
FIDO UAF APDU
FIDO Alliance Review Draft 05 October 2016
This version:

https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-apdu-v1.1-rd-20161005.html
Editor:

Naama Bak, Morpho
Contributors:

Virginie Galindo, Gemalto
Rolf Lindemann, Nok Nok Labs, Inc.
Ullrich Martini, Giesecke & Devrient
Chris Edwards, Intercede
Jeff Hodges, Paypal

Copyright © 2013-2016 FIDO Alliance All Rights Reserved.

Abstract
This specification defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units
(APDUs) thus facilitating UAF authenticators based on Secure Elements.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft. This document is intended to become a
FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us.
All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of
reviewing the Specification. No rights are granted to prepare derivative works of this Specification. Entities
seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to
determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words

REVIEW DRAFT

REVIEW DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-apdu-v1.1-rd-20161005.html
mailto:naama.bak@morpho.com
https://www.morpho.com/
mailto:Virginie.Galindo@gemalto.com
https://www.gemalto.com/
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:Ullrich.Martini@gi-de.com
https://www.gi-de.com/
mailto:Chris.Edwards@intercede.com
https://www.intercede.com/
mailto:jeff.hodges@paypal.com
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2. Introduction
3. SE-based Authenticator Implementation Use Cases

3.1 Hybrid SE Authenticator
3.1.1 Architecture of the Hybrid SE Authenticator
3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

4. FIDO UAF Applet and APDU commands
4.1 UAF Applet in the Authenticator

4.1.1 Application Identifier
4.1.2 User Verification
4.1.3 Cryptographic operations

4.2 APDU Commands for FIDO UAF
4.2.1 Class byte coding
4.2.2 APDU command "UAF"

4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands
4.2.2.2 Response message and status conditions of an "UAF" APDU command

4.2.3 APDU Command "SELECT"
4.2.4 APDU Command "VERIFY"

4.2.4.1 Command structure
4.2.4.2 Response message and status conditions

4.3 Managing Long APDU Commands and Responses
4.3.1 ISO Variant
4.3.2 Proprietary Variant

5. Security considerations
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with
URL and Filename Safe Alphabet" [RFC4648] without padding.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

All TLV structures defined in this document must be encoded in little-endian format.

All APDU defined in this document must be encoded as defined in [ISOIEC-7816-4-2013].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”,
and “optional” in this document are to be interpreted as described in [RFC2119].

2. Introduction
This section is non-normative.

This specification defines the interface between the FIDO UAF Authenticator Specific Module (ASM) [UAFASM]
and authenticators based upon "Secure Element" technology. The applicable secure element form factors are
UICC (SIM card), embedded Secure Element (eSE), µSD, NFC card, and USB token. Their common
characteristic is they communicate using Application Programming Data Units (APDU) in compliance with
[ISOIEC-7816-4-2013].

Implementation of this specification is optional in the UAF framework, however, products claiming to implement
the transport of UAF messages over APDUs should implement it.

This specification first describes the various fashions in which Secure Elements can be incorporated into UAF

authenticator implementations — known as SE-based authenticators or just SE authenticators — and which
components are responsible for handling user verification as well as cryptographic operations. The specification
then describes the overall architecture of an SE-based authenticator stack from the ASM down to the secure
element, the role of the "UAF Applet" running in the secure element, and outlines the nominal communication
flow between the ASM and the SE. It then defines the mapping of UAF Authenticator commands to APDUs, as
well as the FIDO-specific variants of the VERIFY APDU command.

3. SE-based Authenticator Implementation Use Cases
This section is non-normative.

Secure elements can be leveraged in different scenarios in the UAF technology. It can support user gestures
(used to unlock access to FIDO credentials) or it can be involved in the actual cryptographic operations related to
FIDO authentication. In this specification, we will be considering the following SE-based authenticator
implementation use cases:

1. The Secure Element (SE) is the (silent) Authenticator.
2. The SE is part of the Authenticator which is composed of a Trusted Application (TEE) based User

Verification component, potentially a TEE based transaction confirmation display and the crypto kernel
inside the SE (Hybrid SE Authenticator).

3. The authenticator (Hybrid SE Authenticator) consists of
the SE implementing the matcher and the crypto kernel
and a specific software module (e.g. running on the FIDO User Device) to capture the user
verification data (e.g. PIN, Face, Fingerprint).

3.1 Hybrid SE Authenticator

In FIDO UAF, the access to credentials for performing the actual authentication can be protected by a user
verification step. This user verification step can be based on a PIN, a biometric or other methods. The
authenticator functionality might be implemented in different components, including combinations such as TEE
and SE, or fingerprint sensor and SE. In that case the SE implements only a part of the authenticator
functionality.

