
Client to Authenticator Protocol (CTAP)

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/

GitHub

Christiaan Brand (Google)
Alexei Czeskis (Google)
Jakob Ehrensvärd (Yubico)
Michael B. Jones (Microsoft)
Akshay Kumar (Microsoft)
Rolf Lindemann (Nok Nok Labs)
Adam Powers (FIDO Alliance)
Johan Verrept (OneSpan)

Matthieu Antoine (Gemalto)
Arnar Birgisson (Google)
Vijay Bharadwaj (Microsoft)
Mirko J. Ploch (SurePassID)

Jeff Hodges (PayPal)

Copyright © 2019 FIDO Alliance. All Rights Reserved.

This specification describes an application layer protocol for communication between a roaming authenticator and another
client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical
media. The application layer protocol defines requirements for such transport protocols. Each transport binding defines the
details of how such transport layer connections should be set up, in a manner that meets the requirements of the application
layer protocol.

This section describes the status of this document at the time of its publication.
Other documents may supersede
this document. A list of current FIDO Alliance publications and the
latest revision of this technical report can be
found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

Proposed Standard, January 30, 2019

This version:

Previous Versions:

Issue Tracking:

Editors:

Former Editors:

Contributors:

Abstract

Status of This Document

↑
→

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/
https://github.com/fido-alliance/fido-2-specs
mailto:cbrand@google.com
mailto:aczeskis@google.com
mailto:jakob@yubico.com
mailto:mbj@microsoft.com
mailto:akshayku@microsoft.com
mailto:rolf@noknok.com
mailto:adam@fidoalliance.org
mailto:johan.verrept@onespan.com
mailto:matthieu.antoine@gemalto.com
mailto:arnarb@google.com
mailto:vijay.bharadwaj@microsoft.com
mailto:mirko.ploch@surepassid.com
mailto:jeff.hodges@paypal.com
https://fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://www.fidoalliance.org/specifications/

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this
document, please Contact Us .
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance , Inc. and its Members
and any other contributors to the
Specification are not, and shall not be held, responsible in any manner
for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable
document and may be used as reference material or cited from another
document. FIDO Alliance 's role in making the
Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

1 Introduction
1.1 Relationship to Other Specifications

2 Conformance

3 Protocol Structure

4 Protocol Overview

5 Authenticator API
5.1 authenticatorMakeCredential (0x01)
5.2 authenticatorGetAssertion (0x02)
5.3 authenticatorGetNextAssertion (0x08)
5.3.1 Client Logic

5.4 authenticatorGetInfo (0x04)
5.5 authenticatorClientPIN (0x06)
5.5.1 Client PIN Support Requirements
5.5.2 Authenticator Configuration Operations Upon Power Up
5.5.3 Getting Retries from Authenticator
5.5.4 Getting sharedSecret from Authenticator
5.5.5 Setting a New PIN
5.5.6 Changing existing PIN
5.5.7 Getting pinToken from the Authenticator
5.5.8 Using pinToken
5.5.8.1 Using pinToken in authenticatorMakeCredential

5.5.8.2 Using pinToken in authenticatorGetAssertion

5.5.8.3 Without pinToken in authenticatorGetAssertion

5.6 authenticatorReset (0x07)

https://fidoalliance.org/
https://fidoalliance.org/contact

6 Message Encoding
6.1 Commands
6.2 Responses
6.3 Status codes

7 Interoperating with CTAP1/U2F authenticators
7.1 Framing of U2F commands
7.1.1 U2F Request Message Framing
7.1.2 U2F Response Message Framing

7.2 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
7.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

8 Transport-specific Bindings
8.1 USB Human Interface Device (USB HID)
8.1.1 Design rationale
8.1.2 Protocol structure and data framing
8.1.3 Concurrency and channels
8.1.4 Message and packet structure
8.1.5 Arbitration
8.1.5.1 Transaction atomicity, idle and busy states.

8.1.5.2 Transaction timeout

8.1.5.3 Transaction abort and re-synchronization

8.1.5.4 Packet sequencing

8.1.6 Channel locking
8.1.7 Protocol version and compatibility
8.1.8 HID device implementation
8.1.8.1 Interface and endpoint descriptors

8.1.8.2 HID report descriptor and device discovery

8.1.9 CTAPHID commands
8.1.9.1 Mandatory commands

8.1.9.1.1 CTAPHID_MSG (0x03)

8.1.9.1.2 CTAPHID_CBOR (0x10)

8.1.9.1.3 CTAPHID_INIT (0x06)

8.1.9.1.4 CTAPHID_PING (0x01)

8.1.9.1.5 CTAPHID_CANCEL (0x11)

8.1.9.1.6 CTAPHID_ERROR (0x3F)

8.1.9.1.7 CTAPHID_KEEPALIVE (0x3B)

8.1.9.2 Optional commands

8.1.9.2.1 CTAPHID_WINK (0x08)

8.1.9.2.2 CTAPHID_LOCK (0x04)

8.1.9.3 Vendor specific commands

8.2 ISO7816, ISO14443 and Near Field Communication (NFC)
8.2.1 Conformance
8.2.2 Protocol
8.2.3 Applet selection
8.2.4 Framing

8.2.4.1 Commands

8.2.4.2 Response

8.2.5 Fragmentation
8.2.6 Commands
8.2.6.1 NFCCTAP_MSG (0x10)

8.2.6.2 NFCCTAP_GETRESPONSE (0x11)

8.3 Bluetooth Smart / Bluetooth Low Energy Technology
8.3.1 Conformance
8.3.2 Pairing
8.3.3 Link Security
8.3.4 Framing
8.3.4.1 Request from Client to Authenticator

8.3.4.2 Response from Authenticator to Client

8.3.4.3 Command, Status, and Error constants

8.3.5 GATT Service Description
8.3.5.1 FIDO Service

8.3.5.2 Device Information Service

8.3.5.3 Generic Access Profile Service

8.3.6 Protocol Overview
8.3.7 Authenticator Advertising Format
8.3.8 Requests
8.3.9 Responses
8.3.10 Framing fragmentation
8.3.11 Notifications
8.3.12 Implementation Considerations
8.3.12.1 Bluetooth pairing: Client considerations

8.3.12.2 Bluetooth pairing: Authenticator considerations

8.3.13 Handling command completion
8.3.14 Data throughput
8.3.15 Advertising
8.3.16 Authenticator Address Type

9 Defined Extensions
9.1 HMAC Secret Extension (hmac-secret)

10 IANA Considerations
10.1 WebAuthn Extension Identifier Registrations

11 Security Considerations

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

This section is not normative.

This protocol is intended to be used in scenarios where a user interacts
with a relying party (a website or native app) on
some platform (e.g., a
PC) which prompts the user to interact with a roaming authenticator
(e.g., a smartphone).

In order to provide evidence of user interaction, a roaming
authenticator implementing this protocol is expected to have a
mechanism
to obtain a user gesture. Possible examples of user gestures include: as
a consent button, password, a PIN, a
biometric or a combination of these.

Prior to executing this protocol, the client/platform (referred to as host hereafter) and roaming authenticator (referred to as
authenticator hereafter) must establish a confidential and
mutually authenticated data transport channel. This specification
does
not specify the details of how such a channel is established, nor how
transport layer security must be achieved.

This specification is part of the FIDO2 project which includes this CTAP and
the [FIDOServerGuidelines] specifications,
and is related to the W3C [WebAuthn] specification. This specification refers to two CTAP protocol
versions:

Both CTAP1 and CTAP2 share the same underlying transports: USB Human Interface
Device (USB HID), Near Field
Communication (NFC), and Bluetooth Smart / Bluetooth Low Energy Technology (BLE) .

The [U2FUsbHid], [U2FNfc], [U2FBle], and [U2FRawMsgs] specifications, specifically, are superseded by this
specification.

Occasionally, the term "CTAP" may be used without clarifying whether it is referring to CTAP1 or CTAP2. In such cases, it
should be understood to be referring to the entirety of this specification or portions of this specification that are not specific
to either CTAP1 or CTAP2. For example, some error messages begin with the term "CTAP" without clarifying whether they
are CTAP1- or CTAP2-specific because they are applicable to both CTAP protocol versions. CTAP protocol-specific error
messages are prefixed with either
"CTAP1" or "CTAP2" as appropriate.

Using CTAP2 with CTAP1/U2F authenticators is defined in Interoperating with CTAP1/U2F authenticators.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification

IDL Index

1. Introduction§

1.1. Relationship to Other Specifications§

1. The CTAP1/U2F protocol, which is defined by the U2F Raw Messages
specification [U2FRawMsgs]. CTAP1/U2F
messages are recognizable by their
APDU-like binary structure. CTAP1/U2F may also be referred to as CTAP 1.2
or
U2F 1.2. The latter was the U2F specification version used as the basis
for several portions of this specification.
Authenticators implementing
CTAP1/U2F are typically referred to as U2F authenticators or CTAP1
authenticators.

2. The CTAP2 protocol, whose messages are encoded in the CTAP2 canonical
CBOR encoding form. Authenticators
implementing CTAP2 are referred to as
CTAP2 authenticators, FIDO2 authenticators, or WebAuthn Authenticators.

2. Conformance§

are non-normative. Everything else in this specification is normative.

The key words
"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL"
in this specification are to be interpreted as
described in [RFC2119].

This protocol is specified in three parts:

This document specifies all three of the above pieces for roaming FIDO2
authenticators.

The general protocol between a platform and an authenticator is as follows:

Each operation in the authenticator API can be performed independently of
the others, and all operations are asynchronous.
The authenticator may
enforce a limit on outstanding operations to limit resource usage - in
this case, the authenticator is
expected to return a busy status and the
host is expected to retry the operation later. Additionally, this
protocol does not
enforce in-order or reliable delivery of requests and
responses; if these properties are desired, they must be provided by the
underlying transport protocol or implemented at a higher layer by
applications.

Note that this API level is conceptual and does not represent actual
APIs. The actual APIs will be provided by each
implementing platform.

The authenticator API has the following methods and data structures.

3. Protocol Structure§

Authenticator API: At this level of abstraction, each
authenticator operation is defined similarly to an API call - it
accepts
input parameters and returns either an output or error code. Note that this
API level is conceptual and does not
represent actual APIs. The actual APIs
will be provided by each implementing platform.

Message Encoding: In order to invoke a method in the
authenticator API, the host must construct and encode a
request and send it
to the authenticator over the chosen transport protocol. The authenticator
will then process the
request and return an encoded response.

Transport-specific Binding: Requests and responses are
conveyed to roaming authenticators over specific
transports (e.g., USB, NFC,
Bluetooth). For each transport technology, message bindings are specified
for this protocol.

4. Protocol Overview§

1. Platform establishes the connection with the authenticator.

2. Platform gets information about the authenticator using
authenticatorGetInfo command, which helps it determine the
capabilities of
the authenticator.

3. Platform sends a command for an operation if the authenticator is capable of supporting it.

4. Authenticator replies with response data or error.

5. Authenticator API§

This method is invoked by the host to request generation of a new
credential in the authenticator. It takes the following input
parameters, which explicitly correspond to those defined in The authenticatorMakeCredential operation section of the Web
Authentication specification:

Parameter name Data type Required? Definition

clientDataHash
(0x01)

Byte Array Required
Hash of the ClientData contextual
binding specified by host. See
[WebAuthn].

rp (0x02) PublicKeyCredentialRpEntity Required

This
PublicKeyCredentialRpEntity
data structure describes a Relying
Party with which the new public
key credential will be associated.
It contains the Relying party
identifier of type text string,
(optionally) a human-friendly RP
name of type text string, and
(optionally) a URL of type text
string, referencing a RP icon
image.
The RP name is to be used
by the authenticator when
displaying the credential to the
user
for selection and usage
authorization.
The RP name and
URL are optional so that the RP
can be more privacy friendly if it
chooses to.
For example, for
authenticators with a display, RP
may not want to display
name/icon for single-factor
scenarios.

This
PublicKeyCredentialUserEntity
data structure describes the user
account to which the new public
key credential will be associated
at the RP.
It contains an RP-
specific user account identifier of
type byte array, (optionally) a
user name of type text string,
(optionally) a user display name
of type text string,
and
(optionally) a URL of type text

5.1. authenticatorMakeCredential (0x01)§

https://www.w3.org/TR/webauthn/#op-make-cred
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#public-key-credential

user (0x03) PublicKeyCredentialUserEntity Required

string, referencing a user icon
image (of a user avatar, for
example).
The authenticator
associates the created public key
credential with the account
identifier,
and MAY also
associate any or all of the user
name, user display name,
and
image data (pointed to by the
URL, if any).
The user name,
display name, and URL are
optional for privacy reasons for
single-factor scenarios where
only user presence is required.
For example, in certain closed
physical environments like
factory floors, user presence only
authenticators can satisfy RP’s
productivity and security needs.
In these environments, omitting
user name, display name and
URL makes the credential more
privacy friendly.
Although this
information is not available
without user verification, devices
which support user verification
but do not have it configured,
can
be tricked into releasing this
information by configuring the
user verification.

pubKeyCredParams
(0x04)

CBOR Array Required

A sequence of CBOR maps
consisting of pairs of
PublicKeyCredentialType (a
string) and cryptographic
algorithm (a positive or negative
integer),
where algorithm
identifiers are values that
SHOULD be registered in the
IANA COSE Algorithms registry
[IANA-COSE-ALGS-REG].
This
sequence is ordered from most
preferred (by the RP) to least
preferred.

A sequence of
PublicKeyCredentialDescriptor
structures, as specified in

excludeList (0x05)
Sequence of

PublicKeyCredentialDescriptors
Optional

[WebAuthn].
The authenticator
returns an error if the
authenticator already contains
one of the credentials enumerated
in this sequence.
This allows RPs
to limit the creation of multiple
credentials for the same account
on a single authenticator.

extensions (0x06)
CBOR map of extension identifier
→ authenticator extension input

values
Optional

Parameters to influence
authenticator operation, as
specified in [WebAuthn]. These
parameters might be authenticator
specific.

options (0x07) Map of authenticator options Optional
Parameters to influence
authenticator operation, as
specified in
in the table below.

pinAuth
(0x08)

Byte Array Optional

First 16 bytes of HMAC-SHA-
256 of clientDataHash using
pinToken which platform got
from the authenticator: HMAC-
SHA-256(pinToken,

clientDataHash).

pinProtocol (0x09) Unsigned Integer Optional
PIN protocol version chosen by
the client

The following values are defined for use in the options parameter. All
options are booleans.

Key
Default
value

Definition

rk false resident key: Instructs the authenticator to store the key material on the
device.

uv false
user verification: Instructs the authenticator to require a gesture that verifies the user
to
complete the request. Examples of such gestures are fingerprint
scan or a PIN.

Note that the [WebAuthn] specification defines an abstract authenticatorMakeCredential operation, which corresponds to
the operation described in this section. The parameters in the abstract [WebAuthn] authenticatorMakeCredential
operation map to the above parameters
as follows:

[WebAuthn]
authenticatorMakeCredential

operation
CTAP authenticatorMakeCredential operation

hash clientDataHash

rpEntity rp

https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input

userEntity user

requireResidentKey options.rk

requireUserPresence
Not present in the current version of CTAP. Authenticators are assumed to
always check user presence.

requireUserVerification options.uv or pinAuth/pinProtocol

credTypesAndPubKeyAlgs pubKeyCredParams

excludeCredentialDescriptorList excludeList

extensions extensions

Note that icon values used with authenticators can employ [RFC2397] "data" URLs
so that the image data is passed by
value, rather than by reference.
This can enable authenticators with a display but no Internet connection to display icons.

Note that a text string is a UTF-8 encoded string (CBOR major type 3).

When an authenticatorMakeCredential request is received, the authenticator performs the
following procedure:

1. If the excludeList parameter is present and contains a credential ID
that is present on this authenticator and bound to the
specified rpId, wait for user presence, then terminate this procedure and
return error code
CTAP2_ERR_CREDENTIAL_EXCLUDED.
User presence check is required for CTAP2 authenticators before
the RP
gets told that the token is already registered to behave similarly to CTAP1/U2F authenticators.

2. If the pubKeyCredParams parameter does not contain a valid
COSEAlgorithmIdentifier value that is supported by the
authenticator,
terminate this procedure and return error code
CTAP2_ERR_UNSUPPORTED_ALGORITHM.

