionary
m 3.9.1 Dictionary EcdaaTrustAnchor Members

o

3.10 ExtensionDescriptor dictionary
= 3.10.1 Dictionary ExtensionDescriptor Members

o

3.11 AlternativeDescriptions dictionary
= 3.11.1 Dictionary AlternativeDescriptions Members

4. Metadata Keys
o 4.1 Dictionary MetadataStatement Members

5. Metadata Statement Format
o 5.1 UAF Example
o 5.2 U2F Example
o 5.3 FIDO2 Example

6. Additional Considerations
o 6.1 Field updates and metadata

e A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in ”, e.g. “UAF-TLV”.

In formulas we use

nlu

to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members musT NoT have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it musT NOT be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must NoT be an empty list.

All diagrams, examples, notes in this specification are non-normative.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members
are marked in the WebIDL definitions found in this document, as required. The keyword required has been introduced
by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which implements [WebIDL], then
you may remove the keyword required from your WebIDL and use other means to ensure those fields are present.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words MusT, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and opTIoNAL in this specification are to be
interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety of different
devices in a competitive marketplace. Much of the complexity behind this variety is hidden from Relying Party applications,
but in order to accomplish the goals of FIDO, Relying Parties must have some means of discovering and verifying various
characteristics of authenticators. Relying Parties can learn a subset of verifiable information for authenticators certified by
the FIDO Alliance with an Authenticator Metadata statement. The URL to access that Metadata statement is provided by
the Metadata TOC file accessible through the Metadata Service [FIDOMetadataService].

For definitions of terms, please refer to the FIDO Glossary [FIDOGlossary].

2.1 Scope

This document describes the format of and information contained in Authenticator Metadata statements. For a definitive list
of possible values for the various types of information, refer to the FIDO Registry of Predefined Values [FIDORegistry].

The description of the processes and methods by which authenticator metadata statements are distributed and the
methods how these statements can be verified are described in the Metadata Service Specification
[FIDOMetadataService].

2.2 Audience

The intended audience for this document includes:

e FIDO authenticator vendors who wish to produce metadata statements for their products.

o FIDO server implementers who need to consume metadata statements to verify characteristics of authenticators and
attestation statements, make proper algorithm choices for protocol messages, create policy statements or tailor
various other modes of operation to authenticator-specific characteristics.

e FIDO relying parties who wish to
o create custom policy statements about which authenticators they will accept

o risk score authenticators based on their characteristics

o verify attested authenticator IDs for cross-referencing with
third party metadata

2.3 Architecture

RP Server

Metadata
Platform FIDO Server Statement incl.
(OS, BFOWSEF) Attestation Trust
Anchor

FIDO
Authenticator

.
FIDO FIDO Metadata Other Metadata
Sources

Authenticator Service

Fig. 1 The FIDO Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the information contained in
the authoritative statement is used in several other places. How a server obtains these metadata statements is described in
[FIDOMetadataService].

The workflow around an authenticator metadata statement is as follows:

1.

The authenticator vendor produces a metadata statement, that is UTF-8 encoded, describing the characteristics of an
authenticator.

. The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification process. The FIDO

Alliance distributes the metadata as described in [FIDOMetadataService].

. A FIDO relying party configures its registration policy to allow authenticators matching certain characteristics to be

registered.

4. The FIDO server sends a registration challenge message. This message can contain such policy statement.

10.

Depending on the FIDO protocol being used, either the relying party application or the FIDO UAF Client receives the
policy statement as part of the challenge message and processes it. It queries available authenticators for their self-
reported characteristics and (with the user's input) selects an authenticator that matches the policy, to be registered.

The client processes and sends a registration response message to the server. This message contains a reference to
the authenticator model and, optionally, a signature made with the private key corresponding to the public key in the
authenticator's attestation certificate.

. The FIDO Server looks up the metadata statement for the particular authenticator model. If the metadata statement

lists an attestation certificate(s), it verifies that an attestation signature is present, and made with the private key
corresponding to either (a) one of the certificates listed in this metadata statement or (b) corrsponding to the public
key in a certificate that chains to one of the issuer certificates listed in the authenticator's metadata statement.

The FIDO Server next verifies that the authenticator meets the originally supplied registration policy based on its
authoritative metadata statement. This prevents the registration of unexpected authenticator models.

Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the authenticator,
based on its metadata, including elements not selected for by the stated policy.

Optionally, a FIDO Server may cross-reference the attested authenticator model with other metadata databases

published by third parties. Such third-party metadata might, for example, inform the FIDO Server if an authenticator
has achieved certifications relevant to certain markets or industry verticals, or whether it meets application-specific
regulatory requirements.

3. Types
This section is normative.

3.1 Authenticator Attestation GUID (AAGUID) typedef

WebIDL

typedef DOMString AAGUID;

string[36]

Some authenticators have an AAGUID, which is a 128-bit identifier that indicates the type (e.g. make and model) of the
authenticator. The AAGUID musT be chosen by the manufacturer to be identical across all substantially identical

authenticators made by that manufacturer, and different (with probability 1-27128 or greater) from the AAGUIDs of all other
types of authenticators.

The AAGUID is represented as a string (e.g. "7a98c250-6808-11cf-b73b-00aa00b677a7") consisting of 5 hex strings
separated by a dash ("-"), see [RFC4122].

3.2 CodeAccuracyDescriptor dictionary

The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user verification methods.

NOTE
One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral systembase (radix) and minLen, instead of the number of potential combinations since
there is sufficient evidence [iPhonePasscodes] [MoreTopWorstPasswords] that users don't select their code evenly
distributed at random. So software might take into account the various probability distributions for different bases.
This essentially means that in practice, passcodes are not as secure as they could be if randomly chosen.

WebIDL

dictionary CodeAccuracyDescriptor {
required unsigned short base;
required unsigned short minLength;
unsigned short maxRefries;
unsigned short blockSlowdown;

|

3.2.1 Dictionary CodeAccuracyDescriptor Members

base of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4 digits.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means this
user verification method will be blocked, either permanently or until an alternative user verification method
method succeeded. All alternative user verification methods musT be specified appropriately in the Metadata in
userVerificationDetails.

3.3 BiometricAccuracyDescriptor dictionary

The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a biometric user verification
method, see [FIDOBiometricsRequirements].

At least one of the valueswmusT be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.baDesc MUST be omitted.
NOTE

Typical fingerprint sensor characteristics can be found in Google Android 6.0 Compatibility Definition and Apple iOS
Security Guide.

WebIDL

dictionary BiometricAccuracyDescriptor {
double selfAttestedFRR;
double seifAttestedFAR;
unsigned short maxTemplates;
unsigned short maxRetries;
unsigned short blockSlowdown;

3.3.1 Dictionary BiometricAccuracyDescriptor Members

selfAttestedFRR of type double
The false rejection rate [ISO19795-1] for a single template, i.e. the percentage of verification transactions with
truthful claims of identity that are incorrectly denied. For example a FRR of 10% would be encoded as 0.1.

This value is self attested and, if the authenticator passed biometric certification, the data is an independently
verified FRR as measured when meeting the FRR target specified in the biometric certification requirements
[FIDOBiometricsRequirements] for the indicated biometric certification level (see certLevel in related
biometricStatusReport as specified in [FIDOMetadataService]).

