
FIDO UAF Registry of Predefined Values
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

Editor:
Dr. Rolf Lindemann , Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan , Nok Nok Labs, Inc.
Brad Hill, PayPal

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are referenced by various
UAF specifications.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A
list of current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance
specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this document, please
Contact Us .
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance , Inc. and its Members
and any other contributors to the Specification are not, and shall not be held,
responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable document and may be used
as reference material or cited from another
document. FIDO Alliance 's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1. Notation
1.1 Key Words

2. Overview
3. Authenticator Characteristics

3.1 Assertion Schemes

4. Predefined Tags
4.1 Tags used in the protocol

5. Predefined Extensions
5.1 User Verification Method Extension
5.2 User ID Extension
5.3 Android SafetyNet Extension
5.4 Android Key Attestation
5.5 User Verification Caching

5.5.1 UVC Request
5.5.2 UVC Response
5.5.3 Privacy Considerations
5.5.4 Security Considerations

5.6 Require Resident Key Extension
5.7 Attestation Conveyance Extension

6. Other Identifiers specific to FIDO UAF
6.1 FIDO UAF Application Identifier (AID)

A. References
A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “ must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in
this
document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of UAF-specific constants that are used and referenced in various UAF specifications.
It is expected that,
over time, new constants will be added to this registry. For example new authentication algorithms and
new types of authenticator
characteristics will require new constants to be defined for use within the specifications.

FIDO-specific constants that are common to multiple protocol families are defined in [FIDORegistry].

3. Authenticator Characteristics

This section is normative.

3.1 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
authenticator. The authenticator must generate a key pair (UAuth.pub/UAuth.priv) to be used with algorithm suites listed in
[FIDORegistry] section "Authentication Algorithms" (with prefix
ALG_). This assertion scheme is using a compact Tag Length Value
(TLV) encoding for the KRD and SignData messages generated by the authenticators. This is the default assertion scheme for the UAF
protocol.

4. Predefined Tags

This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence. The tag is a 2-byte unique unsigned value
describing the type of field the data represents, the length is a 2-byte unsigned value indicating the size of the value in bytes, and the value is the
variable-sized series of bytes which contain data for this item in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the limitations of some
hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it cannot process
that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1_REG_ASSERTION 0x3E01
The content of this tag is the authenticator response to a Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02
The content of this tag is the authenticator response to a Sign command.

TAG_UAFV1_KRD 0x3E03
Indicates Key Registration Data.

TAG_UAFV1_SIGNED_DATA 0x3E04
Indicates data signed by the authenticator using UAuth.priv key.

TAG_APCV1CBOR_AUTH_ASSERTION 0x3E05
The content of this tag is the authenticator response to a Sign command.

TAG_APCV1CBOR_SIGNED_DATA 0x3E06
Indicates Android Protected Confirmation data signed by the authenticator using UAuth.priv key.

TAG_ATTESTATION_CERT 0x2E05
Indicates DER encoded attestation certificate.

TAG_SIGNATURE 0x2E06
Indicates a cryptographic signature.

TAG_KEYID 0x2E09
Represents a generated KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A
Represents a generated final challenge hash as defined in [UAFProtocol].

TAG_AAID 0x2E0B
Represents an Authenticator Attestation ID as defined in [UAFProtocol].

TAG_PUB_KEY 0x2E0C
Represents a generated public key.

TAG_COUNTERS 0x2E0D
Represents the use counters for an authenticator.

TAG_ASSERTION_INFO 0x2E0E
Represents authenticator information necessary for message processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F
Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10

Represents a hash of the transaction content sent to the authenticator.
TAG_EXTENSION 0x3E11, 0x3E12

This is a composite tag indicating that the content is an extension.
TAG_EXTENSION_ID 0x2E13

Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.
TAG_EXTENSION_DATA 0x2E14

Represents extension data. Content of this tag is a UINT8[] byte array.
TAG_RAW_USER_VERIFICATION_INDEX 0x0103

This is the raw UVI as it might be used internally by authenticators. This TAG shall not appear in assertions leaving the authenticator
boundary as it could be used
as global correlation handle.

TAG_USER_VERIFICATION_INDEX 0x0104
The user verification index (UVI) is a value uniquely identifying a user verification data record.

Each UVI value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVI values must not be reused by the Authenticator (for other biometric data or users).

