
Server Requirements and Transport
Binding Profile

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-20180702.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/

Github

Adam Powers (FIDO Alliance)
Yuriy Ackermann (FIDO Alliance)

Copyright © 2018 FIDO Alliance. All Rights Reserved.

FIDO2 provides secure authentication through the use of authenticators that implement the Client-to-
Authenticator Protocol (CTAP) and platforms or browsers that implement the W3C WebAuthn specifications.
These authenticators are expected to communicate to servers that will validate registration and authentication
requests. Many of the requirements for FIDO2 servers, such as assertion formats, attestation formats, optional
extensions, and so forth, are contained in the W3C WebAuthn specification. This Server Requirements and
Guidance specification attempts to pull together all the requirements for servers in a single document that will be
an aid to implementing a FIDO2 server, while leaving behind the details of authenticators and web browsers that
do not pertain to servers.

Table of Contents

Review Draft, July 02, 2018
This version:

Previous Versions:

Issue Tracking:

Editors:

Abstract

1 Introduction

2 Registration and Attestations
2.1 Validating Attestation
2.2 Attestation Types
2.3 Attestation Formats
2.3.1 Packed Attestation
2.3.2 TPM Attestation
2.3.3 Android SafetyNet Attestation Example
2.3.4 Android SafetyNet Attestation Example
2.3.5 U2F Attestation

3 Authentication and Assertions

4 Communication Channel Requirements

5 Extensions

6 Other

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/
https://github.com/fido-alliance/fido-2-specs
mailto:adam@fidoalliance.org
mailto:yuriy@fidoalliance.org
https://fidoalliance.org

This specification provides a set of requirements and guidance for server implementers that draws heavily from
the W3C [WebAuthn] specification. Servers are a crticial piece of the FIDO ecosystem for making sure that
implementations work together. There are many optional features of the various specifications, including different
attestation formats (packed, Android, TPM, etc), attestation modes (surrogate, full, ECDAA, etc.), cryptographic
suites (RSA, ECDSA, etc.) and so on. The authenticators that typically implement these various features are
typically consumer electonrics devices that are memory and / or CPU constrained, which limits their ability to
implement multiple versions of these features. Therefore, it falls to servers to implement as many of these
features as possible to ensure that servers are compatible with the broadest range of authenticators possible.

The WebAuthn specification is fairly simple in its concept: it provides a method for registering new authenticators
with a server (navigator.credentials.create()) and another method for authenticating with previously
registered authenticators (navigator.credentials.get()). During registration, an authenticator uses an
attestation private key that was embedded in the authenticator during its manufacturing to create an attestation

7 Transport Binding Profile
7.1 Contents
7.2 Introduction
7.3 Registration
7.3.1 Registration Overview
7.3.2 Examples
7.3.2.1 Example: Credential Creation Options
7.3.2.2 Example: Authenticator Attestation Response
7.3.3 Registration Primary IDL
7.3.3.1 ServerPublicKeyCredentialCreationOptionsRequest
7.3.3.2 ServerPublicKeyCredentialCreationOptionsResponse
7.3.3.3 ServerAuthenticatorAttestationResponse
7.3.4 Registration Supporting IDL
7.3.4.1 ServerPublicKeyCredential
7.3.4.2 ServerPublicKeyCredentialUserEntity
7.3.4.3 ServerPublicKeyCredentialDescriptor
7.4 Authentication
7.4.1 Authentication Overview
7.4.2 Authentication Examples
7.4.2.1 Authentication Example: Credential Get Options
7.4.2.2 Authentication Example: Authenticator Assertion Response
7.4.3 Authentication IDL
7.4.3.1 ServerPublicKeyCredentialGetOptionsRequest
7.4.3.2 ServerPublicKeyCredentialGetOptionsResponse
7.4.3.3 ServerAuthenticatorAssertionResponse
7.5 Common
7.5.1 Common IDL
7.5.1.1 ServerResponse

Index
Terms defined by reference

References
Normative References
Informative References

Issues Index

1. Introduction

statement, thus providing a root-of-trust for the registration process. Registration creates a new key-pair for each
account that is registered and the private key of the registration is used to sign an assertion that is sent to the
server to demonstrate valid authentication. The sections that follow describe the registration and attestation
requirements, and the authentication and assertion requirements.

It should be noted that there is no specific required protocol (REST, SOAP, carrier pigeon, quantum teleportation,
etc.) required for the server (although there are requirements around having a secure communication channel). It
is assumed that servers are receiving some form of the JavaScript objects that were created by the browser /
platform / authenticator. Note that these objects are signed over, so protocols MUST NOT alter the signed
objects in ways that would cause the signature to be invalid, but otherwise any form of transporting these objects
to the server is acceptable. The requirements and guidelines laid out below do not make any requirements on
how these objects are sent or received by the server.

In the case that this specification conflicts with the [WebAuthn] specification, the [WebAuthn] specification takes
precidence; however, there may be clarifications or additions in this specification that supercede the [WebAuthn]
specification and many of the descriptions of how to implement WebAuthn in a web browser are irrelevant to
server implementers.

Servers SHALL support registration. A registration request will take the form of sending a challenge to an
authenticator and receiving a CredentialCreationOptions object (or similar) in response. The response
attribute of the PublicKeyCredential will contain both a serialzed clientDataJSON attribute and a serialized
attestationObject attribute. There is no requirement for the format of the serialization (e.g. - base64url
encoding) except that when deserialized the underlying byte structure will remain the same as what was signed
during attestation.

Servers SHALL use random challenges for each registration request. While determining the randomness of a
challenge is beyond the scope of this specification (see [FIDOSecRef] for more details), using the same
challenge, monotonically increasing challenges, or other simple challenges is unacceptable and insecure and it is
expected that a cryptographically secure random number generator is used for generating challenges.

Servers SHALL validate attestation. [[!WebAuthn#registering-a-new-credential]] specifies how to validate
attestation. Requirements for the Relying Party are normative for servers. Note that the fields in the
AttestationResponse MAY NOT match the field names or formats in the [WebAuthn] specification -- applications
and servers may negotiate their own field formats and names. The names and formats described in [WebAuthn]
are for convenience only.

Servers SHALL validate attestation certificate chains.

Servers MUST support the validation of attestation through the FIDO Metadata Service [FIDOMetadataService].

Servers MAY have policies to allow, disallow, require additional authentication factors, or perform risk analysis for
authenticators based on their metadata attributes.

[[!WebAuthn#sctn-attestation-types]] defines multiple Attestation Types. A server MUST support one of the
attestation formats.

2. Registration and Attestations

2.1. Validating Attestation

2.2. Attestation Types

Servers MUST support basic attestation
Servers MUST support self attestation

https://w3c.github.io/webappsec-credential-management/#dictdef-credentialcreationoptions

The [[!WebAuthn#defined-attestation-formats]] defines multiple attestation formats, and the [WebAuthn-Registrie
s] registry may be updated from time to time to add additional attestation formats as the ecosystem evolves. A
server MUST support at least one attestation format.

Servers MUST validate a Packed attesation using the "Validation Procedure" defined in [[!WebAuthn#packed-
attestation]]

Servers MAY support Privacy CA attestation
Servers MAY support Elliptic Curve Direct Anonymous Attestation (ECDAA)

2.3. Attestation Formats

Servers MUST support Packed Attestation: [[!WebAuthn#packed-attestation]]
Servers MUST support TPM Attestation: [[!WebAuthn#tpm-attestation]].
Servers SHOULD support Android Key Attestation: [[!WebAuthn#android-key-attestation]]
Servers MUST support U2F Attestation: [[!WebAuthn#fido-u2f-attestation]]
Servers MUST support Android SafteyNet Attestation: [[!WebAuthn#android-safetynet-attestation]]
Servers MAY support other attestation formats as defined by [WebAuthn-Registries], which may be updated
from time to time. If authenticators or servers create new attestation formats, they SHOULD be registered
with the [WebAuthn-Registries] registry.

2.3.1. Packed Attestation

Servers MUST validate a TPM attesation using the "Validation Procedure" defined in [[!WebAuthn#tpm-
attestation]]

EXAMPLE 1
{
 "rawId": "sL39APyTmisrjh11vghaqNfuruLQmCfR0c1ryKtaQ81jkEhNa5u9xLTnkibvXC9YpzBLFwWEZ3k9CR_s
xzm_pWYbBOtKxeZu9z2GT8b6QW4iQvRlyumCT3oENx_8401r",
 "id": "sL39APyTmisrjh11vghaqNfuruLQmCfR0c1ryKtaQ81jkEhNa5u9xLTnkibvXC9YpzBLFwWEZ3k9CR_sxzm
_pWYbBOtKxeZu9z2GT8b6QW4iQvRlyumCT3oENx_8401r",
 "response": {
 "clientDataJSON": "eyJjaGFsbGVuZ2UiOiJ1Vlg4OElnUmEwU1NyTUlSVF9xN2NSY2RmZ2ZSQnhDZ25fcG
twVUFuWEpLMnpPYjMwN3dkMU9MWFEwQXVOYU10QlIzYW1rNkhZenAtX1Z4SlRQcHdHdyIsIm9yaWdpbiI6Imh0dHBzOi8v
d2ViYXV0aG4ub3JnIiwidG9rZW5CaW5kaW5nIjp7InN0YXR1cyI6Im5vdC1zdXBwb3J0ZWQifSwidHlwZSI6IndlYmF1dG
huLmNyZWF0ZSJ9",
 "attestationObject": "o2NmbXRmcGFja2VkZ2F0dFN0bXSjY2FsZyZjc2lnWEgwRgIhAIsK0Wr9tmud-wa
IYoQw20UWi7DL_gDx_PNG3PB57eHLAiEAtRyd-4JI2pCVX-dDz4mbHc_AkvC3d_4qnBBa3n2I_hVjeDVjg1kCRTCCAkEwg
gHooAMCAQICEBWfe8LNiRjxKGuTSPqfM-IwCgYIKoZIzj0EAwIwSTELMAkGA1UEBhMCQ04xHTAbBgNVBAoMFEZlaXRpYW4
gVGVjaG5vbG9naWVzMRswGQYDVQQDDBJGZWl0aWFuIEZJRE8yIENBLTEwIBcNMTgwNDExMDAwMDAwWhgPMjAzMzA0MTAyM
zU5NTlaMG8xCzAJBgNVBAYTAkNOMR0wGwYDVQQKDBRGZWl0aWFuIFRlY2hub2xvZ2llczEiMCAGA1UECwwZQXV0aGVudGl
jYXRvciBBdHRlc3RhdGlvbjEdMBsGA1UEAwwURlQgQmlvUGFzcyBGSURPMiBVU0IwWTATBgcqhkjOPQIBBggqhkjOPQMBB
wNCAASABnVcWfvJSbAVqNIKkliXvoMKsu_oLPiP7aCQlmPlSMcfEScFM7QkRnidTP7hAUOKlOmDPeIALC8qHddvTdtdo4G
JMIGGMB0GA1UdDgQWBBR6VIJCgGLYiuevhJglxK-RqTSY8jAfBgNVHSMEGDAWgBRNO9jEZxUbuxPo84TYME-daRXAgzAMB
gNVHRMBAf8EAjAAMBMGCysGAQQBguUcAgEBBAQDAgUgMCEGCysGAQQBguUcAQEEBBIEEEI4MkVENzNDOEZCNEU1QTIwCgY
IKoZIzj0EAwIDRwAwRAIgJEtFo76I3LfgJaLGoxLP-4btvCdKIsEFLjFIUfDosIcCIDQav04cJPILGnPVPazCqfkVtBuyO
msBbx_v-ODn-JDAWQH_MIIB-zCCAaCgAwIBAgIQFZ97ws2JGPEoa5NI-p8z4TAKBggqhkjOPQQDAjBLMQswCQYDVQQGEwJ
DTjEdMBsGA1UECgwURmVpdGlhbiBUZWNobm9sb2dpZXMxHTAbBgNVBAMMFEZlaXRpYW4gRklETyBSb290IENBMCAXDTE4M
DQxMDAwMDAwMFoYDzIwMzgwNDA5MjM1OTU5WjBJMQswCQYDVQQGEwJDTjEdMBsGA1UECgwURmVpdGlhbiBUZWNobm9sb2d
pZXMxGzAZBgNVBAMMEkZlaXRpYW4gRklETzIgQ0EtMTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABI5-YAnswRZlzKD6w
-lv5Qg7lW1XJRHrWzL01mc5V91n2LYXNR3_S7mA5gupuTO5mjQw8xfqIRMHVr1qB3TedY-jZjBkMB0GA1UdDgQWBBRNO9j
EZxUbuxPo84TYME-daRXAgzAfBgNVHSMEGDAWgBTRoZhNgX_DuWv2B2e9UBL-kEXxVDASBgNVHRMBAf8ECDAGAQH_AgEAM
A4GA1UdDwEB_wQEAwIBBjAKBggqhkjOPQQDAgNJADBGAiEA-3-j0kBHoRFQwnhWbSHMkBaY7KF_TztINFN5ymDkwmUCIQD
rCkPBiMHXvYg-kSRgVsKwuVtYonRvC588qRwpLStZ7FkB3DCCAdgwggF-oAMCAQICEBWfe8LNiRjxKGuTSPqfM9YwCgYIK
oZIzj0EAwIwSzELMAkGA1UEBhMCQ04xHTAbBgNVBAoMFEZlaXRpYW4gVGVjaG5vbG9naWVzMR0wGwYDVQQDDBRGZWl0aWF
uIEZJRE8gUm9vdCBDQTAgFw0xODA0MDEwMDAwMDBaGA8yMDQ4MDMzMTIzNTk1OVowSzELMAkGA1UEBhMCQ04xHTAbBgNVB
AoMFEZlaXRpYW4gVGVjaG5vbG9naWVzMR0wGwYDVQQDDBRGZWl0aWFuIEZJRE8gUm9vdCBDQTBZMBMGByqGSM49AgEGCCq
GSM49AwEHA0IABJ3wCm47zF9RMtW-pPlkEHTVTLfSYBlsidz7zOAUiuV6k36PvtKAI_-LZ8MiC9BxQUfUrfpLY6klw344l
wLq7POjQjBAMB0GA1UdDgQWBBTRoZhNgX_DuWv2B2e9UBL-kEXxVDAPBgNVHRMBAf8EBTADAQH_MA4GA1UdDwEB_wQEAwI
BBjAKBggqhkjOPQQDAgNIADBFAiEAt7E9ZQYxnhfsSk6c1dSmFNnJGoU3eJiycs2DoWh7-IoCIA9iWJH8h-UOAaaPK66Dt
CLe6GIxdpIMv3kmd1PRpWqsaGF1dGhEYXRhWOSVaQiPHs7jIylUA129ENfK45EwWidRtVm7j9fLsim91EEAAAABQjgyRUQ
3M0M4RkI0RTVBMgBgsL39APyTmisrjh11vghaqNfuruLQmCfR0c1ryKtaQ81jkEhNa5u9xLTnkibvXC9YpzBLFwWEZ3k9C
R_sxzm_pWYbBOtKxeZu9z2GT8b6QW4iQvRlyumCT3oENx_8401rpQECAyYgASFYIFkdweEE6mWiIAYPDoKz3881Aoa4sn8
zkTm0aPKKYBvdIlggtlG32lxrang8M0tojYJ36CL1VMv2pZSzqR_NfvG88bA"
 }
};

2.3.2. TPM Attestation

EXAMPLE 2
{
 "rawId": "hWzdFiPbOMQ5KNBsMhs-Zeh8F0iTHrH63YKkrxJFgjQ",
 "id": "hWzdFiPbOMQ5KNBsMhs-Zeh8F0iTHrH63YKkrxJFgjQ",
 "response": {
 "clientDataJSON": "ew0KCSJ0eXBlIiA6ICJ3ZWJhdXRobi5jcmVhdGUiLA0KCSJjaGFsbGVuZ2UiIDogIn
drNkxxRVhBTUFacHFjVFlsWTJ5b3I1RGppeUlfYjFneTluRE90Q0IxeUdZbm1fNFdHNFVrMjRGQXI3QXhUT0ZmUU1laWdr
UnhPVExaTnJMeEN2Vl9RIiwNCgkib3JpZ2luIiA6ICJodHRwczovL3dlYmF1dGhuLm9yZyIsDQoJInRva2VuQmluZGluZy
IgOiANCgl7DQoJCSJzdGF0dXMiIDogInN1cHBvcnRlZCINCgl9DQp9",
 "attestationObject": "o2NmbXRjdHBtaGF1dGhEYXRhWQFnlWkIjx7O4yMpVANdvRDXyuORMFonUbVZu4_
Xy7IpvdRFAAAAAAiYcFjK3EuBtuEw3lDcvpYAIIVs3RYj2zjEOSjQbDIbPmXofBdIkx6x-t2CpK8SRYI0pAEDAzkBACBZA
QDF2m9Nk1e94gL1xVjNCjFW0lTy4K2atXkx-YJrdH3hrE8p1gcIdNzleRDhmERJnY5CRwM5sXDQIrUBq4jpwvTtMC5HGcc

QDF2m9Nk1e94gL1xVjNCjFW0lTy4K2atXkx-YJrdH3hrE8p1gcIdNzleRDhmERJnY5CRwM5sXDQIrUBq4jpwvTtMC5HGcc
N6-iEJAPtm9_CJzCmGhtw9hbF8bcAys94RhN9xLLUaajhWqtPrYZXCEAi0o9E2QdTIxJrcAfJgZOf33JMr0--R1BAQxpOo
GRDC8ss-tfQW9ufZLWw4JUuz4Z5Jz1sbfqBYB8UUDMWoT0HgsMaPmvd7T17xGvB-pvvDf-Dt96vFGtYLEZEgho8Yu26pr5
CK_BOQ-2vX9N4MIYVPXNhogMGGmKYqybhM3yhye0GdBpZBUd5iOcgME6uGJ1_IUMBAAFnYXR0U3RtdKZjdmVyYzIuMGNhb
Gc5__5jc2lnWQEAcV1izWGUWIs0DEOZNQGdriNNXo6nbrGDLzEAeswCK9njYGCLmOkHVgSyafhsjCEMZkQmuPUmEOMDKos
qxup_tiXQwG4yCW9TyWoINWGayQ4vcr6Ys-l6KMPkg__d2VywhfonnTJDBfE_4BIRD60GR0qBzTarthDHQFMqRtoUtuOsT
F5jedU3EQPojRA5iCNC2naCCZuMSURdlPmhlW5rAaRZVF41ZZECi5iFOM2rO0UpGuQSLUvr1MqQOsDytMf7qWZMvwT_5_8
BF6GNdB2l2VzmIJBbV6g8z7dj0fRkjlCXBp8UG2LvTq5SsfugrRWXOJ8BkdMplPfl0mz6ssU_n2N4NWOCWQS2MIIEsjCCA
5qgAwIBAgIQEyidpWZzRxOSMNfrAvV1fzANBgkqhkiG9w0BAQsFADBBMT8wPQYDVQQDEzZOQ1UtTlRDLUtFWUlELTE1OTF
ENEI2RUFGOThEMDEwNDg2NEI2OTAzQTQ4REQwMDI2MDc3RDMwHhcNMTgwNTIwMTYyMDQ0WhcNMjgwNTIwMTYyMDQ0WjAAM
IIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvQ6XK2ujM11E7x4SL34p252ncyQTd3-4r5ALQhBbFKS95gUsuEN
TG-48GBQwu48i06cckm3eH20TUeJvn4-pj6i8LFOrIK14T3P3GFzbxgQLq1KVm63JWDdEXk789JgzQjHNO7DZFKWTEiktw
mBUPUA88TjQcXOtrR5EXTrt1FzGzabOepFann3Ny_XtxI8lDZ3QLwPLJfmk7puGtkGNaXOsRC7GLAnoEB7UWvjiyKG6HAt
vVTgxcW5OQnHFb9AHycU5QdukXrP0njdCpLCRR0Nq6VMKmVU3MaGh-DCwYEB32sPNPdDkPDWyk16ItwcmXqfSBV5ZOr8if
vcXbCWUWwIDAQABo4IB5TCCAeEwDgYDVR0PAQH_BAQDAgeAMAwGA1UdEwEB_wQCMAAwbQYDVR0gAQH_BGMwYTBfBgkrBgE
EAYI3FR8wUjBQBggrBgEFBQcCAjBEHkIAVABDAFAAQQAgACAAVAByAHUAcwB0AGUAZAAgACAAUABsAGEAdABmAG8AcgBtA
CAAIABJAGQAZQBuAHQAaQB0AHkwEAYDVR0lBAkwBwYFZ4EFCAMwSgYDVR0RAQH_BEAwPqQ8MDoxODAOBgVngQUCAwwFaWQ
6MTMwEAYFZ4EFAgIMB05QQ1Q2eHgwFAYFZ4EFAgEMC2lkOjRFNTQ0MzAwMB8GA1UdIwQYMBaAFMISqVvO-lb4wMFvsVvdA
zRHs3qjMB0GA1UdDgQWBBSv4kXTSA8i3NUM0q57lrWpM8p_4TCBswYIKwYBBQUHAQEEgaYwgaMwgaAGCCsGAQUFBzAChoG
TaHR0cHM6Ly9hemNzcHJvZG5jdWFpa3B1Ymxpc2guYmxvYi5jb3JlLndpbmRvd3MubmV0L25jdS1udGMta2V5aWQtMTU5M
WQ0YjZlYWY5OGQwMTA0ODY0YjY5MDNhNDhkZDAwMjYwNzdkMy8zYjkxOGFlNC0wN2UxLTQwNTktOTQ5MS0wYWQyNDgxOTA
4MTguY2VyMA0GCSqGSIb3DQEBCwUAA4IBAQAs-vqdkDX09fNNYqzbv3Lh0vl6RgGpPGl-MYgO8Lg1I9UKvEUaaUHm845AB
S8m7r9p22RCWO6TSEPS0YUYzAsNuiKiGVna4nB9JWZaV9GDS6aMD0nJ8kNciorDsV60j0Yb592kv1VkOKlbTF7-Z10jaap
x0CqhxEIUzEBb8y9Pa8oOaQf8ORhDHZp-mbn_W8rUzXSDS0rFbWKaW4tGpVoKGRH-f9vIeXxGlxVS0wqqRm_r-h1aZInta
0OOiL_S4367gZyeLL3eUnzdd-eYySYn2XINPbVacK8ZifdsLMwiNtz5uM1jbqpEn2UoB3Hcdn0hc12jTLPWFfg7GiKQ0hk
9WQXsMIIF6DCCA9CgAwIBAgITMwAAAQDiBsSROVGXhwAAAAABADANBgkqhkiG9w0BAQsFADCBjDELMAkGA1UEBhMCVVMxE
zARBgNVBAgTCldhc2hpbmd0b24xEDAOBgNVBAcTB1JlZG1vbmQxHjAcBgNVBAoTFU1pY3Jvc29mdCBDb3Jwb3JhdGlvbjE
2MDQGA1UEAxMtTWljcm9zb2Z0IFRQTSBSb290IENlcnRpZmljYXRlIEF1dGhvcml0eSAyMDE0MB4XDTE3MDIwMTE3NDAyN
FoXDTI5MTIzMTE3NDAyNFowQTE_MD0GA1UEAxM2TkNVLU5UQy1LRVlJRC0xNTkxRDRCNkVBRjk4RDAxMDQ4NjRCNjkwM0E
0OEREMDAyNjA3N0QzMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA9IwUMSiQUbrQR0NLkKR-9RB8zfHYdlmDB
0XN_m8qrNHKRJ__lBOR-mwU_h3MFRZF6X3ZZwka1DtwBdzLFV8lVu33bc15stjSd6B22HRRKQ3sIns5AYQxg0eX2PtWCJu
IhxdM_jDjP2hq9Yvx-ibt1IO9UZwj83NGxXc7Gk2UvCs9lcFSp6U8zzl5fGFCKYcxIKH0qbPrzjlyVyZTKwGGSTeoMMEds
Ziq-m_xIcrehYuHg-FAVaPLLTblS1h5cu80-ruFUm5Xzl61YjVU9tAV_Y4joAsJ5QP3VPocFhr5YVsBVYBiBcQtr5JFdJX
ZWWEgYcFLdAFUk8nJERS7-5xLuQIDAQABo4IBizCCAYcwCwYDVR0PBAQDAgGGMBsGA1UdJQQUMBIGCSsGAQQBgjcVJAYFZ
4EFCAMwFgYDVR0gBA8wDTALBgkrBgEEAYI3FR8wEgYDVR0TAQH_BAgwBgEB_wIBADAdBgNVHQ4EFgQUwhKpW876VvjAwW-
xW90DNEezeqMwHwYDVR0jBBgwFoAUeowKzi9IYhfilNGuVcFS7HF0pFYwcAYDVR0fBGkwZzBloGOgYYZfaHR0cDovL3d3d
y5taWNyb3NvZnQuY29tL3BraW9wcy9jcmwvTWljcm9zb2Z0JTIwVFBNJTIwUm9vdCUyMENlcnRpZmljYXRlJTIwQXV0aG9
yaXR5JTIwMjAxNC5jcmwwfQYIKwYBBQUHAQEEcTBvMG0GCCsGAQUFBzAChmFodHRwOi8vd3d3Lm1pY3Jvc29mdC5jb20vc
Gtpb3BzL2NlcnRzL01pY3Jvc29mdCUyMFRQTSUyMFJvb3QlMjBDZXJ0aWZpY2F0ZSUyMEF1dGhvcml0eSUyMDIwMTQuY3J
0MA0GCSqGSIb3DQEBCwUAA4ICAQAKc9z1UUBAaybIVnK8yL1N1iGJFFFFw_PpkxW76hgQhUcCxNFQskfahfFzkBD05odVC
1DKyk2PyOle0G86FCmZiJa14MtKNsiu66nVqk2hr8iIcu-cYEsgb446yIGd1NblQKA1C_28F2KHm8YRgcFtRSkWEMuDiVM
a0HDU8aI6ZHO04Naj86nXeULJSZsA0pQwNJ04-QJP3MFQzxQ7md6D-pCx-LVA-WUdGxT1ofaO5NFxq0XjubnZwRjQazy_m
93dKWp19tbBzTUKImgUKLYGcdmVWXAxUrkxHN2FbZGOYWfmE2TGQXS2Z-g4YAQo1PleyOav3HNB8ti7u5HpI3t9a73xuEC
y2gFcZQ24DJuBaQe4mU5I_hPiAa-822nPPL6w8m1eegxhHf7ziRW_hW8s1cvAZZ5Jpev96zL_zRv34MsRWhKwLbu2oOCSE
YYh8D8DbQZjmsxlUYR_q1cP8JKiIo6NNJ85g7sjTZgXxeanA9wZwqwJB-P98VdVslC17PmVu0RHOqRtxrht7OFT7Z10ecz
0tj9ODXrv5nmBktmbgHRirRMl84wp7-PJhTXdHbxZv-OoL4HP6FxyDbHxLB7QmR4-VoEZN0vsybb1A8KEj2pkNY_tmxHH6
k87euM99bB8FHrW9FNrXCGL1p6-PYtiky52a5YQZGT8Hz-ZnxobTmhjZXJ0SW5mb1ih_1RDR4AXACIAC7xZ9N_ZpqQtw7h
mr_LfDRmCa78BS2erCtbrsXYwa4AHABSsnz8FacZi-wkUkfHu4xjG8MPfmwAAAAGxWkjHaED549jznwUBqeDEpT-7xBMAI
gALcSGuv6a5r9BwMvQvCSXg7GdAjdWZpXv6D4DH8VYBCE8AIgALAVI0eQ_AAZjNvrhUEMK2q4wxuwIFOnHIDF0Qljhf47R
ncHViQXJlYVkBNgABAAsABgRyACCd_8vzbDg65pn7mGjcbcuJ1xU4hL4oA5IsEkFYv60irgAQABAIAAAAAAABAMXab02TV
73iAvXFWM0KMVbSVPLgrZq1eTH5gmt0feGsTynWBwh03OV5EOGYREmdjkJHAzmxcNAitQGriOnC9O0wLkcZxw3r6IQkA-2
b38InMKYaG3D2FsXxtwDKz3hGE33EstRpqOFaq0-thlcIQCLSj0TZB1MjEmtwB8mBk5_fckyvT75HUEBDGk6gZEMLyyz61
9Bb259ktbDglS7PhnknPWxt-oFgHxRQMxahPQeCwxo-a93tPXvEa8H6m-8N_4O33q8Ua1gsRkSCGjxi7bqmvkIr8E5D7a9
f03gwhhU9c2GiAwYaYpirJuEzfKHJ7QZ0GlkFR3mI5yAwTq4YnX8"
 }
};

2.3.3. Android SafetyNet Attestation Example

Servers MUST validate a Android Key attesation using the "Validation Procedure" defined in
[[!WebAuthn#android-key-attestation]]

Servers MUST validate a Android SafetyNet attesation using the "Validation Procedure" defined in
[[!WebAuthn#android-safetynet-attestation]]

ISSUE 1 need an example of Android Key attestation.

2.3.4. Android SafetyNet Attestation Example

EXAMPLE 3
{
 "rawId": "qCXEfJ-dEoBlWqIl0iq2p_gj13HSg7r_MA7xOcOiO8RkCrYNmQHIjV9yhZVASr87cUsflo7DNuuvGsnr
lTl1ig",
 "id": "qCXEfJ-dEoBlWqIl0iq2p_gj13HSg7r_MA7xOcOiO8RkCrYNmQHIjV9yhZVASr87cUsflo7DNuuvGsnrlTl
1ig",
 "response": {
 "clientDataJSON": "eyJjaGFsbGVuZ2UiOiJEa1hCdWRCa2wzTzBlTUV5SGZBTVgxT2tRbHV4c2hjaW9WU3
dITVJMUlhtd044SXJldHg3cWJ0MWx3Y0p4d0FxWUU0SUxTZjVwd3lHMEhXSWtEekVMUT09Iiwib3JpZ2luIjoid2ViYXV0
aG4ub3JnIiwiaGFzaEFsZyI6IlNIQS0yNTYifQ",
 "attestationObject": "o2hhdXRoRGF0YVjElWkIjx7O4yMpVANdvRDXyuORMFonUbVZu4_Xy7IpvdRAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAQKglxHyfnRKAZVqiJdIqtqf4I9dx0oO6_zAO8TnDojvEZAq2DZkByI1fcoWVQEq_O3FLH
5aOwzbrrxrJ65U5dYqlAQIDJiABIVggh5OJfYRDzVGIowKqU57AnoVjjdmmjGi9zlMkjAVV9DAiWCDr0iSi0viIKNPMTId
N28gWNmkcwOr6DQx66MPff3Odm2NmbXRxYW5kcm9pZC1zYWZldHluZXRnYXR0U3RtdKJjdmVyaDEyNjg1MDIzaHJlc3Bvb
nNlWRSnZXlKaGJHY2lPaUpTVXpJMU5pSXNJbmcxWXlJNld5Sk5TVWxGYVdwRFEwRXpTMmRCZDBsQ1FXZEpTVmxyV1c4MVJ
qQm5PRFpyZDBSUldVcExiMXBKYUhaalRrRlJSVXhDVVVGM1ZrUkZURTFCYTBkQk1WVkZRbWhOUTFaV1RYaElha0ZqUW1kT
1ZrSkJiMVJHVldSMllqSmtjMXBUUWxWamJsWjZaRU5DVkZwWVNqSmhWMDVzWTNwRmJFMURUVWRCTVZWRlFYaE5ZMUl5T1h
aYU1uaHNTVVZzZFdSSFZubGliVll3U1VWR01XUkhhSFpqYld3d1pWTkNTRTE2UVdWR2R6QjRUbnBGZVUxRVVYaE5la1UwV
GtST1lVWjNNSGhQUkVWNVRVUk5kMDFFUVhkTlJFSmhUVWQzZUVONlFVcENaMDVXUWtGWlZFRnNWbFJOVWsxM1JWRlpSRlp
SVVVsRVFYQkVXVmQ0Y0ZwdE9YbGliV3hvVFZKWmQwWkJXVVJXVVZGSVJFRXhUbUl6Vm5Wa1IwWndZbWxDVjJGWFZqTk5Va
zEzUlZGWlJGWlJVVXRFUVhCSVlqSTVibUpIVldkVFZ6VnFUVkp6ZDBkUldVUldVVkZFUkVKS2FHUklVbXhqTTFGMVdWYzF
hMk50T1hCYVF6VnFZakl3ZDJkblJXbE5RVEJIUTFOeFIxTkpZak5FVVVWQ1FWRlZRVUUwU1VKRWQwRjNaMmRGUzBGdlNVS
kJVVU5WYWpoM1dXOVFhWGhMWW1KV09ITm5XV2QyVFZSbVdDdGtTWE5HVkU5clowdFBiR2hVTUdrd1ltTkVSbHBMTW5KUGV
FcGFNblZUVEZOV2FGbDJhWEJhVGtVelNFcFJXWFYxV1hkR2FtbDVLM2xyWm1GMFFVZFRhbEo2UmpGaU16RjFORE12TjI5S
E5XcE5hRE5UTXpkaGJIZHFWV0k0UTFkcFZIaHZhWEJXVDFsM1MwdDZkVlY1YTNGRlEzUnFiR2hLTkVGclYyRkVVeXRhZUV
0RmNVOWhaVGwwYmtOblpVaHNiRnBGTDA5U1oyVk5ZWGd5V0U1RGIwZzJjM0pVUlZKamEzTnFlbHBhY2tGWGVFdHpaR1oyV
m5KWVRucERVamxFZUZaQlUzVkpOa3g2ZDJnNFJGTnNNa1ZQYjJ0aWMyRnVXaXNyTDBweFRXVkJRa1ptVUhkcWVYZHlZakJ
3Y2tWVmVUQndZV1ZXYzNWa0t6QndaV1Y0U3k4MUswVTJhM0JaUjBzMFdrc3libXR2Vmt4MVowVTFkR0ZJY2tGcU9ETlJLM
UJQWW1KMlQzcFhZMFpyY0c1V1MzbHFielpMVVVGdFdEWlhTa0ZuVFVKQlFVZHFaMmRHUjAxSlNVSlJha0ZVUW1kT1ZraFR
WVVZFUkVGTFFtZG5ja0puUlVaQ1VXTkVRVlJCWkVKblRsWklVa1ZGUm1wQlZXZG9TbWhrU0ZKc1l6TlJkVmxYTld0amJUb
HdXa00xYW1JeU1IZGhRVmxKUzNkWlFrSlJWVWhCVVVWRldFUkNZVTFETUVkRFEzTkhRVkZWUmtKNlFVTm9hVVp2WkVoU2Q
wOXBPSFpqUjNSd1RHMWtkbUl5WTNaYU0wNTVUV2s1U0ZaR1RraFRWVVpJVFhrMWFtTnVVWGRMVVZsSlMzZFpRa0pSVlVoT
lFVZEhTRmRvTUdSSVFUWk1lVGwyV1ROT2QweHVRbkpoVXpWdVlqSTVia3d3WkZWVk1HUktVVlZqZWsxQ01FZEJNVlZrUkd
kUlYwSkNVVWM0U1hKUmRFWlNOa05WVTJ0cGEySXpZV2x0YzIweU5tTkNWRUZOUW1kT1ZraFNUVUpCWmpoRlFXcEJRVTFDT
0VkQk1WVmtTWGRSV1UxQ1lVRkdTR1pEZFVaRFlWb3pXakp6VXpORGFIUkRSRzlJTm0xbWNuQk1UVU5GUjBFeFZXUkpRVkZ
oVFVKbmQwUkJXVXRMZDFsQ1FrRklWMlZSU1VaQmVrRkpRbWRhYm1kUmQwSkJaMGwzVFZGWlJGWlNNR1pDUTI5M1MwUkJiV
zlEVTJkSmIxbG5ZVWhTTUdORWIzWk1NazU1WWtNMWQyRXlhM1ZhTWpsMlduazVTRlpHVGtoVFZVWklUWGsxYW1OdGQzZEV
VVmxLUzI5YVNXaDJZMDVCVVVWTVFsRkJSR2RuUlVKQlJpOVNlazV1UXpWRWVrSlZRblJ1YURKdWRFcE1WMFZSYURsNlJXV
kdXbVpRVERsUmIydHliRUZ2V0dkcVYyZE9PSEJUVWxVeGJGWkhTWEIwZWsxNFIyaDVNeTlQVWxKYVZHRTJSREpFZVRob2R
rTkVja1pKTXl0c1Exa3dNVTFNTlZFMldFNUZOVkp6TW1ReFVtbGFjRTF6ZWtRMFMxRmFUa2N6YUZvd1FrWk9VUzlqYW5KR
GJVeENUMGRMYTBWVk1XUnRRVmh6UmtwWVNtbFBjakpEVGxSQ1QxUjFPVVZpVEZkb1VXWmtRMFl4WW5kNmVYVXJWelppVVZ
OMk9GRkVialZQWkUxVEwxQnhSVEZrUldkbGRDODJSVWxTUWpjMk1VdG1XbEVyTDBSRk5reHdNMVJ5V2xSd1QwWkVSR2RZY
UN0TVowZFBjM2RvUld4cU9XTXpkbHBJUjBwdWFHcHdkRGh5YTJKcGNpOHlkVXhIWm5oc1ZsbzBTekY0TlVSU1RqQlFWVXh
rT1hsUVUyMXFaeXRoYWpFcmRFaDNTVEZ0VVcxYVZsazNjWFpQTlVSbmFFOTRhRXBOUjJ4Nk5teE1hVnB0ZW05blBTSXNJa
zFKU1VWWVJFTkRRVEJUWjBGM1NVSkJaMGxPUVdWUGNFMUNlamhqWjFrMFVEVndWRWhVUVU1Q1oydHhhR3RwUnpsM01FSkJ
VWE5HUVVSQ1RVMVRRWGRJWjFsRVZsRlJURVY0WkVoaVJ6bHBXVmQ0VkdGWFpIVkpSa3AyWWpOUloxRXdSV2RNVTBKVFRXc
EZWRTFDUlVkQk1WVkZRMmhOUzFJeWVIWlpiVVp6VlRKc2JtSnFSVlJOUWtWSFFURlZSVUY0VFV0U01uaDJXVzFHYzFVeWJ
HNWlha0ZsUm5jd2VFNTZRVEpOVkZWM1RVUkJkMDVFU21GR2R6QjVUVlJGZVUxVVZYZE5SRUYzVGtSS1lVMUdVWGhEZWtGS
1FtZE9Wa0pCV1ZSQmJGWlVUVkkwZDBoQldVUldVVkZMUlhoV1NHSXlPVzVpUjFWblZraEtNV016VVdkVk1sWjVaRzFzYWx
wWVRYaEtWRUZxUW1kT1ZrSkJUVlJJUldSMllqSmtjMXBUUWtwaWJsSnNZMjAxYkdSRFFrSmtXRkp2WWpOS2NHUklhMmRTZ

Servers MUST validate a U2F attesation using the "Validation Procedure" defined in [[!WebAuthn#fido-u2f-
attestation]]

wWVRYaEtWRUZxUW1kT1ZrSkJUVlJJUldSMllqSmtjMXBUUWtwaWJsSnNZMjAxYkdSRFFrSmtXRkp2WWpOS2NHUklhMmRTZ
WsxM1oyZEZhVTFCTUVkRFUzRkhVMGxpTTBSUlJVSkJVVlZCUVRSSlFrUjNRWGRuWjBWTFFXOUpRa0ZSUkV0VmEzWnhTSFl
2VDBwSGRXOHlia2xaWVU1V1YxaFJOVWxYYVRBeFExaGFZWG8yVkVsSVRFZHdMMnhQU2lzMk1EQXZOR2hpYmpkMmJqWkJRV
Ul6UkZaNlpGRlBkSE0zUnpWd1NEQnlTbTV1VDBaVlFVczNNVWMwYm5wTFRXWklRMGRWYTNOWEwyMXZibUVyV1RKbGJVcFJ
NazRyWVdsamQwcExaWFJRUzFKVFNXZEJkVkJQUWpaQllXaG9PRWhpTWxoUE0yZzVVbFZyTWxRd1NFNXZkVUl5Vm5wNGIwM
VliR3Q1VnpkWVZWSTFiWGMyU210TVNHNUJOVEpZUkZadlVsUlhhMDUwZVRWdlEwbE9USFpIYlc1U2Mwb3hlbTkxUVhGWlI
xWlJUV012TjNONUt5OUZXV2hCVEhKV1NrVkJPRXRpZEhsWUszSTRjMjUzVlRWRE1XaFZjbmRoVnpaTlYwOUJVbUU0Y1VKd
1RsRmpWMVJyWVVsbGIxbDJlUzl6UjBsS1JXMXFVakIyUmtWM1NHUndNV05UWVZkSmNqWXZOR2MzTW00M1QzRllkMlpwYm5
VM1dsbFhPVGRGWm05UFUxRktaVUY2UVdkTlFrRkJSMnBuWjBWNlRVbEpRa3g2UVU5Q1owNVdTRkU0UWtGbU9FVkNRVTFEU
VZsWmQwaFJXVVJXVWpCc1FrSlpkMFpCV1VsTGQxbENRbEZWU0VGM1JVZERRM05IUVZGVlJrSjNUVU5OUWtsSFFURlZaRVY
zUlVJdmQxRkpUVUZaUWtGbU9FTkJVVUYzU0ZGWlJGWlNNRTlDUWxsRlJraG1RM1ZHUTJGYU0xb3ljMU16UTJoMFEwUnZTR
Fp0Wm5Kd1RFMUNPRWRCTVZWa1NYZFJXVTFDWVVGR1NuWnBRakZrYmtoQ04wRmhaMkpsVjJKVFlVeGtMMk5IV1ZsMVRVUlZ
SME5EYzBkQlVWVkdRbmRGUWtKRGEzZEtla0ZzUW1kbmNrSm5SVVpDVVdOM1FWbFpXbUZJVWpCalJHOTJUREk1YW1NelFYV
mpSM1J3VEcxa2RtSXlZM1phTTA1NVRXcEJlVUpuVGxaSVVqaEZTM3BCY0UxRFpXZEtZVUZxYUdsR2IyUklVbmRQYVRoMld
UTktjMHh1UW5KaFV6VnVZakk1Ymt3eVpIcGpha2wyV2pOT2VVMXBOV3BqYlhkM1VIZFpSRlpTTUdkQ1JHZDNUbXBCTUVKb
ldtNW5VWGRDUVdkSmQwdHFRVzlDWjJkeVFtZEZSa0pSWTBOQlVsbGpZVWhTTUdOSVRUWk1lVGwzWVRKcmRWb3lPWFphZVR
sNVdsaENkbU15YkRCaU0wbzFUSHBCVGtKbmEzRm9hMmxIT1hjd1FrRlJjMFpCUVU5RFFWRkZRVWhNWlVwc2RWSlVOMkoyY
3pJMlozbEJXamh6YnpneGRISlZTVk5rTjA4ME5YTnJSRlZ0UVdkbE1XTnVlR2hITVZBeVkwNXRVM2hpVjNOdmFVTjBNbVY
xZURsTVUwUXJVRUZxTWt4SldWSkdTRmN6TVM4MmVHOXBZekZyTkhSaVYxaHJSRU5xYVhJek4zaFVWRTV4VWtGTlVGVjVSb
EpYVTJSMmRDdHViRkJ4ZDI1aU9FOWhNa2t2YldGVFNuVnJZM2hFYWs1VFpuQkVhQzlDWkRGc1drNW5aR1F2T0dOTVpITkZ
NeXQzZVhCMVprbzVkVmhQTVdsUmNHNW9PWHBpZFVaSmQzTkpUMDVIYkRGd00wRTRRMmQ0YTNGSkwxVkJhV2d6U21GSFQzR
mpjR05rWVVOSmVtdENZVkk1ZFZsUk1WZzBhekpXWnpWQlVGSk1iM1Y2Vm5rM1lUaEpWbXMyZDNWNU5uQnRLMVEzU0ZRMFR
GazRhV0pUTlVaRldteG1RVVpNVTFjNFRuZHpWbm81VTBKTE1sWnhiakZPTUZCSlRXNDFlRUUyVGxwV1l6ZHZPRE0xUkV4Q
lJuTm9SVmRtUXpkVVNXVXpaejA5SWwxOS5leUp1YjI1alpTSTZJbXhYYTBscWVEZFBOSGxOY0ZaQlRtUjJVa1JZZVhWUFV
rMUdiMjVWWWxaYWRUUXZXSGszU1hCMlpGSkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVkZMWjJ4N
FNIbG1ibEpMUVZwV2NXbEtaRWx4ZEhGbU5FazVaSGd3YjA4MkwzcEJUemhVYmtSdmFuWkZXa0Z4TWtSYWEwSjVTVEZtWTI
5WFZsRkZjUzlQTTBaTVNEVmhUM2Q2WW5KeWVISktOalZWTldSWmNXeEJVVWxFU21sQlFrbFdaMmRvTlU5S1psbFNSSHBXU
jBsdmQwdHhWVFUzUVc1dlZtcHFaRzF0YWtkcE9YcHNUV3RxUVZaV09VUkJhVmREUkhJd2FWTnBNSFpwU1V0T1VFMVVTV1J
PTWpoblYwNXRhMk4zVDNJMlJGRjROalpOVUdabU0wOWtiU3QxTm1WS2NVeENiREZJTWxNeWRISkJRa2hNYVc1cmJuTjVWa
zFRYlM5Q1RsVldXakpLUm14eU9EQWlMQ0owYVcxbGMzUmhiWEJOY3lJNk1UVXlPRGt4TVRZek5ETTROU3dpWVhCclVHRmp
hMkZuWlU1aGJXVWlPaUpqYjIwdVoyOXZaMnhsTG1GdVpISnZhV1F1WjIxeklpd2lZWEJyUkdsblpYTjBVMmhoTWpVMklqb
2lTazlETTFWcmMyeHpkVlo2TVRObFQzQnVSa2s1UW5CTWIzRkNaemxyTVVZMlQyWmhVSFJDTDBkcVRUMGlMQ0pqZEhOUWN
tOW1hV3hsVFdGMFkyZ2lPbVpoYkhObExDSmhjR3REWlhKMGFXWnBZMkYwWlVScFoyVnpkRk5vWVRJMU5pSTZXeUpIV0ZkN
U9GaEdNM1pKYld3ekwwMW1ibTFUYlhsMVMwSndWRE5DTUdSWFlraFNVaTgwWTJkeEsyZEJQU0pkTENKaVlYTnBZMGx1ZEd
WbmNtbDBlU0k2Wm1Gc2MyVXNJbUZrZG1salpTSTZJbEpGVTFSUFVrVmZWRTlmUmtGRFZFOVNXVjlTVDAwc1RFOURTMTlDV
DA5VVRFOUJSRVZTSW4wLmlDRjZEMm9zOERZdURWT250M3pESkIybVNYblpqdFdKdGxfanpTRHg1TXJSQzlBMmZtRkJaNno
1a3BRWjJNaVE3b290ajlXa0hNZ3hxSWhyWDNkbGgyUE9IQXdrSVMzNHlTakxWTnNTUHByRTg0ZVpncVNGTE1FWVQwR1IyZ
VZMSEFNUE44bjVSOEs2YnVET0dGM25TaTZHS3pHNTdabGw4Q1NvYjJ5aUFTOXI3c3BkQTZIMFRESC1OR3pTZGJNSUlkOGZ
aRDFkekZLTlFyNzdiNmxiSUFGZ1FiUlpCcm5wLWUtSDRpSDZkMjFvTjJOQVlSblI1WVVSYWNQNmtHR2oyY0Z4c3dFMjkwO
Hd4djloaVlOS05vamVldThYYzRJdDdQYmhsQXVPN3l3aFFGQTgxaVBDQ0ZtMTFCOGNmVVhiV0E4bF8ydHROUEJFTUdNNi1
aNlZ5UQ"
 }
};

2.3.5. U2F Attestation

Servers SHALL support authentication.

Servers SHALL use random challenges for each authentication request. While determining the randomness of a
challenge is beyond the scope of this specification (see [FIDOSecRef] for more details), using the same
challenge, monotonically increasing challenges, or other simple challenges is unacceptable and insecure and it is
expected that a cryptographically secure random number generator is used for generating challenges.

Servers SHALL validate assertion signatures.

Upon receiving an assertion response, the server SHALL validate the assertion response using the procedure
defined in [[!WebAuthn#verifying-assertion]]

Servers SHALL validate TUP and / or other user verification.

If servers are implementing TLS and Token Binding is available they SHOULD implement [TokenBindingProtocol
] using [TokenBindingOverHttp].

A server MUST have a mode of operation that allows it to perform registration and authentication without any
extensions present. Although there is no requirement that it must be configured that way when deployed in
production.

EXAMPLE 4
{
 "rawId": "Bo-VjHOkJZy8DjnCJnIc0Oxt9QAz5upMdSJxNbd-GyAo6MNIvPBb9YsUlE0ZJaaWXtWH5FQyPS6bT_e6
98IirQ==",
 "id": "Bo-VjHOkJZy8DjnCJnIc0Oxt9QAz5upMdSJxNbd-GyAo6MNIvPBb9YsUlE0ZJaaWXtWH5FQyPS6bT_e698I
irQ==",
 "response": {
 "attestationObject": "o2NmbXRoZmlkby11MmZnYXR0U3RtdKJjc2lnWEgwRgIhAO-683ISJhKdmUPmVbQ
uYZsp8lkD7YJcInHS3QOfbrioAiEAzgMJ499cBczBw826r1m55Jmd9mT4d1iEXYS8FbIn8MpjeDVjgVkCSDCCAkQwggEuo
AMCAQICBFVivqAwCwYJKoZIhvcNAQELMC4xLDAqBgNVBAMTI1l1YmljbyBVMkYgUm9vdCBDQSBTZXJpYWwgNDU3MjAwNjM
xMCAXDTE0MDgwMTAwMDAwMFoYDzIwNTAwOTA0MDAwMDAwWjAqMSgwJgYDVQQDDB9ZdWJpY28gVTJGIEVFIFNlcmlhbCAxN
DMyNTM0Njg4MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAESzMfdz2BRLmZXL5FhVF-F1g6pHYjaVy-haxILIAZ8sm5Rnr
gRbDmbxMbLqMkPJH9pgLjGPP8XY0qerrnK9FDCaM7MDkwIgYJKwYBBAGCxAoCBBUxLjMuNi4xLjQuMS40MTQ4Mi4xLjUwE
wYLKwYBBAGC5RwCAQEEBAMCBSAwCwYJKoZIhvcNAQELA4IBAQCsFtmzbrazqbdtdZSzT1n09z7byf3rKTXra0Ucq_QdJdP
nFhTXRyYEynKleOMj7bdgBGhfBefRub4F226UQPrFz8kypsr66FKZdy7bAnggIDzUFB0-629qLOmeOVeAMmOrq41uxICn3
whK0sunt9bXfJTD68CxZvlgV8r1_jpjHqJqQzdio2--z0z0RQliX9WvEEmqfIvHaJpmWemvXejw1ywoglF0xQ4Gq39qB5C
De22zKr_cvKg1y7sJDvHw2Z4Iab_p5WdkxCMObAV3KbAQ3g7F-czkyRwoJiGOqAgau5aRUewWclryqNled5W8qiJ6m5RDI
MQnYZyq-FTZgpjXaGF1dGhEYXRhWMRJlg3liA6MaHQ0Fw9kdmBbj-SuuaKGMseZXPO6gx2XY0EAAAAAAAAAAAAAAAAAAAA
AAAAAAABABo-VjHOkJZy8DjnCJnIc0Oxt9QAz5upMdSJxNbd-GyAo6MNIvPBb9YsUlE0ZJaaWXtWH5FQyPS6bT_e698Iir
aUBAgMmIAEhWCA1c9AIeH5sN6x1Q-2qR7v255tkeGbWs0ECCDw35kJGBCJYIBjTUxruadjFFMnWlR5rPJr23sBJT9qexY9
PCc9o8hmT",
 "clientDataJSON": "eyJjaGFsbGVuZ2UiOiJWdTh1RHFua3dPamQ4M0tMajZTY24yQmdGTkxGYkdSN0txX1
hKSndRbm5hdHp0VVI3WElCTDdLOHVNUENJYVFtS3cxTUNWUTVhYXpOSkZrN05ha2dxQSIsImNsaWVudEV4dGVuc2lvbnMi
Ont9LCJoYXNoQWxnb3JpdGhtIjoiU0hBLTI1NiIsIm9yaWdpbiI6Imh0dHBzOi8vbG9jYWxob3N0Ojg0NDMiLCJ0eXBlIj
oid2ViYXV0aG4uY3JlYXRlIn0="
 }
};

3. Authentication and Assertions

4. Communication Channel Requirements

5. Extensions

Servers MAY support extensions.

Servers SHOULD support [[!WebAuthn#sctn-appid-extension]] for backwards compatibility with FIDO U2F. Note
that browsers, platforms, and other clients may or may not support extensions.

If a server implements a new extension, it SHOULD be registered in the [WebAuthn-Registries] registry.

Must observe the security requirements in [WebAuthn] Section 5.3.5

The signature is computed over the rawData field.

Servers MUST implement the algorithms below marked as Required and MAY implement those marked as
Recommended and Optional. Servers MAY also implement other algorithms.

Name: RS1

Name: RS256

Name: RS384

Name: RS512

Name: PS256

Name: PS384

6. Other

Value: TBD (requested assignment -65535)
Description: RSASSA-PKCS1-v1_5 w/ SHA-1
Reference: Section 8.2 of [RFC8017]
Status: Required

Value: TBD (requested assignment -257)
Description: RSASSA-PKCS1-v1_5 w/ SHA-256
Reference: Section 8.2 of [RFC8017]
Status: Required

Value: TBD (requested assignment -258)
Description: RSASSA-PKCS1-v1_5 w/ SHA-384
Reference: Section 8.2 of [RFC8017]
Status: Optional

Value: TBD (requested assignment -259)
Description: RSASSA-PKCS1-v1_5 w/ SHA-512
Reference: Section 8.2 of [RFC8017]
Status: Optional

Value: -37
Description: RSASSA-PSS w/ SHA-256
Reference: [RFC8230]
Status: Optional

Name: PS512

Name: ES256

Name: ES384

Name: ES512

Name: EdDSA

Name: ES256K

Servers MUST implement the curves below marked as Required and MAY implement those marked as
Recommended and Optional. Servers MAY also implement other curves.

Name: P-256

Value: -38
Description: RSASSA-PSS w/ SHA-384
Reference: [RFC8230]
Status: Optional

Value: -39
Description: RSASSA-PSS w/ SHA-512
Reference: [RFC8230]
Status: Optional

Value: -7
Description: ECDSA using P-256 and SHA-256
Reference: [RFC8152]
Status: Required

Value: -35
Description: ECDSA using P-384 and SHA-384
Reference: [RFC8152]
Status: Recommended

Value: -36
Description: ECDSA using P-521 and SHA-512
Reference: [RFC8152]
Status: Optional

Value: -8
Description: EdDSA signature algorithms
Reference: [RFC8037]
Status: Recommended

Value: TBD (requested assignment -43)
Description: ECDSA using P-256K and SHA-256
Reference: [SEC2V2]
Status: Optional

Name: P-384

Name: P-521

Name: Ed25519

Name: Ed448

Name: P-256K

Note that, by design, only algorithms and curves actually being used by authenticators as of the time of this
writing are included in the list of Required algorithms and curves. Servers wanting to be prepared in advance for
possible future cryptographic developments ought to consider implementing the Recommended algorithms and
curves in addition to the Required ones.

Servers MUST comply with the FIDO privacy principles [FIDOPrivacyPrinciples].

This section is non-normative

Value: 1
Description: EC2 NIST P-256 also known as secp256r1
Reference: [RFC8152]
Status: Required

Value: 2
Description: EC2 NIST P-384 also known as secp384r1
Reference: [RFC8152]
Status: Recommended

Value: 3
Description: EC2 NIST P-521 also known as secp521r1
Reference: [RFC8152]
Status: Optional

Value: 6
Description: Edwards-curve Digital Signature Algorithm on curve 25519
Reference: [RFC8032]
Status: Recommended

Value: 6
Description: Edwards-curve Digital Signature Algorithm on curve 448
Reference: [RFC8032]
Status: Optional

Value: TBD - requested assignment 8
Description: SECG secp256k1 curve
Reference: [SEC2V2]
Status: Optional

7. Transport Binding Profile

7.1. Contents

This document contains a non-normative, proposed REST API for FIDO2 servers. While this interface is not
required, it is the interface that is used for the FIDO2 conformance test tools so that servers can receive and
send messages in a standard way for those messages to be validated by the conformance test tools.

As with the FIDO2 specifications, the interfaces described here are highly dependent on the [WebAuthn]
specification. The nomenclature of this document follows that of WebAuthn and reuses the Interface Definition
Language (IDL) for defining the messages that are sent to / from the server.

This document is broken up into three sections: registration, authentication, and common. The registration and
authentication sections contain the messages relevant to those operations, and the common section includes
messgages and data formats that are common to both registration and authentication.

7.1. Contents
Introduction
Registration

Overview
Examples

Credential Creation Options
Authenticator Attestation Response

Primary IDL

ServerPublicKeyCredentialCreationOptionsRequest
ServerPublicKeyCredentialCreationOptionsResponse
ServerAuthenticatorAttestationResponse

Supporting IDL

ServerPublicKeyCredential
ServerPublicKeyCredentialUserEntity
ServerPublicKeyCredentialDescriptor

Authentication

Overview
Examples

Credential Get Options
Authenticator Assertion Response

IDL

ServerPublicKeyCredentialGetOptionsRequest
ServerPublicKeyCredentialGetOptionsResponse
ServerAuthenticatorAssertionResponse

Common

IDL

ServerResponse

7.2. Introduction

7.3. Registration

This section includes a brief overview of the registration messages that are exchanged between a client and the
server, followed by examples of those messages, and concluding with IDL definitions of the messages. Note that
registration is also referred to as "credential creation" due to the WebAuthn nomenclature.

The registration flow takes part in two steps for a total of four messages. The first step is that a client retrieves
"Credential Creation Options", which involves the client sending a
ServerPublicKeyCredentialCreationOptionsRequest to the server and the server responding with a
ServerPublicKeyCredentialCreationOptionsResponse. These options are intended to be used with
WebAuthn’s navigator.credentials.create(), especially the challenge which necessarily is generated by the server
for the sake of Man in the Middle (MITM) protection. Upon completion of navigator.credentials.create() the
dictionary that is created from that call is sent back to the server as the ServerPublicKeyCredential with
response field set to ServerAuthenticatorAttestationResponse. Note that the
ServerAuthenticatorAttestationResponse extends the generic ServerAuthenticatorResponse, which is
described in the Common section below. The server will validate challenges, origins, signatures and the rest of
the ServerAuthenticatorAttestationResponse according to the algorithm described in section 7.1 of the
[Webauthn] specs, and will respond with the appropriate ServerResponse message.