NOTE

The false rejection rate is relevant for user convenience. Lower false rejection rates mean better
convenience.

selfAttestedFAR of type double
The false acceptance rate [ISO19795-1] for a single template, i.e. the percentage of verification transactions with
wrongful claims of identity that are incorrectly confirmed. For example a FAR of 0.002% would be encoded as
0.00002.

This value is self attested and, if the authenticator passed biometric certification, the data is an independently
verified FAR specified in the biometric certification requirements [FIDOBiometricsRequirements] for the indicated
biomeric certification level (see certLevel in related biometricStatusReport as specified in
[FIDOMetadataService]).

NOTE
The resulting FAR when all templates are used is approx. maxTemplates * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

maxTemplates Of type unsigned short
Maximum number of alternative templates from different fingers allowed (for other modalities, multiple parts of
the body that can be used interchangeably), e.g. 3 if the user is allowed to enroll up to 3 different fingers to a
fingerprint based authenticator.

If the authenticator passed biometric certification this value defaults to 1. For maxTemplates greater than one, it
sHALL be independently verified to ensure FAR meets biometric performance requirements of certLevel (of the
related biometricStatusReport as specified in [FIDOMetadataService]).

https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://www.apple.com/business/docs/iOS_Security_Guide.pdf

If the authenticator did not pass biometric certification, vendor can submit any number, but this number has not
been validated for biometric performance requirements.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0

means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means that
this user verification method will be blocked either permanently or until an alternative user verification method
succeeded. All alternative user verification methods musT be specified appropriately in the metadata in

userVerificationDetails.

3.4 PatternAccuracyDescriptor dictionary

The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern is used as the user
verification method.

NOTE

One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern] screen unlock. The
minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN, the minimum allowed for this
mechanism.

WebIDL

dictionary PatternAccuracyDescriptor {
required unsigned long minComplexity;
unsigned short maxRetries; ‘
unsigned short biockSlowdown;

2

3.4.1 Dictionary PatiernAccuracyDescriptor Members

minComplexity of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the right one, i.e.

1/probability in the case of equal distribution.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this method (at least

temporarily). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar mechanism). 0
means this user verification method will be blocked, either permanently or until an alternative user verification
method method succeeded. All alternative user verification methods musT be specified appropriately in the
metadata under userVerificationDetails.

3.5 VerificationMethodDescriptor dictionary

A descriptor for a specific base user verification methodas implemented by the authenticator.

A base user verification method must be chosen from the list of those described in FIDORegistry]

NOTE

In reality, several of the methods described above might be combined. For example, a fingerprint based user
verification can be combined with an alternative password.

The specification of the related AccuracyDescriptor is optional, but recommended.

WebIDL

dictionary VerificationMethodDescriptor {

required unsigned long userVerification;

CodeAccuracyDescriptor
BiometricAccuracyDescriptor

3.5.1 Dictionary VerificationMethodDescriptor Members

userVerification of type required unsigned long
a single USER_VERIFY constant (see [FIDORegistry]), not a bit flag combination. This value musT be non-zero.

caDesc Of type CodeAccuracyDescriptor
May optionally be used in the case of methodUSER_VERIFY_PASSCODE.

baDesc of type BiometricAccuracyDescriptor
May optionally be used in the case of method USER_VERIFY_FINGERPRINT, USER_VERIFY_VOICEPRINT,
USER_VERIFY_FACEPRINT, USER_VERIFY_EYEPRINT, or USER_VERIFY_HANDPRINT.

paDesc of type PatternAccuracyDescriptor
May optionally be used in case of methodUSER VERIFY_PATTERN.

3.6 verificationMethodANDCombinations typedef

WebIDL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethod ANDCombinations MUsT be non-empty. It is a list containing the base user verification methods which must be
passed as part of a successful user verification.

This list will contain only a single entry if using a single user verification method is sufficient.

If this list contains multiple entries, then all of the listed user verification methods musT be passed as part of the user
verification process.

3.7 rgbPaletteEntry dictionary

The rgbPaletteEntry is an RGB three-sample tuple palette entry

WebIDL

dictionary rgbPaletteEntry {
required unsigned short r;
required unsigned short g;
required unsigned short b

I

3.7.1 Dictionary rgbPaletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.8 DisplayPNGCharacteristicsDescriptor dictionary

The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG [PNG] spec for
IHDR (image header) and PLTE (palette table)

WebIDL

dictionary DisplayPNGCharacteristicsDescriptor {
required unsigned long width;
required unsigned long h ;
required octet

required octet colorType;

required octet compression;
required octet filte(;
required octet interlace;

rgbPaletteEntry[] plte;

3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

width of type required unsigned long
image width

height of type required unsigned long
image height

bitDepth of type required octet
Bit depth - bits per sample or per palette index.

colorType of type required octet
Color type defines the PNG image type.

compression Of type required octet
Compression method used to compress the image data.

filter of type required octet
Filter method is the preprocessing method applied to the image data before compression.

interlace Of type required octet
Interlace method is the transmission order of the image data.

plte of type array of rgbPaletteEntry
1 to 256 palette entries

3.9 EcdaaTrustAnchor dictionary

In the case of ECDAA attestation, the ECDAA-Issuer's trust anchomusT be specified in this field.

WebIDL

dictionary EcdaaTrustAnchor {
required DOMString X;
required DOMString V;
required DOMString c;
required DOMString sx;
required DOMString sy;
required DOMString G1Curve;

3.9.1 Dictionary EcdaaTrustAnchor Members

X of type required DOMString

base64url encoding of the result of ECPoint2ToB of the ECPoint2X = P See [FIDOEcdaaAlgorithm] for the
definition of ECPoint2ToB.

Y of type required DOMString

Yy
base64url encoding of the result of ECPoint2ToB of the ECPoint2Y = P%. See [FIDOEcdaaAlgorithm] for the
definition of ECPoint2ToB.

c of type required DOMString
base64url encoding of the result of BigNumberToB(c). See section "Issuer Specific ECDAA Parameters” in
[FIDOEcdaaAlgorithm] for an explanation of c. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sx of type required DOMString
base64url encoding of the result of BigNumberToB(sx). See section "Issuer Specific ECDAA Parameters” in
[FIDOEcdaaAlgorithm] for an explanation of sxz. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sy of type required DOMString
base64url encoding of the result of BigNumberToB(sy). See section "Issuer Specific ECDAA Parameters" in

[FIDOEcdaaAlgorithm] for an explanation of sy. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.
G1curve of type required DOMString

Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256", and "BN_ISOP512"
are supported. See section "Supported Curves for ECDAA" in [FIDOEcdaaAlgorithm] for details.

NOTE

Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly generated by
verifying s, sz, sy. See [FIDOEcdaaAlgorithm] for details.

3.10 ExtensionDescriptor dictionary

This descriptor contains an extension supported by the authenticator.

WebIDL

dictionary ExtensionDescriptor {
required DOMString id;
unsigned short tag;
DOMString data;
required boolean ~fail_if_unknown;

|8

3.10.1 Dictionary ExtensionDescriptor Members

id of type required DOMString
Identifies the extension.
tag of type unsigned short

The TAG of the extension if this was assigned. TAGs are assigned to extensions if they could appear in an
assertion.

data of type DOMString
Contains arbitrary data further describing the extension and/or data needed to correctly process the extension.

This field may be missing or itmay be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (irue) when the extension
is to be processed by the FIDO Server, FIDO Client, ASM, or FIDO Authenticator.

