
UAF Application API and
Transport Binding
Specification

Editors:

Brad Hill, PayPal Inc.

Specification Set: fido-uaf-v1.0-rd-20140209 REVIEW DRAFT

Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.

Abstract:

Describes APIs and an interoperability profile for client applications to
utilize FIDO UAF. This includes methods of communicating with a FIDO
Client for both Web platform and Android apps, transport require-
ments, and an HTTPS interoperability profile for sending UAF messages
to a compatible server.

Copyright © 2014 FIDO Alliance

™

1

2

3

4

5

6
7

8

9

10

11

12
13
14
15
16

17

FIDO UAF Application API and Transport Binding Specification

Status:

This Specification has been prepared by FIDO Alliance, Inc. This is a Review Draft Specification and
is not intended to be a basis for any implementations as the Specification may change. Permission is
hereby granted to use the Specification solely for the purpose of reviewing the Specification. No rights
are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce
portions of this Specification for other uses must contact the FIDO Alliance to determine whether an ap-
propriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellec-
tual property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the Specification are not, and shall not be held, responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WAR-
RANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICU-
LAR PURPOSE.

Copyright © 2014 FIDO Alliance, Inc. All rights reserved.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 2

18

19
20
21
22
23
24
25
26
27
28

29
30
31
32

33

34

FIDO UAF Application API and Transport Binding Specification

Table of Contents

1 Notation .. 6

1.1 Key Words .. 6

1.2 Revision History ... 6

2 Overview ... 7

2.1 Audience .. 7

2.2 Scope ... 7

2.3 Architecture ... 8

2.4 Protocol Conversation .. 9

3 Common Definitions ... 12

3.1 UAF Status Codes ... 12

4 DOM API .. 14

4.1 Feature Detection .. 14

4.2 UAFMessage Dictionary .. 14

4.3 UAFResponseCallback .. 15

4.3.1 Arguments ... 15

4.4 ErrorCallback .. 15

4.4.1 ErrorCode Values ... 15

4.5 notifyUAFResult Operation ... 16

4.5.1 Arguments ... 17

4.6 Version Interface .. 17

4.7 Authenticator Interface .. 17

4.7.1 Constants .. 18

4.7.2 Attributes ... 18

4.8 Discovery Interface .. 20

4.8.1 Attributes ... 20

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 3

FIDO UAF Application API and Transport Binding Specification

4.8.2 Operations ... 20

4.8.2.1 Arguments .. 21

4.8.3 Privacy Considerations .. 21

4.9 FIDOClient Interface ... 21

4.9.1 Operations ... 21

4.9.1.1 Arguments .. 22

4.10 Security Considerations for the DOM API ... 22

4.10.1 Insecure Mixed Content ... 22

4.10.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content
 ... 22

4.10.3 Implementation Notes for Browser/Plugin Authors 23

5 Android API ... 24

5.1 IUAFClient.aidl .. 24

5.1.1 channelBindings ... 25

5.1.2 origin .. 25

5.1.2.1 org.fidialliance.uaf.permissions.ACT_AS_WEB_BROWSER 26

5.2 IUAFErrorCallback.aidl .. 26

5.3 IUAFResponseCallback.aidl .. 26

5.4 UAFMesage.aidl .. 27

5.5 UAFMessage.java ... 27

5.6 Version.aidl .. 28

5.7 Version.java ... 28

5.8 Discovery.aidl ... 29

5.9 Discovery.java .. 29

5.10 Authenticator.aidl ... 30

5.11 Authenticator.java .. 31

5.11.1 Security Considerations ... 32

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 4

FIDO UAF Application API and Transport Binding Specification

6 Transport Binding Profile .. 33

6.1 Transport Security Requirements .. 33

6.2 TLS Security Requirements .. 33

6.3 HTTPS Transport Interoperability Profile .. 34

6.3.1 Obtaining a UAF Request message ... 35

6.3.2 Operation Enum .. 36

6.3.3 GetUAFRequest Interface .. 36

6.3.4 ReturnUAFRequest Interface ... 36

6.3.5 Delivering a UAF Response ... 37

6.3.6 ServerResponse Interface ... 38

6.3.6.1 Attributes .. 38

6.3.6.2 ServerResponse.AdditionalToken Attributes 39

6.3.6.3 ServerResponse.AdditionalToken enum TokenType 40

6.3.7 Security Considerations ... 40

 Bibliography .. 42

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 5

35

FIDO UAF Application API and Transport Binding Specification

1 Notation

Type names, attribute names and element names are written in italics.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [We-
bIDL].

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this doc-
ument are to be interpreted as described in [RFC2119].

1.2 Revision History

Revi-
sion

Date Author Summary

0.2 12/31/13 Brad Hill First ODT version

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 6

36

37

38

39

40
41

42

43

44
45
46

47

FIDO UAF Application API and Transport Binding Specification

2 Overview

The FIDO UAF technology replaces traditional username and password-based authenti-
cation solutions for online services, with a stronger and simpler alternative. The core
UAF protocol consists of four conceptual conversations between a FIDO Client and
FIDO Server: Registration, Authentication, Transaction Confirmation, and Deregis-
tration. As specified in the core protocol, these messages do not have a defined net-
work transport, or describe how application software that a user interfaces with can use
FIDO UAF. This document describes the API surface that a client application can use
to communicate with FIDO Client software, and transport patterns and security require-
ments for delivering FIDO UAF Protocol messages to a remote server.