Request:

 {
 "username": "johndoe@example.com",
 "displayName": "John Doe",
 "authenticatorSelection": {
 "residentKey": false,
 "authenticatorAttachment": "cross-platform",
 "userVerification": "preferred"
 },
 "attestation": "direct"
 }

Success Response:

7.3. Registration

7.3.1. Registration Overview

7.3.2. Examples

7.3.2.1. Example: Credential Creation Options

URL: /attestation/options
Method: POST
URL Params: None
Body: application/json formatted ServerPublicKeyCredentialCreationOptionsRequest

HTTP Status Code: 200 OK
Body: application/json formatted ServerPublicKeyCredentialCreationOptionsResponse

https://www.w3.org/TR/webauthn/#credentialcreationoptions-extension

 {
 "status": "ok",
 "errorMessage": "",
 "rp": {
 "name": "Example Corporation"
 },
 "user": {
 "id": "S3932ee31vKEC0JtJMIQ",
 "name": "johndoe@example.com",
 "displayName": "John Doe"
 },

 "challenge": "uhUjPNlZfvn7onwuhNdsLPkkE5Fv-lUN",
 "pubKeyCredParams": [
 {
 "type": "public-key",
 "alg": -7
 }
],
 "timeout": 10000,
 "excludeCredentials": [
 {
 "type": "public-key",
 "id": "opQf1WmYAa5aupUKJIQp"
 }
],
 "authenticatorSelection": {
 "residentKey": false,
 "authenticatorAttachment": "cross-platform",
 "userVerification": "preferred"
 },
 "attestation": "direct"
 }

Error Response:

 {
 "status": "failed",
 "errorMessage": "Missing challenge field!"
 }

Sample JavaScript:

HTTP Status Code: 4xx or 5xx
Body: application/json formatted ServerResponse

 fetch('/attestation/options', {
 method : 'POST',
 credentials : 'same-origin',
 headers : {
 'Content-Type' : 'application/json'
 },
 body: JSON.stringify({
 "username": "johndoe@example.com",
 "displayName": "John Doe",
 "authenticatorSelection": {
 "residentKey": false,
 "authenticatorAttachment": "cross-platform",
 "userVerification": "preferred"
 },
 "attestation": "direct"
 })
 }).then(function (response) {
 return response.json();
 }).then(function (json) {
 console.log(json);
 }).catch(function (err) {
 console.log({ 'status': 'failed', 'error': err });
 })

Request:

7.3.2.2. Example: Authenticator Attestation Response

URL: /attestation/result
Method: POST
URL Params: None
Body: application/json formatted ServerPublicKeyCredential with response field set to
ServerAuthenticatorAttestationResponse

 {
 "id": "LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKqmDvr
uha6ywA",
 "rawId": "LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKqm
Dvruha6ywA",
 "response": {
 "clientDataJSON": "eyJjaGFsbGVuZ2UiOiJOeHlab3B3VktiRmw3RW5uTWFlXzVGbmlyN1FKN1FXcDF
VRlVLakZIbGZrIiwiY2xpZW50RXh0ZW5zaW9ucyI6e30sImhhc2hBbGdvcml0aG0iOiJTSEEtMjU2Iiwib3JpZ2luIjoiaH
R0cDovL2xvY2FsaG9zdDozMDAwIiwidHlwZSI6IndlYmF1dGhuLmNyZWF0ZSJ9",
 "attestationObject": "o2NmbXRoZmlkby11MmZnYXR0U3RtdKJjc2lnWEcwRQIgVzzvX3Nyp_g9j9f
2B-tPWy6puW01aZHI8RXjwqfDjtQCIQDLsdniGPO9iKr7tdgVV-FnBYhvzlZLG3u28rVt10YXfGN4NWOBWQJOMIICSjCCAT
KgAwIBAgIEVxb3wDANBgkqhkiG9w0BAQsFADAuMSwwKgYDVQQDEyNZdWJpY28gVTJGIFJvb3QgQ0EgU2VyaWFsIDQ1NzIwM
DYzMTAgFw0xNDA4MDEwMDAwMDBaGA8yMDUwMDkwNDAwMDAwMFowLDEqMCgGA1UEAwwhWXViaWNvIFUyRiBFRSBTZXJpYWwg
MjUwNTY5MjI2MTc2MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEZNkcVNbZV43TsGB4TEY21UijmDqvNSfO6y3G4ytnnjP
86ehjFK28-FdSGy9MSZ-Ur3BVZb4iGVsptk5NrQ3QYqM7MDkwIgYJKwYBBAGCxAoCBBUxLjMuNi4xLjQuMS40MTQ4Mi4xLj
UwEwYLKwYBBAGC5RwCAQEEBAMCBSAwDQYJKoZIhvcNAQELBQADggEBAHibGMqbpNt2IOL4i4z96VEmbSoid9Xj--m2jJqg6
RpqSOp1TO8L3lmEA22uf4uj_eZLUXYEw6EbLm11TUo3Ge-odpMPoODzBj9aTKC8oDFPfwWj6l1O3ZHTSma1XVyPqG4A579f
3YAjfrPbgj404xJns0mqx5wkpxKlnoBKqo1rqSUmonencd4xanO_PHEfxU0iZif615Xk9E4bcANPCfz-OLfeKXiT-1msixw
zz8XGvl2OTMJ_Sh9G9vhE-HjAcovcHfumcdoQh_WM445Za6Pyn9BZQV3FCqMviRR809sIATfU5lu86wu_5UGIGI7MFDEYeV
GSqzpzh6mlcn8QSIZoYXV0aERhdGFYxEmWDeWIDoxodDQXD2R2YFuP5K65ooYyx5lc87qDHZdjQQAAAAAAAAAAAAAAAAAAA
AAAAAAAAEAsV2gIUlPIHzZnNIlQdz5zvbKtpFz_WY-8ZfxOgTyy7f3Ffbolyp3fUtSQo5LfoUgBaBaXqK0wqqYO-u6FrrLA
pQECAyYgASFYIPr9-YH8DuBsOnaI3KJa0a39hyxh9LDtHErNvfQSyxQsIlgg4rAuQQ5uy4VXGFbkiAt0uwgJJodp-DymkoB
crGsLtkI"
 },
 "type": "public-key"
 }

Success Response:

{
 "status": "ok",
 "errorMessage": ""
}

Error Response:

{
 "status": "failed",
 "errorMessage": "Can not validate response signature!"
}

Sample Call:

HTTP Status Code: 200 OK
Body: application/json formatted ServerResponse

HTTP Status Code: 4xx or 5xx
Body: application/json formatted ServerResponse

 fetch('/attestation/result', {
 method : 'POST',
 credentials : 'same-origin',
 headers : {
 'Content-Type' : 'application/json'
 },
 body: JSON.stringify({
 "id": "LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKq
mDvruha6ywA",
 "rawId": "LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6it
MKqmDvruha6ywA",
 "response": {
 "clientDataJSON": "eyJjaGFsbGVuZ2UiOiJOeHlab3B3VktiRmw3RW5uTWFlXzVGbmlyN1FKN1
FXcDFVRlVLakZIbGZrIiwiY2xpZW50RXh0ZW5zaW9ucyI6e30sImhhc2hBbGdvcml0aG0iOiJTSEEtMjU2Iiwib3JpZ2luI
joiaHR0cDovL2xvY2FsaG9zdDozMDAwIiwidHlwZSI6IndlYmF1dGhuLmNyZWF0ZSJ9",
 "attestationObject": "o2NmbXRoZmlkby11MmZnYXR0U3RtdKJjc2lnWEcwRQIgVzzvX3Nyp_g
9j9f2B-tPWy6puW01aZHI8RXjwqfDjtQCIQDLsdniGPO9iKr7tdgVV-FnBYhvzlZLG3u28rVt10YXfGN4NWOBWQJOMIICSj
CCATKgAwIBAgIEVxb3wDANBgkqhkiG9w0BAQsFADAuMSwwKgYDVQQDEyNZdWJpY28gVTJGIFJvb3QgQ0EgU2VyaWFsIDQ1N
zIwMDYzMTAgFw0xNDA4MDEwMDAwMDBaGA8yMDUwMDkwNDAwMDAwMFowLDEqMCgGA1UEAwwhWXViaWNvIFUyRiBFRSBTZXJp
YWwgMjUwNTY5MjI2MTc2MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEZNkcVNbZV43TsGB4TEY21UijmDqvNSfO6y3G4yt
nnjP86ehjFK28-FdSGy9MSZ-Ur3BVZb4iGVsptk5NrQ3QYqM7MDkwIgYJKwYBBAGCxAoCBBUxLjMuNi4xLjQuMS40MTQ4Mi
4xLjUwEwYLKwYBBAGC5RwCAQEEBAMCBSAwDQYJKoZIhvcNAQELBQADggEBAHibGMqbpNt2IOL4i4z96VEmbSoid9Xj--m2j
Jqg6RpqSOp1TO8L3lmEA22uf4uj_eZLUXYEw6EbLm11TUo3Ge-odpMPoODzBj9aTKC8oDFPfwWj6l1O3ZHTSma1XVyPqG4A
579f3YAjfrPbgj404xJns0mqx5wkpxKlnoBKqo1rqSUmonencd4xanO_PHEfxU0iZif615Xk9E4bcANPCfz-OLfeKXiT-1m
sixwzz8XGvl2OTMJ_Sh9G9vhE-HjAcovcHfumcdoQh_WM445Za6Pyn9BZQV3FCqMviRR809sIATfU5lu86wu_5UGIGI7MFD
EYeVGSqzpzh6mlcn8QSIZoYXV0aERhdGFYxEmWDeWIDoxodDQXD2R2YFuP5K65ooYyx5lc87qDHZdjQQAAAAAAAAAAAAAAA
AAAAAAAAAAAAEAsV2gIUlPIHzZnNIlQdz5zvbKtpFz_WY-8ZfxOgTyy7f3Ffbolyp3fUtSQo5LfoUgBaBaXqK0wqqYO-u6F
rrLApQECAyYgASFYIPr9-YH8DuBsOnaI3KJa0a39hyxh9LDtHErNvfQSyxQsIlgg4rAuQQ5uy4VXGFbkiAt0uwgJJodp-Dy
mkoBcrGsLtkI"
 },
 "type": "public-key"
 })
 }).then(function (response) {
 return response.json();
 }).then(function (json) {
 console.log(json);
 }).catch(function (err) {
 console.log({ 'status': 'failed', 'error': err });
 })

 dictionary ServerPublicKeyCredentialCreationOptionsRequest {
 required DOMString username;
 required DOMString displayName;
 AuthenticatorSelectionCriteria authenticatorSelection;
 AttestationConveyancePreference attestation = "none";
 };

7.3.3. Registration Primary IDL

7.3.3.1. ServerPublicKeyCredentialCreationOptionsRequest

required username - A human-readable name for the entity. For example, "alexm",
"alex.p.mueller@example.com" or "+14255551234".
required displayName - A human-friendly name for the user account, intended only for display. For
example, "Alex P. Müller" or "฀฀ ฀".

 dictionary ServerPublicKeyCredentialCreationOptionsResponse : ServerResponse {
 required PublicKeyCredentialRpEntity rp;
 required ServerPublicKeyCredentialUserEntity user;

 required DOMString challenge;
 required sequence<PublicKeyCredentialParameters> pubKeyCredParams;

 unsigned long timeout;
 sequence<ServerPublicKeyCredentialDescriptor> excludeCredentials = [];
 AuthenticatorSelectionCriteria authenticatorSelection;
 AttestationConveyancePreference attestation = "none";
 AuthenticationExtensionsClientInputs extensions;
 };

Generally the same as AuthenticatorAttestationResponse from WebAuthn, but uses base64url encoding for
fields that were of type BufferSource.

dictionary ServerAuthenticatorAttestationResponse : ServerAuthenticatorResponse {
 required DOMString clientDataJSON;
 required DOMString attestationObject;
};

authenticatorSelection - a dictionary containing AuthenticatorSelectionCriteria described in WebAuthn
specification
attestation - can be set to "none", "indirect", "direct". More in WebAuthn specification. Default set to none

7.3.3.2. ServerPublicKeyCredentialCreationOptionsResponse

required rp - a dictionary defined as PublicKeyCredentialRpEntity described in WebAuthn specification
required user - a dictionary defined as ServerPublicKeyCredentialUserEntity, described in this document
required challenge - a random base64url encoded challenge, that is minumum 16 bytes long, and
maximum 64 bytes long
required pubKeyCredParams - sequence of PublicKeyCredentialParameters described in WebAuthn
specification
timeout - timeout(ms)
excludeCredentials - a sequence of ServerPublicKeyCredentialDescriptor described in this document
authenticatorSelection - a dictionary set AuthenticatorSelectionCriteria described in WebAuthn
specification
attestation - can be set to "none", "indirect", "direct". More in WebAuthn specification. Default set to none
extensions - a dictionary set to AuthenticationExtensionsClientInputs described in WebAuthn specs
Extends ServerResponse described in this document

7.3.3.3. ServerAuthenticatorAttestationResponse

required clientDataJSON - base64url encoded clientDataJSON buffer
required attestationObject - base64url encoded attestationObject buffer

7.3.4. Registration Supporting IDL

7.3.4.1. ServerPublicKeyCredential

https://w3c.github.io/webauthn/#authenticatorSelection
https://w3c.github.io/webauthn/#enumdef-attestationconveyancepreference
https://w3c.github.io/webauthn/#dictdef-publickeycredentialrpentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialparameters
https://w3c.github.io/webauthn/#authenticatorSelection
https://w3c.github.io/webauthn/#enumdef-attestationconveyancepreference
https://w3c.github.io/webauthn/#iface-authentication-extensions-client-inputs
https://w3c.github.io/webauthn/#authenticatorattestationresponse

Generally the same as PublicKeyCredential from WebAuthn, but uses base64url formatting for fields that are
defined as BufferSource in WebAuthn.

dictionary ServerPublicKeyCredential : Credential {
 required DOMString rawId;
 required ServerAuthenticatorResponse response;
 AuthenticationExtensionsClientOutputs getClientExtensionResults;
};

Generally the same as the PublicKeyCredentialUserEntity from WebAuthn, but uses base64url formatting
instead of BufferSource for id.

 dictionary ServerPublicKeyCredentialUserEntity : PublicKeyCredentialEntity {
 required DOMString id;
 required DOMString displayName;
 };

Generally the same as PublicKeyCredentialDescriptor from WebAuthn, but uses base64url formatting instead of
BufferSource for id.

 dictionary ServerPublicKeyCredentialDescriptor {
 required PublicKeyCredentialType type;
 required DOMString id;
 sequence<AuthenticatorTransport> transports;
 };

7.3.4.1. ServerPublicKeyCredential

required id - This attribute is inherited from Credential, though ServerPublicKeyCredential overrides it with
base64url encoding of the authenticator credId
required rawId - same as id
required response - a dictionary defined as ServerAuthenticatorAttestationResponse or by
ServerAuthenticatorAssertionResponse, described in this document
required type - This attribute is inherited from Credential, though ServerPublicKeyCredential overrides it with
"public-key"
getClientExtensionResults - a map containing extension identifier, which contain client extension output
entries produced by the extension’s client extension processing.
Extends Credential described in Credential Management API specification

7.3.4.2. ServerPublicKeyCredentialUserEntity

required id - base64url encoded id buffer
required displayName - A human-friendly name for the user account, intended only for display. For example,
"Alex P. Müller" or "฀฀ ฀". Corresponding to ServerPublicKeyCredentialCreationOptionsRequest.displayName
Extends PublicKeyCredentialEntity described in WebAuthn specification

7.3.4.3. ServerPublicKeyCredentialDescriptor

required type - a dictionary defined as PublicKeyCredentialType described in WebAuthn specification
required id - contains base64url encoded credential ID of the public key credential that the caller is referring
to.

https://w3c.github.io/webauthn/#publickeycredential
https://w3c.github.io/webappsec-credential-management/#credential
https://w3c.github.io/webauthn/#dictdef-publickeycredentialuserentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialentity
https://w3c.github.io/webauthn/#dictdef-publickeycredentialdescriptor
https://w3c.github.io/webauthn/#enumdef-publickeycredentialtype

This section starts with an overview of the messages exchanged with the server for authentication, then
proceeds to show examples of those messages, and concludes with the specific IDL definitions of those
messages. Note that "authentication" is sometimes referred to as "getting credentials", a "credential request", or
"getting an authentication assertion" due to the terminology used in WebAuthn.

Similar to the communication flow described for Registration, the Authentication flow requires four messages to
be exchanged with the server. The first pair of messages are a request from the client to the server in the format
of ServerPublicKeyCredentialGetOptionsRequestand the server returns a corresponding
ServerPublicKeyCredentialGetOptionsResponse to the client. This
ServerPublicKeyCredentialGetOptionsResponse is intended to be used as the parameters to the WebAuthn
navigator.credentials.get() call. The results of navigator.credentials.get() are formatted by the client in
to a ServerPublicKeyCredential with response field set to ServerAuthenticatorAssertionResponse and sent
to the server. The server validates the assertion according the section 7.2 of the [WebAuthn] specification, and
returns the corresponding ServerResponse.

Request:

 {
 "username": "johndoe@example.com",
 "userVerification": "required"
 }

Success Response:

transports - a sequence of AuthenticatorTransport described in WebAuthn specification

7.4. Authentication

7.4.1. Authentication Overview

7.4.2. Authentication Examples

7.4.2.1. Authentication Example: Credential Get Options

URL: /attestation/options
Method: POST
URL Params: None
Body: application/json encoded ServerPublicKeyCredentialGetOptionsRequest

HTTP Status Code: 200 OK
Body: applicaiton/json encoded ServerPublicKeyCredentialGetOptionsResponse

https://w3c.github.io/webauthn/#transport

{
 "status": "ok",
 "errorMessage": "",
 "challenge": "6283u0svT-YIF3pSolzkQHStwkJCaLKx",
 "timeout": 20000,
 "rpId": "https://example.com",
 "allowCredentials": [
 {
 "id": "m7xl_TkTcCe0WcXI2M-4ro9vJAuwcj4m",
 "type": "public-key"
 }
],
 "userVerification": "required"
}

Error Response:

 {
 "status": "failed",
 "errorMessage": "User does not exists!"
 }

Sample Call:

 fetch('/attestation/options', {
 method : 'POST',
 credentials : 'same-origin',
 headers : {
 'Content-Type' : 'application/json'
 },
 body: JSON.stringify({
 "username": "johndoe@example.com",
 "userVerification": "required"
 })
 }).then(function (response) {
 return response.json();
 }).then(function (json) {
 console.log(json);
 }).catch(function (err) {
 console.log({ 'status': 'failed', 'error': err });
 })

Request:

HTTP Status Code: 4xx or 5xx
Body: applicaiton/json encoded ServerResponse

7.4.2.2. Authentication Example: Authenticator Assertion Response

URL: /assertion/result
Method: POST
URL Params: None
Body: application/json encoded ServerPublicKeyCredential with response field set to
ServerAuthenticatorAssertionResponse

 {
 "id":"LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKqmDvru
ha6ywA",
 "rawId":"LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKqmD
vruha6ywA",
 "response":{
 "authenticatorData":"SZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2MBAAAAAA",
 "signature":"MEYCIQCv7EqsBRtf2E4o_BjzZfBwNpP8fLjd5y6TUOLWt5l9DQIhANiYig9newAJZYTzG
1i5lwP-YQk9uXFnnDaHnr2yCKXL",
 "userHandle":"",
 "clientDataJSON":"eyJjaGFsbGVuZ2UiOiJ4ZGowQ0JmWDY5MnFzQVRweTBrTmM4NTMzSmR2ZExVcHFZ
UDh3RFRYX1pFIiwiY2xpZW50RXh0ZW5zaW9ucyI6e30sImhhc2hBbGdvcml0aG0iOiJTSEEtMjU2Iiwib3JpZ2luIjoiaHR
0cDovL2xvY2FsaG9zdDozMDAwIiwidHlwZSI6IndlYmF1dGhuLmdldCJ9"
 },
 "type":"public-key"
 }

Success Response:

{
 "status": "ok",
 "errorMessage": ""
}

Error Response:

 {
 "status": "failed",
 "errorMessage": "Can not validate response signature!"
 }

Sample Call:

HTTP status code: 200 OK
Body: application/json encoded ServerResponse

HTTP status code: 4xx or 5xx
Body: application/json encoded ServerResponse

 fetch('/assertion/result', {
 method : 'POST',
 credentials : 'same-origin',
 headers : {
 'Content-Type' : 'application/json'
 },
 body: JSON.stringify({
 "id":"LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKqm
Dvruha6ywA",
 "rawId":"LFdoCFJTyB82ZzSJUHc-c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itM
KqmDvruha6ywA",
 "response":{
 "authenticatorData":"SZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2MBAAAAAA",
 "signature":"MEYCIQCv7EqsBRtf2E4o_BjzZfBwNpP8fLjd5y6TUOLWt5l9DQIhANiYig9newAJZ
YTzG1i5lwP-YQk9uXFnnDaHnr2yCKXL",
 "userHandle":"",
 "clientDataJSON":"eyJjaGFsbGVuZ2UiOiJ4ZGowQ0JmWDY5MnFzQVRweTBrTmM4NTMzSmR2ZEx
VcHFZUDh3RFRYX1pFIiwiY2xpZW50RXh0ZW5zaW9ucyI6e30sImhhc2hBbGdvcml0aG0iOiJTSEEtMjU2Iiwib3JpZ2luIj
oiaHR0cDovL2xvY2FsaG9zdDozMDAwIiwidHlwZSI6IndlYmF1dGhuLmdldCJ9"
 },
 "type":"public-key"
 })
 }).then(function (response) {
 return response.json();
 }).then(function (json) {
 console.log(json);
 }).catch(function (err) {
 console.log({ 'status': 'failed', 'error': err });
 })

 dictionary ServerPublicKeyCredentialGetOptionsRequest {
 required DOMString username;
 UserVerificationRequirement userVerification = "preferred";
 };

 dictionary ServerPublicKeyCredentialGetOptionsResponse : ServerResponse {
 required DOMString challenge;
 unsigned long timeout;
 USVString rpId;
 sequence<ServerPublicKeyCredentialDescriptor> allowCredentials = [];
 UserVerificationRequirement userVerification = "preferred";
 AuthenticationExtensionsClientInputs extensions;
 };

7.4.3. Authentication IDL

7.4.3.1. ServerPublicKeyCredentialGetOptionsRequest

required username - A human-readable name for the entity. For example, "alexm",
"alex.p.mueller@example.com" or "+14255551234".
userVerification - can be set to "required", "preferred", "discouraged". More in WebAuthn specification.
Default set to "preferred"

7.4.3.2. ServerPublicKeyCredentialGetOptionsResponse

https://w3c.github.io/webauthn/#enumdef-userverificationrequirement

dictionary ServerAuthenticatorAssertionResponse : ServerAuthenticatorResponse {
 required DOMString clientDataJSON;
 required DOMString authenticatorData;
 required DOMString signature;
 required DOMString userHandle;
};

 dictionary ServerResponse {
 required Status status;
 required DOMString errorMessage = "";
 }

required challenge - a random base64url encoded challenge, that is minumum 16 bytes long, and
maximum 64 bytes long
timeout - timeout(ms)
rpId - This optional member specifies the relying party identifier claimed by the caller. If omitted, its value
will be the CredentialsContainer object’s relevant settings object’s origin’s effective domain.
excludeCredentials - a sequence of ServerPublicKeyCredentialDescriptor described in this document
userVerification - can be set to "required", "preferred", "discouraged". More in WebAuthn specification.
Default set to "preferred". Corresponds to
ServerPublicKeyCredentialGetOptionsRequest.userVerification
extensions - a dictionary set to AuthenticationExtensionsClientInputs described in WebAuthn specs
Extends ServerResponse described in this document

7.4.3.3. ServerAuthenticatorAssertionResponse

required clientDataJSON - base64url encoded clientDataJSON buffer
required authenticatorData - base64url encoded authenticatorData buffer
required signature - base64url encoded signature buffer
required userHandle - base64url encoded userHandle buffer. Corresponding to registered user
ServerPublicKeyCredentialUserEntity.id

7.5. Common
7.5.1. Common IDL

7.5.1.1. ServerResponse

required status - Describing the status of the response. Can be set to either "ok" or "failed".
required errorMessage - If status is set to "failed" this field MUST NOT be empty

Index

Terms defined by reference
[credential-management-1] defines the following terms:

CredentialCreationOptions

https://w3c.github.io/webauthn/#enumdef-userverificationrequirement
https://w3c.github.io/webauthn/#iface-authentication-extensions-client-inputs

Mike West. Credential Management Level 1. 4 August 2017. WD. URL: https://www.w3.org/TR/credential-
management-1/

R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html

FIDO: Privacy Principles. Feb 2014. URL: https://fidoalliance.org/wp-
content/uploads/2014/12/FIDO_Alliance_Whitepaper_Privacy_Principles.pdf

K. Moriarty, Ed.; et al. PKCS #1: RSA Cryptography Specifications Version 2.2. November 2016.
Informational. URL: https://tools.ietf.org/html/rfc8017

S. Josefsson; I. Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). January 2017.
Informational. URL: https://tools.ietf.org/html/rfc8032

I. Liusvaara. CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object Signing and
Encryption (JOSE). January 2017. Proposed Standard. URL: https://tools.ietf.org/html/rfc8037

J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8152

M. Jones. Using RSA Algorithms with CBOR Object Signing and Encryption (COSE) Messages. September
2017. Proposed Standard. URL: https://tools.ietf.org/html/rfc8230

SEC2: Recommended Elliptic Curve Domain Parameters, Version 2.0. URL: http://www.secg.org/sec2-
v2.pdf

A. Popov; et al. Token Binding over HTTP. December 7, 2018. URL: https://tools.ietf.org/html/draft-ietf-
tokbind-https-17

A. Popov; et al. The Token Binding Protocol Version 1.0. May 23, 2018. URL: https://tools.ietf.org/html/draft-
ietf-tokbind-protocol-19

Dirk Balfanz; et al. Web Authentication: An API for accessing Public Key Credentials Level 1. March 2018.
CR. URL: https://www.w3.org/TR/webauthn/

Jeff Hodges; G. Mandyam; Michael B. Jones. Registries for Web Authentication (WebAuthn). March 24,
2017. Draft. URL: https://tools.ietf.org/html/draft-hodges-webauthn-registries

R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html

References
Normative References
[CREDENTIAL-MANAGEMENT-1]

[FIDOMetadataService]

[FIDOPrivacyPrinciples]

[RFC8017]

[RFC8032]

[RFC8037]

[RFC8152]

[RFC8230]

[SEC2V2]

[TokenBindingOverHttp]

[TokenBindingProtocol]

[WebAuthn]

[WebAuthn-Registries]

Informative References
[FIDOSecRef]

Issues Index

https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/wp-content/uploads/2014/12/FIDO_Alliance_Whitepaper_Privacy_Principles.pdf
https://fidoalliance.org/wp-content/uploads/2014/12/FIDO_Alliance_Whitepaper_Privacy_Principles.pdf
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8037
https://tools.ietf.org/html/rfc8037
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8230
https://tools.ietf.org/html/rfc8230
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://tools.ietf.org/html/draft-ietf-tokbind-https-17
https://tools.ietf.org/html/draft-ietf-tokbind-https-17
https://tools.ietf.org/html/draft-ietf-tokbind-protocol-19
https://tools.ietf.org/html/draft-ietf-tokbind-protocol-19
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://tools.ietf.org/html/draft-hodges-webauthn-registries
https://tools.ietf.org/html/draft-hodges-webauthn-registries
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html

ISSUE 1 need an example of Android Key attestation. ↵
↑
→

Client to Authenticator Protocol (CTAP)

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-client-to-authenticator-protocol-v2.0-rd-
20180702.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/

GitHub

Christiaan Brand (Google)
Alexei Czeskis (Google)
Jakob Ehrensvärd (Yubico)
Michael B. Jones (Microsoft)
Akshay Kumar (Microsoft)
Rolf Lindemann (Nok Nok Labs)
Adam Powers (FIDO Alliance)
Johan Verrept (VASCO Data Security)

Matthieu Antoine (Gemalto)
Arnar Birgisson (Google)
Vijay Bharadwaj (Microsoft)
Mirko J. Ploch (SurePassID)

Jeff Hodges (PayPal)
Copyright © 2018 FIDO Alliance. All Rights Reserved.

This specification describes an application layer protocol for communication between a roaming authenticator
and another client/platform, as well as bindings of this application protocol to a variety of transport protocols
using different physical media. The application layer protocol defines requirements for such transport protocols.
Each transport binding defines the details of how such transport layer connections should be set up, in a manner
that meets the requirements of the application layer protocol.

Table of Contents

Review Draft, July 02, 2018
This version:

Previous Versions:

Issue Tracking:

Editors:

Former Editors:

Contributors:

Abstract

1 Introduction
1.1 Relationship to Other Specifications

2 Conformance

3 Protocol Structure

4 Protocol Overview

5 Authenticator API
5.1 authenticatorMakeCredential (0x01)

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-client-to-authenticator-protocol-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/
https://github.com/fido-alliance/fido-2-specs
mailto:cbrand@google.com
mailto:aczeskis@google.com
mailto:jakob@yubico.com
mailto:mbj@microsoft.com
mailto:akshayku@microsoft.com
mailto:rolf@noknok.com
mailto:adam@fidoalliance.org
mailto:johan.verrept@vasco.com
mailto:matthieu.antoine@gemalto.com
mailto:arnarb@google.com
mailto:vijay.bharadwaj@microsoft.com
mailto:mirko.ploch@surepassid.com
mailto:jeff.hodges@paypal.com
https://fidoalliance.org

5.2 authenticatorGetAssertion (0x02)
5.3 authenticatorGetNextAssertion (0x08)
5.3.1 Client Logic
5.4 authenticatorGetInfo (0x04)
5.5 authenticatorClientPIN (0x06)
5.5.1 Client PIN Support Requirements
5.5.2 Authenticator Configuration Operations Upon Power Up
5.5.3 Getting Retries from Authenticator
5.5.4 Getting sharedSecret from Authenticator
5.5.5 Setting a New PIN
5.5.6 Changing existing PIN
5.5.7 Getting pinToken from the Authenticator
5.5.8 Using pinToken
5.5.8.1 Using pinToken in authenticatorMakeCredential
5.5.8.2 Using pinToken in authenticatorGetAssertion
5.5.8.3 Without pinToken in authenticatorGetAssertion
5.6 authenticatorReset (0x07)

6 Message Encoding
6.1 Commands
6.2 Responses
6.3 Status codes

7 Interoperating with CTAP1/U2F authenticators
7.1 Framing of U2F commands
7.1.1 U2F Request Message Framing
7.1.2 U2F Response Message Framing
7.2 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
7.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

8 Transport-specific Bindings
8.1 USB Human Interface Device (USB HID)
8.1.1 Design rationale
8.1.2 Protocol structure and data framing
8.1.3 Concurrency and channels
8.1.4 Message and packet structure
8.1.5 Arbitration
8.1.5.1 Transaction atomicity, idle and busy states.
8.1.5.2 Transaction timeout
8.1.5.3 Transaction abort and re-synchronization
8.1.5.4 Packet sequencing
8.1.6 Channel locking
8.1.7 Protocol version and compatibility
8.1.8 HID device implementation
8.1.8.1 Interface and endpoint descriptors
8.1.8.2 HID report descriptor and device discovery
8.1.9 CTAPHID commands
8.1.9.1 Mandatory commands
8.1.9.1.1 CTAPHID_MSG (0x03)
8.1.9.1.2 CTAPHID_CBOR (0x10)
8.1.9.1.3 CTAPHID_INIT (0x06)
8.1.9.1.4 CTAPHID_PING (0x01)
8.1.9.1.5 CTAPHID_CANCEL (0x11)
8.1.9.1.6 CTAPHID_ERROR (0x3F)

8.1.9.1.7 CTAPHID_KEEPALIVE (0x3B)
8.1.9.2 Optional commands
8.1.9.2.1 CTAPHID_WINK (0x08)
8.1.9.2.2 CTAPHID_LOCK (0x04)
8.1.9.3 Vendor specific commands
8.2 ISO7816, ISO14443 and Near Field Communication (NFC)
8.2.1 Conformance
8.2.2 Protocol
8.2.3 Applet selection
8.2.4 Framing
8.2.4.1 Commands
8.2.4.2 Response
8.2.5 Fragmentation
8.2.6 Commands
8.2.6.1 NFCCTAP_MSG (0x10)
8.2.6.2 NFCCTAP_GETRESPONSE (0x11)
8.3 Bluetooth Smart / Bluetooth Low Energy Technology
8.3.1 Conformance
8.3.2 Pairing
8.3.3 Link Security
8.3.4 Framing
8.3.4.1 Request from Client to Authenticator
8.3.4.2 Response from Authenticator to Client
8.3.4.3 Command, Status, and Error constants
8.3.5 GATT Service Description
8.3.5.1 FIDO Service
8.3.5.2 Device Information Service
8.3.5.3 Generic Access Profile Service
8.3.6 Protocol Overview
8.3.7 Authenticator Advertising Format
8.3.8 Requests
8.3.9 Responses
8.3.10 Framing fragmentation
8.3.11 Notifications
8.3.12 Implementation Considerations
8.3.12.1 Bluetooth pairing: Client considerations
8.3.12.2 Bluetooth pairing: Authenticator considerations
8.3.13 Handling command completion
8.3.14 Data throughput
8.3.15 Advertising
8.3.16 Authenticator Address Type

9 Defined Extensions
9.1 HMAC Secret Extension (hmac-secret)

10 IANA Considerations
10.1 WebAuthn Extension Identifier Registrations

11 Security Considerations

Index
Terms defined by this specification
Terms defined by reference

This section is not normative.

This protocol is intended to be used in scenarios where a user interacts with a relying party (a website or native
app) on some platform (e.g., a PC) which prompts the user to interact with a roaming authenticator (e.g., a
smartphone).

In order to provide evidence of user interaction, a roaming authenticator implementing this protocol is expected to
have a mechanism to obtain a user gesture. Possible examples of user gestures include: as a consent button,
password, a PIN, a biometric or a combination of these.

Prior to executing this protocol, the client/platform (referred to as host hereafter) and roaming authenticator
(referred to as authenticator hereafter) must establish a confidential and mutually authenticated data transport
channel. This specification does not specify the details of how such a channel is established, nor how transport
layer security must be achieved.

This specification is part of the FIDO2 project which includes this CTAP and the [FIDOServerGuidelines]
specifications, and is related to the W3C [WebAuthN] specification. This specification refers to two CTAP protocol
versions:

Both CTAP1 and CTAP2 share the same underlying transports: USB Human Interface Device (USB HID), Near
Field Communication (NFC), and Bluetooth Smart / Bluetooth Low Energy Technology (BLE).

The [U2FUsbHid], [U2FNfc], [U2FBle], and [U2FRawMsgs] specifications, specifically, are superseded by this
specification.

Occasionally, the term "CTAP" may be used without clarifying whether it is referring to CTAP1 or CTAP2. In such
cases, it should be understood to be referring to the entirety of this specification or portions of this specification
that are not specific to either CTAP1 or CTAP2. For example, some error messages begin with the term "CTAP"
without clarifying whether they are CTAP1- or CTAP2-specific because they are applicable to both CTAP
protocol versions. CTAP protocol-specific error messages are prefixed with either "CTAP1" or "CTAP2" as
appropriate.

Using CTAP2 with CTAP1/U2F authenticators is defined in Interoperating with CTAP1/U2F authenticators.

References
Normative References
Informative References

IDL Index

1. Introduction

1.1. Relationship to Other Specifications

1. The CTAP1/U2F protocol, which is defined by the U2F Raw Messages specification [U2FRawMsgs].
CTAP1/U2F messages are recognizable by their APDU-like binary structure. CTAP1/U2F may also be
referred to as CTAP 1.2 or U2F 1.2. The latter was the U2F specification version used as the basis for
several portions of this specification. Authenticators implementing CTAP1/U2F are typically referred to as
U2F authenticators or CTAP1 authenticators.

2. The CTAP2 protocol, whose messages are encoded in the CTAP2 canonical CBOR encoding form.
Authenticators implementing CTAP2 are referred to as CTAP2 authenticators, FIDO2 authenticators, or
WebAuthn Authenticators.

2. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this
specification are non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in [RFC2119].

This protocol is specified in three parts:

This document specifies all three of the above pieces for roaming FIDO2 authenticators.

The general protocol between a platform and an authenticator is as follows:

Each operation in the authenticator API can be performed independently of the others, and all operations are
asynchronous. The authenticator may enforce a limit on outstanding operations to limit resource usage - in this
case, the authenticator is expected to return a busy status and the host is expected to retry the operation later.
Additionally, this protocol does not enforce in-order or reliable delivery of requests and responses; if these
properties are desired, they must be provided by the underlying transport protocol or implemented at a higher
layer by applications.

Note that this API level is conceptual and does not represent actual APIs. The actual APIs will be provided by
each implementing platform.

The authenticator API has the following methods and data structures.

This method is invoked by the host to request generation of a new credential in the authenticator. It takes the
following input parameters, which explicitly correspond to those defined in The authenticatorMakeCredential

3. Protocol Structure

Authenticator API: At this level of abstraction, each authenticator operation is defined similarly to an API
call - it accepts input parameters and returns either an output or error code. Note that this API level is
conceptual and does not represent actual APIs. The actual APIs will be provided by each implementing
platform.
Message Encoding: In order to invoke a method in the authenticator API, the host must construct and
encode a request and send it to the authenticator over the chosen transport protocol. The authenticator will
then process the request and return an encoded response.
Transport-specific Binding: Requests and responses are conveyed to roaming authenticators over
specific transports (e.g., USB, NFC, Bluetooth). For each transport technology, message bindings are
specified for this protocol.

4. Protocol Overview

1. Platform establishes the connection with the authenticator.
2. Platform gets information about the authenticator using authenticatorGetInfo command, which helps it

determine the capabilities of the authenticator.
3. Platform sends a command for an operation if the authenticator is capable of supporting it.
4. Authenticator replies with response data or error.

5. Authenticator API

5.1. authenticatorMakeCredential (0x01)

https://www.w3.org/TR/webauthn/#op-make-cred

operation section of the Web Authentication specification:

Parameter name Data type Required? Definition

clientDataHash
(0x01) Byte Array Required

Hash of the ClientData
contextual binding specified by
host. See [WebAuthN].

rp (0x02) PublicKeyCredentialRpEntity Required

This
PublicKeyCredentialRpEntity
data structure describes a
Relying Party with which the
new public key credential will
be associated. It contains the
Relying party identifier of type
text string, (optionally) a
human-friendly RP name of
type text string, and
(optionally) a URL of type text
string, referencing a RP icon
image. The RP name is to be
used by the authenticator
when displaying the credential
to the user for selection and
usage authorization. The RP
name and URL are optional so
that the RP can be more
privacy friendly if it chooses to.
For example, for authenticators
with a display, RP may not
want to display name/icon for
single-factor scenarios.

user (0x03) PublicKeyCredentialUserEntity Required

This
PublicKeyCredentialUserEntity
data structure describes the
user account to which the new
public key credential will be
associated at the RP. It
contains an RP-specific user
account identifier of type byte
array, (optionally) a user name
of type text string, (optionally)
a user display name of type
text string, and (optionally) a
URL of type text string,
referencing a user icon image
(of a user avatar, for example).
The authenticator associates
the created public key
credential with the account
identifier, and MAY also
associate any or all of the user
name, user display name, and
image data (pointed to by the
URL, if any). The user name,

https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#public-key-credential

display name, and URL are
optional for privacy reasons for
single-factor scenarios where
only user presence is required.
For example, in certain closed
physical environments like
factory floors, user presence
only authenticators can satisfy
RP’s productivity and security
needs. In these environments,
omitting user name, display
name and URL makes the
credential more privacy
friendly. Although this
information is not available
without user verification,
devices which support user
verification but do not have it
configured, can be tricked into
releasing this information by
configuring the user
verification.

pubKeyCredParams
(0x04) CBOR Array Required

A sequence of CBOR maps
consisting of pairs of
PublicKeyCredentialType (a
string) and cryptographic
algorithm (a positive or
negative integer), where
algorithm identifiers are values
that SHOULD be registered in
the IANA COSE Algorithms
registry
[IANA-COSE-ALGS-REG].
This sequence is ordered from
most preferred (by the RP) to
least preferred.

excludeList (0x05) Sequence of
PublicKeyCredentialDescriptors Optional

A sequence of
PublicKeyCredentialDescriptor
structures, as specified in
[WebAuthN]. The authenticator
returns an error if the
authenticator already contains
one of the credentials
enumerated in this sequence.
This allows RPs to limit the
creation of multiple credentials
for the same account on a
single authenticator.

extensions (0x06)
CBOR map of extension
identifier → authenticator
extension input values

Optional

Parameters to influence
authenticator operation, as
specified in [WebAuthN].
These parameters might be
authenticator specific.

https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input

options (0x07) Map of authenticator options Optional
Parameters to influence
authenticator operation, as
specified in in the table below.

pinAuth
(0x08) Byte Array Optional

First 16 bytes of HMAC-SHA-
256 of clientDataHash using
pinToken which platform got
from the authenticator: HMAC-
SHA-256(pinToken,
clientDataHash).

pinProtocol (0x09) Unsigned Integer Optional PIN protocol version chosen by
the client

The following values are defined for use in the options parameter. All options are booleans.

Key Default
value Definition

rk false resident key: Instructs the authenticator to store the key material on the device.

uv false user verification: Instructs the authenticator to require a gesture that verifies the user to
complete the request. Examples of such gestures are fingerprint scan or a PIN.

Note that the [WebAuthN] specification defines an abstract authenticatorMakeCredential operation, which
corresponds to the operation described in this section. The parameters in the abstract [WebAuthN]
authenticatorMakeCredential operation map to the above parameters as follows:

[WebAuthN]
authenticatorMakeCredential
operation

CTAP authenticatorMakeCredential operation

hash clientDataHash

rpEntity rp

userEntity user

requireResidentKey options.rk

requireUserPresence Not present in the current version of CTAP. Authenticators are
assumed to always check user presence.

requireUserVerification options.uv or pinAuth/pinProtocol

credTypesAndPubKeyAlgs pubKeyCredParams

excludeCredentialDescriptorList excludeList

extensions extensions

Note that icon values used with authenticators can employ [RFC2397] "data" URLs so that the image data is
passed by value, rather than by reference. This can enable authenticators with a display but no Internet
connection to display icons.

Note that a text string is a UTF-8 encoded string (CBOR major type 3).

When an authenticatorMakeCredential request is received, the authenticator performs the following
procedure:

On success, the authenticator returns an attestation object in its response as defined in [WebAuthN]:

Member
name Data type Required? Definition

authData
(0x01) Byte Array Required

The authenticator data object.

fmt
(0x02) String Required The attestation statement format

identifier.

The attestation statement, whose
format is identified by the "fmt" object

1. If the excludeList parameter is present and contains a credential ID that is present on this authenticator and
bound to the specified rpId, wait for user presence, then terminate this procedure and return error code
CTAP2_ERR_CREDENTIAL_EXCLUDED. User presence check is required for CTAP2 authenticators
before the RP gets told that the token is already registered to behave similarly to CTAP1/U2F
authenticators.

2. If the pubKeyCredParams parameter does not contain a valid COSEAlgorithmIdentifier value that is
supported by the authenticator, terminate this procedure and return error code
CTAP2_ERR_UNSUPPORTED_ALGORITHM.

3. If the options parameter is present, process all the options. If the option is known but not supported,
terminate this procedure and return CTAP2_ERR_UNSUPPORTED_OPTION. If the option is known but not
valid for this command, terminate this procedure and return CTAP2_ERR_INVALID_OPTION. Ignore any
options that are not understood. Note that because this specification defines normative behaviors for them,
all authenticators MUST understand the "rk", "up", and "uv" options.

4. Optionally, if the extensions parameter is present, process any extensions that this authenticator supports.
Authenticator extension outputs generated by the authenticator extension processing are returned in the
authenticator data.

5. If pinAuth parameter is present and pinProtocol is 1, verify it by matching it against first 16 bytes of HMAC-
SHA-256 of clientDataHash parameter using pinToken: HMAC- SHA-256(pinToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.
If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

6. If pinAuth parameter is not present and clientPin been set on the authenticator, return
CTAP2_ERR_PIN_REQUIRED error.

7. If pinAuth parameter is present and the pinProtocol is not supported, return
CTAP2_ERR_PIN_AUTH_INVALID.

8. If the authenticator has a display, show the items contained within the user and rp parameter structures to
the user. Alternatively, request user interaction in an authenticator-specific way (e.g., flash the LED light).
Request permission to create a credential. If the user declines permission, return the
CTAP2_ERR_OPERATION_DENIED error.

9. Generate a new credential key pair for the algorithm specified.
10. If "rk" in options parameter is set to true:

If a credential for the same RP ID and account ID already exists on the authenticator, overwrite that
credential.
Store the user parameter along the newly-created key pair.
If authenticator does not have enough internal storage to persist the new credential, return
CTAP2_ERR_KEY_STORE_FULL.

11. Generate an attestation statement for the newly-created key using clientDataHash.

https://www.w3.org/TR/webauthn/#authenticator-extension-output
https://www.w3.org/TR/webauthn/#sec-authenticator-data
https://www.w3.org/TR/webauthn/#credential-key-pair
https://www.w3.org/TR/webauthn/#attestation-objects
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#attestation-statement-format

attStmt
(0x03)

Byte Array, the structure of which
depends on the attestation
statement format identifier

Required

member. The client treats it as an
opaque object.

This method is used by a host to request cryptographic proof of user authentication as well as user consent to a
given transaction, using a previously generated credential that is bound to the authenticator and relying party

5.2. authenticatorGetAssertion (0x02)

identifier. It takes the following input parameters, which explicitly correspond to those defined in The
authenticatorGetAssertion operation section of the Web Authentication specification:

Parameter
name Data type Required? Definition

rpId (0x01) String Required Relying party identifier. See
[WebAuthN].

clientDataHash
(0x02) Byte Array Required

Hash of the serialized client data
collected by the host. See
[WebAuthN].

allowList
(0x03)

Sequence of
PublicKeyCredentialDescriptors Optional

A sequence of
PublicKeyCredentialDescriptor
structures, each denoting a
credential, as specified in
[WebAuthN]. If this parameter is
present and has 1 or more entries,
the authenticator MUST only
generate an assertion using one of
the denoted credentials.

extensions
(0x04)

CBOR map of extension
identifier → authenticator
extension input values

Optional
Parameters to influence
authenticator operation. These
parameters might be authenticator
specific.

options (0x05) Map of authenticator options Optional
Parameters to influence
authenticator operation, as specified
in the table below.

pinAuth
(0x06) Byte Array Optional

First 16 bytes of HMAC-SHA-256 of
clientDataHash using pinToken
which platform got from the
authenticator: HMAC-SHA-
256(pinToken, clientDataHash).

pinProtocol
(0x07) Unsigned Integer Optional PIN protocol version selected by

client.

The following values are defined for use in the options parameter. All options are booleans.

Key Default
value Definition

up true user presence: Instructs the authenticator to require user consent to complete the
operation.

uv false user verification: Instructs the authenticator to require a gesture that verifies the user to
complete the request. Examples of such gestures are fingerprint scan or a PIN.

Note that the [WebAuthN] specification defines an abstract authenticatorGetAssertion operation, which
corresponds to the operation described in this section. The parameters in the abstract [WebAuthN]
authenticatorGetAssertion operation map to the above parameters as follows:

[WebAuthN] authenticatorGetAssertion operation CTAP authenticatorGetAssertion operation

https://www.w3.org/TR/webauthn/#op-get-assertion
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#collectedclientdata-hash-of-the-serialized-client-data
https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input

hash clientDataHash
rpId rpId

allowCredentialDescriptorList allowList

requireUserPresence options.up

requireUserVerification options.uv or pinAuth/pinProtocol

extensions extensions

When an authenticatorGetAssertion request is received, the authenticator performs the following procedure:

1. Locate all credentials that are eligible for retrieval under the specified criteria:

If an allowList is present and is non-empty, locate all denoted credentials present on this authenticator
and bound to the specified rpId.
If an allowList is not present, locate all credentials that are present on this authenticator and bound to
the specified rpId.
Let numberOfCredentials be the number of credentials found.

2. If pinAuth parameter is present and pinProtocol is 1, verify it by matching it against first 16 bytes of HMAC-
SHA-256 of clientDataHash parameter using pinToken: HMAC-SHA-256(pinToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.
If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

3. If pinAuth parameter is present and the pinProtocol is not supported, return
CTAP2_ERR_PIN_AUTH_INVALID.

4. If pinAuth parameter is not present and clientPin has been set on the authenticator, set the "uv" bit to 0 in the
response.

5. If the options parameter is present, process all the options. If the option is known but not supported,
terminate this procedure and return CTAP2_ERR_UNSUPPORTED_OPTION. If the option is known but not
valid for this command, terminate this procedure and return CTAP2_ERR_INVALID_OPTION. Ignore any
options that are not understood. Note that because this specification defines normative behaviors for them,
all authenticators MUST understand the "rk", "up", and "uv" options.

6. Optionally, if the extensions parameter is present, process any extensions that this authenticator supports.
Authenticator extension outputs generated by the authenticator extension processing are returned in the
authenticator data.

7. Collect user consent if required. This step MUST happen before the following steps due to privacy reasons
(i.e., authenticator cannot disclose existence of a credential until the user interacted with the device):

If the "uv" option was specified and set to true:

If device doesn’t support user-identifiable gestures, return the
CTAP2_ERR_UNSUPPORTED_OPTION error.
Collect a user-identifiable gesture. If gesture validation fails, return the
CTAP2_ERR_OPERATION_DENIED error.

If the "up" option was specified and set to true, collect the user’s consent.

If no consent is obtained and a timeout occurs, return the CTAP2_ERR_OPERATION_DENIED
error.

8. If no credentials were located in step 1, return CTAP2_ERR_NO_CREDENTIALS.
9. If more than one credential was located in step 1 and allowList is present and not empty, select any

applicable credential and proceed to step 12. Otherwise, order the credentials by the time when they were
created in reverse order. The first credential is the most recent credential that was created.

https://www.w3.org/TR/webauthn/#sec-authenticator-data

On success, the authenticator returns the following structure in its response:

Member name Data type Required? Definition

credential (0x01) PublicKeyCredentialDescriptor Optional

PublicKeyCredentialDescriptor
structure containing the
credential identifier whose
private key was used to
generate the assertion. May be
omitted if the allowList has
exactly one Credential.

authData (0x02) Byte Array Required
The signed-over contextual
bindings made by the
authenticator, as specified in
[WebAuthN].

signature (0x03) Byte Array Required
The assertion signature
produced by the authenticator,
as specified in [WebAuthN].

PublicKeyCredentialUserEntity
structure containing the user
account information. User
identifiable information (name,
DisplayName, icon) MUST not
be returned if user verification
is not done by the
authenticator.

U2F Devices: For U2F
devices, this parameter is not
returned as this user

10. If authenticator does not have a display:

Remember the authenticatorGetAssertion parameters.
Create a credential counter(credentialCounter) and set it 1. This counter signifies how many
credentials are sent to the platform by the authenticator.
Start a timer. This is used during authenticatorGetNextAssertion command. This step is optional if
transport is done over NFC.
Update the response to include the first credential’s publicKeyCredentialUserEntity information and
numberOfCredentials. User identifiable information (name, DisplayName, icon) inside
publicKeyCredentialUserEntity MUST not be returned if user verification is not done by the
authenticator.

11. If authenticator has a display:

Display all these credentials to the user, using their friendly name along with other stored account
information.
Also, display the rpId of the requester (specified in the request) and ask the user to select a credential.
If the user declines to select a credential or takes too long (as determined by the authenticator),
terminate this procedure and return the CTAP2_ERR_OPERATION_DENIED error.

12. Sign the clientDataHash along with authData with the selected credential, using the structure specified in [W
ebAuthN].

https://www.w3.org/TR/webauthn/#assertion-signature

user (0x04) PublicKeyCredentialUserEntity Optional

information is not present for
U2F credentials.

FIDO Devices - server resident
credentials: For server resident
credentials on FIDO devices,
this parameter is optional as
server resident credentials
behave same as U2F
credentials where they are
discovered given the user
information on the RP.
Authenticators optionally MAY
store user information inside
the credential ID.

FIDO devices - device resident
credentials: For device
resident keys on FIDO
devices, at least user "id" is
mandatory.

For single account per RP
case, authenticator returns "id"
field to the platform which will
be returned to the [WebAuthN]
layer.

For multiple accounts per RP
case, where the authenticator
does not have a display,
authenticator returns "id" as
well as other fields to the
platform. Platform will use this
information to show the
account selection UX to the
user and for the user selected
account, it will ONLY return
"id" back to the [WebAuthN]
layer and discard other user
details.

numberOfCredentials
(0x05) Integer Optional

Total number of account
credentials for the RP. This
member is required when
more than one account for the
RP and the authenticator does
not have a display. Omitted
when returned for the
authenticatorGetNextAssertion
method.

Within the "flags" bits of the authenticator data structure returned, the authenticator will report what was actually
done within the authenticator boundary. The meanings of the combinations of the User Present (UP) and User
Verified (UV) flags are as follows:

Flags Meaning

"up"=0
"uv"=0

Silent authentication

"up"=1
"uv"=0

Physical user presence verified, but no user verification

"up"=0
"uv"=1

User verification performed, but physical user presence not verified (a typical "smartcard
scenario")

"up"=1
"uv"=1

User verification performed and physical user presence verified

The client calls this method when the authenticatorGetAssertion response contains the numberOfCredentials
member and the number of credentials exceeds 1. This method is used to obtain the next per-credential
signature for a given authenticatorGetAssertion request.

This method takes no arguments as it is always follows a call to authenticatorGetAssertion or
authenticatorGetNextAssertion.

When such a request is received, the authenticator performs the following procedure:

On success, the authenticator returns the same structure as returned by the authenticatorGetAssertion method.
The numberOfCredentials member is omitted.

If client receives numberOfCredentials member value exceeding 1 in response to the authenticatorGetAssertion
call:

5.3. authenticatorGetNextAssertion (0x08)

1. If authenticator does not remember any authenticatorGetAssertion parameters, return
CTAP2_ERR_NOT_ALLOWED.

2. If the credentialCounter is equal to or greater than numberOfCredentials, return
CTAP2_ERR_NOT_ALLOWED.

3. If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is greater than 30
seconds, discard the current authenticatorGetAssertion state and return CTAP2_ERR_NOT_ALLOWED.
This step is optional if transport is done over NFC.

4. Sign the clientDataHash along with authData with the credential using credentialCounter as index (e.g.,
credentials[n] assuming 0-based array), using the structure specified in [WebAuthN].

5. Reset the timer. This step is optional if transport is done over NFC.
6. Increment credentialCounter.

5.3.1. Client Logic

1. Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.

Make sure ‘rp’ member matches the current request.
Remember the ‘response’ member.
Add credential user information to the ‘credentialInfo’ list.

2. Draw a UX that displays credentialInfo list.
3. Let user select which credential to use.
4. Return the value of the ‘response’ member associated with the user choice.
5. Discard all other responses.

Using this method, the host can request that the authenticator report a list of all supported protocol versions,
supported extensions, AAGUID of the device, and its capabilities. This method takes no inputs.

On success, the authenticator returns:

Member
name Data type Required? Definition

versions
(0x01)

Sequence
of strings Required

List of supported versions. Supported versions are:
"FIDO_2_0" for CTAP2 / FIDO2 / Web Authentication
authenticators and "U2F_V2" for CTAP1/U2F
authenticators.

extensions
(0x02)

Sequence
of strings Optional List of supported extensions.

aaguid
(0x03)

Byte
String Required

The claimed AAGUID. 16 bytes in length and encoded the
same as MakeCredential AuthenticatorData, as specified in
[WebAuthN].

options
(0x04) Map Optional List of supported options.

maxMsgSize
(0x05)

Unsigned
Integer Optional Maximum message size supported by the authenticator.

pinProtocols
(0x06)

Array of
Unsigned
Integers

Optional
List of supported PIN Protocol versions.

All options are in the form key-value pairs with string IDs and boolean values. When an option is not present, the
default is applied per table below. The following is a list of supported options:

Option
ID Definition Default

plat platform device: Indicates that the device is attached to the client and therefore
can’t be removed and used on another client.

false

rk
resident key: Indicates that the device is capable of storing keys on the device

itself and therefore can satisfy the authenticatorGetAssertion request with
allowList parameter not specified or empty.

false

clientPin

Client PIN:

If present and set to true, it indicates that the device is capable of accepting a
PIN from the client and PIN has been set.

If present and set to false, it indicates that the device is capable of accepting a
PIN from the client and PIN has not been set yet.

If absent, it indicates that the device is not capable of accepting a PIN from the
client.

Client PIN is one of the ways to do user verification.

Not
supported

up user presence: Indicates that the device is capable of testing user presence. true

5.4. authenticatorGetInfo (0x04)

uv

user verification: Indicates that the device is capable of verifying the user within
itself. For example, devices with UI, biometrics fall into this category.

If present and set to true, it indicates that the device is capable of user
verification within itself and has been configured.

If present and set to false, it indicates that the device is capable of user
verification within itself and has not been yet configured. For example, a

biometric device that has not yet been configured will return this parameter set
to false.

If absent, it indicates that the device is not capable of user verification within
itself.

A device that can only do Client PIN will not return the "uv" parameter.

If a device is capable of verifying the user within itself as well as able to do
Client PIN, it will return both "uv" and the Client PIN option.

Not
Supported

One of the design goals of this command is to have minimum burden on the authenticator and to not send actual
encrypted PIN to the authenticator in normal authenticator usage scenarios to have more security. Hence, below
design only sends PIN in encrypted format while setting or changing a PIN. On normal PIN usage scenarios,
design uses randomized pinToken which gets generated every power cycle.

This command is used by the platform to establish key agreement with authenticator and getting sharedSecret,
setting a new PIN on the authenticator, changing existing PIN on the authenticator and getting "pinToken" from
the authenticator which can be used in subsequent authenticatorMakeCredential and authenticatorGetAssertion
operations.

It takes the following input parameters:

Parameter
name Data type Required? Definition

pinProtocol
(0x01)

Unsigned
Integer Required PIN protocol version chosen by the client. For this

version of the spec, this SHALL be the number 1.

subCommand
(0x02)

Unsigned
Integer Required The authenticator Client PIN sub command currently

being requested

keyAgreement
(0x03) COSE_Key Optional

Public key of platformKeyAgreementKey. The
COSE_Key-encoded public key MUST contain the
optional "alg" parameter and MUST NOT contain any
other optional parameters. The "alg" parameter MUST
contain a COSEAlgorithmIdentifier value.

pinAuth
(0x04) Byte Array Optional

First 16 bytes of HMAC-SHA-256 of encrypted contents
using sharedSecret. See Setting a new PIN, Changing
existing PIN and Getting pinToken from the authenticator
for more details.

newPinEnc
(0x05) Byte Array Optional Encrypted new PIN using sharedSecret. Encryption is

done over UTF-8 representation of new PIN.

pinHashEnc
(0x06) Byte Array Optional Encrypted first 16 bytes of SHA-256 of PIN using

5.5. authenticatorClientPIN (0x06)

sharedSecret.
The list of sub commands for PIN Protocol Version 1 is:

subCommand Name subCommand Number

getRetries 0x01

getKeyAgreement 0x02

setPIN 0x03

changePIN 0x04

getPINToken 0x05

On success, authenticator returns the following structure in its response:

Parameter
name Data type Required? Definition

KeyAgreement
(0x01) COSE_Key Optional

Authenticator key agreement public key in COSE_Key
format. This will be used to establish a sharedSecret
between platform and the authenticator. The
COSE_Key-encoded public key MUST contain the
optional "alg" parameter and MUST NOT contain any
other optional parameters. The "alg" parameter MUST
contain a COSEAlgorithmIdentifier value.

pinToken
(0x02) Byte Array Optional

Encrypted pinToken using sharedSecret to be used in
subsequent authenticatorMakeCredential and
authenticatorGetAssertion operations.

retries
(0x03)

Unsigned
Integer Optional

Number of PIN attempts remaining before lockout. This
is optionally used to show in UI when collecting the PIN
in Setting a new PIN, Changing existing PIN and Getting
pinToken from the authenticator flows.

5.5.1. Client PIN Support Requirements

Platform has to fulfill following PIN support requirements while gathering input from the user:

Minimum PIN Length: 4 Unicode characters
Maximum PIN Length: UTF-8 representation must not exceed 255 bytes

Authenticator has to fulfill following PIN support requirements:

Minimum PIN Length: 4 bytes
Maximum PIN Length: 255 bytes
Maximum consecutive incorrect PIN attempts: 8

retries counter represents the number of attempts left before PIN is blocked.
Each correct PIN entry resets the retries counter back to 8 unless the PIN is already blocked.
Each incorrect PIN entry decrements the retries by 1.
Once the retries counter reaches 0, the authenticator has to be reset before any further operations
can happen that require a PIN.

Authenticator generates following configuration at power up. This is to have less burden on the authenticator as
key agreement is an expensive operation. This also ensures randomness across power cycles.

Following are the operations authenticator performs on each powerup:

Retries count is the number of attempts remaining before lockout. When the device is nearing authenticator
lockout, the platform can optionally warn the user to be careful while entering the PIN.

Platform performs the following operations to get retries:

Platform does the ECDH key agreement to arrive at sharedSecret to be used only during that transaction.
Authenticator does not have to keep a list of sharedSecrets for all active sessions. If there are subsequent
authenticatorClientPIN transactions, a new sharedSecret is generated every time.

Platform performs the following operations to arrive at the sharedSecret:

PIN storage on the device has to be of the same or better security assurances as of private keys on the
device.

Note: Authenticators can implement minimum PIN lengths that are longer than 4 characters.

5.5.2. Authenticator Configuration Operations Upon Power Up

Generate "authenticatorKeyAgreementKey":
Generate an ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a, aG) where
"a" denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.
Generate "pinToken":

Generate a random integer of length which is multiple of 16 bytes (AES block length).
"pinToken" is used so that there is minimum burden on the authenticator and platform does not have to
not send actual encrypted PIN to the authenticator in normal authenticator usage scenarios. This also
provides more security as we are not sending actual PIN even in encrypted form. "pinToken" will be
given to the platform upon verification of the PIN to be used in subsequent authenticatorMakeCredential
and authenticatorGetAssertion operations.