¢ A value of false indicates that unknown extensions musT be ignored

e A value oftrue indicates that unknown extensions musT result in an error.

3.11 AlternativeDescriptions dictionary

This descriptor contains description in alternative languages.

WebIDL

dictionary AlternativeDescriptions {
DOMString *IETFLanguageCodes-members...;

I

3.11.1 Dictionary AlternativeDescriptions Members

*|[ETFLanguageCodes-members... Of type DOMString

IETF language codes ([RFC5646]), defined by a primary language subtag, followed by a region subtag based on
a two-letter country code from [ISO3166] alpha-2 (usually written in upper case), e.g: Austrian-German - "de-AT".
In case of absence of the specific territorial language definition, vendor should fallback to the more general
language option, e.g: If "de" is given, but "de-AT" is missing, the use "de" entry instead.

Description values can contain any UTF-8 characters.
For example: { "ru-RU": "Mpwumep U2F ayteHnTtuncpukaropa ot FIDO Alliance", "fr-FR": "Exemple U2F authenticator de FIDO Alliance" }
Each description sHALL NOT exceed a maximum length of 200 characters.

4. Metadata Keys

This section is normative.

WebIDL

dictionary MetadataStatement {

DOMString legalHeader;

AAID i

AAGUID

DOMString[] attestationCertificateKeyldentifiers;
required DOMString description;
AlternativeDescriptions "TalternativeDescriptions;
required unsigned short thenticatorVersion;
DOMString

required Version[]
required DOMString

required unsigned short authenticationAlgorithm;
unsigned short[] authenticationAlgorithms;
required unsigned short publicKeyAlgAndEncoding;
unsigned short[] publickeyAlgAndEncodings;
required unsigned short[] attestationTypes;

required VerificationMethodANDCombinations(] userVerificationDetails;
required unsigned short keyProtection;

boolean iskeyRestricted;

boolean isFreshUserVerificationRequired;
required unsigned short matcherProtection;
unsigned short

DOMString

required unsigned long
required boolean
required unsigned short

DOMString tcDisplayContentType;
DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
required DOMString([] attestationRootCertificates;
EcdaaTrustAnchor(] ecdaaTlrustAnchors;

DOMString icon; T
ExtensionDescriptor supportedExtensions[];

4.1 Dictionary MetadataStatement Members

legalHeader of type DOMString
The legalHeader, if present, contains a legal guide for accessing and using metadata, which itself may contain
URL(s) pointing to further information, such as a full Terms and Conditions statement.

aaid of type AAID
The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure. This field musT be set
if the authenticator implements FIDO UAF.

NOTE
FIDO UAF Authenticators support AAID, but they don't support AAGUID.

It is always expected that the UAF Authenticator (or at least the UAF ASM) knows and provides the correct
AAID.

aaguid of type AAGUID
The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure. This
field musT be set if the authenticator implements FIDO 2.

NOTE

FIDO 2 Authenticators support AAGUID, but they don't support AAID.

attestationCertificateKeyldentifiers of type array of DOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value musT be calculated
according to method 1 for computing the keyldentifier as defined in [RFC5280] section 4.2.1.2. The hex string
MUST NOT contain any non-hex characters (e.g. spaces). All hex letters musT be lower case. This field musT be set if
neither aaid nor aaguid are set. Setting this field implies that the attestation certificate(s) are dedicated to a single
authenticator model.

All attestationCertificateKeyldentifier values should be unique within the scope of the Metadata Service.

NOTE

FIDO U2F Authenticators typically do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

description of type required DOMString
A human-readable, short description of the authenticator, in English.

NOTE

This description should help an administrator configuring authenticator policies. This description might
deviate from the description returned by the ASM for that authenticator.

This description should contain the public authenticator trade name and the publicly known vendor name.

This description musT be in English, and only contain ASCII ECMA-262] characters.
This description sHALL NOT exceed a maximum length of 200 characters.

alternativeDescriptions Of type AlternativeDescriptions
A list of human-readable short descriptions of the authenticator in different languages.

authenticatorVersion of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this metadata statement.

Adding new statusReport entries with status UPDATE AVAILABLE to the metadata TOC object [FIDOMetadataService]
MusT also change this authenticatorVersion if the update fixes severe security issues, e.g. the ones reported by
preceding StatusReport entries with status code USER_VERIFICATION_BYPASS, ATTESTATION_KEY_COMPROMISE,
USER_KEY_REMOTE_COMPROMISE, USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

It is RecommENDED to assume increased risk if this version is higher (newer) than the firmware version present in
an authenticator. For example, if a StatusReport entry with status USER_VERIFICATION_BYPASS or
USER_KEY_REMOTE_COMPROMISE precedes the UPDATE_AVAILABLE entry, than any firmware version lower (older)
than the one specified in the metadata statement is assumed to be vulnerable.

protocolFamily of type DOMString
The FIDO protocol family. The values "uaf", "u2f", and "fido2" are supported. If this field is missing, the assumed
protocol family is "uaf". Metadata Statements for U2F authenticators musT set the value of protocolFamily to "u2f"
and FIDO 2.0/WebAuthentication Authenticator implementations musT set the value of protocolFamily to "fido2".

upv of type array ofrequired Version
The FIDO unified protocol version(s) (related to the specific protocol family) supported by this authenticator. See
[UAFProtocol] for the definition of theVersion structure.

assertionScheme 0of type required DOMString
The assertion scheme supported by the authenticator. Must be set to one of the enumerated strings defined in
the FIDO UAF Registry of Predefined Values [UAFRegistry], or to "U2FV1BIN" in the case of the U2F raw
message format, or to "FIDOV2" in the case of the FIDO 2/WebAuthentication assertion scheme.

authenticationAlgorithm of type required unsigned short
The preferred authentication algorithm supported by the authenticator. Must be set to one of the ALG_ constants
defined in the FIDO Registry of Predefined Values [FIDORegistry]. This value must be non-zero.

authenticationAlgorithms of type array ofunsigned short
The list of authentication algorithms supported by the authenticator. Must be set to the complete list of the

supported ALG constants defined in the FIDO Registry of Predefined Values [FIDORegistry] if the authenticator
supports multiple algorithms. Each value must be non-zero.

NOTE

FIDO UAF Authenticators
For verification purposes, the fieldSignatureAlgAndEncoding in the FIDO UAF authentication assertion
[UAFAuthnrCommands] should be used to determine the actual signature algorithm and encoding.

FIDO U2F Authenticators
FIDO U2F only supports one signature algorithm and encoding:
ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW [FIDORegistry].

publicKeyAlgAndEncoding of type required unsigned short
The preferred public key format used by the authenticator during registration operations. Must be set to one of
the ALG_KEY constants defined in the FIDO Registry of Predefined Values [FIDORegistry]. Because this
information is not present in APIs related to authenticator discovery or policy, a FIDO server musT be prepared to
accept and process any and all key representations defined for any public key algorithm it supports. This value
musT be non-zero.

publicKeyAlgAndEncodings of type array ofunsigned short
The list of public key formats supported by the authenticator during registration operations. Must be set to the
complete list of the supported ALG_KEY constants defined in the FIDO Registry of Predefined Values
[FIDORegistry] if the authenticator model supports multiple encodings. Because this information is not present in
APIs related to authenticator discovery or policy, a FIDO server musT be prepared to accept and process any and
all key representations defined for any public key algorithm it supports. Each value musT be non-zero.