The UVI data can be used by FIDO Servers to understand whether an authentication
was authorized by the exact same biometric data as
the initial key generation.
This allows the detection and prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)),
where the rawUVI reflects (a) the biometric
reference data, (b) the related OS level user ID and (c) an identifier which changes whenever a
factory reset is performed for the device,
e.g. rawUVI = biometricReferenceData | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVI extensions must support a length of up to 32 bytes
for the UVI value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 04 01 -- TAG_USER_VERIFICATION_INDEX (0x0104)
 20 -- length of UVI
 00 43 B8 E3 BE 27 95 8C -- the UVI value itself
 28 D5 74 BF 46 8A 85 CF
 46 9A 14 F0 E5 16 69 31
 DA 4B CF FF C1 BB 11 32
 82
 ...
	

TAG_RAW_USER_VERIFICATION_STATE 0x0105
This is the raw UVS as it might be used internally by authenticators. This TAG shall not appear in assertions leaving the authenticator
boundary as it could be used
as global correlation handle.

TAG_USER_VERIFICATION_STATE 0x0106
The user verification state (UVS) is a value uniquely identifying the set of active user verification data records.

Each UVS value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVS values must not be reused by the Authenticator (for other biometric data sets or users).

The UVS data can be used by FIDO Servers to understand whether an authentication
was authorized by one of the biometric data records
already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)),
where the rawUVS reflects (a) the biometric
reference data sets, (b) the related OS level user ID and (c) an identifier which changes whenever a
factory reset is performed for the
device, e.g. rawUVS = biometricReferenceDataSet | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVS extensions must support a length of up to 32 bytes
for the UVS value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 06 01 -- TAG_USER_VERIFICATION_STATE (0x0106)
 20 -- length of UVS
 00 18 C3 47 81 73 2B 65 -- the UVS value itself
 83 E7 43 31 46 8A 85 CF
 93 6C 36 F0 AF 16 69 14
 DA 4B 1D 43 FE C7 43 24
 45
 ...
	

TAG_USER_VERIFICATION_CACHING 0x0108
This extension allows an app to specify such user verification caching time, i.e. the time for which the
user verification status can be
"cached" by the authenticator.

The value of this extension is defined as follows:

TLV
Structure Description

1 UINT16 Tag TAG_USER_VERIFICATION_CACHING

1.1 UINT16
Length Length of UVC structure in bytes

1.2 UINT16 maxUVC in seconds

1.3 UINT8 (optional) verifyIfExceeded. If 0(=:false): return error if maxUVC exceeded. If non-zero (=:true): verify user if
maxUVC exceeded.

Example of the TLV encoded UVC extension (contained in an authentication request)

 ...
 08 01 -- TAG_USER_VERIFICATION_CACHING (0x0108)
 05 -- length of UVC
 2c 01 00 00 -- the UVC value itself: maxUVC = 0x012c (300 secs),
 01 -- followd by verifyIfExceeded = 1 (true)
 ...
	

TAG_RESIDENT_KEY 0x0109
Is the key resident in the authenticator. The value is a boolean. See section
Require Resident Key Extension for details.

TAG_RESERVED_5 0x0201
Reserved for future use. Name of the tag will change, value is fixed.

5. Predefined Extensions

This section is normative.

5.1 User Verification Method Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to ask the authenticator for using a
specific user verification method and confirm that
in the related response extension.
by FIDO Clients to the ASM Request object (request extension) in order to ask the authenticator for using a specific user verification
method and confirm that
in the related response extension.
by ASMs to the authenticator command (request extension) in order to ask the authenticator for using a specific user verification method
and confirm that
in the related response extension.
by Authenticators to the assertion generated in response to a request in order
to confirm a specifc user verification method that was used
for the action.

Extension identifier
fido.uaf.uvm

When present in a request (request extension)
Same as described in Authenticator argument.

FIDO Client processing

The client should pass the (request) extension through to the Authenticator.

Authenticator argument

The payload of this extension is an array of:

	 UINT32 userVerificationMethod
	

The array can have multiple entries. Each entry shall have a single bit flag set. In this case the authenticator shall verify the user using all
(multiple) methods as indicated.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in
[FIDORegistry], "User
Verification Methods" section.

Authenticator processing
The authenticator supporting this extension

1. should limit the user verification methods selectable by the user to the
user verification method(s) specified in the request
extension.