3. If the options parameter is present, process all the options. If the option is known but not supported,
terminate this
procedure and return CTAP2_ERR_UNSUPPORTED_OPTION. If the option is known but not valid for this
command, terminate this procedure and return CTAP2_ERR_INVALID_OPTION.
Ignore any options that are not
understood.
Note that because this specification defines normative behaviors for them,
all authenticators MUST
understand the "rk", "up", and "uv" options.

4. Optionally, if the extensions parameter is present, process any
extensions that this authenticator supports. Authenticator
extension outputs generated by the authenticator extension processing
are returned in the authenticator data .

5. If pinAuth parameter is present and pinProtocol
is 1, verify it by matching it against first 16 bytes of HMAC-SHA-256
of
clientDataHash parameter using pinToken : HMAC-
SHA-256(pinToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

6. If pinAuth parameter is not present and clientPin been set on the authenticator, return
CTAP2_ERR_PIN_REQUIRED
error.

7. If pinAuth parameter is present and the pinProtocol is not supported, return CTAP2_ERR_PIN_AUTH_INVALID.

8. If the authenticator has a display, show the items contained within the user and rp parameter structures
to the user.
Alternatively, request user interaction in an authenticator-specific way (e.g., flash the LED light).
Request permission
to create a credential. If the user declines permission,
return the CTAP2_ERR_OPERATION_DENIED error.

9. Generate a new credential key pair for the algorithm specified.

https://www.w3.org/TR/webauthn/#authenticator-extension-output
https://www.w3.org/TR/webauthn/#authenticator-extension-output
https://www.w3.org/TR/webauthn/#sec-authenticator-data
https://www.w3.org/TR/webauthn/#credential-key-pair

On success, the authenticator returns an attestation object in
its response as defined in [WebAuthn]:

Member
name

Data type Required? Definition

authData
(0x01)

Byte Array Required
The authenticator data object.

fmt
(0x02)

String Required
The attestation statement format identifier .

attStmt
(0x03)

Byte Array, the structure of which
depends on the attestation statement

format identifier
Required

The attestation statement, whose format is
identified by the
"fmt" object member. The
client treats it as an opaque object.

This method is used by a host to request cryptographic proof of user
authentication as well as user consent to a given
transaction, using a
previously generated credential that is bound to the authenticator and relying party identifier.
It takes the
following input parameters, which explicitly correspond to those defined in The authenticatorGetAssertion operation section
of the Web Authentication specification:

Parameter
name

Data type Required? Definition

rpId (0x01) String Required
Relying party identifier . See
[WebAuthn].

clientDataHash
(0x02)

Byte Array Required
Hash of the serialized client data
collected by the host. See [WebAuthn].

allowList (0x03)
Sequence of

PublicKeyCredentialDescriptors
Optional

A sequence of
PublicKeyCredentialDescriptor
structures, each denoting a credential,
as specified
in [WebAuthn]. If this
parameter is present and has 1 or more
entries, the authenticator MUST only
generate an assertion using one of the
denoted credentials.

10. If "rk" in options parameter is set to true:

If a credential for the same RP ID and account ID already exists on the authenticator, overwrite that credential.

Store the user parameter along the newly-created key pair.

If authenticator does not have enough internal storage to persist the new credential, return
CTAP2_ERR_KEY_STORE_FULL.

11. Generate an attestation statement for the newly-created key using
clientDataHash.

5.2. authenticatorGetAssertion (0x02)§

https://www.w3.org/TR/webauthn/#attestation-objects
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#attestation-statement-format
https://www.w3.org/TR/webauthn/#op-get-assertion
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#collectedclientdata-hash-of-the-serialized-client-data

extensions
(0x04)

CBOR map of extension identifier
→ authenticator extension input

values
Optional

Parameters to influence authenticator
operation. These parameters
might be
authenticator specific.

options (0x05) Map of authenticator options Optional
Parameters to influence authenticator
operation, as specified in
the table
below.

pinAuth
(0x06)

Byte Array Optional

First 16 bytes of HMAC-SHA-256 of
clientDataHash using pinToken which
platform got from the authenticator :
HMAC-SHA-256(pinToken,

clientDataHash).

pinProtocol
(0x07)

Unsigned Integer Optional
PIN protocol version selected by client.

The following values are defined for use in the options parameter. All
options are booleans.

Key
Default
value

Definition

up true user presence: Instructs the authenticator to require user consent to complete
the operation.

uv false
user verification: Instructs the authenticator to require a gesture that verifies the user
to
complete the request. Examples of such gestures are fingerprint
scan or a PIN.

Note that the [WebAuthn] specification defines an abstract authenticatorGetAssertion operation, which corresponds to
the operation described in this section. The parameters in the abstract [WebAuthn] authenticatorGetAssertion operation
map to the above parameters
as follows:

[WebAuthn] authenticatorGetAssertion operation CTAP authenticatorGetAssertion operation

hash clientDataHash

rpId rpId

allowCredentialDescriptorList allowList

requireUserPresence options.up

requireUserVerification options.uv or pinAuth/pinProtocol

extensions extensions

When an authenticatorGetAssertion request is received, the authenticator performs the following procedure:

1. Locate all credentials that are eligible for retrieval under
the specified criteria:

If an allowList is present and is non-empty, locate all
denoted credentials present on this authenticator and bound
to the specified
rpId.

https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input

If an allowList is not present, locate all credentials that are
present on this authenticator and bound to the specified
rpId.

Let numberOfCredentials be the number of credentials found.

2. If pinAuth parameter is present and pinProtocol is 1, verify it by matching it against
first 16 bytes of HMAC-SHA-256
of clientDataHash parameter using pinToken : HMAC-SHA-256(pinToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

3. If pinAuth parameter is present and the pinProtocol is not supported, return CTAP2_ERR_PIN_AUTH_INVALID.

4. If pinAuth parameter is not present and clientPin has been set on the authenticator, set the "uv" bit to 0 in the response.

5. If the options parameter is present, process all the options. If the option is known but not supported,
terminate this
procedure and return CTAP2_ERR_UNSUPPORTED_OPTION. If the option is known but not valid for this
command, terminate this procedure and return CTAP2_ERR_INVALID_OPTION.
Ignore any options that are not
understood.
Note that because this specification defines normative behaviors for them,
all authenticators MUST
understand the "rk", "up", and "uv" options.

6. Optionally, if the extensions parameter is present, process any extensions that this authenticator supports.
Authenticator
extension outputs generated by the authenticator extension
processing are returned in the authenticator data.

7. Collect user consent if required. This step MUST happen before the following steps due to privacy reasons
(i.e.,
authenticator cannot disclose existence of a credential until the user interacted with the device):

If the "uv" option was specified and set to true:

If device doesn’t support user-identifiable gestures, return the CTAP2_ERR_UNSUPPORTED_OPTION
error.

Collect a user-identifiable gesture. If gesture validation fails, return the
CTAP2_ERR_OPERATION_DENIED error.

If the "up" option was specified and set to true, collect the user’s consent.

If no consent is obtained and a timeout occurs, return the CTAP2_ERR_OPERATION_DENIED error.

8. If no credentials were located in step 1, return CTAP2_ERR_NO_CREDENTIALS.

9. If more than one credential was located in step 1 and allowList is present and not empty,
select any applicable
credential and proceed to step 12. Otherwise,
order the credentials by the time when they were created in reverse order.
The first credential is the most recent credential that was created.

10. If authenticator does not have a display:

Remember the authenticatorGetAssertion parameters.

Create a credential counter(credentialCounter) and set it 1.
This counter signifies how many credentials are sent
to the platform by the authenticator.

Start a timer. This is used during authenticatorGetNextAssertion command. This step is optional if transport is
done over NFC.

Update the response to include the first credential’s publicKeyCredentialUserEntity information and
numberOfCredentials.
User identifiable information (name, DisplayName, icon) inside
publicKeyCredentialUserEntity MUST not be returned if
user verification is not done by the authenticator.

https://www.w3.org/TR/webauthn/#sec-authenticator-data

On success, the authenticator returns the following structure in its response:

Member name Data type Required? Definition

credential (0x01) PublicKeyCredentialDescriptor Optional

PublicKeyCredentialDescriptor
structure containing the
credential identifier whose
private key was used to generate
the assertion. May be omitted if
the allowList has exactly one
Credential.

authData (0x02) Byte Array Required

The signed-over contextual
bindings made by the
authenticator, as specified in
[WebAuthn].

signature (0x03) Byte Array Required
The assertion
signature produced
by the authenticator, as specified
in [WebAuthn].

PublicKeyCredentialUserEntity
structure containing the user
account information.
User
identifiable information (name,
DisplayName, icon) MUST not
be returned if user verification
is
not done by the authenticator.

U2F Devices:
For U2F devices,
this parameter is not returned as
this user information is not
present
for U2F credentials.

FIDO Devices - server resident
credentials:
For server resident
credentials on FIDO devices, this
parameter is optional as server
resident credentials
behave same
as U2F credentials where they are
discovered given the user

11. If authenticator has a display:

Display all these credentials to the user, using their friendly name along with other stored account information.

Also, display the rpId of the requester (specified in the request) and ask the user to select a credential.

If the user declines to select a credential or takes too long (as determined by the authenticator), terminate this
procedure and return the CTAP2_ERR_OPERATION_DENIED error.

12. Sign the clientDataHash along with authData with the selected credential, using the structure specified in [WebAuthn].

https://www.w3.org/TR/webauthn/#assertion-signature
https://www.w3.org/TR/webauthn/#assertion-signature

user (0x04) PublicKeyCredentialUserEntity Optional

information on the RP.
Authenticators optionally MAY
store user information inside the
credential ID.

FIDO devices - device resident
credentials:
For device resident
keys on FIDO devices, at least
user "id" is mandatory.

For single account per RP case,
authenticator returns "id" field to
the platform
which will be
returned to the [WebAuthn]
layer.

For multiple accounts per RP
case, where the authenticator
does not have a display,
authenticator returns "id" as well
as other fields to the platform.
Platform will use this information
to show the account selection UX
to the user and
for the user
selected account, it will ONLY
return "id" back to the
[WebAuthn] layer and discard
other user details.

numberOfCredentials
(0x05)

Integer Optional

Total number of account
credentials for the RP.
This
member is required when more
than one account for the RP and
the authenticator does not have a
display.
Omitted when returned
for the
authenticatorGetNextAssertion
method.

Within the "flags" bits of the authenticator data structure returned,
the authenticator will report what was actually done
within the authenticator boundary.
The meanings of the combinations of the User Present (UP) and User Verified (UV)
flags
are as follows:

Flags Meaning

"up"=0
"uv"=0

Silent authentication

"up"=1 Physical user presence verified, but no user verification

"uv"=0

"up"=0
"uv"=1

User verification performed, but physical user presence not verified (a typical "smartcard scenario")

"up"=1
"uv"=1

User verification performed and physical user presence verified

The client calls this method when the authenticatorGetAssertion response contains the numberOfCredentials member and
the number of credentials exceeds 1.
This method is used to obtain the next per-credential signature for a given
authenticatorGetAssertion request.

This method takes no arguments as it is always follows a call to
authenticatorGetAssertion or
authenticatorGetNextAssertion.

When such a request is received, the authenticator performs the following procedure:

On success, the authenticator returns the same structure as returned by the
authenticatorGetAssertion method. The
numberOfCredentials member is omitted.

If client receives numberOfCredentials member value exceeding 1 in response to the authenticatorGetAssertion call:

5.3. authenticatorGetNextAssertion (0x08)§

1. If authenticator does not remember any authenticatorGetAssertion parameters, return
CTAP2_ERR_NOT_ALLOWED.

2. If the credentialCounter is equal to or greater than numberOfCredentials, return CTAP2_ERR_NOT_ALLOWED.

3. If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is greater than 30 seconds,
discard the current authenticatorGetAssertion state and return
CTAP2_ERR_NOT_ALLOWED. This step is optional if
transport is done over
NFC.

4. Sign the clientDataHash along with authData with the credential using credentialCounter as index
(e.g.,
credentials[n] assuming 0-based array), using the structure specified in [WebAuthn].

5. Reset the timer. This step is optional if transport is done over NFC.

6. Increment credentialCounter.

5.3.1. Client Logic§

1. Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.

Make sure ‘rp’ member matches the current request.

Remember the ‘response’ member.

Add credential user information to the ‘credentialInfo’ list.

2. Draw a UX that displays credentialInfo list.

3. Let user select which credential to use.

4. Return the value of the ‘response’ member associated with the user choice.

Using this method, the host can request that the authenticator report
a list of all supported protocol versions, supported
extensions, AAGUID
of the device, and its capabilities. This method takes no
inputs.

On success, the authenticator returns:

Member
name

Data type Required? Definition

versions
(0x01)

Sequence
of strings

Required
List of supported versions. Supported versions are: "FIDO_2_0"
for CTAP2 / FIDO2 / Web Authentication authenticators and
"U2F_V2" for CTAP1/U2F authenticators.

extensions
(0x02)

Sequence
of strings

Optional
List of supported extensions.

aaguid (0x03)
Byte

String
Required

The claimed AAGUID. 16 bytes in length and encoded the same
as MakeCredential AuthenticatorData, as specified in
[WebAuthn].

options
(0x04)

Map Optional
List of supported options.

maxMsgSize
(0x05)

Unsigned
Integer

Optional
Maximum message size supported by the authenticator.

pinProtocols
(0x06)

Array of
Unsigned
Integers

Optional
List of supported PIN Protocol versions.

All options are in the form key-value pairs with string IDs and boolean
values. When an option is not present, the default is
applied per table
below. The following is a list of supported options:

Option
ID

Definition Default

plat
platform device: Indicates that the device is attached to the client and therefore
can’t be

removed and used on another client.
false

rk
resident key: Indicates that the device is capable of storing keys on the device
itself and
therefore can satisfy the authenticatorGetAssertion
request with allowList parameter not

specified or empty.

false

Client PIN:

If present and set to true, it indicates that the device is capable of accepting a PIN from
the client and PIN has been set.

Not
supported

5. Discard all other responses.

5.4. authenticatorGetInfo (0x04)§

clientPin If present and set to false, it indicates that the device is capable of accepting a PIN from
the client and PIN has not been set yet.

If absent, it indicates that the device is not capable of accepting a PIN from the client.

Client PIN is one of the ways to do user verification.

up user presence: Indicates that the device is capable of testing user presence. true

uv

user verification:
Indicates that the device is capable of verifying the user within itself.
For example, devices with UI, biometrics fall into this category.

If present and set to true, it indicates that the device is capable of user verification
within itself and has been configured.

If present and set to false, it indicates that the device is capable of user verification
within itself and has not been yet configured.
For example, a biometric device that has

not yet been configured will return this parameter set to false.

If absent, it indicates that the device is not capable of user verification within itself.

A device that can only do Client PIN will not return the "uv" parameter.

If a device is capable of verifying the user within itself as well as able to do
Client PIN,
it will return both "uv" and the Client PIN option.

Not
Supported

One of the design goals of this command is to have minimum burden on the authenticator and to not send actual encrypted
PIN
to the authenticator in normal authenticator usage scenarios to have more security.
Hence, below design only sends PIN
in encrypted format while setting or changing a PIN.
On normal PIN usage scenarios, design uses randomized pinToken
which gets generated every power cycle.

This command is used by the platform to establish key agreement with authenticator and getting sharedSecret, setting a new
PIN on the authenticator, changing existing PIN on the authenticator and getting "pinToken" from the authenticator which
can be used in subsequent authenticatorMakeCredential and authenticatorGetAssertion operations.

It takes the following input parameters:

Parameter
name

Data type Required? Definition

pinProtocol
(0x01)

Unsigned
Integer

Required
PIN protocol version chosen by the client. For this version of
the spec, this SHALL be the number 1.

subCommand
(0x02)

Unsigned
Integer

Required
The authenticator Client PIN sub command currently being
requested

Public key of platformKeyAgreementKey .
The COSE_Key-

5.5. authenticatorClientPIN (0x06)§

keyAgreement
(0x03)

COSE_Key Optional
encoded public key MUST contain the optional "alg"
parameter
and MUST NOT contain any other optional
parameters.
The "alg" parameter MUST contain a
COSEAlgorithmIdentifier value.

pinAuth (0x04) Byte Array Optional

First 16 bytes of HMAC-SHA-256 of encrypted contents
using sharedSecret .
See Setting a new PIN , Changing
existing PIN and Getting pinToken from the authenticator for
more details.

newPinEnc
(0x05)

Byte Array Optional
Encrypted new PIN using sharedSecret .
Encryption is done
over UTF-8 representation of new PIN.

pinHashEnc
(0x06)

Byte Array Optional
Encrypted first 16 bytes of SHA-256 of PIN using
sharedSecret .