NOTE

FIDO UAF Authenticators
For verification purposes, the field PublickeyAlgAndEncoding in the FIDO UAF registration assertion
[UAFAuthnrCommands] should be used to determine the actual encoding of the public key.

FIDO U2F Authenticators
FIDO U2F only supports one public key encoding: ALG KEY_ECC_x962 RAW [FIDORegistry].

attestationTypes oOf type array ofrequired unsigned short
The supported attestation type(s). (€.g. ATTESTATION_BASIC_FULL(0x3E07),
ATTESTATION_BASIC_SURROGATE(0x3E08)).

See section 3.6.3 of FIDO Registry [FIDORegistry] for all available attestation formats

userVerificationDetails Of type array ofrequired VerificationMethodANDCombinations
A list of alternative VerificationMethodANDCombinations. Each of these entries is one alternative user
verification method. Each of these alternative user verification methods might itself be an "AND" combination of
multiple modalities.

All effectively available alternative user verification methodsmusT be properly specified here. A user verification
method is considered effectively available if this method can be used to either:

¢ enroll new verification reference data to one of the user verification methods
or
¢ unlock the UAuth key directly after successful user verification
keyProtection of type required unsigned short

A 16-bit number representing the bit fields defined by the KEY_PROTECTION constants in the FIDO Registry of
Predefined Values [FIDORegistry].

This value musT be non-zero.

NOTE

The keyProtection specified here denotes the effective security of the attestation key and Uauth private
key and the effective trustworthiness of the attested attributes in the “sign assertion”. Effective security
means that key extraction or injecting malicious attested attributes is only possible if the specified
protection method is compromised. For example, if keyProtection=TEE is stated, it shall be impossible to
extract the attestation key or the Uauth private key or to inject any malicious attested attributes without
breaking the TEE.

isKeyRestricted of type boolean

This entry is set totrue, if the Uauth private key is restricted by the authenticator to only sign valid FIDO signature
assertions.

This entry is set tofalse, if the authenticator doesn't restrict the Uauth key to only sign valid FIDO signature
assertions. In this case, the calling application could potentially get any hash value signed by the authenticator.

If this field is missing, the assumed value is isKeyRestricted=irue

NOTE

Note that only in the case of isKeyRestricted=rue, the FIDO server can trust a signature counter or
transaction text to have been correctly processed/controlled by the authenticator.

isFreshUserVerificationRequired of type boolean
This entry is set totrue, if Uauth key usage always requires a fresh user verification.
If this field is missing, the assumed value is isFreshUserVerificationRequired=rue.

This entry is set tofalse, if the Uauth key can be used without requiring a fresh user verification, e.g. without any
additional user interaction, if the user was verified a (potentially configurable) caching time ago.

In the case of isFreshUserVerificationRequired=alse, the FIDO server musT verify the registration response and/or
authentication response and verify that the (maximum) caching time (sometimes also called "authTimeout") is
acceptable.

This entry solely refers to the user verification. In the case of transaction confirmation, the authenticator must
always ask the user to authorize the specific transaction.
NOTE

Note that in the case of isFreshUserVerificationRequired=alse, the calling App could trigger use of the key
without user involvement. In this case it is the responsibility of the App to ask for user consent.

matcherProtection oOf type required unsigned short
A 16-bit number representing the bit fields defined by the MATCHER PROTECTION constants in the FIDO Registry
of Predefined Values [FIDORegistry].

This value musT be non-zero.

NOTE

If multiple matchers are implemented, then this value must reflect the weakest implementation of all
matchers.

The matcherProtection specified here denotes the effective security of the FIDO authenticator’s user
verification. This means that a false positive user verification implies breach of the stated method. For
example, if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key
when bypassing the user verification without breaking the TEE.

cryptoStrength of type unsigned short

The authenticator's overall claimed cryptographic strength in bits (sometimes also called security strength or
security level). This is the minimum of the cryptographic strength of all involved cryptographic methods (e.g.
RNG, underlying hash, key wrapping algorithm, signing algorithm, attestation algorithm), e.g. see [FIPS180-4],
[FIPS186-4], [FIPS198-1], [SP800-38B], [SP800-38C], [SP800-38D], [SP800-38F], [SP800-90C], [SP800-90ar1],
[FIPS140-2] etc.

If this value is absent, the cryptographic strength is unknown. If the cryptographic strength of one of the involved
cryptographic methods is unknown the overall claimed cryptographic strength is also unknown.

operatingEnv of type DOMString
Description of the particular operating environment that is used for the Authenticator. These are specified in
[FIDORestrictedOperatingEnv].

attachmentHint of type required unsigned long
A 32-bit number representing the bit fields defined by the ATTACHMENT _HINT constants in the FIDO Registry of
Predefined Values [FIDORegistry].

NOTE

The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set ATTACHMENT HINT_EXTERNAL but not
ATTACHMENT_HINT_INTERNAL.

isSecondFactorOnly of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some other
authentication method as a first factor (e.g. username+password).

teDisplay of type required unsigned short
A 16-bit number representing a combination of the bit flags defined by the TRANSACTION_CONFIRMATION_DISPLAY
constants in the FIDO Registry of Predefined Values [FIDORegistry].

This value musT be 0, if transaction confirmation is not supported by the authenticator.

NOTE

The tcDisplay specified here denotes the effective security of the authenticator’s transaction confirmation
display. This means that only a breach of the stated method allows an attacker to inject transaction text to
be included in the signature assertion which hasn't been displayed and confirmed by the user.

tcDisplayContentType of type DOMString
Supported MIME content type [RFC2049] for the transaction confirmation display, such as text/plain Or image/png.

This value musT be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor
A list of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative of supported
image characteristics for displaying a PNG image.

This list musT be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero and
tcDisplayContentType iS image/png.

attestationRootCertificates oOf type array ofrequired DOMString
Each element of this array represents a PKIX RFC5280] X.509 certificate that is a valid trust anchor for this
authenticator model. Multiple certificates might be used for different batches of the same model. The array does
not represent a certificate chain, but only the trust anchor of that chain. A trust anchor can be a root certificate,
an intermediate CA certificate or even the attestation certificate itself.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value. Each element musT be dedicated for authenticator attestation.

NOTE

A certificate listed here is a trust anchor. It might be the actual certificate presented by the authenticator,
or it might be an issuing authority certificate from the vendor that the actual certificate in the authenticator
chains to.

In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain are
included in the registration assertion (see [UAFAuthnrCommands]).

Either
1. the manufacturer attestation trust anchor
or
2. the trust anchor dedicated to a specific authenticator model

MusT be specified.

In the case (1), the trust anchor certificate might cover multiple authenticator models. In this case, it must be
possible to uniquely derive the authenticator model from the Attestation Certificate. When using AAID or
AAGUID, this can be achieved by either specifying the AAID or AAGUID in the attestation certificate using the
extension id-fido-gen-ce-aaid {1 36 1 4 1 45724 1 1 1 } or id-fido-gen-ce-aaguid {136 14 145724114} or -
when neither AAID nor AAGUID are defined - by using the attestationCertificateKeyldentifier method.

In the case (2) this is not required as the trust anchor only covers a single authenticator model.