5.5.3. Getting Retries from Authenticator

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinProtocol: 0x01
subCommand: getRetries(0x01)

Authenticator responds back with retries.

5.5.4. Getting sharedSecret from Authenticator

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinProtocol: 0x01
subCommand: getKeyAgreement(0x02)

Authenticator responds back with public key of authenticatorKeyAgreementKey, "aG".
Platform generates "platformKeyAgreementKey":

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.0-rd-20180702/authenticatorClientPIN
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.0-rd-20180702/!!!authenticatorKeyAgreementKey

Following operations are performed to set up a new PIN:

Platform generates ECDH P-256 key pair called "platformKeyAgreementKey" denoted by (b, bG)
where "b" denotes the private key and "bG" denotes the public key.

Platform generates "sharedSecret"
Platform generates "sharedSecret" using SHA-256 over ECDH key agreement protocol using private
key of platformKeyAgreementKey, "b" and public key of authenticatorKeyAgreementKey, "aG": SHA-
256((baG).x).

SHA-256 is done over only "x" curve point of baG.
See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement
protocol details and key representation.

5.5.5. Setting a New PIN

Platform gets sharedSecret from the authenticator.
Platform collects new PIN ("newPinUnicode") from the user in Unicode format.

Platform checks the Unicode character length of "newPinUnicode" against the minimum 4 Unicode
character requirement and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.
Let "newPin" be the UTF-8 representation of "newPinUnicode".

Platform checks the byte length of "newPin" against the max UTF-8 representation limit of 255
bytes and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends §5.5 authenticatorClientPIN (0x06) command with following parameters to the authenticator:

pinProtocol: 0x01.
subCommand: setPIN(0x03).
keyAgreement: public key of platformKeyAgreementKey, "bG".
newPinEnc: Encrypted newPin using sharedSecret: AES256-CBC(sharedSecret, IV=0, newPin).

During encryption, newPin is padded with trailing 0x00 bytes and is of minimum 64 bytes length.
This is to prevent leak of PIN length while communicating to the authenticator. There is no PKCS
#7 padding used in this scheme.

pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.
Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.
If a PIN has already been set, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.
Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of
authenticatorKeyAgreementKey, "a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"
See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement
protocol details and key representation.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16)
and matching against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Following operations are performed to change an existing PIN:

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and checks newPin
length against minimum PIN length of 4 characters.

The decrypted padded newPin should be of at least 64 bytes length and authenticator determines
actual PIN length by looking for first 0x00 byte which terminates the PIN.
If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION
error.
Authenticator may have additional constraints for PIN policy. The current spec only enforces
minimum length of 4 characters.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device, sets the retries counter to 8, and
returns CTAP2_OK.

5.5.6. Changing existing PIN

Platform gets sharedSecret from the authenticator.
Platform collects current PIN ("curPinUnicode") and new PIN ("newPinUnicode") from the user.

Platform checks the Unicode character length of "newPinUnicode" against the minimum 4 Unicode
character requirement and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.
Let "curPin" be the UTF-8 representation of "curPinUnicode" and "newPin" be the UTF-8 representation
of "newPinUnicode"

Platform checks the byte length of "curPin" and "newPin" against the max UTF-8 representation
limit of 255 bytes and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinProtocol: 0x01.
subCommand: changePIN(0x04).
keyAgreement: public key of platformKeyAgreementKey, "bG".
pinHashEnc: Encrypted first 16 bytes of SHA-256 hash of curPin using sharedSecret: AES256-
CBC(sharedSecret, IV=0, LEFT(SHA-256(curPin),16)).
newPinEnc: Encrypted "newPin" using sharedSecret: AES256-CBC(sharedSecret, IV=0, newPin).

During encryption, newPin is padded with trailing 0x00 bytes and is of minimum 64 bytes length.
This is to prevent leak of PIN length while communicating to the authenticator. There is no PKCS
#7 padding used in this scheme.

pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.
Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.
If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.
Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of
authenticatorKeyAgreementKey, "a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"
See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement
protocol details and key representation.

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.0-rd-20180702/authenticatorClientPIN

This step only has to be performed once for the lifetime of the authenticator/platform handle. Getting pinToken
once provides allows high security without any additional roundtrips every time (except for the first key-
agreement phase) and its overhead is minimal.

Following operations are performed to get pinToken which will be used in subsequent
authenticatorMakeCredential and authenticatorGetAssertion operations:

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc ||
pinHashEnc), 16) and matching against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.
Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin),
16).

If a mismatch is detected, the authenticator performs the following operations:

Authenticator generates a new "authenticatorKeyAgreementKey".

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted
by (a, aG), where "a" denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol
details.

Authenticator decrements the retries counter by 1.
Authenticator returns errors according to following conditions:

If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.
If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.
Else return CTAP2_ERR_PIN_INVALID error.

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and checks newPin
length against minimum PIN length of 4 characters.

The decrypted padded newPin should be of at least 64 bytes length and authenticator determines
actual PIN length by looking for first 0x00 byte which terminates the PIN.
If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION
error.
Authenticator may have additional constraints for PIN policy. The current spec only enforces
minimum length of 4 characters.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device and returns CTAP2_OK.

5.5.7. Getting pinToken from the Authenticator

Platform gets sharedSecret from the authenticator.
Platform collects PIN from the user.
Platform sends authenticatorClientPIN command with following parameters to the authenticator:

pinProtocol: 0x01.
subCommand: getPinToken(0x05).
keyAgreement: public key of platformKeyAgreementKey, "bG".
pinHashEnc: AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(PIN),16)).

file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v2.0-rd-20180702/authenticatorClientPIN

Platform has the flexibility to manage the lifetime of pinToken based on the scenario however it should get rid of
the pinToken as soon as possible when not required. Authenticator also can expire pinToken based on certain
conditions like changing a PIN, timeout happening on authenticator, machine waking up from a suspend state
etc. If pinToken has expired, authenticator will return CTAP2_ERR_PIN_TOKEN_EXPIRED and platform can act
on the error accordingly.

Following operations are performed to use pinToken in authenticatorMakeCredential API:

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command, it returns
CTAP2_ERR_MISSING_PARAMETER error.
If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.
Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of
authenticatorKeyAgreementKey, "a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement
protocol details and key representation.

Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin),
16).

If a mismatch is detected, the authenticator performs the following operations:

Authenticator generates a new "authenticatorKeyAgreementKey".

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted
by (a, aG), where "a" denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol
details.

Authenticator decrements the retries counter by 1.
Authenticator returns errors according to following conditions:

If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.
If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power cycling is needed for further
operations. This is done so that malware running on the platform should not be able to
block the device without user interaction.
Else return CTAP2_ERR_PIN_INVALID error.

Authenticator returns encrypted pinToken using "sharedSecret": AES256-CBC(sharedSecret, IV=0,
pinToken).

pinToken should be a multiple of 16 bytes (AES block length) without any padding or IV. There is
no PKCS #7 padding used in this scheme.

5.5.8. Using pinToken

5.5.8.1. Using pinToken in authenticatorMakeCredential

Platform gets pinToken from the authenticator.
Platform sends authenticatorMakeCredential command with following additional optional parameter:

If platform sends zero length pinAuth, authenticator needs to wait for user touch and then returns either
CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for
the case where multiple authenticators are attached to the platform and the platform wants to enforce clientPin
semantics, but the user has to select which authenticator to send the pinToken to.

Following operations are performed to use pinToken in authenticatorGetAssertion API:

If platform sends zero length pinAuth, authenticator needs to wait for user touch and then returns either
CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for
the case where multiple authenticators are attached to the platform and the platform wants to enforce clientPin
semantics, but the user has to select which authenticator to send the pinToken to.

Following operations are performed without using pinToken in authenticatorGetAssertion API:

pinProtocol: 0x01.
pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.
Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16) and
matching against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.
If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED
indicating that power recycle is needed for further operations. This is done so that malware running on
the platform should not be able to block the device without user interaction.

Authenticator returns authenticatorMakeCredential response with "uv" bit set to 1.

5.5.8.2. Using pinToken in authenticatorGetAssertion

Platform gets pinToken from the authenticator.
Platform sends authenticatorGetAssertion command with following additional optional parameter:

pinProtocol: 0x01.
pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16) and
matching against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.
If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED
indicating that power recycle is needed for further operations. This is done so that malware running on
the platform should not be able to block the device without user interaction.

Authenticator returns authenticatorGetAssertion response with "uv" bit set to 1.

5.5.8.3. Without pinToken in authenticatorGetAssertion

Platform sends authenticatorGetAssertion command without pinAuth optional parameter.
Authenticator returns authenticatorGetAssertion response with "uv" bit set to 0.

Figure 1 Client PIN

5.6. authenticatorReset (0x07)

This method is used by the client to reset an authenticator back to a factory default state, invalidating all
generated credentials. In order to prevent accidental trigger of this mechanism, some form of user approval MAY
be performed on the authenticator itself, meaning that the client will have to poll the device until the reset has
been performed. The actual user-flow to perform the reset will vary depending on the authenticator and it outside
the scope of this specification.

Many transports (e.g., Bluetooth Smart) are bandwidth-constrained, and serialization formats such as JSON are
too heavy-weight for such environments. For this reason, all encoding is done using the concise binary encoding
CBOR [RFC7049].

To reduce the complexity of the messages and the resources required to parse and validate them, all messages
MUST use the CTAP2 canonical CBOR encoding form as specified below, which differs from the canonicalization
suggested CTAP2 canonical CBOR encoding form as specified in Section 3.9 of [RFC7049]. All encoders MUST
serialize CBOR in the CTAP2 canonical CBOR encoding form without duplicate map keys. All decoders
SHOULD reject CBOR that is not validly encoded in the CTAP2 canonical CBOR encoding form and SHOULD
reject messages with duplicate map keys.

The CTAP2 canonical CBOR encoding form uses the following rules:

Because some authenticators are memory constrained, the depth of nested CBOR structures used by all
message encodings is limited to at most four (4) levels of any combination of CBOR maps and/or CBOR arrays.
Authenticators MUST support at least 4 levels of CBOR nesting. Clients, platforms, and servers MUST NOT use
more than 4 levels of CBOR nesting.

Likewise, because some authenticators are memory constrained, the maximum message size supported by an
authenticator MAY be limited. By default, authenticators MUST support messages of at least 1024 bytes.
Authenticators MAY declare a different maximum message size supported using the maxMsgSize

5.6. authenticatorReset (0x07)

6. Message Encoding

Integers must be encoded as small as possible.

0 to 23 and -1 to -24 must be expressed in the same byte as the major type;
24 to 255 and -25 to -256 must be expressed only with an additional uint8_t;
256 to 65535 and -257 to -65536 must be expressed only with an additional uint16_t;
65536 to 4294967295 and -65537 to -4294967296 must be expressed only with an additional uint32_t.

The representations of any floating-point values are not changed.
The expression of lengths in major types 2 through 5 must be as short as possible. The rules for these
lengths follow the above rule for integers.
Indefinite-length items must be made into definite-length items.
The keys in every map must be sorted lowest value to highest. The sorting rules are:

If the major types are different, the one with the lower value in numerical order sorts earlier.
If two keys have different lengths, the shorter one sorts earlier;
If two keys have the same length, the one with the lower value in (byte-wise) lexical order sorts earlier.

Note: These rules are equivalent to a lexicographical comparison of the canonical encoding of keys for
major types 0-3 and 7 (integers, strings, and simple values). They differ for major types 4-6 (arrays,
maps, and tags), which CTAP2 does not use as keys in maps. These rules should be revisited if CTAP2
does start using the complex major types as keys.

Tags as defined in Section 2.4 in [RFC7049] MUST NOT be present.

authenticatorGetInfo result parameter. Clients, platforms, and servers MUST NOT send messages larger than
1024 bytes unless the authenticator’s maxMsgSize indicates support for the larger message size. Authenticators
MAY return the CTAP2_ERR_REQUEST_TOO_LARGE error if size or memory constraints are exceeded.

If map keys are present that an implementation does not understand, they MUST be ignored. Note that this
enables additional fields to be used as new features are added without breaking existing implementations.

Messages from the host to authenticator are called "commands" and messages from authenticator to host are
called "replies". All values are big endian encoded.

Authenticators SHOULD return the CTAP2_ERR_INVALID_CBOR error if received CBOR does not conform to
the requirements above.

All commands are structured as:

Name Length Required? Definition

Command
Value 1 byte Required The value of the command to execute

Command
Parameters variable Optional CBOR [RFC7049] encoded set of parameters. Some

commands have parameters, while others do not (see below)

The assigned values for commands and their descriptions are:

Command Name Command Value Has parameters?

authenticatorMakeCredential 0x01 yes

authenticatorGetAssertion 0x02 yes

authenticatorGetInfo 0x04 no

authenticatorClientPIN 0x06 yes

authenticatorReset 0x07 no

authenticatorGetNextAssertion 0x08 no

authenticatorVendorFirst 0x40 NA

authenticatorVendorLast 0xBF NA

Command codes in the range between authenticatorVendorFirst and authenticatorVendorLast may be used
for vendor-specific implementations. For example, the vendor may choose to put in some testing commands.
Note that the FIDO client will never generate these commands. All other command codes are reserved for future
use and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5). The CBOR map must be encoded
using the definite length variant.

Some commands have optional parameters. Therefore, the length of the parameter map for these commands
may vary. For example, authenticatorMakeCredential may have 4, 5, 6, or 7 parameters, while
authenticatorGetAssertion may have 2, 3, 4, or 5 parameters.

All command parameters are CBOR encoded following the JSON to CBOR conversion procedures as per the
CBOR specification [RFC7049]. Specifically, parameters that are represented as DOM objects in the
Authenticator API layers (formally defined in the Web API [WebAuthN]) are converted first to JSON and

6.1. Commands

subsequently to CBOR.

EXAMPLE 1
A PublicKeyCredentialRpEntity DOM object defined as follows:

var rp = {
 name: "Acme"
 };

would be CBOR encoded as follows:

a1 # map(1)
 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"

EXAMPLE 2
A PublicKeyCredentialUserEntity DOM object defined as follows:

var user = {
 id: Uint8Array.from(window.atob("MIIBkzCCATigAwIBAjCCAZMwggE4oAMCAQIwggGTMII="), c=>c.
charCodeAt(0)),
 icon: "https://pics.example.com/00/p/aBjjjpqPb.png",
 name: "johnpsmith@example.com",
 displayName: "John P. Smith"
 };

would be CBOR encoded as follows:

a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 782b # text(43)
 68747470733a2f2f706963732e657861 # "https://pics.example.com/00/p/aBjjjpqPb.p
ng"
 6d706c652e636f6d2f30302f702f6142 # ...
 6a6a6a707150622e706e67 # ...
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d70 # "johnpsmith@example.com"
 6c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"

For each command that contains parameters, the parameter map keys and value types are specified below:

Command Parameter Name Key Value type

authenticatorMakeCredential clientDataHash 0x01 byte string (CBOR major type 2).

rp 0x02 CBOR definite length map (CBOR major
type 5).

user 0x03 CBOR definite length map (CBOR major
type 5).

pubKeyCredParams 0x04
CBOR definite length array (CBOR
major type 4) of CBOR definite length
maps (CBOR major type 5).

excludeList 0x05
CBOR definite length array (CBOR
major type 4) of CBOR definite length
maps (CBOR major type 5).

extensions 0x06 CBOR definite length map (CBOR major
type 5).

options 0x07 CBOR definite length map (CBOR major
type 5).

EXAMPLE 3
A DOM object that is a sequence of PublicKeyCredentialParameters defined as follows:

var pubKeyCredParams = [
 {
 type: "public-key",
 alg: -7 // "ES256" as registered in the IANA COSE Algorithms registry
 },
 {
 type: "public-key",
 alg: -257 // "RS256" as registered by WebAuthn
 }
];

would be CBOR encoded as:

82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"

pinAuth 0x08 byte string (CBOR major type 2).

pinProtocol 0x09
PIN protocol version chosen by the
client. For this version of the spec, this
SHALL be the number 1.

authenticatorGetAssertion rpId 0x01 UTF-8 encoded text string (CBOR major
type 3).

clientDataHash 0x02 byte string (CBOR major type 2).

allowList 0x03
CBOR definite length array (CBOR
major type 4) of CBOR definite length
maps (CBOR major type 5).

extensions 0x04 CBOR definite length map (CBOR major
type 5).

options 0x05 CBOR definite length map (CBOR major
type 5).

pinAuth 0x06 byte string (CBOR major type 2).

pinProtocol 0x07
PIN protocol version chosen by the
client. For this version of the spec, this
SHALL be the number 1.

authenticatorClientPIN pinProtocol 0x01 Unsigned Integer. (CBOR major type 0)

subCommand 0x02 Unsigned Integer. (CBOR major type 0)

keyAgreement 0x03 COSE_Key

pinAuth 0x04 byte string (CBOR major type 2).

newPinEnc 0x05
byte string (CBOR major type 2). It is
UTF-8 representation of encrypted input
PIN value.

pinHashEnc 0x06 byte string (CBOR major type 2).

EXAMPLE 4
The following is a complete encoding example of the authenticatorMakeCredential command (using same
account and crypto parameters as above) and the corresponding authenticatorMakeCredential_Response
response:

01 # authenticatorMakeCredential command
a5 # map(5)
 01 # unsigned(1) - clientDataHash
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 # h’687134968222ec17202e42505f8ed2b16ae22f16bb05b88c
25db9e602645f141'
 6ae22f16bb05b88c25db9e602645f141 #
 02 # unsigned(2) - rp
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 6b # text(11)
 6578616d706c652e636f6d # "example.com"
 64 # text(4)

 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"
 03 # unsigned(3) - user
 a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 78 2b # text(43)
 68747470733a2f2f706963732e6578 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 616d706c652e636f6d2f30302f702f #
 61426a6a6a707150622e706e67 #
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d # "johnpsmith@example.com"
 706c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 04 # unsigned(4) - pubKeyCredParams
 82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 07 # unsigned(7) - options
 a1 # map(1)
 62 # text(2)
 726b # "rk"
 f5 # primitive(21)

authenticatorMakeCredential_Response response:

00 # status = success
a3 # map(3)
 01 # unsigned(1)
 66 # text(6)
 7061636b6564 # "packed"
 02 # unsigned(2)
 58 9a # bytes(154)
 c289c5ca9b0460f9346ab4e42d842743 # authData
 404d31f4846825a6d065be597a87051d # ...
 410000000bf8a011f38c0a4d15800617 # ...

 410000000bf8a011f38c0a4d15800617 # ...
 111f9edc7d00108959cead5b5c48164e # ...
 8abcd6d9435c6fa363616c6765455332 # ...
 353661785820f7c4f4a6f1d79538dfa4 # ...
 c9ac50848df708bc1c99f5e60e51b42a # ...
 521b35d3b69a61795820de7b7d6ca564 # ...
 e70ea321a4d5d96ea00ef0e2db89dd61 # ...
 d4894c15ac585bd23684 # ...
 03 # unsigned(3)
 a3 # map(3)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 63 # text(3)
 736967 # "sig"
 58 47 # bytes(71)
 3045022013f73c5d9d530e8cc15cc9 # signature...
 bd96ad586d393664e462d5f0561235 # ...
 e6350f2b728902210090357ff910cc # ...
 b56ac5b596511948581c8fddb4a2b7 # ...
 9959948078b09f4bdc6229 # ...
 63 # text(3)
 783563 # "x5c"
 81 # array(1)
 59 0197 # bytes(407)
 3082019330820138a003020102 # certificate...
 020900859b726cb24b4c29300a # ...
 06082a8648ce3d040302304731 # ...
 0b300906035504061302555331 # ...
 143012060355040a0c0b597562 # ...
 69636f20546573743122302006 # ...
 0355040b0c1941757468656e74 # ...
 696361746f7220417474657374 # ...
 6174696f6e301e170d31363132 # ...
 30343131353530305a170d3236 # ...
 313230323131353530305a3047 # ...
 310b3009060355040613025553 # ...
 31143012060355040a0c0b5975 # ...
 6269636f205465737431223020 # ...
 060355040b0c1941757468656e # ...
 74696361746f72204174746573 # ...
 746174696f6e3059301306072a # ...
 8648ce3d020106082a8648ce3d # ...
 03010703420004ad11eb0e8852 # ...
 e53ad5dfed86b41e6134a18ec4 # ...
 e1af8f221a3c7d6e636c80ea13 # ...
 c3d504ff2e76211bb44525b196 # ...
 c44cb4849979cf6f896ecd2bb8 # ...
 60de1bf4376ba30d300b300906 # ...
 03551d1304023000300a06082a # ...
 8648ce3d040302034900304602 # ...
 2100e9a39f1b03197525f7373e # ...
 10ce77e78021731b94d0c03f3f # ...
 da1fd22db3d030e7022100c4fa # ...
 ec3445a820cf43129cdb00aabe # ...
 fd9ae2d874f9c5d343cb2f113d # ...
 a23723f3 # ...

EXAMPLE 5
The following is a complete encoding example of the authenticatorGetAssertion command and the
corresponding authenticatorGetAssertion_Response response:

02 # authenticatorGetAssertion command
a4 # map(4)
 01 # unsigned(1)
 6b # text(11)
 6578616d706c652e636f6d # "example.com"
 02 # unsigned(2)
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 # clientDataHash
 6ae22f16bb05b88c25db9e602645f141 # ...
 03 # unsigned(3)
 82 # array(2)
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f02 # credential ID
 4f2a5ece603d9c6d4b3df8be08 # ...
 ed01fc442646d034858ac75bed # ...
 3fd580bf9808d94fcbee82b9b2 # ...
 ef6677af0adcc35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 32 # bytes(50)
 03030303030303030303030303 # credential ID
 03030303030303030303030303 # ...
 03030303030303030303030303 # ...
 0303030303030303030303 # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 05 # unsigned(5)
 a1 # map(1)
 62 # text(2)
 7576 # "uv"
 f5 # true

authenticatorGetAssertion_Response response:

00 # status = success
a5 # map(5)
 01 # unsigned(1) - Credential
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f02 # credential ID
 4f2a5ece603d9c6d4b3df8be08 # ...
 ed01fc442646d034858ac75bed # ...
 3fd580bf9808d94fcbee82b9b2 # ...
 ef6677af0adcc35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 02 # unsigned(2)
 58 25 # bytes(37)
 625ddadf743f5727e66bba8c2e387922 # authData

All responses are structured as:

Name Length Required? Definition

Status 1 byte Required
The status of the response. 0x00 means success; all other
values are errors. See the table in the next section for valid
values.

Response
Data variable Optional CBOR encoded set of values.

Response data is encoded using a CBOR map (CBOR major type 5). The CBOR map must be encoded using
the definite length variant.

For each response message, the map keys and value types are specified below:

Response Message Member Name Key Value type

authenticatorMakeCredential_Response fmt 0x01 text string (CBOR major
type 3).

byte string (CBOR major

 625ddadf743f5727e66bba8c2e387922 # authData
 d1af43c503d9114a8fba104d84d02bfa # ...
 0100000011 # ...
 03 # unsigned(3)
 58 47 # bytes(71)
 304502204a5a9dd39298149d904769b5 # signature
 1a451433006f182a34fbdf66de5fc717 # ...
 d75fb350022100a46b8ea3c3b933821c # ...
 6e7f5ef9daae94ab47f18db474c74790 # ...
 eaabb14411e7a0 # ...
 04 # unsigned(4) - publicKeyCredentialUserEntity
 a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 782b # text(43)
 68747470733a2f2f706963732e6578 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 616d706c652e636f6d2f30302f702f # ...
 61426a6a6a707150622e706e67 # ...
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d # "johnpsmith@example.com"
 706c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 05 # unsigned(5) - numberofCredentials
 01 # unsigned(1)

6.2. Responses

authData 0x02 type 2).

attStmt 0x03 definite length map
(CBOR major type 5).

authenticatorGetAssertion_Response credential 0x01 definite length map
(CBOR major type 5).

authData 0x02 byte string (CBOR major
type 2).

signature 0x03 byte string (CBOR major
type 2).

publicKeyCredentialUserEntity 0x04 definite length map
(CBOR major type 5).

numberOfCredentials 0x05 unsigned integer(CBOR
major type 0).

authenticatorGetNextAssertion_Response credential 0x01 definite length map
(CBOR major type 5).

authData 0x02 byte string (CBOR major
type 2).

signature 0x03 byte string (CBOR major
type 2).

publicKeyCredentialUserEntity 0x04 definite length map
(CBOR major type 5).

authenticatorGetInfo_Response versions 0x01
definite length array
(CBOR major type 4) of
UTF-8 encoded strings
(CBOR major type 3).

extensions 0x02
definite length array
(CBOR major type 4) of
UTF-8 encoded strings
(CBOR major type 3).

aaguid 0x03

byte string (CBOR major
type 2). 16 bytes in
length and encoded the
same as
MakeCredential
AuthenticatorData, as
specified in [WebAuthN].

options 0x04

Definite length map
(CBOR major type 5) of
key-value pairs where
keys are UTF8 strings
(CBOR major type 3)
and values are
booleans (CBOR simple
value 21).

maxMsgSize 0x05

unsigned integer(CBOR
major type 0). This is
the maximum message
size supported by the
authenticator.

pinProtocols 0x06

array of unsigned
integers (CBOR major
type). This is the list of
pinProtocols supported
by the authenticator.

authenticatorClientPIN_Response keyAgreement 0x01

Authenticator public key
in COSE_Key format.
The COSE_Key-
encoded public key
MUST contain the
optional "alg" parameter
and MUST NOT contain
any other optional
parameters. The "alg"
parameter MUST
contain a
COSEAlgorithmIdentifier
value.

pinToken 0x02 byte string (CBOR major
type 2).

retries 0x03
Unsigned integer
(CBOR major type 0).
This is number of retries
left before lockout.

The error response values range from 0x01 - 0xff. This range is split based on error type.

Error response values in the range between CTAP2_OK and CTAP2_ERR_SPEC_LAST are reserved for spec
purposes.

Error response values in the range between CTAP2_ERR_VENDOR_FIRST and CTAP2_ERR_VENDOR_LAST
may be used for vendor-specific implementations. All other response values are reserved for future use and may
not be used. These vendor specific error codes are not interoperable and the platform should treat these errors
as any other unknown error codes.

Error response values in the range between CTAP2_ERR_EXTENSION_FIRST and
CTAP2_ERR_EXTENSION_LAST may be used for extension-specific implementations. These errors need to be
interoperable for vendors who decide to implement such optional extension.

Code Name Description

0x00 CTAP1_ERR_SUCCESS, CTAP2_OK Indicates successful response.

6.3. Status codes

0x01 CTAP1_ERR_INVALID_COMMAND The command is not a valid CTAP command.
0x02 CTAP1_ERR_INVALID_PARAMETER The command included an invalid parameter.

0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.

0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.

0x05 CTAP1_ERR_TIMEOUT Message timed out.

0x06 CTAP1_ERR_CHANNEL_BUSY Channel busy.

0x0A CTAP1_ERR_LOCK_REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this cid.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION Unsupported extension.

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the exclude list.

0x21 CTAP2_ERR_PROCESSING Processing (Lengthy operation is in progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in progress.

0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM Authenticator does not support requested
algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x29 CTAP2_ERR_NOT_BUSY Authenticator cannot cancel as it is not busy.

0x2A CTAP2_ERR_NO_OPERATION_PENDING No outstanding operations.

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Not a valid option for current operation.

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT Timeout waiting for user interaction.

0x30 CTAP2_ERR_NOT_ALLOWED Continuation command, such as,
authenticatorGetNextAssertion not allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN Invalid.

0x32 CTAP2_ERR_PIN_BLOCKED PIN Blocked.

0x33 CTAP2_ERR_PIN_AUTH_INVALID PIN authentication,pinAuth, verification failed.

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED PIN authentication,pinAuth, blocked. Requires
power recycle to reset.

0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.

0x36 CTAP2_ERR_PIN_REQUIRED PIN is required for the selected operation.

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION PIN policy violation. Currently only enforces
minimum length.

0x38 CTAP2_ERR_PIN_TOKEN_EXPIRED pinToken expired on authenticator.

0x39 CTAP2_ERR_REQUEST_TOO_LARGE Authenticator cannot handle this request due
to memory constraints.

0x3A CTAP2_ERR_ACTION_TIMEOUT The current operation has timed out.

0x3B CTAP2_ERR_UP_REQUIRED User presence is required for the requested
operation.

0x7F CTAP1_ERR_OTHER Other unspecified error.

0xDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.

0xE0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.

0xEF CTAP2_ERR_EXTENSION_LAST Extension specific error.

0xF0 CTAP2_ERR_VENDOR_FIRST Vendor specific error.

0xFF CTAP2_ERR_VENDOR_LAST Vendor specific error.

This section defines how a platform maps CTAP2 requests to CTAP1/U2F requests and CTAP1/U2F responses
to CTAP2 responses in order to support CTAP1/U2F authenticators via CTAP2. CTAP2 requests can be mapped
to CTAP1/U2F requests provided the CTAP2 request does not have parameters that only CTAP2 authenticators
can fulfill. The processes for RPs to use to verify CTAP1/U2F based authenticatorMakeCredential and
authenticatorGetAssertion responses are also defined below. Platform may choose to skip this feature and work
only with CTAP devices.

The U2F protocol is based on a request-response mechanism, where a requester sends a request message to a
U2F device, which always results in a response message being sent back from the U2F device to the requester.

The request message has to be "framed" to send to the lower layer. Taking the signature request as an example,
the "framing" is a way for the FIDO client to tell the lower transport layer that it is sending a signature request and
then send the raw message contents. The framing also specifies how the transport will carry back the response
raw message and any meta-information such as an error code if the command failed.

In this current version of U2F, the framing is defined based on the ISO7816-4:2005 extended APDU format. This
is very appropriate for the USB transport since devices are typically built around secure elements which
understand this format already. This same argument may apply for futures such as Bluetooth based devices. For
other futures based on other transports, such as a built-in u2f token on a mobile device TEE, this framing may
not be appropriate, and a different framing may need to be defined.

7. Interoperating with CTAP1/U2F authenticators

7.1. Framing of U2F commands

The raw request message is framed as a command APDU:

CLA INS P1 P2 LC1 LC2 LC3

Where:

CLA: Reserved to be used by the underlying transport protocol (if applicable). The host application shall set this
byte to zero.

INS: U2F command code, defined in the following sections.

P1, P2: Parameter 1 and 2, defined by each command.

LC1-LC3: Length of the request data, big-endian coded, i.e. LC1 being MSB and LC3 LSB

The raw response data is framed as a response APDU:

SW1 SW2

Where:

SW1, SW2: Status word bytes 1 and 2, forming a 16-bit status word, defined below. SW1 is MSB and SW2 LSB.
Status Codes

The following ISO7816-4 defined status words have a special meaning in U2F:

SW_NO_ERROR: The command completed successfully without error.

SW_CONDITIONS_NOT_SATISFIED: The request was rejected due to test-of-user-presence being required.

SW_WRONG_DATA: The request was rejected due to an invalid key handle.

Each implementation may define any other vendor-specific status codes, providing additional information about
an error condition. Only the error codes listed above will be handled by U2F FIDO clients, whereas others will be
seen as general errors and logging of these is optional.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorMakeCredential to and from
CTAP1/U2F Registration Messages):

7.1.1. U2F Request Message Framing

7.1.2. U2F Response Message Framing

7.2. Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as
specified in CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any
failure, platform may fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorMakeCredential request to U2F_REGISTER request.

Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators
cannot fulfill.

All of the below conditions must be true for the platform to proceed to next step. If any of the below
conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

pubKeyCredParams must use the ES256 algorithm (-7).

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#registration-request-message---u2f_register

Options must not include "rk" set to true.
Options must not include "uv" set to true.

If excludeList is not empty:

If the excludeList is not empty, the platform must send signing request with check-only control
byte to the CTAP1/U2F authenticator using each of the credential ids (key handles) in the
excludeList. If any of them does not result in an error, that means that this is a known device.
Afterwards, the platform must still send a dummy registration request (with a dummy appid and
invalid challenge) to CTAP1/U2F authenticators that it believes are excluded. This makes it so
the user still needs to touch the CTAP1/U2F authenticator before the RP gets told that the
token is already registered.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).
Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id parameter as
CTAP1/U2F application parameter (32 bytes).

3. Send the U2F_REGISTER request to the authenticator as specified in [U2FRawMsgs] spec.
4. Map the U2F registration response message (see: FIDO U2F Raw Message Formats v1.0 §registration-

response-message-success) to a CTAP2 authenticatorMakeCredential response message:

Generate authenticatorData from the U2F registration response message (FIDO U2F Raw Message
Formats v1.0 §registration-response-message-success) received from the authenticator:

Initialize attestedCredData:

Let credentialIdLength be a 2-byte unsigned big-endian integer representing length of the
Credential ID initialized with CTAP1/U2F response key handle length.
Let credentialId be a credentialIdLength byte array initialized with CTAP1/U2F response
key handle bytes.
Let x9encodedUserPublicKeybe the user public key returned in the U2F registration
response message [U2FRawMsgs]. Let coseEncodedCredentialPublicKey be the result of
converting x9encodedUserPublicKey’s value from ANS X9.62 / Sec-1 v2 uncompressed curve
point representation [SEC1V2] to COSE_Key representation ([RFC8152] Section 7).
Let attestedCredData be a byte array with following structure:

Length (in bytes) Description Value

16 The AAGUID of the
authenticator.

Initialized with all zeros.

2 Byte length L of
Credential ID

Initialized with credentialIdLength
bytes.

credentialIdLength Credential ID. Initialized with credentialId bytes.

77 The credential public
key.

Initialized with
coseEncodedCredentialPublicKey
bytes.

Initialize authenticatorData:

Let flags be a byte whose zeroth bit (bit 0, UP) is set, and whose sixth bit (bit 6, AT) is
set, and all other bits are zero (bit zero is the least significant bit). See also Authenticator
Data section of [WebAuthN].
Let signCount be a 4-byte unsigned integer initialized to zero.
Let authenticatorData be a byte array with the following structure:

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success

Length (in
bytes) Description Value

32 SHA-256 hash of the
rp.id.

Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4 Signature counter
(signCount).

Initialized with signCount bytes.

Variable
Length Attested credential data. Initialized with attestedCredData’s

value.

Let attestationStatement be a CBOR map (see "attStmtTemplate" in Generating an Attestation
Object [WebAuthN]) with the following keys, whose values are as follows:

Set "x5c" as an array of the one attestation cert extracted from CTAP1/U2F response.
Set "sig" to be the "signature" bytes from the U2F registration response message [U2FRawMsgs].

Let attestationObject be a CBOR map (see "attObj" in Attestation object [WebAuthN]) with the
following keys, whose values are as follows:

Set "authData" to authenticatorData.
Set "fmt" to "fido-u2f".
Set "attStmt" to attestationStatement.

5. Return attestationObject to the caller.

EXAMPLE 6
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 2: {"id": "example.com",
 "name": "example.com"},
 3: {"id": "1098237235409872",
 "name": "johnpsmith@example.com",
 "icon": "https://pics.example.com/00/p/aBjjjpqPb.png",
 "displayName": "John P. Smith"},
 4: [{"type": "public-key", "alg": -7},
 {"type": "public-key", "alg": -257}]}

CTAP1/U2F Request from above CTAP2 authenticatorMakeCredential request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash

Sample CTAP1/U2F Response from the device

05 # Reserved Byte (1 Byte
)
04E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E # User Public Key (65 By
tes)
1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...
91 # ...
40 # Key Handle Length (1 B
yte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
 Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

https://www.w3.org/TR/webauthn/#rp-id
https://www.w3.org/TR/webauthn/#sec-attested-credential-data
https://www.w3.org/TR/webauthn/#generating-an-attestation-object
https://www.w3.org/TR/webauthn/#generating-an-attestation-object

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B # X.509 Cert (Variable l
ength Cert)
0500302E312C302A0603550403132359756269636F2055324620526F6F742043 # ...
412053657269616C203435373230303633313020170D31343038303130303030 # ...
30305A180F32303530303930343030303030305A302C312A302806035504030C # ...
2159756269636F205532462045452053657269616C2032343931383233323437 # ...
37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 # ...
2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 # ...
E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30 # ...
39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 # ...
322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...
4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B # ...
BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4 # ...
C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B # ...
8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 # ...
B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...
1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD # ...
810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 # ...
3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF # ...
1BB0F1FE5DB4EFF7A95F060733F5 # ...
30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85 # Signature (variable Le
ngth)
32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # ...
AA7D081DE341FA # ...

Authenticator Data from CTAP1/U2F Response

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash
41 # flags
00000000 # Sign Count
00000000000000000000000000000000 # AAGUID
0040 # Key Handle Length (1 B
yte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
 Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
A5010203262001215820E87625896EE4E46DC032766E8087962F36DF9DFE8B56 # Public Key
7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C # ...
B14C22F8C97045F4612FB20C91 # ...

Mapped CTAP2 authenticatorMakeCredential response(CBOR)

{"fmt": "fido-u2f",
 "authData": h’1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE
 4100403EBD89BF77EC509755
 EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E
 78055BDD396B64F78DA2C5F96200CCD415CD08FE420038A50102032620012158
 20E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E
 1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461
 2FB20C91',
 "attStmt": {"sig": h’30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85
 32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1
 AA7D081DE341FA',
 "x5c": [h’3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B
 0500302E312C302A0603550403132359756269636F2055324620526F6F742043
 412053657269616C203435373230303633313020170D31343038303130303030
 30305A180F32303530303930343030303030305A302C312A302806035504030C
 2159756269636F205532462045452053657269616C2032343931383233323437
 37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9
 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1

 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1
 E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30
 39302206092B0601040182C40A020415312E332E362E312E342E312E34313438
 322E312E323013060B2B0601040182E51C020101040403020430300D06092A86
 4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B
 BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4
 C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B
 8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69
 B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F
 1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD
 810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3
 3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF
 1BB0F1FE5DB4EFF7A95F060733F5']}}

Figure 2 Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F Registration Messages.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorGetAssertion to and from
CTAP1/U2F Authentication Messages):

7.3. Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as
specified in CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any
failure, platform may fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:

Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators
cannot fulfill:

All of the below conditions must be true for the platform to proceed to next step. If any of the below
conditions is not true, platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

Options must not include "uv" set to true.
allowList must have at least one credential.

If allowList has more than one credential, platform has to loop over the list and send individual different
U2F_AUTHENTICATE commands to the authenticator. For each credential in credential list, map
CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE as below:

Let controlByte be a byte initialized as follows:

For USB, set it to 0x07 (check-only). This should prevent call getting blocked on waiting for
user input. If response returns success, then call again setting the enforce-user-presence-and-
sign.
For NFC, set it to 0x03 (enforce-user-presence-and-sign). The tap has already provided the
presence and won’t block.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).
Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id parameter as
CTAP1/U2F application parameter (32 bytes).
Let credentialId is the byte array initialized with the id for this PublicKeyCredentialDescriptor.
Let keyHandleLength be a byte initialized with length of credentialId byte array.
Let u2fAuthenticateRequest be a byte array with the following structure:

Length (in
bytes) Description Value

32 Challenge parameter Initialized with clientDataHash parameter
bytes.

32 Application
parameter

Initialized with rpIdHash bytes.

1 Key handle length Initialized with keyHandleLength’s value.

keyHandleLength Key handle Initialized with credentialId bytes.

and let Control Byte be P1 of the framing.
3. Send u2fAuthenticateRequest to the authenticator.
4. Map the U2F authentication response message (see the "Authentication Response Message: Success"

section of [U2FRawMsgs]) to a CTAP2 authenticatorGetAssertion response message:

Generate authenticatorData from the U2F authentication response message received from the
authenticator:

Copy bits 0 (the UP bit) and bit 1 from the CTAP2/U2F response user presence byte to bits 0 and 1

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-response-message-success

of the CTAP2 flags, respectively. Set all other bits of flags to zero. Note: bit zero is the least
significant bit. See also Authenticator Data section of [WebAuthN].
Let signCount be a 4-byte unsigned integer initialized with CTAP1/U2F response counter field.
Let authenticatorData is a byte array of following structure:

Length (in
bytes) Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.
1 Flags Initialized with flags' value.

4 Signature counter
(signCount)

Initialized with signCount
bytes.

Let authenticatorGetAssertionResponse be a CBOR map with the following keys whose values are
as follows:

Set 0x01 with the credential from allowList that whose response succeeded.
Set 0x02 with authenticatorData bytes.
Set 0x03 with signature field from CTAP1/U2F authentication response message.

https://www.w3.org/TR/webauthn/#rp-id

EXAMPLE 7
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{1: "example.com",
 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 3: [{"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'}],
 5: {"up": true}}

CTAP1/U2F Request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash
40 # Key Handle Length (1 B
yte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
 Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

Sample CTAP1/U2F Response from the device

01 # User Presence (1 Byte
)
0000003B # Sign Count (4 Bytes
)
304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C # Signature (variable Le
ngth)
68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3 # ...
5AAD5373858E # ...

Authenticator Data from CTAP1/U2F Response

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash
01 # User Presence (1 Byte
)
0000003B # Sign Count (4 Bytes
)

Mapped CTAP2 authenticatorGetAssertion response(CBOR)

{1: {"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'},
 2: h’1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE
 010000003B',
 3: h’304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C
 68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3
 5AAD5373858E'}

Figure 3 Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F Authentication Messages.

CTAP messages are framed for USB transport using the HID (Human Interface Device) protocol. We henceforth
refer to the protocol as CTAPHID. The CTAPHID protocol is designed with the following design objectives in
mind

8. Transport-specific Bindings
8.1. USB Human Interface Device (USB HID)
8.1.1. Design rationale

Driver-less installation on all major host platforms
Multi-application support with concurrent application access without the need for serialization and centralized
dispatching.
Fixed latency response and low protocol overhead

Since HID data is sent as interrupt packets and multiple applications may access the HID stack at once, a non-
trivial level of complexity has to be added to handle this.

The CTAP protocol is designed to be concurrent and state-less in such a way that each performed function is not
dependent on previous actions. However, there has to be some form of "atomicity" that varies between the
characteristics of the underlying transport protocol, which for the CTAPHID protocol introduces the following
terminology:

A transaction is the highest level of aggregated functionality, which in turn consists of a request, followed by a
response message. Once a request has been initiated, the transaction has to be entirely completed before a
second transaction can take place and a response is never sent without a previous request. Transactions exist
only at the highest CTAP protocol layer.

Request and response messages are in turn divided into individual fragments, known as packets. The packet is
the smallest form of protocol data unit, which in the case of CTAPHID are mapped into HID reports.

Additional logic and overhead is required to allow a CTAPHID device to deal with multiple "clients", i.e. multiple
applications accessing the single resource through the HID stack. Each client communicates with a CTAPHID
device through a logical channel, where each application uses a unique 32-bit channel identifier for routing and
arbitration purposes.

A channel identifier is allocated by the FIDO authenticator to ensure its system-wide uniqueness. The actual
algorithm for generation of channel identifiers is vendor specific and not defined by this specification.

Channel ID 0 is reserved and 0xffffffff is reserved for broadcast commands, i.e. at the time of channel
allocation.

Packets are one of two types, initialization packets and continuation packets. As the name suggests, the first
packet sent in a message is an initialization packet, which also becomes the start of a transaction. If the entire
message does not fit into one packet (including the CTAPHID protocol overhead), one or more continuation
packets have to be sent in strict ascending order to complete the message transfer.

A message sent from a host to a device is known as a request and a message sent from a device back to the
host is known as a response. A request always triggers a response and response messages are never sent ad-
hoc, i.e. without a prior request message. However, a keep-alive message can be sent between a request and a
response message.

The request and response messages have an identical structure. A transaction is started with the initialization
packet of the request message and ends with the last packet of the response message.

Packets are always fixed size (defined by the endpoint and HID report descriptors) and although all bytes may
not be needed in a particular packet, the full size always has to be sent. Unused bytes SHOULD be set to zero.

An initialization packet is defined as

Scalable method for CTAPHID device discovery

8.1.2. Protocol structure and data framing

Transaction
Message
Packet

8.1.3. Concurrency and channels

8.1.4. Message and packet structure

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s - 7) DATA Payload data (s is equal to the fixed packet size)

The command byte has always the highest bit set to distinguish it from a continuation packet, which is described
below.

A continuation packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)

5 (s - 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7) may be sent as one packet. A larger
message is then divided into one or more continuation packets, starting with sequence number 0, which then
increments by one to a maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum message payload
length is 64 - 7 + 128 * (64 - 5) = 7609 bytes.

In order to handle multiple channels and clients concurrency, the CTAPHID protocol has to maintain certain
internal states, block conflicting requests and maintain protocol integrity. The protocol relies on each client
application (channel) behaves politely, i.e. does not actively act to destroy for other channels. With this said, a
malign or malfunctioning application can cause issues for other channels. Expected errors and potentially stalling
applications should however, be handled properly.

A transaction always consists of three stages:

The protocol is built on the assumption that a plurality of concurrent applications may try ad-hoc to perform
transactions at any time, with each transaction being atomic, i.e. it cannot be interrupted by another application
once started.

The application channel that manages to get through the first initialization packet when the device is in idle state
will keep the device locked for other channels until the last packet of the response message has been received.
The device then returns to idle state, ready to perform another transaction for the same or a different channel.
Between two transactions, no state is maintained in the device and a host application must assume that any
other process may execute other transactions at any time.

8.1.5. Arbitration

8.1.5.1. Transaction atomicity, idle and busy states.

1. A message is sent from the host to the device
2. The device processes the message
3. A response is sent back from the device to the host

If an application tries to access the device from a different channel while the device is busy with a transaction,
that request will immediately fail with a busy-error message sent to the requesting channel.

A transaction has to be completed within a specified period of time to prevent a stalling application to cause the
device to be completely locked out for access by other applications. If for example an application sends an
initialization packet that signals that continuation packets will follow and that application crashes, the device will
back out that pending channel request and return to an idle state.

If an application for any reason "gets lost", gets an unexpected response or error, it may at any time issue an
abort-and-resynchronize command. If the device detects an INIT command during a transaction that has the
same channel id as the active transaction, the transaction is aborted (if possible) and all buffered data flushed (if
any). The device then returns to idle state to become ready for a new transaction.

The device keeps track of packets arriving in correct and ascending order and that no expected packets are
missing. The device will continue to assemble a message until all parts of it has been received or that the
transaction times out. Spurious continuation packets appearing without a prior initialization packet will be
ignored.

In order to deal with aggregated transactions that may not be interrupted, such as tunneling of vendor-specific
commands, a channel lock command may be implemented. By sending a channel lock command, the device
prevents other channels from communicating with the device until the channel lock has timed out or been
explicitly unlocked by the application.

This feature is optional and has not to be considered by general CTAP HID applications.

The CTAPHID protocol is designed to be extensible yet maintain backwards compatibility, to the extent it is
applicable. This means that a CTAPHID host SHALL support any version of a device with the command set
available in that particular version.

This description assumes knowledge of the USB and HID specifications and is intended to provide the basics for
implementing a CTAPHID device. There are several ways to implement USB devices and reviewing these
different methods is beyond the scope of this document. This specification targets the interface part, where a
device is regarded as either a single or multiple interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s). Although not
excluded per se, USB low-speed devices are not practical to use given the 8-byte report size limitation together
with the protocol overhead.

8.1.5.2. Transaction timeout

8.1.5.3. Transaction abort and re-synchronization

8.1.5.4. Packet sequencing

8.1.6. Channel locking

8.1.7. Protocol version and compatibility

8.1.8. HID device implementation

8.1.8.1. Interface and endpoint descriptors

The device implements two endpoints (except the control endpoint 0), one for IN and one for OUT transfers. The
packet size is vendor defined, but the reference implementation assumes a full-speed device with two 64-byte
endpoints.

Interface Descriptor

Mnemonic Value Description

bNumEndpoints 2 One IN and one OUT endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x01 1, OUT

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x81 1, IN

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be defined freely by the
vendor and the host application is responsible for querying these values and handle these accordingly. For the
sake of clarity, the values listed above are used in the following examples.

A HID report descriptor is required for all HID devices, even though the reports and their interpretation (scope,
range, etc.) makes very little sense from an operating system perspective. The CTAPHID just provides two "raw"
reports, which basically map directly to the IN and OUT endpoints. However, the HID report descriptor has an
important purpose in CTAPHID, as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

8.1.8.1. Interface and endpoint descriptors

8.1.8.2. HID report descriptor and device discovery

A unique Usage Page is defined (0xF1D0) for the FIDO alliance and under this realm, a CTAPHID Usage is
defined as well (0x01). During CTAPHID device discovery, all HID devices present in the system are examined
and devices that match this usage pages and usage are then considered to be CTAPHID devices.

The length values specified by the HID_INPUT_REPORT_BYTES and the HID_OUTPUT_REPORT_BYTES should
typically match the respective endpoint sizes defined in the endpoint descriptors.

The CTAPHID protocol implements the following commands.

The following list describes the minimum set of commands required by a CTAPHID device. Optional and vendor-
specific commands may be implemented as described in respective sections of this document.

This command sends an encapsulated CTAP1/U2F message to the device. The semantics of the data message
is defined in the U2F Raw Message Format encoding specification.

Request

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F command byte

DATA + 1 n bytes of data

Response at success

CMD CTAPHID_MSG

EXAMPLE 8
// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {
 HID_UsagePage (FIDO_USAGE_PAGE),
 HID_Usage (FIDO_USAGE_CTAPHID),
 HID_Collection (HID_Application),
 HID_Usage (FIDO_USAGE_DATA_IN),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_INPUT_REPORT_BYTES),
 HID_Input (HID_Data | HID_Absolute | HID_Variable),
 HID_Usage (FIDO_USAGE_DATA_OUT),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),
 HID_Output (HID_Data | HID_Absolute | HID_Variable),
HID_EndCollection
};

8.1.9. CTAPHID commands

8.1.9.1. Mandatory commands

8.1.9.1.1. CTAPHID_MSG (0X03)

BCNT 1..(n + 1)

DATA U2F status code

DATA + 1 n bytes of data

This command sends an encapsulated CTAP CBOR encoded message. The semantics of the data message is
defined in the CTAP Message encoding specification. Please note that keep-alive messages MAY be sent from
the device to the client before the response message is returned.

Request

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP command byte

DATA + 1 n bytes of CBOR encoded data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA CTAP status code

DATA + 1 n bytes of CBOR encoded data

This command has two functions.

If sent on an allocated CID, it synchronizes a channel, discarding the current transaction, buffers and state as
quickly as possible. It will then be ready for a new transaction. The device then responds with the CID of the
channel it received the INIT on, using that channel.

If sent on the broadcast CID, it requests the device to allocate a unique 32-bit channel identifier (CID) that can be
used by the requesting application during its lifetime. The requesting application generates a nonce that is used
to match the response. When the response is received, the application compares the sent nonce with the
received one. After a positive match, the application stores the received channel id and uses that for subsequent
transactions.

To allocate a new channel, the requesting application SHALL use the broadcast channel
CTAPHID_BROADCAST_CID (0xFFFFFFFF). The device then responds with the newly allocated channel in the
response, using the broadcast channel.

Request

CMD CTAPHID_INIT

BCNT 8

8.1.9.1.2. CTAPHID_CBOR (0X10)

8.1.9.1.3. CTAPHID_INIT (0X06)

DATA 8-byte nonce
Response at success

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce

DATA+8 4-byte channel ID

DATA+12 CTAPHID protocol version identifier

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented by the device. This version of the CTAPHID
protocol is 2.

A CTAPHID host SHALL accept a response size that is longer than the anticipated size to allow for future
extensions of the protocol, yet maintaining backwards compatibility. Future versions will maintain the response
structure of the current version, but additional fields may be added.

The meaning and interpretation of the device version number is vendor defined.

The capability flags value is a bitfield where the following bits values are defined. Unused values are reserved for
future use and must be set to zero by device vendors.

Name Value Description

CAPABILITY_WINK 0x01 If set to 1, authenticator implements CTAPHID_WINK function

CAPABILITY_CBOR 0x04 If set to 1, authenticator implements CTAPHID_CBOR function

CAPABILITY_NMSG 0x08 If set to 1, authenticator DOES NOT implement CTAPHID_MSG
function

Sends a transaction to the device, which immediately echoes the same data back. This command is defined to
be a uniform function for debugging, latency and performance measurements.

Request

CMD CTAPHID_PING

BCNT 0..n

DATA n bytes

Response at success

CMD CTAPHID_PING

8.1.9.1.4. CTAPHID_PING (0X01)

BCNT n

DATA N bytes

Cancel any outstanding requests on this CID. If there is an outstanding request that can be cancelled, the
authenticator MUST cancel it and that cancelled request will reply with the error
CTAP2_ERR_KEEPALIVE_CANCEL. Whether a request was cancelled or not, the authenticator MUST NOT
reply to the cancel message itself.

Request

CMD CTAPHID_CANCEL

BCNT 0

This command code is used in response messages only.

CMD CTAPHID_ERROR

BCNT 1

DATA Error code

The following error codes are defined

ERR_INVALID_CMD 0x01 The command in the request is invalid

ERR_INVALID_PAR 0x02 The parameter(s) in the request is invalid

ERR_INVALID_LEN 0x03 The length field (BCNT) is invalid for the request

ERR_INVALID_SEQ 0x04 The sequence does not match expected value

ERR_MSG_TIMEOUT 0x05 The message has timed out

ERR_CHANNEL_BUSY 0x06 The device is busy for the requesting channel

ERR_LOCK_REQUIRED 0x0A Command requires channel lock

ERR_INVALID_CHANNEL 0x0B CID is not valid.

ERR_OTHER 0x7F Unspecified error

Note: These values are identical to the BLE transport values.

This command code is sent while processing a CTAPHID_MSG. It should be sent at least every 100ms and
whenever the status changes.

CMD CTAPHID_KEEPALIVE

8.1.9.1.5. CTAPHID_CANCEL (0X11)

8.1.9.1.6. CTAPHID_ERROR (0X3F)

8.1.9.1.7. CTAPHID_KEEPALIVE (0X3B)

BCNT 1

DATA Status code

The following status codes are defined

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

The following commands are defined by this specification but are optional and does not have to be implemented.

The wink command performs a vendor-defined action that provides some visual or audible identification a
particular authenticator. A typical implementation will do a short burst of flashes with a LED or something similar.
This is useful when more than one device is attached to a computer and there is confusion which device is
paired with which connection.

Request

CMD CTAPHID_WINK

BCNT 0

DATA N/A

Response at success

CMD CTAPHID_WINK

BCNT 0

DATA N/A

The lock command places an exclusive lock for one channel to communicate with the device. As long as the lock
is active, any other channel trying to send a message will fail. In order to prevent a stalling or crashing
application to lock the device indefinitely, a lock time up to 10 seconds may be set. An application requiring a
longer lock has to send repeating lock commands to maintain the lock.

Request

CMD CTAPHID_LOCK

BCNT 1

DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock

Response at success

8.1.9.2. Optional commands

8.1.9.2.1. CTAPHID_WINK (0X08)

8.1.9.2.2. CTAPHID_LOCK (0X04)

CMD CTAPHID_LOCK

BCNT 0

DATA N/A

A CTAPHID may implement additional vendor specific commands that are not defined in this specification, while
being CTAPHID compliant. Such commands, if implemented, must use a command in the range between
CTAPHID_VENDOR_FIRST (0x40) and CTAPHID_VENDOR_LAST (0x7F).

Please refer to [ISO7816-4] for APDU definition.

The general protocol between a FIDO2 client and an authenticator over ISO7816/ISO14443 is as follows:

Because of timeouts that may otherwise occur on some platforms, it is RECOMMENDED that the Authenticators
reply to APDU commands within 800 milliseconds.

A successful Select allows the client to know that the applet is present and active. A client SHALL send a Select
to the authenticator before any other command.

The FIDO2 AID consists of the following fields:

Field Value

RID 0xA000000647

PIX 0x2F0001

The command to select the FIDO applet is:

CLA INS P1 P2 Data In Le

0x00 0xA4 0x04 0x00 AID Variable

In response to the applet selection command, the FIDO authenticator replies with its version information string in
the successful response.

Clients and authenticators MAY support additional selection mechanisms. Clients MUST fall back to the

8.1.9.3. Vendor specific commands

8.2. ISO7816, ISO14443 and Near Field Communication (NFC)
8.2.1. Conformance

8.2.2. Protocol

1. Client sends an applet selection command
2. Authenticator replies with success if the applet is present
3. Client sends a command for an operation
4. Authenticator replies with response data or error
5. Return to 3.

8.2.3. Applet selection

previously defined selection process if the additional selection mechanisms fail to select the applet.
Authenticators MUST at least support the previously defined selection process.

Given legacy support for CTAP1/U2F, the client must determine the capabilities of the device at the selection
stage.

Conceptually, framing defines an encapsulation of FIDO2 commands. This encapsulation is done in an APDU
following [ISO7816-4]. Fragmentation, if needed, is discussed in the following paragraph.

Commands SHALL have the following format:

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00 CTAP Command Byte || CBOR Encoded Data Variable

Response SHALL have the following format in case of success:

Case Data Status word

Success

CTAP
Status
code ||

Response
data

"9000" - Success

Status
update Status data

"9100" - OK
When receiving this, the ISO transport layer will immediately issue an

NFCCTAP_GETREPONSE command unless a cancel was issued. The ISO
transport layer will provide the status data to the higher layers.

Errors See [ISO7816-4]

APDU command may hold up to 255 or 65535 bytes of data using short or extended length encoding
respectively. APDU response may hold up to 256 or 65536 bytes of data using short or extended length
encoding respectively.

Some requests may not fit into a short APDU command, or the expected response may not fit in a short APDU
response. For this reason, FIDO2 client MAY encode APDU command in the following way:

If the authenticator implements CTAP1/U2F, the version information SHALL be the string U2F_V2 to
maintain backwards-compatibility with CTAP1/U2F-only clients.
If the authenticator ONLY implements CTAP2, the device SHALL respond with data that is NOT U2F_V2.
If the authenticator implements both CTAP1/U2F and CTAP2, the version information SHALL be the string
U2F_V2 to maintain backwards-compatibility with CTAP1/U2F-only clients. CTAP2-aware clients may then
issue a CTAP authenticatorGetInfo command to determine if the device supports CTAP2 or not.

8.2.4. Framing

8.2.4.1. Commands

8.2.4.2. Response

8.2.5. Fragmentation

Short APDU Chaining commands SHALL have the following format:

CLA INS P1 P2 Data In

0x90 0x10 0x00 0x00 CTAP Payload

The request may be encoded using extended length APDU encoding.
The request may be encoded using short APDU encoding. If the request does not fit a short APDU
command, the client MUST use ISO 7816-4 APDU chaining.

EXAMPLE 9
Sample authenticatorMakeCredential request using short APDU encoding and chaining mode:

01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162726BF50850FC43AAA411D948CC6C3706
8B8DA1D5080901

would be sent to authenticator by platform in two short APDU commands:

APDU command 1:

Platform Request:
90 10 00 00
F0
01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162

Authenticator Response:
9000

APDU command 2:

Platform Request:
80 10 00 00
17
726BF50850FC43AAA411D948CC6C37068B8DA1D5080901
00

Authenticator Response:
00
A301667061636B6564025900A20021F5FC0B85CD22E60623BCD7D1CA48948909
249B4776EB515154E57B66AE12C500000055F8A011F38C0A4D15800617111F9E
DC7D0010F4D57B23DD0CB785680CDAA7F7E44F60A5010203262001215820DF01
7D0B286795BEA153D166A0A15B4F6B67A3AF4A101E10E8496F3DD3C5D1A92258
2094B22551E6325D7733C41BB2F5A642ADEE417C97E0906197B5B0CD8B8D6C6B
A7A16B686D61632D736563726574F503A363616C672663736967584730450220
7CCAC57A1E43DF24B0847EEBF119D28DCDC5048F7DCD8EDD79E79721C41BCF2D
022100D89EC75B92CE8FF9E46FE7F8C87995694A63E5B78AB85C47B9DA
6100

Some responses may not fit into a short APDU response. For this reason, FIDO2 authenticators MUST respond
in the following way:

The NFCCTAP_MSG command send a CTAP message to the authenticator. This command SHALL return as
soon as processing is done. If the operation was not completed, it MAY return a 0x9100 result to trigger
NFCCTAP_GETRESPONSE functionality if the client indicated support by setting the relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

P1 Bits Meaning

0x80 The client supports NFCCTAP_GETRESPONSE

0x7F RFU, must be (0x00)

Values for P2 are all RFU and MUST be set to 0.