The list of sub commands for PIN Protocol Version 1 is:

subCommand Name subCommand Number

getRetries 0x01

getKeyAgreement 0x02

setPIN 0x03

changePIN 0x04

getPINToken 0x05

On success, authenticator returns the following structure in its response:

Parameter
name

Data type Required? Definition

KeyAgreement
(0x01)

COSE_Key Optional

Authenticator key agreement public key in COSE_Key
format. This will be used to establish a sharedSecret between
platform and the authenticator.
The COSE_Key-encoded
public key MUST contain the optional "alg" parameter
and
MUST NOT contain any other optional parameters.
The "alg"
parameter MUST contain a COSEAlgorithmIdentifier value.

pinToken
(0x02)

Byte Array Optional
Encrypted pinToken using sharedSecret to be used in
subsequent authenticatorMakeCredential and
authenticatorGetAssertion operations.

retries
(0x03)

Unsigned
Integer

Optional

Number of PIN attempts remaining before lockout.
This is
optionally used to show in UI when collecting the PIN in
Setting a new PIN , Changing existing PIN and Getting
pinToken from the authenticator flows.

Authenticator generates following configuration at power up.
This is to have less burden on the authenticator as key
agreement is an expensive operation.
This also ensures randomness across power cycles.

Following are the operations authenticator performs on each powerup:

5.5.1. Client PIN Support Requirements§

Platform has to fulfill following PIN support requirements while gathering input from the user:

Minimum PIN Length: 4 Unicode characters

Maximum PIN Length: UTF-8 representation must not exceed 63 bytes

Authenticator has to fulfill following PIN support requirements:

Minimum PIN Length: 4 bytes

Maximum PIN Length: 63 bytes

Maximum consecutive incorrect PIN attempts: 8

retries counter represents the number of attempts left before PIN is blocked.

Each correct PIN entry resets the retries counter back to 8 unless the PIN is already blocked.

Each incorrect PIN entry decrements the retries by 1.

Once the retries counter reaches 0,
the authenticator has to be reset before any further operations
can happen
that require a PIN.

PIN storage on the device has to be of the same or better security assurances as of private keys on the device.

Note: Authenticators can implement minimum PIN lengths that are longer than 4 bytes.

5.5.2. Authenticator Configuration Operations Upon Power Up§

Generate "authenticatorKeyAgreementKey":

Generate an ECDH P-256 key pair called "authenticatorKeyAgreementKey"
denoted by (a, aG) where "a"
denotes the private key and
"aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Generate "pinToken":

Generate a random integer of length which is multiple of 16 bytes (AES block length).

"pinToken" is used so that there is minimum burden on the authenticator and platform does not
have to not send
actual encrypted PIN to the authenticator in normal authenticator usage scenarios.
This also provides more
security as we are not sending actual PIN even in encrypted form.
"pinToken" will be given to the platform upon
verification of the PIN to be used
in subsequent authenticatorMakeCredential and authenticatorGetAssertion
operations.

5.5.3. Getting Retries from Authenticator§

Retries count is the number of attempts remaining before lockout. When the device is
nearing authenticator lockout, the
platform can optionally warn the user to be careful while entering the PIN.

Platform performs the following operations to get retries :

Platform does the ECDH key agreement to arrive at sharedSecret to be used only during that transaction.
Authenticator does
not have to keep a list of sharedSecrets for all active sessions.
If there are subsequent authenticatorClientPIN transactions, a
new sharedSecret is generated every time.

Platform performs the following operations to arrive at the sharedSecret:

Following operations are performed to set up a new PIN:

Platform sends authenticatorClientPIN command
with following parameters to the authenticator:

pinProtocol: 0x01

subCommand: getRetries(0x01)

Authenticator responds back with retries .

5.5.4. Getting sharedSecret from Authenticator§

Platform sends authenticatorClientPIN command
with following parameters to the authenticator:

pinProtocol: 0x01

subCommand: getKeyAgreement(0x02)

Authenticator responds back with public key of authenticatorKeyAgreementKey, "aG".

Platform generates "platformKeyAgreementKey":

Platform generates ECDH P-256 key pair called "platformKeyAgreementKey" denoted by (b, bG) where "b"
denotes the private key and "bG" denotes the public key.

Platform generates "sharedSecret"
Platform generates "sharedSecret" using SHA-256 over ECDH key agreement protocol using private key of
platformKeyAgreementKey, "b" and public key of authenticatorKeyAgreementKey, "aG": SHA-256((baG).x).

SHA-256 is done over only "x" curve point of baG.

See [RFC6090] Section 4.1 and
appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol
details
and key representation.

5.5.5. Setting a New PIN§

Platform gets sharedSecret from the authenticator.

Platform collects new PIN ("newPinUnicode") from the user in Unicode format.

Platform checks the Unicode character length of "newPinUnicode" against
the minimum 4 Unicode character
requirement and
returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Let "newPin" be the UTF-8 representation of "newPinUnicode".

file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2020%20PS/!!!authenticatorKeyAgreementKey

Following operations are performed to change an existing PIN:

Platform checks the byte length of "newPin" against
the max UTF-8 representation limit of 63 bytes and
returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends §5.5 authenticatorClientPIN (0x06) command
with following parameters to the authenticator:

pinProtocol: 0x01.

subCommand: setPIN(0x03).

keyAgreement: public key of platformKeyAgreementKey, "bG" .

newPinEnc: Encrypted newPin using sharedSecret : AES256-CBC(sharedSecret, IV=0, newPin).

During encryption, newPin is padded with trailing 0x00 bytes and is of minimum 64 bytes length.
This is to
prevent leak of PIN length while communicating to the authenticator.
There is no PKCS #7 padding used in
this scheme.

pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command,
it returns
CTAP2_ERR_MISSING_PARAMETER error.

If a PIN has already been set, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey,
"a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and
appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol
details
and key representation.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16) and
matching against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and
checks newPin length
against minimum PIN length of 4 bytes.

The decrypted padded newPin should be of at least 64 bytes length and
authenticator determines actual PIN
length by looking for first 0x00 byte which terminates the PIN.

If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION error.

Authenticator may have additional constraints for PIN policy. The current spec only enforces minimum
length of 4 bytes.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device,
sets the retries counter to 8, and returns
CTAP2_OK.

5.5.6. Changing existing PIN§

Platform gets sharedSecret from the authenticator.

Platform collects current PIN ("curPinUnicode") and new PIN ("newPinUnicode") from the user.

Platform checks the Unicode character length of "newPinUnicode" against
the minimum 4 Unicode character
requirement and
returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Let "curPin" be the UTF-8 representation of "curPinUnicode" and "newPin" be the UTF-8 representation of
"newPinUnicode"

Platform checks the byte length of "curPin" and "newPin" against
the max UTF-8 representation limit of 63
bytes and
returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends authenticatorClientPIN command
with following parameters to the authenticator:

pinProtocol: 0x01.

subCommand: changePIN(0x04).

keyAgreement: public key of platformKeyAgreementKey, "bG" .

pinHashEnc: Encrypted first 16 bytes of SHA-256 hash of curPin using sharedSecret : AES256-
CBC(sharedSecret, IV=0, LEFT(SHA-256(curPin),16)).

newPinEnc: Encrypted "newPin" using sharedSecret : AES256-CBC(sharedSecret, IV=0, newPin).

During encryption, newPin is padded with trailing 0x00 bytes and is of minimum 64 bytes length.
This is to
prevent leak of PIN length while communicating to the authenticator.
There is no PKCS #7 padding used in
this scheme.

pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command,
it returns
CTAP2_ERR_MISSING_PARAMETER error.

If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey,
"a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and
appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol
details
and key representation.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc),

16) and matching against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator decrements the retries counter by 1.

Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin), 16).

If a mismatch is detected, the authenticator performs the following operations:

Authenticator generates a new "authenticatorKeyAgreementKey".

file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2020%20PS/authenticatorClientPIN

This step only has to be performed once for the lifetime of the authenticator/platform handle.
Getting pinToken once
provides allows high security without any additional roundtrips every time
(except for the first key-agreement phase) and its
overhead is minimal.

Following operations are performed to get pinToken which will be used in subsequent authenticatorMakeCredential and
authenticatorGetAssertion operations:

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a,
aG), where "a" denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Authenticator returns errors according to following conditions:

If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED,
indicating that power cycling is needed for further
operations. This is done so that malware
running on the platform should not be able to block the
device without user interaction.

Else return CTAP2_ERR_PIN_INVALID error.

Authenticator sets the retries counter to 8.

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and
checks newPin length
against minimum PIN length of 4 bytes.

The decrypted padded newPin should be of at least 64 bytes length and
authenticator determines actual PIN
length by looking
for first 0x00 byte which terminates the PIN.

If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION error.

Authenticator may have additional constraints for PIN policy. The current spec only enforces minimum
length of 4 bytes.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device and returns CTAP2_OK.

5.5.7. Getting pinToken from the Authenticator§

Platform gets sharedSecret from the authenticator.

Platform collects PIN from the user.

Platform sends authenticatorClientPIN command
with following parameters to the authenticator:

pinProtocol: 0x01.

subCommand: getPinToken(0x05).

keyAgreement: public key of platformKeyAgreementKey, "bG" .

pinHashEnc: AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(PIN),16)).

Authenticator performs following operations upon receiving the request:

If Authenticator does not receive mandatory parameters for this command,
it returns
CTAP2_ERR_MISSING_PARAMETER error.

file:///G/My%20Drive/FIDO%20specs/CTAP/AddLegalText/CTAP%2020%20PS/authenticatorClientPIN

Platform has the flexibility to manage the lifetime of pinToken based on the scenario however
it should get rid of the
pinToken as soon as possible when not required.
Authenticator also can expire pinToken based on certain conditions like
changing a PIN,
timeout happening on authenticator, machine waking up from a suspend state etc.
If pinToken has expired,
authenticator will return CTAP2_ERR_PIN_TOKEN_EXPIRED and platform can act
on the error accordingly.

Following operations are performed to use pinToken in authenticatorMakeCredential API:

If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey,
"a" and public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and
appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol
details
and key representation.

Authenticator decrements the retries counter by 1.

Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin), 16).

If a mismatch is detected, the authenticator performs the following operations:

Authenticator generates a new "authenticatorKeyAgreementKey".

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a,
aG), where "a" denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Authenticator returns errors according to following conditions:

If the retries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

If the authenticator sees 3 consecutive mismatches, it returns
CTAP2_ERR_PIN_AUTH_BLOCKED,
indicating that power cycling is needed for further
operations. This is done so that malware
running on the platform should not be able to block the
device without user interaction.

Else return CTAP2_ERR_PIN_INVALID error.

Authenticator sets the retries counter to 8.

Authenticator returns encrypted pinToken using "sharedSecret": AES256-CBC(sharedSecret, IV=0, pinToken).

pinToken should be a multiple of 16 bytes (AES block length) without
any padding or IV. There is no PKCS
#7 padding used in this scheme.

5.5.8. Using pinToken§

5.5.8.1. Using pinToken in authenticatorMakeCredential§

Platform gets pinToken from the authenticator.

If platform sends zero length pinAuth, authenticator needs to wait for user touch and then returns either
CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for the case
where multiple authenticators are attached to the platform and the platform wants to enforce clientPin
semantics, but the
user has to select which authenticator to send the pinToken to.

Following operations are performed to use pinToken in authenticatorGetAssertion API:

If platform sends zero length pinAuth, authenticator needs to wait for user touch and then returns either
CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for the case
where multiple authenticators are attached to the platform and the platform wants to enforce clientPin
semantics, but the
user has to select which authenticator to send the pinToken to.

Platform sends authenticatorMakeCredential command with following additional optional parameter:

pinProtocol: 0x01.

pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16) and matching
against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED
indicating that
power recycle is needed for further operations. This is done so that malware
running on the platform should not be
able to block the device without user interaction.

Authenticator returns authenticatorMakeCredential response with "uv" bit set to 1.

5.5.8.2. Using pinToken in authenticatorGetAssertion§

Platform gets pinToken from the authenticator.

Platform sends authenticatorGetAssertion command with following additional optional parameter:

pinProtocol: 0x01.

pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16) and matching
against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

If authenticator sees 3 consecutive mismatches, it returns CTAP2_ERR_PIN_AUTH_BLOCKED
indicating that
power recycle is needed for further operations. This is done so that malware
running on the platform should not be
able to block the device without user interaction.

Authenticator returns authenticatorGetAssertion response with "uv" bit set to 1.

5.5.8.3. Without pinToken in authenticatorGetAssertion§

Following operations are performed without using pinToken in authenticatorGetAssertion API:

Platform sends authenticatorGetAssertion command without pinAuth optional parameter.

Authenticator returns authenticatorGetAssertion response with "uv" bit set to 0.

Figure 1 Client PIN

This method is used by the client to reset an authenticator back to a
factory default state, invalidating all generated
credentials. In order
to prevent accidental trigger of this mechanism, some form of user
approval MAY be performed on the
authenticator itself,
meaning that the client will have to poll the device until the reset
has been performed. The actual user-
flow to perform the reset will vary
depending on the authenticator and it outside the scope of this
specification.

Many transports (e.g., Bluetooth Smart) are bandwidth-constrained, and
serialization formats such as JSON are too heavy-
weight for such
environments. For this reason, all encoding is done using the concise
binary encoding CBOR [RFC7049].

To reduce the complexity of the messages and the resources required to
parse and validate them, all messages MUST use the
CTAP2 canonical CBOR encoding form as specified
below, which differs from the canonicalization suggested CTAP2
canonical CBOR encoding form as specified in Section 3.9 of [RFC7049].
All encoders MUST serialize CBOR in the
CTAP2 canonical CBOR encoding form without duplicate map keys.
All decoders SHOULD reject CBOR that is not
validly encoded
in the CTAP2 canonical CBOR encoding form and SHOULD reject messages with
duplicate map keys.

The CTAP2 canonical CBOR encoding form uses the following rules:

5.6. authenticatorReset (0x07)§

6. Message Encoding§

Integers must be encoded as small as possible.

0 to 23 and -1 to -24 must be expressed in the same byte as the
major type;

24 to 255 and -25 to -256 must be expressed only with an
additional uint8_t;

256 to 65535 and -257 to -65536 must be expressed only with an
additional uint16_t;

65536 to 4294967295 and -65537 to -4294967296 must be expressed
only with an additional uint32_t.

The representations of any floating-point values are not changed.

The expression of lengths in major types 2 through 5 must be as
short as possible. The rules for these lengths follow the
above
rule for integers.

Indefinite-length items must be made into definite-length items.

The keys in every map must be sorted lowest value to highest.
The sorting rules are:

If the major types are different, the one with the lower value
in numerical order sorts earlier.

Because some authenticators are memory constrained,
the depth of nested CBOR structures used by all message encodings
is limited to at most four (4) levels of any combination of
CBOR maps and/or CBOR arrays.
Authenticators MUST support
at least 4 levels of CBOR nesting.
Clients, platforms, and servers MUST NOT use more than 4 levels of CBOR nesting.

Likewise, because some authenticators are memory constrained,
the maximum message size supported by an authenticator
MAY be limited.
By default, authenticators MUST support messages of at least 1024 bytes.
Authenticators MAY declare a
different maximum message size supported
using the maxMsgSize authenticatorGetInfo result parameter.
Clients, platforms,
and servers MUST NOT send messages larger than 1024
bytes unless the authenticator’s maxMsgSize indicates support for
the larger message size.
Authenticators MAY return the CTAP2_ERR_REQUEST_TOO_LARGE error
if size or memory
constraints are exceeded.

If map keys are present that an implementation does not understand,
they MUST be ignored.
Note that this enables
additional fields to be used as new features are added
without breaking existing implementations.

Messages from the host to authenticator are called "commands" and
messages from authenticator to host are called "replies".
All values are
big endian encoded.

Authenticators SHOULD return the CTAP2_ERR_INVALID_CBOR error
if received CBOR does not conform to the
requirements above.

All commands are structured as:

Name Length Required? Definition

Command
Value

1 byte Required
The value of the command to execute

Command
Parameters

variable Optional
CBOR [RFC7049] encoded set of parameters. Some commands
have
parameters, while others do not (see below)

The assigned values for commands and their descriptions are:

Command Name Command Value Has parameters?

authenticatorMakeCredential 0x01 yes

authenticatorGetAssertion 0x02 yes

If two keys have different lengths, the shorter one sorts earlier;

If two keys have the same length, the one with the lower value
in (byte-wise) lexical order sorts earlier.