When supporting surrogate basic attestation only (see [UAFProtocol], section "Surrogate Basic Attestation"), no
attestation trust anchor is required/used. So this array must be empty in that case.

ecdaaTrustAnchors of type array of EcdaaTrustAnchor
A list of trust anchors used for ECDAA attestation. This entry musT be present if and only if attestationType
includes ATTESTATION_ECDAA. The entries in attestationRootCertificates have no relevance for ECDAA
attestation. Each ecdaaTrustAnchor musT be dedicated to a single authenticator model (e.g as identified by its
AAID/AAGUID).

icon of type DOMString
A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

supportedExtensions[] of type ExtensionDescriptor
List of extensions supported by the authenticator.

5. Metadata Statement Format

This section is non-normative.

NORMATIVE

A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary MetadataStatement.

5.1 UAF Example
Example of the metadata statement for an UAF authenticator with:

e authenticatorVersion 2.

o Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance rate of 0.002% and rate
limiting attempts for 30 seconds after 5 false trials.

o Authenticator is embedded with the FIDO User device.

e The authentication keys are protected by TEE and are restricted to sign valid FIDO sign assertions only.
e The (fingerprint) matcher is implemented in TEE.

e The Transaction Confirmation Display is implemented in a TEE.

e The Transaction Confirmation Display supports display of "image/png" objects only.

o Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color (=Color Type
2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) and no interlacing support

(interlace method=0).

The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.
It supports the "UAFV1TLV" assertion scheme.

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.

It uses the ALG_KEY _ECC_x962_RAW public key format (0x100=256 decimal).

It only implements the ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).

It implements UAF protocol version (upv) 1.0 and 1.1.

{
"description": "FIDO Alliance Sample UAF Authenticator",
"aaid": "1234#5678",
"alternativeDescriptions": {
"ru-RU": "Mpumep UAF ayteHnTudoukartopa ot FIDO Alliance",
"fr-FR": "Exemple UAF authenticator de FIDO Alliance"
2
"authenticatorVersion": 2,
"upv": [
{ "major": 1, "minor": 0 },
{ "major": 1, "minor": 1 }
I

"assertionScheme": "UAFV1TLV",

"authenticationAlgorithm": 1,

"publicKeyAlgAndEncoding": 256,

"attestationTypes": [15879],

"userVerificationDetails": [

i
"userVerification": 2,
"baDesc": {
"selfAttestedFAR": 0.00002,
"maxRetries": 5,
"blockSlowdown": 30,
"maxTemplates": 5
}
1

I

"keyProtection": 6,

"isKeyRestricted": true,

"matcherProtection": 2,

"cryptoStrength": 128,

"operatingEnv": "TEEs based on ARM TrustZone HW",

"attachmentHint": 1,

"isSecondFactorOnly": false,

"tcDisplay": 5,

"tcDisplayContentType": "image/png",

"tcDisplayPNGCharacteristics": [{

"width": 320,
"height": 480,
"bitDepth": 16,
"colorType": 2,
"compression": 0,
"filter": 0,
"interlace": 0

1,

"attestationRootCertificates": [
"MIICPTCCAeOgAwIBAglJAOuexvU30y2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRIc3RhdGIvbiBSb290MRYwWFAYDVQQKDA1GSURPIEFsbGIhbmNI
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAKGA1UEBhMCVVMwHhcNMTQwWN]E4MTMzMzMyWhcNNDEXMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXNOYXRpb24gUm9vdDEWMBQGA1UECgwN
RKIETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOEXxCzAJBgNVBAYTAIVTMFkwEWYHKo0ZIzjOCAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqgOBb58pxGqHJRyX/6NQME4wHQYDVROOBBYEFPoHA3CLhxFb
COIt7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbCOIt7zE4w8hk5EJ/MAWG
A1UdEWQFMAMBAf8wCgYIKoZIzj0EAwWIDSAAWRQIhAJOBQSXt9ihIbEKYKIjsPkri
VdLlIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjlzA9Xm63rruAxBZ9ps9z2XN
1Q=="

I

"icon": "data:image/png;base64,
iVBORwWOKGgoAAAANSUhEUgAAAEBAAAAVCAYAAACiIwJicAAAAAXNSROIArs4c6QAAAARNQU1BAACX
jwv8YQUAAAAJCEhZcwAADsSMAAA7DAcdvgGQAAAahSURBVGhD7Zr5bxRIGMfO9KzTBBAM/YEhE2W7p
QZcWKKBCcISpHATIELARE7KNECCA3FKWKOCKKSCFIskBcgVCDWGNESdAYidwgggJdBiRiMhFc/4wy8

884zu9NdInGTfZJP2n3n0O++88933fveBBx+PqCzJkTUVBbLMmpUDWVBTImpcCSZvXLCAX9R05Sk19
bb5atf599fG+/erA541g47aP1LLVa9SlyVNUi8li8d5kGTsiB0NFv7ai9n7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWve0506q227
dtuWBIuffreoWpVOFPNLhow1751Nm21LvPH3rViWjfz66Lfql8tX7FRI9OYFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvpOkZHmMTZg9x7bLHcMnThb16eJ+mViQq8yaUZQNG64i
XZ+0/kq6uOZFO0QtatdWKIXnRQ99Bj91R501Fnk54jNOmMkUiglO3XDW+MI+98mKB6tW7rWpZcPc+
0zg4tLrYIUc86E6eGDjIMubVpcusearfglY GRkébrhZVr/JcHzooL7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8Hutx530h0ob+jmRYqgj6ouaYvEe
nW/WIYjp8cwbMm682tPwgW1R4tj/2SH13IRJYI4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
8tQJ3bwFkwpFruOQ50s1r3levm8zZcq17+BBaw7K8IEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVNB82iuv38im7NtaXtV1CVqg6Rgw4pksmbdi3bu2De7YfaBBxcqfvgPrUjFQNTQ22IfdUVVTE8r T
JKF5DnSmUjgdag4mSS9pmsfDJR3GEToH0iIW9aV7LWLHYXKIITDtOLTAtkYlaamp1QjVv++uyGUxV
dJODNVXSm-+b1gRxpl84ddfX1Lp10/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57COKMWXefJdO
Z94bb90qd1RONS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc803acS6fDZFgKaXLsEJp5
rdrliBgp89cJcs/m7TvsO0rkjGiN4bOkPozZn3UJulOrnZ22yP1fmvUx+05gSqebV1m+zSuYNVhq7T
WbDiLVvljplLIop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqgee/NjYk6vEIK
9cwilc/STHf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
ZXHMmnCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEUzmMXqg/WjxObvNMbv7nhywsX2aVsWtC8+48aleap
E7p5wKZi0A2AQRV5nvR4E+udc+b61kApglnxBgmd/4V5QP/mt18HDC7sRHftmeu5imhVOrn/ALX2
32bqd4BFnDx7Vi1cWS2uff0lbB47gexxmUj9QutYjupd3tY D6abWBBMrh+apNbOKrNF1+ugCadri
XGfwMPPtViavhU3YMOAANnuUb/R0O7L0yOSeOadE88ApsXFGff30ynhlJgM51CUBVNIEzgnpvHBF Uy
iVraePiwJ53DF5ZTZnomENg85kNUd20Ji2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNgOidilGvA6DGu
eZwO78AAQnN6CiEK6+rw5VevjvgNDYPOolUwaKShrxAuXLIkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
U/JIINi6c6elRYdBpo6++Yfjx61IGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3Wp1LzNfNk54XxC1wDGUmMYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrtUMRJHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GaxQ6BzeNboBk5n8k4nebRh+k1hWixTFOD1EyWUs5nv+dgQgKaxzuCdEOQi
sHI02NQ8ah0mXr12La3mOfIwik9+wLNTMY/86MPo8yi310fxmT6PWoqG9+DZukYna56mSZt5WWSy
5gVA1rwUyJgXAlnzkiailgHSD7RkTyihogAAAABJRUSErkJggg=="

Example of an User Verification Methods entry for an authenticator with:

e Fingerprint based user verification method, with:
o the ability for the user to enroll up to 5 fingers (reference data sets) with
= 3 false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01% (0.0001).
= The fingerprint verification will be blocked after 5 unsuccessful attempts.