6100

APDU command 3:

Platform Request:
80 C0 00 00 00

Authenticator Response:
1C580A8EC83A63783563815901973082019330820138A003020102020900859B
726CB24B4C29300A06082A8648CE3D0403023047310B30090603550406130255
5331143012060355040A0C0B59756269636F205465737431223020060355040B
0C1941757468656E74696361746F72204174746573746174696F6E301E170D31
36313230343131353530305A170D3236313230323131353530305A3047310B30
0906035504061302555331143012060355040A0C0B59756269636F2054657374
31223020060355040B0C1941757468656E74696361746F722041747465737461
74696F6E3059301306072A8648CE3D020106082A8648CE3D030107034200
61A7

APDU command 4:

Platform Request:
80 C0 00 00 A7

Authenticator Response:
04AD11EB0E8852E53AD5DFED86B41E6134A18EC4E1AF8F221A3C7D6E636C80EA
13C3D504FF2E76211BB44525B196C44CB4849979CF6F896ECD2BB860DE1BF437
6BA30D300B30090603551D1304023000300A06082A8648CE3D04030203490030
46022100E9A39F1B03197525F7373E10CE77E78021731B94D0C03F3FDA1FD22D
B3D030E7022100C4FAEC3445A820CF43129CDB00AABEFD9AE2D874F9C5D343CB
2F113DA23723F3
9000

If the request was encoded using extended length APDU encoding, the authenticator MUST respond using
the extended length APDU response format.
If the request was encoded using short APDU encoding, the authenticator MUST respond using ISO 7816-4
APDU chaining.

8.2.6. Commands

8.2.6.1. NFCCTAP_MSG (0x10)

The NFCCTAP_GETRESPONSE command is issued up to receiving 0x9100 unless a cancel was issued. This
command SHALL return a 0x9100 result with a status indication if it has a status update, the reply to the request
with a 0x9000 result code to indicate success or an error value.

All values for P1 and P2 are RFU and MUST be set to 0x00.

Authenticator and client devices using Bluetooth Low Energy Technology SHALL conform to Bluetooth Core
Specification 4.0 or later [BTCORE]. Bluetooth SIG specified UUID values SHALL be found on the Assigned
Numbers website [BTASSNUM].

Bluetooth Low Energy Technology is a long-range wireless protocol and thus has several implications for privacy,
security, and overall user-experience. Because it is wireless, Bluetooth Low Energy Technology may be subject
to monitoring, injection, and other network-level attacks.

For these reasons, clients and authenticators MUST create and use a long-term link key (LTK) and SHALL
encrypt all communications. Authenticator MUST never use short term keys.

Because Bluetooth Low Energy Technology has poor ranging (i.e., there is no good indication of proximity), it
may not be clear to a FIDO client with which Bluetooth Low Energy Technology authenticator it should
communicate. Pairing is the only mechanism defined in this protocol to ensure that FIDO clients are interacting
with the expected Bluetooth Low Energy Technology authenticator. As a result, authenticator manufacturers
SHOULD instruct users to avoid performing Bluetooth pairing in a public space such as a cafe, shop or train
station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most operating
systems. That is, if an authenticator is paired to a FIDO client which resides on an operating system where
Bluetooth pairing is "system-wide", then any application on that device might be able to interact with an
authenticator. This issue is discussed further in Implementation Considerations.

For Bluetooth Low Energy Technology connections, the authenticator SHALL enforce Security Mode 1, Level
2 (unauthenticated pairing with encryption) or Security Mode 1, Level 3 (authenticated pairing with
encryption) before any FIDO messages are exchanged.

Conceptually, framing defines an encapsulation of FIDO raw messages responsible for correct transmission of a
single request and its response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of the requests and
responses is given first as complete frames. Fragmentation is discussed next for each type of transport layer.

Request frames must have the following format

8.2.6.2. NFCCTAP_GETRESPONSE (0x11)

8.3. Bluetooth Smart / Bluetooth Low Energy Technology
8.3.1. Conformance

8.3.2. Pairing

8.3.3. Link Security

8.3.4. Framing

8.3.4.1. Request from Client to Authenticator

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

Supported commands are PING, MSG and CANCEL. The constant values for them are described below.

The CANCEL command cancels any outstanding MSG commands.

The data format for the MSG command is defined in §6 Message Encoding.

Response frames must have the following format, which share a similar format to the request frames:

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request, the response is a
successful response. The value ERROR indicates an error, and the response data contains an error code as a
variable-length, big-endian integer. The constant value for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g., indicating an incorrectly
formatted request, or possibly an error communicating with the authenticator’s FIDO message processing layer.
Errors reported by the FIDO message processing layer itself are considered a success from the encapsulation
layer’s point of view and are reported as a complete MSG response.

Data format is defined in §6 Message Encoding.

The COMMAND constants and values are:

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

CANCEL 0xbe

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

8.3.4.2. Response from Authenticator to Client

8.3.4.3. Command, Status, and Error constants

Status Constant Value

PROCESSING 0x01

UP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error Constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID_SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

ERR_BUSY 0x06 The device is busy and can’t accept commands at this time.

NA 0x0a Value reserved (HID)

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

Note: These values are identical to the HID transport values.

This profile defines two roles: FIDO Authenticator and FIDO Client.

The following figure illustrates the mandatory services and characteristics that SHALL be offered by a FIDO
Authenticator as part of its GATT server:

Figure 4 Mandatory GATT services and characteristics that MUST be offered by a FIDO Authenticator. Note that the Generic
Access Profile Service ([BTGAS]) is not present as it is already mandatory for any Bluetooth Low Energy Technology compliant

device.

8.3.5. GATT Service Description

The FIDO Client SHALL be a GATT Client.
The FIDO Authenticator SHALL be a GATT Server.

The table below summarizes additional GATT sub-procedure requirements for a FIDO Authenticator (GATT
Server) beyond those required by all GATT Servers.

GATT Sub-Procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements for a FIDO Client (GATT Client)
beyond those required by all GATT Clients.

GATT Sub-Procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service UUID (*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures. (**): Mandatory to support at least one of these
sub-procedures. Other GATT sub-procedures may be used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values are big-endian coded, all
strings are in UTF-8 encoding, and any characteristics not mentioned explicitly are optional.

An authenticator SHALL implement the FIDO Service described below. The UUID for the FIDO GATT service is
0xFFFD; it SHALL be declared as a Primary Service. The service contains the following characteristics:

Characteristic
Name Mnemonic Property Length UUID

FIDO Control
Point fidoControlPoint Write

Defined by
Vendor
(20-512
bytes)

F1D0FFF1-
DEAA-ECEE-
B42F-
C9BA7ED623BB

FIDO Status fidoStatus Notify N/A
F1D0FFF2-
DEAA-ECEE-

8.3.5.1. FIDO Service

B42F-
C9BA7ED623BB

FIDO Control
Point Length fidoControlPointLength Read 2 bytes

F1D0FFF3-
DEAA-ECEE-
B42F-
C9BA7ED623BB

FIDO Service
Revision Bitfield fidoServiceRevisionBitfield Read/Write

Defined by
Vendor (1+

bytes)

F1D0FFF4-
DEAA-ECEE-
B42F-
C9BA7ED623BB

FIDO Service
Revision fidoServiceRevision Read

Defined by
Vendor
(20-512
bytes)

0x2A28

fidoControlPoint is a write-only command buffer.

fidoStatus is a notify-only response attribute. The authenticator will send a series of notifications on this
attribute with a maximum length of (ATT_MTU-3) using the response frames defined above. This mechanism is
used because this results in a faster transfer speed compared to a notify-read combination.

fidoControlPointLength defines the maximum size in bytes of a single write request to fidoControlPoint.
This value SHALL be between 20 and 512.

fidoServiceRevision is a deprecated field that is only relevant to U2F 1.0 support. It defines the revision of the
U2F Service. The value is a UTF-8 string. For version 1.0 of the specification, the value fidoServiceRevision
SHALL be 1.0 or in raw bytes: 0x312e30. This field SHALL be omitted if protocol version 1.0 is not supported.

The fidoServiceRevision Characteristic MAY include a Characteristic Presentation Format descriptor with
format value 0x19, UTF-8 String.

fidoServiceRevisionBitfield defines the revision of the FIDO Service. The value is a bit field which each bit
representing a version. For each version bit the value is 1 if the version is supported, 0 if it is not. The length of
the bitfield is 1 or more bytes. All bytes that are 0 are omitted if all the following bytes are 0 too. The byte order is
big endian. The client SHALL write a value to this characteristic with exactly 1 bit set before sending any FIDO
commands unless u2fServiceRevision is present and U2F 1.0 compatibility is desired. If only U2F version 1.0 is
supported, this characteristic SHALL be omitted.

Byte (left to right) Bit Version

0 7 U2F 1.1

0 6 U2F 1.2

0 5 FIDO2

0 4-0 Reserved

For example, a device that only supports FIDO2 Rev 1 will only have a fidoServiceRevisionBitfield characteristic
of length 1 with value 0x20.

An authenticator SHALL implement the Device Information Service [BTDIS] with the following characteristics:

8.3.5.2. Device Information Service

Manufacturer Name String

All values for the Device Information Service are left to the vendors. However, vendors should not create
uniquely identifiable values so that authenticators do not become a method of tracking users.

Every authenticator SHALL implement the Generic Access Profile Service [BTGAS] with the following
characteristics:

The general overview of the communication protocol follows:

When advertising, the authenticator SHALL advertise the FIDO service UUID.

When advertising, the authenticator MAY include the TxPower value in the advertisement (see [BTXPLAD]).

When advertising in pairing mode, the authenticator SHALL either: (1) set the LE Limited Mode bit to zero and
the LE General Discoverable bit to one OR (2) set the LE Limited Mode bit to one and the LE General
Discoverable bit to zero. When advertising in non-pairing mode, the authenticator SHALL set both the LE Limited
Mode bit and the LE General Discoverable Mode bit to zero in the Advertising Data Flags.

The advertisement MAY also carry a device name which is distinctive and user-identifiable. For example, "ACME
Key" would be an appropriate name, while "XJS4" would not be.

Model Number String
Firmware Revision String

8.3.5.3. Generic Access Profile Service

Device Name
Appearance

8.3.6. Protocol Overview

1. Authenticator advertises the FIDO Service.
2. Client scans for authenticator advertising the FIDO Service.
3. Client performs characteristic discovery on the authenticator.
4. If not already paired, the client and authenticator SHALL perform BLE pairing and create a LTK.

Authenticator SHALL only allow connections from previously bonded clients without user intervention.
5. Client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the client selects a

supported version by writing a value with a single bit set.
6. Client reads the fidoControlPointLength characteristic.
7. Client registers for notifications on the fidoStatus characteristic.
8. Client writes a request (e.g., an enroll request) into the fidoControlPoint characteristic.
9. Optionally, the client writes a CANCEL command to the fidoControlPoint characteristic to cancel the

pending request.
10. Authenticator evaluates the request and responds by sending notifications over fidoStatus characteristic.
11. The protocol completes when either:

The client unregisters for notifications on the fidoStatus characteristic, or:
The connection times out and is closed by the authenticator.

8.3.7. Authenticator Advertising Format

The authenticator SHALL also implement the Generic Access Profile [BTGAP] and Device Information Service [B
TDIS], both of which also provide a user-friendly name for the device that could be used by the client.

It is not specified when or how often an authenticator should advertise, instead that flexibility is left to
manufacturers.

Clients SHOULD make requests by connecting to the authenticator and performing a write into the
fidoControlPoint characteristic.

Upon receiving a CANCEL request, if there is an outstanding request that can be cancelled, the authenticator
MUST cancel it and that cancelled request will reply with the error CTAP2_ERR_KEEPALIVE_CANCEL.
Whether a request was cancelled or not, the authenticator MUST NOT reply to the cancel message itself.

Authenticators SHOULD respond to clients by sending notifications on the fidoStatus characteristic.

Some authenticators might alert users or prompt them to complete the test of user presence (e.g., via sound,
light, vibration) Upon receiving any request, the authenticators SHALL send KEEPALIVE commands every
kKeepAliveMillis milliseconds until completing processing the commands. While the authenticator is
processing the request the KEEPALIVE command will contain status PROCESSING. If the authenticator is waiting
to complete the Test of User Presence, the KEEPALIVE command will contains status UP_NEEDED. While waiting
to complete the Test of User Presence, the authenticator MAY alert the user (e.g., by flashing) in order to prompt
the user to complete the test of user presence. As soon the authenticator has completed processing and
confirmed user presence, it SHALL stop sending KEEPALIVE commands, and send the reply.

Upon receiving a KEEPALIVE command, the client SHALL assume the authenticator is still processing the
command; the client SHALL not resend the command. The authenticator SHALL continue sending KEEPALIVE
messages at least every kKeepAliveMillis to indicate that it is still handling the request. Until a client-defined
timeout occurs, the client SHALL NOT move on to other devices when it receives a KEEPALIVE with UP_NEEDED
status, as it knows this is a device that can satisfy its request.

A single request/response sent over Bluetooth Low Energy Technology MAY be split over multiple writes and
notifications, due to the inherent limitations of Bluetooth Low Energy Technology which is not currently meant for
large messages. Frames are fragmented in the following way:

A frame is divided into an initialization fragment and one or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 0 to (maxLen - 3) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, the start of an initialization fragment is indicated by setting the high bit in the first byte. The

8.3.8. Requests

8.3.9. Responses

8.3.10. Framing fragmentation

subsequent two bytes indicate the total length of the frame, in big-endian order. The first maxLen - 3 bytes of data
follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ Packet sequence 0x00..0x7f (high bit always cleared)

1 0 to (maxLen - 1) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0, implicitly with the high bit
cleared. The sequence number must wraparound to 0 after reaching the maximum sequence number of 0x7f.

Example for sending a PING command with 40 bytes of data with a maxLen of 20 bytes:

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512 bytes:

Frame Bytes

0 [810190] [400 bytes of data]

A client needs to register for notifications before it can receive them. Bluetooth Core Specification 4.0 or later [BT
CORE] forces a device to remember the notification registration status over different connections [BTCCC].
Unless a client explicitly unregisters for notifications, the registration will be automatically restored when
reconnecting. A client MAY therefor check the notification status upon connection and only register if notifications
aren’t already registered. Please note that some clients MAY disable notifications from a power management
point of view (see below) and the notification registration is remembered per bond, not per client. A client MUST
NOT remember the notification status in its own data storage.

As noted in §8.3.2 Pairing, a disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide"
on most operating systems. That is, if an authenticator is paired to a FIDO client that resides on an operating
system where Bluetooth pairing is "system-wide", then any application on that device might be able to interact
with an authenticator. This poses both security and privacy risks to users.

While client operating system security is partly out of FIDO’s scope, further revisions of this specification MAY
propose mitigations for this issue.

8.3.11. Notifications

8.3.12. Implementation Considerations

8.3.12.1. Bluetooth pairing: Client considerations

8.3.12.2. Bluetooth pairing: Authenticator considerations

The method to put the authenticator into Pairing Mode should be such that it is not easy for the user to do
accidentally especially if the pairing method is Just Works. For example, the action could be pressing a
physically recessed button or pressing multiple buttons. A visible or audible cue that the authenticator is in
Pairing Mode should be considered. As a counter example, a silent, long press of a single non-recessed button is
not advised as some users naturally hold buttons down during regular operation.

Note that at times, authenticators may legitimately receive communication from an unpaired device. For example,
a user attempts to use an authenticator for the first time with a new client; he turns it on, but forgets to put the
authenticator into pairing mode. In this situation, after connecting to the authenticator, the client will notify the
user that he needs to pair his authenticator. The authenticator should make it easy for the user to do so, e.g., by
not requiring the user to wait for a timeout before being able to enable pairing mode.

Some client platforms (most notably iOS) do not expose the AD Flag LE Limited and General Discoverable Mode
bits to applications. For this reason, authenticators are also strongly recommended to include the Service Data
field [BTSD] in the Scan Response. The Service Data field is 3 or more octets long. This allows the Flags field to
be extended while using the minimum number of octets within the data packet. All octets that are 0x00 are not
transmitted as long as all other octets after that octet are also 0x00 and it is not the first octet after the service
UUID. The first 2 bytes contain the FIDO Service UUID, the following bytes are flag bytes.

To help clients show the correct UX, authenticators can use the Service Data field to specify whether or not
authenticators will require a Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)

7 Device is in pairing mode.

6 Device requires Passkey Entry [BTPESTK].

It is important for low-power devices to be able to conserve power by shutting down or switching to a lower-
power state when they have satisfied a client’s requests. However, the FIDO protocol makes this hard as it
typically includes more than one command/response. This is especially true if a user has more than one key
handle associated with an account or identity, multiple key handles may need to be tried before getting a
successful outcome. Furthermore, clients that fail to send follow up commands in a timely fashion may cause the
authenticator to drain its battery by staying powered up anticipating more commands.

A further consideration is to ensure that a user is not confused about which command she is confirming by
completing the test of user presence. That is, if a user performs the test of user presence, that action should
perform exactly one operation.

We combine these considerations into the following series of recommendations:

8.3.13. Handling command completion

Upon initial connection to an authenticator, and upon receipt of a response from an authenticator, if a client
has more commands to issue, the client MUST transmit the next command or fragment within
kMaxCommandTransmitDelayMillis milliseconds.
Upon final response from an authenticator, if the client decides it has no more commands to send it should
indicate this by disabling notifications on the fidoStatus characteristic. When the notifications are disabled
the authenticator may enter a low power state or disconnect and shut down.
Any time the client wishes to send a FIDO message, it must have first enabled notifications on the
fidoStatus characteristic and wait for the ATT acknowledgement to be sure the authenticator is ready to
process messages.
Upon successful completion of a command which required a test of user presence, e.g. upon a successful
authentication or registration command, the authenticator can assume the client is satisfied, and MAY reset
its state or power down.
Upon sending a command response that did not consume a test of user presence, the authenticator MUST

Constant Value

kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kKeepAliveMillis 500 milliseconds

Bluetooth Low Energy Technology does not have particularly high throughput, this can cause noticeable latency
to the user if request/responses are large. Some ways that implementers can reduce latency are:

Though the standard does not appear to mandate it (in any way that we’ve found thus far), advertising and
device discovery seems to work better when the authenticators advertise on all 3 advertising channels and not
just one.

In order to enhance the user’s privacy and specifically to guard against tracking, it is recommended that
authenticators use Resolvable Private Addresses (RPAs) instead of static addresses.

This section defines an authenticator extension and corresponding WebAuthn extension.

hmac-secret

This extension is used by the platform to retrieve a symmetric secret from the authenticator when it needs to
encrypt or decrypt data using that symmetric secret. This symmetric secret is scoped to a credential. The
authenticator and the platform each only have the part of the complete secret to prevent offline attacks. This
extension can be used to maintain different secrets on different machines.

create() : A boolean value to indicate that this extension is requested by the Relying Party.

assume that the client may wish to initiate another command and leave the connection open until the client
closes it or until a timeout of at least kErrorWaitMillis elapses. Examples of command responses that do
not consume user presence include failed authenticate or register commands, as well as get version
responses, whether successful or not. After kErrorWaitMillis milliseconds have elapsed without further
commands from a client, an authenticator MAY reset its state or power down.

8.3.14. Data throughput

Support the maximum MTU size allowable by hardware (up to the 512-byte max from the Bluetooth
specifications).
Make the attestation certificate as small as possible; do not include unnecessary extensions.

8.3.15. Advertising

8.3.16. Authenticator Address Type

9. Defined Extensions

9.1. HMAC Secret Extension (hmac-secret)
Extension identifier

Client extension input

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create

partial dictionary AuthenticationExtensionsClientInputs {
 bool hmacCreateSecret;
};

get() : A JavaScript object defined as follows:

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

The salt2 input is optional. It can be used when the platform wants to roll over the symmetric secret in one
operation.

create(): Boolean true value indicating that the authenticator has processed the extension.

partial dictionary AuthenticationExtensionsClientOutputs {
 bool hmacCreateSecret;
};

get(): A dictionary with the following data:

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

Same as the client extension input, except represented in CBOR.

Client extension processing
1. If present in a create():

1. If set to true, pass a CBOR true value as the authenticator extension input.
2. If set to false, do not process this extension.

2. If present in a get():

1. Verify that salt1 is a 32-byte ArrayBuffer.
2. If salt2 is present, verify that it is a 32-byte ArrayBuffer.
3. Pass salt1 and, if present, salt2 as the authenticator extension input.

Client extension output

Authenticator extension input

Authenticator extension processing
authenticatorGetInfo additional behaviors

The authenticator indicates to the platform that it supports the "hmac-secret" extension via the "extensions"
parameter in the authenticatorGetInfo response.

https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

EXAMPLE 10
Sample CTAP2 authenticatorGetInfo response (CBOR):

{
 1: ["FIDO_2_0"],
 2: ["hmac-secret"],
 ...
}

authenticatorMakeCredential additional behaviors

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret": true

EXAMPLE 11
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{
 1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 ...
 6: {"hmac-secret": true},
 7: {"rk": true}
}

The authenticator generates a random 32-byte value (called CredRandom) and associates it with the
credential.
The authenticator responds with the following CBOR map entry in the "extensions" fields to the
authenticator:

"hmac-secret": true

EXAMPLE 12
Sample "extensions" field value in the authenticatorData:

{"hmac-secret": true}

authenticatorGetAssertion additional behaviors

The platform gets sharedSecret from the authenticator.
The platform sends the authenticatorGetAssertion request with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret":

keyAgreement(0x01): public key of platformKeyAgreementKey, "bG".
saltEnc(0x02): Encrypt one or two salts (Called salt1 (32 bytes) and salt2 (32 bytes)) using
sharedSecret as follows:

One salt case: AES256-CBC(sharedSecret, IV=0, salt1 (32 bytes)).
Two salt case: AES256-CBC(sharedSecret, IV=0, salt1 (32 bytes) || salt2 (32
bytes)).

saltAuth(0x03): LEFT(HMAC-SHA-256(sharedSecret, saltEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

EXAMPLE 13
Sample "extensions" field value in the authenticatorData:

4: {
 "hmac-secret":
 {
 1:
 {
 1: 2,
 3: -25,
 -1: 1,
 -2: h’0DE6479775C5B704BF780073809DE1B36A29132E187709C1E364F299F8847769'
,
 -3: h’3BBE9BEDCC1AC8328BA6397A5F46AF85FC7C51B35BEDFD9E3E47AC6F34248B35
'
 },
 2: h’59E195FC58C614C07C99F587495F374871E9873AD37D5BCA1EED200926C3C6BA528D77A
48AF9592BD7E7A88051887F214E13CFDF406C3A1C57D529BABF987D4A',
 3: h’17B93F3BDB95380ED512EC6F542CE140'
 }
 }

The authenticator performs the following operations when processing this extension:

The authenticator waits for user consent.
The authenticator generates "sharedSecret": SHA-256((abG).x) using the private key of
authenticatorKeyAgreementKey, "a" and the public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only the "x" curve point of "abG".
See [RFC6090] Section 4.1 and Appendix (C.2) of [SP800-56A] for more ECDH key
agreement protocol details and key representation information.

The authenticator verifies saltEnc by generating LEFT(HMAC-SHA-256(sharedSecret, saltEnc),
16) and matching against the input saltAuth parameter.
The authenticator generates one or two HMAC-SHA-256 values, depending upon whether it
received one salt (32 bytes) or two salts (64 bytes):

output1: HMAC-SHA-256(CredRandom, salt1)
output2: HMAC-SHA-256(CredRandom, salt2)

The authenticator returns output1 and, when there were two salts, output2 encrypted to the
platform using sharedSecret as part of "extensions" parameter:

One salt case: "hmac-secret": AES256-CBC(sharedSecret, IV=0, output1 (32 bytes))
Two salt case: "hmac-secret": AES256-CBC(sharedSecret, IV=0, output1 (32 bytes) ||
output2 (32 bytes))

EXAMPLE 14
Sample "extensions" field value in the authenticatorData:

4: { "hmac-secret": h’1F91526CAE456E4CBB71C4DDE7BB877157E6E54DFED3015D7D4DBB2269AFCDE6A9
1B8D267EBBF848EB95A68E79C7AC705E351D543DB0165887D6290FD47A40C4' }

Same as the client extension output, except represented in CBOR.

This section registers the extension identifier values defined in Section §9 Defined Extensions in the IANA
"WebAuthn Extension Identifier" registry.

Figure 5 hmac-secret

Authenticator extension output

10. IANA Considerations
10.1. WebAuthn Extension Identifier Registrations

See FIDO Security Reference document [FIDOSecRef].

Bluetooth Assigned Numbers. URL: https://www.bluetooth.org/en-us/specification/assigned-numbers

Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume 3, Part G, Section 3.3.3.3.
URL: https://www.bluetooth.com/specifications/adopted-specifications

WebAuthn Extension Identifier: hmac-secret
Description: This registration extension and authentication extension enables the platform to retrieve a
symmetric secret scoped to the credential from the authenticator.
Specification Document: Section §9.1 HMAC Secret Extension (hmac-secret) of this specification

11. Security Considerations

Index
Terms defined by this specification

CTAP2 canonical CBOR encoding form, in §6
hmacCreateSecret

dict-member for AuthenticationExtensionsClientInputs, in §9.1
dict-member for AuthenticationExtensionsClientOutputs, in §9.1

hmacGetSecret
dict-member for AuthenticationExtensionsClientInputs, in §9.1
dict-member for AuthenticationExtensionsClientOutputs, in §9.1

HMACGetSecretInput, in §9.1
HMACGetSecretOutput, in §9.1
output1, in §9.1
output2, in §9.1
salt1, in §9.1
salt2, in §9.1

Terms defined by reference
[credential-management-1] defines the following terms:

create()
get()

[WebAuthN] defines the following terms:
AuthenticationExtensionsClientInputs
AuthenticationExtensionsClientOutputs

[WebIDL] defines the following terms:
ArrayBuffer

References
Normative References
[BTASSNUM]

[BTCCC]

[BTCORE]

https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications

Bluetooth Core Specification 4.0. URL: https://www.bluetooth.com/specifications/adopted-specifications

Device Information Service v1.1. URL: https://www.bluetooth.com/specifications/adopted-specifications

Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.com/specifications/adopted-specifications

Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?
u=org.bluetooth.service.generic_access.xml

Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H, Section 2.3.5.3. URL:
https://www.bluetooth.com/specifications/adopted-specifications

Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.com/specifications/adopted-specifications

Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.com/specifications/adopted-specifications

Mike West. Credential Management Level 1. 4 August 2017. WD. URL: https://www.w3.org/TR/credential-
management-1/

R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html

FIDO2 Server Guidelines. URL: https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html

Jim Schaad; et al. IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry. URL:
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

ISO 7816-4: Identification cards - Integrated circuit cards; Part 4: Organization, security and commands for
interchange. 2013-04. URL: https://www.iso.org/standard/54550.html

L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:
https://tools.ietf.org/html/rfc2397

D. McGrew; K. Igoe; M. Salter. Fundamental Elliptic Curve Cryptography Algorithms. February 2011.
Informational. URL: https://tools.ietf.org/html/rfc6090

C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). October 2013. Proposed
Standard. URL: https://tools.ietf.org/html/rfc7049

J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8152

SEC1: Elliptic Curve Cryptography, Version 2.0. May 2009. URL: http://secg.org/download/aid-780/sec1-
v2.pdf

Elaine Barker; et al. Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography. May 2013. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

[BTDIS]

[BTGAP]

[BTGAS]

[BTPESTK]

[BTSD]

[BTXPLAD]

[CREDENTIAL-MANAGEMENT-1]

[FIDOSecRef]

[FIDOServerGuidelines]

[IANA-COSE-ALGS-REG]

[ISO7816-4]

[RFC2397]

[RFC6090]

[RFC7049]

[RFC8152]

[SEC1V2]

[SP800-56A]

[U2FBle]

https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html
https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html
https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iso.org/standard/54550.html
https://www.iso.org/standard/54550.html
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

D. Balfanz. FIDO Bluetooth® Specification. Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html

D. Balfanz. FIDO NFC Protocol Specification. Proposed Standard. URL: https://fidoalliance.org/specs/fido-
u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html

D. Balfanz. FIDO U2F Raw Message Formats v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-
20170411.html

D. Balfanz. FIDO U2F HID Protocol Specification. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html

Dirk Balfanz; et al. Web Authentication: An API for accessing Public Key Credentials Level 1. March 2018.
CR. URL: https://www.w3.org/TR/webauthn/

Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. ED. URL:
https://heycam.github.io/webidl/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

partial dictionary AuthenticationExtensionsClientInputs {
 bool hmacCreateSecret;
};

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 bool hmacCreateSecret;
};

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

[U2FNfc]

[U2FRawMsgs]

[U2FUsbHid]

[WebAuthN]

[WebIDL]

Informative References
[RFC2119]

IDL Index

↑
→

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

FIDO AppID and Facet Specification
FIDO Alliance Review Draft 02 July 2018
This version:

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-appid-and-facets-v2.0-rd-20180702.html
Previous version:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Brad Hill, PayPal, Inc.
Dirk Balfanz, Google, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract
The FIDO family of protocols introduce a new security concept, Application Facets, to describe the scope of user credentials and how a trusted
computing base which supports application isolation may make access control decisions about which keys can be used by which applications
and web origins.
This document describes the motivations for and requirements for implementing the Application Facet concept and how it applies to the FIDO
protocols.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.
This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.
This is a Review Draft Specification and is not intended to be a basis for any implementations as the Specification may change.
Permission is hereby granted to use the Specification solely for the purpose of reviewing the Specification. No rights are granted to prepare
derivative works of this Specification. Entities seeking permission to reproduce portions of this Specification for other uses must contact the
FIDO Alliance to determine whether an appropriate license for such use is available.
Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.
THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Motivation
2.2 Avoiding App-Phishing

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-appid-and-facets-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
mailto://rolf@noknok.com
https://www.noknok.com/
mailto://hillbrad@gmail.com
https://www.paypal.com
https://www.google.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact

2.3 Comparison to OAuth and OAuth2
2.4 Non-Goals

3. The AppID and FacetID Assertions
3.1 Processing Rules for AppID and FacetID Assertions

3.1.1 Determining the FacetID of a Calling Application
3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
3.1.3 TrustedFacet List and Structure

3.1.3.1 Dictionary TrustedFacetList Members
3.1.3.2 Dictionary TrustedFacets Members

3.1.4 AppID Example 1
3.1.5 AppID Example 2
3.1.6 Obtaining FacetID of Android Native App
3.1.7 Additional Security Considerations

3.1.7.1 Wildcards in TrustedFacet identifiers
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “UAF-TLV”.
In formulas we use “|” to denote byte wise concatenation operations.
This document applies to both the U2F protocol and the UAF protocol. UAF specific terminology used in this document is defined in
[FIDOGlossary].
All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are
to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.
Modern networked applications typically present several ways that a user can interact with them. This document introduces the concept of an
Application Facet to describe the identities of a single logical application across various platforms. For example, the application MyBank may
have an Android app, an iOS app, and a Web app accessible from a browser. These are all facets of the MyBank application.
The FIDO architecture provides for simpler and stronger authentication than traditional username and password approaches while avoiding
many of the shortfalls of alternative authentication schemes. At the core of the FIDO protocols are challenge and response operations
performed with a public/private keypair that serves as a user's credential.
To minimize frequently-encountered issues around privacy, entanglements with concepts of "identity", and the necessity for trusted third
parties, keys in FIDO are tightly scoped and dynamically provisioned between the user and each Relying Party and only optionally associated
with a server-assigned username. This approach contrasts with, for example, traditional PKIX client certificates as used in TLS, which introduce
a trusted third party, mix in their implementation details identity assertions with holder-of-key cryptographic proofs, lack audience restrictions,
and may even be sent in the cleartext portion of a protocol handshake without the user's notification or consent.
While the FIDO approach is preferable for many reasons, it introduces several challenges.

What set of Web origins and native applications (facets) make up a single logical application and how can they be reliably identified?
How can we avoid making the user register a new key for each web browser or application on their device that accesses services
controlled by the same target entity?
How can access to registered keys be shared without violating the security guarantees around application isolation and protection from
malicious code that users expect on their devices?
How can a user roam credentials between multiple devices, each with a user-friendly Trusted Computing Base for FIDO?

This document describes how FIDO addresses these goals (where adequate platform mechanisms exist for enforcement) by allowing an
application to declare a credential scope that crosses all the various facets it presents to the user.

2.1 Motivation
FIDO conceptually sets a scope for registered keys to the tuple of (Username, Authenticator, Relying Party). But what constitutes a Relying

Party? It is quite common for a user to access the same set of services from a Relying Party, on the same device, in one or more web browsers
as well as one or more dedicated apps. As the Relying Party may require the user to perform a costly ceremony in order to prove her identity
and register a new FIDO key, it is undesirable that the user should have to repeat this ceremony multiple times on the same device, once for
each browser or app.

2.2 Avoiding App-Phishing
FIDO provides for user-friendly verification ceremonies to allow access to registered keys, such as entering a simple PIN code and touching a
device, or scanning a finger. It should not matter for security purposes if the user re-uses the same verification inputs across Relying Parties,
and in the case of a biometric, she may have no choice.
Modern operating systems that use an "app store" distribution model often make a promise to the user that it is "safe to try" any app. They do
this by providing strong isolation between applications, so that they may not read each others' data or mutually interfere, and by requiring
explicit user permission to access shared system resources.
If a user were to download a maliciously constructed game that instructs her to activate her FIDO authenticator in order to "save your progress"
but actually unlocks her banking credential and takes over her account, FIDO has failed, because the risk of phishing has only been moved
from the password to an app download. FIDO must not violate a platform's promise that any app is "safe to try" by keeping good custody of the
high-value shared state that a registered key represents.

2.3 Comparison to OAuth and OAuth2
The OAuth and OAuth2 of protocols were designed for a server-to-server security model with the assumption that each application instance can
be issued, and keep, an "application secret". This approach is ill-suited to the "app store" security model. Although it is common for services to
provision an OAuth-style application secret into their apps in an attempt to allow only authorized/official apps to connect, any such "secret" is in
fact shared among everyone with access to the app store and can be trivially recovered thorough basic reverse engineering.
In contrast, FIDO's facet concept is designed for the "app store" model from the start. It relies on client-side platform isolation features to make
sure that a key registered by a user with a member of a well-behaved "trusted club" stays within that trusted club, even if the user later installs a
malicious app, and does not require any secrets hard-coded into a shared package to do so. The user must, however, still make good
decisions about which apps and browsers they are willing to preform a registration ceremony with. App store policing can assist here by
removing applications which solicit users to register FIDO keys to for Relying Parties in order to make illegitmate or fraudulent use of them.

2.4 Non-Goals
The Application Facet concept does not attempt to strongly identify the calling application to a service across a network. Remote attestation of
an application identity is an explicit non-goal.
If an unauthorized app can convince a user to provide all the information to it required to register a new FIDO key, the Relying Party cannot use
FIDO protocols or the Facet concept to recognize as unauthorized, or deny such an application from performing FIDO operations, and an
application that a user has chosen to trust in such a manner can also share access to a key outside of the mechanisms described in this
document.
The facet mechanism provides a way for registered keys to maintain their proper scope when created and accessed from a Trusted Computing
Base (TCB) that provides isolation of malicious apps. A user can also roam their credentials between multiple devices with user-friendly TCBs
and credentials will retain their proper scope if this mechanism is correctly implemented by each. However, no guarantees can be made in
environments where the TCB is user-hostile, such as a device with malicious code operating with "root" level permissions. On environments
that do not provide application isolation but run all code with the privileges of the user, (e.g. traditional desktop operating systems) an intact
TCB, including web browsers, may successfully enforce scoping of credentials for web origins only, but cannot meaningfully enforce application
scoping.

3. The AppID and FacetID Assertions
When a user performs a Registration operation [UAFArchOverview] a new private key is created by their authenticator, and the public key is
sent to the Relying Party. As part of this process, each key is associated with an AppID. The AppID is a URL carried as part of the protocol
message sent by the server and indicates the target for this credential. By default, the audience of the credential is restricted to the Same
Origin of the AppID. In some circumstances, a Relying Party may desire to apply a larger scope to a key. If that AppID URL has the https scheme,
a FIDO client may be able to dereference and process it as a TrustedFacetList that designates a scope or audience restriction that includes
multiple facets, such as other web origins within the same DNS zone of control of the AppID's origin, or URLs indicating the identity of other
types of trusted facets such as mobile apps.

3.1 Processing Rules for AppID and FacetID Assertions
3.1.1 Determining the FacetID of a Calling Application

In the Web case, the FacetID MUST be the Web Origin [RFC6454] of the web page triggering the FIDO operation, written as a URI with an empty

NOTE
Users may also register multiple keys on a single authenticator for an AppID, such as for cases where they have multiple accounts. Such
registrations may have a Relying Party assigned username or local nicknames associated to allow them to be distinguished by the user,
or they may not (e.g. for 2nd factor use cases, the user account associated with a key may be communicated out-of-band to what is
specified by FIDO protocols). All registrations that share an AppID, also share these same audience restriction.

path. Default ports are omitted and any path component is ignored.
An example FacetID is shown below:

https://login.mycorp.com/

In the Android [ANDROID] case, the FacetID MUST be a URI derived from the Base64 encoded SHA-256 (or SHA-1) hash of the APK signing
certificate [APK-Signing]:

android:apk-key-hash-sha256:<base64_encoded_sha256_hash-of-apk-signing-cert>
android:apk-key-hash:<base64_encoded_sha1_hash-of-apk-signing-cert>

The SHA-1 hash can be computed as follows:

The Base64 encoding is the the "Base 64 Encoding" from Section 4 in [RFC4648], with padding characters removed.

In the iOS [iOS] case, the FacetID MUST be the BundleID [BundleID] URI of the application:
ios:bundle-id:<ios-bundle-id-of-app>

3.1.2 Determining if a Caller's FacetID is Authorized for an AppID

1. If the AppID is not an HTTPS URL, and matches the FacetID of the caller, no additional processing is necessary and the operation may
proceed.

2. If the AppID is null or empty, the client MUST set the AppID to be the FacetID of the caller, and the operation may proceed without
additional processing.

3. If the caller's FacetID is an https:// Origin sharing the same host as the AppID, (e.g. if an application hosted at https://fido.example.com/myApp
set an AppID of https://fido.example.com/myAppId), no additional processing is necessary and the operation may proceed. This algorithm MAY
be continued asynchronously for purposes of caching the TrustedFacetList, if desired.

4. Begin to fetch the TrustedFacetList using the HTTP GET method. The location MUST be identified with an HTTPS URL.
5. The URL MUST be dereferenced with an anonymous fetch. That is, the HTTP GET MUST include no cookies, authentication, Origin or

Referer headers, and present no TLS certificates or other forms of credentials.
6. The response MUST set a MIME Content-Type of "application/fido.trusted-apps+json".
7. The caching related HTTP header fields in the HTTP response (e.g. “Expires”) SHOULD be respected when fetching a TrustedFacetList.
8. The server hosting the TrustedFacetList MUST respond uniformly to all clients. That is, it MUST NOT vary the contents of the response body

based on any credential material, including ambient authority such as originating IP address, supplied with the request.
9. If the server returns an HTTP redirect (status code 3xx) the server MUST also send the HTTP header FIDO-AppID-Redirect-Authorized: true and

the client MUST verify the presence of such a header before following the redirect. This protects against abuse of open redirectors within
the target domain by unauthorized parties. If this check has passed, restart this algorithm from step 4.

10. A TrustedFacetList MAY contain an unlimited number of entries, but clients MAY truncate or decline to process large responses.
11. From among the objects in the trustedFacet array, select the one with the version matching that of the protocol message version. With

"matching" we mean: the highest version that appears in the TrustedFacetList that is smaller or equal to the actual protocol version being
used.

12. The scheme of URLs in ids MUST identify either an application identity (e.g. using the apk:, ios: or similar scheme) or an https: Web Origin
[RFC6454].

EXAMPLE 1: Computing an APK signing certificate SHA256 hash
Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
 -alias <alias-of-entry> \
 -keystore <path-to-apk-signing-keystore> &>2 /dev/null | \
 openssl sha256 -binary | \
 openssl base64 | \
 sed 's/=//g'

EXAMPLE 2: Computing an APK signing certificate SHA1 hash
Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
 -alias <alias-of-entry> \
 -keystore <path-to-apk-signing-keystore> &>2 /dev/null | \
 openssl sha1 -binary | \
 openssl base64 | \
 sed 's/=//g'

NOTE
If compatibility with older versions of FIDO Clients (i.e. the ones not yet supporting SHA-256 for FacetIDs) is required, both entries
should be specified.

http://www.whatwg.org/specs/web-apps/current-work/multipage/fetching-resources.html#attr-crossorigin-anonymous

13. Entries in ids using the https:// scheme MUST contain only scheme, host and port components, with an optional trailing /. Any path, query
string, username/password, or fragment information MUST be discarded.

14. All Web Origins listed MUST have host names under the scope of the same least-specific private label in the DNS, using the following
algorithm:

1. Obtain the list of public DNS suffixes from https://publicsuffix.org/list/effective_tld_names.dat (the client MAY cache such data), or
equivalent functionality as available on the platform.

2. Extract the host portion of the original AppID URL, before following any redirects.
3. The least-specific private label is the portion of the host portion of the AppID URL that matches a most-specific public suffix plus one

additional label to the left (also known as 'effective top-level domain'+1 or eTLD+1).
4. For each Web Origin in the TrustedFacetList, the calculation of the least-specific private label in the DNS MUST be a case-insensitive

match of that of the AppID URL itself. Entries that do not match MUST be discarded.
15. If the TrustedFacetList cannot be retrieved and successfully parsed according to these rules, the client MUST abort processing of the

requested FIDO operation.
16. After processing the trustedFacets entry of the correct version and removing any invalid entries, if the caller's FacetID matches one listed in

ids, the operation is allowed.

3.1.3 TrustedFacet List and Structure

The Trusted Facets JSON resource is a serialized TrustedFacetList hosted at the AppID URL. It consists of a dictionary containing a single
member, trustedFacets which is an array of TrustedFacets dictionaries.

WebIDL
dictionary TrustedFacetList {
 required TrustedFacets[] trustedFacets;
};

3.1.3.1 Dictionary TrustedFacetList Members

trustedFacets of type array of required TrustedFacets
An array of TrustedFacets.

WebIDL
dictionary TrustedFacets {
 required Version version;
 required DOMString[] ids;
};

3.1.3.2 Dictionary TrustedFacets Members

version of type required Version
The protocol version to which this set of trusted facets applies. See [UAFProtocol] for the definition of the version structure.

ids of type array of required DOMString
An array of URLs identifying authorized facets for this AppID.

3.1.4 AppID Example 1

".com" is a public suffix. "https://www.example.com/appID" is provided as an AppID. The body of the resource at this location contains:

For this policy, "https://www.example.com" and "https://register.example.com" would have access to the keys registered for this AppID, and
"https://user1.example.com" would not.

3.1.5 AppID Example 2

"hosting.example.com" is a public suffix, operated under "example.com" and used to provide hosted cloud services for many companies.
"https://companyA.hosting.example.com/appID" is provided as an AppID. The body of the resource at this location contains:

EXAMPLE 3
{
 "trustedFacets" : [{
 "version": { "major": 1, "minor" : 0 },
 "ids": [
 "https://register.example.com", // VALID, shares "example.com" label
 "https://fido.example.com", // VALID, shares "example.com" label
 "http://www.example.com", // DISCARD, scheme is not https:
 "http://www.example-test.com", // DISCARD, "example-test.com" does not match
 "https://www.example.com:444" // VALID, port is not significant
]
 }]
}

https://publicsuffix.org/list/effective_tld_names.dat

For this policy, "https://fido.companyA.hosting.example.com" would have access to the keys registered for this AppID, and
"https://register.example.com" and "https://companyB.hosting.example.com" would not as a public-suffix exists between these DNS names and
the AppID's.

3.1.6 Obtaining FacetID of Android Native App

This section is non-normative.
The following code demonstrates how a FIDO Client can obtain and construct the FacetID of a calling Android native application.

EXAMPLE 4
{
 "trustedFacets" : [{
 "version": { "major": 1, "minor" : 0 },
 "ids": [
 "https://register.example.com", // DISCARD, does not share "companyA.hosting.example.com" label
 "https://fido.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
 "https://xyz.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
 "https://companyB.hosting.example.com" // DISCARD, "companyB.hosting.example.com" does not match
]
 }]
}

EXAMPLE 5: AndroidFacetID SHA256
private String getFacetID(Context aContext, int callingUid) {

 String packageNames[] = aContext.getPackageManager().getPackagesForUid(callingUid);

 if (packageNames == null) {
 return null;
 }

 try {
 PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_SIGNATURES);

 byte[] cert = info.signatures[0].toByteArray();
 InputStream input = new ByteArrayInputStream(cert);

 CertificateFactory cf = CertificateFactory.getInstance("X509");
 X509Certificate c = (X509Certificate) cf.generateCertificate(input);

 MessageDigest md = MessageDigest.getInstance("SHA256");

 return "android:apk-key-hash-sha256:" +
 Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);
 }
 catch (PackageManager.NameNotFoundException e) {
 e.printStackTrace();
 }
 catch (CertificateException e) {
 e.printStackTrace();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (CertificateEncodingException e) {
 e.printStackTrace();
 }

 return null;
}

EXAMPLE 6: AndroidFacetID SHA1
private String getFacetID(Context aContext, int callingUid) {

 String packageNames[] = aContext.getPackageManager().getPackagesForUid(callingUid);

 if (packageNames == null) {
 return null;
 }

 try {
 PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_SIGNATURES);

 byte[] cert = info.signatures[0].toByteArray();
 InputStream input = new ByteArrayInputStream(cert);

 CertificateFactory cf = CertificateFactory.getInstance("X509");
 X509Certificate c = (X509Certificate) cf.generateCertificate(input);

 MessageDigest md = MessageDigest.getInstance("SHA1");

3.1.7 Additional Security Considerations

The UAF protocol supports passing FacetID to the FIDO Server and including the FacetID in the computation of the authentication response.
Trusting a web origin facet implicitly trusts all subdomains under the named entity because web user agents do not provide a security barrier
between such origins. So, in AppID Example 1, although not explicitly listed, "https://foobar.register.example.com" would still have effective
access to credentials registered for the AppID "https://www.example.com/appID" because it can effectively act as
"https://register.example.com".
The component implementing the controls described here must reliably identify callers to securely enforce the mechanisms. Platform inter-
process communication mechanisms which allow such identification SHOULD be used when available.
It is unlikely that the component implementing the controls described here can verify the integrity and intent of the entries on a TrustedFacetList. If
a trusted facet can be compromised or enlisted as a confused deputy [FIDOGlossary] by a malicious party, it may be possible to trick a user into
completing an authentication ceremony under the control of that malicious party.

3.1.7.1 Wildcards in TrustedFacet identifiers

This section is non-normative.
Wildcards are not supported in TrustedFacet identifiers. This follows the advice of RFC6125 [RFC6125], section 7.2.
FacetIDs are URIs that uniquely identify specific security principals that are trusted to interact with a given registered credential. Wildcards
introduce undesirable ambiguitiy in the defintion of the principal, as there is no consensus syntax for what wildcards mean, how they are
expanded and where they can occur across different applications and protocols in common use. For schemes indicating application identities, it
is not clear that wildcarding is appropriate in any fashion. For Web Origins, it broadly increases the scope of the credential to potentially include
rogue or buggy hosts.
Taken together, these ambiguities might introduce exploitable differences in identity checking behavior among client implementations and
would necessitate overly complex and inefficient identity checking algorithms.

A. References
A.1 Normative references
[FIDOGlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC6125]
P. Saint-Andre; J. Hodges. Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125). March 2011. URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

A.2 Informative references
[ANDROID]

The Android™ Operating System. URL: http://developer.android.com/
[APK-Signing]

 return "android:apk-key-hash:" +
 Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);
 }
 catch (PackageManager.NameNotFoundException e) {
 e.printStackTrace();
 }
 catch (CertificateException e) {
 e.printStackTrace();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (CertificateEncodingException e) {
 e.printStackTrace();
 }

 return null;
}

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
http://developer.android.com/
http://developer.android.com/

Signing Your Applications. URL: http://developer.android.com/tools/publishing/app-signing.html
[BundleID]

Configuring your Xcode Project for Distribution. URL:
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html

[UAFArchOverview]
S. Machani; R. Philpott; S. Srinivas; J. Kemp; J. Hodges. FIDO UAF Architectural Overview. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html

[iOS]
iOS Dev Center. URL: https://developer.apple.com/devcenter/ios/index.action

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action

FIDO Metadata Statements
FIDO Alliance Review Draft 02 July 2018
This version:

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-statement-v2.0-rd-20180702.html
Previous version:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
Editors:

Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract
FIDO authenticators may have many different form factors, characteristics and capabilities. This document defines a
standard means to describe the relevant pieces of information about an authenticator in order to interoperate with it, or to
make risk-based policy decisions about transactions involving a particular authenticator.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.
This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments are
welcome.
This is a Review Draft Specification and is not intended to be a basis for any implementations as the Specification
may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the Specification.
No rights are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce portions of
this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is
available.
Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.
THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-statement-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Conformance
2. Overview

2.1 Scope
2.2 Audience
2.3 Architecture

3. Types
3.1 Authenticator Attestation GUID (AAGUID) typedef
3.2 CodeAccuracyDescriptor dictionary

3.2.1 Dictionary CodeAccuracyDescriptor Members
3.3 BiometricAccuracyDescriptor dictionary

3.3.1 Dictionary BiometricAccuracyDescriptor Members
3.4 PatternAccuracyDescriptor dictionary

3.4.1 Dictionary PatternAccuracyDescriptor Members
3.5 VerificationMethodDescriptor dictionary

3.5.1 Dictionary VerificationMethodDescriptor Members
3.6 verificationMethodANDCombinations typedef
3.7 rgbPaletteEntry dictionary

3.7.1 Dictionary rgbPaletteEntry Members
3.8 DisplayPNGCharacteristicsDescriptor dictionary

3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members
3.9 EcdaaTrustAnchor dictionary

3.9.1 Dictionary EcdaaTrustAnchor Members
3.10 ExtensionDescriptor dictionary

3.10.1 Dictionary ExtensionDescriptor Members
3.11 AlternativeDescriptions dictionary

3.11.1 Dictionary AlternativeDescriptions Members
4. Metadata Keys

4.1 Dictionary MetadataStatement Members
5. Metadata Statement Format

5.1 UAF Example
5.2 U2F Example
5.3 FIDO2 Example

6. Additional Considerations
6.1 Field updates and metadata

A. References
A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “UAF-TLV”.
In formulas we use “|” to denote byte wise concatenation operations.
DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members MUST NOT have a value of null.
Unless otherwise specified, if a WebIDL dictionary member is DOMString, it MUST NOT be empty.
Unless otherwise specified, if a WebIDL dictionary member is a List, it MUST NOT be an empty list.
All diagrams, examples, notes in this specification are non-normative.

1.1 Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.
The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this specification are to be
interpreted as described in [RFC2119].

2. Overview
This section is non-normative.
The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety of different
devices in a competitive marketplace. Much of the complexity behind this variety is hidden from Relying Party applications,
but in order to accomplish the goals of FIDO, Relying Parties must have some means of discovering and verifying various
characteristics of authenticators. Relying Parties can learn a subset of verifiable information for authenticators certified by
the FIDO Alliance with an Authenticator Metadata statement. The URL to access that Metadata statement is provided by
the Metadata TOC file accessible through the Metadata Service [FIDOMetadataService].
For definitions of terms, please refer to the FIDO Glossary [FIDOGlossary].

2.1 Scope
This document describes the format of and information contained in Authenticator Metadata statements. For a definitive list
of possible values for the various types of information, refer to the FIDO Registry of Predefined Values [FIDORegistry].
The description of the processes and methods by which authenticator metadata statements are distributed and the
methods how these statements can be verified are described in the Metadata Service Specification
[FIDOMetadataService].

2.2 Audience
The intended audience for this document includes:

FIDO authenticator vendors who wish to produce metadata statements for their products.
FIDO server implementers who need to consume metadata statements to verify characteristics of authenticators and
attestation statements, make proper algorithm choices for protocol messages, create policy statements or tailor
various other modes of operation to authenticator-specific characteristics.
FIDO relying parties who wish to

create custom policy statements about which authenticators they will accept
risk score authenticators based on their characteristics
verify attested authenticator IDs for cross-referencing with
third party metadata

2.3 Architecture

NOTE
Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members
are marked in the WebIDL definitions found in this document, as required. The keyword required has been introduced
by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which implements [WebIDL], then
you may remove the keyword required from your WebIDL and use other means to ensure those fields are present.

Fig. 1 The FIDO Architecture
Authenticator metadata statements are used directly by the FIDO server at a relying party, but the information contained in
the authoritative statement is used in several other places. How a server obtains these metadata statements is described in
[FIDOMetadataService].
The workflow around an authenticator metadata statement is as follows:

1. The authenticator vendor produces a metadata statement, that is UTF-8 encoded, describing the characteristics of an
authenticator.

2. The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification process. The FIDO
Alliance distributes the metadata as described in [FIDOMetadataService].

3. A FIDO relying party configures its registration policy to allow authenticators matching certain characteristics to be
registered.

4. The FIDO server sends a registration challenge message. This message can contain such policy statement.
5. Depending on the FIDO protocol being used, either the relying party application or the FIDO UAF Client receives the

policy statement as part of the challenge message and processes it. It queries available authenticators for their self-
reported characteristics and (with the user's input) selects an authenticator that matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message contains a reference to
the authenticator model and, optionally, a signature made with the private key corresponding to the public key in the
authenticator's attestation certificate.

7. The FIDO Server looks up the metadata statement for the particular authenticator model. If the metadata statement
lists an attestation certificate(s), it verifies that an attestation signature is present, and made with the private key
corresponding to either (a) one of the certificates listed in this metadata statement or (b) corrsponding to the public
key in a certificate that chains to one of the issuer certificates listed in the authenticator's metadata statement.

8. The FIDO Server next verifies that the authenticator meets the originally supplied registration policy based on its
authoritative metadata statement. This prevents the registration of unexpected authenticator models.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the authenticator,
based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested authenticator model with other metadata databases

published by third parties. Such third-party metadata might, for example, inform the FIDO Server if an authenticator
has achieved certifications relevant to certain markets or industry verticals, or whether it meets application-specific
regulatory requirements.

3. Types
This section is normative.

3.1 Authenticator Attestation GUID (AAGUID) typedef
WebIDL

typedef DOMString AAGUID;

string[36]

Some authenticators have an AAGUID, which is a 128-bit identifier that indicates the type (e.g. make and model) of the
authenticator. The AAGUID MUST be chosen by the manufacturer to be identical across all substantially identical
authenticators made by that manufacturer, and different (with probability 1-2-128 or greater) from the AAGUIDs of all other
types of authenticators.
The AAGUID is represented as a string (e.g. "7a98c250-6808-11cf-b73b-00aa00b677a7") consisting of 5 hex strings
separated by a dash ("-"), see [RFC4122].

3.2 CodeAccuracyDescriptor dictionary
The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user verification methods.

WebIDL
dictionary CodeAccuracyDescriptor {
 required unsigned short base;
 required unsigned short minLength;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.2.1 Dictionary CodeAccuracyDescriptor Members

base of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4 digits.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means this
user verification method will be blocked, either permanently or until an alternative user verification method
method succeeded. All alternative user verification methods MUST be specified appropriately in the Metadata in
userVerificationDetails.

3.3 BiometricAccuracyDescriptor dictionary

NOTE
One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.
We are using the numeral system base (radix) and minLen, instead of the number of potential combinations since
there is sufficient evidence [iPhonePasscodes] [MoreTopWorstPasswords] that users don't select their code evenly
distributed at random. So software might take into account the various probability distributions for different bases.
This essentially means that in practice, passcodes are not as secure as they could be if randomly chosen.

The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a biometric user verification
method, see [FIDOBiometricsRequirements].
At least one of the values MUST be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.baDesc MUST be omitted.

WebIDL
dictionary BiometricAccuracyDescriptor {
 double selfAttestedFRR;
 double selfAttestedFAR;
 unsigned short maxTemplates;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.3.1 Dictionary BiometricAccuracyDescriptor Members

selfAttestedFRR of type double
The false rejection rate [ISO19795-1] for a single template, i.e. the percentage of verification transactions with
truthful claims of identity that are incorrectly denied. For example a FRR of 10% would be encoded as 0.1.
This value is self attested and, if the authenticator passed biometric certification, the data is an independently
verified FRR as measured when meeting the FRR target specified in the biometric certification requirements
[FIDOBiometricsRequirements] for the indicated biometric certification level (see certLevel in related
biometricStatusReport as specified in [FIDOMetadataService]).

selfAttestedFAR of type double
The false acceptance rate [ISO19795-1] for a single template, i.e. the percentage of verification transactions with
wrongful claims of identity that are incorrectly confirmed. For example a FAR of 0.002% would be encoded as
0.00002.
This value is self attested and, if the authenticator passed biometric certification, the data is an independently
verified FAR specified in the biometric certification requirements [FIDOBiometricsRequirements] for the indicated
biomeric certification level (see certLevel in related biometricStatusReport as specified in
[FIDOMetadataService]).

maxTemplates of type unsigned short
Maximum number of alternative templates from different fingers allowed (for other modalities, multiple parts of
the body that can be used interchangeably), e.g. 3 if the user is allowed to enroll up to 3 different fingers to a
fingerprint based authenticator.
If the authenticator passed biometric certification this value defaults to 1. For maxTemplates greater than one, it
SHALL be independently verified to ensure FAR meets biometric performance requirements of certLevel (of the
related biometricStatusReport as specified in [FIDOMetadataService]).

NOTE
Typical fingerprint sensor characteristics can be found in Google Android 6.0 Compatibility Definition and Apple iOS
Security Guide.

NOTE
The false rejection rate is relevant for user convenience. Lower false rejection rates mean better
convenience.

NOTE
The resulting FAR when all templates are used is approx. maxTemplates * FAR.
The false acceptance rate is relevant for the security. Lower false acceptance rates mean better security.
Only the live captured subjects are covered by this value - not the presentation of artefacts.

https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://www.apple.com/business/docs/iOS_Security_Guide.pdf

If the authenticator did not pass biometric certification, vendor can submit any number, but this number has not
been validated for biometric performance requirements.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means that
this user verification method will be blocked either permanently or until an alternative user verification method
succeeded. All alternative user verification methods MUST be specified appropriately in the metadata in
userVerificationDetails.

3.4 PatternAccuracyDescriptor dictionary
The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern is used as the user
verification method.

WebIDL
dictionary PatternAccuracyDescriptor {
 required unsigned long minComplexity;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.4.1 Dictionary PatternAccuracyDescriptor Members

minComplexity of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the right one, i.e.
1/probability in the case of equal distribution.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this method (at least
temporarily). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar mechanism). 0
means this user verification method will be blocked, either permanently or until an alternative user verification
method method succeeded. All alternative user verification methods MUST be specified appropriately in the
metadata under userVerificationDetails.

3.5 VerificationMethodDescriptor dictionary
A descriptor for a specific base user verification method as implemented by the authenticator.
A base user verification method must be chosen from the list of those described in [FIDORegistry]

The specification of the related AccuracyDescriptor is optional, but recommended.
WebIDL

dictionary VerificationMethodDescriptor {

NOTE
One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern] screen unlock. The
minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN, the minimum allowed for this
mechanism.

NOTE
In reality, several of the methods described above might be combined. For example, a fingerprint based user
verification can be combined with an alternative password.

 required unsigned long userVerification;
 CodeAccuracyDescriptor caDesc;
 BiometricAccuracyDescriptor baDesc;
 PatternAccuracyDescriptor paDesc;
};

3.5.1 Dictionary VerificationMethodDescriptor Members

userVerification of type required unsigned long
a single USER_VERIFY constant (see [FIDORegistry]), not a bit flag combination. This value MUST be non-zero.

caDesc of type CodeAccuracyDescriptor
May optionally be used in the case of method USER_VERIFY_PASSCODE.

baDesc of type BiometricAccuracyDescriptor
May optionally be used in the case of method USER_VERIFY_FINGERPRINT, USER_VERIFY_VOICEPRINT,
USER_VERIFY_FACEPRINT, USER_VERIFY_EYEPRINT, or USER_VERIFY_HANDPRINT.

paDesc of type PatternAccuracyDescriptor
May optionally be used in case of method USER_VERIFY_PATTERN.