Note: These rules are equivalent to a lexicographical comparison of
the canonical encoding of keys for major types
0-3 and 7 (integers,
strings, and simple values). They differ for major types 4-6
(arrays, maps, and tags), which
CTAP2 does not use as keys in maps.
These rules should be revisited if CTAP2 does start using the complex
major
types as keys.

Tags as defined in Section 2.4 in [RFC7049] MUST NOT be present.

6.1. Commands§

authenticatorGetInfo 0x04 no

authenticatorClientPIN 0x06 yes

authenticatorReset 0x07 no

authenticatorGetNextAssertion 0x08 no

authenticatorVendorFirst 0x40 NA

authenticatorVendorLast 0xBF NA

Command codes in the range between authenticatorVendorFirst and authenticatorVendorLast may be used for
vendor-specific implementations. For example, the vendor may choose to put in some testing commands.
Note that the
FIDO client will never generate these commands. All other command codes are reserved for future use
and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5).
The CBOR map must be encoded using the
definite length variant.

Some commands have optional parameters. Therefore, the length of the
parameter map for these commands may vary. For
example,
authenticatorMakeCredential may have 4, 5, 6, or 7 parameters, while
authenticatorGetAssertion may have 2, 3, 4,
or 5 parameters.

All command parameters are CBOR encoded following the JSON to
CBOR conversion procedures as per the CBOR
specification [RFC7049]. Specifically, parameters that are represented as DOM
objects in the Authenticator API layers
(formally defined in
the Web API [WebAuthn]) are converted first to JSON and subsequently
to CBOR.

EXAMPLE 1
A PublicKeyCredentialRpEntity DOM object defined as follows:

var rp = {
 name: "Acme"
 };

would be CBOR encoded as follows:

a1 # map(1)
 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"

¶

EXAMPLE 2
A PublicKeyCredentialUserEntity DOM object defined as follows:

var user = {
 id: Uint8Array.from(window.atob("MIIBkzCCATigAwIBAjCCAZMwggE4oAMCAQIwggGTMII="),
c=>c.charCodeAt(0)),
 icon: "https://pics.example.com/00/p/aBjjjpqPb.png",
 name: "johnpsmith@example.com",

¶

 displayName: "John P. Smith"
 };

would be CBOR encoded as follows:

a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 782b # text(43)
 68747470733a2f2f706963732e657861 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 6d706c652e636f6d2f30302f702f6142 # ...
 6a6a6a707150622e706e67 # ...
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d70 # "johnpsmith@example.com"
 6c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"

EXAMPLE 3
A DOM object that is a sequence of PublicKeyCredentialParameters defined as follows:

var pubKeyCredParams = [
 {
 type: "public-key",
 alg: -7 // "ES256" as registered in the IANA COSE Algorithms registry
 },
 {
 type: "public-key",
 alg: -257 // "RS256" as registered by WebAuthn
 }
];

would be CBOR encoded as:

82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)

¶

For each command that contains parameters, the parameter map keys and
value types are specified below:

Command Parameter Name Key Value type

authenticatorMakeCredential clientDataHash 0x01 byte string (CBOR major type 2).

rp 0x02
CBOR definite length map (CBOR major
type 5).

user 0x03
CBOR definite length map (CBOR major
type 5).

pubKeyCredParams 0x04
CBOR definite length array (CBOR major
type 4) of CBOR definite
length maps
(CBOR major type 5).

excludeList 0x05
CBOR definite length array (CBOR major
type 4) of CBOR definite
length maps
(CBOR major type 5).

extensions 0x06
CBOR definite length map (CBOR major
type 5).

options 0x07
CBOR definite length map (CBOR major
type 5).

pinAuth 0x08 byte string (CBOR major type 2).

pinProtocol 0x09
PIN protocol version chosen by the client.
For this version of the spec, this SHALL be
the number 1.

authenticatorGetAssertion rpId 0x01
UTF-8 encoded text string (CBOR major
type 3).

clientDataHash 0x02 byte string (CBOR major type 2).

allowList 0x03
CBOR definite length array (CBOR major
type 4) of CBOR definite
length maps

 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"

(CBOR major type 5).

extensions 0x04
CBOR definite length map (CBOR major
type 5).

options 0x05
CBOR definite length map (CBOR major
type 5).

pinAuth 0x06 byte string (CBOR major type 2).

pinProtocol 0x07
PIN protocol version chosen by the client.
For this version of the spec, this SHALL be
the number 1.

authenticatorClientPIN pinProtocol 0x01 Unsigned Integer. (CBOR major type 0)

subCommand 0x02 Unsigned Integer. (CBOR major type 0)

keyAgreement 0x03 COSE_Key

pinAuth 0x04 byte string (CBOR major type 2).

newPinEnc 0x05
byte string (CBOR major type 2). It is UTF-
8 representation of encrypted input PIN
value.

pinHashEnc 0x06 byte string (CBOR major type 2).

EXAMPLE 4
The following is a complete encoding example of the authenticatorMakeCredential command (using same account
and crypto parameters as above) and the corresponding authenticatorMakeCredential_Response response:

01 # authenticatorMakeCredential command
a5 # map(5)
 01 # unsigned(1) - clientDataHash
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 #
h’687134968222ec17202e42505f8ed2b16ae22f16bb05b88c25db9e602645f141'
 6ae22f16bb05b88c25db9e602645f141 #
 02 # unsigned(2) - rp
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 6b # text(11)
 6578616d706c652e636f6d # "example.com"
 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"
 03 # unsigned(3) - user
 a4 # map(4)
 62 # text(2)

¶

 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 78 2b # text(43)
 68747470733a2f2f706963732e6578 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 616d706c652e636f6d2f30302f702f #
 61426a6a6a707150622e706e67 #
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d # "johnpsmith@example.com"
 706c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 04 # unsigned(4) - pubKeyCredParams
 82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 07 # unsigned(7) - options
 a1 # map(1)
 62 # text(2)
 726b # "rk"
 f5 # primitive(21)

authenticatorMakeCredential_Response response:

00 # status = success
a3 # map(3)
 01 # unsigned(1)
 66 # text(6)
 7061636b6564 # "packed"
 02 # unsigned(2)
 58 9a # bytes(154)

 c289c5ca9b0460f9346ab4e42d842743 # authData
 404d31f4846825a6d065be597a87051d # ...
 410000000bf8a011f38c0a4d15800617 # ...
 111f9edc7d00108959cead5b5c48164e # ...
 8abcd6d9435c6fa363616c6765455332 # ...
 353661785820f7c4f4a6f1d79538dfa4 # ...
 c9ac50848df708bc1c99f5e60e51b42a # ...
 521b35d3b69a61795820de7b7d6ca564 # ...
 e70ea321a4d5d96ea00ef0e2db89dd61 # ...
 d4894c15ac585bd23684 # ...
 03 # unsigned(3)
 a3 # map(3)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 63 # text(3)
 736967 # "sig"
 58 47 # bytes(71)
 3045022013f73c5d9d530e8cc15cc9 # signature...
 bd96ad586d393664e462d5f0561235 # ...
 e6350f2b728902210090357ff910cc # ...
 b56ac5b596511948581c8fddb4a2b7 # ...
 9959948078b09f4bdc6229 # ...
 63 # text(3)
 783563 # "x5c"
 81 # array(1)
 59 0197 # bytes(407)
 3082019330820138a003020102 # certificate...
 020900859b726cb24b4c29300a # ...
 06082a8648ce3d040302304731 # ...
 0b300906035504061302555331 # ...
 143012060355040a0c0b597562 # ...
 69636f20546573743122302006 # ...
 0355040b0c1941757468656e74 # ...
 696361746f7220417474657374 # ...
 6174696f6e301e170d31363132 # ...
 30343131353530305a170d3236 # ...
 313230323131353530305a3047 # ...
 310b3009060355040613025553 # ...
 31143012060355040a0c0b5975 # ...
 6269636f205465737431223020 # ...
 060355040b0c1941757468656e # ...
 74696361746f72204174746573 # ...
 746174696f6e3059301306072a # ...
 8648ce3d020106082a8648ce3d # ...
 03010703420004ad11eb0e8852 # ...
 e53ad5dfed86b41e6134a18ec4 # ...
 e1af8f221a3c7d6e636c80ea13 # ...
 c3d504ff2e76211bb44525b196 # ...
 c44cb4849979cf6f896ecd2bb8 # ...
 60de1bf4376ba30d300b300906 # ...
 03551d1304023000300a06082a # ...
 8648ce3d040302034900304602 # ...
 2100e9a39f1b03197525f7373e # ...

 10ce77e78021731b94d0c03f3f # ...
 da1fd22db3d030e7022100c4fa # ...
 ec3445a820cf43129cdb00aabe # ...
 fd9ae2d874f9c5d343cb2f113d # ...
 a23723f3 # ...

EXAMPLE 5
The following is a complete encoding example of the authenticatorGetAssertion command and the corresponding
authenticatorGetAssertion_Response response:

02 # authenticatorGetAssertion command
a4 # map(4)
 01 # unsigned(1)
 6b # text(11)
 6578616d706c652e636f6d # "example.com"
 02 # unsigned(2)
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 # clientDataHash
 6ae22f16bb05b88c25db9e602645f141 # ...
 03 # unsigned(3)
 82 # array(2)
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f02 # credential ID
 4f2a5ece603d9c6d4b3df8be08 # ...
 ed01fc442646d034858ac75bed # ...
 3fd580bf9808d94fcbee82b9b2 # ...
 ef6677af0adcc35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 32 # bytes(50)
 03030303030303030303030303 # credential ID
 03030303030303030303030303 # ...
 03030303030303030303030303 # ...
 0303030303030303030303 # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 05 # unsigned(5)
 a1 # map(1)
 62 # text(2)
 7576 # "uv"
 f5 # true

¶

authenticatorGetAssertion_Response response:

00 # status = success
a5 # map(5)
 01 # unsigned(1) - Credential
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f02 # credential ID
 4f2a5ece603d9c6d4b3df8be08 # ...
 ed01fc442646d034858ac75bed # ...
 3fd580bf9808d94fcbee82b9b2 # ...
 ef6677af0adcc35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 02 # unsigned(2)
 58 25 # bytes(37)
 625ddadf743f5727e66bba8c2e387922 # authData
 d1af43c503d9114a8fba104d84d02bfa # ...
 0100000011 # ...
 03 # unsigned(3)
 58 47 # bytes(71)
 304502204a5a9dd39298149d904769b5 # signature
 1a451433006f182a34fbdf66de5fc717 # ...
 d75fb350022100a46b8ea3c3b933821c # ...
 6e7f5ef9daae94ab47f18db474c74790 # ...
 eaabb14411e7a0 # ...
 04 # unsigned(4) - publicKeyCredentialUserEntity
 a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 782b # text(43)
 68747470733a2f2f706963732e6578 # "https://pics.example.com/00/p/aBjjjpqPb.png"
 616d706c652e636f6d2f30302f702f # ...
 61426a6a6a707150622e706e67 # ...
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d # "johnpsmith@example.com"
 706c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 05 # unsigned(5) - numberofCredentials

All responses are structured as:

Name Length Required? Definition

Status 1 byte Required
The status of the response. 0x00 means success; all other values
are
errors. See the table in the next section for valid values.

Response
Data

variable Optional
CBOR encoded set of values.

Response data is encoded using a CBOR map (CBOR major type 5).
The CBOR map must be encoded using the definite
length variant.

For each response message, the map keys and value types are specified below:

Response Message Member Name Key Value type

authenticatorMakeCredential_Response fmt 0x01
text string (CBOR major
type 3).

authData 0x02
byte string (CBOR major
type 2).

attStmt 0x03
definite length map
(CBOR major type 5).

authenticatorGetAssertion_Response credential 0x01
definite length map
(CBOR major type 5).

authData 0x02
byte string (CBOR major
type 2).

signature 0x03
byte string (CBOR major
type 2).

publicKeyCredentialUserEntity 0x04
definite length map
(CBOR major type 5).

numberOfCredentials 0x05
unsigned integer(CBOR
major type 0).

authenticatorGetNextAssertion_Response credential 0x01
definite length map
(CBOR major type 5).

 01 # unsigned(1)

6.2. Responses§

authData 0x02
byte string (CBOR major
type 2).

signature 0x03
byte string (CBOR major
type 2).

publicKeyCredentialUserEntity 0x04
definite length map
(CBOR major type 5).

authenticatorGetInfo_Response versions 0x01

definite length array
(CBOR major type 4) of
UTF-8 encoded
strings
(CBOR major type 3).

extensions 0x02

definite length array
(CBOR major type 4) of
UTF-8 encoded
strings
(CBOR major type 3).

aaguid 0x03

byte string (CBOR major
type 2). 16 bytes in length
and encoded the same
as
MakeCredential
AuthenticatorData, as
specified in [WebAuthn].

options 0x04

Definite length map
(CBOR major type 5) of
key-value pairs where
keys
are UTF8 strings (CBOR
major type 3) and values
are booleans
(CBOR
simple value 21).

maxMsgSize 0x05

unsigned integer(CBOR
major type 0).
This is the
maximum message size
supported by the
authenticator.

pinProtocols 0x06

array of unsigned integers
(CBOR major type). This
is the list of pinProtocols
supported by the
authenticator.

Authenticator public key
in COSE_Key format.
The
COSE_Key-encoded

authenticatorClientPIN_Response keyAgreement 0x01

public key MUST contain
the optional "alg"
parameter
and MUST
NOT contain any other
optional parameters.
The
"alg" parameter MUST
contain a
COSEAlgorithmIdentifier
value.

pinToken 0x02
byte string (CBOR major
type 2).

retries 0x03

Unsigned integer (CBOR
major type 0). This is
number of retries left
before lockout.

The error response values range from 0x01 - 0xff. This range is
split based on error type.

Error response values in the range between CTAP2_OK and CTAP2_ERR_SPEC_LAST are reserved for spec purposes.

Error response values in the range between CTAP2_ERR_VENDOR_FIRST and CTAP2_ERR_VENDOR_LAST may
be used for vendor-specific implementations.
All other response values are reserved for future use and may not be used.
These vendor specific error codes are not interoperable and the platform should treat
these errors as any other unknown error
codes.

Error response values in the range between CTAP2_ERR_EXTENSION_FIRST and
CTAP2_ERR_EXTENSION_LAST may be used for extension-specific implementations.
These errors need to be
interoperable for vendors who decide to implement such optional extension.

Code Name Description

0x00 CTAP1_ERR_SUCCESS, CTAP2_OK Indicates successful response.

0x01 CTAP1_ERR_INVALID_COMMAND The command is not a valid CTAP command.

0x02 CTAP1_ERR_INVALID_PARAMETER The command included an invalid parameter.

0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.

0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.

0x05 CTAP1_ERR_TIMEOUT Message timed out.

0x06 CTAP1_ERR_CHANNEL_BUSY Channel busy.

6.3. Status codes§

0x0A CTAP1_ERR_LOCK_REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this cid.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION Unsupported extension.

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the exclude list.

0x21 CTAP2_ERR_PROCESSING Processing (Lengthy operation is in progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in progress.

0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM
Authenticator does not support requested
algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x2A CTAP2_ERR_NO_OPERATION_PENDING No outstanding operations.

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Not a valid option for current operation.

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT Timeout waiting for user interaction.

0x30 CTAP2_ERR_NOT_ALLOWED
Continuation command, such as,
authenticatorGetNextAssertion not allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN Invalid.

0x32 CTAP2_ERR_PIN_BLOCKED PIN Blocked.

0x33 CTAP2_ERR_PIN_AUTH_INVALID PIN authentication, pinAuth , verification failed.

PIN authentication, pinAuth , blocked. Requires

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED
power recycle to reset.

0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.

0x36 CTAP2_ERR_PIN_REQUIRED PIN is required for the selected operation.

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION
PIN policy violation. Currently only enforces
minimum length.

0x38 CTAP2_ERR_PIN_TOKEN_EXPIRED pinToken expired on authenticator.

0x39 CTAP2_ERR_REQUEST_TOO_LARGE
Authenticator cannot handle this request due to
memory constraints.

0x3A CTAP2_ERR_ACTION_TIMEOUT The current operation has timed out.

0x3B CTAP2_ERR_UP_REQUIRED
User presence is required for the requested
operation.

0x7F CTAP1_ERR_OTHER Other unspecified error.

0xDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.

0xE0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.