The reader should also be familiar with the FIDO Glossary of Terms [FIDOGlossary]
and the UAF Protocol specification [UAFProtocol].

2.1 Audience

This document is of interest to client-side application authors that wish to utilize FIDO
UAF, as well as implementers of web browsers, browser plugins and FIDO clients, in
that it describes the API surface they need to expose to application authors.

2.2 Scope

This document describes:

• The local ECMAScript [ECMA-262] API exposed by a FIDO UAF-enabled web
browser to client-side web applications.

• The mechanisms and APIs for Android [ANDROID] applications to discover and
utilize a shared FIDO Client service.

• The general security requirements for applications initiating and transporting UAF
protocol exchanges.

• An interoperability profile for transporting UAF messages over HTTPS
[RFC2818].

The following are out of scope for this document:

• The format and details of the underlying UAF Protocol messages

• APIs for, and any details of interactions between FIDO Server software and the
server-side application stack.

The goal of describing standard APIs and an interoperability profile for the transport of
UAF messages here is to provide an example of how to develop a FIDO-enabled appli-
cation and to promote the ease of integrating interoperable layers from different vendors

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 7

48

49
50
51
52
53
54
55
56
57

58
59

60

61
62
63

64

65

66
67

68
69

70
71

72
73

74

75

76
77

78
79
80

FIDO UAF Application API and Transport Binding Specification

to build a complete FIDO UAF solution. For any given application instance, these par-
ticular patterns may not be ideal and are not mandatory. Applications may use alternate
transports, bundle UAF Protocol messages with other network data, or discover and uti-
lize alternative APIs as they see fit.

2.3 Architecture

The overall architecture of the UAF protocol and its various operations is described in
the FIDO UAF Protocol Specification [UAFProtocol]. The following simplified architec-
ture diagram illustrates the interactions and actors this document is concerned with:

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 8

81
82
83
84

85

86
87
88

FIDO UAF Application API and Transport Binding Specification

This document describes the shaded components in Illustration 1.

2.4 Protocol Conversation

The core UAF protocol consists of five conceptual phases.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 9

Illustration 1: UAF Architecture

 System Boundary

 FIDO
 Server

 Relying Party
 Server

 Application

 Relying Party
 Client

 Application

 FIDO
 Client

 FIDO
 Authenticator

 UAF
 Protocol

 UAF
 APIs

 TLS

 ASM
 APIs

89

90

91

FIDO UAF Application API and Transport Binding Specification

● Discovery allows the relying party server to determine the availability of FIDO
capabilities at the client, including metadata about the available authenticators.

● Registration allows the client to generate and associate new key material with
an account at the relying party server, subject to policy set by the server and ac-
ceptable attestation that the authenticator and registration matches that policy.

● Authentication allows a user to provide an account identifier, proof-of-posses-
sion of previously registered key material associated with that identifier, and po-
tentially other attested data, to the relying party server.

● Transaction Confirmation allows a server to request that a FIDO client and au-
thenticator with the appropriate capabilities display some information to the user,
request that the user authenticate locally to their FIDO authenticator to confirm it,
and provide proof-of-possession of previously registered key material and an at-
testation of the confirmation back to the relying party server.

● Deregistration allows a relying party server to tell an authenticator to forget se-
lected locally managed key material associated with that relying party in case
such keys are no longer considered valid by the relying party.

Discovery does not involve a protocol exchange with the FIDO Server, although the in-
formation available through the Discovery APIs might be communicated back to the
server in an application-specific manner, for example, as part of obtaining a UAF Proto-
col Request Message, in order to receive as part of that message an authenticator pol-
icy tailored to the specific capabilities of the FIDO User Device.

Although this UAF Protocol abstractly defines the FIDO Server as the initiator of re-
quests, for client applications utilizing UAF as described in this document will always
transport UAF Protocol messages over a client-initiated request/response protocol like
HTTP.

The protocol flow from the point of view of the relying party client application for Regis-
tration, Authentication, and Transaction Confirmation is as follows:

1. The client application either explicitly contacts the server to obtain a UAF Proto-
col Request Message, or this message is delivered in-line with other client appli-
cation content.

2. The client application invokes the appropriate API to pass the UAF Protocol Re-
quest Message asynchronously to the FIDO Client, and receives a set of call-
backs.

3. The FIDO Client performs any necessary interactions with the user and authenti-
cator(s) to complete the request and uses a callback to either notify the client ap-
plication of an error or return a UAF Response Message.