3.6 verificationMethodANDCombinations typedef
WebIDL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations MUST be non-empty. It is a list containing the base user verification methods which must be
passed as part of a successful user verification.
This list will contain only a single entry if using a single user verification method is sufficient.
If this list contains multiple entries, then all of the listed user verification methods MUST be passed as part of the user
verification process.

3.7 rgbPaletteEntry dictionary
The rgbPaletteEntry is an RGB three-sample tuple palette entry

WebIDL
dictionary rgbPaletteEntry {
 required unsigned short r;
 required unsigned short g;
 required unsigned short b;
};

3.7.1 Dictionary rgbPaletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.8 DisplayPNGCharacteristicsDescriptor dictionary
The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG [PNG] spec for
IHDR (image header) and PLTE (palette table)

WebIDL
dictionary DisplayPNGCharacteristicsDescriptor {
 required unsigned long width;
 required unsigned long height;
 required octet bitDepth;

 required octet colorType;
 required octet compression;
 required octet filter;
 required octet interlace;
 rgbPaletteEntry[] plte;
};

3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

width of type required unsigned long
image width

height of type required unsigned long
image height

bitDepth of type required octet
Bit depth - bits per sample or per palette index.

colorType of type required octet
Color type defines the PNG image type.

compression of type required octet
Compression method used to compress the image data.

filter of type required octet
Filter method is the preprocessing method applied to the image data before compression.

interlace of type required octet
Interlace method is the transmission order of the image data.

plte of type array of rgbPaletteEntry
1 to 256 palette entries

3.9 EcdaaTrustAnchor dictionary
In the case of ECDAA attestation, the ECDAA-Issuer's trust anchor MUST be specified in this field.

WebIDL
dictionary EcdaaTrustAnchor {
 required DOMString X;
 required DOMString Y;
 required DOMString c;
 required DOMString sx;
 required DOMString sy;
 required DOMString G1Curve;
};

3.9.1 Dictionary EcdaaTrustAnchor Members

X of type required DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2 X = P . See [FIDOEcdaaAlgorithm] for the
definition of ECPoint2ToB.

Y of type required DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2 Y = P . See [FIDOEcdaaAlgorithm] for the
definition of ECPoint2ToB.

c of type required DOMString
base64url encoding of the result of BigNumberToB(c). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of c. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sx of type required DOMString
base64url encoding of the result of BigNumberToB(sx). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of sx. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sy of type required DOMString
base64url encoding of the result of BigNumberToB(sy). See section "Issuer Specific ECDAA Parameters" in

2x

2
y

[FIDOEcdaaAlgorithm] for an explanation of sy. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.
G1Curve of type required DOMString

Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256", and "BN_ISOP512"
are supported. See section "Supported Curves for ECDAA" in [FIDOEcdaaAlgorithm] for details.

3.10 ExtensionDescriptor dictionary
This descriptor contains an extension supported by the authenticator.

WebIDL
dictionary ExtensionDescriptor {
 required DOMString id;
 unsigned short tag;
 DOMString data;
 required boolean fail_if_unknown;
};

3.10.1 Dictionary ExtensionDescriptor Members

id of type required DOMString
Identifies the extension.

tag of type unsigned short
The TAG of the extension if this was assigned. TAGs are assigned to extensions if they could appear in an
assertion.

data of type DOMString
Contains arbitrary data further describing the extension and/or data needed to correctly process the extension.
This field MAY be missing or it MAY be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (true) when the extension
is to be processed by the FIDO Server, FIDO Client, ASM, or FIDO Authenticator.

A value of false indicates that unknown extensions MUST be ignored
A value of true indicates that unknown extensions MUST result in an error.

3.11 AlternativeDescriptions dictionary
This descriptor contains description in alternative languages.

WebIDL
dictionary AlternativeDescriptions {
 DOMString *IETFLanguageCodes-members...;
};

3.11.1 Dictionary AlternativeDescriptions Members

*IETFLanguageCodes-members... of type DOMString
IETF language codes ([RFC5646]), defined by a primary language subtag, followed by a region subtag based on
a two-letter country code from [ISO3166] alpha-2 (usually written in upper case), e.g: Austrian-German - "de-AT".
In case of absence of the specific territorial language definition, vendor should fallback to the more general
language option, e.g: If "de" is given, but "de-AT" is missing, the use "de" entry instead.

NOTE
Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly generated by
verifying s, sx, sy. See [FIDOEcdaaAlgorithm] for details.

Description values can contain any UTF-8 characters.
For example: { "ru-RU": "Пример U2F аутентификатора от FIDO Alliance", "fr-FR": "Exemple U2F authenticator de FIDO Alliance" }

Each description SHALL NOT exceed a maximum length of 200 characters.

4. Metadata Keys
This section is normative.

WebIDL
dictionary MetadataStatement {
 DOMString legalHeader;
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 required DOMString description;
 AlternativeDescriptions alternativeDescriptions;
 required unsigned short authenticatorVersion;
 DOMString protocolFamily;
 required Version[] upv;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 unsigned short[] authenticationAlgorithms;
 required unsigned short publicKeyAlgAndEncoding;
 unsigned short[] publicKeyAlgAndEncodings;
 required unsigned short[] attestationTypes;
 required VerificationMethodANDCombinations[] userVerificationDetails;
 required unsigned short keyProtection;
 boolean isKeyRestricted;
 boolean isFreshUserVerificationRequired;
 required unsigned short matcherProtection;
 unsigned short cryptoStrength;
 DOMString operatingEnv;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 required DOMString[] attestationRootCertificates;
 EcdaaTrustAnchor[] ecdaaTrustAnchors;
 DOMString icon;
 ExtensionDescriptor supportedExtensions[];
};

4.1 Dictionary MetadataStatement Members
legalHeader of type DOMString

The legalHeader, if present, contains a legal guide for accessing and using metadata, which itself MAY contain
URL(s) pointing to further information, such as a full Terms and Conditions statement.

aaid of type AAID
The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure. This field MUST be set
if the authenticator implements FIDO UAF.

aaguid of type AAGUID
The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure. This
field MUST be set if the authenticator implements FIDO 2.

NOTE
FIDO UAF Authenticators support AAID, but they don't support AAGUID.
It is always expected that the UAF Authenticator (or at least the UAF ASM) knows and provides the correct
AAID.

NOTE
FIDO 2 Authenticators support AAGUID, but they don't support AAID.

attestationCertificateKeyIdentifiers of type array of DOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value MUST be calculated
according to method 1 for computing the keyIdentifier as defined in [RFC5280] section 4.2.1.2. The hex string
MUST NOT contain any non-hex characters (e.g. spaces). All hex letters MUST be lower case. This field MUST be set if
neither aaid nor aaguid are set. Setting this field implies that the attestation certificate(s) are dedicated to a single
authenticator model.
All attestationCertificateKeyIdentifier values should be unique within the scope of the Metadata Service.

description of type required DOMString
A human-readable, short description of the authenticator, in English.

This description MUST be in English, and only contain ASCII [ECMA-262] characters.
This description SHALL NOT exceed a maximum length of 200 characters.

alternativeDescriptions of type AlternativeDescriptions
A list of human-readable short descriptions of the authenticator in different languages.

authenticatorVersion of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this metadata statement.
Adding new StatusReport entries with status UPDATE_AVAILABLE to the metadata TOC object [FIDOMetadataService]
MUST also change this authenticatorVersion if the update fixes severe security issues, e.g. the ones reported by
preceding StatusReport entries with status code USER_VERIFICATION_BYPASS, ATTESTATION_KEY_COMPROMISE,
USER_KEY_REMOTE_COMPROMISE, USER_KEY_PHYSICAL_COMPROMISE, REVOKED.
It is RECOMMENDED to assume increased risk if this version is higher (newer) than the firmware version present in
an authenticator. For example, if a StatusReport entry with status USER_VERIFICATION_BYPASS or
USER_KEY_REMOTE_COMPROMISE precedes the UPDATE_AVAILABLE entry, than any firmware version lower (older)
than the one specified in the metadata statement is assumed to be vulnerable.

protocolFamily of type DOMString
The FIDO protocol family. The values "uaf", "u2f", and "fido2" are supported. If this field is missing, the assumed
protocol family is "uaf". Metadata Statements for U2F authenticators MUST set the value of protocolFamily to "u2f"
and FIDO 2.0/WebAuthentication Authenticator implementations MUST set the value of protocolFamily to "fido2".

upv of type array of required Version
The FIDO unified protocol version(s) (related to the specific protocol family) supported by this authenticator. See
[UAFProtocol] for the definition of the Version structure.

assertionScheme of type required DOMString
The assertion scheme supported by the authenticator. Must be set to one of the enumerated strings defined in
the FIDO UAF Registry of Predefined Values [UAFRegistry], or to "U2FV1BIN" in the case of the U2F raw
message format, or to "FIDOV2" in the case of the FIDO 2/WebAuthentication assertion scheme.

authenticationAlgorithm of type required unsigned short
The preferred authentication algorithm supported by the authenticator. Must be set to one of the ALG_ constants
defined in the FIDO Registry of Predefined Values [FIDORegistry]. This value MUST be non-zero.

authenticationAlgorithms of type array of unsigned short
The list of authentication algorithms supported by the authenticator. Must be set to the complete list of the

NOTE
FIDO U2F Authenticators typically do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

NOTE
This description should help an administrator configuring authenticator policies. This description might
deviate from the description returned by the ASM for that authenticator.
This description should contain the public authenticator trade name and the publicly known vendor name.

supported ALG_ constants defined in the FIDO Registry of Predefined Values [FIDORegistry] if the authenticator
supports multiple algorithms. Each value MUST be non-zero.

publicKeyAlgAndEncoding of type required unsigned short
The preferred public key format used by the authenticator during registration operations. Must be set to one of
the ALG_KEY constants defined in the FIDO Registry of Predefined Values [FIDORegistry]. Because this
information is not present in APIs related to authenticator discovery or policy, a FIDO server MUST be prepared to
accept and process any and all key representations defined for any public key algorithm it supports. This value
MUST be non-zero.

publicKeyAlgAndEncodings of type array of unsigned short
The list of public key formats supported by the authenticator during registration operations. Must be set to the
complete list of the supported ALG_KEY constants defined in the FIDO Registry of Predefined Values
[FIDORegistry] if the authenticator model supports multiple encodings. Because this information is not present in
APIs related to authenticator discovery or policy, a FIDO server MUST be prepared to accept and process any and
all key representations defined for any public key algorithm it supports. Each value MUST be non-zero.

attestationTypes of type array of required unsigned short
The supported attestation type(s). (e.g. ATTESTATION_BASIC_FULL(0x3E07),
ATTESTATION_BASIC_SURROGATE(0x3E08)).
See section 3.6.3 of FIDO Registry [FIDORegistry] for all available attestation formats

userVerificationDetails of type array of required VerificationMethodANDCombinations
A list of alternative VerificationMethodANDCombinations. Each of these entries is one alternative user
verification method. Each of these alternative user verification methods might itself be an "AND" combination of
multiple modalities.
All effectively available alternative user verification methods MUST be properly specified here. A user verification
method is considered effectively available if this method can be used to either:

enroll new verification reference data to one of the user verification methods

or

unlock the UAuth key directly after successful user verification

keyProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the KEY_PROTECTION constants in the FIDO Registry of
Predefined Values [FIDORegistry].
This value MUST be non-zero.

NOTE
FIDO UAF Authenticators

For verification purposes, the field SignatureAlgAndEncoding in the FIDO UAF authentication assertion
[UAFAuthnrCommands] should be used to determine the actual signature algorithm and encoding.

FIDO U2F Authenticators
FIDO U2F only supports one signature algorithm and encoding:
ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW [FIDORegistry].

NOTE
FIDO UAF Authenticators

For verification purposes, the field PublicKeyAlgAndEncoding in the FIDO UAF registration assertion
[UAFAuthnrCommands] should be used to determine the actual encoding of the public key.

FIDO U2F Authenticators
FIDO U2F only supports one public key encoding: ALG_KEY_ECC_X962_RAW [FIDORegistry].

NOTE

isKeyRestricted of type boolean
This entry is set to true, if the Uauth private key is restricted by the authenticator to only sign valid FIDO signature
assertions.
This entry is set to false, if the authenticator doesn't restrict the Uauth key to only sign valid FIDO signature
assertions. In this case, the calling application could potentially get any hash value signed by the authenticator.
If this field is missing, the assumed value is isKeyRestricted=true

.

isFreshUserVerificationRequired of type boolean
This entry is set to true, if Uauth key usage always requires a fresh user verification.
If this field is missing, the assumed value is isFreshUserVerificationRequired=true.
This entry is set to false, if the Uauth key can be used without requiring a fresh user verification, e.g. without any
additional user interaction, if the user was verified a (potentially configurable) caching time ago.
In the case of isFreshUserVerificationRequired=false, the FIDO server MUST verify the registration response and/or
authentication response and verify that the (maximum) caching time (sometimes also called "authTimeout") is
acceptable.
This entry solely refers to the user verification. In the case of transaction confirmation, the authenticator MUST
always ask the user to authorize the specific transaction.

matcherProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the MATCHER_PROTECTION constants in the FIDO Registry
of Predefined Values [FIDORegistry].
This value MUST be non-zero.

cryptoStrength of type unsigned short

The keyProtection specified here denotes the effective security of the attestation key and Uauth private
key and the effective trustworthiness of the attested attributes in the “sign assertion”. Effective security
means that key extraction or injecting malicious attested attributes is only possible if the specified
protection method is compromised. For example, if keyProtection=TEE is stated, it shall be impossible to
extract the attestation key or the Uauth private key or to inject any malicious attested attributes without
breaking the TEE.

NOTE
Note that only in the case of isKeyRestricted=true, the FIDO server can trust a signature counter or
transaction text to have been correctly processed/controlled by the authenticator.

NOTE
Note that in the case of isFreshUserVerificationRequired=false, the calling App could trigger use of the key
without user involvement. In this case it is the responsibility of the App to ask for user consent.

NOTE
If multiple matchers are implemented, then this value must reflect the weakest implementation of all
matchers.
The matcherProtection specified here denotes the effective security of the FIDO authenticator’s user
verification. This means that a false positive user verification implies breach of the stated method. For
example, if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key
when bypassing the user verification without breaking the TEE.

The authenticator's overall claimed cryptographic strength in bits (sometimes also called security strength or
security level). This is the minimum of the cryptographic strength of all involved cryptographic methods (e.g.
RNG, underlying hash, key wrapping algorithm, signing algorithm, attestation algorithm), e.g. see [FIPS180-4],
[FIPS186-4], [FIPS198-1], [SP800-38B], [SP800-38C], [SP800-38D], [SP800-38F], [SP800-90C], [SP800-90ar1],
[FIPS140-2] etc.
If this value is absent, the cryptographic strength is unknown. If the cryptographic strength of one of the involved
cryptographic methods is unknown the overall claimed cryptographic strength is also unknown.

operatingEnv of type DOMString
Description of the particular operating environment that is used for the Authenticator. These are specified in
[FIDORestrictedOperatingEnv].

attachmentHint of type required unsigned long
A 32-bit number representing the bit fields defined by the ATTACHMENT_HINT constants in the FIDO Registry of
Predefined Values [FIDORegistry].

isSecondFactorOnly of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some other
authentication method as a first factor (e.g. username+password).

tcDisplay of type required unsigned short
A 16-bit number representing a combination of the bit flags defined by the TRANSACTION_CONFIRMATION_DISPLAY
constants in the FIDO Registry of Predefined Values [FIDORegistry].
This value MUST be 0, if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString
Supported MIME content type [RFC2049] for the transaction confirmation display, such as text/plain or image/png.
This value MUST be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
A list of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative of supported
image characteristics for displaying a PNG image.
This list MUST be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero and
tcDisplayContentType is image/png.

attestationRootCertificates of type array of required DOMString
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is a valid trust anchor for this
authenticator model. Multiple certificates might be used for different batches of the same model. The array does
not represent a certificate chain, but only the trust anchor of that chain. A trust anchor can be a root certificate,
an intermediate CA certificate or even the attestation certificate itself.
Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value. Each element MUST be dedicated for authenticator attestation.

NOTE
The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set ATTACHMENT_HINT_EXTERNAL but not
ATTACHMENT_HINT_INTERNAL.

NOTE
The tcDisplay specified here denotes the effective security of the authenticator’s transaction confirmation
display. This means that only a breach of the stated method allows an attacker to inject transaction text to
be included in the signature assertion which hasn't been displayed and confirmed by the user.

NOTE

Either

1. the manufacturer attestation trust anchor

or

2. the trust anchor dedicated to a specific authenticator model

MUST be specified.
In the case (1), the trust anchor certificate might cover multiple authenticator models. In this case, it must be
possible to uniquely derive the authenticator model from the Attestation Certificate. When using AAID or
AAGUID, this can be achieved by either specifying the AAID or AAGUID in the attestation certificate using the
extension id-fido-gen-ce-aaid { 1 3 6 1 4 1 45724 1 1 1 } or id-fido-gen-ce-aaguid { 1 3 6 1 4 1 45724 1 1 4 } or -
when neither AAID nor AAGUID are defined - by using the attestationCertificateKeyIdentifier method.
In the case (2) this is not required as the trust anchor only covers a single authenticator model.
When supporting surrogate basic attestation only (see [UAFProtocol], section "Surrogate Basic Attestation"), no
attestation trust anchor is required/used. So this array MUST be empty in that case.

ecdaaTrustAnchors of type array of EcdaaTrustAnchor
A list of trust anchors used for ECDAA attestation. This entry MUST be present if and only if attestationType
includes ATTESTATION_ECDAA. The entries in attestationRootCertificates have no relevance for ECDAA
attestation. Each ecdaaTrustAnchor MUST be dedicated to a single authenticator model (e.g as identified by its
AAID/AAGUID).

icon of type DOMString
A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

supportedExtensions[] of type ExtensionDescriptor
List of extensions supported by the authenticator.

5. Metadata Statement Format
This section is non-normative.

NORMATIVE
A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary MetadataStatement.

5.1 UAF Example
Example of the metadata statement for an UAF authenticator with:

authenticatorVersion 2.
Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance rate of 0.002% and rate
limiting attempts for 30 seconds after 5 false trials.
Authenticator is embedded with the FIDO User device.
The authentication keys are protected by TEE and are restricted to sign valid FIDO sign assertions only.
The (fingerprint) matcher is implemented in TEE.
The Transaction Confirmation Display is implemented in a TEE.
The Transaction Confirmation Display supports display of "image/png" objects only.
Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color (=Color Type
2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) and no interlacing support

A certificate listed here is a trust anchor. It might be the actual certificate presented by the authenticator,
or it might be an issuing authority certificate from the vendor that the actual certificate in the authenticator
chains to.
In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain are
included in the registration assertion (see [UAFAuthnrCommands]).

(interlace method=0).
The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.
It supports the "UAFV1TLV" assertion scheme.
It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.
It uses the ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).
It only implements the ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).
It implements UAF protocol version (upv) 1.0 and 1.1.

EXAMPLE 1: MetadataStatement for UAF Authenticator
{
 "description": "FIDO Alliance Sample UAF Authenticator",
 "aaid": "1234#5678",
 "alternativeDescriptions": {
 "ru-RU": "Пример UAF аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple UAF authenticator de FIDO Alliance"
 },
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 0 },
 { "major": 1, "minor": 1 }
],
 "assertionScheme": "UAFV1TLV",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15879],
 "userVerificationDetails": [
 [{
 "userVerification": 2,
 "baDesc": {
 "selfAttestedFAR": 0.00002,
 "maxRetries": 5,
 "blockSlowdown": 30,
 "maxTemplates": 5
 }
 }]
],
 "keyProtection": 6,
 "isKeyRestricted": true,
 "matcherProtection": 2,
 "cryptoStrength": 128,
 "operatingEnv": "TEEs based on ARM TrustZone HW",
 "attachmentHint": 1,
 "isSecondFactorOnly": false,
 "tcDisplay": 5,
 "tcDisplayContentType": "image/png",
 "tcDisplayPNGCharacteristics": [{
 "width": 320,
 "height": 480,
 "bitDepth": 16,
 "colorType": 2,
 "compression": 0,
 "filter": 0,
 "interlace": 0
 }],
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8

Example of an User Verification Methods entry for an authenticator with:

Fingerprint based user verification method, with:
the ability for the user to enroll up to 5 fingers (reference data sets) with

a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01% (0.0001).
The fingerprint verification will be blocked after 5 unsuccessful attempts.

A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification method. Entering the
PIN into the authenticator will be required to re-activate fingerprint based user verification after it has been blocked.

5.2 U2F Example
Example of the metadata statement for an U2F authenticator with:

authenticatorVersion 2.
Touch based user presence check.
Authenticator is a USB pluggable hardware token.
The authentication keys are protected by a secure element.
The user presence check is implemented in the chip.
The Authentiator is a pure second factor authenticator.
It supports the "U2FV1BIN" assertion scheme.
It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.
It uses the ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).
It only implements the ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).
It implements U2F protocol version 1.0 only.

 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

EXAMPLE 2: User Verification Methods Entry
[
 [{ "userVerification": 2, "baDesc": { "selfAttestedFAR": 0.00002, "maxTemplates": 5,
 "maxRetries": 5, "blockSlowdown": 0} }],
 [{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } }]
]

EXAMPLE 3: MetadataStatement for U2F Authenticator
{
 "description": "FIDO Alliance Sample U2F Authenticator",
 "alternativeDescriptions": {
 "ru-RU": "Пример U2F аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple U2F authenticator de FIDO Alliance",
 "zh-CN": "฀฀FIDO Alliance฀฀฀U2F฀฀฀฀฀"
 },
 "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
 "protocolFamily": "u2f",
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 0 }
],
 "assertionScheme": "U2FV1BIN",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15879],
 "userVerificationDetails": [
 [{ "userVerification": 1 }]
],
 "keyProtection": 10,
 "matcherProtection": 4,
 "cryptoStrength": 128,
 "operatingEnv": "Secure Element (SE)",
 "attachmentHint": 2,
 "isSecondFactorOnly": true,
 "tcDisplay": 0,
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

5.3 FIDO2 Example
Example of the metadata statement for an FIDO2 authenticator with:

AAGUID is set to 0132d110-bf4e-4208-a403-ab4f5f12efe5.
authenticatorVersion is set to 2.
Touch based user presence check.
Authenticator is a USB pluggable hardware token.
The authentication keys are protected by a secure element.
The user presence check is implemented in the chip.
It supports the "FIDOV2" assertion scheme.
It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.
It uses the ALG_KEY_COSE public key format (0x104=260 decimal).
It only implements the ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).
It implements FIDO2 protocol version 1.0

EXAMPLE 4: MetadataStatement for FIDO2 Authenticator
{
 "description": "FIDO Alliance Sample FIDO2 Authenticator",
 "aaguid": "0132d110-bf4e-4208-a403-ab4f5f12efe5",
 "alternativeDescriptions": {
 "ru-RU": "Пример FIDO2 аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple FIDO2 authenticator de FIDO Alliance",
 "zh-CN": "฀฀FIDO Alliance฀฀฀FIDO2฀฀฀฀฀"
 },
 "protocolFamily": "fido2",
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 0 }
],
 "assertionScheme": "FIDOV2",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 260,
 "attestationTypes": [15879],
 "userVerificationDetails": [
 [{ "userVerification": 1 }]
],
 "keyProtection": 10,
 "matcherProtection": 4,
 "cryptoStrength": 128,
 "operatingEnv": "Secure Element (SE)",
 "attachmentHint": 2,
 "isSecondFactorOnly": false,
 "tcDisplay": 0,
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+

6. Additional Considerations
This section is non-normative.

6.1 Field updates and metadata
Metadata statements are intended to be stable once they have been published. When authenticators are updated in the
field, such updates are expected to improve the authenticator security (for example, improve FRR or FAR). The
authenticatorVersion must be updated if firmware updates fixing severe security issues (e.g. as reported previously) are
available.

NORMATIVE
Significant changes in authenticator functionality are not anticipated in firmware updates. For example, if an
authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a user verification
method, the vendor MUST assign a new authenticator model identifier (AAID/AAGUID/attestationCertificateKeyIdentifiers)
to this authenticator.

NORMATIVE
A single authenticator implementation could report itself as two "virtual" authenticators using different authenticator
model identifiers (AAIDs/AAGUIDs/attestationCertificateKeyIdentifiers). Such implementations MUST properly (i.e.
according to the security characteristics claimed in the metadata) protect UAuth keys and other sensitive data from the
other "virtual" authenticator - just as a normal authenticator would do.

 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

NOTE
The metadata statement is assumed to relate to all authenticators having the same authenticator model identifier
(AAID/AAGUID/attestationCertificateKeyIdentifiers).

NOTE
The FIDO Server is recommended to assume increased risk if the authenticatorVersion specified in the metadata
statement is newer (higher) than the one present in the authenticator.

NOTE
Authentication keys (UAuth.pub) registered for one authenticator model (e.g. as identified by

A. References
A.1 Normative references
[ECMA-262]

ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/
[FIDOBiometricsRequirements]

Meagan Karlsson. FIDO Biometrics Requirements. June 2017. Draft. URL:
https://drafts.fidoalliance.org/biometrics/requirements/latest/

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html

[FIDORestrictedOperatingEnv]
Laurence Lundblade; Meagan Karlsson. FIDO Authenticator Allowed Restricted Operating Environments List. August
2017. Draft. URL: https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-
allowed-restricted-operating-environments-list-v1.1-fd-20171108.html

[ISO19795-1]
ISO/IEC JTC 1/SC 37 Information Technology - Biometric peformance testing and reporting - Part 1: Principles and
framework. URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447

[RFC2049]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and
Examples (RFC 2049). November 1996. URL: http://www.ietf.org/rfc/rfc2049.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[RFC4122]
P. Leach. A Universally Unique IDentifier (UUID) URN Namespace. July 2005. URL: https://tools.ietf.org/html/rfc4122

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0.
Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-
20171128.html

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/

A.2 Informative references
[AndroidUnlockPattern]

Android Unlock Pattern Security Analysis. Published. URL: http://www.sinustrom.info/2012/05/21/android-unlock-
pattern-security-analysis/

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Review
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html

[FIDOKeyAttestation]
FIDO 2.0: Key attestation format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-
ps-20150904.html

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). March 2012. URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-

AAID/AAGUID/attestationCertificateKeyIdentifiers) cannot be used by authenticators reporting a different
authenticator model identifier (AAID/AAGUID/attestationCertificateKeyIdentifiers) - even when running on the same
hardware (see section "Authentication Response Processing Rules for FIDO Server" in [UAFProtocol]).

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://drafts.fidoalliance.org/biometrics/requirements/latest/
https://drafts.fidoalliance.org/biometrics/requirements/latest/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-allowed-restricted-operating-environments-list-v1.1-fd-20171108.html
https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-allowed-restricted-operating-environments-list-v1.1-fd-20171108.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

180-4.pdf
[FIPS186-4]

FIPS PUB 186-4: Digital Signature Standard (DSS). July 2013. URL:
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[FIPS198-1]
FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC). July 2008. URL:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[ISO3166]
ISO 3166: Codes for the representation of names of countries and their subdivisions – Part 1: Country codes.
November 2013. Published. URL: https://www.iso.org/standard/63545.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
http://www.itu.int/rec/T-REC-X.690-200811-I/en

[MoreTopWorstPasswords]
Mark Burnett. 10000 Top Passwords. URL: https://xato.net/passwords/more-top-worst-passwords/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C
Recommendation. URL: https://www.w3.org/TR/PNG/

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5646]
A. Phillips, Ed.; M. Davis, Ed.. Tags for Identifying Languages. September 2009. Best Current Practice. URL:
https://tools.ietf.org/html/rfc5646

[SP800-38B]
M. Dworkin. NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. May 2005. URL: http://dx.doi.org/10.6028/NIST.SP.800-38B

[SP800-38C]
M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. July 2007. URL: http://csrc.nist.gov/publications/nistpubs/800-
38C/SP800-38C_updated-July20_2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. November 2007 URL: https://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf

[SP800-38F]
M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-90C]
Elaine Barker; John Kelsey. NIST Special Publication 800-90C: Recommendation for Random Bit Generator (RBG)
Constructions. August 2012. URL: http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf

[SP800-90ar1]
Elaine Barker; John Kelsey. NIST Special Publication 800-90a: Recommendation for Random Number Generation
Using Deterministic Random Bit Generators. August 2012. URL: http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-
20171128.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

[iPhonePasscodes]
Daniel Amitay. Most Common iPhone Passcodes. URL: http://danielamitay.com/blog/2011/6/13/most-common-
iphone-passcodes

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://www.iso.org/standard/63545.html
https://www.iso.org/standard/63545.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

FIDO Metadata Service
FIDO Alliance Review Draft 02 July 2018
This version:

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
Previous version:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract
The FIDO Authenticator Metadata Specification defines so-called "Authenticator Metadata" statements. The metadata
statements contain the "Trust Anchor" required to validate the attestation object, and they also describe several other
important characteristics of the authenticator.
The metadata service described in this document defines a baseline method for relying parties to access the latest
metadata statements.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.
This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments
are welcome.
This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the
Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an
appropriate license for such use is available.
Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Scope
2.2 Detailed Architecture

3. Metadata Service Details
3.1 Metadata TOC Format

3.1.1 Metadata TOC Payload Entry dictionary
3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

3.1.2 BiometricStatusReport dictionary
3.1.2.1 Dictionary BiometricStatusReport Members

3.1.3 StatusReport dictionary
3.1.3.1 Dictionary StatusReport Members

3.1.4 AuthenticatorStatus enum
3.1.5 RogueListEntry dictionary

3.1.5.1 Dictionary RogueListEntry Members
3.1.6 Metadata TOC Payload dictionary

3.1.6.1 Dictionary MetadataTOCPayload Members
3.1.7 Metadata TOC

3.1.7.1 Examples
3.1.8 Metadata TOC object processing rules

4. Considerations
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “UAF-TLV”.
In formulas we use “|” to denote byte wise concatenation operations.
The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and
Filename Safe Alphabet" [RFC4648] without padding.
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members MUST NOT have a value of null.
Unless otherwise specified, if a WebIDL dictionary member is DOMString, it MUST NOT be empty.
Unless otherwise specified, if a WebIDL dictionary member is a List, it MUST NOT be an empty list.
UAF specific terminology used in this document is defined in [FIDOGlossary].
All diagrams, examples, notes in this specification are non-normative.

NOTE

1.1 Key Words
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.
[FIDOMetadataStatement] defines authenticator metadata statements.
These metadata statements contain the trust anchor required to verify the attestation object (more specifically the
KeyRegistrationData object), and they also describe several other important characteristics of the authenticator, including
supported authentication and registration assertion schemes, and key protection flags.
These characteristics can be used when defining policies about which authenticators are acceptable for registration or
authentication.
The metadata service described in this document defines a baseline method for relying parties to access the latest
metadata statements.

Fig. 1 FIDO Metadata Service Architecture Overview

2.1 Scope
This document describes the FIDO Metadata Service architecture in detail and it defines the structure and interface to
access this service. It also defines the flow of the metadata related messages and presents the rationale behind the
design choices.

2.2 Detailed Architecture
The metadata "table-of-contents" (TOC) file contains a list of metadata statements related to the authenticators known to
the FIDO Alliance (FIDO Authenticators).
The FIDO Server downloads the metadata TOC file from a well-known FIDO URL and caches it locally.

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members
are marked in the WebIDL definitions found in this document, as required. The keyword required has been introduced
by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which implements [WebIDL], then
you may remove the keyword required from your WebIDL and use other means to ensure those fields are present.

The FIDO Server verifies the integrity and authenticity of this metadata TOC file using the digital signature. It then
iterates through the individual entries and loads the metadata statements related to authenticator AAIDs relevant to the
relying party.
Individual metadata statements will be downloaded from the URL specified in the entry of the metadata TOC file, and
may be cached by the FIDO Server as required.
The integrity of the metadata statements will be verified by the FIDO Server using the hash value included in the related
entry of the metadata TOC file.

Fig. 2 FIDO Metadata Service Architecture

3. Metadata Service Details
This section is normative.

The relying party could also obtain metadata directly from authenticator vendors or other trusted sources.

NOTE
The single arrow indicates the direction of the network connection, the double arrow indicates the direction of the
data flow.

NOTE
The metadata TOC file is accessible at a well-known URL published by the FIDO Alliance.

NOTE
The relying party decides how frequently the metadata service is accessed to check for metadata TOC updates.

NOTE
The relying party can decide whether it wants to use the metadata service and whether or not it wants to accept
certain authenticators for registration or authentication.

3.1 Metadata TOC Format

3.1.1 Metadata TOC Payload Entry dictionary

Represents the MetadataTOCPayloadEntry
WebIDL

dictionary MetadataTOCPayloadEntry {
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 DOMString hash;
 DOMString url;
 BiometricStatusReport[] biometricStatusReports;
 required StatusReport[] statusReports;
 required DOMString timeOfLastStatusChange;
 DOMString rogueListURL;
 DOMString rogueListHash;
};

3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

aaid of type AAID
The AAID of the authenticator this metadata TOC payload entry relates to. See [UAFProtocol] for the definition
of the AAID structure. This field MUST be set if the authenticator implements FIDO UAF.

aaguid of type AAGUID
The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure. This
field MUST be set if the authenticator implements FIDO 2.

attestationCertificateKeyIdentifiers of type array of DOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value MUST be calculated
according to method 1 for computing the keyIdentifier as defined in [RFC5280] section 4.2.1.2. The hex string
MUST NOT contain any non-hex characters (e.g. spaces). All hex letters MUST be lower case. This field MUST be set
if neither aaid nor aaguid are set. Setting this field implies that the attestation certificate(s) are dedicated to a
single authenticator model.

hash of type DOMString
base64url(string[1..512])

NOTE
The metadata service makes the metadata TOC object (see Metadata TOC) accessible to FIDO Servers.
This object is a "table-of-contents" for metadata, as it includes the AAID, the download URL and the hash value of
the individual metadata statements. The TOC object contains one signature.

NOTE
FIDO UAF authenticators support AAID, but they don't support AAGUID.

NOTE
FIDO 2 authenticators support AAGUID, but they don't support AAID.

NOTE
FIDO U2F authenticators do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

The hash value computed over the base64url encoding of the UTF-8 representation of the JSON encoded
metadata statement available at url and as defined in [FIDOMetadataStatement]. The hash algorithm related to
the signature algorithm specified in the JWTHeader (see Metadata TOC) MUST be used.
If this field is missing, the metadata statement has not been published.

url of type DOMString
Uniform resource locator (URL) of the encoded metadata statement for this authenticator model (identified by
its AAID, AAGUID or attestationCertificateKeyIdentifier). This URL MUST point to the base64url encoding of the
UTF-8 representation of the JSON encoded metadata statement as defined in [FIDOMetadataStatement].
If this field is missing, the metadata statement has not been published.
encodedMetadataStatement = base64url(utf8(JSONMetadataStatement))

biometricStatusReports of type array of BiometricStatusReport
Status of the FIDO Biometric Certification of one or more biometric components of the Authenticator
[FIDOBiometricsRequirements].

statusReports of type array of required StatusReport
An array of status reports applicable to this authenticator.

timeOfLastStatusChange of type required DOMString
ISO-8601 formatted date since when the status report array was set to the current value.

rogueListURL of type DOMString
URL of a list of rogue (i.e. untrusted) individual authenticators.

rogueListHash of type DOMString
base64url(string[1..512])

The hash value computed over the Base64url encoding of the UTF-8 representation of the JSON encoded
rogueList available at rogueListURL (with type rogueListEntry[]). The hash algorithm related to the signature
algorithm specified in the JWTHeader (see Metadata TOC) MUST be used.
This hash value MUST be present and non-empty whenever rogueListURL is present.

NOTE
This method of base64url encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

NOTE
This method of the base64url encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

NOTE
This method of base64url-encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

EXAMPLE 1: UAF Metadata TOC Payload
{ "no": 1234, "nextUpdate": "2014-03-31",
 "entries": [
 { "aaid": "1234#5678",
 "hash": "kNqNpt4jJIq7NNoNSGH0swp5PhmKjVuqf5jyYNtxrNQ",
 "url": "https://fidoalliance.org/metadata/1234%x23abcd",
 "rogueListHash": "tQec9A_X7RdMZFzATfHnK38SKVkFhdFt9i3SC5VBxrU",
 "rogueListURL": "https://fidoalliance.org/metadata/1234%x23abcd.rl",
 "statusReports": [
 { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-04"}

3.1.2 BiometricStatusReport dictionary

WebIDL
dictionary BiometricStatusReport {
 required unsigned short certLevel;
 required unsigned long modality;
 DOMString effectiveDate;
 DOMString certificationDescriptor;
 DOMString certificateNumber;
 DOMString certificationPolicyVersion;
 DOMString certificationRequirementsVersion;
};

3.1.2.1 Dictionary BiometricStatusReport Members

certLevel of type required unsigned short
Achieved level of the biometric certification of this biometric component of the authenticator
[FIDOBiometricsRequirements].

modality of type required unsigned long
A single USER_VERIFY constant indicating the modality of the biometric component (see [FIDORegistry]), not a
bit flag combination. This value MUST be non-zero and this value MUST correspond to one or more entries in
field userVerificationDetails in the related Metadata Statement [FIDOMetadataStatement].

effectiveDate of type DOMString
ISO-8601 formatted date since when the certLevel achieved, if applicable. If no date is given, the status is
assumed to be effective while present.

],
 "timeOfLastStatusChange": "2014-01-04"
 },
 { "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
 "hash": "eF0W32QP17UO0XTLVkXMDx5yt_Gc8ilZBS3SC5VBxk0",
 "url": "https://authnr-vendor-a.com/metadata/9876%x234321",
 "statusReports": [
 { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-07"},
 { status: "UPDATE_AVAILABLE", effectiveDate: "2014-02-19",
 url: "https://example.com/update1234" }
],
 "timeOfLastStatusChange": "2014-02-19"
 }
]
}

NOTE
The character # is a reserved character and not allowed in URLs [RFC3986]. As a consequence it has been
replaced by its hex value %x23.
The authenticator vendors can decide to let the metadata service publish its metadata statements or to publish
metadata statements themselves. Authenticator vendors can restrict access to the metadata statements they
publish themselves.

NOTE
Contains the current BiometricStatusReport of one of the authenticator's biometric component.

NOTE
For example use USER_VERIFY_FINGERPRINT for the fingerprint based biometric component. In this case
the related Metadata Statement must also claim fingerprint as one of the user verification methods.

certificationDescriptor of type DOMString
Describes the externally visible aspects of the Biometric Certification evaluation.

certificateNumber of type DOMString
The unique identifier for the issued Biometric Certification.

certificationPolicyVersion of type DOMString
The version of the Biometric Certification Policy the implementation is Certified to, e.g. "1.0.0".

certificationRequirementsVersion of type DOMString
The version of the Biometric Requirements [FIDOBiometricsRequirements] the implementation is certified to,
e.g. "1.0.0".

3.1.3 StatusReport dictionary

The latest StatusReport entry MUST reflect the "current" status. For example, if the latest entry has status
USER_VERIFICATION_BYPASS, then it is recommended assuming an increased risk associated with all authenticators of this
AAID; if the latest entry has status UPDATE_AVAILABLE, then the update is intended to address at least all previous issues
reported in this StatusReport dictionary.

WebIDL
dictionary StatusReport {
 required AuthenticatorStatus status;
 DOMString effectiveDate;
 DOMString certificate;
 DOMString url;
 DOMString certificationDescriptor;
 DOMString certificateNumber;
 DOMString certificationPolicyVersion;
 DOMString certificationRequirementsVersion;
};

3.1.3.1 Dictionary StatusReport Members

status of type required AuthenticatorStatus
Status of the authenticator. Additional fields MAY be set depending on this value.

effectiveDate of type DOMString
ISO-8601 formatted date since when the status code was set, if applicable. If no date is given, the status is
assumed to be effective while present.

certificate of type DOMString
Base64-encoded [RFC4648] (not base64url!) DER [ITU-X690-2008] PKIX certificate value related to the
current status, if applicable.

url of type DOMString
HTTPS URL where additional information may be found related to the current status, if applicable.

NOTE
Contains an AuthenticatorStatus and additional data associated with it, if any.
New StatusReport entries will be added to report known issues present in firmware updates.

NOTE
As an example, this could be an Attestation Root Certificate (see [FIDOMetadataStatement]) related to a
set of compromised authenticators (ATTESTATION_KEY_COMPROMISE).

NOTE
For example a link to a web page describing an available firmware update in the case of status

certificationDescriptor of type DOMString
Describes the externally visible aspects of the Authenticator Certification evaluation.

certificateNumber of type DOMString
The unique identifier for the issued Certification.

certificationPolicyVersion of type DOMString
The version of the Authenticator Certification Policy the implementation is Certified to, e.g. "1.0.0".

certificationRequirementsVersion of type DOMString
The Document Version of the Authenticator Security Requirements (DV)
[FIDOAuthenticatorSecurityRequirements] the implementation is certified to, e.g. "1.2.0".

3.1.4 AuthenticatorStatus enum

This enumeration describes the status of an authenticator model as identified by its AAID and potentially some additional
information (such as a specific attestation key).

WebIDL
enum AuthenticatorStatus {
 "NOT_FIDO_CERTIFIED",
 "FIDO_CERTIFIED",
 "USER_VERIFICATION_BYPASS",
 "ATTESTATION_KEY_COMPROMISE",
 "USER_KEY_REMOTE_COMPROMISE",
 "USER_KEY_PHYSICAL_COMPROMISE",
 "UPDATE_AVAILABLE",
 "REVOKED",
 "SELF_ASSERTION_SUBMITTED",
 "FIDO_CERTIFIED_L1",
 "FIDO_CERTIFIED_L1plus",
 "FIDO_CERTIFIED_L2",
 "FIDO_CERTIFIED_L2plus",
 "FIDO_CERTIFIED_L3",
 "FIDO_CERTIFIED_L3plus"
};

Enumeration description
NOT_FIDO_CERTIFIED This authenticator is not FIDO certified.
FIDO_CERTIFIED This authenticator has passed FIDO functional certification. This certification

scheme is phased out and will be replaced by FIDO_CERTIFIED_L1.

USER_VERIFICATION_BYPASS
Indicates that malware is able to bypass the user verification. This means that the
authenticator could be used without the user's consent and potentially even
without the user's knowledge.

ATTESTATION_KEY_COMPROMISE
Indicates that an attestation key for this authenticator is known to be
compromised. Additional data should be supplied, including the key identifier and
the date of compromise, if known.

USER_KEY_REMOTE_COMPROMISE
This authenticator has identified weaknesses that allow registered keys to be
compromised and should not be trusted. This would include both, e.g. weak
entropy that causes predictable keys to be generated or side channels that allow
keys or signatures to be forged, guessed or extracted.

USER_KEY_PHYSICAL_COMPROMISE
This authenticator has known weaknesses in its key protection mechanism(s) that
allow user keys to be extracted by an adversary in physical possession of the
device.
A software or firmware update is available for the device. Additional data should
be supplied including a URL where users can obtain an update and the date the
update was published.
When this code is used, then the field authenticatorVersion in the metadata
Statement [FIDOMetadataStatement] MUST be updated, if the update fixes severe
security issues, e.g. the ones reported by preceding StatusReport entries with

UPDATE_AVAILABLE, or a link to a description of an identified issue in the case of status
USER_VERIFICATION_BYPASS.

UPDATE_AVAILABLE status code USER_VERIFICATION_BYPASS, ATTESTATION_KEY_COMPROMISE,
USER_KEY_REMOTE_COMPROMISE, USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

REVOKED
The FIDO Alliance has determined that this authenticator should not be trusted for
any reason, for example if it is known to be a fraudulent product or contain a
deliberate backdoor.

SELF_ASSERTION_SUBMITTED
The authenticator vendor has completed and submitted the self-certification
checklist to the FIDO Alliance. If this completed checklist is publicly available, the
URL will be specified in StatusReport.url.

FIDO_CERTIFIED_L1 The authenticator has passed FIDO Authenticator certification at level 1. This
level is the more strict successor of FIDO_CERTIFIED.

FIDO_CERTIFIED_L1plus The authenticator has passed FIDO Authenticator certification at level 1+. This
level is the more than level 1.

FIDO_CERTIFIED_L2 The authenticator has passed FIDO Authenticator certification at level 2. This
level is more strict than level 1+.

FIDO_CERTIFIED_L2plus The authenticator has passed FIDO Authenticator certification at level 2+. This
level is more strict than level 2.

FIDO_CERTIFIED_L3 The authenticator has passed FIDO Authenticator certification at level 3. This
level is more strict than level 2+.

FIDO_CERTIFIED_L3plus The authenticator has passed FIDO Authenticator certification at level 3+. This
level is more strict than level 3.

More values might be added in the future. FIDO Servers MUST silently ignore all unknown AuthenticatorStatus values.

3.1.5 RogueListEntry dictionary

WebIDL
dictionary RogueListEntry {
 required DOMString sk;
 required DOMString date;
};

3.1.5.1 Dictionary RogueListEntry Members

sk of type required DOMString
Base64url encoding of the rogue authenticator's secret key (sk value, see [FIDOEcdaaAlgorithm], section
ECDAA Attestation).

date of type required DOMString

NOTE
Relying parties might want to inform users about available firmware
updates.

NOTE
Contains a list of individual authenticators known to be rogue.
New RogueListEntry entries will be added to report new individual authenticators known to be rogue.
Old RogueListEntry entries will be removed if the individual authenticator is known to not be rogue any longer.

NOTE
In order to revoke an individual authenticator, its secret key (sk) must be known.

ISO-8601 formatted date since when this entry is effective.

3.1.6 Metadata TOC Payload dictionary

Represents the MetadataTOCPayload
WebIDL

dictionary MetadataTOCPayload {
 DOMString legalHeader;
 required Number no;
 required DOMString nextUpdate;
 required MetadataTOCPayloadEntry[] entries;
};

3.1.6.1 Dictionary MetadataTOCPayload Members

legalHeader of type DOMString
The legalHeader, if present, contains a legal guide for accessing and using metadata, which itself MAY contain
URL(s) pointing to further information, such as a full Terms and Conditions statement.

no of type required Number
The serial number of this UAF Metadata TOC Payload. Serial numbers MUST be consecutive and strictly
monotonic, i.e. the successor TOC will have a no value exactly incremented by one.

nextUpdate of type required DOMString
ISO-8601 formatted date when the next update will be provided at latest.

entries of type array of required MetadataTOCPayloadEntry
List of zero or more MetadataTOCPayloadEntry objects.

3.1.7 Metadata TOC

The metadata table of contents (TOC) is a JSON Web Token (see [JWT] and [JWS]).
It consists of three elements:

The base64url encoding, without padding, of the UTF-8 encoded JWT Header (see example below),
the base64url encoding, without padding, of the UTF-8 encoded UAF Metadata TOC Payload (see example at the
beginning of section Metadata TOC Format),
and the base64url-encoded, also without padding, JWS Signature [JWS] computed over the to-be-signed payload
using the Metadata TOC signing key, i.e.
tbsPayload = EncodedJWTHeader | "." | EncodedMetadataTOCPayload

All three elements of the TOC are concatenated by a period ("."):
MetadataTOC = EncodedJWTHeader | "." | EncodedMetadataTOCPayload | "." | EncodedJWSSignature

The hash algorithm related to the signing algorithm specified in the JWT Header (e.g. SHA256 in the case of "ES256")
MUST also be used to compute the hash of the metadata statements (see section Metadata TOC Payload Entry
Dictionary).

3.1.7.1 Examples

EXAMPLE 2: RogueListEntry[] example
[
 { "sk": "MO-oaqbeJSSayzXaDUhh9LMKeT4Zio1bqn6W8kDaUfM",
 "date": "2016-06-07"},
 { "sk": "k96Npt4jJIq7NNoNSGH0swp5PhU6jVuyf5jyYNtxrNQ",
 "date": "2016-06-09"},
]

This section is non-normative.

EXAMPLE 3: Encoded Metadata Statement
eyAiQUFJRCI6ICIxMjM0IzU2NzgiLA0KICAiQXR0ZXN0YXRpb25Sb290Q2VydGlmaWNhdGUiOiAi
TUlJQ1BUQ0NBZU9nQXdJQkFnSUpBT3VleHZVM095MndNQW9HQ0NxR1NNNDlCQU1DTUhzeElEQWVC
Z05WQkFNTQ0KRjFOaGJYQnNaU0JCZEhSbGMzUmhkR2x2YmlCU2IyOTBNUll3RkFZRFZRUUtEQTFH
U1VSUElFRnNiR2xoYm1ObA0KTVJFd0R3WURWUVFMREFoVlFVWWdWRmRITERFU01CQUdBMVVFQnd3
SlVHRnNieUJCYkhSdk1Rc3dDUVlEVlFRSQ0KREFKRFFURUxNQWtHQTFVRUJoTUNWVk13SGhjTk1U
UXdOakU0TVRNek16TXlXaGNOTkRFeE1UQXpNVE16TXpNeQ0KV2pCN01TQXdIZ1lEVlFRRERCZFRZ
VzF3YkdVZ1FYUjBaWE4wWVhScGIyNGdVbTl2ZERFV01CUUdBMVVFQ2d3Tg0KUmtsRVR5QkJiR3hw
WVc1alpURVJNQThHQTFVRUN3d0lWVUZHSUZSWFJ5d3hFakFRQmdOVkJBY01DVkJoYkc4Zw0KUVd4
MGJ6RUxNQWtHQTFVRUNBd0NRMEV4Q3pBSkJnTlZCQVlUQWxWVE1Ga3dFd1lIS29aSXpqMENBUVlJ
S29aSQ0KemowREFRY0RRZ0FFSDhodjJEMEhYYTU5L0JtcFE3UlplaEwvRk1HekZkMVFCZzl2QVVw
T1ozYWpudVE5NFBSNw0KYU16SDMzblVTQnI4ZkhZRHJxT0JiNThweEdxSEpSeVgvNk5RTUU0d0hR
WURWUjBPQkJZRUZQb0hBM0NMaHhGYg0KQzBJdDd6RTR3OGhrNUVKL01COEdBMVVkSXdRWU1CYUFG
UG9IQTNDTGh4RmJDMEl0N3pFNHc4aGs1RUovTUF3Rw0KQTFVZEV3UUZNQU1CQWY4d0NnWUlLb1pJ
emowRUF3SURTQUF3UlFJaEFKMDZRU1h0OWloSWJFS1lLSWpzUGtyaQ0KVmRMSWd0ZnNiRFN1N0Vy
SmZ6cjRBaUJxb1lDWmYwK3pJNTVhUWVBSGpJekE5WG02M3JydUF4Qlo5cHM5ejJYTg0KbFE9PSIs
DQogICJEZXNjcmlwdGlvbiI6ICJGSURPIEFsbGlhbmNlIFNhbXBsZSBVQUYgQXV0aGVudGljYXRv
ciIsDQogICJVc2VyVmVyaWZpY2F0aW9uTWV0aG9kcyI6IDIsDQogICJWYWxpZEF0dGFjaG1lbnRU
eXBlcyI6IDEsDQogICJLZXlQcm90ZWN0aW9uIjogNiwNCiAgIk1hdGNoZXJQcm90ZWN0aW9uIjog
MiwNCiAgIlNlY3VyZURpc3BsYXkiOiA0LA0KICAiU2VjdXJlRGlzcGxheUNvbnRlbnRUeXBlcyI6
IFsiaW1hZ2UvcG5nIl0sDQogICJTZWN1cmVEaXNwbGF5UE5HQ2hhcmFjdGVyaXN0aWNzIjogW1sw
LDAsMSw2NCwwLDAsMSwyMjQsMTYsMiwwLDAsMF1dLA0KICAiaXNTZWNvbmRGYWN0b3JPbmx5Ijog
ImZhbHNlIiwNCiAgIkljb24iOiAiZGF0YTppbWFnZS9wbmc7YmFzZTY0LGlWQk9SdzBLR2dvQUFB
QU5TVWhFVWdBQUFFOEFBQUF2Q0FZQUFBQ2l3SmZjQUFBQUFYTlNSMElBcnM0YzZRQUFBQVJuUVUx
QkFBQ3gNCmp3djhZUVVBQUFBSmNFaFpjd0FBRHNNQUFBN0RBY2R2cUdRQUFBYWhTVVJCVkdoRDda
cjVieFJsR01mOUt6VEI4QU0vWUVoRTJXN3ANClFaY1dLS0JjbFNwSEFUbEVMQVJFN2tORUNDQTNG
a1dLMENLS1NDRklzS0JjZ1ZDRFdHTkVTZEFZaWR3Z2dnSkJpUmlNaEZjLzR3eTgNCjg4NHp1OU5k
bG5HVGZaSlAybjNuTysrODg5MzNmdmVCQngrUHFDekprVFV2QmJMbXBVRFd2QlRJbXBjQ1NadlhM
Q2RYOVIwNVNrMTkNCmJiNWF0ZjU5OWZHKy9lckE1NDFxNDdhUDFMTFZhOVNJeVZOVWk4SWk4ZDVr
R1RzaTMwTkZ2N2FpOW43UVpQTXdiZHlzMmVyVTJYTXENClVkeTgrWmNhTm1HaW1FOHlYTjNSVWQz
YTE4bkYwZlVsb3ZaKzBDVHpXcGQyVmorZU9tMWJFeXk2RHg0aTVwVU1HV3ZlbzUwNnEyMjcNCmR0
dVdCSXVmZnI2b1dwVjBGUE5MaG93MTc1MU5tMjFMdlBIM3JWdFdqZno2NkxmcWw4dFg3RlJsOVlG
U1hzbVNzZWI5Y2VPR2JZazcNCk1OVWNHUGc4WnNiTWU5cmZRVWFhVi9KTVg5c3FkekRDU3ZwMGta
SG1UWmc5eDdiTEhjTW5UaGIxNmVKK21WZlFxOHlhVVpRTkc2NGkNClhaKzAva3E2dU9aRk8wUXRh
dGRXS2ZYblJROTlCajkxUjVPSUZuazU0ak4wbWtVaXFsTzNYRFcrTWwrOThtS0I2dFc3cldwWmNQ
YysNCjB6ZzR0THJZbFVjODZFNmVHRGpJTXViVnBjdXNlYXJmZ0lZR1JrNmJyaFpWci9KY0h6b29M
NzU1MGplZExFeG9wV2NBcGkyWlVxaHUNCjdKTHZyVnNRVTgxemt6T1BlZW1NUll2VnVRc1g3UGJp
RFFZNUp2Wm9uZnRLKzFWWThIOXV0eDUzMGgwb2Iram1SWXFqNm91YVl2RWUNCm5XL1dsWWpwOGN3
Yk1tNjgydFB3cVcxUjR0ai8yU0gxM0lSSllsNG1vWnZYcGlTcURyN2RYdFFIeGEvUEszLytCV3NL
MWRUZ0h1NlYNCjh0UUozYndGa3dwRnJVT1E1MHMxcjNsZXZtOHpaY3ExNytCQmF3N0s4bEVLNXF6
a1llYXJrOUE4cDdQM0d6REsrbmQzRFFvdys2VUMNCjhTVk44Mml1djM4aW03TnRhWHRWMUNWcTZS
Z3c0cGtzbWJkaTNidTJEZTdZZmFCQnhjcWZ2cVByVWpGUU5UUTIybGZkVVZWVDY4clQNCkpLRjVE
blNtVWpnZHFnNG1TUzlwbXNmREpSM0c2VG9IMGlXOWFWN0xXTEhZWEtsbFREdDBMVEF0a1lJYWFt
cDFRalZ2Kyt1eUdVeFYNCmRKMEROVlhTbStiMXFSeHBsODRkZGZYMUxwMU8vZDY5dHNvZDB2czVo
R3JlOXh1OG8rZnBMUjFjR2hOVEQ2WjU3QzlLTVdYZWZKZE8NClo5NGJiOW9xZDFST25TN3FJVFR6
SGltTXFpdmJPM2cwRGRWeWszV1FCaEJ6dEszNVlLTmRPbmM4TzNhY1M2ZkRaRmdLYVhMc0VKcDUN
CnJkcmxpQnFwODljSmNzL203VHZzMHJrakdmTjRiMGtQb1puM1VKdUlPcm5aMjJ5UDFmbXZVeCtP
NWdTcWViVjFtK3pTdVlOVmhxN1QNCldiRGlMVnZsanBsTGxvcDZDTFhQKzJxdHZHTElMLzF2aW1J
U2RNQmd6U29GWnl1NlRxZCtqenhnc1BhVjlCQ3FlZS9OallrNnY2bEsNCjljd2lVYy9TVHRmMUhE
cE0zYjU5Mnk3aDNUaHg1b3pLNjlITHBZV3VBd2FxUzVjdjI2cTdjZWI4ZWZWWWFSZVAzaUZVOHpq
MWtuU3cNClpYSE1tbkNqWTBPZ2FsbzdVUWZTQ00zcVFRcjJIL1hGUDdzc1h4NDVZbDkxQnllQ2Vw
NG1vWm9IKzFmRzN4RDR0VDd4OGt3eWo4bncNCmI5ZXYyNlYwQjZkKzdINHpLdnVkQUg1MzdGanF5
ek9IZEpuSEV1em1YcS9XanhPYnZOTWJ2N25oeXdzWDJhVnNXdEM4KzQ4YUxlYXANCkU3cDV3S1pp
MEEyQVFSVjVudlI0RSt1SmMrYjYxa0FwcUlueEJnbWQvNFY1UVAvbXQxOEhEQzdzUkhmdG1ldTVs
bWhWMHJuL0FMWDINCjMyYnFkNEJGbkR4N1ZpMWNXUzJ1ZmYwSWJCNDdxZXh4bVVqOVF1dFlqdXBk
M3RZRDZhYldCQk1yaCthcE5iT0tyTkYxK3VnQ2E0cmkNClhHZndNUFB0VmlhdmhVM1lNT0FBbnVV
Yi9SMDdMMHlPU2VPYWRFODhBcHNYRkdmZjMweW5obEpnTTUxQ1U2dk45RXpnbnB2SEJGVXkNCmlW
cmFlUGl3SjUzREY1WlRabm9tRU5nODVrTlVkMm9KaTJXcHI0T21ta2ZONHg0ekhmaVZGYzhEdjhO
enVoTnFPaWRpbEd2QTZER3UNCmVad083OEFBUW42Y2lFazYrcnc1VmN2anZxTkRZUE9vSVV3YUtT
aHJ4QXVYTGxrSDRhWXVHZk1ZRGMxMFdGNVRhMzFoUEpPZmNVaHINClUvSmxJTmk2YzZlbFJZZEJw
bzYrK1lmang2MWxHTmZSbTRNRDVySjFqM0ZvR0huakRTQk5hcllVZ01MeU1zektwYjd0WHBvSGZQ
czgNCmgzV3AxTHpOZk5rNTRYeEMxd0RHVW1ZelhZZWZoNnovY0t0Vm00RUJ4YTlWUUdEellyM0xy
VU1SakhFS2trN3phRktZUUEyaEdRVTENCnorODVORldwWERya3ozdngxMEdxeFE2QnplTmJvQms1
bjhrNG5lYlJoK2sxaFdmeFRGMEQxRXlXVXM1bnYrZGdRcUtheHp1Q2RFMGkNCnNIbDAyTlE4YWgw
bVhyMTJMYTNtMGY5d2lrOSt3TE5UTVkvODZNUG84eWkzMU9meG1UNlBXb3FHOStEWnVrWW5hNTZt
U1p0NVdXU3kNCjVxVkExcndVeUpxWEFsbnpraWFpL2dIU0Q3UmtUeWlob2dBQUFBQkpSVTVFcmtK
Z2dnPT0iLA0KICAiQXNzZXJ0aW9uU2NoZW1lIjogIlVBRlYxVExWIiwNCiAgIkF1dGhlbnRpY2F0
aW9uQWxnb3JpdGhtIjogMSwNCiAgIkF0dGVzdGF0aW9uVHlwZXMiOiBbMTYzOTFdLA0KICAiVVBW
IjogW1sxLDBdXQ0KfQ0K

EXAMPLE 4: JWT Header

In order to produce the tbsPayload, we first need the base64url-encoded (without padding) JWT Header:

then we have to append a period (".") and the base64url encoding of the EncodedMetadataTOCPayload (taken from the
example in section Metadata TOC Format):

and finally we have to append another period (".") followed by the base64url-encoded signature.

