fco

ALLIANCE

FIDO UAF Registry of Predefined Values
FIDO Alliance Proposed Standard 20 October 2020

This version:

https:
Previous version:

https:/fidoallian
Editor:

Dr. Rolf Lindemann , Nok Nok Labs, Inc.
Contributors:

Davit Baghdasaryan , Nok Nok Labs, Inc.

Brad Hill, PayPal

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are referenced by various
UAF specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A
list of current FIDO Alliance publications and the latest revision of this technical report can be found in the EIDO Alliance
specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us . All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used
as reference material or cited from another document. FIDO Alliance 's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1. Notation
o 1.1 Key Words

2. Overview

3. Authenticator Characteristics

o 3.1 Assertion Schemes

4. Predefined Tags
o 4.1 Tags used in the protocol

5. Predefined Extensions
o 5.1 User Verification Method Extension

o 5.2 User ID Extension
5.3 Android SafetyNet Extension
5.4 Android Key Attestation

o

o

o

5.5 User Verification Caching
= 5.5.1 UVC Request

= 5.5.2 UVC Response
= 5.5.3 Privacy Considerations

= 5.5.4 Security Considerations

o 5.6 Require Resident Key Extension

o 5.7 Attestation Conveyance Extension

e 6. Other Identifiers specific to FIDO UAF
o 6.1 FIDO UAF Application Identifier (AID)

e A. References
o A.l1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.
String literals are enclosed in 7, e.g. “UAF-TLV”.

In formulas we use

“‘”

to denote byte wise concatenation operations.
UAF specific terminology used in this document is defined in [FIDOGIlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

CLINY3 EEINT3

The key words “ MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, ““SHOULD”,
document are to be interpreted as described in [RFC2119].

SHOULD NOT”, ‘RECOMMENDED”, ‘MAY”, and “OPTIONAL” in this

2. Overview

This section is non-normative.
This document defines the registry of UAF-specific constants that are used and referenced in various UAF specifications. It is expected that,
over time, new constants will be added to this registry. For example new authentication algorithms and new types of authenticator

characteristics will require new constants to be defined for use within the specifications.

FIDO-specific constants that are common to multiple protocol families are defined in [FIDORegistry].

3. Authenticator Characteristics

This section is normative.

3.1 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
authenticator. The authenticator MusT generate a key pair (UAuth.pub/UAuth.priv) to be used with algorithm suites listed in
[FIDORegistry] section "Authentication Algorithms" (with prefix ar.c). This assertion scheme is using a compact Tag Length Value
(TLV) encoding for the KRD and SignData messages generated by the authenticators. This is the default assertion scheme for the UAF
protocol.

4. Predefined Tags

This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence. The tag is a 2-byte unique unsigned value
describing the type of field the data represents, the length is a 2-byte unsigned value indicating the size of the value in bytes, and the value is the
variable-sized series of bytes which contain data for this item in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the limitations of some
hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it cannot process
that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1 REG ASSERTION 0x3E01
The content of this tag is the authenticator response to a Register command.
TAG _UAFV1 AUTH ASSERTION 0x3E02
The content of this tag is the authenticator response to a Sign command.
TAG_UAFV1_KRD 0x3E03
* Indicates Key Registration Data.
TAG_UAFV1_SIGNED DATA 0x3E04
Indicates data signed by the authenticator using UAuth.priv key.
TAG_APCVICBOR AUTH ASSERTION 0x3E05
The content of this tag is the authenticator response to a Sign command.
TAG_APCVICBOR SIGNED DATA 0x3E06
~ Indicates Android Protected Confirmation data signed by the authenticator using UAuth.priv key.
TAG_ATTESTATION CERT 0x2E05
~ Indicates DER encoded attestation certificate.
TAG_SIGNATURE 0x2E06
Indicates a cryptographic signature.
TAG_KEYID 0x2E09
Represents a generated KeyID.
TAG_FINAL CHALLENGE_ HASH 0x2EOA

Represents a generated final challenge hash as defined in [UAFProtocol].
TAG_AAID 0x2EOB
Represents an Authenticator Attestation ID as defined in [UAFProtocol].

TAG_PUB_KEY 0x2EOC

Represents a generated public key.
TAG_COUNTERS 0x2EOD

Represents the use counters for an authenticator.
TAG_ASSERTION_ INFO 0x2EOE

Represents authenticator information necessary for message processing.
TAG_AUTHENTICATOR NONCE 0x2EOF

Represents a nonce value generated by the authenticator.
TAG_TRANSACTION CONTENT HASH 0x2E10

Represents a hash of the transaction content sent to the authenticator.
TAG_EXTENSION 0x3E1l, 0x3E12
This is a composite tag indicating that the content is an extension.
TAG_EXTENSION ID 0x2E13
Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.
TAG_EXTENSION DATA 0x2E14
Represents extension data. Content of this tag is a UINTS[] byte array.
TAG_RAW USER VERIFICATION INDEX 0x0103
This is the raw UVI as it might be used internally by authenticators. This TAG SHALL NOT appear in assertions leaving the authenticator
boundary as it could be used as global correlation handle.
TAG_USER VERIFICATION INDEX 0x0104
The user verification index (UVI) is a value uniquely identifying a user verification data record.