¢ A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification method. Entering the
PIN into the authenticator will be required to re-activate fingerprint based user verification after it has been blocked.

[
[{ "userVerification": 2, "baDesc": { "selfAttestedFAR": 0.00002, "maxTemplates": 5,

"maxRetries": 5, "blockSlowdown": 0} }],
[{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4} }1]

]

5.2 U2F Example
Example of the metadata statement for an U2F authenticator with:

e authenticatorVersion 2.

e Touch based user presence check.

o Authenticator is a USB pluggable hardware token.

o The authentication keys are protected by a secure element.

e The user presence check is implemented in the chip.

e The Authentiator is a pure second factor authenticator.

e |t supports the "U2FV1BIN" assertion scheme.

e It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.
e ltuses the ALG_KEY_ECC_x962_RAW public key format (0x100=256 decimal).

e It only implements the ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).
o |t implements U2F protocol version 1.0 only.

{

"description": "FIDO Alliance Sample U2F Authenticator",

"alternativeDescriptions™: {

"ru-RU": "Mpumep U2F ayteHTndoukatopa ot FIDO Alliance”,
"fr-FR": "Exemple U2F authenticator de FIDO Alliance",
"zh-CN":" FIDO Alliance U2F

b

"attestationCertificateKeyldentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],

"protocolFamily": "u2f",

"authenticatorVersion": 2,

"upv": [

{ "major": 1, "minor": 0 }

I8
"assertionScheme": "U2FV1BIN",
"authenticationAlgorithm": 1,
"publicKeyAlgAndEncoding": 256,
"attestationTypes": [15879],
"userVerificationDetails": [

[{ "userVerification": 1 }]

I

"keyProtection": 10,

"matcherProtection": 4,

"cryptoStrength": 128,

"operatingEnv": "Secure Element (SE)",

"attachmentHint": 2,

"isSecondFactorOnly": true,

"tcDisplay": 0,

"attestationRootCertificates": [
"MIICPTCCAeOgAwIBAglJAOuexvU30y2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRIc3RhdGIvbiBSb290MRYwWFAYDVQQKDA1GSURPIEFsbGlhbmNI
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAKGA1UEBhMCVVMwHhcNMTQwN]E4MTMzMzMyWhcNNDEXMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXNOYXRpb24gUm9vdDEWMBQGA1UECgwN
RKIETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOEXCzAJBgNVBAYTAIVTMFkwEWYHKo0ZIzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGgHJRyX/6NQME4wHQYDVROOBBYEFPoHA3CLhxFb
COIt7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbCOIt7zE4w8hk5EJ/MAWG
A1UdEWQFMAMBAf8wCgYIKoZIzj0EAWIDSAAWRQIhAJOBQSXt9ihIbEKYKIjsPkri
VdLlIgtfsbDSu7ErJfzr4AiBqoYCZf0+z155aQeAHjlzA9Xm63rruAxBZ9ps9z2XN
1Q=="

I

"icon": "data:image/png;base64,
iVBORWOKGgoAAAANSUhEUgAAAEBAAAAVCAYAAACIwJfcAAAAAXNSROIArs4c6 QAAAARNQU1BAACX
jwv8YQUAAAAJCEhZcwAADsSMAAA7DAcdvagGQAAAahSURBVGhD7Zr5bxRIGMfO9KzTBSAM/YEhE2W7p
QZcWKKBcISpHATIELARE7KkNECCA3FkWKOCKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
884zu9NdInGTfZJP2n3nO++88933fveBBx+PqCzJkTUVBbLMpUDWVBTImpcCSZvXLCAX9R05Sk19
bb5atf599fG+/erA541g47aP1LLVa9SlyVNUi8li8d5kGTsiB0NFv7ai9n7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWve0506q227
dtuWBIuffr6oWpVOFPNLhow1751Nm21LvPH3rViWjfz66Lfql8tX7FRI9YFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvpOkZHmMTZg9x7bLHcMnThb16eJ+mViQq8yaUZQNG64i
XZ+0/kq6uOZFO0QtatdWKIXnRQ99Bj91R501Fnk54jNOmMkUiglO3XDW+MI+98mKB6tW7rWpZcPc+
0zg4tLrYIUc86E6eGDjIMubVpcusearfglY GRkébrhZVr/JcHzooL 7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqgj6ouaYvEe
nW/WIYjp8cwbMm682tPwgW1R4tj/2SH13IRJYI4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
8tQJ3bwFkwpFruOQ50s1r3levm8zZcq17+BBaw7K8IEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVNB82iuv38im7NtaXtV1CVqg6Rgw4pksmbdi3bu2De7YfaBBxcqfvgPrUjFQNTQ22IfdUVVTE8r T
JKF5DnSmUjgdag4mSS9pmsfDJR3GEToH0iIW9aV7LWLHYXKIITDtOLTAtkYlaamp1QjVv++uyGUxV
dJODNVXSm-+b1gRxpl84ddfX1Lp10/d69tsodOvs5hGre9xu8o+fpLR1cGhNTD6Z57 COKMWXefJdO
Z94bb90qd1RONS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc803acS6fDZFgKaXLsEJp5
rdrliBgp89cJcs/m7TvsO0rkjGfiN4bOkPoZn3UJulOrnZ22yP1fmvUx+05gSqebV1m+zSuYNVhq7T
WbDiLVvljplLIop6CLXP+2qtvGLIL/1vimISAMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6vEIK
9cwilUc/STtf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
ZXHMmnCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEUzmMXqg/WjxObvNMbv7nhywsX2aVsWtC8+48aleap
E7p5wKZi0A2AQRV5nvR4E+udc+b61kApglnxBgmd/4V5QP/mt18HDC7sRHftmeu5IimhVOrn/ALX2
32bqd4BFnDx7Vi1cWS2uff0lbB47gexxmUj9QutYjupd3tY D6abWBBMrh+apNbOKrNF1+ugCaéri
XGfwMPPtViavhU3YMOAANnuUb/R0O7L0yOSeOadE88ApsXFGff30ynhlJgM51CUBVNIEzgnpvHBF Uy
iVraePiwJ53DF5ZTZnomENg85kNUd20Ji2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNgOidilGvA6DGu
eZwO78AAQnN6CiEK6+rw5VevjvgNDYPOolUwaKShrxAuXLIkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
U/JIINi6c6elRYdBpo6++Yfjx61IGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3Wp1LzNfNk54XxC1wDGUmMYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrtUMRJHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GaxQ6BzeNboBk5n8k4nebRh+k1hWixTFOD1EyWUs5nv+dgQgKaxzuCdEOQi
sHI02NQ8ah0mXr12La3mOfIwik9+wLNTMY/86MPo8yi310fxmT6PWoqG9+DZukYna56mSZt5WWSy
5gVA1rwUyJgXAlnzkiailgHSD7RkTyihogAAAABJRUSErkJggg=="