The signature in the example above was computed with the following ECDSA key

3.1.8 Metadata TOC object processing rules

{"typ":"JWT",
 "alg":"ES256"
 "x5t#S256":"cjGWIhDSkz7Jk6d7SnIDiYq3TN-XT_AtLePx7Hy53mg"}

EXAMPLE 5: Encoded JWT Header
eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ

EXAMPLE 6: tbsPayload
eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo

EXAMPLE 7: JWT
eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo.
AP-qoJ3VPzj7L6lCE1UzHzJYQnszFQ8d2hJz51sPASgyABK5VXOFnAHzBTQRRkgwGqULy6PtTyUV
zKxM0HrvoyZq

NOTE
The line breaks are for display purposes only.

EXAMPLE 8: ECDSA Key used for signature computation
x: d4166ba8843d1731813f46f1af32174b5c2f6013831fb16f12c9c0b18af3a9b4
y: 861bc2f803a2241f4939bd0d8ecd34e468e42f7fdccd424edb1c3ce7c4dd04e
d: 3744c426764f331f153e182d24f133190b6393cea480a8eec1c722fce161fe2d

The FIDO Server MUST follow these processing rules:

1. The FIDO Server MUST be able to download the latest metadata TOC object from the well-known URL, when
appropriate. The nextUpdate field of the Metadata TOC specifies a date when the download SHOULD occur at latest.

2. If the x5u attribute is present in the JWT Header, then:
1. The FIDO Server MUST verify that the URL specified by the x5u attribute has the same web-origin as the URL

used to download the metadata TOC from. The FIDO Server SHOULD ignore the file if the web-origin differs (in
order to prevent loading objects from arbitrary sites).

2. The FIDO Server MUST download the certificate (chain) from the URL specified by the x5u attribute [JWS]. The
certificate chain MUST be verified to properly chain to the metadata TOC signing trust anchor according to
[RFC5280]. All certificates in the chain MUST be checked for revocation according to [RFC5280].

3. The FIDO Server SHOULD ignore the file if the chain cannot be verified or if one of the chain certificates is
revoked.

3. If the x5u attribute is missing, the chain should be retrieved from the x5c attribute. If that attribute is missing as well,
Metadata TOC signing trust anchor is considered the TOC signing certificate chain.

4. Verify the signature of the Metadata TOC object using the TOC signing certificate chain (as determined by the
steps above). The FIDO Server SHOULD ignore the file if the signature is invalid. It SHOULD also ignore the file if its
number (no) is less or equal to the number of the last Metadata TOC object cached locally.

5. Write the verified object to a local cache as required.
6. Iterate through the individual entries (of type MetadataTOCPayloadEntry). For each entry:

1. Ignore the entry if the AAID, AAGUID or attestationCertificateKeyIdentifiers is not relevant to the relying party
(e.g. not acceptable by any policy)

2. Download the metadata statement from the URL specified by the field url. Some authenticator vendors might
require authentication in order to provide access to the data. Conforming FIDO Servers SHOULD support the
HTTP Basic, and HTTP Digest authentication schemes, as defined in [RFC2617].

3. Check whether the status report of the authenticator model has changed compared to the cached entry by
looking at the fields timeOfLastStatusChange and statusReport. Update the status of the cached entry. It is up to the
relying party to specify behavior for authenticators with status reports that indicate a lack of certification, or
known security issues. However, the status REVOKED indicates significant security issues related to such
authenticators.

4. Compute the hash value of the (base64url encoding without padding of the UTF-8 encoded) metadata
statement downloaded from the URL and verify the hash value to the hash specified in the field hash of the
metadata TOC object. Ignore the downloaded metadata statement if the hash value doesn't match.

5. Update the cached metadata statement according to the dowloaded one.

4. Considerations
This section is non-normative.
This section describes the key considerations for designing this metadata service.
Need for Authenticator Metadata When defining policies for acceptable authenticators, it is often better to describe the
required authenticator characteristics in a generic way than to list individual authenticator AAIDs. The metadata
statements provide such information. Authenticator metadata also provides the trust anchor required to verify attestation
objects.
The metadata service provides a standardized method to access such metadata statements.
Integrity and Authenticity Metadata statements include information relevant for the security. Some business verticals
might even have the need to document authenticator policies and trust anchors used for verifying attestation objects for
auditing purposes.

NOTE
Authenticators with an unacceptable status should be marked accordingly. This information is required
for building registration and authentication policies included in the registration request and the
authentication request [UAFProtocol].

It is important to have a strong method to verify and proof integrity and authenticity and the freshness of metadata
statements. We are using a single digital signature to protect the integrity and authenticity of the Metadata TOC object
and we protect the integrity and authenticity of the individual metadata statements by including their cryptographic hash
values into the Metadata TOC object. This allows for flexible distribution of the metadata statements and the Metadata
TOC object using standard content distribution networks.
Organizational Impact Authenticator vendors can delegate the publication of metadata statements to the metadata
service in its entirety. Even if authenticator vendors choose to publish metadata statements themselves, the effort is very
limited as the metadata statement can be published like a normal document on a website. The FIDO Alliance has control
over the FIDO certification process and receives the metadata as part of that process anyway. With this metadata
service, the list of known authenticators needs to be updated, signed and published regularly. A single signature needs
to be generated in order to protect the integrity and authenticity of the metadata TOC object.
Performance Impact Metadata TOC objects and metadata statements can be cached by the FIDO Server.
The update policy can be specified by the relying party.
The metadata TOC object includes a date for the next scheduled update. As a result there is no additional impact to the
FIDO Server during FIDO Authentication or FIDO Registration operations.
Updating the Metadata TOC object and metadata statements can be performed asynchronously. This reduces the
availability requirements for the metadata service and the load for the FIDO Server.
The metadata TOC object itself is relatively small as it does not contain the individual metadata statements. So
downloading the metadata TOC object does not generate excessive data traffic.
Individual metadata statements are expected to change less frequently than the metadata TOC object. Only the modified
metadata statements need be downloaded by the FIDO Server.
Non-public Metadata Statements Some authenticator vendors might want to provide access to metadata statements
only to their subscribed customers.
They can publish the metadata statements on access protected URLs. The access URL and the cryptographic hash of
the metadata statement is included in the metadata TOC object.
High Security Environments Some high security environments might only trust internal policy authorities. FIDO Servers
in such environments could be restricted to use metadata TOC objects from a proprietary trusted source only. The
metadata service is the baseline for most relying parties.
Extended Authenticator Information Some relying parties might want additional information about authenticators
before accepting them. The policy configuration is under control of the relying party, so it is possible to only accept
authenticators for which additional data is available and meets the requirements.

A. References
A.1 Normative references
[FIDOAuthenticatorSecurityRequirements]

Rolf Lindemann; Dr. Joshua E. Hill; Douglas Biggs. FIDO Authenticator Security Requirements. August 2017. Draft.
URL: https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-security-
requirements-v1.1-fd-20171108.html

[FIDOBiometricsRequirements]
Meagan Karlsson. FIDO Biometrics Requirements. June 2017. Draft. URL:
https://drafts.fidoalliance.org/biometrics/requirements/latest/

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-statement-v2.0-rd-20180702.html

[JWS]
M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS). May 2015. RFC. URL:
https://tools.ietf.org/html/rfc7515

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. RFC. URL:
https://tools.ietf.org/html/rfc7519

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:

https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-security-requirements-v1.1-fd-20171108.html
https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-security-requirements-v1.1-fd-20171108.html
https://drafts.fidoalliance.org/biometrics/requirements/latest/
https://drafts.fidoalliance.org/biometrics/requirements/latest/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-statement-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-statement-v2.0-rd-20180702.html
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://www.ietf.org/rfc/rfc4648.txt

http://www.ietf.org/rfc/rfc4648.txt
[RFC5280]

D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/

A.2 Informative references
[FIDOEcdaaAlgorithm]

R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Review
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html

[FIDOKeyAttestation]
FIDO 2.0: Key attestation format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-
v2.0-ps-20150904.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC2617]
J. Franks; P. Hallam-Baker; J. Hostetler; S. Lawrence; P. Leach; A. Luotonen; L. Stewart. HTTP Authentication:
Basic and Digest Access Authentication. June 1999. Draft Standard. URL: https://tools.ietf.org/html/rfc2617

[RFC3986]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax. January 2005. Internet
Standard. URL: https://tools.ietf.org/html/rfc3986

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0.
Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-
20171128.html

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

FIDO ECDAA Algorithm
FIDO Alliance Review Draft 02 July 2018
This version:

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
Previous version:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Jan Camenisch, IBM
Manu Drijvers, IBM
Alec Edgington, Trustonic
Anja Lehmann, IBM
Rainer Urian, Infineon

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract
The FIDO Basic Attestation scheme uses attestation "group" keys shared across a set of authenticators with identical characteristics in order to
preserve privacy by avoiding the introduction of global correlation handles. If such an attestation key is extracted from one single authenticator, it is
possible to create a "fake" authenticator using the same key and hence indistinguishable from the original authenticators by the relying party. Removing
trust for registering new authenticators with the related key would affect the entire set of authenticators sharing the same "group" key. Depending on the
number of authenticators, this risk might be unacceptable high.
This is especially relevant when the attestation key is primarily protected against malware attacks as opposed to targeted physical attacks.
An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA [TPMv1-2-Part1]. Translated to FIDO, this approach
would require one Privacy-CA interaction for each Uauth key. This means relatively high load and high availability requirements for the Privacy-CA.
Additionally the Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This might make the Privacy-CA
an interesting attack target.
Another alternative is the Direct Anonymous Attestation [BriCamChe2004-DAA]. Direct Anonymous Attestation is a cryptographic scheme combining
privacy with security. It uses the authenticator specific secret once to communicate with a single DAA Issuer and uses the resulting DAA credential in
the DAA-Sign protocol with each relying party. The DAA scheme has been adopted by the Trusted Computing Group for TPM v1.2 [TPMv1-2-Part1].
In this document, we specify the use of an improved DAA scheme [FIDO-DAA-Security-Proof] based on elliptic curves and bilinear pairings largely
compatible with [CheLi2013-ECDAA] called ECDAA. This scheme provides significantly improved performance compared with the original DAA and
basic building blocks for its implementation are part of the TPMv2 specification [TPMv2-Part1].
The improvements over [CheLi2013-ECDAA] mainly consist of security fixes (see [ANZ-2013] and [XYZF-2014]) when splitting the sign operation into
two parts.
This specification includes the fixes of the issue regarding (1) the Diffie-Hellman oracle w.r.t. the secret key of the TPM and (2) regarding the potential
privacy violations by fraudulent TPMs as proposed in [CCDLNU2017-DAA].

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.
This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO Alliance Proposed Standard. If you
wish to make comments regarding this document, please Contact Us. All comments are welcome.
This is a Review Draft Specification and is not intended to be a basis for any implementations as the Specification may change. Permission is
hereby granted to use the Specification solely for the purpose of reviewing the Specification. No rights are granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether
an appropriate license for such use is available.

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:jca@zurich.ibm.com
https://www.ibm.com/
mailto:mdr@zurich.ibm.com
https://www.ibm.com/
mailto:alec.edgington@trustonic.com
https://www.trustonic.com/
mailto:anj@zurich.ibm.com
https://www.ibm.com/
mailto:rainer.urian@infineon.com
https://www.infineon.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.
THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Notation

1.1 Conformance
2. Overview

2.1 Scope
2.2 Architecture Overview

3. FIDO ECDAA Attestation
3.1 Object Encodings

3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)
3.1.2 Encoding ECPoint values as byte strings (ECPointToB)
3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

3.2 Global ECDAA System Parameters
3.3 Issuer Specific ECDAA Parameters
3.4 ECDAA-Join

3.4.1 ECDAA-Join Algorithm
3.4.2 ECDAA-Join Split between Authenticator and ASM
3.4.3 ECDAA-Join Split between TPM and ASM

3.5 ECDAA-Sign
3.5.1 ECDAA-Sign Algorithm
3.5.2 ECDAA-Sign Split between Authenticator and ASM
3.5.3 ECDAA-Sign Split between TPM and ASM

3.6 ECDAA-Verify Operation
4. FIDO ECDAA Object Formats and Algorithm Details

4.1 Supported Curves for ECDAA
4.2 ECDAA Algorithm Names
4.3 ecdaaSignature object

5. Considerations
5.1 Algorithms and Key Sizes
5.2 Indicating the Authenticator Model
5.3 Revocation
5.4 Pairing Algorithm
5.5 Performance
5.6 Binary Concatentation
5.7 IANA Considerations

A. References
A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “ED256”.
In formulas we use “|” to denote byte wise concatenation operations.

X = P denotes scalar multiplication (with scalar x) of a (elliptic) curve point P.
RAND(x) denotes generation of a random number between 0 and x-1.
RAND(G) denotes generation of a random number belonging to Group G.
Specific terminology used in this document is defined in [FIDOGlossary].
The type BigNumber denotes an arbitrary length integer value.
The type ECPoint denotes an elliptic curve point with its affine coordinates x and y.

The type ECPoint2 denotes a point on the sextic twist of a BN elliptic curve over F(q). The ECPoint2 has two affine coordinates each having two
components of type BigNumber

x

2

1.1 Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative.
Everything else in this specification is normative.
The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this specification are to be interpreted as described in
[RFC2119].

2. Overview
This section is non-normative.
FIDO uses the concept of attestation to provide a cryptographic proof of the authenticator [FIDOGlossary] model to the relying party. When the
authenticator is registered to the relying party (RP), it generates a new authentication key pair and includes the public key in the attestation message
(also known as key registration data object, KRD). When using the ECDAA algorithm, the KRD object is signed using 3.5 ECDAA-Sign.
For privacy reasons, the authentication key pair is dedicated to one RP (to an application identifier AppID [FIDOGlossary] to be more specific).
Consequently the attestation method needs to provide the same level of unlinkability. This is the reason why the FIDO ECDAA Algorithm doesn't use a
basename (bsn) often found in other direct anonymous attestation algorithms, e.g. [BriCamChe2004-DAA] or [BFGSW-2011].
The authenticator encapsulates all user verification operations and cryptographic functions. An authenticator specific module (ASM) [FIDOGlossary] is
used to provide a standardized communication interface for authenticators. The authenticator might be implemented in separate hardware or trusted
execution environments. The ASM is assumed to run in the normal operating system (e.g. Android, Windows, ...).

2.1 Scope
This document describes the FIDO ECDAA attestation algorithm in detail.

2.2 Architecture Overview
ECDAA attestation defines global system parameters and ECDAA Issuer specific parameters. Both parameter sets need to be installed on the host, in
the authenticator and in the FIDO Server. The ECDAA method consists of two steps:

ECDAA-Join between the authenticator and the ECDAA Issuer to be performed before the first FIDO Registration. The ECDAA Issuer represents
the authenticator vendor as it provides the credentials to attest the authenticator model.

(n, B, sc, yc) = GetNonceFromECDAAIssuer()
(D=Q, c1, s1) = EcdaaJoin1(X, Y, B, sc, yc, n)
(A, B, C, D) = EcdaaIssuerJoin(Q, c1, s1)
EcdaaJoin2(A, C) // store cre=(A, B, C, D)

and the pair of ECDAA-Sign performed by the authenticator and ECDAA-Verify performed by the FIDO Server of the relying party as part of the
FIDO Registration.

Client: Attestation = (signature, KRD) = EcdaaSign(AppID)
Server: success=EcdaaVerify(signature, KRD, AppID)

The technical implementation details of the ECDAA-Join step are out-of-scope for FIDO. In this document we normatively specify the general algorithm
to the extent required for interoperability and we outline examples of some possible implementations for this step.
The ECDAA-Sign and ECDAA-Verify steps and the encoding of the related ECDAA Signature are normatively specified in this document. The
generation and encoding of the KRD object is defined in other FIDO specifications.
The algorithm and terminology are inspired by [BFGSW-2011]. The algorithm was modified in order to fix security weaknesses (e.g. as mentioned by
[ANZ-2013] and [XYZF-2014]). Our algorithm proposes an improved task split for the sign operation while still being compatible to TPMv2 (without fixing
the TPMv2 weaknesses in such case).

3. FIDO ECDAA Attestation
This section is normative.

3.1 Object Encodings
We need to convert BigNumber and ECPoint objects to byte strings using the following encoding functions:

3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)

We use the I2OSP algorithm as defined in [RFC3447] for converting big numbers to byte arrays. The bytes from the big endian encoded (non-negative)
number n will be copied right-aligned into the buffer area b. The unused bytes will be set to 0. Negative values will not occur due to the construction of
the algorithms.

The algorithm implemented in Java looks like this:

EXAMPLE 1: Converting BigNumber n to byte string b
b0 b1 b2 b3 b4 b5 b6 b7
 0 0 n0 n1 n2 n3 n4 n5

EXAMPLE 2: Algorithm for converting BigNumber to byte strings

3.1.2 Encoding ECPoint values as byte strings (ECPointToB)

We use the ANSI X9.62 Point-to-Octet-String [ECDSA-ANSI] conversion using the expanded format, i.e. the format where the compression byte (i.e.
0x04 for expanded) is followed by the encoding of the affine x coordinate, followed by the encoding of the affine y coordinate.

3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

The type ECPoint2 denotes a point on the sextic twist of a BN elliptic curve over F(q), see section 4.1 Supported Curves for ECDAA. Each ECPoint2 is
represented by a pair (a, b) of elements of F(q).
The group zero element is always encoded (using the encoding rules as described below) as a an element having all components set to zero (i.e.
cx.a=0, cx.b=0, cy.a=0, cy.b=0).
We always assume normalized (non-zero) ECPoint2 values (i.e. cz = 1) before encoding them. Non-zero values are encoded using the expanded
format (i.e. 0x04 for expanded) followed by the cx followed by the cy value. This leads to the concatenation of 0x04 followed by the first element (cx.a)
and second element (cx.b) of the pair of cx followed by the first element (cy.a) and second element (cy.b) of the pair of cy. All individual numbers are
padded to the same length (i.e. the maximum byte length of all relevant 4 numbers).

3.2 Global ECDAA System Parameters

1. Groups G , G and G , of sufficiently large prime order p
2. Two generators P and P , such that G = ⟨P ⟩ and G = ⟨P ⟩
3. A bilinear pairing e : G ×G → G . We propose the use of "ate" pairing (see [BarNae-2006]). For example source code on this topic, see

BNPairings.
4. Hash function H with H : {0, 1} → Z .
5. Hash function H with H : {0, 1} → G .
6. (G ,P ,p,H,H) are installed in all authenticators implementing FIDO ECDAA attestation.

Definition of G ,G ,G , Pairings, hash function H and H
See section 4.1 Supported Curves for ECDAA.

3.3 Issuer Specific ECDAA Parameters
ECDAA Issuer Parameters parI

1. Randomly generated ECDAA Issuer private key isk = (x,y) with [x,y = RAND(p)].
2. ECDAA Issuer public key (X,Y), with X = P and Y = P .
3. A proof that the ECDAA Issuer key was correctly computed

1. BigInteger r = RAND(p)
2. BigInteger r = RAND(p)
3. ECPoint2 U = P
4. ECPoint2 U = P

ByteArray BigNumberToB(
 BigNumber inVal, // IN: number to convert
 int size // IN: size of the output.
)
{
 ByteArray buffer = new ByteArray(size);
 int oversize = size - inVal.length;
 if (oversize < 0)
 return null;
 for (int i=overvize; i > 0; i--)
 buffer[i] = 0;
 ByteCopy(inVal.bytes, &buffer[oversize], inVal.length);
 return buffer;
}

EXAMPLE 3: Converting ECPoint P to byte string
(x, y) = ECPointGetAffineCoordinates(P)
len = G1.byteLength
byte string = 0x04 | BigIntegerToB(x,len) | BigIntegerToB(y,len)

2

EXAMPLE 4: Converting ECPoint2 P2 to byte string
(cx, cy) = ECPointGetAffineCoordinates(P2)
len = G2.byteLength
byte string = 0x04 | BigIntegerToB(cx.a,len) | BigIntegerToB(cx.b,len)
 | BigIntegerToB(cy.a,len) | BigIntegerToB(cy.b,len)

1 2 T

1 2 1 1 2 2

1 2 T

∗ p

G1 ∗
1

1 1 G1

1 2 T G1

2
x

2
y

x

y

x 2
rx

y 2
ry

https://code.google.com/p/bnpairings/

5. BigInteger c = H(U ∣U ∣P ∣X∣Y)
6. BigInteger s = r + c ⋅ x (mod p)
7. BigInteger s = r + c ⋅ y (mod p)

4. ipk = X,Y , c, s , s
Whenever a party uses ipk for the first time, it must first verify that it was correctly generated:

H(P ⋅X ∣P ⋅ Y ∣P ∣X∣Y) c

The ECDAA Issuer public key ipk MUST be dedicated to a single authenticator model.
We use the element c of ipk as an identifier for the ECDAA Issuer public key (called ECDAA Issuer public key identifier).

3.4 ECDAA-Join

In order to use ECDAA, the authenticator must first receive ECDAA credentials from an ECDAA Issuer. This is done by the ECDAA-Join operation. This
operation needs to be performed a single time (before the first credential registration can take place). After the ECDAA-Join, the authenticator will use
the ECDAA-Sign operation as part of each FIDO Registration. The ECDAA Issuer is not involved in this step. ECDAA plays no role in FIDO
Authentication / Transaction Confirmation operations.
In order to use ECDAA, (at least) one ECDAA Issuer is needed. The approach specified in this document easily scales to multiple ECDAA Issuers, e.g.
one per authenticator vendor. FIDO lets the authenticator vendor choose any ECDAA Issuer (similar to his current freedom for selecting any PKI
infrastructure/service provider to issuing attestation certificates required for FIDO Basic Attestation).

All ECDAA-Join operations (of the related authenticators) are performed with one of the ECDAA Issuer entities.
Each ECDAA Issuer has a set of public parameters, i.e. ECDAA public key material. The related Attestation Trust Anchor is contained in the
metadata of each authenticator model identified by its AAGUID.

There are two different implementation options relevant for the authenticator vendors (the authenticator vendor can freely choose them):

1. In-Factory ECDAA-Join
2. Remote ECDAA-Join and

In the first case, physical proximity is used to locally establish the trust between the ECDAA Issuer and the authenticator (e.g. using a key provisioning
station in a production line). There is no requirement for the ECDAA Issuer to operate an online web service.
In the second case, some credential is required to remotely establish the trust between the ECDAA Issuer and the authenticator. As this operation is
performed once and only with a single ECDAA Issuer, privacy is preserved and an authenticator specific credential can and should be used.
Not all ECDAA authenticators might be able to add their authenticator model IDs (e.g. AAGUID) to the registration assertion (e.g. TPMs). In all cases,
the ECDAA Issuer will be able to derive the exact the authenticator model from either the credential or the physically proximiate authenticator. So the
ECDAA Issuer root key MUST be dedicated to a single authenticator model.

3.4.1 ECDAA-Join Algorithm

This section is normative.

1. The authenticator asks the ECDAA Issuer for the B value of the credential.
2. The ECDAA Issuer chooses a nonce BigInteger m = RAND(p).
3. The ECDAA Issuer computes the B value of the credential as B = H (m) and sends (sc,yc)=HG1_pre(m) to the authenticator.
4. The authenticator chooses and stores the ECDAA private key BigInteger sk = RAND(p)
5. The authenticator re-computes B = (H(sc),yc)
6. The authenticator computes its ECDAA public key ECPoint Q = B

x y 2

x x

y y

x y

2
sx −c

2
sy −c

2 =
?​

NOTE

P ⋅X = P ⋅ P = P = U

P ⋅ Y = P ⋅ P = P = U

2
sx −c

2
r +cxx

2
−cx

2
rx x

2
sy −c

2
r +cyy

2
−cy

2
ry y

NOTE
One ECDAA-Join operation is required once in the lifetime of an authenticator prior to the first registration of a credential.

NOTE
If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving this value, the ECDAA Issuer must verify that
this authenticator did not join before.

G1

sk

7. The authenticator proves knowledge of sk as follows
1. BigInteger r = RAND(p)
2. ECPoint U = B
3. BigInteger c = H(U ∣P ∣Q∣m)
4. BigInteger n = RAND(p)
5. BigInteger c = H(n∣c)
6. BigInteger s = r + c ⋅ sk

8. The authenticator sends Q, c , s ,n via the ASM to the ECDAA Issuer
9. The ECDAA Issuer verifies that the authenticator is "authentic" and that Q was indeed generated by the authenticator. In the case of an in-factory

Join, this might be trivial; in the case of a remote Join this typically requires the use of other cryptographic methods. Since ECDAA-Join is a one-
time operation, unlinkability is not a concern for that.

10. The ECDAA Issuer verifies that Q ∈ G and verifies H(n∣H(B ⋅Q ∣P ∣Q∣m)) c (check proof-of-possession of private key).

11. The ECDAA Issuer creates credential (A,B,C,D) as follows
1. ECPoint A = B
2. ECPoint B as computed in the beginning.
3. ECPoint C = (A ⋅Q)
4. ECPoint D = Q

12. The ECDAA Issuer sends A,C to the authenticator. The authenticator still knows B and D
13. The authenticator checks that A,C ∈ G and A ≠ 1
14. The authenticator checks e(A,Y) e(B,P)

15. and the authenticator checks e(C,P) e(A ⋅D,X)

16. The authenticator stores credential A,B,C,D

3.4.2 ECDAA-Join Split between Authenticator and ASM

This section is non-normative.

1. The ASM asks the ECDAA Issuer for the B value of the credential.
2. The ECDAA Issuer chooses a nonce BigInteger m = RAND(p)
3. The ECDAA Issuer computes the B value of the credential as B = H (m)
4. The ECDAA Issuer sends (sc,yc)=HG1_pre(m) to the ASM.
5. The ASM forwards (sc,yc) to the authenticator
6. The authenticator chooses and stores the private key BigInteger sk = RAND(p)
7. The authenticator re-computes B = (H(sc),yc)
8. The authenticator computes its ECDAA public key ECPoint Q = B
9. The authenticator proves knowledge of sk as follows

1

1
r1

2 1 1

1 2

1 1 1

1 1

1
s1 −c1

1 =
?​ 1

NOTE

B ⋅Q = B ⋅Q = B ⋅B = B = Us1 −c1 r +c sk1 1 −c1 r +c sk1 1 −c sk1 r1
1

1/y

x

1 G1

=
?​ 2

NOTE

e(A,Y) = e(B ,P) = e(B,P) = e(B,P);1/y
2
y

2
y/y

2

2 =
?​

NOTE

e(C,P) = e((A ⋅Q) ,P); e(A ⋅D,X) = e(A ⋅Q,P) = e((A ⋅Q) ,P)2
x

2 2
x x

2

NOTE
If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving this value, the ECDAA Issuer must verify that
this authenticator did not join before.

G1

sk

1. BigInteger r = RAND(p)
2. ECPoint U = B
3. BigInteger c = H(U ∣P ∣Q∣m)
4. BigInteger n = RAND(p)
5. BigInteger c = H(n∣c)
6. BigInteger s = r + c ⋅ sk

10. The authenticator sends Q, c , s ,n to the ASM, who forwards it to the ECDAA Issuer.
11. The ECDAA Issuer verifies that the authenticator is "authentic" and that Q was indeed generated by the authenticator. In the case of an in-factory

Join, this might be trivial; in the case of a remote Join this typically requires the use of other cryptographic methods. Since ECDAA-Join is a one-
time operation, unlinkability is not a concern for that.

12. The ECDAA Issuer verifies that Q ∈ G and verifies H(n∣H(B ⋅Q ∣P ∣Q∣m)) c .
13. The ECDAA Issuer creates credential (A,B,C,D) as follows

1. ECPoint A = B
2. ECPoint B as computed in the beginning.
3. ECPoint C = (A ⋅Q)
4. ECPoint D = Q

14. The ECDAA Issuer sends A,C to the ASM. The ASM remembered B and D = Q from an earlier step.
15. The ASM checks that A,B,C,D ∈ G and A ≠ 1
16. The ASM checks e(A,Y) e(B,P)
17. and the ASM checks that e(C,P) e(A ⋅D,X)
18. The ASM stores A,B,C,D and sends A,C to the authenticator. The authenticator still knows B and D.
19. The authenticator stores B,D and ignores further join requests.

3.4.3 ECDAA-Join Split between TPM and ASM

This section is non-normative.

This description is based on the principles described in [TPMv2-Part1] section 24 and [Arthur-Challener-2015], page 109 ("Activating a Credential").

1. The ASM asks the ECDAA Issuer for the B value of the credential.
2. The ECDAA Issuer chooses a nonce BigInteger m = RAND(p).
3. The ECDAA Issuer computes the B value of the credential as B = H (m)
4. The ECDAA Issuer sends (sc,yc)=HG1_pre(m) to the ASM.
5. The ASM

1. instructs the TPM to create a restricted key by calling TPM2_Create, giving the public key template TPMT_PUBLIC [TPMv2-Part2] (including the
public key P in field unique) to the ASM.

2. re-computes B = (H(sc),yc)
3. retrieves TPM Endorsement Key Certificate (EK-C) from the TPM
4. calls TPM2_Commit(keyhandle, P1) where keyhandle is the handle of the restricted key generated before (see above), P1 is set to (B.x,B.y),

and s2 and y2 are set to B.x and B.y respectively. This call returns K, E, and ctr; where K = B = Q, E = B is used as U value.
5. computes BigInteger c = H(U ∣P ∣Q∣m)
6. calls TPM2_Sign(c , ctr), returning s ,n.
7. computes BigInteger c = H(n∣c2)
8. sends EK-C, TPMT_PUBLIC (including Q in field unique), c , s ,n to the ECDAA Issuer.

6. The ECDAA Issuer
1. verifies EK-C and its certificate chain. As a result the ECDAA Issuer knows the TPM model related to EK-C.
2. verifies that this EK-C was not used in a (successful) Join before

1

1
r1

2 1 1

1 2

1 1 1

1 1

1
s1 −c1

1 =
?​ 1

1/y

x

1 G1

=
?​ 2

2 =
?​

NOTE
These values belong to the ECDAA secret key sk. They should persist even in the case of a factory reset.

NOTE
The Endorsement key credential (EK-C) and TPM2_ActivateCredentials are used for supporting the remote Join.

G1

1

sk r1
1

2 1 1

2 1

1

1 1

3. Verifies that the objectAttributes in TPMT_PUBLIC [TPMv2-Part2] matches the following flags: fixedTPM = 1; fixedParent = 1; sensitiveDataOrigin = 1;
encryptedDuplication = 0; restricted = 1; decrypt = 0; sign = 1.

4. examines the public key Q, i.e. it verifies that Q ∈ G
5. checks H(n∣H(B ⋅Q ∣P ∣Q∣m)) c
6. generates the ECDAA credential (A,B,C,D) as follows

1. ECPoint A = B
2. ECPoint B as computed in the beginning.
3. ECPoint C = (A ⋅Q)
4. ECPoint D = Q

7. generates a secret (derived from a seed) and wraps the credential A,B,C,D using that secret.
8. encrypts the seed using the public key included in EK-C.
9. uses seed and name in KDFa (see [TPMv2-Part2] section 24.4) to derive HMAC and symmetric encryption key. Wrap the secret in

symmetric encryption key and protect it with the HMAC key.

10. sends the wrapped object including the credential from previous step to the ASM.
7. The ASM instructs the TPM (by calling TPM2_ActivateCredential) to

1. decrypt the seed using the TPM Endorsement key
2. compute the name (for the ECDAA attestation key)
3. use the seed in KDFa (with name) to derive the HMAC key and the symmetric encryption key.
4. use the symmetric encryption key to unwrap the secret.

8. The ASM
1. unwraps the credential A,B,C,D using the secret received from the TPM.
2. checks that A,B,C,D ∈ G and A ≠ 1
3. checks e(A,Y) e(B,P) and e(C,P) e(A ⋅D,X)
4. stores A,B,C,D

3.5 ECDAA-Sign

3.5.1 ECDAA-Sign Algorithm

This section is normative.
(signature, KRD) = EcdaaSign(String AppID)
Parameters

p: System parameter prime order of group G1 (global constant)
AppID: FIDO AppID (i.e. https-URL of TrustedFacets object)

Algorithm outline

1. KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here
2. BigNumber l = RAND(p)
3. ECPoint R = A ;
4. ECPoint S = B ;
5. ECPoint T = C ;
6. ECPoint W = D ;
7. BigInteger r = RAND(p)
8. ECPoint U = S
9. BigInteger c2 = H(U ∣S∣W ∣AppID∣H(KRD))

10. BigInteger n = RAND(p)
11. c = H(n | c2)

1

s1 −c1
1 =

?​ 1

1/y

x

NOTE
The parameter name in KDFa is derived from TPMT_PUBLIC, see [TPMv2-Part1], section 16.

1 G1

=
?​ 2 2 =

?​

NOTE
One ECDAA-Sign operation is required for the client-side environment whenever a new credential is being registered at a relying party.

l

l

l

l

r

12. BigInteger s = r+ c ⋅ sk (mod p)
13. signature = (c, s, R, S, T, W, n)
14. return (signature, KRD)

3.5.2 ECDAA-Sign Split between Authenticator and ASM

This section is non-normative.

Algorithm outline

1. The ASM randomizes the credential
1. BigNumber l = RAND(p)
2. ECPoint R = A ;
3. ECPoint S = B ;
4. ECPoint T = C ;
5. ECPoint W = D ;

2. The ASM sends l,AppID to the authenticator
3. The authenticator performs the following tasks

1. KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here
2. ECPoint S = B
3. ECPoint W = D
4. BigInteger r = RAND(p)
5. ECPoint U = S
6. BigInteger c2 = H(U ∣S ∣W ∣AppID∣H(KRD))
7. BigInteger n = RAND(p)
8. c = H(n | c2)
9. BigInteger s = r+ c ⋅ sk (mod p)

10. Send c, s,KRD,n to the ASM
4. The ASM sets signature = (c, s, R, S, T, W, n) and outputs (signature, KRD)

3.5.3 ECDAA-Sign Split between TPM and ASM

This section is non-normative.

Algorithm outline

1. The ASM randomizes the credential
1. BigNumber l = RAND(p)
2. ECPoint R = A ;
3. ECPoint S = B ;
4. ECPoint T = C ;
5. ECPoint W = D ;

2. The ASM calls TPM2_Commit() with P1 set to S and s2,y2 empty buffers. The ASM receives the result values K,L,E = S = U and ctr. K
and L are empty since s2,y2 are empty buffers.

3. The ASM calls TPM2_Create to generate the new authentication key pair. The related private key might need to be protected with appropriate
access control mechanisms, e.g. see section 8 of [UAFAuthnrCommands].

4. The ASM calls TPM2_Certify() on the newly created key with ctr from the TPM2_Commit and E = U ,S,W ,AppID as qualifying data. The
ASM receives signature value s and related nonce n and attestation block KRD (i.e. TPMS_ATTEST structure in this case).

5. BigInteger c2 = H(E∣S∣W ∣AppID∣H(KRD)), using KRD as returned by the previous step.
6. The ASM computes: c = H(n | c2)

NOTE
This split requires both the authenticator and ASM to be honest to achieve anonymity. Only the authenticator must be trusted for unforgeability.
The communication between ASM and authenticator must be secure.

l

l

l

l

′ l

′ l

r

′ ′

NOTE
This algorithm is for the special case of a TPMv2 as authenticator. This case requires both the TPM and ASM to be honest for anonymity. Only
the TPM must be trusted for unforgeability (see [CCDLNU2017-DAA]).

l

l

l

l

r

7. The ASM sets signature = (c, s, R, S, T, W, n) and outputs (signature, KRD)

3.6 ECDAA-Verify Operation
This section is normative.

boolean EcdaaVerify(signature, AppID, KRD, ModelName)
Parameters

p: System parameter prime order of group G (global constant)
P : System parameter generator of group G (global constant)
signature: (c, s,R,S,T ,W ,n)
AppID: FIDO AppID
KRD: Attestation Data object as defined in other specifications.
ModelName: the claimed FIDO authenticator model (i.e. either AAID or AAGUID)

Algorithm outline

1. Based on the claimed ModelName, look up X,Y from trusted source
2. Check that R,S,T ,W ∈ G , R ≠ 1 , and S ≠ 1 .
3. H(n∣H(S ⋅W ∣S∣W ∣AppID∣H(KRD))) c; fail if not equal

4. e(R,Y) e(S,P); fail if not equal

5. e(T ,P) e(R ⋅W ,X); fail if not equal

6. for (all sk' on RogueList) do if W S fail;
7. // perform all other processing steps for new credential registration

8. return true;

4. FIDO ECDAA Object Formats and Algorithm Details

NOTE
One ECDAA-Verify operation is required for the FIDO Server as part of each FIDO Registration.

1

2 2

1 G1 G1
s −c =

?​

NOTE

B = A = P

D = Q = P = B

S = B and W = D

U = S

S ⋅W = S ⋅W = U ⋅ S ⋅W
= U ⋅B ⋅D = U ⋅B ⋅B = U

y
1
ly

l yJ
1
skl yJ sk

l l

r

s −c r+csk −c csk −c
lcsk −lc lcsk −lcsk

=
?​ 2

NOTE

e(R,Y) = e(A ,P); e(S,P) = e(B ,P) = e(A ,P)l
2
y

2
l

2
ly

2

2 =
?​

NOTE

e(T ,P) = e(C ,P) = e(A ⋅Q ,P); e(A ⋅D ,X) = e(A ⋅Q ,P)2
l

2
xl xlylJ

2
l l l lylJ

2
x

=
?​ sk′

NOTE
In the case of a TPMv2, i.e. KRD is a TPMS_ATTEST object. In this case the verifier must check whether the TPMS_ATTEST object starts with
TPM_GENERATED magic number and whether its field objectAttributes contains the flag fixedTPM=1 (indicating that the key was generated by the
TPM).

This section is normative.

4.1 Supported Curves for ECDAA
Definition of G1

G1 is an elliptic curve group E : y = x + ax+ b over F(q) with a = 0.
Definition of G2

G2 is the p-torsion subgroup of E (F) where E' is a sextic twist of E. With E' : y = x + b .

An element of F(q) is represented by a pair (a,b) where a + bX is an element of F(q)[X]/ < X + 1 >. We use angle brackets < Y > to signify the
ideal generated by the enclosed value.

Definition of GT

GT is an order-p subgroup of F .
Pairings
We propose the use of Ate pairings as they are efficient (more efficient than Tate pairings) on Barreto-Naehrig curves [DevScoDah2007].
Supported BN curves
We use pairing-friendly Barreto-Naehrig [BarNae-2006] [ISO15946-5] elliptic curves. The curves TPM_ECC_BN_P256 and TPM_ECC_BN_P638 curves are
defined in [TPMv2-Part4].

BN curves have a Modulus q = 36 ⋅ u + 36 ⋅ u + 24 ⋅ u + 6 ⋅ u+ 1 [ISO15946-5] and a related order of the group
p = 36 ⋅ u + 36 ⋅ u + 18 ⋅ u + 6 ⋅ u+ 1 [ISO15946-5].

TPM_ECC_BN_P256 is a curve of form E(F(q)), where q is the field modulus [TPMv2-Part4] [BarNae-2006]. This curve is identical to the P256 curve
defined in [ISO15946-5] section C.3.5.

The values have been generated using u=-7 530 851 732 716 300 289.
Modulus q = 115 792 089 237 314 936 872 688 561 244 471 742 058 375 878 355 761 205 198 700 409 522 629 664 518 163
Group order p = 115 792 089 237 314 936 872 688 561 244 471 742 058 035 595 988 840 268 584 488 757 999 429 535 617 037
p and q have length of 256 bit each.
b = 3
P _256 = (x=1, y=2)
b = (a=3, b=3)
P _256 = (x,y), with

P _256.x = (a=114 909 019 869 825 495 805 094 438 766 505 779 201 460 871 441 403 689 227 802 685 522 624 680 861 435,
b=35 574 363 727 580 634 541 930 638 464 681 913 209 705 880 605 623 913 174 726 536 241 706 071 648 811)
P _256.y = (a=65 076 021 719 150 302 283 757 931 701 622 350 436 355 986 716 727 896 397 520 706 509 932 529 649 684,
b=113 380 538 053 789 372 416 298 017 450 764 517 685 681 349 483 061 506 360 354 665 554 452 649 749 368)

TPM_ECC_BN_P638 [TPMv2-Part4] uses
The values have been generated using u=365 375 408 992 443 362 629 982 744 420 548 242 302 862 098 433
Modulus q = 641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356 871 360 716 989 515 584 497 239 494 051 781
991 794 253 619 096 481 315 470 262 367 432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740 457 083 469 793
717 125 223
The related order of the group is p = 641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356 871 360 716 989 515
584 497 239 494 051 781 991 794 252 818 101 344 337 098 690 003 906 272 221 387 599 391 201 666 378 807 960 583 525 233 832 645
565 592 955 122 034 352 630 792 289
p and q have length of 638 bit each.
b = 257
P _638 = (x=641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356 871 360 716 989 515 584 497 239 494 051 781
991 794 253 619 096 481 315 470 262 367 432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740 457 083 469 793
717 125 222, y=16)
b = (a=771, b=1542)
P _638 = (x, y), with

P _638.x = (a=192 492 098 325 059 629 927 844 609 092 536 807 849 769 208 589 403 233 289 748 474 758 010 838 876 457 636
072 173 883 771 602 089 605 233 264 992 910 618 494 201 909 695 576 234 119 413 319 303 931 909 848 663 554 062 144 113
485 982 076 866 968 711 247, b=166 614 418 891 499 184 781 285 132 766 747 495 170 152 701 259 472 324 679 873 541 478 330

2 3

′ q2 ′2 ′3 ′

2 2

NOTE
In the literature the pair (a,b) is sometimes also written as a complex number a+ b ∗ i.

q12

4 3 2

4 3 2

1

′

2

2

2

1

′

2

2

301 406 623 174 002 502 345 930 325 474 988 134 317 071 869 554 535 111 092 924 719 466 650 228 182 095 841 246 668 361
451 788 368 418 036 777 197 454 618 413 255)
P _638.y = (a=622 964 952 935 200 827 531 506 751 874 167 806 262 407 152 244 280 323 674 626 687 789 202 660 794 092 633
841 098 984 322 671 973 226 667 873 503 889 270 602 870 064 426 165 592 237 410 681 318 519 893 784 898 821 343 051 339
820 566 224 981 344 169 470, b=514 285 963 827 225 043 076 463 721 426 569 583 576 029 220 880 138 564 906 219 230 942 887
639 456 599 654 554 743 732 087 558 187 149 207 036 952 474 092 411 405 629 612 957 921 369 286 372 038 525 830 610 755
207 588 843 864 366 759 521 090 861 911 494)

ECC_BN_DSD_P256 [DevScoDah2007] section 3 uses
The values have been generated using u=6 917 529 027 641 089 837
Modulus q = 82434016654300679721217353503190038836571781811386228921167322412819029493183
The related order of the group is p = 82434016654300679721217353503190038836284668564296686430114510052556401373769
p and q have length of 256 bit each.
b = 3
P _DSD_P256 = (1, 2)
b = (a=3, b=6)
P _DSD_P256 = (x, y), with

P _DSD_P256.x = (a=73 481 346 555 305 118 071 940 904 527 347 990 526 214 212 698 180 576 973 201 374 397 013 567 073
039, b=28 955 468 426 222 256 383 171 634 927 293 329 392 145 263 879 318 611 908 127 165 887 947 997 417 463)
P _DSD_P256.y = (a=3 632 491 054 685 712 358 616 318 558 909 408 435 559 591 759 282 597 787 781 393 534 962 445 630 353,
b=60 960 585 579 560 783 681 258 978 162 498 088 639 544 584 959 644 221 094 447 372 720 880 177 666 763)

ECC_BN_ISOP512 [ISO15946-5] section C.3.7 uses
The values have been generated using u=138 919 694 570 470 098 040 331 481 282 401 523 727
Modulus q = 13 407 807 929 942 597 099 574 024 998 205 830 437 246 153 344 875 111 580 494 527 427 714 590 099 881 795 845 981
157 516 604 994 291 639 750 834 285 779 043 186 149 750 164 319 950 153 126 044 364 566 323
The related order of the group is p = 13 407 807 929 942 597 099 574 024 998 205 830 437 246 153 344 875 111 580 494 527 427 714 590
099 881 680 053 891 920 200 409 570 720 654 742 146 445 677 939 306 408 461 754 626 647 833 262 056 300 743 149
p and q have length of 512 bit each.
b = 3
P _ISO_P512 = (x=1,y=2)
b = (a=3, b=3)
P _ISO_P512 = (x, y), with

P _ISO_P512.x = (a=3 094 648 157 539 090 131 026 477 120 117 259 896 222 920 557 994 037 039 545 437 079 729 804 516 315
481 514 566 156 984 245 473 190 248 967 907 724 153 072 490 467 902 779 495 072 074 156 718 085 785 269, b=3 776 690 234
788 102 103 015 760 376 468 067 863 580 475 949 014 286 077 855 600 384 033 870 546 339 773 119 295 555 161 718 985 244
561 452 474 412 673 836 012 873 126 926 524 076 966 265 127 900 471 529)
P _ISO_P512.y = (a=7 593 872 605 334 070 150 001 723 245 210 278 735 800 573 263 881 411 015 285 406 372 548 542 328 752
430 917 597 485 450 360 707 892 769 159 214 115 916 255 816 324 924 295 339 525 686 777 569 132 644 242, b=9 131 995 053
349 122 285 871 305 684 665 648 028 094 505 015 281 268 488 257 987 110 193 875 868 585 868 792 041 571 666 587 093 146
239 570 057 934 816 183 220 992 460 187 617 700 670 514 736 173 834 408)

Hash Algorithm H

Depending on the curve, we use H(x) = SHA256(x) mod p or H(x) = SHA512(x) mod p as hash algorithm H:{0, 1} → Z .
The argument of the hash function must always be converted to a byte string using the appropriate encoding function specific in section 3.1 Object
Encodings, e.g. according to section 3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB) in the case of ECPoint2 points.

Hash Algorithm H

Definition of H (taken from [CheLi2013-ECDAA]):

H : {0, 1}* → G , where G is an elliptic curve group E : y^2 = x^3 + b over GF(q) with cofactor = 1. Given a message m ∈ {0, 1}*,

H can be computed as follows:

2

1

′

2

2

2

1

′

2

2

2

NOTE
Spaces are used inside numbers to improve readability.

∗ p

NOTE
We don't use IEEE P1363.3 section 6.1.1 IHF1-SHA with security parameter t (e.g. t=128 or 256) as it is more complex and not supported by
TPMv2.

G1

G1

G1 1 1

G1

http://grouper.ieee.org/groups/1363/IBC/material/P1363.3-D1-200805.pdf

ECPoint p = HG1(String m)

1. Set i = 0 be a 32-bit unsigned integer.
2. Compute x = H(BigNumberToB(i,4) | m)
3. Compute z = x^3 + b mod q
4. Compute y =sqrt(z) mod q. If y does not exist, set i = i+1, repeat step 2 if i < 232, otherwise, report failure.
5. Set y = min(y, q − y).
6. return ECPoint(x, y)

(String sc, BigNumber yc) = HG1_pre(String m)

1. Set i = 0 be a 32-bit unsigned integer.
2. Compute x = H(BigNumberToB(i,4) | m)
3. Compute z = x^3 + b mod q
4. Compute y =sqrt(z) mod q. If y does not exist, set i = i+1, repeat step 2 if i < 232, otherwise, report failure.
5. Set y = min(y, q − y).
6. Set sc to BigNumberToB(i,4) | m.
7. Set yc to y.
8. return (sc, yc)

The ASM on the FIDO User device platform can help the authenticator compute HG1(m), yet the authenticator verifies the computation as follows:
Given m, the ASM runs the above algorithm. For a successful execution, let sc = (istr | m) and yc be the y value in the last step. The ASM sends sc and
yc to the authenticator. The authenticator computes HG1(m) = (H(sc), yc).
Given the value sc, the original message m can be recomputed by skipping the first 4 bytes.

4.2 ECDAA Algorithm Names
We define the following JWS-style algorithm names (see [RFC7515]):
ED256

TPM_ECC_BN_P256 curve, using SHA256 as hash algorithm H.
ED256-2

ECC_BN_DSD_P256 curve, using SHA256 as hash algorithm H.
ED512

ECC_BN_ISOP512 curve, using SHA512 as hash algorithm H.
ED638

TPM_ECC_BN_P638 curve, using SHA512 as hash algorithm H.

4.3 ecdaaSignature object
The fields c and s both have length N. The fields R, S, T, W have equal length (2*N+1 each).
In the case of BN_P256 curve (with key length N=32 bytes), the fields R, S, T, W have length 2*32+1=65 bytes. The fields c and s have length N=32
each.
The ecdaaSignature object is a binary object generated as the concatenation of the binary fields in the order described below (total length of 356 bytes
for 256bit curves):

Value Length (in
Bytes) Description

UINT8[]
ECDAA_Signature_c N

The c value, c = H(n | c2) as returned by EcdaaSign encoded as byte string according to BigNumberToB.
Where

c2=H(U | S | W | KRD | AppID)
U = S , with r = RAND(p) computed by the signer.
KRD is the the entire to-be-signed object (e.g. TAG_UAFV1_KRD in the case of FIDO UAF).
S = B , with l = RAND(p) computed by the signer and B = A computed in the ECDAA-Join

UINT8[]
ECDAA_Signature_s N

The s value, s=r + c * sk (mod p), as returned by EcdaaSign encoded as byte string according to
BigNumberToB.
Where

r = RAND(p), computed by the signer at FIDO registration (see 3.5.2 ECDAA-Sign Split between
Authenticator and ASM)
p is the group order of G1
sk: is the authenticator's attestation secret key, see above

UINT8[]
ECDAA_Signature_n N The Nonce value n, as returned by EcdaaSign encoded as byte string according to BigNumberToB.

r

l y

UINT8[]
ECDAA_Signature_R 2*N+1

R = A ; computed by the ASM or the authenticator at FIDO registration; encoded as byte string
according to ECPointToB. Where

l = RAND(p), i.e. random number 0≤l≤p. Computed by the ASM or the authenticator at FIDO
registration.
And where R = A denotes the scalar multiplication (of scalar l) of a curve point A.
Where A has been provided by the ECDAA Issuer as part of ECDAA-Join: A = B , see 3.4.1
ECDAA-Join Algorithm.
Where p is a system value, injected into the authenticator and y is part of the ECDAA Issuer private
key isk=(x,y).

UINT8[]
ECDAA_Signature_S 2*N+1

S = B ; computed by the ASM or the authenticator at FIDO registration encoded as byte string
according to ECPointToB.
Where B has been provided by the ECDAA Issuer on Join: B = HG1(m) = (H(sc),yc), see 3.4.1
ECDAA-Join Algorithm.

UINT8[]
ECDAA_Signature_T 2*N+1

T = C ; computed by the ASM or the authenticator at FIDO registration encoded as byte string
according to ECPointToB. Where

C = (A ⋅Q) , provided by the ECDAA Issuer on Join
x is a components of the ECDAA Issuer private key, isk=(x,y).
Q is the authenticator public key

UINT8[]
ECDAA_Signature_W 2*N+1

W = D ; computed by the ASM or the authenticator at FIDO registration encoded as byte string
according to ECPointToB.
Where D = Q is computed by the ECDAA Issuer at Join (see 3.4.1 ECDAA-Join Algorithm).

Value Length (in
Bytes) Description

5. Considerations
This section is non-normative.
A detailed security analysis of this algorithm can be found in [FIDO-DAA-Security-Proof].

5.1 Algorithms and Key Sizes
The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

5.2 Indicating the Authenticator Model
Some authenticators (e.g. TPMv2) do not have the ability to include their model (i.e. vendor ID and model name) in attested messages (i.e. the to-be-
signed part of the registration assertion). The TPM's endorsement key certificate typically contains that information directly or at least it allows the model
to be derived from the endorsement key certificate.
In FIDO, the relying party expects the ability to cryptographically verify the authenticator model.
We require the ECDAA Issuers public key (ipk=(X,Y,c,sx,sy)) to be dedicated to one single authenticator model (e.g. as identified by AAID or AAGUID).

5.3 Revocation
If the private ECDAA attestation key sk of an authenticator has been leaked, it can be revoked by adding its value to a RogueList.
The ECDAA-Verifier (i.e. FIDO Server) check for such revocations. See section 3.6 ECDAA-Verify Operation.
The ECDAA Issuer is expected to check revocation by other means:

1. if ECDAA-Join is done in-factory, it is assumed that produced devices are known to be uncompomised (at time of production).
2. if a remote ECDAA-Join is performed, the (remote) ECDAA Issuer already must use a different method to remotely authenticate the authenticator

(e.g. using some endorsement key). We expect the ECDAA Issuer to perform a revocation check based on that information. This is even more
flexible as it does not require access to the authenticator ECDAA private key sk.

5.4 Pairing Algorithm
The pairing algorithm e needs to be used by the ASM as part of the Join process and by the verifier (i.e. FIDO relying party) as part of the verification
(i.e. FIDO registration) process.
The result of such a pairing operation is only compared to the result of another pairing operation computed by the same entity. As a consequence, it
doesn't matter whether the ASM and the verifier use the exact same pairings or not (as long as they both use valid pairings).

5.5 Performance

l

l

1/y

l

l

x

l

For performance reasons the calculation of Sig2=(R,S,T ,W) may be performed by the ASM running on the FIDO user device (as opposed to inside
the authenticator). See section 3.5.2 ECDAA-Sign Split between Authenticator and ASM.
The cryptographic computations to be performed inside the authenticator are limited to G1. The ECDAA Issuer has to perform two G2 point
multiplications for computing the public key. The Verifier (i.e. FIDO relying party) has to perform G1 operations and two pairing operations.

5.6 Binary Concatentation
We use a simple byte-wise concatenation function for the different parameters, i.e. H(a,b) = H(a | b).
This approach is as secure as the underlying hash algorithm since the authenticator controls the length of the (fixed-length) values (e.g. U, S, W). The
AppID is provided externally and has unverified structure and length. However, it is only followed by a fixed length entry - the (system defined) hash of
KRD. As a consequence, no parts of the AppID would ever be confused with the fixed length value.

5.7 IANA Considerations
This specification registers the algorithm names "ED256", "ED512", and "ED638" defined in section 4. FIDO ECDAA Object Formats and Algorithm
Details with the IANA JSON Web Algorithms registry as defined in section "Cryptographic Algorithms for Digital Signatures and MACs" in [RFC7518].

Algorithm Name "ED256"
Algorithm Description FIDO ECDAA algorithm based on TPM_ECC_BN_P256 [TPMv2-Part4] curve using SHA256 hash algorithm.
Algorithm Usage Location(s) "alg", i.e. used with JWS.
JOSE Implementation
Requirements Optional

Change Controller FIDO Alliance, Contact Us

Specification Documents Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats and Algorithm Details of
[FIDOEcdaaAlgorithm].

Algorithm Analysis Document(s) [FIDO-DAA-Security-Proof]

Algorithm Name "ED512"
Algorithm Description ECDAA algorithm based on ECC_BN_ISOP512 [ISO15946-5] curve using SHA512 algorithm.
Algorithm Usage Location(s) "alg", i.e. used with JWS.
JOSE Implementation
Requirements Optional

Change Controller FIDO Alliance, Contact Us

Specification Documents Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats and Algorithm Details of
[FIDOEcdaaAlgorithm].

Algorithm Analysis Document(s) [FIDO-DAA-Security-Proof]

Algorithm Name "ED638"
Algorithm Description ECDAA algorithm based on TPM_ECC_BN_P638 [TPMv2-Part4] curve using SHA512 algorithm.
Algorithm Usage Location(s) "alg", i.e. used with JWS.
JOSE Implementation
Requirements Optional

Change Controller FIDO Alliance, Contact Us

Specification Documents Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats and Algorithm Details of
[FIDOEcdaaAlgorithm].

Algorithm Analysis Document(s) [FIDO-DAA-Security-Proof]

A. References
A.1 Normative references
[ECDSA-ANSI]

Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography ANSI X9.63-
2011 (R2017). 2017. URL: https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1. February 2003.

https://fidoalliance.org/contact/
https://fidoalliance.org/contact/
https://fidoalliance.org/contact/
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447

Informational. URL: https://tools.ietf.org/html/rfc3447
[TPMv2-Part4]

Trusted Platform Module Library, Part 4: Supporting Routines. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-
1A4B-B294-D0DA8CE1B452CAB4/TPM%20Rev%202.0%20Part%204%20-%20Supporting%20Routines%2001.16-code.pdf

A.2 Informative references
[ANZ-2013]

Tolga Acar; Lan Nguyen; Greg Zaverucha. A TPM Diffie-Hellman Oracle. October 18, 2013. URL: http://eprint.iacr.org/2013/667.pdf
[Arthur-Challener-2015]

Will Arthur; David Challener; Kenneth Goldman. A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security.
2014. URL: http://www.apress.com/9781430265832

[BFGSW-2011]
D. Bernhard; G. Fuchsbauer; E. Ghadafi; N. P. Smart; B. Warinschi. Anonymous Attestation with User-controlled Linkability. 2011. URL:
http://eprint.iacr.org/2011/658.pdf

[BarNae-2006]
Paulo S. L. M. Barreto; Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. 2006. URL:
http://research.microsoft.com/pubs/118425/pfcpo.pdf

[BriCamChe2004-DAA]
Ernie Brickell; Jan Camenisch; Liqun Chen. Direct Anonymous Attestation. 2004. URL: http://eprint.iacr.org/2004/205.pdf

[CCDLNU2017-DAA]
Jan Camenisch; Liqun Chen; Anja Lehmann; David Novick; Rainer Urian. One TPM to Bind Them All: Fixing TPM 2.0 for Provably Secure
Anonymous Attestation. March 2017. URL:
https://www.researchgate.net/publication/317914407_One_TPM_to_Bind_Them_All_Fixing_TPM_20_for_Provably_Secure_Anonymous_Attestation

[CheLi2013-ECDAA]
Liqun Chen; Jiangtao Li. Flexible and Scalable Digital Signatures in TPM 2.0. 2013. URL: http://dx.doi.org/10.1145/2508859.2516729

[DevScoDah2007]
Augusto Jun Devegili; Michael Scott; Ricardo Dahab. Implementing Cryptographic Pairings over Barreto-Naehrig Curves. 2007. URL:
https://eprint.iacr.org/2007/390.pdf

[FIDO-DAA-Security-Proof]
Jan Camenisch; Manu Drijvers; Anja Lehmann. Universally Composable Direct Anonymous Attestation. 2015. URL:
https://eprint.iacr.org/2015/1246

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-
rd-20180702/fido-glossary-v2.0-rd-20180702.html

[ISO15946-5]
ISO/IEC 15946-5 Information Technology - Security Techniques - Cryptographic techniques based on elliptic curves - Part 5: Elliptic curve
generation. URL: https://webstore.iec.ch/publication/10468

[RFC7515]
M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS) (RFC7515). May 2015. URL: http://www.ietf.org/rfc/rfc7515.txt

[RFC7518]
M. Jones. JSON Web Algorithms (JWA). May 2015. Proposed Standard. URL: https://tools.ietf.org/html/rfc7518

[TPMv1-2-Part1]
TPM 1.2 Part 1: Design Principles. URL: http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-
D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf

[TPMv2-Part1]
Trusted Platform Module Library, Part 1: Architecture. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-
D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf

[TPMv2-Part2]
Trusted Platform Module Library, Part 2: Structures. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-
D0469592DB10A6CD/TPM%20Rev%202.0%20Part%202%20-%20Structures%2001.16.pdf

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html

[XYZF-2014]
Li Xi; Kang Yang; Zhenfeng Zhang; Dengguo Feng. DAA-Related APIs in TPM 2.0 Revisited, in T. Holz and S. Ioannidis (Eds.). 2014. URL:

https://tools.ietf.org/html/rfc3447
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM Rev 2.0 Part 4 - Supporting Routines 01.16-code.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM Rev 2.0 Part 4 - Supporting Routines 01.16-code.pdf
http://eprint.iacr.org/2013/667.pdf
http://eprint.iacr.org/2013/667.pdf
http://www.apress.com/9781430265832
http://www.apress.com/9781430265832
http://eprint.iacr.org/2011/658.pdf
http://eprint.iacr.org/2011/658.pdf
http://research.microsoft.com/pubs/118425/pfcpo.pdf
http://research.microsoft.com/pubs/118425/pfcpo.pdf
http://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2004/205.pdf
https://www.researchgate.net/publication/317914407_One_TPM_to_Bind_Them_All_Fixing_TPM_20_for_Provably_Secure_Anonymous_Attestation
https://www.researchgate.net/publication/317914407_One_TPM_to_Bind_Them_All_Fixing_TPM_20_for_Provably_Secure_Anonymous_Attestation
http://dx.doi.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
https://eprint.iacr.org/2007/390.pdf
https://eprint.iacr.org/2007/390.pdf
https://eprint.iacr.org/2015/1246
https://eprint.iacr.org/2015/1246
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://webstore.iec.ch/publication/10468
https://webstore.iec.ch/publication/10468
http://www.ietf.org/rfc/rfc7515.txt
http://www.ietf.org/rfc/rfc7515.txt
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM Rev 2.0 Part 2 - Structures 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM Rev 2.0 Part 2 - Structures 01.16.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html

FIDO Security Reference
FIDO Alliance Review Draft 02 July 2018
This version:

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html
Previous version:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Dr. Joshua E. Hill, InfoGard Laboratories
Douglas Biggs, InfoGard Laboratories

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract
This document analyzes the security properties of FIDO UAF, FIDO U2F and FIDO 2 (i.e. CTAP and Web Authentication) specifications.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.
This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO Alliance Proposed Standard. If
you wish to make comments regarding this document, please Contact Us. All comments are welcome.
This is a Review Draft Specification and is not intended to be a basis for any implementations as the Specification may change. Permission is
hereby granted to use the Specification solely for the purpose of reviewing the Specification. No rights are granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine
whether an appropriate license for such use is available.
Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.
THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Introduction

2.1 Intended Audience
3. Attack Classification
4. FIDO Security Goals

4.1 Assets to be Protected
5. FIDO Security Measures

5.1 Relation between Measures and Goals
6. FIDO Security Assumptions

6.1 Discussion

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
mailto:jhill@infogard.com
https://infogard.com/
mailto:dbiggs@infogard.com
https://infogard.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https:/fidoalliance.org/
https://fidoalliance.org/contact

7. Threat Analysis
7.1 Threats to Client Side

7.1.1 Exploiting User’s pattern matching weaknesses
7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
7.1.3 Threat to the communication between Client and FIDO Authenticator

7.2 Threats to FIDO Authenticator
7.3 Threats to Relying Party

7.3.1 Threats to FIDO Server Data
7.4 Threats to the Secure Channel between Client and Relying Party

7.4.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages
7.5 Threats to the Infrastructure

7.5.1 Threats to FIDO Authenticator Manufacturers
7.5.2 Threats to FIDO Server Vendors
7.5.3 Threats to FIDO Metadata Service Operators

7.6 Threats Specific to Second Factor Authenticators (U2F /UAF / WebAuthn)
8. Acknowledgements
A. References

A.1 Informative references

1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “UAF-TLV”.
In formulas we use “|” to denote byte wise concatenation operations.
UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1 Key Words
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in [RFC2119].