2. shall truthfully report the selected user verification method(s) back in the related response
extension added to the assertion.

Authenticator data

The payload of this extension is an array of the following structure:

	 UINT32 userVerificationMethod
	 UINT16 keyProtection
	 UINT16 matcherProtection
	

The array can have multiple entries describing all user verification methods used.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in
[FIDORegistry], "User
Verification Methods" section.

keyProtection
The method used by the authenticator to protect the FIDO registration private key material. Available values are defined
in
[FIDORegistry], "Key Protection Types" section. This value has no meaning in the request extension.

matcherProtection
The method used by the authenticator to protect the matcher that performs user verification. Available values are defined
in
[FIDORegistry], "Matcher Protection Types" section.

Server processing
If the FIDO Server requested the UVM extension,

1. it should verify that a proper response is provided (if client side support can be assumed), and
2. it should verify that the UVM response extension specifies one or more
acceptable user verification method(s).

5.2 User ID Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader.
by FIDO Clients to the ASM Request object (request extension).
by ASMs to the TAG_UAFV1_REGISTER_CMD object using TAG_EXTENSION
(request extension).
by Authenticators to the registration or authentication assertion using TAG_EXTENSION
(response extension).

The main purpose of this extension is to allow relying parties finding the related user record by an existing index (i.e. the user ID). This user ID
is not intended to be displayed.

Authenticators should truthfully indicate support for this extension in their Metadata Statement.

Extension identifier
fido.uaf.userid

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value
Content of this tag is the UINT8[] encoding of the user ID as UTF-8 string.

5.3 Android SafetyNet Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger generation of the related
response extension.
by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related response extension.
by the ASM to the respective exts array in the ASMResponse object (response extension).
by the FIDO Client to the respective exts array in either the OperationHeader, or the AuthenticatorRegistrationAssertion, or the
AuthenticatorSignAssertion of the UAF Response object (response extension).

Extension identifier
fido.uaf.safetynet

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value
in order to trigger the
generation of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value
is set to the JSON Web Signature attestation response as
returned by the call to
com.google.android.gms.safetynet.SafetyNetApi.AttestationResponse.
If the FIDO Client or the ASM support this extension, but the underlying Android platform
does not support it (e.g. Google
Play Services is not installed), the data value
is set to the string "p" (i.e. platform issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value
is set to the string "a" (i.e. availability issue).

FIDO Client processing

FIDO Clients running on Android should support processing of this extension.

If the FIDO Client finds this (request) extension with empty data value in the UAF Request and it supports processing this extension,
then the FIDO Client

1. must call the Android API SafetyNet.SafetyNetApi.attest(mGoogleApiClient, nonce)
(see SafetyNet online documentation)
and add the response (or an error code as described above)
as extension to the response object.

2. must not copy the (request) extension to the ASM Request object (deviating from the general rule in [UAFProtocol], section
3.4.6.2 and 3.5.7.2).

If the FIDO Client does not support this extension it must copy this extension from the UAF Request to the ASM Request object

EXAMPLE 1: SafetyNet Request Extension

"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail_if_unknown": false}]

EXAMPLE 2: SafetyNet Response Extension - not supported by platform

"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail_if_unknown": false}]

EXAMPLE 3: SafetyNet Response Extension - temporarily unavailable

"exts": [{"id": "fido.uaf.safetynet", "data": "a", "fail_if_unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResponse
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

(according to the general rule in [UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it must call the SafetyNet API (see above) and add the response
as extension to the ASM Response
object. The FIDO Client must
copy the extension in the ASM Response
to the UAF Response object (according to sections 3.4.6.4. and
3.5.7.4 step 4 in [UAFProtocol]).

When calling the Android API, the nonce parameter must be set to the serialized JSON object with the following structure:

{
 "hashAlg": "S256", // the hash algorithm
 "fcHash": "..." // the finalChallengeHash
}
	

Where

hashAlg identifies the hash algorithm according to [FIDOSignatureFormat], section IANA Considerations.
fcHash is the base64url encoded hash value of FinalChallenge (see section 3.6.3 and 3.7.4 in [UAFASM] for details on how to
compute finalChallengeHash).
We use this method to bind this SafetyNet extension to the respective FIDO UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [FIDORegistry] shall be used (e.g. SHA256
because
it belongs to ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW).