4. The client application delivers the UAF Response Message back to the server
over a protocol such as HTTP.

5. The server (optionally) returns an indication of the results of the operation and
additional data such as authorization tokens or a redirect.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 10

92
93

94
95
96

97
98
99

100
101
102
103
104

105
106
107

108
109
110
111
112

113
114
115
116

117
118

119
120
121

122
123
124

125
126
127

128
129

130
131

FIDO UAF Application API and Transport Binding Specification

6. The client application (optionally) uses the appropriate API to inform the FIDO
Client of the results of the operation. This allows the FIDO Client to perform
“housekeeping” tasks for a better user experience, e.g. by not attempting to use
again later a key that the server refused to register.

7. The client application (optionally) processes additional data returned to it in an
application-specific manner, e.g. processing new authorization tokens, redirect-
ing the user to a new resource or interpreting an error code to determine if and
how it should retry a failed operation.

Deregister does not involve a UAF Protocol round-trip. If the relying party server in-
structs the client application to perform a deregistration, the client application simply de-
livers the UAF Protocol Request message to the FIDO Client using the appropriate API.
The FIDO Client does not return the results of a deregister operation to the relying party
client application or FIDO Server.

UAF Protocol Messages are JSON [ECMA-404] structures, but client applications are
discouraged from modifying them. These messages may contain embedded crypto-
graphic integrity protections and any modifications might invalidate the messages from
the point of view of the FIDO Client or Server.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 11

132
133
134
135

136
137
138
139

140
141
142
143
144

145
146
147
148

FIDO UAF Application API and Transport Binding Specification

3 Common Definitions

These elements are shared by several APIs and layers.

3.1 UAF Status Codes

This table lists UAF protocol status codes. These indicate the result of the UAF opera-
tion at the FIDO Server. They do not represent the HTTP [RFC2616] or other transport
layers. These codes are intended for consumption by both the client-side web app and
FIDO Client to inform application-specific error reporting, retry and housekeeping be-
havior.

Table 1

Code Meaning

1200 OK. Operation completed

1202 Accepted. Message accepted, but not completed at this time. The RP
may need time to process the attestation, run risk scoring, etc. The
server SHOULD NOT send an authenticationToken with a 1202 re-
sponse

1400 Bad Request. The server did not understand the message

1401 Unauthorized. The userid must be authenticated to perform this opera-
tion, or this KeyID is not associated with this UserID.

1403 Forbidden. The userid is not allowed to perform this operation. Client
SHOULD NOT retry

1404 Not Found.

1408 Request Timeout.

1480 Unknown AAID. The server was unable to locate authoritative meta-
data for the AAID [UAFAuthnrMetadata].

1481 Unknown KeyID. The server was unable to locate a registration for the
given UserID and KeyID combination.

1490 Channel Binding Refused. The server refused to service the request
due to a missing or mismatched channel binding(s).

1491 Request Invalid. The server refused to service the request because
the request message nonce was unknown, expired or the server has
previously serviced a message with the same nonce and user ID.

1492 Unacceptable Authenticator. The authenticator is not acceptable ac-
cording to the server's policy, for example because the capability reg-

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 12

149

150

151

152
153
154
155
156

157

FIDO UAF Application API and Transport Binding Specification

istry used by the server reported different capabilities than client-side
discovery.

1493 Revoked Authenticator. The authenticator is considered revoked by
the server.

1494 Unacceptable Key. The key used is unacceptable. Perhaps it is on a
list of known weak keys or uses insecure parameter choices.

1495 Unacceptable Algorithm. The server believes the authenticator to be
capable of using a stronger mutually-agreeable algorithm than was
presented in the request.

1496 Unacceptable Attestation. The attestation(s) provided were not ac-
cepted by the server.

1497 Unacceptable Client Capabilities. The server was unable or unwilling
to use required capabilities provided supplementally to the authentica-
tor by the client software.

1498 Unacceptable Content. There was a problem with the contents of the
message and the server was unwilling or unable to process it.

1500 Internal Server Error

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 13

158

FIDO UAF Application API and Transport Binding Specification

4 DOM API

This section describes the API details exposed by a web browser or browser plugin to a
client-side web application executing in a Document [DOMTR] context.

4.1 Feature Detection

FIDO's UAF DOM APIs are rooted in a new uaf object, a property of a new fido object,
which is itself a property of the window.navigator object; the existence and properties of
which can be used for feature detection.

Example 1: Feature Detection of UAF APIs

<script>
 if(!!window.navigator.fido.uaf) { var useUAF = true; }
</script>

4.2 UAFMessage Dictionary

The UAFMessage dictionary is a wrapper object that contains the raw UAF Protocol
Message and additional JSON data that may be used to carry application-specific data
for use by either the client application or FIDO Client.