Examples of Hybrid SE authenticators are:

1. User PIN code capture and verification are implemented entirely in a TEE relying on Trusted User Interface
and secure storage capabilities of the TEE and, once the PIN code is verified, the FIDO UAF crypto
operations are performed in the SE.

2. User fingerprint is captured via a fingerprint sensor, the fingerprint match is performed in the TEE, relying
on matching algorithms. Once the fingerprint has been positively checked, the cryptographic operations are
executed in the Secure Element.

3. The user verification is implemented as match-on-chip in separate hardware and FIDO UAF cryptographic
operations are implemented in the SE.

In all those cases, the hybrid nature of the authenticator will be managed by the software-based host, regardless
of its nature (TEE, SW, Biometric sensor..). There are a number of possible interactions between the ASM and
the SE actually implementing the verification and the cryptographic operations to consider within those use
cases.

NOTE

This specification does not define how an SE-based authenticator stack may be implemented, e.g., its
integration with TEE or biometric sensors. However, SE-based authenticator vendors should reflect such
implementation characteristics in the authenticator metadata such that FIDO Relying Parties wishing to be
informed of said characteristics may have access to it.

NOTE

The reason for using such hybrid configuration is that Secure Elements do not have any user interface and
hence cannot directly distinguish physical user interaction from programmatic communication (e.g. by
malware). The ability to require a physical user interaction that cannot be emulated by malware is essential
for protecting against scalable attacks (see [FIDOSecRef]). On the other hand, TEEs (or biometric sensors
implemented in separate hardware) which can provide a trusted user interface typically do not offer the
same level of key protection as Secure Elements.

Strictly spoken, a Hybrid SE Authenticator (voluntarily) uses the Authenticator Command interface
[UAFAuthnrCommands] inside the authenticator, e.g. between the crypto kernel and the user verification
component.

1. PIN user verification where the user interaction for the PIN entry is performed externally to the SE. The PIN
may then be passed within a VERIFY command to the SE, followed by the actual cryptographic operations
(such as the Register and Sign UAF authenticator commands).

2. Biometric user verification where the sample capture and matching is performed externally to the SE (e.g.
in TEE or in a match-on-chip FP sensor). This would then only need to send to the SE the actual
cryptographic operation needed in this session (such as the Register and Sign UAF authenticator
commands).

3. User verification sample (Faceprint, Fingerprint..) capture is performed externally to the SE. The sample is
then sent to a match-on-card applet in the SE that behaves as a global PIN to enable access to the
cryptographic operation required within this session.

3.1.1 Architecture of the Hybrid SE Authenticator

In order to support an Hybrid SE Authenticator, a dedicated software-based host must be created which knows
how the SE applet works. The communication between the SE applet and the host is defined based on [ISOIEC-
7816-4-2013]. Whether a PC or mobile device the architecture is still the same, as defined below:

Application Layer : This component is responsible for acquiring the user verification sample and mapping
UAF commands to APDU commands.
Communication layer : This is the [ISOIEC-7816-4-2013] APDUs interface, which provides methods to list
and select readers, connect to a Secure Element and interact with it.
SE Access OS APIs : OMA, PC/SC, NFC API, CCID…
Secure Element : UICC, micro SD, eSE, Dual Interface card…

Fig. 1 Architecture of Hybrid SE Authenticator

APDU command-response paire are handled as indicated in [ISOIEC-7816-4-2013].

3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

The host is the entity communicating with the SE and which knows how the SE and the applet running in the SE
can be accessed. The host could be a Trusted Application (TA) which runs inside a TEE or simply an application
which runs in the normal world.

The following diagram illustrates how the Host of the Hybrid SE Authenticator may map the UAF commands to
APDU commands. In this diagram, the User Verification Module is considered inside the SE applet.

Fig. 2 Communication flow between the ASM and the Hybrid SE Authenticator

4. FIDO UAF Applet and APDU commands
This section is normative.

4.1 UAF Applet in the Authenticator

4.1.1 Application Identifier

The FIDO UAF AID is defined in [UAFRegistry].

4.1.2 User Verification

The User verification is based on the submission of a PIN/password (i.e., knowledge based) or a biometric
template (i.e., biometric based).

In this document, the envisaged user verification methods are PIN and biometric based.

4.1.3 Cryptographic operations

The SE applet must be able to perform a set of cryptographic operations, such as key generation and signature
computation. The cryptographic operations are defined in [UAFAuthnrCommands]. The SE applet must be able
also to create data structures that can be parsed by FIDO Server. The SE applet shall use the cryptographic
algorithms indicated in [UAFRegistry].