Authenticator argument
N/A

Authenticator processing
N/A. This extension is related to the Android platform in general and not to the authenticator in particular. As a consequence there is no
need for an authenticator to receive the (request) extension nor to process it.

Authenticator data
N/A

Server processing
If the FIDO Server requested the SafetyNet extension,

1. it should verify that a proper response is provided (if client side support can be assumed), and
2. it should verify the SafetyNet AttestationResponse (see SafetyNet online documentation).

5.4 Android Key Attestation

This extension can be added

by FIDO Servers to the UAF Registration Request object (request extension) in the OperationHeader in order to trigger generation of the
related response extension.
by FIDO Clients to the ASM Registration Request object (request extension) in order to trigger generation of the related response
extension.
by the ASM to the respective exts array in the ASMResponse object related to a registration response (response extension).
by the FIDO Client to the respective exts array in either the OperationHeader, or the AuthenticatorRegistrationAssertion
of the
UAF Registration Response object (response extension).

Extension identifier

NOTE

The package name in AttestationResponse might relate to either the FIDO Client or the ASM.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker
would
remove the response extension, the FIDO server might not be able to distinguish this from the
"SafetyNet extension not supported
by FIDO Client/ASM" case.

https://developer.android.com/training/safetynet/attestation

fido.uaf.android.key_attestation
Extension fail-if-unknown flag

false, i.e. this (request and response) extension can safely be ignored by all entities.
Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value
in order to trigger the
generation of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value
is set to a JSON array containing the base64 encoded
entries of the array returned by the call to the KeyStore API function getCertificateChain.

EXAMPLE 4: Android KeyAttestation Request Extension

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "", "fail_if_unknown": false}]

EXAMPLE 5: Retrieve KeyAttestation and add it as extension

Calendar notBefore = Calendar.getInstance();
Calendar notAfter = Calendar.getInstance();
notAfter.add(Calendar.YEAR, 10);

KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_EC, "AndroidKeyStore");
kpGenerator.initialize(
 new KeyGenParameterSpec.Builder(keyUUID, KeyProperties.PURPOSE_SIGN)
 .setDigests(KeyProperties.DIGEST_SHA256)
 .setAlgorithmParameterSpec(new ECGenParameterSpec("prime256v1"))
 .setCertificateSubject(
 new X500Principal(String.format("CN=%s, OU=%s",
 keyUUID, aContext.getPackageName())))
 .setCertificateSerialNumber(BigInteger.ONE)
 .setKeyValidityStart(notBefore.getTime())
 .setKeyValidityEnd(notAfter.getTime())
 .setUserAuthenticationRequired(true)
 .setAttestationChallenge(fcHash) -- bind to Final Challenge
 .build());

kpGenerator.generateKeyPair(); // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain(keyUUID);
String certArray[]=new String[certarray.length];
int i=0;
for (Certificate cert : certarray) {
 byte[] buf = cert.getEncoded();
 certArray[i] = new String(Base64.encode(buf, Base64.DEFAULT))
 .replace("\n", "");
 i++;
}

JSONArray jarray=new JSONArray(certArray);
String key_attestation_data=jarray.toString();

EXAMPLE 6: Example of successfull key attestation extension response

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "
[\"MIIClDCCAjugAwIBAgIBATAKBggqhkjOPQQD
AjCBiDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlmb3JuaWExFTATBgNVBAoMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5k

cm9pZDE7MDkGA1UEAwwyQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZSBBdHRlc3RhdGlvbiBJbnRlcm1lZGlhdGUwIBcNNzAwMTAx

MDAwMDAwWhgPMjEwNjAyMDcwNjI4MTVaMB8xHTAbBgNVBAMMFEFuZHJvaWQgS2V5c3RvcmUgS2V5MFkwEwYHKoZIzj0CAQYIKoZI

zj0DAQcDQgAEJ/As4L+Kgbcxwcx+5LPQi35quIxg981k/TeWr2IPBLh8+NJ+buDBhQ9O5ln6B7JjbJc4Fvko1Pdz7spKTQdWpKOB