Each UVI value musT be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVI values MusT NOT be reused by the Authenticator (for other biometric data or users).

The UVI data can be used by FIDO Servers to understand whether an authentication was authorized by the exact same biometric data as
the initial key generation. This allows the detection and prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)), where the rawUVI reflects (a) the biometric
reference data, (b) the related OS level user ID and (c) an identifier which changes whenever a factory reset is performed for the device,
e.g. rawUVI = biometricReferenceData | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVI extensions ~ MusT support a length of up to 32 bytes for the UVI value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG UAFV1 AUTH ASSERTION)

04 01 -- TAG USER VERIFICATION INDEX (0x0104)
20 -- length of UVI B
00 43 B8 E3 BE 27 95 8C -- the UVI value itself

28 D5 74 BF 46 8A 85 CF
46 9A 14 FO E5 16 69 31
DA 4B CF FF Cl1 BB 11 32
82

TAG_RAW USER VERIFICATION STATE 0x0105
This is the raw UVS as it might be used internally by authenticators. This TAG SHALL NOT appear in assertions leaving the authenticator
boundary as it could be used as global correlation handle.

TAG_USER VERIFICATION STATE 0x0106
The user verification state (UVS) is a value uniquely identifying the set of active user verification data records.

Each UVS value musT be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVS values musT NOT be reused by the Authenticator (for other biometric data sets or users).

The UVS data can be used by FIDO Servers to understand whether an authentication was authorized by one of the biometric data records
already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)), where the rawUVS reflects (a) the biometric
reference data sets, (b) the related OS level user ID and (c) an identifier which changes whenever a factory reset is performed for the
device, e.g. rawUVS = biometricReferenceDataSet | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVS extensions MusT support a length of up to 32 bytes for the UVS value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e. TAG_UAFV1 _REG_ASSERTION or
TAG UAFV1 _AUTH ASSERTION)

(.Jé.Ol -— TAG_USER VERIFICATION STATE (0x0106)
20 -- length of UVS
00 18 C3 47 81 73 2B 65 -— the UVS value itself

83 E7 43 31 46 8A 85 CF
93 6C 36 FO AF 16 69 14
DA 4B 1D 43 FE C7 43 24

TAG_USER VERIFICATION CACHING 0x0108
This extension allows an app to specify such user verification caching time, i.e. the time for which the user verification status can be
"cached" by the authenticator.

The value of this extension is defined as follows:

Uy Description
Structure
1 UINT16 Tag | TAG_USER_VERIFICATION_CACHING
UINT16 .

1.1 Length Length of UVC structure in bytes
1.2 | UINT16 maxUVC in seconds
13 | UINTS (optional) verifylfExceeded. If O(=:false): return error if maxUVC exceeded. If non-zero (=:true): verify user if

' maxUVC exceeded.

Example of the TLV encoded UVC extension (contained in an authentication request)

08 01 -— TAG_USER VERIFICATION CACHING (0x0108)
05 -- length of UVC
2c 01 00 00 -- the UVC value itself: maxUVC = 0x012c (300 secs),

01 -- followd by verifyIfExceeded = 1 (true)

TAG_RESIDENT KEY 0x0109

Is the key resident in the authenticator. The value is a boolean. See section Require Resident Key Extension for details.
TAG_RESERVED 5 0x0201

Reserved for future use. Name of the tag will change, value is fixed.

5. Predefined Extensions

This section is normative.

5.1 User Verification Method Extension
This extension can be added

e by FIDO Servers to the UAF Request object (request extension) in the operationHeader in order to ask the authenticator for using a
specific user verification method and confirm that in the related response extension.

¢ by FIDO Clients to the ASM Request object (request extension) in order to ask the authenticator for using a specific user verification
method and confirm that in the related response extension.

e by ASMs to the authenticator command (request extension) in order to ask the authenticator for using a specific user verification method
and confirm that in the related response extension.

¢ by Authenticators to the assertion generated in response to a request in order to confirm a specifc user verification method that was used
for the action.

Extension identifier
fido.uaf.uvm

When present in a request (request extension)
Same as described in Authenticator argument.

FIDO Client processing
The client sHouLD pass the (request) extension through to the Authenticator.
Authenticator argument

The payload of this extension is an array of:

UINT32 userVerificationMethod

The array can have multiple entries. Each entry sHALL have a single bit flag set. In this case the authenticator sHALL verify the user using all
(multiple) methods as indicated.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in [FIDORegistry], "User
Verification Methods" section.

Authenticator processing
The authenticator supporting this extension

1. sHouLD limit the user verification methods selectable by the user to the user verification method(s) specified in the request
extension.

2. sHALL truthfully report the selected user verification method(s) back in the related response extension added to the assertion.