4.2 APDU Commands for FIDO UAF

4.2.1 Class byte coding

CLA indicates the class of the command.

Table 2: Class byte coding

Commands CLA
SELECT, VERIFY (ISO Version), GET RESPONSE (ISO Version) 0x00

VERIFY, UAF, GET RESPONSE 0x80

4.2.2 APDU command "UAF"

4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

This section describes the mapping between FIDO UAF authenticator commands and APDU commands.

The mapping consists of encapsulating the entire UAF Authenticator Command in the payload of the APDU
command, and the UAF Authenticator Command response in the payload of the APDU Response.

The host shall set the INS byte to “0x36” for all UAF commands The SE shall read the UAF command number
and data from the payload in the data part of the command.

NOTE

If the User Verification Module is inside the Host, for example in the context of the TEE, the
UserVerificationToken shall be generated in the Host and not in the SE. As a result step 6 (Figure 2)
should be executed in the Host instead of the SE.

NOTE

If the payload of an APDU command is longer than 255 bytes, command chaining as described in
[ISOIEC-7816-4-2013] should be used, even though CLA is proprietary.

The payload of the APDU command is encoded according to [UAFAuthnrCommands], the first 2 bytes of each
command are the UAF command number. Upon command reception, the SE applet must parse the first TLV tag
(2 bytes) and figure out which UAF command is being issued. The SE applet shall parse the rest of the FIDO
Authenticator Command payload according to [UAFAuthnrCommands].

The mapping of UAF Authenticator Commands to APDU commands is defined in the following table:

Table 3: UAF APDU command

CLA INS P1 P2 Lc Data In Le
Proprietary(See Table
2) 0x36 0x00 0x00 Variable UAF Authenticator Command

structure None

The UAF Authenticator Command structures are defined in part 6.2 of [UAFAuthnrCommands].

4.2.2.2 Response message and status conditions of an "UAF" APDU command

The status word of an "UAF" APDU response is handled at the Host level; the host must interpret and map the
status word based on the table below.

If the status word is equals to “9000”, the host shall return back to the ASM the entire data field of the APDU
response. It the status word is “61xx”, the host shall issue GET RESPONSE (see below) until no more data is
available, concatenate these response parts and then return the entire response. Otherwise, the host has to
build an UAF TLV response with the mapped status codes TAG_STATUS_CODE, using the following table.

For example, if the status word returned by the Applet is “6A88”, the host shall put
UAF_CMD_STATUS_USER_NOT_ENROLLED in the status codes of the UAF TLV response.

APDU
STATUS

CODE

FIDO
UAF

STATUS
CODE

NAME DESCRIPTION

9000 0x00 UAF_CMD_STATUS_OK Success.

61xx 0x00 UAF_CMD_STATUS_OK
Success, xx
bytes available
for GET
RESPONSE.

6982 0x02 UAF_CMD_STATUS_ACCESS_DENIED
Access to this
operation is
denied.

6A88 0x03 UAF_CMD_STATUS_USER_NOT_ENROLLED
User is not
enrolled with
the
authenticator.

N/A 0x04 UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT
Transaction
content cannot
be rendered.

N/A 0x05 UAF_CMD_STATUS_USER_CANCELLED
User has
cancelled the
operation.

6400 0x06 UAF_CMD_STATUS_CMD_NOT_SUPPORTED Command not
supported.

6A81 0x07 UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED
Required
attestation not
supported.

The request
was rejected

NOTE

If the UserVerificationToken is supported, The ASM must set the TAG_USERVERIFY_TOKEN flag in the value
of the UserVerificationToken, received previously contained in either a Register or Sign command. Please
refer to the FIG 1 in Use-Case section.

Table 4: Mapping between APDU Status Codes and FIDO Status Codes [UAFAuthnrCommands]

6A80 0x08 UAF_CMD_STATUS_PARAMS_INVALID due to an
incorrect data
field.

6983 0x09 UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

The UAuth key
which is
relevant for
this command
disappeared
from the
authenticator
and cannot be
restored.

N/A 0x0a UAF_CMD_STATUS_TIMEOUT

The operation
in the
authenticator
took longer
than expected.

N/A 0x0e UAF_CMD_STATUS_USER_NOT_RESPONSIVE
The user took
too long to
follow an
instruction.

6A84 0x0f UAF_CMD_STATUS_INSUFFICIENT_RESOURCES

Insufficient
resources in
the
authenticator
to perform the
requested
task.