+zCB+DALBgNVHQ8EBAMCB4AwgccGCisGAQQB1nkCAREEgbgwgbUCAQIKAQACAQEKAQEEBkZDSEFTSAQAMGm/hT0IAgYBXtPjz6C/

hUVZBFcwVTEvMC0EKGNvbS5hbmRyb2lkLmtleXN0b3JlLmFuZHJvaWRrZXlzdG9yZWRlbW8CAQExIgQgdM/LUHSI9SkQhZHHpQWR

nzJ3MvvB2ANSauqYAAbS2JgwMqEFMQMCAQKiAwIBA6MEAgIBAKUFMQMCAQSqAwIBAb+DeAMCAQK/hT4DAgEAv4U/AgUAMB8GA1Ud

IwQYMBaAFD/8rNYasTqegSC41SUcxWW7HpGpMAoGCCqGSM49BAMCA0cAMEQCICgYLmk24alwS9Lm06y2lLiqWDddrWh4gmUUv4+A

5k2TAiAEttheSBBaNbQJGQCh3mY92v8nP5obU60IKjpPetRswQ==\",\"MIICeDCCAh6gAwIBAgICEAEwCgYIKoZIzj0EAwIwgZg

xCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRYwFAYDVQQHDA1Nb3VudGFpbiBWaWV3MRUwEwYDVQQKDAxHb29nbGU

sIEluYy4xEDAOBgNVBAsMB0FuZHJvaWQxMzAxBgNVBAMMKkFuZHJvaWQgS2V5c3RvcmUgU29mdHdhcmUgQXR0ZXN0YXRpb24gUm9

vdDAeFw0xNjAxMTEwMDQ2MDlaFw0yNjAxMDgwMDQ2MDlaMIGIMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEVMBM

GA1UECgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMTswOQYDVQQDDDJBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF

0dGVzdGF0aW9uIEludGVybWVkaWF0ZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOueefhCY1msyyqRTImGzHCtkGaTgqlzJhP

If the FIDO Client or the ASM support this extension, but the underlying Android platform
does not support it (e.g. Android
version doesn't yet support it), the data value
is set to the string "p" (i.e. platform issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value
is set to the string "a".

FIDO Client processing

FIDO Clients running on Android must pass this (request) extension with empty data value to the ASM.

If the ASM supports this extension it must call the KeyStore API (see above) and add the response
as extension to the ASM Response
object. The FIDO Client must
copy the extension in the ASM Response
to the UAF Response object (according to section 3.4.6.4 step 4
in [UAFProtocol]).

More details on Android key attestation can be found at:

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

Authenticator argument
N/A

Authenticator processing

+rMv4ISdMIXSXSir+pblNf2bU4GUQZjW8U7ego6ZxWD7bPhGuEBSjZjBkMB0GA1UdDgQWBBQ//KzWGrE6noEguNUlHMVlux6RqTA

fBgNVHSMEGDAWgBTIrel3TEXDo88NFhDkeUM6IVowzzASBgNVHRMBAf8ECDAGAQH/AgEAMA4GA1UdDwEB/wQEAwIChDAKBggqhkj

OPQQDAgNIADBFAiBLipt77oK8wDOHri/AiZi03cONqycqRZ9pDMfDktQPjgIhAO7aAV229DLp1IQ7YkyUBO86fMy9Xvsiu+f+uXc

/WT/7\",\"MIICizCCAjKgAwIBAgIJAKIFntEOQ1tXMAoGCCqGSM49BAMCMIGYMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaW

Zvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzEVMBMGA1UECgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMTMwMQ

YDVQQDDCpBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF0dGVzdGF0aW9uIFJvb3QwHhcNMTYwMTExMDA0MzUwWhcNMzYwMTA2MD

A0MzUwWjCBmDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlmb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFTATBgNVBA

oMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5kcm9pZDEzMDEGA1UEAwwqQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZSBBdHRlc3

RhdGlvbiBSb290MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE7l1ex+HA220Dpn7mthvsTWpdamguD/9/SQ59dx9EIm29sa/6Fs

vHrcV30lacqrewLVQBXT5DKyqO107sSHVBpKNjMGEwHQYDVR0OBBYEFMit6XdMRcOjzw0WEOR5QzohWjDPMB8GA1UdIwQYMBaAFM

it6XdMRcOjzw0WEOR5QzohWjDPMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgKEMAoGCCqGSM49BAMCA0cAMEQCIDUho+

+LNEYenNVg8x1YiSBq3KNlQfYNns6KGYxmSGB7AiBNC/NR2TB8fVvaNTQdqEcbY6WFZTytTySn502vQX3xvw==\"]",
"fail_if_unknown": false}]

NOTE

Line-breaks been added for readibility.