Dictionary UAFMessage {
DOMString uafProtocolMessage;
Object additionalData;

}

uafProtcolMessage of type DOMString

This key contains the UAF Protocol Message that will be processed by the FIDO
Client or Server. Modification by the client application may invalidate the mes-
sage. A client application MAY examine the contents of a message, for example,
to determine if a message is still fresh. Details of the structure of the message
can be found in the UAF Protocol Specification [UAFProtocol].

additionalData of type Object

This key allows the FIDO Server or client application to attach additional data for
use by the FIDO Client as a JSON object, or the FIDO Client or client application
to attach additional data for use by the client application.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 14

159

160
161

162

163
164
165

166
167
168
169
170
171

172

173

174
175
176

177
178
179
180
181
182

183

184
185
186
187
188

189

190
191
192

FIDO UAF Application API and Transport Binding Specification

4.3 UAFResponseCallback

A UAFResponseCallback is used upon successful completion of an asynchronous oper-
ation by the FIDO Client to return the UAF Protocol response message to the client ap-
plication for transport to the server.

callback UAFResponseCallback = void (UAFMessage uafResponse);

4.3.1 Arguments

uafResponse of type UAFMessage

The UAFMessage and any additional data representing the FIDO Client's re-
sponse to the server's request message.

4.4 ErrorCallback

An ErrorCallback is used to return progress and error codes from asynchronous opera-
tions performed by the FIDO Client.

 callback ErrorCallback = void (ErrorCode code);

 interface ErrorCode {
 const short NO_ERROR = 0x0;
 const short WAIT_USER_ACTION = 0x1;
 const short INSECURE_TRANSPORT = 0x2;
 const short USER_CANCELLED = 0x3;
 const short UNSUPPORTED_VERSION = 0x4;
 const short NO_SUITABLE_AUTHENTICATOR = 0x5;
 const short PROTOCOL_ERROR = 0x6;
 const short UNTRUSTED_FACET_ID = 0x7;
 const short UNKNOWN = 0xFF;
 }

4.4.1 ErrorCode Values

NO_ERROR

The operation completed with no error condition encountered. Upon receipt of
this code, an application should no longer expect an associated UAFResponse-
Callback to fire.

WAIT_USER_ACTION

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 15

193

194
195
196

197
198

199

200

201
202

203

204
205

206
207
208
209
210
211
212
213
214
215
216
217
218
219

220

221

222
223
224

225

FIDO UAF Application API and Transport Binding Specification

Waiting on user action to proceed. (e.g. selecting an authenticator in the FIDO
client user interface, performing user verification, or completing an enrollment
step with an authenticator)

USER_CANCELLED

The user declined any necessary part of the interaction to complete the registra-
tion.

UNSUPPORTED_VERSION

The UAFMessage does not specify a protocol version supported by this FIDO
Client.

NO_SUITABLE_AUTHENTICATOR

No authenticator matching the AuthenticatorPolicy internal to the UAFProto-
colMessage is available to service the request, or the user declined to consent to
the use of a suitable authenticator.

INSECURE_TRANSPORT

window.location.protocol is not https or the DOM contains insecure mixed con-
tent.

PROTOCOL_ERROR

A violation of the UAF protocol occurred. The message may have timed out, the
origin associated with the message may not match the origin of the calling DOM
context, or the protocol message may be malformed or tampered with.

UNTRUSTED_FACET_ID

The FIDO Client declined to process the operation because the caller's calcu-
lated Facet ID was not found in the trusted list for the Application ID in the UAF
Request message.

UNKNOWN

An error condition not described by other codes.

For certain operations, an ErrorCallback may be called multiple times, for example with
the WAIT_USER_ACTION code.

4.5 notifyUAFResult Operation

A notifyUAFResult() call is used to indicate to the FIDO Client the status code resulting
from a UAF message delivered to the remote server. Applications MUST make this call
when they receive a UAF status code. This allows the FIDO Client to perform house-
keeping for a better user experience, for example not attempting to use keys that a
server refused to register.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 16

226
227
228

229

230
231

232

233
234

235

236
237
238

239

240
241

242

243
244
245

246

247
248
249

250

251

252
253

254

255
256
257
258
259

FIDO UAF Application API and Transport Binding Specification

If and how a UAF status code is delivered by the server is application and transport spe-
cific. A non-normative example can be found below in the HTTPS Transport Interoper-
ability Profile. [6.3]

void notifyUAFResult(int responseCode, DOMString uafResponse);

4.5.1 Arguments

responseCode of type int

The uafResult field of a ServerResponse.

uafResponse of type DOMString

The UAF response message to which this responseCode applies.

4.6 Version Interface

Describes a version of the UAF Protocol or FIDO Client for compatibility checking.
Interface Version {

readonly attribute int majorVersion;
readonly attribute int minorVersion;

}

4.7 Authenticator Interface

Used by several phases of UAF, the Authenticator interface exposes a subset of both
verified metadata [UAFAuthnrMetadata] and transient information about the state of an
available FIDO Authenticator.
interface Authenticator {

 readonly attribute DOMString AAID;
 readonly attribute DOMString description;
 readonly attribute DOMString logo;

 readonly attribute Version[] supportedUAFVersions;

 readonly attribute long userVerification;
 readonly attribute long keyProtection;
 readonly attribute long attachmentHint;
 readonly attribute long secureDisplay;

 readonly attribute int authenticationAlgorithm;
 readonly attribute DOMString assertionScheme;

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 17

260
261
262
263
264
265

266

267

268

269

270

271

272

273
274
275
276
277

278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

FIDO UAF Application API and Transport Binding Specification

 // for future use
 readonly attribute long additionalInfo;

 // See FIDO UAF Registry of Predefined Values for constant definitions

}

4.7.1 Constants

A number of constants are defined for use with the bit flag fields userVerification,
keyProtection, attachmentHint, and secureDisplay. To avoid duplication and inconsis-
tencies, please refer to the authoritative definitions found in the FIDO UAF Registry of
Predefined Values [FIDORegistry].