Authenticator data

The payload of this extension is an array of the following structure:

UINT32 userVerificationMethod
UINT16 keyProtection
UINT16 matcherProtection

The array can have multiple entries describing all user verification methods used.
The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in [FIDORegistry], "User
Verification Methods" section.

keyProtection
The method used by the authenticator to protect the FIDO registration private key material. Available values are defined in
[FIDORegistry], "Key Protection Types" section. This value has no meaning in the request extension.

matcherProtection
The method used by the authenticator to protect the matcher that performs user verification. Available values are defined in
[FIDORegistry], "Matcher Protection Types" section.

Server processing
If the FIDO Server requested the UVM extension,

1. it sHouLD verify that a proper response is provided (if client side support can be assumed), and

2. it sHouLD verify that the UVM response extension specifies one or more acceptable user verification method(s).

5.2 User ID Extension
This extension can be added

e by FIDO Servers to the UAF Request object (request extension) in the operationieader.
¢ by FIDO Clients to the ASM Request object (request extension).
e by ASMs to the TAGc UAFVI REGISTER CMD objectusing TAG EXTENSION (request extension).

¢ by Authenticators to the registration or authentication assertion using TAc EXTENSION (response extension).

The main purpose of this extension is to allow relying parties finding the related user record by an existing index (i.e. the user ID). This user ID
is not intended to be displayed.

Authenticators sHouLD truthfully indicate support for this extension in their Metadata Statement.

Extension identifier

fido.uaf.userid
Extension fail-if-unknown flag

false, i.e. this (request and response) extension can safely be ignored by all entities.
Extension data value

Content of this tag is the UINT8[] encoding of the user ID as UTF-8 string.

5.3 Android SafetyNet Extension

This extension can be added

o by FIDO Servers to the UAF Request object (request extension) in the operationteader in order to trigger generation of the related
response extension.

¢ by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related response extension.
e by the ASM to the respective exts array in the AsMresponse object (response extension).

e by the FIDO Client to the respective exts array in either the operationteader, or the AuthenticatorRegistrationAssertion, or the
AuthenticatorsSignassertion of the UAF Response object (response extension).

Extension identifier
fido.uaf.safetynet

Extension fail-if-unknown flag
false, 1.e. this (request and response) extension can safely be ignored by all entities.

Extension data value
When present in a request (request extension)

empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty dat= value in order to trigger the
generation of this extension for the UAF Response.

"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail if unknown": false}]

When present in a response (response extension)

o If the request extension was successfully processed, the data value is set to the JSON Web Signature attestation response as
returned by the call to com.google.android.agms.safetynet.SafetyNetApi . AttestationResponse.

o Ifthe FIDO Client or the ASM support this extension, but the underlying Android platform does not support it (e.g. Google
Play Services is not installed), the data value is set to the string "p" (i.e. platform issue).

"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail if unknown": false}]

o Ifthe FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value is set to the string "a" (i.e. availability issue).

"exts": [{"id": "fido.uaf.safetynet"”, "data": "a", "fail if unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

FIDO Client processing
FIDO Clients running on Android should support processing of this extension.

If the FIDO Client finds this (request) extension with empty d=+a value in the UAF Request and it supports processing this extension,
then the FIDO Client

1. musT call the Android API SafetyNet.SafetyNetApi.attest (mGoogleApiClient, nonce) (see fe nlin mentati 1’1)
and add the response (or an error code as described above) as extension to the response object.

2. MUST NOT copy the (request) extension to the ASM Request object (deviating from the general rule in [UAFProtocol], section
3.4.6.2 and 3.5.7.2).

If the FIDO Client does not support this extension it MUsT copy this extension from the UAF Request to the ASM Request object

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResponse
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

(according to the general rule in [UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it musT call the SafetyNet API (see above) and add the response as extension to the ASM Response
object. The FIDO Client musT copy the extension in the ASM Response to the UAF Response object (according to sections 3.4.6.4. and
3.5.7.4 step 4 in [UAFProtocol]).

When calling the Android API, the nonce parameter MUST be set to the serialized JSON object with the following structure:

"hashAlg": "S256", // the hash algorithm
"fcHash": "..." // the finalChallengeHash
}

Where

e hashalg identifies the hash algorithm according to [FIDOSignatureFormat], section IANA Considerations.

e fcHash is the base64url encoded hash value of FinalChallenge (see section 3.6.3 and 3.7.4 in [UAFASM)] for details on how to
compute finalChallengeHas h)‘
We use this method to bind this SafetyNet extension to the respective FIDO UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [FIDORegistry] sHALL be used (e.g. SHA256
because it belongs to A1.G_STGN SECP256R1_ECDSA SHA256 RAW).

Authenticator argument
N/A

Authenticator processing
N/A. This extension is related to the Android platform in general and not to the authenticator in particular. As a consequence there is no
need for an authenticator to receive the (request) extension nor to process it.

Authenticator data
N/A

Server processing
If the FIDO Server requested the SafetyNet extension,

1. it sHouLD verify that a proper response is provided (if client side support can be assumed), and

2. it sHouLD verify the SafetyNet AttestationResponse (see SafetyNet onlin mentation).