EXAMPLE 7: KeyAttestation Response Extension - not supported by platform

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "p", "fail_if_unknown": false}]

EXAMPLE 8: KeyAttestation Response Extension - temporarily unavailable

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "a", "fail_if_unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

The authenticator generates the attestation response. The call keyStore.getCertificateChain is finally processed by the authenticator.
Authenticator data

N/A
Server processing

If the FIDO Server requested the key attestation extension,

1. it must follow the registration response processing rules (see FIDO UAF Protocol, section 3.4.6.5) before processing this extension
2. it must verify the syntax of the key attestation extension and it must perform RFC5280 compliant chain validation of the entries in

the array
to one attestationRootCertificate specified in the Metadata Statement - accepting that that the keyCertSign bit in
the key usage extension of the certificate issuing the leaf certificate is NOT set (which is a deviation from
RFC5280).

3. it must determine the leaf certificate from that chain, and it must perform the following checks on this leaf certificate
1. Verify that KeyDescripion.attestationChallenge == FCHash (see FIDO UAF Protocol, section 3.4.6.5 Step 6.)
2. Verify that the public key included in the leaf certificate is identical to the public key included in the FIDO UAF Surrogate

attestation block
3. If the related Metadata Statement claims keyProtection KEY_PROTECTION_TEE, then refer to KeyDescription.teeEnforced

using "authzList".
If the related Metadata Statement claims keyProtection KEY_PROTECTION_SOFTWARE, then refer to
KeyDescription.softwareEnforced using "authzList".

4. Verify that
1. authzList.origin == KM_TAG_GENERATED
2. authzList.purpose == KM_PURPOSE_SIGN
3. authzList.keySize is acceptable, i.e. =2048 (bit) RSA or =256 (bit) ECDSA.
4. authzList.digest == KM_DIGEST_SHA_2_256.
5. authzList.userAuthType only contains acceptable user verification methods.
6. authzList.authTimeout == 0 (or not present).
7. authzList.noAuthRequired is not present (unless the Metadata Statement marks this authenticator as silent

authenticator, i.e. userVerificaton set to USER_VERIFY_NONE).
8. authzList.allApplications is not present, since FIDO Uauth keys must be bound to the generating app (AppID).

ExtensionDescriptor data value (for Metadata Statement)
In the case of extension id="fido.uaf.android.key_attestation", the data field of the ExtensionDescriptor as included in the Metadata
Statement will contain a dictionary containing the following data fields

DOMString attestationRootCertificates[]
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is valid for this authenticator model. Multiple
certificates might be used for different batches of the same model. The array does not represent a certificate
chain, but only the trust
anchor of that chain.

Each array element is a base64-encoded (section 4 of
[RFC4648]), DER-encoded [ITU-X690-2008] PKIX certificate
value.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker
would
remove the response extension, the FIDO server might not be able to distinguish this from the
"KeyAttestation extension not
supported by ASM/Authenticator" case.

NOTE

A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE

The field data is specified with type DOMString in [FIDOMetadataStatement] and hence will contain the
serialized object as
described above.

An example for the supportedExtensions field in the Metadata Statement could look as follows (with line breaks to improve
readability):

5.5 User Verification Caching

In several cases it is good enough for the relying party to know whether the user was verified by the authenticator "some time" ago.
This
extension allows an app to specify such user verification caching time, i.e. the time for which the
user verification status can be "cached" by the
authenticator.

For example: Do not ask the user for a fresh user verification to authorize a payment of 4€ if the user was verified by this authenticator within
the past 300 seconds.

This extension allows the authenticator to bridge the gap between a "silent" authenticator, i.e. an authenticator never verifying the user and a
"traditional" authenticator, i.e. an
authenticator always asking for fresh user verification.

We formally define one extension for the request and a separate extension for the response as
the request extension can be safely ignored, but
the response extension cannot.

Authenticator supporting this extension must truthfully specify both, the UVC Request and UVC Response extension in the
supportedExtensions list
of the related Metadata Statement [FIDOMetadataStatement].
The TAG of the UVC Response extension must be
specified in that list.

5.5.1 UVC Request

This extension can be added by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger
generation of the related response extension.

Extension Identifier
fido.uaf.uvc-req

Extension fail-if-unknown flag
false, i.e. the request extension can safely be ignored by all entities.