0xEF CTAP2_ERR_EXTENSION_LAST Extension specific error.

0xF0 CTAP2_ERR_VENDOR_FIRST Vendor specific error.

0xFF CTAP2_ERR_VENDOR_LAST Vendor specific error.

This section defines how a platform maps CTAP2 requests to CTAP1/U2F requests
and CTAP1/U2F responses to CTAP2
responses in order to support CTAP1/U2F
authenticators via CTAP2.
CTAP2 requests can be mapped to CTAP1/U2F
requests provided the CTAP2
request does not have parameters that only CTAP2 authenticators can fulfill.
The processes
for RPs to use to verify CTAP1/U2F based authenticatorMakeCredential
and authenticatorGetAssertion responses are also
defined below.
Platform may choose to skip this feature and work only with CTAP devices.

The U2F protocol is based on a request-response mechanism, where a requester sends a request message to a U2F device,
which always results in a response message being sent back from the U2F device to the requester.

The request message has to be "framed" to send to the lower layer. Taking the signature request as an example, the
"framing" is a way for the FIDO client to tell the lower transport layer that it is sending a signature request and then send the
raw message contents. The framing also specifies how the transport will carry back the response raw message and any meta-
information such as an error code if the command failed.

7. Interoperating with CTAP1/U2F authenticators§

7.1. Framing of U2F commands§

In this current version of U2F, the framing is defined based on the ISO7816-4:2005 extended APDU format. This is very
appropriate for the USB transport since devices are typically built around secure elements which understand this format
already. This same argument may apply for futures such as Bluetooth based devices. For other futures based on other
transports, such as a built-in u2f token on a mobile device TEE, this framing may not be appropriate, and a different framing
may need to be defined.

The raw request message is framed as a command APDU:

CLA INS P1 P2 LC1 LC2 LC3

Where:

CLA: Reserved to be used by the underlying transport protocol (if applicable). The host application shall set this byte to
zero.

INS: U2F command code, defined in the following sections.

P1, P2: Parameter 1 and 2, defined by each command.

LC1-LC3: Length of the request data, big-endian coded, i.e. LC1 being MSB and LC3 LSB

The raw response data is framed as a response APDU:

SW1 SW2

Where:

SW1, SW2: Status word bytes 1 and 2, forming a 16-bit status word, defined below. SW1 is MSB and SW2 LSB.
Status
Codes

The following ISO7816-4 defined status words have a special meaning in U2F:

SW_NO_ERROR: The command completed successfully without error.

SW_CONDITIONS_NOT_SATISFIED: The request was rejected due to test-of-user-presence being required.

SW_WRONG_DATA: The request was rejected due to an invalid key handle.

Each implementation may define any other vendor-specific status codes, providing additional information about an error
condition. Only the error codes listed above will be handled by U2F FIDO clients, whereas others will be seen as general
errors and logging of these is optional.

Platform follows the following procedure (Fig: Mapping: WebAuthn
authenticatorMakeCredential to and from CTAP1/U2F
Registration Messages)

7.1.1. U2F Request Message Framing§

7.1.2. U2F Response Message Framing§

7.2. Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators§

:

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command
as specified in
CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response.
For any failure,
platform may fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorMakeCredential request to U2F_REGISTER request.

Platform verifies that CTAP2 request does not have any parameters
that CTAP1/U2F authenticators cannot fulfill.

All of the below conditions must be true for the platform to proceed to next step.
If any of the below
conditions is not true,
platform errors out with CTAP2_ERR_UNSUPPORTED_OPTION.

pubKeyCredParams must use the ES256 algorithm (-7).

Options must not include "rk" set to true.

Options must not include "uv" set to true.

If excludeList is not empty:

If the excludeList is not empty, the platform must send signing
request with check-only control byte to
the CTAP1/U2F authenticator
using each of the credential ids (key handles) in the excludeList.
If any of
them does not result in an error,
that means that this is a known device.
Afterwards, the platform must
still send a dummy registration request
(with a dummy appid and invalid challenge) to CTAP1/U2F
authenticators
that it believes are excluded.
This makes it so the user still needs to touch the
CTAP1/U2F authenticator
before the RP gets told that the token is already registered.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

Let rpIdHash be a byte array of size 32 initialized
with SHA-256 hash of rp.id parameter as CTAP1/U2F
application parameter (32 bytes).

3. Send the U2F_REGISTER request to the authenticator as specified in [U2FRawMsgs] spec.

4. Map the U2F registration response message
(see: FIDO U2F Raw Message Formats v1.0 §registration-response-
message-success)
to a CTAP2 authenticatorMakeCredential response message:

Generate authenticatorData from the
U2F registration response message (FIDO U2F Raw Message Formats
v1.0 §registration-response-message-success) received from the authenticator:

Initialize attestedCredData:

Let credentialIdLength be a 2-byte unsigned
big-endian integer representing length of the Credential
ID
initialized with CTAP1/U2F response key handle length.

Let credentialId be a credentialIdLength byte array initialized with CTAP1/U2F response key
handle bytes.

Let x9encodedUserPublicKeybe the user public key returned in the U2F registration response
message [U2FRawMsgs]. Let coseEncodedCredentialPublicKey be the result of converting
x9encodedUserPublicKey’s value
from ANS X9.62 / Sec-1 v2 uncompressed curve point representation
[SEC1V2] to COSE_Key representation ([RFC8152] Section 7).

Let attestedCredData be a byte array with following structure:

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#registration-request-message---u2f_register
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success

Length (in bytes) Description Value

16
The AAGUID of the

authenticator.
Initialized with all zeros.

2
Byte length L of

Credential ID
Initialized with credentialIdLength
bytes.

credentialIdLength Credential ID. Initialized with credentialId bytes.

77
The credential public

key.

Initialized with
coseEncodedCredentialPublicKey

bytes.

Initialize authenticatorData:

Let flags be a byte whose zeroth bit (bit 0, UP) is set,
and whose sixth bit (bit 6, AT) is set,
and all
other bits are zero (bit zero is the least significant bit).
See also Authenticator Data section of
[WebAuthn].

Let signCount be a 4-byte unsigned integer initialized to zero.

Let authenticatorData be a byte array with the following structure:

Length (in
bytes)

Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4
Signature counter

(signCount).
Initialized with signCount bytes.

Variable Length Attested credential data .
Initialized with attestedCredData’s
value.

Let attestationStatement be a CBOR map
(see "attStmtTemplate" in Generating an Attestation Object
[WebAuthn]) with the following keys, whose values are as
follows:

Set "x5c" as an array of the one attestation cert extracted
from CTAP1/U2F response.

Set "sig" to be the "signature" bytes from the U2F
registration response message [U2FRawMsgs].

Let attestationObject be a CBOR map
(see "attObj" in Attestation object [WebAuthn]) with the following keys,
whose values are as
follows:

Set "authData" to authenticatorData.

Set "fmt" to "fido-u2f".

Set "attStmt" to attestationStatement.

5. Return attestationObject to the caller.

EXAMPLE 6¶

https://www.w3.org/TR/webauthn/#rp-id
https://www.w3.org/TR/webauthn/#sec-attested-credential-data
https://www.w3.org/TR/webauthn/#generating-an-attestation-object
https://www.w3.org/TR/webauthn/#generating-an-attestation-object

Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 2: {"id": "example.com",
 "name": "example.com"},
 3: {"id": "1098237235409872",
 "name": "johnpsmith@example.com",
 "icon": "https://pics.example.com/00/p/aBjjjpqPb.png",
 "displayName": "John P. Smith"},
 4: [{"type": "public-key", "alg": -7},
 {"type": "public-key", "alg": -257}]}

CTAP1/U2F Request from above CTAP2 authenticatorMakeCredential request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash

Sample CTAP1/U2F Response from the device

05 # Reserved Byte (1 Byte)
04E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E # User Public Key (65 Bytes)
1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...
91 # ...
40 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B # X.509 Cert (Variable length
Cert)
0500302E312C302A0603550403132359756269636F2055324620526F6F742043 # ...
412053657269616C203435373230303633313020170D31343038303130303030 # ...
30305A180F32303530303930343030303030305A302C312A302806035504030C # ...
2159756269636F205532462045452053657269616C2032343931383233323437 # ...
37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 # ...
2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 # ...
E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30 # ...
39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 # ...
322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...
4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B # ...
BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4 # ...
C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B # ...
8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 # ...
B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...
1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD # ...
810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 # ...
3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF # ...
1BB0F1FE5DB4EFF7A95F060733F5 # ...
30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85 # Signature (variable Length)
32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # ...
AA7D081DE341FA # ...

Authenticator Data from CTAP1/U2F Response

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash
41 # flags
00000000 # Sign Count
00000000000000000000000000000000 # AAGUID
0040 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
A5010203262001215820E87625896EE4E46DC032766E8087962F36DF9DFE8B56 # Public Key
7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C # ...
B14C22F8C97045F4612FB20C91 # ...

Mapped CTAP2 authenticatorMakeCredential response(CBOR)

{1: "fido-u2f",
 2: h’1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE
 4100403EBD89BF77EC509755
 EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E
 78055BDD396B64F78DA2C5F96200CCD415CD08FE420038A50102032620012158
 20E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E
 1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461
 2FB20C91',
 3: {"sig": h’30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85
 32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1
 AA7D081DE341FA',
 "x5c": [h’3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B
 0500302E312C302A0603550403132359756269636F2055324620526F6F742043
 412053657269616C203435373230303633313020170D31343038303130303030
 30305A180F32303530303930343030303030305A302C312A302806035504030C
 2159756269636F205532462045452053657269616C2032343931383233323437
 37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9
 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1
 E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30
 39302206092B0601040182C40A020415312E332E362E312E342E312E34313438
 322E312E323013060B2B0601040182E51C020101040403020430300D06092A86
 4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B
 BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4
 C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B
 8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69
 B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F
 1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD
 810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3
 3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF
 1BB0F1FE5DB4EFF7A95F060733F5']}}

Figure 2 Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F Registration Messages.

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F
Authentication Messages):

7.3. Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators§

1. Platform tries to get information about the authenticator by sending
authenticatorGetInfo command
as specified in
CTAP2 protocol overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response.
For any failure,
platform may fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:

Platform verifies that CTAP2 request does not have any parameters that
CTAP1/U2F authenticators cannot fulfill:

All of the below conditions must be true for the platform to proceed to next step.
If any of the below
conditions is not true, platform errors out with
CTAP2_ERR_UNSUPPORTED_OPTION.

Options must not include "uv" set to true.

allowList must have at least one credential.

If allowList has more than one credential, platform has to loop over the list and
send individual different
U2F_AUTHENTICATE commands to the authenticator.
For each credential in credential list, map CTAP2
authenticatorGetAssertion request to U2F_AUTHENTICATE as below:

Let controlByte be a byte initialized as follows:

If "up" is set to false, set it to 0x08 (dont-enforce-user-presence-and-sign).

For USB, set it to 0x07 (check-only). This should prevent call getting
blocked on waiting for user input.
If response returns success, then call again setting the
enforce-user-presence-and-sign.

For NFC, set it to 0x03 (enforce-user-presence-and-sign).
The tap has already provided the presence and
won’t block.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F
challenge parameter (32 bytes).

Let rpIdHash be a byte array of size 32 initialized
with SHA-256 hash of rp.id parameter as CTAP1/U2F
application parameter (32 bytes).

Let credentialId is the byte array initialized with
the id for this PublicKeyCredentialDescriptor.

Let keyHandleLength be a byte initialized
with length of credentialId byte array.

Let u2fAuthenticateRequest be a byte array
with the following structure:

Length (in
bytes)

Description Value

32 Challenge parameter Initialized with clientDataHash parameter bytes.

32 Application parameter Initialized with rpIdHash bytes.

1 Key handle length Initialized with keyHandleLength’s value.

keyHandleLength Key handle Initialized with credentialId bytes.

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate

and let Control Byte be P1 of the framing.

3. Send u2fAuthenticateRequest to the authenticator.

4. Map the U2F authentication response message
(see the "Authentication Response Message: Success" section of
[U2FRawMsgs])
to a CTAP2 authenticatorGetAssertion response message:

Generate authenticatorData from the U2F authentication response message received from the authenticator:

Copy bits 0 (the UP bit) and bit 1 from the CTAP2/U2F response user
presence byte to bits 0 and 1 of the
CTAP2 flags, respectively. Set
all other bits of flags to zero. Note: bit zero is the least
significant bit. See also
Authenticator Data section of [WebAuthn].

Let signCount be a 4-byte unsigned integer
initialized with CTAP1/U2F response counter field.

Let authenticatorData is a byte array of following structure:

Length (in bytes) Description Value
32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4 Signature counter (signCount) Initialized with signCount bytes.

Let authenticatorGetAssertionResponse be a CBOR map with the
following keys whose values are as follows:

Set 0x01 with the credential from allowList that whose response succeeded.

Set 0x02 with authenticatorData bytes.

Set 0x03 with signature field from CTAP1/U2F authentication response message.

EXAMPLE 7
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{1: "example.com",
 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 3: [{"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'}],
 5: {"up": true}}

CTAP1/U2F Request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash
40 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle
Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

Sample CTAP1/U2F Response from the device

01 # User Presence (1 Byte)
0000003B # Sign Count (4 Bytes)

¶

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-response-message-success
https://www.w3.org/TR/webauthn/#rp-id

304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C # Signature (variable Length)
68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3 # ...
5AAD5373858E # ...

Authenticator Data from CTAP1/U2F Response

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpIdHash
01 # User Presence (1 Byte)
0000003B # Sign Count (4 Bytes)

Mapped CTAP2 authenticatorGetAssertion response(CBOR)

{1: {"type": "public-key",
 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'},
 2: h’1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE
 010000003B',
 3: h’304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C
 68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3
 5AAD5373858E'}

Figure 3 Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F Authentication Messages.

8. Transport-specific Bindings§

8.1. USB Human Interface Device (USB HID)§

8.1.1. Design rationale§

CTAP messages are framed for USB transport using the HID (Human Interface
Device) protocol. We henceforth refer to the
protocol as CTAPHID. The
CTAPHID protocol is designed with the following design objectives in mind

Since HID data is sent as interrupt packets and multiple
applications may access the HID stack at once, a non-trivial
level of
complexity has to be added to handle this.

The CTAP protocol is designed to be concurrent and state-less in such a way
that each performed function is not dependent
on previous actions. However,
there has to be some form of "atomicity" that varies between the
characteristics of the
underlying transport protocol, which for the CTAPHID
protocol introduces the following terminology:

A transaction is the highest level of aggregated
functionality, which in turn consists of a request, followed by a
response
message. Once a request has been initiated, the transaction
has to be entirely completed or aborted before a second
transaction
can take place and a response is never sent without a previous request.
Transactions exist only at the highest
CTAP protocol layer.

Request and response messages are in turn divided into
individual fragments, known as packets. The packet is the
smallest form of protocol data unit, which in the case of
CTAPHID are mapped into HID reports.

Additional logic and overhead is required to allow a CTAPHID
device to deal with multiple "clients", i.e. multiple
applications accessing the single resource through the HID
stack. Each client communicates with a CTAPHID device
through a
logical channel, where each application uses a unique 32-bit channel identifier for routing and arbitration
purposes.

A channel identifier is allocated by the FIDO authenticator to ensure
its system-wide uniqueness. The actual algorithm for
generation
of channel identifiers is vendor specific and not defined by
this specification.

Channel ID 0 is reserved and 0xffffffff is reserved for
broadcast commands, i.e. at the time of channel allocation.

Packets are one of two types, initialization packets and continuation packets. As the name suggests, the first packet
sent in a message is an initialization packet, which also
becomes the start of a transaction. If the entire message does
not fit

Driver-less installation on all major host platforms

Multi-application support with concurrent application access
without the need for serialization and centralized
dispatching.

Fixed latency response and low protocol overhead

Scalable method for CTAPHID device discovery

8.1.2. Protocol structure and data framing§

Transaction

Message

Packet

8.1.3. Concurrency and channels§

8.1.4. Message and packet structure§

into one packet (including the CTAPHID protocol
overhead), one or more continuation packets have to be sent in
strict
ascending order to complete the message transfer.

A message sent from a host to a device is known as a request and
a message sent from a device back to the host is known
as a response. A request always triggers a response and response
messages are never sent ad-hoc, i.e. without a prior
request
message. However, a keep-alive message can be sent between a request and a response
message.

The request and response messages have an identical structure. A
transaction is started with the initialization packet of the
request message and ends with the last packet of the response
message. The client starting a transaction may also abort it.