NOTE

The package name in AttestationResponse might relate to either the FIDO Client or the ASM.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker would
remove the response extension, the FIDO server might not be able to distinguish this from the "SafetyNet extension not supported
by FIDO Client/ASM" case.

5.4 Android Key Attestation

This extension can be added

e by FIDO Servers to the UAF Registration Request object (request extension) in the operationteader in order to trigger generation of the
related response extension.

¢ by FIDO Clients to the ASM Registration Request object (request extension) in order to trigger generation of the related response

extension.
e by the ASM to the respective exts array in the Asvresponse object related to a registration response (response extension).
¢ by the FIDO Client to the respective exts array in either the operationteader, or the AuthenticatorRegistrationissertion of the

UAF Registration Response object (response extension).

Extension identifier

https://developer.android.com/training/safetynet/attestation

fido.uaf.android.key attestation
Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty dat= value in order to trigger the
generation of this extension for the UAF Response.

"exts": [{"id": "fido.uaf.android.key attestation", "data": "", "fail if unknown": false}]

When present in a response (response extension)

o If the request extension was successfully processed, the data value is set to a JSON array containing the base64 encoded
entries of the array returned by the call to the KeyStore API function getCertificateChain.

Calendar notBefore = Calendar.getInstance();
Calendar notAfter = Calendar.getInstance();
notAfter.add(Calendar.YEAR, 10);

KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance (
KeyProperties.KEY ALGORITHM EC, "AndroidKeyStore");
kpGenerator.initialize (-
new KeyGenParameterSpec.Builder (keyUUID, KeyProperties.PURPOSE SIGN)
.setDigests (KeyProperties.DIGEST SHA256)
.setAlgorithmParameterSpec (new ECGenParameterSpec ("prime256v1"))
.setCertificateSubject (
new X500Principal (String.format ("CN=%s, OU=%s",
keyUUID, aContext.getPackageName())))
.setCertificateSerialNumber (BigInteger.ONE)
.setKeyValidityStart (notBefore.getTime ())
.setKeyValidityEnd (notAfter.getTime ())
.setUserAuthenticationRequired (true)

.setAttestationChallenge (fcHash) -- bind to Final Challenge
.build());
kpGenerator.generateKeyPair () ; // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain (keyUUID) ;
String certArray[]l=new String[certarray.length];
int i=0;
for (Certificate cert : certarray) {
byte[] buf = cert.getEncoded();
certArray[i] = new String(Baseb64.encode (buf, Base64.DEFAULT))
) replace ("\n", wity
i++;

}

JSONArray jarray=new JSONArray (certArray);
String key attestation data=jarray.toString();

"exts": [{"id": "fido.uaf.android.key attestation", "data": "
[\"MIIC1DCCAjugAwIBAgIBATAKBggghkjOPQQD
AjCBiDELMAkKGA1UEBhMCVVMXEZzARBgNVBAgMCkNhbG1lmb3JuaWEXFTATBgNVBAOMDEdvb2dsZSwgSW53LIEQMA4GALIUECWWHQWSk
cm9pZDE7MDkGALUEAWWYQW5kecm9pZCBLZX12zdG9yZSBTb2Z20d2FyZSBBAHR1c3RhdG1lvbiBJIbnR1cml1Z2G1hdGUwIBCNNZAWMTAX
MDAWMDAWWhgPMJEwWNjAyMDcwNj I4MTVaMB8xHTAbBgNVBAMMFEFuZHIvaWQgS2V5c3RvemUgS2VSMFkwEWYHK0ZIzj0CAQYIKOZI
zjODAQCDQGAEJ/As4L+Kgbcxwex+5LPQ135quIixg981k/TeWr2IPBLh8+NJ+buDBhQ9051n6B7JjbJc4FvkolPdz7spKTQdWpKOB
+2zCB+DALBgNVHQ8EBAMCB4AwgccGC1isGAQOBInkCAREEgbgwgbUCAQIKAQACAQEKAQEEBkKZDSEFTSAQAMGM/hTOIAGYBXtPjz6C/
hUVZBFcwVTEVMCOEKGNvbS5hbmRyb21kLmt1eXNOb3J1LmFuZHJvaWRrZX1zdG9yZWR1bW8CAQExIgQgdM/LUHSI 9SkQhZHHPQWR
nzJ3MvvB2ANSaugYAAbS2JgwMgEFMOMCAQK1IAwIBAGMEAGIBAKUFMOMCAQSgAWIBAb+DeAMCAQK/hT4DAgEAVAU/AgUAMBEGALUd
IwQYMBaAFD/8rNYasTqegSC41SUcxWW7HpGpMAOGCCgGSM4 9BAMCAOCAMEQCICgYLmk24alwS9Lm06y21LigqWDddrWh4gmUUv4+A
5k2TA1AEttheSBBaNbQJIGQCh3mY92v8nP50bU60IKjpPetRswQ==\", \"MIICeDCCAh6gAWIBAgICEAEWCgYIK0ZIzjO0EAWIWgZg
xCzAJBgNVBAYTALVTMRMWEQYDVQQIDAPDYWxpZmOybmlhMRYWFAYDVQQOHDA1Nb3VudGFpbiBWaWV3MRUWEwWYDVQQKDAxXHb2 9nbGU
sIE1uYy4xEDAOBgNVBAsSMBOFuZHJIvaWQxMzAxBgNVBAMMKkFuZHIvaWQgS2V5c3RvemUgU2 9ImdHdhecmUgQXROZXNOYXRpb24gUm9
vdDAeFw0OxNjAXMTEwWMDQ2MD1aFw0yNjAxMDgwMDQ2MD1aMIGIMQOswCQYDVQQGEwJVUzZETMBEGA1UECAWKQ2FsaWZvemSpY TEVMBM
GA1UECgwMR29vZ2x1LCBIJbmMuMRAwWDgYDVQQLDAdBbmRyb21kMTswOQYDVQQODDDJIBbmRyb21kIEt1eXNOb3J1IFNVZnR3YXJ1IEF