UVC Extension data value
A (base64url-encoded) TLV object as defined in the description of TAG_USER_VERIFICATION_CACHING.
In the UVC Extension provided
through the DOM API [UAFAppAPIAndTransport], the field verifyIfExceeded may NOT be present. The FIDO Client may add the
field verifyIfExceeded in order to improve processing.

FIDO Client processing

In a registration request: Simple pass-through to the platform preferred authenticator.
In a sign request: Simple pass-through to an authenticator which would not require fresh user verification and still meets all other
authentication selection criteria (if such authenticator exists). If this is not possible, then use the preferred authenticator (as normal)
but
pass-through this extension.

Authenticator argument

Same TLV object as defined in "Extension data value", but as binary object included in the Registration / Authentication command.

EXAMPLE 9: Example of a supportedExtensions field in Metadata Statement

"supportedExtensions": [{
 "id": "fido.uaf.android.key_attestation",
 "data": "{ \"attestationRootCertificates\": [
\"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
lQ==\"] }",
 "fail_if_unknown": false
 }]

Authenticator processing

In a registration request:
The Authenticator must always freshly verify the user and create a key marked with the maximum user verification caching time as
specified (referred to as regMaxUVC), i.e. in signAssertion the acceptable maximum user verification time can never exceed this
value.
The field (verifyIfExceeded) is not allowed in a registration request.

In a sign request:
If the authenticator supports specifying user verification caching time in a sign request:

1. compute maxUVC = min(maxUVC , regMaxUVC)
2. compute elapsedTime, i.e. the time since last user verification.
3. If (elapsedTime > maxUVC) AND verifyIfExceeded==false then return error
4. If (elapsedTime > maxUVC) AND ((verifyIfExceeded==true)OR(verifyIfExceeded is NOT PRESENT)) then verify user
5. If (elapsedTime ≤ maxUVC) then Sign the assertion as normal
6. Add the UVC Response extension to the assertion.

If the authenticator does not support specifying user verification caching time in a sign request, this extension will be ignored by the
authenticator.
This will be detected by the server since no extension output will be generated by the authenticator.

Authenticator data
N/A

Server processing
N/A

5.5.2 UVC Response

This extension can be added by the Authenticator to the AuthenticatorRegistrationAssertion, or the AuthenticatorSignAssertion
of the
UAF Response object (response extension).

Extension Identifier
fido.uaf.uvc-resp (TAG_USER_VERIFICATION_CACHING)

Extension fail-if-unknown flag
true, i.e. the response extension (included in the UAF assertion) may NOT be ignored if unknown. If the server is not prepared to
process the UVC response extension, it must fail.

Extension data value
N/A

FIDO Client processing
N/A

Authenticator argument
N/A

Authenticator processing
N/A

Authenticator data
If the extension is supported and the request extension was received and evaluated during the respective call,
then the binary TLV object
as described in the description of TAG_USER_VERIFICATION_CACHING will be included in the assertion generated by the Authenticator.

Where the field maxUVC contains an upper bound of trueUVC and where the field verifyIfExceeded will not be present.

The upper bound value is to be computed as follows:

1. Compute the elapsed seconds since last user verification (=:trueUVC).
2. Compute some upper bound of trueUVC, must not exceed min(command.maxUVC, regMaxUVC).

Where command.maxUVC refers to the maxUVC value of the related UVC Request .

Where regMaxUVC is the maxUVC value specified in the related registration call (see above) or 0 if no such value was provided
at registration time.

For example, use min(maxUVC, createMaxUVC) or min(round trueUVC to 5 seconds, maxUVC, createMaxUVC).

Server processing

If the FIDO Server requested the UVC extension,

1. Verify that the Metadata Statement related to this Authenticator indicates support for this extension in the field
supportedExtensions

2. Verify that assertion.maxUVC is less or equal to request.maxUVC, fail if it isn't.
3. Verify that assertion.maxUVC is acceptable, fail if it isn't.

If the FIDO Server did not request the UVC extension (but encounters it in the response) or
if the server doesn't understand the UVC
response extension, it must fail.