5.3 FIDO2 Example
Example of the metadata statement for an FIDO2 authenticator with:

o AAGUID is set to 0132d110-bf4e-4208-a403-ab4f5f12efe5.

e authenticatorVersion is set to 2.

e Touch based user presence check.

o Authenticator is a USB pluggable hardware token.

o The authentication keys are protected by a secure element.

e The user presence check is implemented in the chip.

o It supports the "FIDOV2" assertion scheme.

e It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.
e It uses the ALG_KEY_COSE public key format (0x104=260 decimal).

e |t only implements the ATTESTATION_BASIC_FULL method (Ox3E07=15879 decimal).
e |t implements FIDO2 protocol version 1.0

{

"description": "FIDO Alliance Sample FIDO2 Authenticator",

"aaguid": "0132d110-bf4e-4208-a403-ab4f5f12efe5",

"alternativeDescriptions": {

"ru-RU": "Mpumep FIDO2 ayteHTudpmkartopa ot FIDO Alliance",
"fr-FR": "Exemple FIDO2 authenticator de FIDO Alliance",
"zh-CN":" FIDO Alliance FIDO2 "

2

"protocolFamily": "fido2",

"authenticatorVersion": 2,

"upv": [

{ "major": 1, "minor": 0 }

I
"assertionScheme": "FIDOV2",
"authenticationAlgorithm": 1,
"publicKeyAlgAndEncoding": 260,
"attestationTypes": [15879],
"userVerificationDetails": [

[{ "userVerification": 1 }]

I

"keyProtection": 10,

"matcherProtection": 4,

"cryptoStrength": 128,

"operatingEnv": "Secure Element (SE)",

"attachmentHint": 2,

"isSecondFactorOnly": false,

"tcDisplay": 0,

"attestationRootCertificates": [
"MIICPTCCAeOgAwIBAgIJAOuexvU30y2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRIc3RhdGIvbiBSb290MRYwWFAYDVQQKDA1GSURPIEFsbGlIhbmNI
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAKGA1UEBhMCVVMwHhcNMTQwN]E4MTMzMzMyWhcNNDEXMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXNOYXRpb24gUm9vdDEWMBQGA1UECgwN
RKIETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOExCzAJBgNVBAYTAIVTMFkwEWYHKoZIzj0OCAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGgHJRyX/6NQME4wHQYDVROOBBYEFPoHA3CLhxFb
COIt7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbCOIt7zE4w8hk5EJ/MAWG
A1UdEWQFMAMBAf8wCgYIKoZIzj0EAwWIDSAAWRQIhAJOBQSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+z155aQeAHjlzA9Xm63rruAxBZ9ps9z2XN
1Q=="],

"icon": "data:image/png;base64,
iVBORWOKGgoAAAANSUhEUgAAAEBAAAAVCAYAAACIwJIcAAAAAXNSROIArs4c6 QAAAARNQU1BAACX
jwv8YQUAAAAJCEhZcwAADsSMAAA7DAcdvgGQAAAahSURBVGhD7Zr5bxRIGMf9KzTBBAM/YEhE2W7p
QZcWKKBcISpHATIELARE7KkNECCA3FkWKOCKKSCFIskKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
884zu9NdInGTfZJP2n3n0O++88933fveBBx+PqCzJkTUvBbLmMpUDWVBTImpcCSZvXLCAX9R05Sk19
bb5atf599fG+/erA541g47aP1LLVa9SlyVNUIi8li8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWve05060227
dtuWBlIuffr6oWpVOFPNLhow1751Nm21LvPH3rViWjfz66Lfql8tX7FRI9QYFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvpOkZHmMTZg9x7bLHcMnThb16ed+mViQq8yaUZQNG64i
XZ+0/kqBuOZFO0QtatdWKfXnRQ99Bj91R501IFnk54jNOmMkUiglO3XDW+MI+98mKB6tW7rWpZcPc+

0zg4tLrYIUc86E6eGDjlIMubVpcusearfglYGRk6brhZVr/JcHzoolL 7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqgj6ouaYvEe
nW/WIYjp8cwbMm682tPwgW1R4tj/2SH13IRJYI4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHuU6V
8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8IEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVqg6Rgw4pksmbdi3bu2De7YfaBBxcqfvgPrUjFQNTQ22IfdUVVTE8r T
JKF5DnSmUjgdgg4mSS9pmsfDJR3GEToHO0iIW9aV7LWLHYXKIITDtOLTAtkY laamp1QjVv++uyGUxV
dJODNVXSm+b1gRxpl84ddfX1Lp10/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z257 COKMWXefJdO
Z94bb90qd1RONS7qITTzHimMMqivbO3g0DdVyk3WQBhBztK35YKNdOnc803acS6fDZFgKaXLsEJp5
rdrliBgp89cJcs/m7Tvs0rkjGIN4bOkPoZn3UJulOrnZ22yP1fmvUx+05gSqebV1m+zSuYNVhq7T
WbDiLVvljplLIop6CLXP+2gtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqgee/NjYk6v6IK
9cwilUc/STtf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
ZXHMmnGCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEUzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aleap
E7p5wKZi0A2AQRV5nvR4E+udc+b61kApglnxBgmd/4V5QP/mt18HDC7sRHftmeu5IimhVOrn/ALX2
32bqd4BFnDx7Vi1cWS2uff0lbB47gexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCadri
XGfwMPPtViavhU3YMOAANnuUb/RO7L0yOSeOadE88ApsXFGff30ynhlJgM51CUBVN9EzgnpvHBF Uy
iVraePiwJ53DF5ZTZnomENg85kNUd20Ji2Wpr4dOmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
eZwO78AAQn6CiEKB+rw5VevjvgNDYPOolUwaKShrxAuXLIkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
U/JIINiec6elRYdBpo6++Yfjx61IGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3Wp1LzNfNk54XxC1wDGUmMYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrtUMRJHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GaxQ6BzeNboBk5n8k4nebRh+k1hWixTFOD1EyWUs5nv+dgQgKaxzuCdEOQi
sHI02NQ8ah0mXr12La3mO0fIwik9+wLNTMY/86MPo8yi310fxmT6PWoqG9+DZukYna56mSZt5WWSy
5qVA1rwUyJgXAlInzkiai/gHSD7RkTyihogAAAABJRUSErkJggg=="

6. Additional Considerations
This section is non-normative.

6.1 Field updates and metadata

Metadata statements are intended to be stable once they have been published. When authenticators are updated in the
field, such updates are expected to improve the authenticator security (for example, improve FRR or FAR). The
authenticatorVersion must be updated if firmware updates fixing severe security issues (e.g. as reported previously) are
available.

NOTE

The metadata statement is assumed to relate to all authenticators having the same authenticator model identifier
(AAID/AAGUID/attestationCertificateKeyldentifiers).

NOTE

The FIDO Server is recommended to assume increased risk if theauthenticatorVersion specified in the metadata
statement is newer (higher) than the one present in the authenticator.

NORMATIVE

Significant changes in authenticator functionality are not anticipated in firmware updates. For example, if an
authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a user verification
method, the vendor musT assign a new authenticator model identifier (AAID/AAGUID/attestationCertificateKeyldentifiers)
to this authenticator.