0dGVzdGF0aW9uIEludGVybWVkaWF0ZTBZMBMGBygGSM4 9AgEGCCqGSM4 9AWEHAOIABOuee fhCY1msyygRTImGzHCtkGaTgglzJdhP

+rMv4ISAMIXSXSir+pblNf2bU4GUQZjW8U7ego6ZxWD7bPhGUEBS])ZjBkMBOGA1UADgQWBBQ/ /KzWGrE6noEguNULHMV1ux6RQTA
fBgNVHSMEGDAWGBTIrel3TEXDo88NFhDkeUM6IVowzzASBgNVHRMBAL8ECDAGAQH/AGEAMA4GA1UdDWEB/wQEAWIChDAKBggghkj
OPQQDAgGNIADBFAiBLipt770K8wDOHri/AiZi03cONgycqRZ9pDMEDktQPjgIhAO7aAV229DLplIQ7YkyUBO86EfMyIXvsiu+f+uXc
/WT/7\",\"MIICizCCAjKgAwIBAgIJAKIFntEOQltXMAOGCCgGSM4 9BAMCMIGYMQOswCQYDVQQGEwWJIVUZETMBEGA1UECAWKQ2FsaW
ZvcmSpYTEWMBQGALIUEBWWNTWIO 1 bnRhaW4gVml 1dzEVMBMGA1UECgwMR2 9vZ2x 1 LCBIJbmMuMRAwDgYDVQQLDAdBbmRyb2 1 kMTMwMQ
YDVQODDCpBbmRyb21kIEt1eXNOb3J1IFNVZNR3YXJ1IIEF0dGVzdGF0aWOuIFJvb3QwHheNMTYwMTEXMDAOMzUwWhceNMzYwMTA2MD
AOMzUWWjCBmDELMAKGA1UEBhMCVVMxEzZARBgNVBAgGMCkNhbG1Imb3JuaWEXFjJAUBgNVBACMDU1vAWS0YWIuIFZpZXcxFTATBGNVBA
OMDEdvb2dsZSwgSW5jLjEQMA4GAL1UECWWHQWS5 kecm9pZDEZMDEGALUEAWWgQWS5 kem9pZCBLZX1zdG9yZSBTb2Z0d2FyZSBBdHR1c3
RhdG1lvbiBSb290MFkwEWYHK0ZIzj0CAQYIK0oZIzjO0DAQCcDQgAE71lex+HA220Dpn7mthvsTWpdamguD/9/SQ59dx9EIm29sa/6Fs
vHrcV30lacqrewLVQBXT5DKyqO107sSHVBpKNjMGEWHQYDVROOBBYEFMit 6XdMRcOjzwOWEOR5QzohWjDPMB8GALUAIWQYMBaAFM
1t6XdMRcOFzwOWEOR5QzohWjDPMASGALUJEWER/wQFMAMBAf8wDgYDVROPAQH/BAQDAGKEMAOGCCgGSM4 9BAMCAOCAMEQCIDUho+

+LNEYenNVg8x1YiSBg3KN1QfYNns6KGYxmSGB7AiBNC/NR2TB8fVvaNTQAgEChY6WFZTytTySn502vQX3xvw==\"]",
"fail if unknown": false}]

NOTE

Line-breaks been added for readibility.

o Ifthe FIDO Client or the ASM support this extension, but the underlying Android platform does not support it (e.g. Android
version doesn't yet support it), the data value is set to the string "p" (i.e. platform issue).

"exts": [{"id": "fido.uaf.android.key attestation", "data": "p", "fail if unknown": false}]

o Ifthe FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value is set to the string "a".

"exts": [{"id": "fido.uaf.android.key attestation", "data": "a", "fail if unknown": false}]

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

FIDO Client processing

FIDO Clients running on Android musT pass this (request) extension with empty data value to the ASM.

If the ASM supports this extension it musT call the KeyStore API (see above) and add the response as extension to the ASM Response
object. The FIDO Client musT copy the extension in the ASM Response to the UAF Response object (according to section 3.4.6.4 step 4
in [UAFProtocol]).