Packets are always fixed size (defined by the endpoint and HID
report descriptors) and although all bytes may not be needed
in
a particular packet, the full size always has to be sent. Unused
bytes SHOULD be set to zero.

An initialization packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s - 7) DATA Payload data (s is equal to the fixed packet size)

The command byte has always the highest bit set to distinguish
it from a continuation packet, which is described below.

A continuation packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)

5 (s - 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7)
may be sent as one packet. A larger message is then
divided
into one or more continuation packets, starting with sequence
number 0, which then increments by one to a
maximum of 127.

With a packet size of 64 bytes (max for full-speed devices),
this means that the maximum message payload length is 64 - 7 +
128 * (64 - 5) = 7609 bytes.

In order to handle multiple channels and clients concurrency,
the CTAPHID protocol has to maintain certain internal states,
block conflicting requests and maintain protocol integrity. The
protocol relies on each client application (channel) behaves
politely, i.e. does not actively act to destroy for other
channels. With this said, a malign or malfunctioning
application can

8.1.5. Arbitration§

cause issues for other channels. Expected
errors and potentially stalling applications should however, be
handled properly.

A transaction always consists of three stages:

The protocol is built on the assumption that a plurality of
concurrent applications may try ad-hoc to perform transactions
at
any time, with each transaction being atomic, i.e. it cannot
be interrupted by another application once started.

The application channel that manages to get through the first
initialization packet when the device is in idle state will
keep
the device locked for other channels until the last packet
of the response message has been received or the transaction is
aborted. The device then returns to idle state, ready to perform
another transaction for the same or a different channel.
Between
two transactions, no state is maintained in the device and a host
application must assume that any other process
may execute other
transactions at any time.

If an application tries to access the device from a different
channel while the device is busy with a transaction, that
request
will immediately fail with a busy-error message sent to
the requesting channel.

A transaction has to be completed within a specified period of
time to prevent a stalling application to cause the device to
be
completely locked out for access by other applications. If
for example an application sends an initialization packet that
signals that continuation packets will follow and that
application crashes, the device will back out that pending
channel
request and return to an idle state.

If an application for any reason "gets lost", gets an unexpected
response or error, it may at any time issue an
abort-and-
resynchronize command. If the device detects an INIT
command during a transaction that has the same channel id as
the
active transaction, the transaction is aborted (if
possible) and all buffered data flushed (if any). The device
then returns to
idle state to become ready for a new
transaction.

If an application wishes to abort a command after the request has
been fully sent, e.g. while an authenticator is waiting for
user
presence, the application may do this by sending a CTAPHID_CANCEL command.

The device keeps track of packets arriving in correct and
ascending order and that no expected packets are missing. The
device will continue to assemble a message until all parts of
it has been received or that the transaction times out.
Spurious
continuation packets appearing without a prior
initialization packet will be ignored.

8.1.5.1. Transaction atomicity, idle and busy states.§

1. A message is sent from the host to the device

2. The device processes the message

3. A response is sent back from the device to the host

8.1.5.2. Transaction timeout§

8.1.5.3. Transaction abort and re-synchronization§

8.1.5.4. Packet sequencing§

In order to deal with aggregated transactions that may not be
interrupted, such as tunneling of vendor-specific commands, a
channel lock command may be implemented. By sending a channel
lock command, the device prevents other channels from
communicating with the device until the channel lock has timed
out or been explicitly unlocked by the application.

This feature is optional and has not to be considered by general
CTAP HID applications.

The CTAPHID protocol is designed to be extensible yet
maintain backwards compatibility, to the extent it is
applicable.
This means that a CTAPHID host SHALL support any
version of a device with the command set available in that
particular
version.

This description assumes knowledge of the USB and HID
specifications and is intended to provide the basics for
implementing a CTAPHID device. There are several ways to
implement USB devices and reviewing these different methods
is
beyond the scope of this document. This specification targets
the interface part, where a device is regarded as either a
single or multiple interface (composite) device.

The description further assumes (but is not limited to) a
full-speed USB device (12 Mbit/s). Although not excluded per
se,
USB low-speed devices are not practical to use given the
8-byte report size limitation together with the protocol
overhead.

The device implements two endpoints (except the control endpoint
0), one for IN and one for OUT transfers. The packet size
is
vendor defined, but the reference implementation assumes a
full-speed device with two 64-byte endpoints.

Interface Descriptor

Mnemonic Value Description

bNumEndpoints 2 One IN and one OUT endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

8.1.6. Channel locking§

8.1.7. Protocol version and compatibility§

8.1.8. HID device implementation§

8.1.8.1. Interface and endpoint descriptors§

bEndpointAdresss 0x01 1, OUT

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x81 1, IN

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and
endpoint packet size may be defined freely by the vendor and
the
host application is responsible for querying these values
and handle these accordingly. For the sake of clarity, the
values
listed above are used in the following examples.

A HID report descriptor is required for all HID devices, even
though the reports and their interpretation (scope, range,
etc.)
makes very little sense from an operating system
perspective. The CTAPHID just provides two "raw" reports, which
basically map directly to the IN and OUT endpoints. However,
the HID report descriptor has an important purpose in
CTAPHID,
as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction
is provided

8.1.8.2. HID report descriptor and device discovery§

EXAMPLE 8
// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {
 HID_UsagePage (FIDO_USAGE_PAGE),
 HID_Usage (FIDO_USAGE_CTAPHID),
 HID_Collection (HID_Application),
 HID_Usage (FIDO_USAGE_DATA_IN),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_INPUT_REPORT_BYTES),
 HID_Input (HID_Data | HID_Absolute | HID_Variable),
 HID_Usage (FIDO_USAGE_DATA_OUT),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),
 HID_Output (HID_Data | HID_Absolute | HID_Variable),
HID_EndCollection

¶

A unique Usage Page is defined (0xF1D0) for the FIDO alliance and under
this realm, a CTAPHID Usage is defined as
well (0x01). During CTAPHID
device discovery, all HID devices present in the system are
examined and devices that match
this usage pages and usage are
then considered to be CTAPHID devices.

The length values specified by the HID_INPUT_REPORT_BYTES and
the HID_OUTPUT_REPORT_BYTES should typically match the
respective endpoint sizes defined in the endpoint descriptors.

The CTAPHID protocol implements the following commands.

The following list describes the minimum set of commands
required by a CTAPHID device. Optional and vendor-specific
commands may be implemented as described in respective sections
of this document.

This command sends an encapsulated CTAP1/U2F message to the device.
The semantics of the data message is defined in
the U2F
Raw Message Format encoding specification.

Request

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F command byte

DATA + 1 n bytes of data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F status code

DATA + 1 n bytes of data

};

8.1.9. CTAPHID commands§

8.1.9.1. Mandatory commands§

8.1.9.1.1. CTAPHID_MSG (0x03)§

8.1.9.1.2. CTAPHID_CBOR (0x10)§

This command sends an encapsulated CTAP CBOR encoded message. The
semantics of the data message is defined in the
CTAP Message
encoding specification. Please note that keep-alive messages MAY be sent from the device to the client
before the response
message is returned.

Request

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP command byte

DATA + 1 n bytes of CBOR encoded data

Response at success

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP status code

DATA + 1 n bytes of CBOR encoded data

This command has two functions.

If sent on an allocated CID, it synchronizes a channel, discarding
the current transaction, buffers and state as quickly as
possible.
It will then be ready for a new transaction. The device then
responds with the CID of the channel it received the
INIT on, using
that channel.

If sent on the broadcast CID, it requests the device to allocate a
unique 32-bit channel identifier (CID) that can be used by
the
requesting application during its lifetime. The requesting application
generates a nonce that is used to match the
response. When the response
is received, the application compares the sent nonce with the received one.
After a positive
match, the application stores the received
channel id and uses that for subsequent transactions.

To allocate a new channel, the requesting application SHALL use
the broadcast channel CTAPHID_BROADCAST_CID
(0xFFFFFFFF). The device then
responds with the newly allocated channel in the response, using the
broadcast channel.

Request

CMD CTAPHID_INIT

BCNT 8

DATA 8-byte nonce

Response at success

8.1.9.1.3. CTAPHID_INIT (0x06)§

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce

DATA+8 4-byte channel ID

DATA+12 CTAPHID protocol version identifier

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented
by the device. This version of the CTAPHID protocol is 2.

A CTAPHID host SHALL accept a response size that
is longer than the anticipated size to allow for future
extensions of the
protocol, yet maintaining backwards
compatibility. Future versions will maintain the response
structure of the current
version, but additional fields may be
added.

The meaning and interpretation of the device version number is vendor
defined.

The capability flags value is a bitfield where the following bits
values are defined. Unused values are reserved for future use
and
must be set to zero by device vendors.

Name Value Description

CAPABILITY_WINK 0x01 If set to 1, authenticator implements CTAPHID_WINK function

CAPABILITY_CBOR 0x04 If set to 1, authenticator implements CTAPHID_CBOR function

CAPABILITY_NMSG 0x08 If set to 1, authenticator DOES NOT implement CTAPHID_MSG function

Sends a transaction to the device, which immediately echoes the
same data back. This command is defined to be a uniform
function for debugging, latency and performance measurements.

Request

CMD CTAPHID_PING

BCNT 0..n

DATA n bytes

Response at success

8.1.9.1.4. CTAPHID_PING (0x01)§

CMD CTAPHID_PING

BCNT n

DATA N bytes

Cancel any outstanding requests on this CID. If there is an outstanding request
that can be cancelled, the authenticator
MUST cancel it and that cancelled request will reply with the error CTAP2_ERR_KEEPALIVE_CANCEL.

As the CTAPHID_CANCEL command is sent during an ongoing transaction, transaction semantics do not apply.
Whether a
request was cancelled or not, the authenticator MUST NOT reply to the CTAPHID_CANCEL message itself.
The
CTAPHID_CANCEL command MAY be sent by the client during ongoing processing of a CTAPHID_CBOR request.
The
CTAP2_ERR_KEEPALIVE_CANCEL response MUST be the response to that request, not an error response in the HID
transport.

A CTAPHID_CANCEL received while no CTAPHID_CBOR request is being processed, or on a non-active CID SHALL
be ignored by the authenticator.

CMD CTAPHID_CANCEL

BCNT 0

This command code is used in response messages only.

CMD CTAPHID_ERROR

BCNT 1

DATA Error code

The following error codes are defined

ERR_INVALID_CMD 0x01 The command in the request is invalid

ERR_INVALID_PAR 0x02 The parameter(s) in the request is invalid

ERR_INVALID_LEN 0x03 The length field (BCNT) is invalid for the request

ERR_INVALID_SEQ 0x04 The sequence does not match expected value

ERR_MSG_TIMEOUT 0x05 The message has timed out

ERR_CHANNEL_BUSY 0x06 The device is busy for the requesting channel

8.1.9.1.5. CTAPHID_CANCEL (0x11)§

8.1.9.1.6. CTAPHID_ERROR (0x3F)§

ERR_LOCK_REQUIRED 0x0A Command requires channel lock

ERR_INVALID_CHANNEL 0x0B CID is not valid.

ERR_OTHER 0x7F Unspecified error

Note: These values are identical to the BLE transport values.

This command code is sent while processing a CTAPHID_MSG. It should be sent at least
every 100ms and whenever the
status changes. A KEEPALIVE sent by an authenticator does
not constitute a response and does therefore not end an
ongoing transaction.

CMD CTAPHID_KEEPALIVE

BCNT 1

DATA Status code

The following status codes are defined

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

The following commands are defined by this specification but are
optional and does not have to be implemented.

The wink command performs a vendor-defined action that provides
some visual or audible identification a particular
authenticator.
A typical implementation will do a short burst of flashes with a
LED or something similar. This is useful
when more than one
device is attached to a computer and there is confusion which
device is paired with which connection.

Request

CMD CTAPHID_WINK

BCNT 0

DATA N/A

Response at success

8.1.9.1.7. CTAPHID_KEEPALIVE (0x3B)§

8.1.9.2. Optional commands§

8.1.9.2.1. CTAPHID_WINK (0x08)§

CMD CTAPHID_WINK

BCNT 0

DATA N/A

The lock command places an exclusive lock for one channel to
communicate with the device. As long as the lock is active,
any
other channel trying to send a message will fail. In order to
prevent a stalling or crashing application to lock the device
indefinitely, a lock time up to 10 seconds may be set. An
application requiring a longer lock has to send repeating lock
commands to maintain the lock.

Request

CMD CTAPHID_LOCK

BCNT 1

DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock

Response at success

CMD CTAPHID_LOCK

BCNT 0

DATA N/A

A CTAPHID may implement additional vendor specific commands that
are not defined in this specification, while being
CTAPHID
compliant. Such commands, if implemented, must use a command in
the range between
CTAPHID_VENDOR_FIRST (0x40) and CTAPHID_VENDOR_LAST (0x7F).

Please refer to [ISO7816-4] for APDU definition.

The general protocol between a FIDO2 client and an authenticator
over ISO7816/ISO14443 is as follows:

8.1.9.2.2. CTAPHID_LOCK (0x04)§

8.1.9.3. Vendor specific commands§

8.2. ISO7816, ISO14443 and Near Field Communication (NFC)§

8.2.1. Conformance§

8.2.2. Protocol§

Because of timeouts that may otherwise occur on some platforms,
it is RECOMMENDED that the Authenticators reply to
APDU commands within 800
milliseconds.

A successful Select allows the client to know that the applet is present
and active. A client SHALL send a Select to the
authenticator before any
other command.

The FIDO2 AID consists of the following fields:

Field Value

RID 0xA000000647

PIX 0x2F0001

The command to select the FIDO applet is:

CLA INS P1 P2 Data In Le

0x00 0xA4 0x04 0x00 AID Variable

In response to the applet selection command, the FIDO authenticator
replies with its version information string in the
successful
response.

Clients and authenticators MAY support additional selection mechanisms. Clients
MUST fall back to the previously defined
selection process if the additional
selection mechanisms fail to select the applet. Authenticators MUST at least
support the
previously defined selection process.

Given legacy support for CTAP1/U2F, the client must determine the
capabilities of the device at the selection stage.

1. Client sends an applet selection command

2. Authenticator replies with success if the applet is present

3. Client sends a command for an operation

4. Authenticator replies with response data or error

5. Return to 3.

8.2.3. Applet selection§

If the authenticator implements CTAP1/U2F, the version information
SHALL be the string "U2F_V2", or
0x5532465f5632, to maintain backwards-compatibility with
CTAP1/U2F-only clients.

If the authenticator ONLY implements CTAP2, the device SHALL respond with "FIDO_2_0",
or
0x4649444f5f325f30.

If the authenticator implements both CTAP1/U2F and CTAP2, the
version information SHALL be the string
"U2F_V2", or 0x5532465f5632, to maintain
backwards-compatibility with CTAP1/U2F-only clients. CTAP2-aware
clients may then issue a CTAP authenticatorGetInfo command to
determine if the device supports CTAP2 or not.

8.2.4. Framing§

Conceptually, framing defines an encapsulation of FIDO2 commands. This
encapsulation is done in an APDU following
[ISO7816-4]. Authenticators MUST
support short and extended length encoding for this APDU. Fragmentation, if needed,
is
discussed in the following paragraph.

Commands SHALL have the following format:

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00 CTAP Command Byte || CBOR Encoded Data Variable

Response SHALL have the following format in case of success:

Case Data Status word

Success

CTAP
Status code
|| Response

data

"9000" - Success

Status
update

Status data

"9100" - OK
When receiving this, the ISO transport layer will immediately issue an

NFCCTAP_GETREPONSE command unless
a cancel was issued. The ISO transport
layer will provide the status data to the higher layers.

Errors See [ISO7816-4]

APDU command may hold up to 255 or 65535 bytes of data using
short or extended length encoding respectively. APDU
response
may hold up to 256 or 65536 bytes of data using short or extended
length encoding respectively.

Some requests may not fit into a short APDU command, or the expected
response may not fit in a short APDU response. For
this reason, FIDO2
client MAY encode APDU command in the following way:

Short APDU Chaining commands SHALL have the following format:

CLA INS P1 P2 Data In

8.2.4.1. Commands§

8.2.4.2. Response§

8.2.5. Fragmentation§

The request may be encoded using extended length APDU
encoding.

The request may be encoded using short APDU encoding.
If the request does not fit a short APDU command, the
client MUST use
ISO 7816-4 APDU chaining.