4.7.2 Attributes

AAID of type DOMString, readonly

The Authenticator Attestation ID, which identifies the type and batch of the au-
thenticator.

No exceptions.

description of type DOMString, readonly

A user-friendly description string for the authenticator.

No exceptions.

logo of type DOMString, readonly

A PNG [PNG] logo for the authenticator, encoded as a data: url [RFC2397].

No exceptions.

userVerification of type long, readonly

A set of bit flags indicating the user verification methods(s) supported by the au-
thenticator. The values are defined by the USER_VERIFY_ constants.

No exceptions.

keyProtection of type long, readonly

A set of bit flags indicating the key protection used by the authenticator. The val-
ues are defined by the KEY_PROTECTION constants.

No exceptions.

attachmentHint of type long, readonly

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 18

298
299
300
301
302
303
304

305

306
307
308
309

310

311

312
313

314

315

316

317

318

319

320

321

322
323

324

325

326
327

328

329

FIDO UAF Application API and Transport Binding Specification

A set of bit flags indicating how the authenticator is currently connected to the
system hosting the FIDO Client software. The values are defined by the AT-
TACHMENT_HINT constants.

Because the connection state and topology of an authenticator may be transient,
these values are only hints that can be used by server-supplied policy to guide
the user experience, e.g. to prefer a device that is connected and ready for au-
thenticating or confirming a low-value transaction, rather than one that is more
secure but requires more user effort. These values are not reflected in authenti-
cator metadata [UAFAuthnrMetadata] and cannot be relied on by the relying
party, although some models of authenticator may provide attested measure-
ments with similar semantics as part of UAF protocol messages.

No exceptions.

secureDisplay of type long, readonly

A set of bit flags indicating the availability and type of secure display. The values
are defined by the SECURE_DISPLAY_ constants.

No exceptions.

supportedUAFVersions of type Version[], readonly

Indicates the UAF Protocol Versions supported by the authenticator.

No exceptions.

authenticationAlgorithm of type int, readonly

Supported Authentication Algorithm. Value MUST be related to constants with
prefix UAF_ALG_SIGN in the UAF Registry of Predefined Values. [FIDORegistry]

No exceptions.

assertionScheme of type DOMString, readonly

The encoding scheme the authenticator uses for attested data and signatures.

Scheme identifiers are defined in the UAF Registry of Predefined Values. [FI-
DORegistry]

No exceptions.

additionalInfo of type long, readonly

RESERVED FOR FUTURE USE

No exceptions.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 19

330
331
332

333
334
335
336
337
338
339
340

341

342

343
344

345

346

347

348

349

350
351

352

353

354

355
356

357

358

359

360

361

FIDO UAF Application API and Transport Binding Specification

4.8 Discovery Interface

To discover if the user's client software and devices support UAF and if Authenticator
capabilities are available that it may be willing to accept for authentication, Relying Party
code in the browser can use the following interface.
interface Discovery {
 readonly attribute Version[] supportedUAFVersions;
 readonly attribute DOMString clientVendor;
 readonly attribute Version clientVersion;
 readonly attribute Authenticator[] availableAuthenticators;
 void checkPolicy(DOMString message, ErrorCallback cb);
}

4.8.1 Attributes

supportedUAFVersions of type Version[], readonly

A list of the FIDO UAF protocol versions supported by the client, most-preferred
first.

No exceptions.

clientVendor of type DOMString, readonly

The vendor of the FIDO UAF Client.

No exceptions.

clientVersion of type Version readonly

The version of the FIDO UAF Client, ordered by version number significance.
This is a vendor-specific version for the client software, not a UAF version.

No exceptions.

availableAuthenticators of type Authenticator[], readonly

An array containing Authenticator dictionaries describing the available UAF au-
thenticators. The order is not significant.

No exceptions.

4.8.2 Operations

checkPolicy(DOMString message, ErrorCallback cb) of return type void

Ask the FIDO plugin if it would be able to process the supplied UAF Request
message, without prompting the user. Unlike other operations using an ErrorCall-
back, this operation MUST always trigger the callback and return NO_ERROR if
it believes that the message can be processed and a suitable authenticator
matching the embedded policy is available, or the appropriate ErrorCode value

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 20

362

363
364
365
366
367
368
369
370
371
372

373

374

375
376

377

378

379

380

381

382
383

384

385

386
387

388

389

390

391
392
393
394
395

FIDO UAF Application API and Transport Binding Specification

otherwise. Because this call should not prompt the user, it should not incur a po-
tentially disrupting context-switch even if the FIDO Client is implemented out-of-
process.

4.8.2.1 Arguments

message of type DOMString

A UAF Request Message containing the policy and operation to be tested.

4.8.3 Privacy Considerations

This section is non-normative.