63C0 0x10 UAF_CMD_STATUS_USER_LOCKOUT

The operation
failed because
the user is
locked out and
the
authenticator
cannot
automatically
trigger an
action to
change that.

All other
codes 0x01 UAF_CMD_STATUS_ERR_UNKNOWN An unknown

error

The response message of an UAF APDU command is defined in the following table :

Data field SW1 - SW2

not present

“6982” – The request was rejected due to user
verification being required.

“6A80” – The request was rejected due to an incorrect
data field.

“6A81” – Required attestation not supported

“6A88” – The user is not enrolled with the SE

“6400” – Execution error, undefined UAF command

“6983” – Authentication data not usable, Auth key
disappeared

UAF Authenticator Command response
[UAFAuthnrCommands]

“61xx” – Success, xx bytes available for GET
RESPONSE.

“9000” – Success

Table 5: Response message of an "UAF" APDU command

4.2.3 APDU Command "SELECT"

A successful SELECT AID allows the host to know that the applet is active in the SE, and to open a logical
channel with this end.

In Android smartphones apps are not allowed to use the basic channel to the SIM because this channel is
reserved for the baseband processor and the GSM/UMTS/LTE activities. In this case the app must select the
applet in a logical channel.

The host must send a SELECT APDU command to the SE applet before any others commands.

As a result, the command for selecting the applet using the FIDO UAF AID is :

Table 6: SELECT AID command

CLA INS P1 P2 Lc Data In Le

0x00 0xA4 0x04 0x0C 0x08 0xA000000647AF0001
No response data is requested if the SELECT
command's "Le" field is absent. Otherwise, if
the "Le" field is present, vendor-proprietary
data is being requested.

4.2.4 APDU Command "VERIFY"

This command is used to request access rights using a PIN or Biometric sample. The SE applet shall verify the
sample data given by the Host against the reference PIN or Biometric held in the SE.

Please refer to [ISOIEC-7816-4-2013] and [ISOIEC-19794] for Personal verification through biometric methods.

If the verification is successful and UserVerificationToken is supported by the SE applet, a token shall be
generated and sent to the Host. Without having this token, the Host cannot invoke special UAF commands such
as Register or Sign.

The support of UserVerificationToken can be checked by examining the contents of the GetInfo response in the
AuthenticatorType TAG or the response of SELECT APDU command [UAFAuthnrCommands].

Refer to [FIDOGlossary] for more information about UserVerificationToken.

4.2.4.1 Command structure

Table 7: VERIFY command encoding for PIN verification

CLA INS P1 P2 Lc Data In Le

ISO or Proprietary: see
[ISOIEC-7816-4-2013]

0x20 (for PIN) or
0x21 (for biometry) 0x00 0x00 Variable Verification

data
None or expected Le
for
UserVerificationToken

4.2.4.2 Response message and status conditions

Table 8: Response message and status conditions

Data Out SW1 - SW2
Absent (ISO-Variant) or UserVerificationToken (proprietary) See [ISOIEC-7816-4-2013]

4.3 Managing Long APDU Commands and Responses

If a Secure Element is able to send a complete response (e.g. extended length APDU, block chaining), GET
RESPONSE APDU command shall be used, as defined in ISO Variant section. Otherwise, the proprietary solution
shall be used, as defined in section Proprietary Variant.

NOTE

An SE applet that does not support UserVerificationToken, may use the [ISOIEC-7816-4-2013] VERIFY
command. In this case, the VERIFY command must be securely bound to Register and Sign commands,
so a secure bound method shall be implemented in the SE applet, such as Secure Messaging.

4.3.1 ISO Variant

The [ISOIEC-7816-4-2013] GET RESPONSE command is used in order to retrieve big data returned by APDU
command "UAF".

4.3.2 Proprietary Variant

In order to avoid using Get Response APDU command which is not supported by all devices and terminals, a
propriatry method is defined for managing the long data answers at application level.

When using the proprietary variant, the response to the UAF APDU command shall include the Tag "0x2813",
that specifies the length of the response.

Response Data Out description

Tag
0x2813

Length
variable (2 bytes)

Value
Expected data length (2 bytes)

In the case where the data does not fit into a single Data Out message, the host shall repeat the "UAF" command
with P2 = 1 value mentioning this is a repetition of the incoming APDU to get all the data. This process shall be
repeated until the entire data are collected by the host.

Here is an example of an APDU Response which contains more than 255 bytes in the payload.