More details on Android key attestation can be found at:

o https://developer.android.com/training/articles/keystore.html

o https://developer.android.com/training/articles/security-key-attestation
o https://source.android.com/security/keystore/

o https://source.android.com/security/keystore/implementer-ref.html

Authenticator argument

N/A

Authenticator processing

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

The authenticator generates the attestation response. The call keyStore.getCertificateChain is finally processed by the authenticator.
Authenticator data
N/A

Server processing
If the FIDO Server requested the key attestation extension,

1. it musT follow the registration response processing rules (see FIDO UAF Protocol, section 3.4.6.5) before processing this extension

2. it musT verify the syntax of the key attestation extension and it musT perform RFC5280 compliant chain validation of the entries in
the array to one attestationRootCertificate specified in the Metadata Statement - accepting that that the keyCertSign bit in
the key usage extension of the certificate issuing the leaf certificate is NOT set (which is a deviation from
RFC5280).
3. it MusT determine the leaf certificate from that chain, and it musT perform the following checks on this leaf certificate
1. Verify that KeyDescripion.attestationChallenge == FCHash (see FIDO UAF Protocol, section 3.4.6.5 Step 6.)

2. Verify that the public key included in the leaf certificate is identical to the public key included in the FIDO UAF Surrogate
attestation block

3. If the related Metadata Statement claims keyProtection KEY PROTECTION_TEE, then refer to KeyDescription.teeEnforced
using "authzList". If the related Metadata Statement claims keyProtection KEY PROTECTION_SOFTWARE, then refer to
KeyDescription.softwareEnforced using "authzList".

4. Verify that
1. authzList.origin == KM TAG_GENERATED

authzList.purpose == KM_PURPOSE_SIGN

authzList.keySize is acceptable, i.e. =2048 (bit) RSA or =256 (bit) ECDSA.
authzList.digest == KM_DIGEST _SHA 2 256.

authzList.userAuthType only contains acceptable user verification methods.

authzList.authTimeout == 0 (or not present).

NS Vv A DD

authzList.noAuthRequired is not present (unless the Metadata Statement marks this authenticator as silent
authenticator, i.e. userVerificaton set to USER_VERIFY NONE).

8. authzList.allApplications is not present, since FIDO Uauth keys musT be bound to the generating app (AppID).

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker would
remove the response extension, the FIDO server might not be able to distinguish this from the "KeyAttestation extension not
supported by ASM/Authenticator" case.

ExtensionDescriptor data value (for Metadata Statement)
In the case of extension id="fido.uaf.android.key attestation", the data field of the ExtensionDescriptor as included in the Metadata
Statement will contain a dictionary containing the following data fields

DOMString attestationRootCertificates[]
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is valid for this authenticator model. Multiple
certificates might be used for different batches of the same model. The array does not represent a certificate chain, but only the trust
anchor of that chain.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX certificate value.

NOTE

A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE

The field dat= is specified with type DOMString in [FIDOMetadataStatement] and hence will contain the serialized object as
described above.

An example for the supportedextensions field in the Metadata Statement could look as follows (with line breaks to improve

readability):
"supportedExtensions": [{
"id": "fido.uaf.android.key attestation",
"data": "{ \"attestationRootCertificates\": [

\"MIICPTCCAeOgAwWIBAgIJAOuexvU30y2wMAOGCCgGSM4 9BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBAHR1c3RhdG1lvbiBSb2 90MRYWFAYDVQQKDALIGSURPIEFsbGlhbmN1
MREwDwYDVQQLDAhVQUYgVFAHLDESMBAGA1UEBwwJUGF sbyBBbHRVMQswCQYDVQQT
DAJDQTELMAkKGA1UEBhMCVVMwHhcNMTQWNJE4AMTMzMzMyWhcNNDEXMTAZMTMzMzMy
WIB7MSAWHGYDVQQDDBATYW1wbGUgQXR0ZXNOYXRpb24gUm9vdDEWMBQGALUECGWN
Rk1ETYBBbGxpYW5] ZTERMA8GA1UECWWIVUFGI FRXRywxEjAQBgNVBACMCVBhbG8g
QWx0bzELMAKGALUECAWCQOExCzAJBgNVBAYTALVTMFkwEWYHK0ZIzj0CAQYIKOZI
zj0DAQCcDQgAEH8hv2D0HXa59/BmpQ7RZehl/FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrgOBb58pxGgHJIRyX/6NQME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It7zE4w8hk5EJ/MB8GAIUAIWQYMBaAFPOHA3CLhxFbCO0It7zE4w8hk5EJ/MAWG
AlUJEWQFMAMBAf8WCgYIKoZIzjOEAWIDSAAWRQIhAJO6QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBgoYCZf0+2zI155aQeAHIIzA9Xm63rruAxBZ9ps9z2XN
10==\"] }",
"fail if unknown": false

H

5.5 User Verification Caching

In several cases it is good enough for the relying party to know whether the user was verified by the authenticator "some time" ago. This
extension allows an app to specify such user verification caching time, i.e. the time for which the user verification status can be "cached" by the
authenticator.

For example: Do not ask the user for a fresh user verification to authorize a payment of 4€ if the user was verified by this authenticator within
the past 300 seconds.