Differences in the FIDO capabilities on a user device may (among many other charac-
teristics) allow a server to "fingerprint" a remote client and attempt to persistently iden-
tify it, even in the absence of any explicit session state maintenance mechanism. Al-
though it may contribute some amount of signal to servers attempting to fingerprint
clients, the attributes exposed by the Discovery API are designed to have a large
anonymity set size and should present little or no qualitatively new privacy risk. None-
theless, an unusual configuration of FIDO Authenticators may be sufficient to uniquely
identify a user. It is recommended that user agents expose the Discovery API to all ap-
plications without requiring explicit user consent by default, but user agents or FIDO
Client implementers should provide users with the means to opt-out of discovery if they
wish to do so for privacy reasons.

4.9 FIDOClient Interface

The FIDOClient interface allows the application to send UAF request messages to the
FIDO Client asynchronously and receive UAF response messages back.

interface FIDOClient {
 void processUAFOperation(UAFMessage message,
 UAFResponseCallback completionCallback,
 ErrorCallback errorCallback);
}

4.9.1 Operations

processUAFMessage(UAFMessage message, UAFResponseCallback completionCall-
back, ErrorCallback errorCallback) of return type void

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 21

396
397
398

399

400

401

402

403

404

405
406
407
408
409
410
411
412
413
414
415

416

417
418

419
420
421
422
423
424

425

426
427

FIDO UAF Application API and Transport Binding Specification

Invokes the FIDO Client, transferring control to prompt the user as necessary to
complete the operation, and returns to the callback a message in one of the sup-
ported protocol versions indicated by the UAFMessage.

No exceptions.

4.9.1.1 Arguments

message of type UAFMessage

The UAFMessage to be used by the FIDO client software.

completionCallback of type UAFResponseCallback

The callback that receives the client response UAFMessage from the FIDO
Client, to be delivered to the Relying Party server.

errorCallback of type ErrorCallback

A callback function to receive error and progress events from the FIDO Client.

4.10 Security Considerations for the DOM API

4.10.1 Insecure Mixed Content

When FIDO UAF APIs are called and operations are performed in a Document context
in a web user agent, such a context MUST NOT contain insecure mixed content. The
exact definition insecure mixed content is specific to each user agent, but generally in-
cludes any script, plugins and other "active" content, forming part of or with access to
the DOM, that was not itself loaded over HTTPS.

The UAF APIs MUST immediately trigger the ErrorCallback with the
INSECURE_TRANSPORT code and cease any further processing if any APIs defined
in this document are invoked by a Document context that was not loaded over a secure
transport and/or which contains insecure mixed content.

4.10.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

When retrieving or transporting UAF protocol messages over HTTP, it is important to
maintain consistency among the web origin of the document context and the origin em-
bedded in the UAF protocol message. Mismatches may cause the protocol to fail or en-
able attacks against the protocol. Therefore:

1. UAF messages SHOULD NOT be transported using methods that opt-out of the
Same Origin Policy [SOP], for example, using <script src=”url”> to non-Same-Ori-
gin URLs or by setting Access-Control-Allow-Origin headers at the server.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 22

428
429
430

431

432

433

434

435

436
437

438

439

440

441

442
443
444
445
446

447
448
449
450

451

452
453
454
455

456
457
458

FIDO UAF Application API and Transport Binding Specification

2. When transporting UAF messages using XMLHttpRequest [XHR] the client
SHOULD NOT follow redirects that are not to URLs within the same origin.

3. UAF messages SHOULD NOT be exposed in HTTP responses where the entire
response body parses as valid ECMAScript. Resources exposed in this manner
may be subject to unauthorized interactions by hostile applications hosted at un-
trusted origins through cross-origin embedding using <script src=”url”>.

4. Web applications SHOULD NOT share UAF messages across origins through
channels like postMessage() [WEBMESSAGING].

4.10.3 Implementation Notes for Browser/Plugin Authors

This section is non-normative.

Web applications utilizing UAF depend on services from the web browser as a trusted
platform. The APIs for web applications do not provide a means to assert an origin as
an application identity for the purposes of FIDO operations as this will be provided to the
FIDO Client by the browser based on its privileged understanding of the actual origin
context. The browser MUST enforce that the web origin communicated to the FIDO
Client as the application identity is accurate and that resource instances with insecure
mixed-content cannot utilize the FIDO ECMAScript APIs.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 23

459
460

461
462
463
464

465
466

467

468

469
470
471
472
473
474
475

FIDO UAF Application API and Transport Binding Specification

5 Android API

This section describes how an Android [ANDROID] client application can locate and
communicate with a conforming FIDO Client installation operating on the host device.

As with web applications, a variety of integration patterns are possible on the Android
platform. The API described here allows an app to discover a shared FIDO Client on the
user device, implemented as a Bound Service, and communicate with it using an ADIL
interface.

The interfaces are defined in the org.fidoalliance.uaf.client package.