Fig. 3 Long APDU management using the defined proprietary method

5. Security considerations
This section is non-normative.

Guaranteeing trust and security in a fragmented architecture such as the one levering on SE is a challenge that
the Host has to address regardless of its nature (TEE or Software based), which results in different challenges
from a security and architecture perspective. One could list the following ones:

use of a trusted user interface to enter a PIN on the device,
secure transmission of PIN or fingerprint minutiae,
minutiae extraction format,
integrity of data transmitted between a Host and a SE.

Hence, we will only consider here, security challenges affecting the interface between the Host and the SE.

A possible way to maintain the integrity and confidentiality when APDUs commands are exchanged is to enable
a secure channel between the Host and the SE. While this is left to implementation, there are several
technologies allowing to build a secure channel between a SE and a devices, that may be implemented.

Secure channel between a trusted application in a TEE and an applet in a SE [GlobalPlatform-TEE-SE].
Secure channel between a device and an applet in a secure element [GlobalPlatform-Card].
Secure channel between a device and a SE [ETSI-Secure-Channel].

A. References
A.1 Normative references

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:
http://www.ietf.org/rfc/rfc4648.txt

NOTE

The host shall support both versions of Get Response APDU command, and figure out which command
must be sent to the Applet by parsing the response of the UAF APDU command. If the UAF APDU
command response contains the Tag "0x2813", the host must send a proprietary Get Response APDU
command, otherwise the host must send the ISO variant of Get Response APDU command.

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt

A.2 Informative references

[ETSI-Secure-Channel]
ETSI TS 102 484 Smart Cards; Secure channel between a UICC and an end-point terminal

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Proposed
Standard. URLs:
HTML: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-glossary-v1.1-rd-20161005.html
PDF: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-glossary-v1.1-rd-20161005.pdf

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Security Reference. FIDO Alliance Proposed Standard.
URLs:
HTML: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-security-ref-v1.1-rd-20161005.html
PDF: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-security-ref-v1.1-rd-20161005.pdf

[GlobalPlatform-Card]
Secure Channel Protocol 03 – GlobalPlatform Card Specification v.2.2 – Amendment D

[GlobalPlatform-TEE-SE]
TEE Secure Element API Specification v1.0 | GPD_SPE_024

[ISOIEC-19794]
ISO 19794: Information technology - Biometric data interchange formats

[ISOIEC-7816-4-2013]
ISO 7816-4: Identification cards – Integrated circuit cards; Part 4 : Organization, security and commands for
interchange

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

[UAFASM]
D. Baghdasaryan, J. Kemp, R. Lindemann, B. Hill, R. Sasson, FIDO UAF Authenticator-Specific Module
API. FIDO Alliance Proposed Standard. URLs:
HTML: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-asm-api-v1.1-rd-20161005.html
PDF: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-asm-api-v1.1-rd-20161005.pdf

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp, R. Lindemann, R. Sasson, B. Hill, FIDO UAF Authenticator Commands v1.0.
FIDO Alliance Proposed Standard. URLs:
HTML: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-authnr-cmds-v1.1-rd-
20161005.html
PDF: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-authnr-cmds-v1.1-rd-20161005.pdf

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values. FIDO Alliance
Proposed Standard. URLs:
HTML: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-reg-v1.1-rd-20161005.html
PDF: https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-reg-v1.1-rd-20161005.pdf

https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-glossary-v1.1-rd-20161005.html
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-glossary-v1.1-rd-20161005.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-security-ref-v1.1-rd-20161005.html
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-security-ref-v1.1-rd-20161005.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-asm-api-v1.1-rd-20161005.html
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-asm-api-v1.1-rd-20161005.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-authnr-cmds-v1.1-rd-20161005.html
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-authnr-cmds-v1.1-rd-20161005.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-reg-v1.1-rd-20161005.html
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-reg-v1.1-rd-20161005.pdf

	FIDO UAF APDU
	FIDO Alliance Review Draft 05 October 2016
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	3. SE-based Authenticator Implementation Use Cases
	3.1 Hybrid SE Authenticator
	3.1.1 Architecture of the Hybrid SE Authenticator
	3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

	4. FIDO UAF Applet and APDU commands
	4.1 UAF Applet in the Authenticator
	4.1.1 Application Identifier
	4.1.2 User Verification
	4.1.3 Cryptographic operations

	4.2 APDU Commands for FIDO UAF
	4.2.1 Class byte coding
	4.2.2 APDU command "UAF"
	4.2.3 APDU Command "SELECT"
	4.2.4 APDU Command "VERIFY"

	4.3 Managing Long APDU Commands and Responses
	4.3.1 ISO Variant
	4.3.2 Proprietary Variant

	5. Security considerations
	A. References
	A.1 Normative references
	A.2 Informative references