2. Introduction
This document analyzes the security properties of the FIDO UAF [UAFProtocol], FIDO U2F [U2FOverview] and FIDO 2 (i.e. CTAP2 [FIDOCTAP] and
Web Authentication [WebAuthn]). Although a brief architectural summary is provided below, readers should familiarize themselves with the FIDO
Glossary of Terms [FIDOGlossary] for definitions of terms used throughout. For technical details of various aspects of the architecture, readers should
refer to the FIDO Alliance specifications in the Bibliography.

Fig. 1 FIDO Reference Architecture
Conceptually, FIDO involves a conversation between a computing environment controlled by a Relying Party and one controlled by the user to be
authenticated. The Relying Party's environment consists conceptually of at least a web server and the server-side portions of a web application, plus a
FIDO Server. The FIDO Server has a trust store, containing the (public) trust anchors for the attestation of FIDO Authenticators. The users'
environment, referred to as the FIDO user device, consists of one or more FIDO Authenticators, a piece of software called the FIDO Client that is the
endpoint for UAF and U2F conversations, and User Agent software. The User Agent software may be a browser hosting a web application delivered by
the Relying Party, or it may be a standalone application delivered by the Relying Party. In either case, the FIDO Client, while a conceptually distinct
entity, may actually be implemented in whole or part within the boundaries of the User Agent.
In the case of Web Authentication, the Web Browser implements the major parts of the FIDO Client functionality and the underlying operating system
(platform) implements the ASM parts.

2.1 Intended Audience
This document assumes a technical audience that is proficient with security analysis of computing systems and network protocols as well as the
specifics of the FIDO architecture and protocol families. It discusses the security goals, security measures, security assumptions and a series of
threats to FIDO systems, including the users' computing environment, the Relying Party's computing environment, and the supply chain, including the
vendors of FIDO components.

3. Attack Classification
The following attacks all result in user impersonation if successful. However, they have distinguishing characteristics which we use as the basis for
attack classification:

1. Automated attacks not focused on the users systems, which affect the user.
2. Automated attacks which are focused on the users' device and which are performed once and lead to the ability to impersonate the user on an

on-going basis without involving him or his device directly.
3. Automated attacks which involve the user or his device for each successful impersonation.
4. Automated attacks to sessions authenticated by the user.
5. Not automatable attacks to the user or his device which are performed once and lead to the ability to impersonate the user on an on-going basis

without involving him or his device directly.
6. Not automatable attacks to the user or his device which involve the user or his device for each successful impersonation.

Fig. 2 Attack Classes
The first four attack classes are considered scalable as they are nominally automatable. The attack classes 5 and 6 are not automatable; they involve
some kind of manual/physical interaction of the attacker with the user or his device. We will attribute the threats analyzed in this document with the
related attack class (AC1 – AC6).

Attack Classes
We define the term scalable attack as any attack where the marginal cost of adding an additional target is near zero and which leads to violations of
the FIDO security goals.

AC1
Attacks not focused on the users' devices and which lead to violations of FIDO security goals. (e.g., compromise of a Relying Party FIDO
database and successful decryption of wrapped keys within the database, phishing, MITM attacks, etc.).

AC2
Scalable attacks involving the Authenticator which, once performed, lead to the ability to violate FIDO security goals on an ongoing basis without
later involving the users or their devices directly (e.g., a scalable attack on FIDO Authenticators that recovers the user private keys, allowing the
attacker to impersonate the users on an ongoing basis).

AC3
Scalable attacks which involve the user or his device for each instance where the FIDO security goals are violated (e.g., a scalable attack that
requires the Authenticator for each successful impersonation).

AC4

NOTE

1. FIDO uses asymmetric cryptography to protect against AC1. This gives control back to the user, i.e. when using good random numbers,
the user’s authenticator can make breaking the key as hard as the underlying factoring (in the case of RSA) or discrete logarithm (in the
case of DSA or ECDSA) problem.

2. Once counter-measures for this kind of attack are commonly in place, attackers will likely focus on another attack class.
3. The numbers at the attack classes do not imply a feasibility ranking of the related attacks, e.g. it is not necessarily more difficult to perform

(AC4) than it is to perform (AC3).
4. The user has almost no influence on the feasibility of attack class (AC1). This makes this attack class really bad.
5. The concept of physical security (i.e. “protect your Authenticator from being stolen”), related to attack classes (AC5) and (AC6) is much

better internalized by users than the concept of logical security, related to attack classes (AC2), (AC3) and (AC4).
6. In order to protect against misuse of authenticated sessions (e.g. MITB attacks), the FIDO Authenticator must support the concept of

transaction confirmation and the relying party must use it.
7. For an attacker to succeed in impersonating the user, any attack class is sufficient.

NOTE
The first four attack classes (AC1, AC2, AC3, and AC4) are considered scalable. The last two attack classes (AC5 and AC6) are not scalable
and are performed as one-off user/Relying Party style compromises. We will attribute the threats analyzed in this document with the related
attack class (AC1 – AC6).

Scalable attacks on sessions authenticated by the user which violate FIDO security goals.
AC5

Non-scalable attacks involving the Authenticator which, once performed, lead to the ability to violate FIDO security goals on an ongoing basis
without later involving the users or their devices directly (e.g., a non-scalable attack on FIDO Authenticators that recovers the user private keys,
allowing the attacker to impersonate the users on an ongoing basis).

AC6
Non-scalable attacks which involve the user or his device for each instance where the FIDO security goals are violated (e.g., a non-scalable
attack that requires the Authenticator for each successful impersonation).

4. FIDO Security Goals
In this section the specific security goals of FIDO are described. The FIDO UAF protocol [UAFProtocol], FIDO U2F protocol [U2FOverview], and Web
Authentication [WebAuthn] support a variety of different FIDO Authenticators. Even though the security of those authenticators varies, the protocol(s)
and the FIDO Server should provide a very high level of security - at least on a conceptual level. In reality it might require a FIDO Authenticator with a
high security level in order to fully leverage the FIDO security strength.

The FIDO U2F protocol [U2FOverview] supports a more constrained set of Authenticator capabilities. It shares the same security goals as UAF, with
the exception of [SG-14] Transaction Non- Repudiation.
WebAuthentication [WebAuthn] specifies a Java Script API for accessing Authenticators. Passwordless and second factor use cases are supported.
The security goals are very similar and includes extensions supporting Transaction Non-Repudiation.
The FIDO protocols have the following security goals:
[SG-1]

Strong User Authentication: Authenticate (i.e. recognize) a user and/or a device to a relying party with high (cryptographic) strength.
[SG-2]

Credential Guessing Resilience: Provide robust protection against eavesdroppers, e.g. be resilient to physical observation, resilient to targeted
impersonation, resilient to throttled and unthrottled guessing.

[SG-3]
Credential Disclosure Resilience: Be resilient to phishing attacks and real-time phishing attack, including resilience to online attacks by
adversaries able to actively manipulate network traffic.

[SG-4]
Unlinkablity: Protect the protocol conversation such that any two relying parties cannot link the conversation to one user (i.e. be unlinkable).

[SG-5]
Verifier Leak Resilience: Be resilient to leaks from other relying parties. I.e., nothing that a verifier could possibly leak can help an attacker
impersonate the user to another relying party.

[SG-6]
Authenticator Leak Resilience: Be resilient to leaks from other FIDO Authenticators. I.e., nothing that a particular FIDO Authenticator could
possibly leak can help an attacker to impersonate any other user to any relying party.

[SG-7]
User Consent: Notify the user before a relationship to a new relying party is being established (requiring explicit consent).

[SG-8]
Limited PII: Limit the amount of personal identifiable information (PII) exposed to the relying party to the absolute minimum.

[SG-9]
Attestable Properties: Relying Party must be able to verify FIDO Authenticator model/type (in order to calculate the associated risk).

[SG-10]
DoS Resistance: Be resilient to Denial of Service Attacks. I.e. prevent attackers from inserting invalid registration information for a legitimate user
for the next login phase. Afterward, the legitimate user will not be able to login successfully anymore.

[SG-11]
Forgery Resistance: Be resilient to Forgery Attacks (Impersonation Attacks). I.e. prevent attackers from attempting to modify intercepted
communications in order to masquerade as the legitimate user and login to the system.

[SG-12]
Parallel Session Resistance: Be resilient to Parallel Session Attacks. Without knowing a user’s authentication credential, an attacker can
masquerade as the legitimate user by creating a valid authentication message out of some eavesdropped communication between the user and
the server.

[SG-13]
Forwarding Resistance: Be resilient to Forwarding and Replay Attacks. Having intercepted previous communications, an attacker can
impersonate the legal user to authenticate to the system. The attacker can replay or forward the intercepted messages.

[SG-14] (not covered by U2F)
Transaction Non-Repudiation: Provide strong cryptographic non-repudiation for secure transactions.

[SG-15]
Respect for Operating Environment Security Boundaries: Ensure that registrations and private key material as a shared system resource is
appropriately protected according to the operating environment privilege boundaries in place on the FIDO user device.

[SG-16]

NOTE
At this time we are not explicitly addressing classes of physical attacks on the authenticator that may lead to reduced security if the legitimate
user uses the authenticator after the attacker having physical access to it.

NOTE
In certain environments the overall security of the explicit authentication (as provided by FIDO) is less important, as it might be supplemented
with a high degree of implicit authentication or the application doesn’t even require a high level of authentication strength.

Assessable Level of Security: Ensure that the design and implementation of the Authenticator allows for the testing laboratory / FIDO Alliance to
assess the level of security provided by the Authenticator.

4.1 Assets to be Protected
Independent of any particular implementation, the FIDO protocols assume some assets to be present and to be protected.

1. Cryptographic Authentication Private Key. Typically, private keys in FIDO are unique for each tuple of (relying party, user account, authenticator).
2. Cryptographic Authentication Key Reference. This is the cryptographic material stored at the relying party and used to uniquely verify the

Cryptographic Authentication Key, typically the public key corresponding to the authentication private key.
3. Authenticator Attestation Key (as stored in each authenticator). This should only be usable to attest a Cryptographic Authentication Key and the

type/model and manufacturing batch of an Authenticator. Attestation keys are either ECDAA keys [FIDOEcdaaAlgorithm] or the attestation keys
and certificates are shared by a large number of authenticators in a device class from a given vendor in order to prevent their becoming a
linkable identifier across relying parties. Authenticator attestation certificates may be self-signed, or signed by an authority key controlled by the
vendor.

4. Authenticator Attestation Authority Key. An authenticator vendor may elect to sign authenticator attestation certificates with a per-vendor
certificate authority key.

5. Authenticator Attestation Authority Certificate. Contained in the initial/default trust store as part of the FIDO Server and contained in the active
trust store maintained by each relying party.

6. Active Trust Store. Contains all trusted attestation root certificates for a given FIDO server.
7. All data items suitable for uniquely identifying the authenticator across relying parties. An attack on those would break the non-linkability security

goal.
8. Private key of Relying Party TLS server certificate.
9. TLS root certificate trust store for the users' browser/app.

5. FIDO Security Measures

[SM-1] (U2F + UAF + WebAuthn)
Key Protection: Authentication key is protected against misuse. Misuse means any use violating the FIDO specification or the details given in the
Metadata Statement. Before a key can be used, it requires the User to unlock it using the user verification method specified in the Authenticator
Metadata Statement (Silent Authenticators do not require any user verification method).

[SM-2] (U2F + UAF + WebAuthn)
Unique Authentication Keys: Cryptographic authentication key is specific and unique to the tuple of (FIDO Authenticator, User, Relying Party).

[SM-3] (U2F + UAF + WebAuthn)
Authenticator Class Attestation: Hardware-based FIDO Authenticators support authenticator attestation using an attestation key using one of the
FIDO specified attestation types and algorithms. Each relying party receives regular updates of the trust store (through the FIDO Metadata
service).

[SM-4] (U2F + UAF + WebAuthn)
Authenticator Status Checking: Relying Parties can download latest known status of authenticators included in the FIDO Metadata Service. The
FIDO Server should take this information into account. Authenticator manufacturers should notify the FIDO Alliance about compromised
authenticators. In the case of FIDO certified authenticators, such notification might even be mandatory.

[SM-5] (UAF + WebAuthn)
User Consent: FIDO Client implements a user interface for getting user’s consent on any actions (except authentication with silent authenticator)
and displaying RP name (derived from server URL).

[SM-6] (U2F + UAF + WebAuthn)
Cryptographically Secure Verifier Database: The relying party stores only the public portion of an asymmetric key pair, or an encrypted key
handle, as a cryptographic authentication key reference.

[SM-7] (U2F + UAF + WebAuthn)
Secure Channel with Server Authentication: The TLS protocol with server authentication or a transport with equivalent properties is used as
transport protocol for authentication messages. The use of https is enforced by a browser or Relying Party application.

[SM-8] (U2F + UAF + WebAuthn)
Protocol Nonces: Both server and client supplied nonces are used for FIDO UAF registration and authentication. U2F doesn't support client
supplied nonces.

[SM-9] (U2F + UAF + WebAuthn)
Authenticator Certification: The FIDO Metadata Service includes the Authenticator certification status.

[SM-10] (UAF + WebAuthn)

NOTE
For a definition of the phrases printed in italics, refer to [QuestToReplacePasswords] and to [PasswordAuthSchemesKeyIssues]

NOTE
Particular implementations of FIDO Clients, Authenticators, Servers and participating applications may not implement all of these security
measures (e.g. Secure Display, [SM-10] Transaction Confirmation) and they also might (and should) implement add itional security measures.

NOTE
The U2F protocol lacks support for [SM-5] Secure Display, [SM-10] Transaction Confirmation, has only server-supplied [SM-8] Protocol Nonces,
and [SM-3] Authenticator Class Attestation is implicit as there is only a single class of device.

Transaction Confirmation (WYSIWYS): Secure Display (WYSIWYS) (optionally) implemented by the FIDO Authenticators is used by FIDO Client
for displaying relying party name and transaction data to be confirmed by the user.

[SM-11] (U2F + UAF + WebAuthn)
Round Trip Integrity: FIDO server verifies that the transaction data related to the server challenge received in the request message from the
FIDO Client is identical to the transaction data and server challenge delivered as part of the request message.

[SM-12] (U2F + UAF + WebAuthn)
Channel Binding: Relying Party servers may verify the continuity of a secure channel with a client application.

[SM-13] (UAF + WebAuthn)
Protecting Access to Authenticator (Key Handle Access Token, authenticator activation PIN): Authenticators are able to constrain the use of
registration keys within the privilege boundaries defined by the operating environment of the user device (per-user, or per application, or per-user
+ per-application as appropriate). FIDO UAF supports a method called Key Handle Access Token (KHAccesToken) [UAFAuthnrCommands].
Web Authentication supports an authenticator activation PIN (authenticatorClientPIN) [FIDOCTAP].

[SM-14] (U2F + UAF + WebAuthn)
AppID Separation: A Relying Party can declare the application identities allowed to access its registered keys, for operating environments on
user devices that support this concept. In the case of Web Authentication [WebAuthn] the application identity (called relying party ID "RP ID") is
automatically derived from the web origin.

[SM-15] (U2F + UAF + WebAuthn)
Signature Counter: Authenticators send a monotonically increasing signature counter that a Relying Party can check to possibly detect cloned
authenticators.

[SM-16] (U2F + UAF + WebAuthn)
Use of strong, modern Cryptographic Primitives: The FIDO specifications stipulate the use of strong, modern cryptographic primitives helping to
ensure the overall security of conformant FIDO implementations. The FIDO Authenticator certification program defines the "Allowed
Cryptography List" for allowed cryptographic primitives to be used in FIDO certified authenticators.

[SM-17] (U2F + UAF + WebAuthn)
Resistance to Side Channel Attacks.

[SM-18] (U2F + UAF + WebAuthn)
Resistance to Injected Faults in Cryptographic Functions. This security measure purely deals with the cryptographic functions, as compared to
the much more general [SM-28].

[SM-19] (U2F + UAF + WebAuthn)
Bounded Probability of a Birthday Collision. For randomly generated nonces (server side or client side), the total number of nonces that can be
generated is limited to bound the probability of a birthday collision of generated values.

[SM-20] (U2F + UAF + WebAuthn)
Individual authenticators are indistinguishable provided authenticators sharing attestation keys are manufactured in sufficiently large (e.g. >
100000) per-model batches.

[SM-21] (U2F + UAF + WebAuthn)
Authentication and replay-resistance (freshness assurance) of externally-stored protected information.

[SM-22] (U2F + UAF + WebAuthn)
Certified FIDO Authenticators fully described by the vendor, and tested to verify that it functions as specified.

[SM-23] (U2F + UAF + WebAuthn)
Key Handles containing a key are cryptographically linked with the Authenticator that produced the Key Handle and with the Relying Party
associated with the Key Handle.

[SM-24] (U2F + UAF + WebAuthn)
Design, implementation and manufacture of certified FIDO Authenticators supports Authenticator security.

[SM-25] (U2F + UAF + WebAuthn)
Depending on the certification level, certified authenticators are required to implement a Trusted Path for all user / Authenticator direct
interactions.

[SM-26] (U2F + UAF + WebAuthn)
Input Data Validation: Malformed or maliciously crafted input data does not result in unexpected Authenticator behavior.

[SM-27] (U2F + UAF + WebAuthn)
Protection of user verification reference data and biometric data.

[SM-28] (U2F + UAF + WebAuthn)
Resistance to Fault Injection Attacks.

[SM-29] (U2F + UAF + WebAuthn)
Resistance to Remote Timing Attacks: No leakage of secret information to remote entities via variation of operation execution time.

5.1 Relation between Measures and Goals
Security Goal Supporting Security Measures

[SG-1] Strong User Authentication

[SM-1] Key Protection
[SM-12] Channel Binding
[SM-14] AppID Separation
[SM-15] Signature Counter
[SM-16] Allowed Crypto Primitives
[SM-17] Resistance to Side Channel Attacks
[SM-21] Authentication and replay-resistance
[SM-23] Key Handles cryptographically linked with the Authenticator
[SM-25] Trusted path for all user interactions
[SM-29] Resistance to Remote Timing Attacks

[SG-2] Credential Guessing Resilience
[SM-1] Key Protection
[SM-6] Cryptographically Secure Verifier Database
[SM-16] Allowed Crypto Primitives

[SG-3] Credential Disclosure Resilience

[SM-1] Key Protection
[SM-9] Authenticator Certification
[SM-15] Signature Counter
[SM-17] Resistance to Side Channel Attacks
[SM-29] Resistance to Remote Timing Attacks

[SG-4] Unlinkability
[SM-2] Unique Authentication Keys
[SM-3] Authenticator Class Attestation
[SM-20] No Identifying Information

[SG-5] Verifier Leak Resilience
[SM-2] Unique Authentication Keys
[SM-6] Cryptographically Secure Verifier Database
[SM-16] Allowed Crypto Primitives

[SG-6] Authenticator Leak Resilience
[SM-9] Authenticator Certification
[SM-15] Signature Counter
[SM-16] Allowed Crypto Primitives

[SG-7] User Consent

[SM-1] Key Protection
[SM-5] User Consent
[SM-7] Secure Channel with Server Authentication
[SM-10] Transaction Confirmation (WYSIWYS)
[SM-25] Trusted path for all user interactions

[SG-8] Limited PII
[SM-2] Unique Authentication Keys
[SM-20] No Identifying Information

[SG-9] Attestable Properties
[SM-3] Authenticator Class Attestation
[SM-4] Authenticator Status Checking
[SM-9] Authenticator Certification

[SG-10] DoS Resistance [SM-8] Protocol Nonces

[SG-11] Forgery Resistance

[SM-7] Secure Channel with Server Authentication
[SM-8] Protocol Nonces
[SM-11] Round Trip Integrity
[SM-12] Channel Binding
[SM-17] Resistance to Side Channel Attacks
[SM-23] Key Handles cryptographically linked with the Authenticator
[SM-29] Resistance to Remote Timing Attacks

Security Goal Supporting Security Measures

[SG-12] Parallel Session Resistance

[SM-7] Secure Channel with Server Authentication
[SM-8] Protocol Nonces
[SM-11] Round Trip Integrity
[SM-12] Channel Binding

[SG-13] Forwarding Resistance

[SM-7] Secure Channel with Server Authentication
[SM-8] Protocol Nonces
[SM-11] Round Trip Integrity
[SM-12] Channel Binding

[SG-14] Transaction Non-Repudiation

[SM-1] Key Protection
[SM-2] Unique Authentication Keys
[SM-8] Protocol Nonces
[SM-9] Authenticator Certification
[SM-10] Transaction Confirmation (WYSIWYS)
[SM-11] Round Trip Integrity
[SM-12] Channel Binding
[SM-25] Trusted path for all user interactions

[SG-15] Respect for Operating Environment Security Boundaries
[SM-13] Key Handle Access Token
[SM-14] AppID Separation

Security Goal Supporting Security Measures

6. FIDO Security Assumptions
In this section, we enumerate the assumptions we are making regarding the security characteristics of the operating environment components on
which a FIDO implementation depends.
[SA-1]

The Authenticator and its cryptographic algorithms and parameters (key size, mode, output length, etc.) in use are not subject to unknown
weaknesses that make them unfit for their purpose in encrypting, digitally signing, and authenticating messages.

[SA-2]
Operating system privilege separation mechanisms relied up on by the software modules involved in a FIDO operation on the user device
perform as advertised. E.g. boundaries between user and kernel mode, between user accounts, and between applications (where applicable) are
securely enforced and security principals can be mutually, securely identifiable.

[SA-3]
Applications on the user device are able to establish secure channels that provide trustworthy server authentication, and confidentiality and
integrity for messages (e.g., through TLS).

[SA-4]
The computing environment on the FIDO user device and the and applications involved in a FIDO operation act as trustworthy agents of the
user.

[SA-5]
The inherent value of a cryptographic key resides in the confidence it imparts, and this commodity decays with the passage of time, irrespective
of any compromise event. As a result the effective assurance level of authenticators will be reduced over time.

[SA-6]
The computing resources at the Relying Party involved in processing a FIDO operation act as trustworthy agents of the Relying Party.

6.1 Discussion
With regard to [SA-4] and malicious computation on the FIDO user device, only very limited guarantees can be made within the scope of these
assumptions. Malicious code privileged at the level of the trusted computing base can always violate [SA-2] and [SA- 3]. Malicious code privileged at
the level of the users' account in traditional multi-user environments will also likely be able to violate [SA-3].
FIDO can also provide only limited protections when a user chooses to deliberately violate [SA-4], e.g. by roaming a USB authenticator to an untrusted
system like a kiosk, or by granting permissions to access all authentication keys to a malicious app in a mobile environment. Transaction Confirmation
can be used as a method to protect against compromised FIDO user devices.
In to components such as the FIDO Client, Server, Authenticators and the mix of software and hardware modules they are comprised of, the end-to-
end security goals also depend on correct implementation and adherence to FIDO security guidance by other participating components, including web
browsers and relying party applications. Some configurations and uses may not be able to meet all security goals. For example, authenticators may
lack a secure display, they may be composed only of unattestable software components, they may be deliberately designed to roam between
untrusted operating environments, and some operating environments may not provide all necessary security primitives (e.g., secure IPC, application

isolation, modern TLS implementations, etc.)

7. Threat Analysis
In the following tables describing threats, we mention the relevant attack class(es) in the left column if the threat might lead to user impersonation.

7.1 Threats to Client Side
7.1.1 Exploiting User’s pattern matching weaknesses

T-
1.1.1 Homograph Mis-Registration Violates

AC3

The user registers a FIDO authentication key with a fraudulent web site instead of the genuine Relying Party.
Consequences: The fraudulent site may convince the user to disclose a set of non-FIDO credentials sufficient to allow the
attacker to register a FIDO Authenticator under its own control, at the genuine Relying Party, on the users' behalf, violating [SG-1]
Strong User Authentication.
Mitigations: Disclosure of non-FIDO credentials is outside of the scope of the FIDO security measures, but Relying Parties
should be aware that the initial strength of an authentication key is no better than the identity-proofing applied as part of the
registration process.

SG-1

T-
1.1.2 Homograph Mis-Authentication Violates

AC3

The user accidentally browses to a fraudulent web site. The attacker tries to act as man-in-the-middle (MITM) and requests the
user to authenticate. In the case of username/password based authentication this is a typical phishing attack.
Consequences: The FIDO subsystem will determine that either (a) no FIDO authenticator has been registered with the
fraudulent site or (b) it will use the FIDO Uauth key registered to the fraudulent site - which is different from the Uauth key for the
relying party's site.
Mitigations: FIDO inherently ties keys to the relying party (formally identified by the AppID, and authenticated by TLS and the CA
infrastructure).

SG-1,
SG-4

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications

T-
1.2.1 FIDO Client Corrpution Violates

AC3

Attacker gains ability to execute code in the security context of the FIDO Client.
Consequences: Violation of [SA-4].
Mitigations: When the operating environment on the FIDO user device allows, the FIDO Client should operate in a privileged and
isolated context under [SA-2] to protect itself from malicious modification by anything outside of the Trusted Computing Base.

SA-4

T-
1.2.2 Logical/Physical User Device Attack Violates

AC3
/
AC5

Attacker gains physical access to the FIDO user device but not the FIDO Authenticator.
Consequences: Possible violation of [SA-4] by installing malicious software or otherwise tampering with the FIDO user device.
Mitigations: [SM-1] Key Protection prevents the disclosure of authentication keys or other assets during a transient compromise
of the FIDO user device.
A persistent compromise of the FIDO user device can lead to a violation of [SA-4] unless additional protection measures outside
the scope of FIDO are applied to the FIDO user device. (e.g. whole disk encryption and boot-chain integrity).

SA-4

T-
1.2.3 User Device Account Access Violates

AC3
/
AC4

Attacker gains access to a user's login credentials on the FIDO user device.
Consequences: Authenticators might be remotely abused, or weakly-verifying authenticators might be locally abused, violating
[SG-1] Strong User Authentication and [SG-14] Transaction Non-Repudiation.
Possible violation of [SA-4] by the installation of malicious software.
Mitigations: Relying Parties can use [SM-9] Authenticator Certification and [SM-3] Authenticator Class Attestation to determine
the nature of authenticators and not rely on weak, or weakly-verifying authenticators for high value operations.

SG-1,
SG-14;
SA-4

T-
1.2.4 App Server Verification Error Violates

AC3

A client application fails to properly validate the remote sever identity, accepts forged or stolen credentials for a remote server, or
allows weak or missing cryptographic protections for the secure channel.
Consequences: An active network adversary can modify the Relying Party's authenticator policy and downgrade the client's
choice of authenticator to make it easier to attack.
An active network adversary can intercept or view FIDO messages intended for the Relying Party. It may be able to use this ability
to violate [SG-12] Parallel Session Resistance, [SG-11] Forgery Resistance or [SG-13] Forwarding Resistance.
Mitigations: The server can verify [SM-8] Protocol Nonces to detect replayed messages and protect from an adversary that can
read but not modify traffic in a secure channel.
The server can mandate a channel with strong cryptographic protections to prevent message forgery and can verify a [SM-12]
Channel Binding to detect forwarded messages.

SG-11,
SG-12,
SG-13

T-
1.2.4 App Server Verification Error Violates

T-
1.2.5 RP App Corruption Violates

An attacker is able to obtain malicious execution in the security context of the Relying Party client application (e.g. via Cross-Site
Scripting (XSS)) or abuse the secure channel or session identifier after the user has successfully authenticated. This is a client
side attack.
Consequences: The attacker is able to control the users' session, violating [SG-14] Transaction Non-Repudiation.
Mitigations: The server can employ [SM-10] Transaction Confirmation to gain additional assurance for high value operations.

SG-14

T-
1.2.6 Fingerprinting Authenticators Violates

A remote adversary is able to uniquely identify a FIDO user device using the fingerprint of discoverable configuration of its FIDO
Authenticators.
Consequences: The exposed information violates [SG-8] Limited PII, allowing an adversary to violate [SG-7] User Consent by
strongly identfying the user without their knowledge and [SG-4] Unlinkablity by sharing that fingerprint.
Mitigations: [SM-3] Authenticator Class Attestation ensures that the fingerprint of an Authenticator will not be unique.
For web browsing situations where this threat is most prominent, user agents may provide additional user controls around the
discoverability of FIDO Authenticators.

SG-4,
SG7,
SG-8

T-
1.2.7 App to FIDO Client full MITM attack Violates

AC3

Malicious software on the FIDO user device is able to read, tamper with, or spoof the endpoint of inter-process communication
channels between the FIDO Client and browser or Relying Party application.
Consequences: Adversary is able to subvert [SA-2].
Mitigations: On platforms where [SA-2] is not strong the security of the system may depend on preventing malicious applications
from being loaded onto the FIDO user device. Such protections, e.g. app store policing, are outside the scope of FIDO.
When using [SM-10] Transaction Confirmation, the user will be presented with the relevant AppID and transaction text and will be
able to evaluate whether or not to consent to the transaction.

SA-2

T-
1.2.8 Authenticator to App Read-Only MITM attack Violates

AC3

An adversary is able to obtain an authenticator's signed protocol response message.
Consequences: The attacker attempts to replay the message to authenticate as the user, violating [SG-1] Strong User
Authentication, [SG-13] Forwarding Resistance and [SG-12] Parallel Session Resistance.
Mitigations: The server can use [SM-8] Protocol Nonces to detect replay of messages and verify [SM-11] Round Trip Integrity to
detect modified messages.

SG-1,
SG-12,
SG-13

T-
1.2.9 Malicious App Violates

AC3

A user installs an application that represents itself as being associated with to one Relying Party application but actually initiates a
protocol conversation with a different Relying Party and attempts to abuse previously registered authentication keys at that
Relying Party.
Consequences: Adversary is able to violate [SG-7] User Consent by misrepresenting the target of authentication.
Other consequences equivalent to [T-1.2.5]
Mitigations: If a [SM-5] Transaction Confirmation Display is present, the user may be able to verify the true target of an
operation.

SG-7

If the malicious application attempts to communicate directly with an Authenticator that uses [SM-13] KeyHandleAccessToken, it
should not be able to access keys registered by other FIDO Clients.
If the operating environment on the FIDO user device supports it, the FIDO client may be able to determine the application's
identity and verify if it is authorized to target that Relying Party using a [SM-14] AppID Separation.

T-
1.2.9 Malicious App Violates

T-
1.2.10 Phishing Attack Violates

AC2

A Phisher convinces the user to enter his PIN used for user verification into an application / web site disclosing the PIN to the
Phisher. In the traditional username/password world this enables the attacker to successfully impersonate the user (to the
relying party).
Consequences: None as the phisher additionally would need access to the Authenticator in order to pass user verification [SM-
1]. In FIDO, the user verification PIN (if user verification is done via PIN) is not known to the relying party and hence isn't
sufficient for user impersonation. If user verification is done using an alternative user verification method, this applies
accordingly.
Mitigations: In FIDO, the Uauth.priv key is used to sign a relying party supplied challenge. without (use) access to that key, no
impersonation is possible.

SG-1

T-
1.2.11 Malicious FIDO Client Violates

AC3

Attacker convinces users to install and use a malicious FIDO Client.
Consequences: Violation of [SA-4]. The malicious FIDO Client could trigger the use of any Uauth key in the context of the
related AppID. User Verification / User Presence Check will be performed by the Authenticator as indicated.
Mitigations: Mitigating malicious software installation is outside the scope of FIDO.
If an authenticator implements [SM-1] Key Protection, the user may be able to recover full control of their registered
authentication keys by removing the malicious software from their user device.
If it is a bound authenticator, then [SM-13] might help distinguishing the original FIDO Client (i.e. the one used at registration
time) from the malicious one.
When using [SM-10] Transaction Confirmation, the user sees the claimed AppIDs and transaction text and can decide to accept
or reject the action.
Platforms implementing FIDO can filter communication to FIDO Authenticators. Depending on the platform such filter
mechanisms may limit access to white-listed Apps.

SA-4

7.1.3 Threat to the communication between Client and FIDO Authenticator

T-
1.3.1 Malicious App with direct communication access to FIDO Authenticator Violates

AC3

Attacker convinces users to install and use a malicious App that gained direct communication access to a FIDO Authenticator.
Consequences: Violation of [SA-4]. The malicious App could trigger the use of any Uauth key in the context of the AppID
(related to that key). User Verification / User Presence Check will be performed by the Authenticator as indicated.
Mitigations: Mitigating malicious software installation is outside the scope of FIDO.
If an authenticator implements [SM-1] Key Protection, the user may be able to recover full control of their registered
authentication keys by removing the malicious software from their user device.
If it is a bound authenticator, then [SM-13] might help distinguishing the original FIDO Client (i.e. the one used at registration time)
from the malicious one.
When using [SM-10] Transaction Confirmation, the user sees the claimed AppIDs and transaction text and can decide to accept
or reject the action.
Platforms implementing FIDO can filter communication to FIDO Authenticators. Depending on the platform such filter mechanisms
may limit access to white-listed Apps.

SA-4

T-
1.3.2 Malicious Device with direct communication access to FIDO Authenticator Violates

AC3

Attacker operates a malicious device that can intercept and modify (full MITM attack) the communication between Client and
FIDO Authenticator (e.g. through some wireless transport protocol supported by the FIDO Authenticator).
Consequences: Violation of [SA-4]. The malicious device could trigger the use of any Uauth key in the context of the AppID
(related to that key). User Verification / User Presence Check will be performed by the Authenticator as indicated.
Mitigations: FIDO expects each transport protocol (i.e. the communication between client and FIDO Authenticator) to provide a
secure link (e.g. see section 8.3.3 in [FIDOCTAP].

SA-4

When using [SM-10] Transaction Confirmation, the user sees the claimed AppIDs and transaction text and can decide to accept
or reject the action.

T-
1.3.2 Malicious Device with direct communication access to FIDO Authenticator Violates

T-
1.3.3 Hostile ASM / Client Violates

AC3,
AC5,
AC6

In this threat, the Authenticator support infrastructure is hostile, and can feed arbitrary data to the Authenticator. For example
some SW running on the User Device and having direct access to the Authenticator (e.g. through CTAP). Or some software
running on a separate device that also has direct access to the Authenticator (e.g. through CTAP via BLE transport).
Consequences: May undermine [SG-4], [SG-5], [SG-7], [SG-8].
Mitigations: This threat is mitigated by [SM-10], [SM-13].

SG-4,
SG-5,
SG-7,
SG-8

7.2 Threats to FIDO Authenticator
T-

1.4.1 Malicious Authenticator Violates

AC2,
AC3

Attacker convinces users to use a maliciously implemented authenticator.
Consequences: The fake authenticator does not implement any appropriate security measures and is able to violate all security
goals of FIDO.
Mitigations: A user may be unable to distinguish a malicious authenticator, but a Relying Party can use [SM-3] Authenticator
Class Attestation to identify and only allow registration of reliable authenticators that have passed [SM-9] Authenticator
Certification.
A Relying Party can additionally rely on [SM-4] Authenticator Status Checking to check if an attestation presented by a malicious
authenticator has been marked as compromised.

SG-1

T-
1.4.2 Uauth.priv Key Compromise Violates

AC2

Attacker succeeds in extracting a user's cryptographic authentication private key for use in a different context.
Consequences: The attacker could impersonate the user with a cloned authenticator that does not do trustworthy user
verification, violating [SG-1].
Mitigations: [SM-1] Key Protection measures are intended to prevent this.
Each authentication private key is only used for one relying party.
Relying Parties can check [SM-9] Authenticator Certification attributes to determine the type of key protection in use by a given
authenticator class.
Relying Parties can additionally verify the [SM-15] Signature Counter and detect that an authenticator has been cloned if it ever
fails to advance relative to the prior operation.

SG-1

T-
1.4.3 User Verification By-Pass Violates

AC3,
AC5

Attacker could use the cryptographic authentication key (inside the authenticator) either with or without being noticed by the
legitimate user.
Consequences: Attacker could impersonate user, violating [SG-1].
Mitigations: A user can only register and a Relying Party only allow authenticators that perform [SM-1] Key Protection with an
appropriately secure user verification process.
Does not apply to Silent Authenticators (see [FIDOGlossary]).

SG-1

T-
1.4.4 Physical Authenticator Attack Violates

AC2,
AC5,
AC6

Attacker could get physical access to FIDO Authenticator (e.g. by stealing it).
Consequences: Attacker could bring the authenticator in a lab in order to use the authentication key (e.g. by-passing user
verification and knowing the RP related to this key). If this physical attack succeeds, the attacker could successfully impersonate
the user, violating [SG-1] Strong User Authentication.
Attacker can introduce a low entropy situation to recover an ECDSA signature key (or optherwise extract the Uauth.priv key),
violating [SG-9] Attestable Properties if the attestation key is targeted or [SG-1] Strong User Authentication if a user key is
targeted.
Mitigations: [SM-1] Key Protection includes requirements to implement strong protections for key material, including resilience to
offline attacks and low entropy situations.

SG-1

Relying Parties should use [SM-3] Authenticator Class Attestation to only accept Authenticators implementing a sufficiently strong
user verification method.

T-
1.4.4 Physical Authenticator Attack Violates

T-
1.4.6 Fake Authenticator Violates

AC2

Attacker is able to extract the authenticator attestation key from an authenticator, e.g. by neutralizing physical countermeasures in
a laboratory setting.
Consequences: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or software device that
represents itself as a legitimate one.
Mitigations: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-compromised keys. Identification of
such compromise is outside the strict scope of the FIDO protocols.

SG-9

T-
1.4.7 Transaction Confirmation Display Overlay Attack Violates

AC6

Attacker is able to subvert [SM-5] Secure Display functionality (WYSIWYS), perhaps by overlaying the display with false
information.
Consequences: Violation of [SG-14] Transaction Non-Repudiation.
Mitigations: Authenticator implementations must take care to protect in their implementation of a secure display, e.g. by
implementing a distinct hardware display or employing appropriate privileges in the operating environment of the user device to
protect against spoofing and tampering.
[SM-9] Authenticator Certification will provide Relying Parties with metadata about the nature of a transaction confirmation display
information that can be used to assess whether it matches the assurance level and risk tolerance of the Relying Party for that
particular transaction.

SG-14

T-
1.4.8 Signature Algorithm Attack Violates

AC1,
AC2,
AC3,
AC5

A cryptographic attack is discovered against the public key cryptography system used to sign data by the FIDO authenticator. See
also T-1.4.10.
Consequences: Attacker is able to use messages generated by the client to violate [SG-2] Credential Guessing Resistance.
Mitigations: [SM-8] Protocol Nonces, including client-generated entropy, limit the amount of control any adversary has over the
internal structure of an authenticator.
[SM-1] Key Protection for non-silent authenticators requires user interaction to authorize any operation performed with the
authentication key, severely limiting the rate at which an adversary can perform adaptive cryptographic attacks.

SG-2

T-
1.4.9 Abuse Functionality Violates

AC2,
AC3,
AC5,
AC6

It might be possible for an attacker to abuse the Authenticator functionality by sending commands with invalid parameters or
invalid commands to the Authenticator.
Consequences: This might lead to e.g., user verification by-pass or potential key extraction.
Mitigations: Proper robustness (e.g. due to testing) of the Authenticator firmware.

SG-1

T-
1.4.10 Random Number prediction Violates

AC2,
AC3,
AC5,
AC6

It might be possible for an attacker to get access to information allowing the prediction of RNG data.
Consequences: This might lead to key compromise situation [T-1.4.2] when using ECDSA (if the k value is used multiple times
or if it is predictable).
Mitigations: Proper robustness of the Authenticator's RNG and verification of the relevant operating environment parameters
(e.g. temperature, ...).

SG-1

T-
1.4.11 Firmware Rollback Violates

Attacker might be able to install a previous and potentially buggy version of the firmware.
Consequences: This might lead to successful attacks, e.g. T-1.4.9.
Mitigations: Proper robustness firmware update and verification method.

SG-1

T-
1.4.12 User Verification Data Injection Violates

AC3,
AC6

Attacker might be able to inject pre-captured user verification data into the Authenticator. For example, if a password is used as
user verification method, the attacker could capture the password entered by the user and then send the correct password to the
Authenticator (by-passing the expected keyboard/PIN pad). Passwords could be captured ahead of the attack e.g. by convincing
the user to enter the password into a malicious app (“phishing”) or by spying directly or indirectly the password data.
In another example, some malware could play an audio stream which would be recorded by the microphone and used by a
Speaker-Recognition based Authenticator.
Consequences: This might lead to successful user impersonation (if the attacker has access to valid user verification data).
Mitigations: Use a physically secured user verification input method, e.g. Fingerprint Sensor or Trusted-User-Interface for PIN
entry which cannot be by-passed by malware.

SG-1

T-
1.4.13 Verification Reference Data Modification Violates

AC3,
AC6

An attacker gains logical or physical access to the Authenticator and modifies Verification Reference Data (e.g. hashed PIN
value, fingerprint templates) stored in the Authenticator and adds reference data known to or reproducible by the attacker.
Consequences: The attacker would be recognized as the legitimate User and could impersonate the user.
Mitigations: [SM-27] Proper protection of the verification reference data and biometric data in the Authenticator.

SG-1

T-
1.4.14 Read access to captured user verification data Violates

AC3,
AC6

The Attacker gained read access to the captured user verification data (e.g. PIN, fingerprint image, ...).
Consequences: The attacker gets access to PII and could disclose it violating [SG-8].
Mitigations: Limiting access to the user verification data to the Authenticator exclusively.

SG-8

T-
1.4.15 Compromised the internal PRNG state and the entropy source Violates

AC1,
AC2,
AC5

In this threat, an attacker compromises the entropy source prior to the Authenticator initially seeding the PRNG during
initialization or otherwise compromises the internal PRNG state, and the attacker is able to know or specify all future entropy
inputs to the PRNG. No PRNG is able to recover to a secure status under this threat, but it serves as a useful point for
comparison.
Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14].
Mitigations: This constitutes a complete compromise of the RNG, with no ability to recover, so mitigation for this threat involves
reducing the impact of a compromised RNG. This is partially mitigated by using an allowed random number generator that allows
secure integration of additional input [SM-16] and introduction of data derived from the RP challenge additional input to the
PRNG, which can help so long as the attacker has not additionally compromised the TLS session or the ASM / Authenticator
link. Using the deterministic signature generation methods (e.g., RFC 6979) can reduce the risk of compromise of existing keys
during the signature process, as can using the private key and hash of the signed message as additional input to the PRNG
during signature generation. Prevention of non-scalable versions of this style of attack is at least partially addressed by [SM-17]
and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.16 Compromised entropy source after successful seeding during initialization Violates

AC1,
AC2,
AC5

In this threat, an attacker gains the ability to influence the Authenticator’s entropy source, but only after the initial seeding has
been conducted (e.g., if initial seeding occurred prior to the attack and / or as per-Authenticator factory injection of entropy).
Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14].
Mitigations: This is mitigated by using an allowed PRNG which retains PRNG state between power cycles; i.e., which
conserves PRNG state even when being reseeded [SM-16]. Prevention of non-scalable versions of this style of attack is at least
partially addressed by [SM-17] and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.17 Compromised the internal PRNG state, but not the entropy source Violates

AC1,
AC2,
AC5

In this threat, an attacker compromises the entropy source prior to seeding the PRNG or otherwise compromises the internal
PRNG state, but then at some point, the attacker no longer can access / control the entropy source.
Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14]
Mitigations: This can be mitigated by Authenticators reseeding periodically from an internal entropy source [SM-16]. As a note,
this imposes a total number of random number generator requests prior to a required reseed event; in the event that the
Authenticator does not have an entropy source internally, this may act as a hard limit on the number of registrations /

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,

authentications that such an Authenticator can perform. Prevention of non-scalable versions of this style of attack is at least
partially addressed by [SM-17] and [SM-18].

SG-14T-
1.4.17 Compromised the internal PRNG state, but not the entropy source Violates

T-
1.4.18 Bad Key Generation Violates

AC1,
AC2,
AC5

In this threat, random chance or active attack causes the key generated to be cryptographically flawed; e.g., a RSA key that can
be factored using the Pollard p-1 algorithm more quickly than with the General Number Field Sieve. See also T-1.4.21.
Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14]
Mitigations: This is mitigated by requiring use of an allowed random number generator (in the case of certified authenticators),
requiring that keys be generated in the way required in the relevant standard specified in the Allowed Cryptography List [SM-16],
and making the key generation process resistant to tampering by the attacker [SM-18].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

T-1.4.19 Local external side channel attacks Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker with possession of the Authenticator may be able to extract keys using timing, power, RF, or near-
field analysis. The impact depends on the key or secret recovered.
Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14].
Mitigations: This is mitigated by the side channel resistance security measure [SM-17].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

T-1.4.20 Internal side channel attacks Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker controlling a process running on the same hardware environment as the Authenticator may be
able to recover keys by using information leaked by hardware or operating system characteristics (e.g., how often the
attacker’s process is scheduled, the state of the L1, L2 caches, etc.).
Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].
Mitigations: This is mitigated by the side channel resistance security measure [SM-17].

SG-1,
SG-4,
SG-11,
SG-14

T-1.4.21 Error injection during key or signature generation Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker is able to inject an error in the key or signature generation process that leaks part or all of the
private key.
Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].
Mitigations: This is mitigated by [SM-18] and [SM-28].

SG-1,
SG-4,
SG-11,
SG-14

T-
1.4.22 Birthday Paradox Collision Violates

AC3,
AC6

In this threat, a set of randomly generated parameters collide. The probability of this occurrence can be bounded using analysis
similar to that associated with the classical Birthday Paradox.
Consequences: May undermine [SG-1], [SG-11], [SG-14].
Mitigations: Establishing a bounded number of allowable outputs based on the size of the randomly generated value [SM-19].

SG-1,
SG-11,
SG-14

T-
1.4.23 Privacy Reduction Violates

AC1

In this threat, a small number of Authenticators share an attestation key which leaks information about the user across Relying
Parties.
Consequences: May undermine [SG-4].
Mitigations: This is mitigated by [SM-20].

SG-4

T-
1.4.24 Covert Channel Violates

AC1

In this threat, an Authenticator is malicious (either by design, or after having been independently compromised) and it is
configured to leak secret or identifying data within apparently normal exchanges, or to other processes on the same hardware
platform as the Authenticator.
Consequences: May undermine [SG-1], [SG-4], [SG-5], [SG-6], [SG-8], [SG-11], [SG-14].
Mitigations: Note: This is an interesting thought experiment; use of random nonces and other non-deterministic elements make
protection against this threat problematic.

SG-1,
SG-4,
SG-5,
SG-6,
SG-8,
SG-11,
SG-14

T-
1.4.25

Substitution of Protected Information Violates

AC1,
AC3,
AC5,
AC6

In this threat, an attacker substitutes protected information, either by modifying it piecemeal, or by completely substituting it with
another value. (Some encryption modes allow an attacker to target bit-level changes to the plaintext. Authenticated data may
also have been replaced with data that had previously been authenticated in the same way.)
Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].
Mitigations: This threat is mitigated by [SM-1], [SM-16], [SM-21].

SG-1,
SG-4,
SG-11,
SG-14

T-
1.4.26 Compromise of Protected Information Violates

AC1,
AC2,
AC5,
AC6

In this threat, an attacker recovers data that should be protected by the Authenticator.
Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-5], [SG-7], [SG-8], [SG-11], [SG-14].
Mitigations: This threat is mitigated by using allowed cryptographic primitives [SM-1], [SM-16].

SG-1,
SG-2,
SG-4,
SG-5,
SG-7,
SG-8,
SG-11,
SG-14

T-
1.4.27 Signature or registration counter non-monotonicity Violates

AC1

In this threat, an attacker may be able to cause these counters to be reset, to roll over, or otherwise to decrease in value.
Consequences: May undermine [SG-1], [SG-12], [SG-14].
Mitigations: This threat is mitigated by [SM-15].

SG-1,
SG-12,
SG-14

T-
1.4.28 Unexpected use of User Verification Caching Violates

AC3,
AC6

In this threat the FIDO Authenticator support User Verification Caching (e.g. section 5.5. in [UAFRegistry]), and the RP App
triggers a signature assertions to be created by the authenticator in which malware convinces the FIDO Authenticator to use
User Verification Caching (i.e. not verifying the user if the FIDO Authenticator has verified the user within a specified time frame)
and specifies a large timeframe so that the user is not freshly verified.
Consequences: May undermine [SG-4], [SG-5], [SG-7], [SG-8].
Mitigations: Conforming Authenticators will add a signed extension to the signature assertion indicating that User Verification
Caching was indeed activated and also indicating the maximum acceptable caching time. Conforming FIDO Servers will only
accept such signature assertion if the use of user verification caching was triggered by the FIDO Server - indicating that the
FIDO Server is aware of the implications (e.g. no explicit user consent).

SG-1,
SG-7

T-1.4.29 Debug Interface Violates
AC2
(associated
with shared
keys), AC3
(associated
with shared
keys), AC5,
AC6

In this threat, the Authenticator has a hardware or software debugging interface that is not completely disabled prior to
distribution of the Authenticator (e.g., pads for a JTAG port).
Consequences: May undermine [SG-1], [SG-4], [SG-5], [SG-6], [SG-8], [SG-11], [SG-14].
Mitigations: This threat is mitigated by [SM-18], [SM-22], and [SM-28].

SG-1,
SG-4,
SG-5,
SG-6,
SG-8,
SG-11,
SG-14

T-
1.4.30 Fault induced by malformed input Violates

AC2,
AC3,
AC5,
AC6

In this threat, the Authenticator behaves in an unexpected fashion due to an error in processing malformed input. The result of
this style of attack is poorly controllable, absent strong internal segmentation of the Authenticator.
Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-6], [SG-7], [SG-8], [SG-11], [SG-14], [SG-16].
Mitigations: This threat is mitigated by [SM-1], [SM-2], [SM-4], [SM-5], [SM-10], [SM-5], [SM-23], [SM-13], [SM-26].

SG-1,
SG-2,
SG-3,
SG-4,
SG-6,
SG-7,
SG-8,
SG-11,
SG-14,
SG-16

T-1.4.31 Fault Injection Attack Violates

AC2
(associated

In this threat, an attacker subjects the Authenticator to conditions that induce hardware faults (e.g., exposure to photons or
charged particles, inducing variations in supply voltage or external clock, altering the temperature, etc.) in an attempt to
subvert some logical or physical protection. The result of this style of attack is poorly controllable, absent active detection

SG-1,
SG-2,
SG-3,
SG-4,

with shared
keys), AC5,
AC6

and response functionality within the Authenticator. This is related to T-1.4.21, but applies more broadly.
Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-6], [SG-7], [SG-8], [SG-11], [SG-14], [SG-16].
Mitigations: Mitigated by [SM-1], [SM-2], [SM-4], [SM-5], [SM-10], [SM-5], [SM-18], [SM-23], [SM-13], [SM-26], [SM-28].

SG-6,
SG-7,
SG-8,
SG-11,
SG-14,
SG-16

T-1.4.31 Fault Injection Attack Violates

T-
1.4.32 Remote Timing Attacks Violates

AC2,
AC5

In this threat, an attacker may be able to extract keys using a timing attack from a remote location. The impact depends on the
key or secret recovered.
Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14].
Mitigations: This threat is mitigated by the remote timing attack resistance security measure [SM-29].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

7.3 Threats to Relying Party
7.3.1 Threats to FIDO Server Data

T-
2.1.1 FIDO Server DB Read Attack Violates

Attacker could obtains read-access to FIDO Server registration database.
Consequences: Attacker can access all cryptographic key handles and authenticator characteristics associated with a username.
If an authenticator or combination of authenticators is unique, they might use this to try to violate [SG-2] Unlinkability.
Attacker attempts to perform factorization of public keys by virtue of having access to a large corpus of data, violating [SG-5]
Verifier Leak Resilience and [SG-2] Credential Guessing Resilience.
Mitigations: [SM-2] Unique Authentication Keys help prevent disclosed key material from being useful against any other Relying
Party, even if successfully attacked.
The use of an [SM-6] Cryptographically Secure Verifier Database helps assure that it is infeasible to attack any leaked verifier
keys.
[SM-9] Authenticator Certification along with [SM-16] should help prevent authenticators with poor entropy from entering the
market, reducing the likelihood that even a large corpus of key material will be useful in mounting attacks.

SG-2,
SG-5

T-
2.1.2 FIDO Server DB Modification Attack Violates

AC1

Attacker gains write-access to the FIDO Server registration database.
Consequences: Violation of [SA-6]
The attacker may inject a key registration under its control, violating [SG-1] Strong User Authentication.
Mitigations: Mitigating such attacks is outside the scope of the FIDO specifications. The Relying Party must maintain the integrity
of any information it relies up on to identify a user as part of [SA-6].

SA-6

T-
2.2.1 Web App Malware Violates

Attacker gains ability to execute code in the security context of the Relying Party web application or FIDO Server.
Consequences: Attacker is able to violate [SG-1], [SG-10], [SG-9] and any other Relying Party controls.
Mitigations: The consequences of such an incident are limited to the relationship between the user and that particular Relying
Party by [SM-1], [SM-2], and [SM-5].
Even within the Relying Party to user relationship, a user can be protected by [SM-10] Transaction Confirmation if the compromise
does not include the users' computing environment.

SG-1,
SG-9,
SG-10

T-
2.2.2 Linking through compromised Relying Party database Violates

AC1

In this threat, a Relying Party is able to access another Relying Party’s database (either because the Relying Parties are
collaborating or because of the compromise of another Relying Party’s database). The malicious party then sends Key Handles
(which may contain a wrapped private key) from the other Relying Party’s database in an attempt to link the two separate
accounts to the same Authenticator (thus user).
Consequences: May undermine [SG-1], [SG-4].
Mitigations: This threat is mitigated by [SM-1], [SM-2], [SM-5], [SM-23].

SG-1,
SG-4

7.4 Threats to the Secure Channel between Client and Relying Party
7.4.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

FIDO takes as a base assumption that [SA-3] applications on the user device are able to establish secure channels that provide trustworthy server
authentication, and confidentiality and integrity for messages. e.g. through TLS. [T-1.2.4] Discusses some consequences of violations of this
assumption due to implementation errors in a browser or client application, but other threats exist in different layers.

T-
3.1.1 TLS Proxy Violates

AC3

The FIDO user device is administratively configured to connect through a proxy that terminates TLS connections. The client trusts
this device, but the connection between the user and FIDO server is no longer end-to-end secure.
Consequences: Any such proxies introduce a new party into the protocol. If this party is untrustworthy, consequences may be as
for [T-1.2.4].
Mitigations: Mitigations for [T-1.2.4] apply, except that the proxy is considered trusted by the client, so certain methods of [SM-
12] Channel Binding may indicate a compromised channel even in the absence of an attack. Servers should use multiple methods
and adjust their risk scoring appropriately. A trustworthy client that reports a server certificate that is unknown to the server and
does not chain to a public root may indicate a client behind such a proxy. A client reporting a server certificate that is unknown to
the server but validates for the server's identity according to commonly used public trust roots is more likely to indicate [T-3.1.2].

SG-11,
SG-12,
SG-13

T-
3.1.2 Fraudulent TLS Server Certificate Violates

AC3

An attacker is able to obtain control of a certificate credential for a Relying Party, perhaps from a compromised Certification
Authority or poor protection practices by the Relying Party.
Consequences: As for [T-1.2.4].
Mitigations: As for [T-1.2.4].

SG-11,
SG-12,
SG-13

T-
3.1.3 Protocol level real-time MITM attack Violates

AC3

An adversary can intercept and manipulate network packets sent from the relying party to the client. The adversary uses this
capability to (a) terminate the underlying TLS session from the client at the adversary and to (b) simultaneously use another TLS
session from the adversary to the relying party. In the traditional username/password world, this allows the adversary to intercept
the username and the password and then successfully impersonate the user at the relying party.
Consequences: None if FIDO channelBinding [SM-12] or transaction confirmation [SM-10] are used.
Mitigations: In the case of channelBinding [SM-12], the FIDO server will detect the MITM in the TLS channel by comparing the
channel binding information provided by the client and the channel binding information retrieved locally by the server.
In the case of transaction confirmation [SM-10], the user verifies and approves a particular transaction. The adversary could
modify the transaction before approval. This would lead to rejection by the user. Alternatively, the adversary could modify the
transaction after approval. This will break the signature in the transaction confirmation response. The FIDO Server will not accept
it as a consequence.
HTTP Public Key Pinning (RFC7469) can also be used to mitigate this attack (outside the FIDO stack).

SG-11,
SG-12,
SG-13

7.5 Threats to the Infrastructure
7.5.1 Threats to FIDO Authenticator Manufacturers

T-
4.1.1 Manufacturer Level Attestation Key Compromise Violates

AC2

Attacker obtains control of an attestation key or attestation key issuing key.
Consequences: Same as [T-1.4.6]: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or
software device that represents itself as a legitimate one.
Mitigations: Same as [T-1.4.6]: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-compromised
keys. Identification of such compromise is outside the strict scope of the FIDO protocols.

SG-9

T-
4.1.2 Malicious Authenticator HW Violates

AC1,
AC2,
AC3,
AC5,
AC6

FIDO Authenticator manufacturer relies on hardware or software components that generate weak cryptographic authentication
key material or contain backdoors.
Consequences: Effective violation of [SA-1] in the context of such an Authenticator.
Mitigations: The process of [SM-9] Authenticator Certification may reveal a subset of such threats, but it is not possible that all
such can be revealed with black box testing and white box examination may be is economically infeasible. Users and Relying
Parties with special concerns about this class of threat must exercise their own necessary caution about the trustworthiness and

SA-1

verifiability of their vendors and supply chain. [SM-24] builds confidence that an Authenticator is not malicious or poorly
implemented.

T-
4.1.2 Malicious Authenticator HW Violates

7.5.2 Threats to FIDO Server Vendors

T-
4.2.1 Vendor Level Trust Anchor Injection Attack Violates

Attacker adds malicious trust anchors to the trust list shipped by a FIDO Server vendor.
Consequences: Attacker can deploy fake Authenticators which Relying Parties cannot detect as such, which do not implement
any appropriate security measures, and is able to violate all security goals of FIDO.
Mitigations: This type of supply chain threat is outside the strict scope of the FIDO protocols and violates [SA-6]. Relying Parties
can verify their trust list against the data published by the FIDO Alliance Metadata Service [FIDOMetadataService] (see
https://fidoalliance.org/mds).