0x90 0x10 0x00 0x00 CTAP Payload

EXAMPLE 9
Sample authenticatorMakeCredential request using short APDU encoding and chaining mode:

01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162726BF50850FC43AAA411D948CC6C3706
8B8DA1D5080901

would be sent to authenticator by platform in two short APDU commands:

¶

APDU command 1:

Platform Request:
90 10 00 00
F0
01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E
602645F14102A262696469746573742E63746170646E616D6569746573742E63
74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B
63946983E0B577B78C70646E616D6571746573746374617040637461702E636F
6D6B646973706C61794E616D65695465737420437461700483A263616C672664
747970656A7075626C69632D6B6579A263616C6739010064747970656A707562
6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1
6B686D61632D736563726574F507A162

Authenticator Response:
9000

APDU command 2:

Platform Request:
80 10 00 00
17
726BF50850FC43AAA411D948CC6C37068B8DA1D5080901
00

Authenticator Response:
00
A301667061636B6564025900A20021F5FC0B85CD22E60623BCD7D1CA48948909
249B4776EB515154E57B66AE12C500000055F8A011F38C0A4D15800617111F9E
DC7D0010F4D57B23DD0CB785680CDAA7F7E44F60A5010203262001215820DF01
7D0B286795BEA153D166A0A15B4F6B67A3AF4A101E10E8496F3DD3C5D1A92258
2094B22551E6325D7733C41BB2F5A642ADEE417C97E0906197B5B0CD8B8D6C6B
A7A16B686D61632D736563726574F503A363616C672663736967584730450220
7CCAC57A1E43DF24B0847EEBF119D28DCDC5048F7DCD8EDD79E79721C41BCF2D
022100D89EC75B92CE8FF9E46FE7F8C87995694A63E5B78AB85C47B9DA

Some responses may not fit into a short APDU response. For this reason,
FIDO2 authenticators MUST respond in the
following way:

The NFCCTAP_MSG command send a CTAP message to the authenticator. This command SHALL return
as soon as
processing is done. If the operation was not completed, it MAY return a 0x9100 result
to trigger
NFCCTAP_GETRESPONSE functionality if the client indicated support by setting the
relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

6100

APDU command 3:

Platform Request:
80 C0 00 00 00

Authenticator Response:
1C580A8EC83A63783563815901973082019330820138A003020102020900859B
726CB24B4C29300A06082A8648CE3D0403023047310B30090603550406130255
5331143012060355040A0C0B59756269636F205465737431223020060355040B
0C1941757468656E74696361746F72204174746573746174696F6E301E170D31
36313230343131353530305A170D3236313230323131353530305A3047310B30
0906035504061302555331143012060355040A0C0B59756269636F2054657374
31223020060355040B0C1941757468656E74696361746F722041747465737461
74696F6E3059301306072A8648CE3D020106082A8648CE3D030107034200
61A7

APDU command 4:

Platform Request:
80 C0 00 00 A7

Authenticator Response:
04AD11EB0E8852E53AD5DFED86B41E6134A18EC4E1AF8F221A3C7D6E636C80EA
13C3D504FF2E76211BB44525B196C44CB4849979CF6F896ECD2BB860DE1BF437
6BA30D300B30090603551D1304023000300A06082A8648CE3D04030203490030
46022100E9A39F1B03197525F7373E10CE77E78021731B94D0C03F3FDA1FD22D
B3D030E7022100C4FAEC3445A820CF43129CDB00AABEFD9AE2D874F9C5D343CB
2F113DA23723F3
9000

If the request was encoded using extended length APDU encoding,
the authenticator MUST respond using the
extended length APDU response
format.

If the request was encoded using short APDU encoding, the
authenticator MUST respond using ISO 7816-4 APDU
chaining.

8.2.6. Commands§

8.2.6.1. NFCCTAP_MSG (0x10)§

P1 Bits Meaning

0x80 The client supports NFCCTAP_GETRESPONSE

0x7F RFU, must be (0x00)

Values for P2 are all RFU and MUST be set to 0.

The NFCCTAP_GETRESPONSE command is issued up to receiving 0x9100 unless a cancel was issued.
This command
SHALL return a 0x9100 result with a status indication if it has a status update,
the reply to the request with a 0x9000 result
code to indicate success or an error value.

All values for P1 and P2 are RFU and MUST be set to 0x00.

Authenticator and client devices using Bluetooth Low Energy Technology SHALL conform to
Bluetooth Core Specification
4.0 or later [BTCORE].
Bluetooth SIG specified UUID values SHALL be found on the
Assigned Numbers website
[BTASSNUM].

Bluetooth Low Energy Technology is a long-range wireless protocol and thus has several
implications for privacy, security,
and overall user-experience.
Because it is wireless, Bluetooth Low Energy Technology may be subject to monitoring,
injection,
and other network-level attacks.

For these reasons, clients and authenticators MUST create and use a
long-term link key (LTK) and SHALL encrypt all
communications.
Authenticator MUST never use short term keys.

Because Bluetooth Low Energy Technology has poor ranging (i.e., there is no good
indication of proximity), it may not be
clear to a FIDO client with
which Bluetooth Low Energy Technology authenticator it should communicate. Pairing is the
only
mechanism defined in this protocol to ensure that FIDO clients are
interacting with the expected Bluetooth Low Energy
Technology authenticator. As a result,
authenticator manufacturers SHOULD instruct users to avoid performing
Bluetooth
pairing in a public space such as a cafe, shop or train
station.

One disadvantage of using standard Bluetooth pairing is that the
pairing is "system-wide" on most operating systems. That
is, if an
authenticator is paired to a FIDO client which resides on an operating
system where Bluetooth pairing is "system-
wide", then any application
on that device might be able to interact with an authenticator. This
issue is discussed further in
Implementation Considerations.

8.2.6.2. NFCCTAP_GETRESPONSE (0x11)§

8.3. Bluetooth Smart / Bluetooth Low Energy Technology§

8.3.1. Conformance§

8.3.2. Pairing§

8.3.3. Link Security§

For Bluetooth Low Energy Technology connections, the authenticator
SHALL enforce Security Mode 1, Level 2
(unauthenticated
pairing with encryption) or Security Mode 1, Level 3 (authenticated pairing with encryption) before any
FIDO messages
are exchanged.

Conceptually, framing defines an encapsulation of FIDO raw messages
responsible for correct transmission of a single
request and its
response by the transport layer.

All requests and their responses are conceptually written as a single
frame. The format of the requests and responses is given
first as
complete frames. Fragmentation is discussed next for each type of
transport layer.

Request frames must have the following format

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

Supported commands are PING, MSG and CANCEL.
The constant values for them are described below.

The CANCEL command cancels any outstanding MSG commands.

The data format for the MSG command is defined in §6 Message Encoding .

Response frames must have the following format, which share a
similar format to the request frames:

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

When the status byte in the response is the same as the command
byte in the request, the response is a successful response.
The
value ERROR indicates an error, and the response data
contains an error code as a variable-length, big-endian integer. The

8.3.4. Framing§

8.3.4.1. Request from Client to Authenticator§

8.3.4.2. Response from Authenticator to Client§

constant value for ERROR is described below.

Note that the errors sent in this response are errors at the
encapsulation layer, e.g., indicating an incorrectly
formatted
request, or possibly an error communicating with the
authenticator’s FIDO message processing layer. Errors reported by the
FIDO message processing layer itself are considered a success from
the encapsulation layer’s point of view and are reported
as a
complete MSG response.

Data format is defined in §6 Message Encoding .

The COMMAND constants and values are:

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

CANCEL 0xbe

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following
possible values:

Status Constant Value

PROCESSING 0x01

UP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error Constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID_SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

ERR_BUSY 0x06 The device is busy and can’t accept commands at this time.

NA 0x0a Value reserved (HID)

8.3.4.3. Command, Status, and Error constants§

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

Note: These values are identical to the HID transport values.

This profile defines two roles: FIDO Authenticator and FIDO Client.

The following figure illustrates the
mandatory services and characteristics that SHALL be offered by a
FIDO Authenticator
as part of its GATT server:

Figure 4 Mandatory GATT services and characteristics that MUST be offered by a FIDO
Authenticator. Note that the Generic
Access Profile Service ([BTGAS])
is not present as it is already mandatory for any Bluetooth Low Energy Technology compliant

device.

The table below summarizes additional GATT sub-procedure
requirements for a FIDO Authenticator (GATT Server)
beyond those
required by all GATT Servers.

GATT Sub-Procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements
for a FIDO Client (GATT Client) beyond those
required by all GATT Clients.

8.3.5. GATT Service Description§

The FIDO Client SHALL be a GATT Client.

The FIDO Authenticator SHALL be a GATT Server.

GATT Sub-Procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service UUID (*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures.
(**): Mandatory to support at least one of these sub-
procedures.
Other GATT sub-procedures may be used if supported by both client
and server.

Specifics of each service are explained below. In the following
descriptions: all values are big-endian coded, all strings are
in
UTF-8 encoding, and any characteristics not mentioned explicitly are
optional.

An authenticator SHALL implement the FIDO Service described below.
The UUID for the FIDO GATT service is 0xFFFD;
it SHALL be declared as a Primary Service.
The service contains the following characteristics:

Characteristic
Name

Mnemonic Property Length UUID

FIDO Control
Point

fidoControlPoint Write
Defined by
Vendor (20-
512 bytes)

F1D0FFF1-DEAA-
ECEE-B42F-
C9BA7ED623BB

FIDO Status fidoStatus Notify N/A
F1D0FFF2-DEAA-
ECEE-B42F-
C9BA7ED623BB

FIDO Control
Point Length

fidoControlPointLength Read 2 bytes
F1D0FFF3-DEAA-
ECEE-B42F-
C9BA7ED623BB

FIDO Service
fidoServiceRevisionBitfield Read/Write

Defined by
Vendor (1+

F1D0FFF4-DEAA-
ECEE-B42F-

8.3.5.1. FIDO Service§

Revision Bitfield
bytes) C9BA7ED623BB

FIDO Service
Revision

fidoServiceRevision Read
Defined by
Vendor (20-
512 bytes)

0x2A28

fidoControlPoint is a write-only command buffer.

fidoStatus is a notify-only response attribute.
The authenticator will send a series of notifications on this attribute
with a
maximum length of (ATT_MTU-3) using the response frames defined
above. This mechanism is used because this results in
a faster transfer
speed compared to a notify-read combination.

fidoControlPointLength defines the maximum size in
bytes of a single write request to fidoControlPoint.
This value
SHALL be between 20 and 512.

fidoServiceRevision is a deprecated field that is only relevant to
U2F 1.0 support. It defines the revision of the U2F
Service.
The value is a UTF-8 string. For version 1.0 of the specification,
the value fidoServiceRevision SHALL be 1.0
or in
raw bytes: 0x312e30. This field SHALL be omitted if protocol
version 1.0 is not supported.

The fidoServiceRevision Characteristic MAY include
a Characteristic Presentation Format descriptor with format value
0x19, UTF-8 String.

fidoServiceRevisionBitfield defines the revision of the FIDO Service.
The value is a bit field which each bit
representing a version. For each
version bit the value is 1 if the version is supported, 0 if it is not.
The length of the bitfield
is 1 or more bytes. All bytes that are 0 are
omitted if all the following bytes are 0 too. The byte order is big endian.
The
client SHALL write a value to this characteristic with exactly 1 bit
set before sending any FIDO commands unless
u2fServiceRevision is present
and U2F 1.0 compatibility is desired. If only U2F version 1.0 is supported,
this characteristic
SHALL be omitted.

Byte (left to right) Bit Version

0 7 U2F 1.1

0 6 U2F 1.2

0 5 FIDO2

0 4-0 Reserved

For example, a device that only supports FIDO2 Rev 1 will only have a
fidoServiceRevisionBitfield characteristic of length
1 with value 0x20.

An authenticator SHALL implement the Device Information Service [BTDIS] with the following characteristics:

8.3.5.2. Device Information Service§

Manufacturer Name String

Model Number String

Firmware Revision String

All values for the Device Information Service are left to the
vendors. However, vendors should not create uniquely
identifiable
values so that authenticators do not become a method of tracking
users.

Every authenticator SHALL implement the Generic Access Profile Service [BTGAS] with the following characteristics:

The general overview of the communication protocol follows:

When advertising, the authenticator SHALL advertise the FIDO
service UUID.

When advertising, the authenticator MAY include the TxPower value
in the advertisement (see [BTXPLAD]).

When advertising in pairing mode, the authenticator SHALL either:
(1) set the LE Limited Mode bit to zero and the LE
General Discoverable
bit to one OR (2) set the LE Limited Mode bit to one and the LE General
Discoverable bit to zero.
When advertising in non-pairing mode,
the authenticator SHALL set both the LE Limited Mode bit and the LE
General
Discoverable Mode bit to zero in the Advertising Data Flags.

8.3.5.3. Generic Access Profile Service§

Device Name

Appearance

8.3.6. Protocol Overview§

1. Authenticator advertises the FIDO Service.

2. Client scans for authenticator advertising the FIDO Service.

3. Client performs characteristic discovery on the authenticator.

4. If not already paired, the client and authenticator SHALL
perform BLE pairing and create a LTK. Authenticator
SHALL only
allow connections from previously bonded clients without user
intervention.

5. Client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the client selects a supported
version by writing a value with a single bit set.

6. Client reads the fidoControlPointLength characteristic.

7. Client registers for notifications on the fidoStatus characteristic.

8. Client writes a request (e.g., an enroll request) into
the fidoControlPoint characteristic.

9. Optionally, the client writes a CANCEL command to the fidoControlPoint characteristic to cancel the pending
request.

10. Authenticator evaluates the request and responds by sending
notifications over fidoStatus characteristic.

11. The protocol completes when either:

The client unregisters for notifications on the fidoStatus characteristic, or:

The connection times out and is closed by the
authenticator.

8.3.7. Authenticator Advertising Format§

The advertisement MAY also carry a device name which is
distinctive and user-identifiable. For example, "ACME Key"
would
be an appropriate name, while "XJS4" would not be.

The authenticator SHALL also implement the Generic Access Profile [BTGAP] and Device Information Service [BTDIS],
both of which also provide a user-friendly
name for the device that could be used by the client.

It is not specified when or how often an authenticator should
advertise, instead that flexibility is left to manufacturers.

Clients SHOULD make requests by connecting to the authenticator
and performing a write into the fidoControlPoint
characteristic.

Upon receiving a CANCEL request, if there is an outstanding request
that can be cancelled, the authenticator MUST cancel
it and that cancelled request will reply with the error CTAP2_ERR_KEEPALIVE_CANCEL. Whether a request was
cancelled or not, the authenticator MUST NOT reply
to the cancel message itself.

Authenticators SHOULD respond to clients by sending notifications
on the fidoStatus characteristic.

Some authenticators might alert users or prompt them to complete the
test of user presence (e.g., via sound, light, vibration)
Upon receiving any request, the authenticators SHALL send
KEEPALIVE commands every kKeepAliveMillis
milliseconds until completing processing the commands. While the
authenticator is processing the request the KEEPALIVE
command will
contain status PROCESSING. If the authenticator is
waiting to complete the Test of User Presence, the
KEEPALIVE command
will contains status UP_NEEDED. While waiting to
complete the Test of User Presence, the
authenticator MAY alert the
user (e.g., by flashing) in order to prompt the user to complete the
test of user presence.
As
soon the authenticator has completed processing and confirmed
user presence, it SHALL stop sending KEEPALIVE
commands, and send the
reply.

Upon receiving a KEEPALIVE command, the client SHALL assume the
authenticator is still processing the command; the
client SHALL not
resend the command. The authenticator SHALL continue sending
KEEPALIVE messages at least every
kKeepAliveMillis to indicate that it is still handling the request. Until a
client-defined timeout occurs, the client SHALL
NOT move on to other
devices when it receives a KEEPALIVE with UP_NEEDED status, as it knows this is a device that can
satisfy its request.

A single request/response sent over Bluetooth Low Energy Technology MAY be split over multiple
writes and notifications,
due to the inherent limitations of Bluetooth Low Energy Technology
which is not currently meant for large messages.
Frames are
fragmented in the following way:

A frame is divided into an initialization fragment and
one or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description

8.3.8. Requests§

8.3.9. Responses§

8.3.10. Framing fragmentation§

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 0 to (maxLen - 3) DATA Data

where maxLen is the maximum packet size supported by
the characteristic or notification.