This extension allows the authenticator to bridge the gap between a "silent" authenticator, i.e. an authenticator never verifying the user and a
"traditional" authenticator, i.e. an authenticator always asking for fresh user verification.

We formally define one extension for the request and a separate extension for the response as the request extension can be safely ignored, but
the response extension cannot.

Authenticator supporting this extension musT truthfully specify both, the UVC Request and UVC Response extension in the
supportedixtensions list of the related Metadata Statement [FIDOMetadataStatement]. The TAG of the UVC Response extension must be
specified in that list.

5.5.1 UVC Request

This extension can be added by FIDO Servers to the UAF Request object (request extension) in the operationteader in order to trigger
generation of the related response extension.

Extension Identifier
fido.uaf.uvc-req

Extension fail-if-unknown flag
false, i.e. the request extension can safely be ignored by all entities.

UVC Extension data value
A (base64url-encoded) TLV object as defined in the description of Tac UsE
through the DOM API [UAFAppAPIAndTransport], the field verifyifexce
field verifyTfExceeded in order to improve processing.

VERIFICATION cAcHING. Inthe UVC Extension provided
ded MaY NOT be present. The FIDO Client MAY add the

FIDO Client processing

o In a registration request: Simple pass-through to the platform preferred authenticator.

e In a sign request: Simple pass-through to an authenticator which would not require fresh user verification and still meets all other
authentication selection criteria (if such authenticator exists). If this is not possible, then use the preferred authenticator (as normal)
but pass-through this extension.

Authenticator argument

Same TLV object as defined in "Extension data value", but as binary object included in the Registration / Authentication command.

Authenticator processing

In a registration request:
The Authenticator MusT always freshly verify the user and create a key marked with the maximum user verification caching time as
specified (referred to as regMaxUVC), i.c. in signAssertion the acceptable maximum user verification time can never exceed this
value. The field (verifyTfExceeded) is not allowed in a registration request.

In a sign request:
If the authenticator supports specifying user verification caching time in a sign request:

. compute maxUVC = min(maxUVC, regMaxUVC)

. compute elapsedTime, i.c. the time since last user verification.

. If (elapsedTime > maxUVC) AND verifylfExceeded==false then return error

. If (elapsedTime > maxUVC) AND ((verifylfExceeded==true)OR(verifylfExceeded is NOT PRESENT)) then verify user
. If (elapsedTime < maxUVC) then Sign the assertion as normal

. Add the UVC Response extension to the assertion.

AN L AW N =

If the authenticator does not support specifying user verification caching time in a sign request, this extension will be ignored by the
authenticator. This will be detected by the server since no extension output will be generated by the authenticator.

Authenticator data
N/A

Server processing
N/A

5.5.2 UVC Response

This extension can be added by the Authenticator to the AuthenticatorRegistrationAssertion, OF the Authent icatorSignAssertion of the
UAF Response object (response extension).

Extension Identifier
fido.uaf.uvc-resp (TAG_USER_VERIFICATION CACHING)

Extension fail-if-unknown flag
true, i.e. the response extension (included in the UAF assertion) MAY NOT be ignored if unknown. If the server is not prepared to

process the UVC response extension, it MusT fail.

Extension data value
N/A

FIDO Client processing
N/A

Authenticator argument
N/A

Authenticator processing
N/A

Authenticator data

If the extension is supported and the request extension was received and evaluated during the respective call, then the binary TLV object
as described in the description of TAc User vErTIrIcATION cACHING Will be included in the assertion generated by the Authenticator.
Where the field maxUVC contains an upper bound of trueUVC and where the field verify1fExceeded will not be present.

The upper bound value is to be computed as follows:

1. Compute the elapsed seconds since last user verification (=:trueUVC).

2. Compute some upper bound of trueUVC, must not exceed min(command.maxUVC, regMaxUVC).
Where command.maxuvce refers to the maxUVC value of the related UVC Request .
Where regMaxUVC is the maxUVC value specified in the related registration call (see above) or 0 if no such value was provided
at registration time.
For example, use min(maxUVC, createMaxUVC) or min(round trueUVC to 5 seconds, maxUVC, createMaxUVC).

Server processing

If the FIDO Server requested the UVC extension,

1. Verify that the Metadata Statement related to this Authenticator indicates support for this extension in the field

supportedExtensions
2. Verify that assertion.maxUVC is less or equal to request. maxUVC, fail if it isn't.
3. Verify that assertion.maxUVC is acceptable, fail if it isn't.

If the FIDO Server did not request the UVC extension (but encounters it in the response) or if the server doesn't understand the UVC
response extension, it MusT fail.

5.5.3 Privacy Considerations

Using the UVC Request extension with verifyIfExceeded setto raLse might allow the caller to triage the last time the user was verified
without requiring any input from the user and without notifying the user. We do not allow this field to be set through the DOM API (i.e. by web
pages). However, native applications can use this field and hence could be able to determine the last time the user was verified. Native
applications have substantially more permissions and hence can have more detailed knowledge about the user's behavior than web pages (e.g.
track whether the device is used by evaluating accelerometers).