SA-6

7.5.3 Threats to FIDO Metadata Service Operators

T-
4.3.1 Metadata Service Signing Key Compromise Violates

The attacker gets access to the private Metadata TOC signing key.
Consequences: The attacker could sign invalid Metadata. The attacker could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).
make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)
inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchor and
the cross-signed original attestation root certificate. This malicious trust anchors could be used to sign attestation certificates
for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but not protecting their keys
as stated in the metadata.

Mitigations: The Metadata Service operator should protect the Metadata signing key appropriately, e.g. using a hardware
protected key storage.
Relying parties could use out-of-band methods to cross-check Metadata Statements with the respective vendors and cross-check
the revocation state of the Metadata signing key with the provider of the Metadata Service.

SG-9

T-
4.3.2 Metadata Statement Data Injection Violates

An attacker injects malicious Authenticator data into the Metadata Statement.
Consequences: The attacker could make the Metadata Service operator sign invalid Metadata Statements. The attacker could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).
make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)
inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchor and
the cross-signed original attestation root certificate. This malicious trust anchors could be used to sign attestation certificates
for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but not protecting their keys
as stated in the metadata.

Mitigations: The Metadata Service operator could carefully review the delta between the old and the new Metadata Statements.
Authenticator vendors could verify the published Metadata Statements related to their Authenticators.

SG-9

7.6 Threats Specific to Second Factor Authenticators (U2F /UAF / WebAuthn)
T-

5.1.1 Error Status Side Channel Violates

Relying parties issues an authentication challenge to an authenticator and can infer from error status if it is already registered.
Consequences: UAF Silent authenticators / U2F authenticators not requiring user interaction for generating a signed response
may be used to track users without their consent by issuing a pre-authentication challenge to them, revealing the identity of an
otherwise anonymous user. Users would be identifiable by relying parties without their knowledge, violating [SG-7].
Mitigations: The U2F specification recommends that browsers prompt users whether to allow this operation using mechanisms
similar to those defined for other privacy sensitive operations like Geolocation.

SG-7

T-
5.1.2 Malicious RP Violates

Malicious relying party mounts a cryptographic attack on a key handle it is storing.

AC1

Consequences: If the Relying Party is able to recover the contents of the key handle, it might forge logs of protocol exchanges to
associate the user with actions he or she did not perform.
If the Relying Party is able to recover the key used to wrap a key handle, that key is likely used for all key handles, and hence
might be used to decrypt key handles stored with other Relying Parties and violate [SG-1] Strong User Authentication.
Mitigations: None. Some U2F Authenticators and some Authenticators implementing Web Authentication (i.e. the ones without
"resident keys") depend on [SA-1] to hold for key wrapping operations.

SG-1

T-
5.1.2 Malicious RP Violates

T-
5.1.3 Physical Attack on a User Presence Authenticator Violates

AC5

Attacker gains physical access to an authenticator with only user presence check (e.g., by stealing it).
Consequences: Same as for [T-1.4.4].
Such authenticators have weak local user verification. If the attacker can guess the username and password/PIN, they can
impersonate the user, violating [SG-1] Strong User Authentication.
Mitigations: Relying Parties can use strong additional factors.
Relying Parties should provide users a means to revoke keys associated with a lost device.

SG-1

T-5.1.4 Physical Attack Violates

AC2
(associated
with shared
keys), AC5

In this threat, keys or other sensitive information is read out by directly accessing it from the authenticator that the attacker
has physically compromised.
Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].
Authenticator with user presence check have weak local user verification. If the attacker can guess the username and
password/PIN, they can impersonate the user, violating [SG-1] Strong User Authentication.
Mitigations: Mitigated by resistance to injected faults [SM-18] and [SM-28].

SG-1,
SG-4,
SG-11,
SG-14

8. Acknowledgements
We thank iSECpartners for their review of, and contributions to, this document.

A. References
A.1 Informative references
[FIDOCTAP]

FIDO 2.0: Client To Authenticator Protocol. URL: https://fidoalliance.org/specs/fido-v2.0-rd-20170927/fido-client-to-authenticator-protocol-v2.0-rd-
20170927.html

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-rd-
20180702/fido-metadata-service-v2.0-rd-20180702.html

[PasswordAuthSchemesKeyIssues]
Chwei-Shyong Tsai; Cheng-Chi Lee; Min-Shiang Hwang. Password Authentication Schemes: Current Status and Key Issues. September 2006.
URL: http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf

[QuestToReplacePasswords]
Joseph Bonneau; Cormac Herley; Paul C. van Oorschot; Frank Stajano. The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes. March 2012. URL: http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[U2FOverview]
S. Srinivas; D. Balfanz; E. Tiffany. FIDO U2F Overview v1.0. Draft. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-
overview-v1.2-ps-20170411.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL: https://fidoalliance.org/specs/fido-
uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html

[WebAuthn]

https://www.isecpartners.com
https://fidoalliance.org/specs/fido-v2.0-rd-20170927/fido-client-to-authenticator-protocol-v2.0-rd-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20170927/fido-client-to-authenticator-protocol-v2.0-rd-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-metadata-service-v2.0-rd-20180702.html
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html

Vijay Bharadwaj; Hubert Le Van Gong; Dirk Balfanz; Alexis Czeskis; Arnar Birgisson; Jeff Hodges; Michael B. Jones; Rolf Lindemann; J. C.
Jones. Web Authentication: An API for accessing Scoped Credentials. September 2016. Draft. URL: https://www.w3.org/TR/webauthn/

https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/

FIDO Registry of Predefined Values
FIDO Alliance Review Draft 02 July 2018
This version:

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
Previous version:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract
This document defines all the strings and constants reserved by FIDO protocols. The values defined in this document
are referenced by various FIDO specifications.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.
This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments
are welcome.
This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the
Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an
appropriate license for such use is available.
Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.
THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-registry-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
mailto://rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents
1. Notation

1.1 Conformance
2. Overview
3. Authenticator Characteristics

3.1 User Verification Methods
3.2 Key Protection Types
3.3 Matcher Protection Types
3.4 Authenticator Attachment Hints
3.5 Transaction Confirmation Display Types
3.6 Tags used for crypto algorithms and types

3.6.1 Authentication Algorithms
3.6.2 Public Key Representation Formats
3.6.3 Authenticator Attestation Types

3.7 Authenticator Attestation Types
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “UAF-TLV”.
In formulas we use “|” to denote byte wise concatenation operations.
FIDO specific terminology used in this document is defined in [FIDOGlossary].
Some entries are marked as "(optional)" in this spec. The meaning of this is defined in other FIDO specifications
referring to this document.

1.1 Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this
specification are non-normative. Everything else in this specification is normative.
The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this specification are to be
interpreted as described in [RFC2119].

2. Overview
This section is non-normative.
This document defines the registry of FIDO-specific constants common to multiple FIDO protocol families. It is expected
that, over time, new constants will be added to this registry. For example new authentication algorithms and new types of
authenticator characteristics will require new constants to be defined for use within the specifications.

3. Authenticator Characteristics
This section is normative.

3.1 User Verification Methods
The USER_VERIFY constants are flags in a bitfield represented as a 32 bit long integer. They describe the methods and
capabilities of an UAF authenticator for locally verifying a user. The operational details of these methods are opaque to
the server. These constants are used in the authoritative metadata for an authenticator, reported and queried through the
UAF Discovery APIs, and used to form authenticator policies in UAF protocol messages.

All user verification methods must be performed locally by the authenticator in order to meet FIDO privacy principles.
USER_VERIFY_PRESENCE 0x00000001

This flag MUST be set if the authenticator is able to confirm user presence in any fashion. If this flag and no other is
set for user verification, the guarantee is only that the authenticator cannot be operated without some human
intervention, not necessarily that the sensing of "presence" provides any level of user verification (e.g. a device that
requires a button press to activate).

USER_VERIFY_FINGERPRINT 0x00000002
This flag MUST be set if the authenticator uses any type of measurement of a fingerprint for user verification.

USER_VERIFY_PASSCODE 0x00000004
This flag MUST be set if the authenticator uses a local-only passcode (i.e. a passcode not known by the server) for
user verification.

USER_VERIFY_VOICEPRINT 0x00000008
This flag MUST be set if the authenticator uses a voiceprint (also known as speaker recognition) for user verification.

USER_VERIFY_FACEPRINT 0x00000010
This flag MUST be set if the authenticator uses any manner of face recognition to verify the user.

USER_VERIFY_LOCATION 0x00000020
This flag MUST be set if the authenticator uses any form of location sensor or measurement for user verification.

USER_VERIFY_EYEPRINT 0x00000040
This flag MUST be set if the authenticator uses any form of eye biometrics for user verification.

USER_VERIFY_PATTERN 0x00000080
This flag MUST be set if the authenticator uses a drawn pattern for user verification.

USER_VERIFY_HANDPRINT 0x00000100
This flag MUST be set if the authenticator uses any measurement of a full hand (including palm-print, hand geometry
or vein geometry) for user verification.

USER_VERIFY_NONE 0x00000200
This flag MUST be set if the authenticator will respond without any user interaction (e.g. Silent Authenticator).

USER_VERIFY_ALL 0x00000400
If an authenticator sets multiple flags for user verification types, it MAY also set this flag to indicate that all verification
methods will be enforced (e.g. faceprint AND voiceprint). If flags for multiple user verification methods are set and
this flag is not set, verification with only one is necessary (e.g. fingerprint OR passcode).

3.2 Key Protection Types
The KEY_PROTECTION constants are flags in a bit field represented as a 16 bit long integer. They describe the method an
authenticator uses to protect the private key material for FIDO registrations. Refer to [UAFAuthnrCommands] for more
details on the relevance of keys and key protection. These constants are used in the authoritative metadata for an
authenticator, reported and queried through the UAF Discovery APIs, and used to form authenticator policies in UAF
protocol messages.
When used in metadata describing an authenticator, several of these flags are exclusive of others (i.e. can not be
combined) - the certified metadata may have at most one of the mutually exclusive bits set to 1. When used in
authenticator policy, any bit may be set to 1, e.g. to indicate that a server is willing to accept authenticators using either
KEY_PROTECTION_SOFTWARE or KEY_PROTECTION_HARDWARE.

KEY_PROTECTION_SOFTWARE 0x0001
This flag MUST be set if the authenticator uses software-based key management. Exclusive in authenticator
metadata with KEY_PROTECTION_HARDWARE, KEY_PROTECTION_TEE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_HARDWARE 0x0002
This flag SHOULD be set if the authenticator uses hardware-based key management. Exclusive in authenticator
metadata with KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_TEE 0x0004
This flag SHOULD be set if the authenticator uses the Trusted Execution Environment [TEE] for key management. In
authenticator metadata, this flag should be set in conjunction with KEY_PROTECTION_HARDWARE. Mutually exclusive
in authenticator metadata with KEY_PROTECTION_SOFTWARE, KEY_PROTECTION_SECURE_ELEMENT

NOTE
These flags must be set according to the effective security of the keys, in order to follow the assumptions made in
[FIDOSecRef]. For example, if a key is stored in a secure element but software running on the FIDO User Device
could call a function in the secure element to export the key either in the clear or using an arbitrary wrapping key,
then the effective security is KEY_PROTECTION_SOFTWARE and not KEY_PROTECTION_SECURE_ELEMENT.

KEY_PROTECTION_SECURE_ELEMENT 0x0008
This flag SHOULD be set if the authenticator uses a Secure Element [SecureElement] for key management. In
authenticator metadata, this flag should be set in conjunction with KEY_PROTECTION_HARDWARE. Mutually exclusive
in authenticator metadata with KEY_PROTECTION_TEE, KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_REMOTE_HANDLE 0x0010
This flag MUST be set if the authenticator does not store (wrapped) UAuth keys at the client, but relies on a server-
provided key handle. This flag MUST be set in conjunction with one of the other KEY_PROTECTION flags to indicate
how the local key handle wrapping key and operations are protected. Servers MAY unset this flag in authenticator
policy if they are not prepared to store and return key handles, for example, if they have a requirement to respond
indistinguishably to authentication attempts against userIDs that do and do not exist. Refer to [UAFProtocol] for
more details.

3.3 Matcher Protection Types
The MATCHER_PROTECTION constants are flags in a bit field represented as a 16 bit long integer. They describe the
method an authenticator uses to protect the matcher that performs user verification. These constants are used in the
authoritative metadata for an authenticator, reported and queried through the UAF Discovery APIs, and used to form
authenticator policies in UAF protocol messages. Refer to [UAFAuthnrCommands] for more details on the matcher
component.

MATCHER_PROTECTION_SOFTWARE 0x0001
This flag MUST be set if the authenticator's matcher is running in software. Exclusive in authenticator metadata with
MATCHER_PROTECTION_TEE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_TEE 0x0002
This flag SHOULD be set if the authenticator's matcher is running inside the Trusted Execution Environment [TEE].
Mutually exclusive in authenticator metadata with MATCHER_PROTECTION_SOFTWARE,
MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_ON_CHIP 0x0004
This flag SHOULD be set if the authenticator's matcher is running on the chip. Mutually exclusive in authenticator
metadata with MATCHER_PROTECTION_TEE, MATCHER_PROTECTION_SOFTWARE

3.4 Authenticator Attachment Hints
The ATTACHMENT_HINT constants are flags in a bit field represented as a 32 bit long. They describe the method an
authenticator uses to communicate with the FIDO User Device. These constants are reported and queried through the
UAF Discovery APIs [UAFAppAPIAndTransport], and used to form Authenticator policies in UAF protocol messages.
Because the connection state and topology of an authenticator may be transient, these values are only hints that can be
used by server-supplied policy to guide the user experience, e.g. to prefer a device that is connected and ready for
authenticating or confirming a low-value transaction, rather than one that is more secure but requires more user effort.

ATTACHMENT_HINT_INTERNAL 0x0001
This flag MAY be set to indicate that the authenticator is permanently attached to the FIDO User Device.
A device such as a smartphone may have authenticator functionality that is able to be used both locally and
remotely. In such a case, the FIDO client MUST filter and exclusively report only the relevant bit during Discovery and
when performing policy matching.
This flag cannot be combined with any other ATTACHMENT_HINT flags.

NOTE
These flags must be set according to the effective security of the matcher, in order to follow the assumptions made
in [FIDOSecRef]. For example, if a passcode based matcher is implemented in a secure element, but the
passcode is expected to be provided as unauthenticated parameter, then the effective security is
MATCHER_PROTECTION_SOFTWARE and not MATCHER_PROTECTION_ON_CHIP.

NOTE
These flags are not a mandatory part of authenticator metadata and, when present, only indicate possible states
that may be reported during authenticator discovery.

ATTACHMENT_HINT_EXTERNAL 0x0002
This flag MAY be set to indicate, for a hardware-based authenticator, that it is removable or remote from the FIDO
User Device.
A device such as a smartphone may have authenticator functionality that is able to be used both locally and
remotely. In such a case, the FIDO UAF Client MUST filter and exclusively report only the relevant bit during
discovery and when performing policy matching.
This flag MUST be combined with one or more other ATTACHMENT_HINT flag(s).

ATTACHMENT_HINT_WIRED 0x0004
This flag MAY be set to indicate that an external authenticator currently has an exclusive wired connection, e.g.
through USB, Firewire or similar, to the FIDO User Device.

ATTACHMENT_HINT_WIRELESS 0x0008
This flag MAY be set to indicate that an external authenticator communicates with the FIDO User Device through a
personal area or otherwise non-routed wireless protocol, such as Bluetooth or NFC.

ATTACHMENT_HINT_NFC 0x0010
This flag MAY be set to indicate that an external authenticator is able to communicate by NFC to the FIDO User
Device. As part of authenticator metadata, or when reporting characteristics through discovery, if this flag is set, the
ATTACHMENT_HINT_WIRELESS flag SHOULD also be set as well.

ATTACHMENT_HINT_BLUETOOTH 0x0020
This flag MAY be set to indicate that an external authenticator is able to communicate using Bluetooth with the FIDO
User Device. As part of authenticator metadata, or when reporting characteristics through discovery, if this flag is
set, the ATTACHMENT_HINT_WIRELESS flag SHOULD also be set.

ATTACHMENT_HINT_NETWORK 0x0040
This flag MAY be set to indicate that the authenticator is connected to the FIDO User Device over a non-exclusive
network (e.g. over a TCP/IP LAN or WAN, as opposed to a PAN or point-to-point connection).

ATTACHMENT_HINT_READY 0x0080
This flag MAY be set to indicate that an external authenticator is in a "ready" state. This flag is set by the ASM at its
discretion.

ATTACHMENT_HINT_WIFI_DIRECT 0x0100
This flag MAY be set to indicate that an external authenticator is able to communicate using WiFi Direct with the
FIDO User Device. As part of authenticator metadata and when reporting characteristics through discovery, if this
flag is set, the ATTACHMENT_HINT_WIRELESS flag SHOULD also be set.

3.5 Transaction Confirmation Display Types
The TRANSACTION_CONFIRMATION_DISPLAY constants are flags in a bit field represented as a 16 bit long integer. They
describe the availability and implementation of a transaction confirmation display capability required for the transaction
confirmation operation. These constants are used in the authoritative metadata for an authenticator, reported and
queried through the UAF Discovery APIs, and used to form authenticator policies in UAF protocol messages. Refer to
[UAFAuthnrCommands] for more details on the security aspects of TransactionConfirmation Display.
TRANSACTION_CONFIRMATION_DISPLAY_ANY 0x0001

This flag MUST be set to indicate that a transaction confirmation display, of any type, is available on this
authenticator. Other TRANSACTION_CONFIRMATION_DISPLAY flags MAY also be set if this flag is set. If the authenticator
does not support a transaction confirmation display, then the value of TRANSACTION_CONFIRMATION_DISPLAY MUST be
set to 0.

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE 0x0002
This flag MUST be set to indicate, that a software-based transaction confirmation display operating in a privileged
context is available on this authenticator.
A FIDO client that is capable of providing this capability MAY set this bit (in conjunction with
TRANSACTION_CONFIRMATION_DISPLAY_ANY) for all authenticators of type ATTACHMENT_HINT_INTERNAL, even if the

NOTE
Generally this should indicate that the device is immediately available to perform user verification without
additional actions such as connecting the device or creating a new biometric profile enrollment, but the exact
meaning may vary for different types of devices. For example, a USB authenticator may only report itself as
ready when it is plugged in, or a Bluetooth authenticator when it is paired and connected, but an NFC-based
authenticator may always report itself as ready.

authoritative metadata for the authenticator does not indicate this capability.

This flag is mutually exclusive with TRANSACTION_CONFIRMATION_DISPLAY_TEE and
TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_TEE 0x0004
This flag SHOULD be set to indicate that the authenticator implements a transaction confirmation display in a Trusted
Execution Environment ([TEE], [TEESecureDisplay]). This flag is mutually exclusive with
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE 0x0008
This flag SHOULD be set to indicate that a transaction confirmation display based on hardware assisted capabilities is
available on this authenticator. This flag is mutually exclusive with
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and TRANSACTION_CONFIRMATION_DISPLAY_TEE.

TRANSACTION_CONFIRMATION_DISPLAY_REMOTE 0x0010
This flag SHOULD be set to indicate that the transaction confirmation display is provided on a distinct device from the
FIDO User Device. This flag can be combined with any other flag.

3.6 Tags used for crypto algorithms and types
These tags indicate the specific authentication algorithms, public key formats and other crypto relevant data.

3.6.1 Authentication Algorithms

The ALG_SIGN constants are 16 bit long integers indicating the specific signature algorithm and encoding.

ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW 0x0001
An ECDSA signature on the NIST secp256r1 curve which MUST have raw R and S buffers, encoded in big-endian
order. This is the signature encoding as specified in [ECDSA-ANSI].
I.e. [R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: -7, crv: 1)

ALG_SIGN_SECP256R1_ECDSA_SHA256_DER 0x0002
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the NIST secp256r1 curve.
I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: -7, crv: 1)

ALG_SIGN_RSASSA_PSS_SHA256_RAW 0x0003
RSASSA-PSS [RFC3447] signature MUST have raw S buffers, encoded in big-endian order [RFC4055] [RFC4056].
The default parameters as specified in [RFC4055] MUST be assumed, i.e.

NOTE
Software based transaction confirmation displays might be implemented within the boundaries of the ASM
rather than by the authenticator itself [UAFASM].

NOTE
FIDO UAF supports RAW and DER signature encodings in order to allow small footprint authenticator
implementations.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER
ALG_KEY_COSE(kty: 3, alg: -37)

ALG_SIGN_RSASSA_PSS_SHA256_DER 0x0004
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the RSASSA-PSS [RFC3447]
signature [RFC4055] [RFC4056]. The default parameters as specified in [RFC4055] MUST be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

I.e. a DER encoded OCTET STRING (including its tag and length bytes).
This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER
ALG_KEY_COSE(kty: 3, alg: -37)

ALG_SIGN_SECP256K1_ECDSA_SHA256_RAW 0x0005
An ECDSA signature on the secp256k1 curve which MUST have raw R and S buffers, encoded in big-endian order.
I.e.[R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: 7, crv: 8)

ALG_SIGN_SECP256K1_ECDSA_SHA256_DER 0x0006
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the secp256k1 curve.
I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: 7, crv: 8)

ALG_SIGN_SM2_SM3_RAW 0x0007 (optional)
Chinese SM2 elliptic curve based signature algorithm combined with SM3 hash algorithm [OSCCA-SM2][OSCCA-
SM3]. We use the 256bit curve [OSCCA-SM2-curve-param].
This algorithm is suitable for authenticators using the following key representation format:
ALG_KEY_ECC_X962_RAW.

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_RAW 0x0008
This is the EMSA-PKCS1-v1_5 signature as defined in [RFC3447]. This means that the encoded message EM will
be the input to the cryptographic signing algorithm RSASP1 as defined in [RFC3447]. The result s of RSASP1 is
then encoded using function I2OSP to produce the raw signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T
with the padding string PS with length=emLen - tLen - 3 octets having the value 0xff for each octet, e.g. (0x) ff
ff ff ff ff ff ff ff
with the DER [ITU-X690-2008] encoded DigestInfo value T: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04
20 | H, where H denotes the bytes of the SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_DER 0x0009
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the EMSA-PKCS1-v1_5 signature
as defined in [RFC3447]. This means that the encoded message EM will be the input to the cryptographic signing
algorithm RSASP1 as defined in [RFC3447]. The result s of RSASP1 is then encoded using function I2OSP to
produce the raw signature. The raw signature is DER [ITU-X690-2008] encoded as an OCTET STRING to produce
the final signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T
with the padding string PS with length=emLen - tLen - 3 octets having the value 0xff for each octet, e.g. (0x) ff
ff ff ff ff ff ff ff
with the DER encoded DigestInfo value T: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 | H, where H
denotes the bytes of the SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER

ALG_SIGN_RSASSA_PSS_SHA384_RAW 0x000A
RSASSA-PSS [RFC3447] signature MUST have raw S buffers, encoded in big-endian order [RFC4055] [RFC4056].
The default parameters as specified in [RFC4055] MUST be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA384
Salt Length of 48 bytes, i.e. the length of a SHA384 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -38)

ALG_SIGN_RSASSA_PSS_SHA512_RAW 0x000B
RSASSA-PSS [RFC3447] signature MUST have raw S buffers, encoded in big-endian order [RFC4055] [RFC4056].
The default parameters as specified in [RFC4055] MUST be assumed, i.e.

NOTE
Implementers should verify that their implementation of the PKCS#1 V1.5 signature follows the
recommendations in [RFC3218] to protect against adaptive chosen-ciphertext attacks such as
Bleichenbacher.

NOTE
Implementers should verify that their implementation of the PKCS#1 V1.5 signature follows the
recommendations in [RFC3218] to protect against adaptive chosen-ciphertext attacks such as
Bleichenbacher.

Mask Generation Algorithm MGF1 with SHA512
Salt Length of 64 bytes, i.e. the length of a SHA512 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -39)

ALG_SIGN_RSASSA_PKCSV15_SHA256_RAW 0x000C
RSASSA-PKCS1-v1_5 [RFC3447] with SHA256(aka RS256) signature MUST have raw S buffers, encoded in big-
endian order [RFC8017] [RFC4056]
I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -257)

ALG_SIGN_RSASSA_PKCSV15_SHA384_RAW 0x000D
RSASSA-PKCS1-v1_5 [RFC3447] with SHA384(aka RS384) signature MUST have raw S buffers, encoded in big-
endian order [RFC8017] [RFC4056]
I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -258)

ALG_SIGN_RSASSA_PKCSV15_SHA512_RAW 0x000E
RSASSA-PKCS1-v1_5 [RFC3447] with SHA512(aka RS512) signature MUST have raw S buffers, encoded in big-
endian order [RFC8017] [RFC4056]
I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -259)

ALG_SIGN_RSASSA_PKCSV15_SHA1_RAW 0x000F
RSASSA-PKCS1-v1_5 [RFC3447] with SHA1(aka RS1) signature MUST have raw S buffers, encoded in big-endian
order [RFC8017] [RFC4056]
I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -65535)

ALG_SIGN_SECP384R1_ECDSA_SHA384_RAW 0x0010
An ECDSA signature on the NIST secp384r1 curve with SHA384(aka: ES384) which MUST have raw R and S
buffers, encoded in big-endian order. This is the signature encoding as specified in [ECDSA-ANSI].
I.e. [R (48 bytes), S (48 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 2, alg: -35, crv: 2)

ALG_SIGN_SECP521R1_ECDSA_SHA512_RAW 0x0011
An ECDSA signature on the NIST secp512r1 curve with SHA512(aka: ES512) which MUST have raw R and S
buffers, encoded in big-endian order. This is the signature encoding as specified in [ECDSA-ANSI].
I.e. [R (66 bytes), S (66 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 2, alg: -36, crv: 3)

ALG_SIGN_ED25519_EDDSA_SHA256_RAW 0x0012
An EdDSA signature on the curve 25519, which MUST have raw R and S buffers, encoded in big-endian order. This
is the signature encoding as specified in [RFC8032].
I.e. [R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 1, alg: -8, crv: 6)

3.6.2 Public Key Representation Formats

The ALG_KEY constants are 16 bit long integers indicating the specific Public Key algorithm and encoding.

ALG_KEY_ECC_X962_RAW 0x0100
Raw ANSI X9.62 formatted Elliptic Curve public key [SEC1].
I.e. [0x04, X (32 bytes), Y (32 bytes)] . Where the byte 0x04 denotes the uncompressed point compression method.

ALG_KEY_ECC_X962_DER 0x0101
DER [ITU-X690-2008] encoded ANSI X.9.62 formatted SubjectPublicKeyInfo [RFC5480] specifying an elliptic curve
public key.
I.e. a DER encoded SubjectPublicKeyInfo as defined in [RFC5480].
Authenticator implementations MUST generate namedCurve in the ECParameters object which is included in the
AlgorithmIdentifier. A FIDO UAF Server MUST accept namedCurve in the ECParameters object which is included in the
AlgorithmIdentifier.

ALG_KEY_RSA_2048_RAW 0x0102
Raw encoded 2048-bit RSA public key [RFC3447].
That is, [n (256 bytes), e (N-256 bytes)] . Where N is the total length of the field.
This total length should be taken from the object containing this key, e.g. the TLV encoded field.

ALG_KEY_RSA_2048_DER 0x0103
ASN.1 DER [ITU-X690-2008] encoded 2048-bit RSA [RFC3447] public key [RFC4055].
That is a DER encoded SEQUENCE { n INTEGER, e INTEGER }.

ALG_KEY_COSE 0x0104

COSE_Key format, as defined in Section 7 of [RFC8152]. This encoding includes its own field for indicating the
public key algorithm.

3.6.3 Authenticator Attestation Types

The ATTESTATION constants are 16 bit long integers indicating the specific attestation that authenticator supports.
ATTESTATION_BASIC_FULL 0x3E07

Indicates full basic attestation, based on an attestation private key shared among a class of authenticators (e.g.
same model). Authenticators must provide its attestation signature during the registration process for the same
reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This
sharing process shouldt be done according to [UAFMetadataService].

ATTESTATION_BASIC_SURROGATE 0x3E08

NOTE
FIDO UAF supports RAW and DER encodings in order to allow small footprint authenticator implementations. By
definition, the authenticator must encode the public key as part of the registration assertion.

Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key,
i.e. the key corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not
provide a cryptographic proof of the security characteristics. But it is the best thing we can do if the authenticator is
not able to have an attestation private key.

ATTESTATION_ECDAA 0x3E09
Indicates use of elliptic curve based direct anonymous attestation as defined in [FIDOEcdaaAlgorithm]. Support for
this attestation type is optional at this time. It might be required by FIDO Certification.

ATTESTATION_ATTCA 0x3E0A
Indicates PrivacyCA attestation as defined in [TCG-CMCProfile-AIKCertEnroll]. Support for this attestation type is
optional at this time. It might be required by FIDO Certification.

3.7 Authenticator Attestation Types
The ATTESTATION constants are 16 bit long integers indicating the specific attestation that authenticator supports.
ATTESTATION_BASIC_FULL 0x3E07

Indicates full basic attestation, based on an attestation private key shared among a class of authenticators (e.g.
same model). Authenticators must provide its attestation signature during the registration process for the same
reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This
sharing process shouldt be done according to [UAFMetadataService].

ATTESTATION_BASIC_SURROGATE 0x3E08
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key,
i.e. the key corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not
provide a cryptographic proof of the security characteristics. But it is the best thing we can do if the authenticator is
not able to have an attestation private key.

ATTESTATION_ECDAA 0x3E09
Indicates use of elliptic curve based direct anonymous attestation as defined in [FIDOEcdaaAlgorithm]. Support for
this attestation type is optional at this time. It might be required by FIDO Certification.

ATTESTATION_ATTCA 0x3E0A
Indicates PrivacyCA attestation as defined in [TCG-CMCProfile-AIKCertEnroll]. Support for this attestation type is
optional at this time. It might be required by FIDO Certification.

A. References
A.1 Normative references
[FIDOEcdaaAlgorithm]

R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Review
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
http://www.itu.int/rec/T-REC-X.690-200811-I/en

[OSCCA-SM2]
SM2: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves: Part 1: General. December 2010. URL:
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

[OSCCA-SM2-curve-param]
SM2: Elliptic Curve Public-Key Cryptography Algorithm: Recommended Curve Parameters. December 2010. URL:
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf

[OSCCA-SM3]
SM3 Cryptographic Hash Algorithm. December 2010. URL:
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version
2.1. February 2003. Informational. URL: https://tools.ietf.org/html/rfc3447

[RFC4055]

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447

J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. June 2005. Proposed
Standard. URL: https://tools.ietf.org/html/rfc4055

[RFC4056]
J. Schaad. Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax (CMS). June 2005.
Proposed Standard. URL: https://tools.ietf.org/html/rfc4056

[RFC5480]
S. Turner; D. Brown; K. Yiu; R. Housley; T. Polk. Elliptic Curve Cryptography Subject Public Key Information. March
2009. Proposed Standard. URL: https://tools.ietf.org/html/rfc5480

[RFC8017]
K. Moriarty, Ed.; B. Kaliski; J. Jonsson; A. Rusch. PKCS #1: RSA Cryptography Specifications Version 2.2.
November 2016. Informational. URL: https://tools.ietf.org/html/rfc8017

[RFC8152]
J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8152

[SEC1]
SEC1: Elliptic Curve Cryptography, Version 2.0. September 2000. URL: http://secg.org/download/aid-780/sec1-
v2.pdf

A.2 Informative references
[ECDSA-ANSI]

Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic
Curve Cryptography ANSI X9.63-2011 (R2017). 2017. URL: https://webstore.ansi.org/RecordDetail.aspx?
sku=ANSI+X9.63-2011+(R2017)

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html

[RFC3218]
E. Rescorla. Preventing the Million Message Attack on Cryptographic Message Syntax. January 2002.
Informational. URL: https://tools.ietf.org/html/rfc3218

[RFC8032]
S. Josefsson; I. Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). January 2017. Informational. URL:
https://tools.ietf.org/html/rfc8032

[SecureElement]
GlobalPlatform Card Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEE]
GlobalPlatform Trusted Execution Environment Specifications. URL:
https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications. URL: https://www.globalplatform.org/specifications.asp

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-
20171128.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-client-api-transport-
v1.2-rd-20171128.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-
20171128.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0.
Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-
20171128.html

https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-security-ref-v2.0-rd-20180702.html
https://tools.ietf.org/html/rfc3218
https://tools.ietf.org/html/rfc3218
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8032
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-client-api-transport-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-client-api-transport-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

FIDO Technical Glossary
FIDO Alliance Review Draft 02 July 2018
This version:

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
Previous version:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal
Jeff Hodges, PayPal

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract
This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are
referenced by various UAF specifications.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.
This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments
are welcome.
This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the
Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an
appropriate license for such use is available.
Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.
THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-glossary-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
mailto://rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
mailto://jeff.hodges@kingsmountain.com
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Introduction
3. Definitions
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “UAF-TLV”.
In formulas we use “|” to denote byte wise concatenation operations.

1.1 Key Words
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in [RFC2119].

2. Introduction
This document is the FIDO Alliance glossary of normative technical terms.
This document is not an exhaustive compendium of all FIDO technical terminology because the FIDO terminology is built
upon existing terminology. Thus many terms that are commonly used within this context are not listed. They may be
found in the glossaries/documents/specifications referenced in the bibliography. Terms defined here that are not
attributed to other glossaries/documents/specifications are being defined here.
This glossary is expected to evolve along with the FIDO Alliance specifications and documents.

3. Definitions
AAID

Authenticator Attestation ID. See Attestation ID.
Application

A set of functionality provided by a common entity (the application owner, aka the Relying Party), and perceived by
the user as belonging together.

Application Facet
An (application) facet is how an application is implemented on various platforms. For example, the application
MyBank may have an Android app, an iOS app, and a Web app. These are all facets of the MyBank application.

Application Facet ID
A platform-specific identifier (URI) for an application facet.

For Web applications, the facet id is the RFC6454 origin [RFC6454].
For Android applications, the facet id is the URI android:apk-key-hash:<hash-of-apk-signing-cert>
For iOS, the facet id is the URI ios:bundle-id:<ios-bundle-id-of-app>

AppID

The AppID is an identifier for a set of different Facets of a relying party's application. The AppID is a URL pointing

The AppID is an identifier for a set of different Facets of a relying party's application. The AppID is a URL pointing
to the TrustedFacets, i.e. list of FacetIDs related to this AppID.

Attestation
In the FIDO context, attestation is how Authenticators make claims to a Relying Party that the keys they generate,
and/or certain measurements they report, originate from genuine devices with certified characteristics.

Attestation Certificate
A public key certificate related to an Attestation Key.

Authenticator Attestation ID / AAID
A unique identifier assigned to a model, class or batch of FIDO Authenticators that all share the same
characteristics, and which a Relying Party can use to look up an Attestation Public Key and Authenticator Metadata
for the device.

Attestation [Public / Private] Key
A key used for FIDO Authenticator attestation.

Attestation Root Certificate
A root certificate explicitly trusted by the FIDO Alliance, to which Attestation Certificates chain to.

Authentication
Authentication is the process in which user employs their FIDO Authenticator to prove possession of a registered
key to a relying party.

Authentication Algorithm
The combination of signature and hash algorithms used for authenticator-to-relying party authentication.

Authentication Scheme
The combination of an Authentication Algorithm with a message syntax or framing that is used by an Authenticator
when constructing a response.

Authenticator, Authnr
See FIDO Authenticator.

Authenticator, 1stF / First Factor
A FIDO Authenticator that transactionally provides a username and at least two authentication factors:
cryptographic key material (something you have) plus user verification (something you know / something you are)
and so can be used by itself to complete an authentication.
It is assumed that these authenticators have an internal matcher. The matcher is able to verify an already enrolled
user. If there is more than one user enrolled – the matcher is also able to identify the right user.
Examples of such authenticator is a biometric sensor or a PIN based verification. Authenticators which only verify
presence, such as a physical button, or perform no verification at all, cannot act as a first-factor authenticator.

Authenticator, 2ndF / Second Factor
A FIDO Authenticator which acts only as a second factor. Second-factor authenticators always require a single key
handle to be provided before responding to a Sign command. They might or might not have a user verification
method. It is assumed that these authenticators may or may not have an internal matcher.

Authenticator Attestation
The process of communicating a cryptographic assertion to a relying party that a key presented during
authenticator registration was created and protected by a genuine authenticator with verified characteristics.

Authenticator Metadata
Verified information about the characteristics of a certified authenticator, associated with an AAID and available
from the FIDO Alliance. FIDO Servers are expected to have access to up-to-date metadata to be able to interact
with a given authenticator.

Authenticator Policy
A JSON data structure that allows a relying party to communicate to a FIDO Client the capabilities or specific
authenticators that are allowed or disallowed for use in a given operation.

ASM / Authenticator Specific Module
Software associated with a FIDO Authenticator that provides a uniform interface between the hardware and FIDO
Client software.

AV
ASM Version

Bound Authenticator
A FIDO Authenticator or combination of authenticator and ASM, which uses an access control mechanism to
restrict the use of registered keys to trusted FIDO Clients and/or trusted FIDO User Devices. Compare to a
Roaming Authenticator.

Certificate
An X.509v3 certificate defined by the profile specified in [RFC5280] and its successors.

Channel Binding
See: [RFC5056], [RFC5929] and [ChannelID]. A channel binding allows applications to establish that the two end-
points of a secure channel at one network layer are the same as at a higher layer by binding authentication to the
higher layer to the channel at the lower layer.

Client
This term is used “in context”, and may refer to a FIDO UAF Client or some other type of client, e.g. a TLS client.
See FIDO Client.

Confused Deputy Problem
A confused deputy is a computer program that is innocently fooled by some other party into misusing its authority. It
is a specific type of privilege escalation.

Correlation Handle
Any piece of information that may allow, in the context of FIDO protocols, implicit or explicit association and or
attribution of multiple actions, believed by the user to be distinct and unrelated, back to a single unique entity. An
example of a correlation handle outside of the FIDO context is a client certificate used in traditional TLS mutual
authentication: because it sends the same data to multiple Relying Parties, they can therefore collude to uniquely
identify and track the user across unrelated activities. [AnonTerminology]

Deregistration
A phase of a FIDO protocol in which a Relying Party tells a FIDO Authenticator to forget a specified piece of (or all)
locally managed key material associated with a specific Relying Party account, in case such keys are no longer
considered valid by the Relying Party.

Discovery
A phase of a FIDO protocol in which a Relying Party is able to determine the availability of FIDO capabilities at the
client’s device, including metadata about the available authenticators.

E(K,D)
Denotes the Encryption of data D with key K

ECDAA
Elliptic Curve based Direct Anonymous Attestation. ECDAA is an attestation scheme alternative to FIDO Basic
Attestation. It is an improved Direct Anonymous Attestation scheme based on elliptic curves and bilinear pairings.
Direct Anonymous Attestation schemes use individual private keys in the Authenticator while avoiding global

correlation handles. ECDAA provides significantly improved performance compared with the original DAA scheme.
FIDO ECDAA [FIDOEcdaaAlgorithm] defines object encodings, pairing friendly curves etc. in order to lead to
interoperable ECDAA implementations across different FIDO Servers and FIDO Authenticators.

ECDSA
Elliptic Curve Digital Signature Algorithm, as defined by ANSI X9.62 [ECDSA-ANSI].

Enrollment
The process of making a user known to an authenticator. This might be a biometric enrollment as defined in
[ISOBiometrics] or involve processes such as taking ownership of, and setting a PIN or password for, a non-
biometric cryptographic storage device. Enrollment may happen as part of a FIDO protocol ceremony, or it may
happen outside of the FIDO context for multi-purpose authenticators.

Facet
See Application Facet

Facet ID
See Application Facet ID

FIDO Authenticator
An authentication entity that meets the FIDO Alliance’s requirements and which has related metadata.
A FIDO Authenticator is responsible for user verification, and maintaining the cryptographic material required for the
relying party authentication.
It is important to note that a FIDO Authenticator is only considered such for, and in relation to, its participation in
FIDO Alliance protocols. Because the FIDO Alliance aims to utilize a diversity of existing and future hardware, many
devices used for FIDO may have other primary or secondary uses. To the extent that a device is used for non-
FIDO purposes such as local operating system login or network login with non-FIDO protocols, it is not considered a
FIDO Authenticator and its operation in such modes is not subject to FIDO Alliance guidelines or restrictions,
including those related to security and privacy.
A FIDO Authenticator may be referred to as simply an authenticator or abbreviated as “authnr”. Important
distinctions in an authenticator’s capabilities and user experience may be experienced depending on whether it is a
roaming or bound authenticator, and whether it is a first-factor, or second-factor authenticator.
It is assumed by registration assertion schemes that the authenticator has exclusive control over the data being
signed by the attestation key.
Authenticators specify in the Metadata Statement whether they have exclusive control over the data being signed
by the Uauth key.

FIDO Client
This is the software entity processing the UAF or U2F protocol messages on the FIDO User Device. FIDO Clients
may take one of two forms:

A software component implemented in a user agent (either web browser or native application).
A standalone piece of software shared by several user agents. (web browsers or native applications).

FIDO Data / FIDO Information
Any information gathered or created as part of completing a FIDO transaction. This includes but is not limited to,
biometric measurements of or reference data for the user and FIDO transaction history.

FIDO Server
Server software typically deployed in the relying party’s infrastructure that meets UAF protocol server requirements.

FIDO UAF Client
See FIDO Client.

FIDO User Device
The computing device where the FIDO Client operates, and from which the user initiates an action that utilizes
FIDO.

Key Identifier (KeyID)
The KeyID is an opaque identifier for a key registered by an authenticator with a FIDO Server, for first-factor
authenticators. It is used in concert with an AAID to identify a particular authenticator that holds the necessary key.
Thus key identifiers must be unique within the scope of an AAID.
One possible implementation is that the KeyID is the SHA256 hash of the KeyHandle managed by the ASM.

KeyHandle
A key container created by a FIDO Authenticator, containing a private key and (optionally) other data (such as
Username). A key handle may be wrapped (encrypted with a key known only to the authenticator) or unwrapped. In
the unwrapped form it is referred to as a raw key handle. Second-factor authenticators must retrieve their key
handles from the relying party to function. First-factor authenticators manage the storage of their own key handles,
either internally (for roaming authenticators) or via the associated ASM (for bound authenticators).

Key Registration
The process of securely establishing a key between FIDO Server and FIDO Authenticator.

KeyRegistrationData (KRD)
A KeyRegistrationData object is created and returned by an authenticator as the result of the authenticator's Register
command. The KRD object contains items such as the authenticator's AAID, the newly generated UAuth.pub key,
as well as other authenticator-specific information such as algorithms used by the authenticator for performing
cryptographic operations, and counter values. The KRD object is signed using the authenticator's attestation
private key.

KHAccessToken
A secret value that acts as a guard for authenticator commands. KHAccessTokens are generated and provided by
an ASM.

Matcher
A component of a FIDO Authenticator which is able to perform (local) user verification, e.g. biometric comparison
[ISOBiometrics], PIN verification, etc.

Matcher Protections
The security mechanisms that an authenticator may use to protect the matcher component.

Persona
All relevant data stored in an authenticator (e.g. cryptographic keys) are related to a single "persona" (e.g.
“business” or “personal” persona). Some administrative interface (not standardized by FIDO) provided by the
authenticator may allow maintenance and switching of personas.
The user can switch to the “Personal” Persona and register new accounts. After switching back to the “Business”
Persona, these accounts will not be recognized by the authenticator (until the User switches back to “Personal”
Persona again).
This mechanism may be used to provide an additional measure of privacy to the user, where the user wishes to
use the same authenticator in multiple contexts, without allowing correlation via the authenticator across those
contexts.

PersonaID
An identifier provided by an ASM, PersonaID is used to associate different registrations. It can be used to create
virtual identities on a single authenticator, for example to differentiate “personal” and “business” accounts.
PersonaIDs can be used to manage privacy settings on the authenticator.

Reference Data
A (biometric) reference data (also called template) is a digital reference of distinct characteristics that have been

extracted from a biometric sample. Biometric reference data is used during the biometric user verification process
[ISOBiometrics]. Non-biometric reference data is used in conjunction with PIN-based user verification.

Registration
A FIDO protocol operation in which a user generates and associates new key material with an account at the
Relying Party, subject to policy set by the server, and acceptable attestation that the authenticator and registration
matches that policy.

Registration Scheme
The registration scheme defines how the authentication key is being exchanged between the FIDO Server and the
FIDO Authenticator.

Relying Party
A web site or other entity that uses a FIDO protocol to directly authenticate users (i.e., performs peer-entity
authentication). Note that if FIDO is composed with federated identity management protocols (e.g., SAML, OpenID
Connect, etc.), the identity provider will also be playing the role of a FIDO Relying Party.

Roaming Authenticator
A FIDO Authenticator configured to move between different FIDO Clients and FIDO User Devices lacking an
established trust relationship by:

1. Using only its own internal storage for registrations
2. Allowing registered keys to be employed without access control mechanisms at the API layer. (Roaming

authenticators still may perform user verification.)

Compare to Bound Authenticator.
S(K, D)

Signing of data D with key K
Server Challenge

A random value provided by the FIDO Server in the UAF protocol requests.
Sign Counter

A monotonically increasing counter maintained by the Authenticator. It is increased on every use of the UAuth.priv
key. This value can be used by the FIDO Server to detect cloned authenticators.

SignedData
A SignedData object is created and returned by an authenticator as the result of the authenticator's Sign command.
The to-be-signed data input to the signature operation is represented in the returned SignedData object as intact
values or as hashed values. The SignedData object also contains general information about the authenticator and
its mode, a nonce, information about authenticator-specific cryptographic algorithms, and a use counter. The
SignedData object is signed using a relying party-specific UAuth.priv key.

Silent Authenticator
FIDO Authenticator that does not prompt the user or perform any user verification.

Step-up Authentication
An authentication which is performed on top of an already authenticated session.
Example: The user authenticates the session initially using a username and password, and the web site later
requests a FIDO authentication on top of this authenticated session.
One reason for requesting step-up authenication could be a request for a high value resource.
FIDO U2F is always used as a step-up authentication. FIDO UAF could be used as step-up authentication, but it
could also be used as an initial authentication mechanism.

Note: In general, there is no implication that the step-up authentication method itself is "stronger" than the initial
authentication. Since the step-up authentication is performed on top of an existing authentication, the resulting
combined authentication strength will increase most likely, but it will never decrease.

Template
See reference data.

Test of User Presence
See User Presence Check

TLS
Transport Layer Security

Token
In FIDO U2F, the term Token is often used to mean what is called an authenticator in UAF. Also, note that other
uses of “token”, e.g. KHAccessToken, User Verification Token, etc., are separately distinct. If they are not explicitly
defined, their meaning needs to be determined from context.

Transaction Confirmation
An operation in the FIDO protocol that allows a relying party to request that a FIDO Client, and authenticator with
the appropriate capabilities, display some information to the user, request that the user authenticate locally to their
FIDO Authenticator to confirm the information, and provide proof-of-possession of previously registered key
material and an attestation of the confirmation back to the relying party.

Transaction Confirmation Display
This is a feature of FIDO Authenticators able to show content of a message to a user, and protect the integrity of
this message. It could be implemented using the GlobalPlatform specified TrustedUI [TEESecureDisplay].

TrustedFacets
The data structure holding a list of trusted FacetIDs. The AppID is used to retrieve this data structure.

TTEXT
Transaction Text, i.e. text to be confirmed in the case of transaction confirmation.

Type-length-value/tag-length-value (TLV)
A mechanism for encoding data such that the type, length and value of the data are given. Typically, the type and
length data fields are of a fixed size. This format offers some advantages over other data encoding mechanisms,
that make it suitable for some of the FIDO UAF protocols.

Universal Second Factor (U2F)
The FIDO protocol and family of authenticators which enable a cloud service to offer its users the options of using
an easy–to–use, strongly–secure open standards–based second-factor device for authentication. The protocol
relies on the server to know the (expected) user before triggering the authentication.

Universal Authentication Framework (UAF)
. The FIDO Protocol and family of authenticators which enable a service to offer its users flexible and interoperable
authentication. This protocol allows triggering the authentication before the server knows the user.

UAF Client
See FIDO Client.

UAuth.pub / UAuth.priv / UAuth.key
User authentication keys generated by FIDO Authenticator. UAuth.pub is the public part of key pair. UAuth.priv is
the private part of the key. UAuth.key is the more generic notation to refer to UAuth.priv.

UINT8

An 8 bit (1 byte) unsigned integer.
UINT16

A 16 bit (2 bytes) unsigned integer.
UINT32

A 32 bit (4 bytes) unsigned integer.
UPV

UAF Protocol Version
User

Relying party’s user, and owner of the FIDO Authenticator.
User Agent

The user agent is a client application that is acting on behalf of a user in a client-server system. Examples of user
agents include web browsers and mobile apps.

User Presence Check
The User Presence check in the authenticator verifies that some user is present at the authenticator and agrees
with a generic authentication operation.

User Verification
The process by which a FIDO Authenticator locally authorizes use of key material, for example through a touch, pin
code, fingerprint match or other biometric.

User Verification Token
The user verification token is generated by Authenticator and handed to the ASM after successful user verification.
Without having this token, the ASM cannot invoke special commands such as Register or Sign.
The lifecycle of the user verification token is managed by the authenticator. The concrete techniques for generating
such a token and managing its lifecycle are vendor-specific and non-normative.

Username
A human-readable string identifying a user’s account at a relying party.

Verification Factor
The specific means by which local user verification is accomplished. e.g. fingerprint, voiceprint, or PIN.
This is also known as modality.

Web Application, Client-Side
The portion of a relying party application built on the "Open Web Platform" which executes in the context of the user
agent. When the term “Web Application” appears unqualified or without specific context in FIDO documents, it
generally refers to either the client-side portion or the combination of both client-side and server-side pieces of such
an application.

Web Application, Server-Side
The portion of a relying party application that executes on the web server, and responds to HTTP requests. When
the term “Web Application” appears unqualified or without specific context in FIDO documents, it generally refers to
either the client-side portion or the combination of both client-side and server-side pieces of such an application.

A. References
A.1 Normative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Review
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references
[AnonTerminology]

A. Pfitzmann; M. Hansen. Anonymity, Unlinkability, Unobservability, Pseudonymity, and Identity Management - A
Consolidated Proposal for Terminology, Version 0.34. August 2010. URL: http://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf

[ChannelID]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL: http://tools.ietf.org/html/draft-
balfanz-tls-channelid

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic
Curve Cryptography ANSI X9.63-2011 (R2017). 2017. URL: https://webstore.ansi.org/RecordDetail.aspx?
sku=ANSI+X9.63-2011+(R2017)

[ISOBiometrics]
ISO/IEC 2382-37 Harmonized Biometric Vocabulary. 2017. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-
37:ed-2:v1:en

[RFC5056]
N. Williams. On the Use of Channel Bindings to Secure Channels (RFC 5056). November 2007. URL:
http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5929]
J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL:
http://www.ietf.org/rfc/rfc5929.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications. URL: https://www.globalplatform.org/specifications.asp

https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp

	Server Requirements and Transport Binding Profile
	Review Draft, July 02, 2018
	Abstract
	Table of Contents
	1. Introduction
	2. Registration and Attestations
	2.1. Validating Attestation
	2.2. Attestation Types
	2.3. Attestation Formats
	2.3.1. Packed Attestation
	2.3.2. TPM Attestation
	2.3.3. Android SafetyNet Attestation Example
	2.3.4. Android SafetyNet Attestation Example
	2.3.5. U2F Attestation

	3. Authentication and Assertions
	4. Communication Channel Requirements
	5. Extensions
	6. Other
	7. Transport Binding Profile
	7.1. Contents
	7.2. Introduction
	7.3. Registration
	7.3.1. Registration Overview
	7.3.2. Examples
	7.3.3. Registration Primary IDL
	7.3.4. Registration Supporting IDL

	7.4. Authentication
	7.4.1. Authentication Overview
	7.4.2. Authentication Examples
	7.4.3. Authentication IDL

	7.5. Common
	7.5.1. Common IDL

	Index
	Terms defined by reference

	References
	Normative References
	Informative References

	Issues Index

	Client to Authenticator Protocol (CTAP)
	Review Draft, July 02, 2018
	Abstract
	Table of Contents
	1. Introduction
	1.1. Relationship to Other Specifications

	2. Conformance
	3. Protocol Structure
	4. Protocol Overview
	5. Authenticator API
	5.1. authenticatorMakeCredential (0x01)
	5.2. authenticatorGetAssertion (0x02)
	5.3. authenticatorGetNextAssertion (0x08)
	5.3.1. Client Logic

	5.4. authenticatorGetInfo (0x04)
	5.5. authenticatorClientPIN (0x06)
	5.5.1. Client PIN Support Requirements
	5.5.2. Authenticator Configuration Operations Upon Power Up
	5.5.3. Getting Retries from Authenticator
	5.5.4. Getting sharedSecret from Authenticator
	5.5.5. Setting a New PIN
	5.5.6. Changing existing PIN
	5.5.7. Getting pinToken from the Authenticator
	5.5.8. Using pinToken

	5.6. authenticatorReset (0x07)

	6. Message Encoding
	6.1. Commands
	6.2. Responses
	6.3. Status codes

	7. Interoperating with CTAP1/U2F authenticators
	7.1. Framing of U2F commands
	7.1.1. U2F Request Message Framing
	7.1.2. U2F Response Message Framing

	7.2. Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
	7.3. Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

	8. Transport-specific Bindings
	8.1. USB Human Interface Device (USB HID)
	8.1.1. Design rationale
	8.1.2. Protocol structure and data framing
	8.1.3. Concurrency and channels
	8.1.4. Message and packet structure
	8.1.5. Arbitration
	8.1.6. Channel locking
	8.1.7. Protocol version and compatibility
	8.1.8. HID device implementation
	8.1.9. CTAPHID commands

	8.2. ISO7816, ISO14443 and Near Field Communication (NFC)
	8.2.1. Conformance
	8.2.2. Protocol
	8.2.3. Applet selection
	8.2.4. Framing
	8.2.5. Fragmentation
	8.2.6. Commands

	8.3. Bluetooth Smart / Bluetooth Low Energy Technology
	8.3.1. Conformance
	8.3.2. Pairing
	8.3.3. Link Security
	8.3.4. Framing
	8.3.5. GATT Service Description
	8.3.6. Protocol Overview
	8.3.7. Authenticator Advertising Format
	8.3.8. Requests
	8.3.9. Responses
	8.3.10. Framing fragmentation
	8.3.11. Notifications
	8.3.12. Implementation Considerations
	8.3.13. Handling command completion
	8.3.14. Data throughput
	8.3.15. Advertising
	8.3.16. Authenticator Address Type

	9. Defined Extensions
	9.1. HMAC Secret Extension (hmac-secret)

	10. IANA Considerations
	10.1. WebAuthn Extension Identifier Registrations

	11. Security Considerations
	Index
	Terms defined by this specification
	Terms defined by reference

	References
	Normative References
	Informative References

	IDL Index

	FIDO AppID and Facet Specification
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Motivation
	2.2 Avoiding App-Phishing
	2.3 Comparison to OAuth and OAuth2
	2.4 Non-Goals

	3. The AppID and FacetID Assertions
	3.1 Processing Rules for AppID and FacetID Assertions
	3.1.1 Determining the FacetID of a Calling Application
	3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
	3.1.3 TrustedFacet List and Structure
	3.1.4 AppID Example 1
	3.1.5 AppID Example 2
	3.1.6 Obtaining FacetID of Android Native App
	3.1.7 Additional Security Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Metadata Statements
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 Authenticator Attestation GUID (AAGUID) typedef
	3.2 CodeAccuracyDescriptor dictionary
	3.2.1 Dictionary CodeAccuracyDescriptor Members

	3.3 BiometricAccuracyDescriptor dictionary
	3.3.1 Dictionary BiometricAccuracyDescriptor Members

	3.4 PatternAccuracyDescriptor dictionary
	3.4.1 Dictionary PatternAccuracyDescriptor Members

	3.5 VerificationMethodDescriptor dictionary
	3.5.1 Dictionary VerificationMethodDescriptor Members

	3.6 verificationMethodANDCombinations typedef
	3.7 rgbPaletteEntry dictionary
	3.7.1 Dictionary rgbPaletteEntry Members

	3.8 DisplayPNGCharacteristicsDescriptor dictionary
	3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

	3.9 EcdaaTrustAnchor dictionary
	3.9.1 Dictionary EcdaaTrustAnchor Members

	3.10 ExtensionDescriptor dictionary
	3.10.1 Dictionary ExtensionDescriptor Members

	3.11 AlternativeDescriptions dictionary
	3.11.1 Dictionary AlternativeDescriptions Members

	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	5.1 UAF Example
	5.2 U2F Example
	5.3 FIDO2 Example

	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Metadata Service
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Detailed Architecture

	3. Metadata Service Details
	3.1 Metadata TOC Format
	3.1.1 Metadata TOC Payload Entry dictionary
	3.1.2 BiometricStatusReport dictionary
	3.1.3 StatusReport dictionary
	3.1.4 AuthenticatorStatus enum
	3.1.5 RogueListEntry dictionary
	3.1.6 Metadata TOC Payload dictionary
	3.1.7 Metadata TOC
	3.1.8 Metadata TOC object processing rules

	4. Considerations
	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO ECDAA Algorithm
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Architecture Overview

	3. FIDO ECDAA Attestation
	3.1 Object Encodings
	3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)
	3.1.2 Encoding ECPoint values as byte strings (ECPointToB)
	3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

	3.2 Global ECDAA System Parameters
	3.3 Issuer Specific ECDAA Parameters
	3.4 ECDAA-Join
	3.4.1 ECDAA-Join Algorithm
	3.4.2 ECDAA-Join Split between Authenticator and ASM
	3.4.3 ECDAA-Join Split between TPM and ASM

	3.5 ECDAA-Sign
	3.5.1 ECDAA-Sign Algorithm
	3.5.2 ECDAA-Sign Split between Authenticator and ASM
	3.5.3 ECDAA-Sign Split between TPM and ASM

	3.6 ECDAA-Verify Operation

	4. FIDO ECDAA Object Formats and Algorithm Details
	4.1 Supported Curves for ECDAA
	4.2 ECDAA Algorithm Names
	4.3 ecdaaSignature object

	5. Considerations
	5.1 Algorithms and Key Sizes
	5.2 Indicating the Authenticator Model
	5.3 Revocation
	5.4 Pairing Algorithm
	5.5 Performance
	5.6 Binary Concatentation
	5.7 IANA Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Security Reference
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	2.1 Intended Audience

	3. Attack Classification
	Attack Classes
	4. FIDO Security Goals
	4.1 Assets to be Protected

	5. FIDO Security Measures
	5.1 Relation between Measures and Goals

	6. FIDO Security Assumptions
	6.1 Discussion

	7. Threat Analysis
	7.1 Threats to Client Side
	7.1.1 Exploiting User’s pattern matching weaknesses
	7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
	7.1.3 Threat to the communication between Client and FIDO Authenticator

	7.2 Threats to FIDO Authenticator
	7.3 Threats to Relying Party
	7.3.1 Threats to FIDO Server Data

	7.4 Threats to the Secure Channel between Client and Relying Party
	7.4.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

	7.5 Threats to the Infrastructure
	7.5.1 Threats to FIDO Authenticator Manufacturers
	7.5.2 Threats to FIDO Server Vendors
	7.5.3 Threats to FIDO Metadata Service Operators

	7.6 Threats Specific to Second Factor Authenticators (U2F /UAF / WebAuthn)

	8. Acknowledgements
	A. References
	A.1 Informative references

	FIDO Registry of Predefined Values
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	3. Authenticator Characteristics
	3.1 User Verification Methods
	3.2 Key Protection Types
	3.3 Matcher Protection Types
	3.4 Authenticator Attachment Hints
	3.5 Transaction Confirmation Display Types
	3.6 Tags used for crypto algorithms and types
	3.6.1 Authentication Algorithms
	3.6.2 Public Key Representation Formats
	3.6.3 Authenticator Attestation Types

	3.7 Authenticator Attestation Types

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Technical Glossary
	FIDO Alliance Review Draft 02 July 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	3. Definitions
	A. References
	A.1 Normative references
	A.2 Informative references