NORMATIVE

A single authenticator implementation could report itself as two "virtual” authenticators using different authenticator
model identifiers (AAIDs/AAGUIDs/attestationCertificateKeyldentifiers). Such implementations must properly (i.e.
according to the security characteristics claimed in the metadata) protect UAuth keys and other sensitive data from the
other "virtual" authenticator - just as a normal authenticator would do.

NOTE

Authentication keys (UAuth.pub) registered for one authenticator model (e.g. as identified by

AAID/AAGUID/attestationCertificateKeyldentifiers) cannot be used by authenticators reporting a different
authenticator model identifier (AAID/AAGUID/attestationCertificateKeyldentifiers) - even when running on the same
hardware (see section "Authentication Response Processing Rules for FIDO Server" in [UAFProtocol]).

A. References

A.1 Normative references

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.qithub.io/ecma262/
[FIDOBiometricsRequirements]
Meagan Karlsson. FIDO Biometrics Requirements. June 2017. Draft. URL:
https://drafts.fidoalliance.org/biometrics/requirements/latest/
[FIDOMetadataService]
R. Lmdemann B. Hill; D. Baghdasaryan FIDO Metadata Service v1.0. Implementatlon Draft. URL:

[FIDOReglstry]
R. Lmdemann D. Baghdasaryan B. Hill. EIDO Rea/strv of Predef/ned Values Implementation Draft. URL:

[FIDORestrlctedOperatmgEnv]
Laurence Lundblade; Meagan Karlsson. FIDO Authenticator Allowed Restricted Operating Environments List August
2017. Draft. URL: https:/fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-
allowed-restricted-operating-environments-list-v1.1-fd-20171108.html

[1ISO19795-1]
ISO/IEC JTC 1/SC 37 Information Technology - Biometric peformance testing and reporting - Part 1. Principles and
framework. URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447

[RFC2049]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and

Examples (RFC 2049). November 1996. URL: http://www.ietf.org/rfc/rfc2049.txt
[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119
[RFC2397]
L. Masinter. The "data” URL scheme. August 1998. Proposed Standard. URL:https://tools.ietf.org/html/rfc2397
[RFC4122]
P. Leach. A Universally Unique IDentifier (UUID) URN Namespace. July 2005. URL:https:/tools.ietf.org/html/rfc4122
[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges.FIDO UAF Protocol Specification v1.0.
Proposed Standard. URL: https:/fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-
20171128.html
[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL:http://heycam.github.io/webidl/

A.2 Informative references

[AndroidUnlockPattern]

Android Unlock Pattern Security Analysis. Published. URL: http://www.sinustrom.info/2012/05/21/android-unlock-

pattern-security-analysis/
[FIDOEcdaaAlgorithm]

R. Lindemann; J. Camemsch M. Dr|Jvers A. Edgington; A. Lehmann R. Urian, FIDO ECDAA Algorithm. Review

[FIDOGlossary]
R. Lmdemann D. Baghdasaryan B. Hill; J. Hodges. F/DO Technical Glossary. Implementation Draft. URL:

[FIDOKeyAttestatlon]

FIDO 2.0: Key attestation format URL: https:/fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-
ps-20150904.html

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS180-4]

FIPS PUB 180-4: Secure Hash Standard (SHS). March 2012. URL:http://csrc.nist.gov/publications/fips/fips180-4/fips-

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://drafts.fidoalliance.org/biometrics/requirements/latest/
https://drafts.fidoalliance.org/biometrics/requirements/latest/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-allowed-restricted-operating-environments-list-v1.1-fd-20171108.html
https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-allowed-restricted-operating-environments-list-v1.1-fd-20171108.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

180-4.pdf
[FIPS186-4]

FIPS PUB 186-4: Digital Signature Standard (DSS) July 2013. URL:
http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[FIPS198-1]
FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC) July 2008. URL:

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
[1ISO3166]

ISO 3166: Codes for the representation of names of countries and their subdivisions — Part 1: Country codes
November 2013. Published. URL: https://www.iso.org/standard/63545.html
[ITU-X690- 2008]

Encod/ng Rules (CER) and D/st/ngwshed Encoding Ru/es (DER), (T-REC-X.690-200811). November 2008. URL:
http://www.itu.int/rec/T-REC-X.690-200811-l/en

[MoreTopWorstPasswords]
Mark Burnett. 10000 Top Passwords. URL: https://xato.net/passwords/more-top-worst-passwords/
[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C
Recommendation. URL: https:/www.w3.0org/TR/PNG/
[RFC4648]
S. Josefsson. The Base16. Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL.:

http://www.ietf.org/rfc/rfc4648.txt
[RFC5280]

D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure

Certificate and Cetrtificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt
[RFC5646]

A. Phillips, Ed.; M. Davis, Ed.. Tags for Identifying Languages. September 2009. Best Current Practice. URL:

https://tools.ietf.org/html/rfc5646
[SP800-38B]

M. Dworkin. NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. May 2005. URL: http://dx.doi.org/10.6028/NIST.SP.800-38B

[SP800-38C]
M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. July 2007. URL:http://csrc.nist.gov/publications/nistpubs/800-
38C/SP800-38C_updated-July20 2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC. November 2007 URL: https://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf

[SP800-38F]
M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http:/nvilpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
[SP800-90C]
Elaine Barker; John Kelsey. NIST Special Publication 800-90C: Recommendation for Random Bit Generator (RBG)
Constructions. August 2012. URL: http:/csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
[SP800-90ar1]
Elaine Barker; John Kelsey. NIST Special Publication 800-90a: Recommendation for Random Number Generation

Using Deterministic Random Bit Generators. August 2012. URL: http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
[UAFAuthnrCommands]

D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. EIDO UAF Authenticator Commands v1.0
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-
20171128.html

[UAFRegistry]
R. Lmdemann D. Baghdasaryan B. Hill. FIDO UAF Realstrv of Predefined Values Proposed Standard. URL:

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

[iPhonePasscodes]
Daniel Amitay. Most Common iPhone Passcodes. URL: http:/danielamitay.com/blog/2011/6/13/most-common-
iphone-passcodes

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://www.iso.org/standard/63545.html
https://www.iso.org/standard/63545.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

	FIDO Metadata Statements
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 Authenticator Attestation GUID (AAGUID) typedef
	3.2 CodeAccuracyDescriptor dictionary
	3.2.1 Dictionary CodeAccuracyDescriptor Members

	3.3 BiometricAccuracyDescriptor dictionary
	3.3.1 Dictionary BiometricAccuracyDescriptor Members

	3.4 PatternAccuracyDescriptor dictionary
	3.4.1 Dictionary PatternAccuracyDescriptor Members

	3.5 VerificationMethodDescriptor dictionary
	3.5.1 Dictionary VerificationMethodDescriptor Members

	3.6 verificationMethodANDCombinations typedef
	3.7 rgbPaletteEntry dictionary
	3.7.1 Dictionary rgbPaletteEntry Members

	3.8 DisplayPNGCharacteristicsDescriptor dictionary
	3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

	3.9 EcdaaTrustAnchor dictionary
	3.9.1 Dictionary EcdaaTrustAnchor Members

	3.10 ExtensionDescriptor dictionary
	3.10.1 Dictionary ExtensionDescriptor Members

	3.11 AlternativeDescriptions dictionary
	3.11.1 Dictionary AlternativeDescriptions Members

	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	5.1 UAF Example
	5.2 U2F Example
	5.3 FIDO2 Example

	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references