In other words, the start of an initialization fragment is
indicated by setting the high bit in the first byte. The subsequent
two
bytes indicate the total length of the frame, in big-endian
order. The first maxLen - 3 bytes of data follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ Packet sequence 0x00..0x7f (high bit always cleared)

1 0 to (maxLen - 1) DATA Data

where maxLen is the maximum packet size supported
by the characteristic or notification.

In other words, continuation fragments begin with a sequence number,
beginning at 0, implicitly with the high bit cleared.
The sequence
number must wraparound to 0 after reaching the maximum sequence
number of 0x7f.

Example for sending a PING command with 40 bytes of
data with a maxLen of 20 bytes:

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512 bytes:

Frame Bytes

0 [810190] [400 bytes of data]

A client needs to register for notifications before it can receive them.
Bluetooth Core Specification 4.0 or later [BTCORE]
forces a device to remember the notification registration status over
different connections [BTCCC]. Unless a client
explicitly
unregisters for notifications, the registration will be automatically restored
when reconnecting. A client MAY
therefor check the notification status
upon connection and only register if notifications aren’t already registered.
Please note
that some clients MAY disable notifications from a power management
point of view (see below) and the notification
registration is remembered per bond,
not per client. A client MUST NOT remember the notification status in its own data

8.3.11. Notifications§

storage.

As noted in §8.3.2 Pairing , a disadvantage of using standard
Bluetooth pairing is that the pairing is "system-wide" on most
operating systems. That is, if an authenticator is paired to a
FIDO client that resides on an operating system where Bluetooth
pairing is "system-wide", then any application on that device
might be able to interact with an authenticator. This poses both
security and privacy risks to users.

While client operating system security is partly out of FIDO’s
scope, further revisions of this specification MAY propose
mitigations for this issue.

The method to put the authenticator into Pairing Mode should be
such that it is not easy for the user to do accidentally
especially if the pairing method is Just Works.
For example, the action could be pressing a physically recessed
button or
pressing multiple buttons. A visible or audible cue
that the authenticator is in Pairing Mode should be considered.
As a
counter example, a silent, long press of a single
non-recessed button is not advised as some users naturally hold
buttons
down during regular operation.

Note that at times, authenticators may legitimately receive
communication from an unpaired device. For example, a user
attempts to use an authenticator for the first time with a new
client; he turns it on, but forgets to put the authenticator into
pairing mode. In this situation, after connecting to the
authenticator, the client will notify the user that he needs to
pair his
authenticator. The authenticator should make it easy for
the user to do so, e.g., by not requiring the user to wait
for a timeout
before being able to enable pairing mode.

Some client platforms (most notably iOS) do not expose the AD Flag
LE Limited and General Discoverable Mode bits to
applications. For
this reason, authenticators are also strongly recommended to include
the Service Data field [BTSD] in the
Scan
Response. The Service Data field is 3 or more octets long.
This allows the Flags field to be extended while using the
minimum
number of octets within the data packet. All octets that are 0x00
are not transmitted as long as all other octets after
that octet are
also 0x00 and it is not the first octet after the service UUID. The
first 2 bytes contain the FIDO Service UUID,
the following bytes are
flag bytes.

To help clients show the correct UX, authenticators can use the
Service Data field to specify whether or not authenticators
will
require a Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)

7 Device is in pairing mode.

6 Device requires Passkey Entry [BTPESTK].

It is important for low-power devices to be able to conserve power
by shutting down or switching to a lower-power state

8.3.12. Implementation Considerations§

8.3.12.1. Bluetooth pairing: Client considerations§

8.3.12.2. Bluetooth pairing: Authenticator considerations§

8.3.13. Handling command completion§

when they
have satisfied a client’s requests. However, the FIDO protocol
makes this hard as it typically includes more than
one
command/response. This is especially true if a user has more than
one key handle associated with an account or identity,
multiple
key handles may need to be tried before getting a successful
outcome. Furthermore, clients that fail to send follow
up commands
in a timely fashion may cause the authenticator to drain its
battery by staying powered up anticipating more
commands.

A further consideration is to ensure that a user is not confused
about which command she is confirming by completing the
test of
user presence. That is, if a user performs the test of user
presence, that action should perform exactly one operation.

We combine these considerations into the following series of
recommendations:

Constant Value

kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kKeepAliveMillis 500 milliseconds

Bluetooth Low Energy Technology does not have particularly high throughput, this can cause
noticeable latency to the user
if request/responses are large.
Some ways that implementers can reduce latency are:

Upon initial connection to an authenticator, and upon receipt
of a response from an authenticator, if a client has more
commands to issue, the client MUST transmit the next command or
fragment within
kMaxCommandTransmitDelayMillis milliseconds.

Upon final response from an authenticator, if the client decides it has no more
commands to send it should indicate this
by disabling notifications on the fidoStatus characteristic. When the notifications are disabled
the authenticator may
enter a low power state or disconnect and shut down.

Any time the client wishes to send a FIDO message, it must have first enabled
notifications on the fidoStatus
characteristic and wait for the
ATT acknowledgement to be sure the authenticator is ready to process messages.

Upon successful completion of a command which required a test
of user presence, e.g. upon a successful authentication
or
registration command, the authenticator can assume the client
is satisfied, and MAY reset its state or power down.

Upon sending a command response that did not consume a test of
user presence, the authenticator MUST assume that
the client may
wish to initiate another command and leave the connection open
until the client closes it or until a
timeout of at least kErrorWaitMillis elapses. Examples of command
responses that do not consume user presence
include failed
authenticate or register commands, as well as get version
responses, whether successful or not. After
kErrorWaitMillis milliseconds have elapsed without
further commands from a client, an authenticator MAY reset its
state or power down.

8.3.14. Data throughput§

Support the maximum MTU size allowable by hardware (up to the
512-byte max from the Bluetooth specifications).

Make the attestation certificate as small as possible; do not
include unnecessary extensions.

8.3.15. Advertising§

Though the standard does not appear to mandate it (in any way that
we’ve found thus far), advertising and device discovery
seems to
work better when the authenticators advertise on all 3 advertising
channels and not just one.

In order to enhance the user’s privacy and specifically to guard
against tracking, it is recommended that authenticators use
Resolvable Private Addresses (RPAs) instead of static
addresses.

This section defines an authenticator extension and corresponding WebAuthn extension.

hmac-secret

This extension is used by the platform to retrieve a symmetric secret from the authenticator
when it needs to encrypt or
decrypt data using that symmetric secret. This symmetric secret
is scoped to a credential.
The authenticator and the platform
each only have the part of the complete secret to prevent offline attacks.
This extension can be used to maintain different
secrets on different machines.

create() : A boolean value to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
 bool hmacCreateSecret;
};

get() : A JavaScript object defined as follows:

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

The salt2 input is optional.
It can be used when the platform wants to roll over the symmetric secret in one operation.

8.3.16. Authenticator Address Type§

9. Defined Extensions§

9.1. HMAC Secret Extension (hmac-secret)§

Extension identifier

Client extension input

Client extension processing
1. If present in a create():

1. If set to true, pass a CBOR true value as the authenticator extension input.

2. If set to false, do not process this extension.

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create

create(): Boolean true value indicating that the authenticator has processed the extension.

partial dictionary AuthenticationExtensionsClientOutputs {
 bool hmacCreateSecret;
};

get(): A dictionary with the following data:

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

Same as the client extension input, except represented in CBOR.

2. If present in a get():

1. Verify that salt1 is a 32-byte ArrayBuffer.

2. If salt2 is present, verify that it is a 32-byte ArrayBuffer.

3. Pass salt1 and, if present, salt2 as the authenticator extension input.

Client extension output

Authenticator extension input

Authenticator extension processing

authenticatorGetInfo additional behaviors

The authenticator indicates to the platform that it supports the "hmac-secret" extension
via the "extensions" parameter
in the authenticatorGetInfo response.

EXAMPLE 10
Sample CTAP2 authenticatorGetInfo response (CBOR):

{
 1: ["FIDO_2_0"],
 2: ["hmac-secret"],
 ...
}

¶

authenticatorMakeCredential additional behaviors

The platform sends the authenticatorMakeCredential request
with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret": true

EXAMPLE 11
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

¶

https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-create
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get

{
 1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 ...
 6: {"hmac-secret": true},
 7: {"rk": true}
}

The authenticator generates a random 32-byte value (called CredRandom) and associates
it with the credential.

The authenticator responds
with the following CBOR map entry in the "extensions" fields to the authenticator:

"hmac-secret": true

EXAMPLE 12
Sample "extensions" field value in the authenticatorData:

{"hmac-secret": true}

¶

authenticatorGetAssertion additional behaviors

The platform gets sharedSecret from the authenticator.

The platform sends the authenticatorGetAssertion request
with the following CBOR map entry in the
"extensions" field to the authenticator:

"hmac-secret":

keyAgreement(0x01): public key of platformKeyAgreementKey , "bG".

saltEnc(0x02): Encrypt one or two salts (Called salt1 (32 bytes) and salt2 (32 bytes))
using
sharedSecret as follows:

One salt case: AES256-CBC(sharedSecret, IV=0, salt1 (32 bytes)).

Two salt case: AES256-CBC(sharedSecret, IV=0, salt1 (32 bytes) || salt2 (32 bytes)).

saltAuth(0x03): LEFT(HMAC-SHA-256(sharedSecret, saltEnc), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

EXAMPLE 13
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{
 1: "example.com",
 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 ...
 4: {
 "hmac-secret":
 {
 1:
 {
 1: 2,

¶

 3: -25,
 -1: 1,
 -2: h’0DE6479775C5B704BF780073809DE1B36A29132E187709C1E364F299F8847769',
 -3: h’3BBE9BEDCC1AC8328BA6397A5F46AF85FC7C51B35BEDFD9E3E47AC6F34248B35'
 },
 2:
h’59E195FC58C614C07C99F587495F374871E9873AD37D5BCA1EED200926C3C6BA528D77A48AF9592BD7E7A8
8051887F214E13CFDF406C3A1C57D529BABF987D4A',
 3: h’17B93F3BDB95380ED512EC6F542CE140'
 }
 }
}

The authenticator performs the following operations when processing this extension:

The authenticator waits for user consent.

The authenticator generates "sharedSecret": SHA-256((abG).x) using
the private key of
authenticatorKeyAgreementKey, "a" and
the public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only the "x" curve point of "abG".

See [RFC6090] Section 4.1 and
Appendix (C.2) of [SP800-56A] for more ECDH key agreement
protocol details
and key representation information.

The authenticator verifies saltEnc by generating LEFT(HMAC-SHA-256(sharedSecret, saltEnc), 16) and
matching against the input saltAuth parameter.

The authenticator generates one or two HMAC-SHA-256 values,
depending upon whether it received one salt
(32 bytes) or two salts (64 bytes):

output1: HMAC-SHA-256(CredRandom, salt1)

output2: HMAC-SHA-256(CredRandom, salt2)

The authenticator returns output1 and, when there were two salts, output2 encrypted to the platform using
sharedSecret as part of "extensions" parameter:

One salt case: "hmac-secret": AES256-CBC(sharedSecret, IV=0, output1 (32 bytes))

Two salt case: "hmac-secret": AES256-CBC(sharedSecret, IV=0, output1 (32 bytes) ||

output2 (32 bytes))

EXAMPLE 14
Sample "extensions" field value in the authenticatorData:

{ "hmac-secret":
h’1F91526CAE456E4CBB71C4DDE7BB877157E6E54DFED3015D7D4DBB2269AFCDE6A91B8D267EBBF848EB95A68E79C
7AC705E351D543DB0165887D6290FD47A40C4' }

¶

Same as the client extension output, except represented in CBOR.

Figure 5 hmac-secret

Authenticator extension output

This section registers the extension identifier values defined in Section §9 Defined Extensions in the
IANA "WebAuthn
Extension Identifier" registry.

See FIDO Security Reference document [FIDOSecRef].

10. IANA Considerations§

10.1. WebAuthn Extension Identifier Registrations§

WebAuthn Extension Identifier: hmac-secret

Description: This registration extension and authentication extension enables
the platform to retrieve a symmetric
secret scoped to the credential from the authenticator.

Specification Document: Section §9.1 HMAC Secret Extension (hmac-secret) of this specification

11. Security Considerations§

Index§

Terms defined by this specification§

CTAP2 canonical CBOR encoding form , in §6

hmacCreateSecret
dict-member for AuthenticationExtensionsClientInputs, in §9.1

dict-member for AuthenticationExtensionsClientOutputs, in §9.1

hmacGetSecret
dict-member for AuthenticationExtensionsClientInputs, in §9.1

dict-member for AuthenticationExtensionsClientOutputs, in §9.1

HMACGetSecretInput , in §9.1

HMACGetSecretOutput , in §9.1

output1 , in §9.1

output2 , in §9.1

salt1 , in §9.1

salt2 , in §9.1

Terms defined by reference§

[credential-management-1] defines the following terms:
create()

get()

[WebAuthn] defines the following terms:

Bluetooth Assigned Numbers . URL: https://www.bluetooth.org/en-us/specification/assigned-numbers

Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume 3, Part G, Section 3.3.3.3. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Bluetooth Core Specification 4.0 . URL: https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?
doc_id=229737

Device Information Service v1.1 . URL: https://www.bluetooth.com/specifications/adopted-specifications

Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H, Section 2.3.5.3. URL:
https://www.bluetooth.com/specifications/adopted-specifications

Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

Mike West. Credential Management Level 1 . 4 August 2017. WD. URL: https://www.w3.org/TR/credential-
management-1/

R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference . Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html

FIDO2 Server Guidelines . URL: https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-
20180702.html

Jim Schaad; et al. IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry. URL:

AuthenticationExtensionsClientInputs

AuthenticationExtensionsClientOutputs

[WebIDL] defines the following terms:
ArrayBuffer

References§

Normative References§

[BTASSNUM]

[BTCCC]

[BTCORE]

[BTDIS]

[BTGAP]

[BTGAS]

[BTPESTK]

[BTSD]

[BTXPLAD]

[CREDENTIAL-MANAGEMENT-1]

[FIDOSecRef]

[FIDOServerGuidelines]

[IANA-COSE-ALGS-REG]

https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-20180702.html
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

https://www.iana.org/assignments/cose/cose.xhtml#algorithms

ISO 7816-4: Identification cards - Integrated circuit cards; Part 4: Organization, security and commands for
interchange. 2013-04. URL: https://www.iso.org/standard/54550.html

L. Masinter. The "data" URL scheme . August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

D. McGrew; K. Igoe; M. Salter. Fundamental Elliptic Curve Cryptography Algorithms. February 2011. Informational.
URL: https://tools.ietf.org/html/rfc6090

C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). October 2013. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7049

J. Schaad. CBOR Object Signing and Encryption (COSE) . July 2017. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8152

SEC1: Elliptic Curve Cryptography, Version 2.0 . May 2009. URL: http://secg.org/download/aid-780/sec1-v2.pdf

Elaine Barker; et al. Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography. May 2013. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

D. Balfanz. FIDO Bluetooth® Specification . Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-
20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html

D. Balfanz. FIDO NFC Protocol Specification . Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-
ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html

D. Balfanz. FIDO U2F Raw Message Formats v1.0 . Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html

D. Balfanz. FIDO U2F HID Protocol Specification . Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html

Dirk Balfanz; et al. Web Authentication: An API for accessing Public Key Credentials Level 1. March 2018. CR. URL:
https://www.w3.org/TR/webauthn/

Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. ED. URL:
https://heycam.github.io/webidl/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels . March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[ISO7816-4]

[RFC2397]

[RFC6090]

[RFC7049]

[RFC8152]

[SEC1V2]

[SP800-56A]

[U2FBle]

[U2FNfc]

[U2FRawMsgs]

[U2FUsbHid]

[WebAuthn]

[WebIDL]

Informative References§

[RFC2119]

https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iso.org/standard/54550.html
https://www.iso.org/standard/54550.html
https://www.iso.org/standard/54550.html
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

partial dictionary AuthenticationExtensionsClientInputs {
 bool hmacCreateSecret;
};

dictionary HMACGetSecretInput {
 required ArrayBuffer salt1; // 32-byte random data
 ArrayBuffer salt2; // Optional additional 32-byte random data
};

partial dictionary AuthenticationExtensionsClientInputs {
 HMACGetSecretInput hmacGetSecret;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 bool hmacCreateSecret;
};

dictionary HMACGetSecretOutput {
 required ArrayBuffer output1;
 ArrayBuffer output2;
};

partial dictionary AuthenticationExtensionsClientOutputs {
 HMACGetSecretOutput hmacGetSecret;
};

IDL Index§

https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs

	Local Disk
	Client to Authenticator Protocol (CTAP)