5.1 IUAFClient.aidl

IUAFClient represents the primary interface for interacting with an Android device's
shared FIDO Client installation. It provides methods to get a reference to the Discovery
interface, to process UAF messages, and to notify the FIDO Client of the result of UAF
Protocol Response messages delivered to the remote server. The operations are as
described in the DOM API, with the exception of the checkPolicy, origin, and channel-
Bindings parameters.

package org.fidoalliance.uaf.client;

import org.fidoalliance.uaf.client.IUAFErrorCallback;
import org.fidoalliance.uaf.client.IUAFResponseCallback;
import org.fidoalliance.uaf.client.Discovery;
import org.fidoalliance.uaf.client.UAFMessage;

import java.util.Map;

interface IUAFClient
{

Discovery getDiscovery();

void notifyUAFResult(in int responseCode,
 in String uafResponse);

void processUAFMessage(in UAFMessage msg,
in String origin,
in Map channelBindings,

 in boolean checkPolicy,
 in IUAFResponseCallback cb,
 in IUAFErrorCallback errorCb);
}

Setting the checkPolicy flag to true on a call emulates the behavior of the checkPolicy
operation in the DOM API.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 24

476

477
478

479
480
481
482

483

484

485
486
487
488
489
490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

FIDO UAF Application API and Transport Binding Specification

5.1.1 channelBindings

In the DOM API, the browser or browser plugin is responsible for supplying any avail-
able channel binding information to the FIDO Client, but an Android application, as the
direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is Map<String,String> with the keys as defined for
the TLSData structure in the UAF Protocol Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over
which UAF protocol messages are transported is the same channel the legitimate client
is using and that messages have not been forwarded through a malicious party. UAF
defines support for the tls-unique and tls-server-endpoint bindings from [RFC5929], as
well as server certificate and ChannelID [CHANNELID] bindings. The client SHOULD
supply all channel binding information available to it. Failure to supply appropriate
channel binding information MAY cause a Relying Party server to reject a UAF transac-
tion.

5.1.2 origin

Android apps using IUAFClient to request services from the FIDO Client can do so in
one of two ways. They can do so under their own identity, by setting origin to null, or
they can act as the user's agent on behalf of multiple relying party applications, by set-
ting origin to the RFC6454 [RFC6454] serialization of the remote server's Origin.

An application that is operating on behalf of a single entity SHOULD always set origin to
null. This will cause the FIDO Client to determine the caller's identity as android:apk-
key-hash:<hash-of-public-key>. The FIDO Client will then compare this with the list of
authorized application facets and proceed if it is listed as trusted.

For example, if the application at "www.example.com" is exposed as both a browser-
based web application and through an Android app, the Android app should not set ori-
gin, rather "www.example.com" should list the Android app's facet identity as trusted.

An application may access registrations made by web browsers and other applications
on the system for the same target relying party application. Continuing the example. If
the Android app is listed as a trusted facet, it may use a registration for "www.example.-
com" that was originally made in a web browser on the same system with the same
FIDO client.

If an App accesses multiple logical applications that are still controlled by either a single
or a constrained set of entities (e.g. "app1.example.com" and "app2.example.com") it
SHOULD still set origin to null and use a federation pattern to accomplish single-sign
on.

See the UAF Protocol Specification [UAFProtocol] for more information on application
and facet identifiers.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 25

518

519
520
521

522
523

524
525
526
527
528
529
530
531

532

533
534
535
536

537
538
539
540

541
542
543

544
545
546
547
548

549
550
551
552

553
554

FIDO UAF Application API and Transport Binding Specification

If the application is explicitly intended to operate as the user's agent in the context of an
arbitrary number of remote applications (as in a web browser) it may set origin to the
RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The ap-
plication MUST satisfy the necessary conditions described in the Transport Security Re-
quirements [6.1] for authenticating the remote server before setting origin.

Use of the origin parameter requires the application to declare the org.fidoal-
liance.uaf.permisisons.ACT_AS_WEB_BROWSER permission, and the FIDO Client
MUST verify that the calling application has this permission before processing the oper-
ation.

5.1.2.1 org.fidialliance.uaf.permissions.ACT_AS_WEB_BROWSER

<permission
 android:name="org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER"
 android:label="Act as a browser for FIDO registrations."
 android:description="This application may act as a web browser,

creating new and accessing existing FIDO registrations for any
domain."

 android:protectionLevel="dangerous" />

5.2 IUAFErrorCallback.aidl

This interface defines the callback for the FIDO Client to return error information to the
application. It may be called multiple times, for example, with the WAIT_USER_AC-
TION status code.
package org.fidoalliance.uaf.client;

interface IUAFErrorCallback
{

void response(long code);
}

5.3 IUAFResponseCallback.aidl

This interface defines the callback for returning a UAF Protocol response message in
the event that a processUAFMessage call is completed successfully. If the checkPolicy
flag was set to false this callback will never be called; only the IUAFErrorCallback will be
called.
package org.fidoalliance.uaf.client;

import org.fidoalliance.uaf.client.UAFMessage;

interface IUAFResponseCallback
{

void response(in UAFMessage uafResponse);

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 26

555
556
557
558
559

560
561
562
563

564

565
566
567
568
569
570
571

572

573
574
575
576
577
578
579
580
581
582

583

584
585
586
587
588
589
590
591
592
593
594

FIDO UAF Application API and Transport Binding Specification

}

5.4 UAFMesage.aidl

AIDL wrapper for UAFMessage.java.
package org.fidoalliance.uaf.client;

parcelable UAFMessage;

5.5 UAFMessage.java

This structure represents the data type for communications between the client applica-
tion in both directions, to the FIDO Client, and the FIDO Server. It wraps the actual
UAF Protocol message while providing additionalData to hold application-specific infor-
mation or protocol extensions. Modification of uafProtocolMessage by the client appli-
cation may invalidate the message. A client application MAY examine the contents of a
message, for example, to determine if a message is still fresh. Details of the structure
of the message can be found in the UAF Protocol Specification.