5.5.3 Privacy Considerations

Using the UVC Request extension with verifyIfExceeded set to FALSE might allow the caller to triage the last time the user was verified
without requiring any input from the user and without
notifying the user. We do not allow this field to be set through
the DOM API (i.e. by web
pages). However, native applications can use this field and hence could be
able to determine the last time the user was verified. Native
applications have substantially more
permissions and hence can have more detailed knowledge about the user's behavior than web pages
(e.g.
track whether the device is used by evaluating accelerometers).

In the UVC Response extension the Authenticator can provide an upper bound of the trueUVC
value in order to prevent disclosure of exact time
of user verification.

5.5.4 Security Considerations

FIDO Servers not expecting user verification being used, might expect a fresh user verification and
an explicit user consent being provided.
Authenticators supporting this extension shall only use it when they are asked for that (i.e. UVC Request extension is present). Additionally the
authenticator must indicate if the user was not freshly verified using the UVC Response extension. This response
extension is marked with
"fail-if-unknown" set to true, to make sure that servers receiving
this extension know that the user might not have been freshly verified.

5.6 Require Resident Key Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.rk (TAG_RESIDENT_KEY)

Extension fail-if-unknown flag
false, i.e. the extension may be ignored if unknown.

Extension data value
boolean, i.e. rk=true or rk=false.

FIDO Client processing
N/A

Authenticator argument
boolean, i.e. rk=true or rk=false.

Authenticator processing
If the authenticator supports this extension, it should

1. persistently store the credential's cryptographic key material internally is rk=true
2. NOT persistently store the credential's cryptographic key material internally is rk=false

Authenticator data
boolean, i.e. rk=true or rk=false in an assertion, indicating whether the current credential is resident in the authenticator or not.

Server processing

NOTE
It is expected that

1. authenticators with isSecondFactorOnly=false in their Metadata
Statement will persistently store the credential's
cryptographic key material internally if the extension is missing.

2. authenticators with isSecondFactorOnly=true in their Metadata
Statement will NOT persistently store the credential's
cryptographic key material internally if the extension is missing.

A response extension fido.uaf.rk set to false indicates that the FIDO Server needs to provide a keyHandle for triggering authentication.
This means that the authenticator
can only be used as a second factor (see also isSecondFactorOnly in [FIDOMetadataStatement].

If the FIDO Server did not request the fido.uaf.rk extension (but encounters it in the response) or
if the server doesn't understand the
fido.uaf.rk response extension, it can silently ignore the extension.

5.7 Attestation Conveyance Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.ac

Extension fail-if-unknown flag
false, i.e. the extension may be ignored if unknown.

Extension data value
string, i.e. ac='direct', ac='indirect', or ac='none'.

FIDO Client processing
If the ac value is

direct
the FIDO Client shall pass-through the attestation statement as received from the Authenticator.

indirect
the FIDO Client shall either

1. pass-through the attestation statement as received from the Authenticator or
2. replace the attestation statement received from the Authenticator
using some anonymization CA.

none
the FIDO Client shall remove the attestation statement received from the Authenticator.

Authenticator argument
N/A

Authenticator processing
If the authenticator supports this extension, it should

1. return an attestation statement according to the conveyance indicated.

Authenticator data
N/A (only indirectly through the generated attestation statement)

Server processing
The server should verify the attestation statement if it asked for it (i.e. ac='direct' or ac='indirect').

If the FIDO Server specified ac='none', but received an attestation statement, it can silently ignore it.

6. Other Identifiers specific to FIDO UAF

6.1 FIDO UAF Application Identifier (AID)

This AID [ISOIEC-7816-5] is used to identify FIDO UAF authenticator applications in a Secure Element.

The FIDO UAF AID consists of the following fields:

Table 1: FIDO UAF Applet AID

Field RID AC AX
Value 0xA000000647 0xAF 0x0001

A. References

A.1 Normative references

[FIDOGlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-statement-v2.0-id-20180227.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[ISOIEC-7816-5]
. ISO 7816-5: Identification cards - Integrated circuit cards - Part 5: Registration of application providers. URL:

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references

[FIDOCTAP]
C. Brand; A. Czeskis; J. Ehrensvärd; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. FIDO 2.0: Client To Authenticator
Protocol. 30 January 2019. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-
20190130.html

[FIDOSignatureFormat]
. FIDO 2.0: Signature format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html

[ITU-X690-2008]
. X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL: https://www.itu.int/rec/T-
REC-X.690-200811-S

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol Specification v1.2. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

	Local Disk
	FIDO UAF Registry of Predefined Values