In the UVC Response extension the Authenticator can provide an upper bound of the « rueuve value in order to prevent disclosure of exact time
of user verification.

5.5.4 Security Considerations

FIDO Servers not expecting user verification being used, might expect a fresh user verification and an explicit user consent being provided.
Authenticators supporting this extension shall only use it when they are asked for that (i.e. UVC Request extension is present). Additionally the
authenticator must indicate if the user was not freshly verified using the UVC Response extension. This response extension is marked with
"fail-if-unknown" set to true, to make sure that servers receiving this extension know that the user might not have been freshly verified.

5.6 Require Resident Key Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.rk (TAG_RESIDENT KEY)

Extension fail-if-unknown flag
false, i.e. the extension MAY be ignored if unknown.
Extension data value
boolean, i.e. rk=true or rk=false.
FIDO Client processing
N/A
Authenticator argument
boolean, i.e. rk=true or rk=false.
Authenticator processing
If the authenticator supports this extension, it should

1. persistently store the credential's cryptographic key material internally is rk=true

2. NOT persistently store the credential's cryptographic key material internally is rk=false

NOTE
It is expected that

1. authenticators with issecondractoronly=false in their Metadata Statement will persistently store the credential's
cryptographic key material internally if the extension is missing.

2. authenticators with issecondractoronly=true in their Metadata Statement will NOT persistently store the credential's
cryptographic key material internally if the extension is missing.

Authenticator data
boolean, i.e. rk=true or rk=false in an assertion, indicating whether the current credential is resident in the authenticator or not.
Server processing

A response extension fido.uaf.rk set to false indicates that the FIDO Server needs to provide a keyHandle for triggering authentication.
This means that the authenticator can only be used as a second factor (see also issecondractoronly in [FIDOMetadataStatement].

If the FIDO Server did not request the fido.uaf. rk extension (but encounters it in the response) or if the server doesn't understand the
fido.uaf.rk response extension, it can silently ignore the extension.

5.7 Attestation Conveyance Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.ac

Extension fail-if-unknown flag

false, i.e. the extension MAY be ignored if unknown.
Extension data value

string, i.e. ac="direct', ac="indirect', or ac='none'.
FIDO Client processing

If the ac value is

direct

the FIDO Client sHALL pass-through the attestation statement as received from the Authenticator.
indirect

the FIDO Client SHALL either

1. pass-through the attestation statement as received from the Authenticator or

2. replace the attestation statement received from the Authenticator using some anonymization CA.

none
the FIDO Client SHALL remove the attestation statement received from the Authenticator.

Authenticator argument
N/A

Authenticator processing
If the authenticator supports this extension, it should

1. return an attestation statement according to the conveyance indicated.
Authenticator data
N/A (only indirectly through the generated attestation statement)

Server processing
The server should verify the attestation statement if it asked for it (i.e. ac=direct' or ac="indirect').

If the FIDO Server specified ac="none', but received an attestation statement, it can silently ignore it.

6. Other Identifiers specific to FIDO UAF

6.1 FIDO UAF Application Identifier (AID)

This AID [ISOIEC-7816-5] is used to identify FIDO UAF authenticator applications in a Secure Element.

The FIDO UAF AID consists of the following fields:

VEIDEE 0xA000000647 | OXAF | 0x0001

Table 1: FIDO UAF Applet AID
A. References

A.1 Normative references

[FIDOGIlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. EIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-

2.0-id-20180227/fido-gl -v2.0-id-20180227.html
[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https:/fidoalliance.or fido-v2.0-id-

20180227/fido-metadata-statement-v2.0-id-20180227.html
[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. =~ FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.or: mmon- fido-registry-v2.1-ps-20191217.html
[ISOIEC-7816-5]
. ISO 7816-5: Identification cards - Integrated circuit cards - Part 5: Reqistration of application providers. URL:
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references

[FIDOCTAP]
C. Brand; A. Czeskis; J. Ehrensvird; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. EIDO 2.0: Client To Authenticator
Protocol. 30 January 2019. URL: https:/fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-
20190130.html
[FIDOSignatureFormat]
. FIDO 2.0: Signature format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
[ITU-X690-2008]

ules (CER) and Distinguished Encod/ng Rules (DER!, (T-REC-X.690-200811). November 2008. URL: https:/www.itu.int/r
RE -200811-

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (REC 4648). October 2006. URL:
http:/www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. [nternet X.509 Public Key Infrastructure Certificate and
fi ion Li. RL) Profile. May 2008. URL: https:/tools.ietf.org/html/rfc5280
[UAFASM]

D. Baghdasaryan J. Kemp, R. Lindemann; B. Hill; R. Sasson. IDQ UAF Authenticator-Specific Module API. Review Draft. URL:
llian m-api-vl.2-

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan B. Blanke. FIDO UAF Application AP/ and Transgort Binding Specification. Review Draft. URL:

allian.

[UAFProtocoI]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. EIDO UAF Protocol Specification v1.2. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

	Local Disk
	FIDO UAF Registry of Predefined Values