The additionalData parameter is a String and may be used to exchange additional data
between the Relying Party application and the FIDO Client. Use of this field is OP-
TIONAL and vendor-specific but a JSON [ECMA-404] structure is RECOMMENDED.

package org.fidoalliance.uaf.client;

import android.os.Parcel;
import android.os.Parcelable;

public class UAFMessage implements Parcelable {

 public String uafProtocolMessage;
 public String additionalData;

 public static final Parcelable.Creator<UAFMessage> CREATOR
 = new Parcelable.Creator<UAFMessage>() {
 public UAFMessage createFromParcel(Parcel in) {
 return new UAFMessage(in);
 }

 public UAFMessage[] newArray(int size) {
 return new UAFMessage[size];
 }
 };

 public UAFMessage() {
 }

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 27

595
596

597

598
599
600
601
602

603

604
605
606
607
608
609
610

611
612
613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

FIDO UAF Application API and Transport Binding Specification

 private UAFMessage(Parcel in) {
 uafProtocolMessage = in.readString();
 additionalData = in.readString();
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeString(uafProtocolMessage);
 dest.writeString(additionalData);
 }
}

5.6 Version.aidl

AIDL wrapper for Version.java.
package org.fidoalliance.uaf.client;

parcelable Version;

5.7 Version.java

A class describing a major and minor version number.
package org.fidoalliance.uaf.client;

import java.util.ArrayList;
import java.util.List;

import android.os.Parcel;
import android.os.Parcelable;

public class Version implements Parcelable {

 public int majorVersion;
 public int minorVersion;

 public static final Parcelable.Creator<Version> CREATOR
 = new Parcelable.Creator<Version>() {
 public Discovery createFromParcel(Parcel in) {
 return new Version(in);
 }

 public Version[] newArray(int size) {
 return new Version[size];

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 28

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

655

656
657
658
659

660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

FIDO UAF Application API and Transport Binding Specification

 }
 };

 public Version() {
 }

 private Version(Parcel in) {
 majorVersion = in.readInt();
 minorVersion = in.readInt();
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeInt(majorVersion);
 dest.writeInt(minorVersion);
 }
}

5.8 Discovery.aidl

AIDL wrapper for Discovery.java.
package org.fidoalliance.uaf.client;

parcelable Discovery;

5.9 Discovery.java

This class describes the Discovery interface that allows the application to query the
available FIDO Client and UAF authenticators available on the FIDO user device. For
field and method definitions, see the analogous attribute and operation descriptions for
the DOM API. [4.8]

package org.fidoalliance.uaf.client;

import java.util.ArrayList;
import java.util.List;

import android.os.Parcel;
import android.os.Parcelable;

public class Discovery implements Parcelable {

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 29

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

705

706
707
708
709
710

711

712
713
714
715

716
717
718
719
720
721
722
723
724
725
726

FIDO UAF Application API and Transport Binding Specification

 public List<Version> supportedUAFVersions =
new ArrayList<Version>();

 public String clientVendor;
 public Version clientVersion;
 public List<Authenticator> availableAuthenticators =

new ArrayList<Authenticator>();

 public static final Parcelable.Creator<Discovery> CREATOR
 = new Parcelable.Creator<Discovery>() {
 public Discovery createFromParcel(Parcel in) {
 return new Discovery(in);
 }

 public Discovery[] newArray(int size) {
 return new Discovery[size];
 }
 };

 public Discovery() {
 }

 private Discovery(Parcel in) {
 in.readTypedList(supportedUAFVersions,

 Version.CREATOR);
 clientVendor = in.readString();
 clientVersion = in.readParcellable(null);
 in.readTypedList(availableAuthenticators,

 Authenticator.CREATOR);
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeTypedList(version);
 dest.writeString(clientVendor);
 dest.writeParcelable(clientVersion, 0);
 dest.writeTypedList(availableAuthenticators);
 }
}

5.10 Authenticator.aidl

AIDL wrapper for Authenticator.java.

package org.fidoalliance.uaf.client;

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 30

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771

772

773
774
775

FIDO UAF Application API and Transport Binding Specification

parcelable Authenticator;

5.11 Authenticator.java

This class represents the set of metadata for an authenticator instance obtained through
the Discovery interface. For field definitions refer to analogous attributes in the DOM
API. [4.7.2]

package org.fidoalliance.uaf.client;

import java.util.List;
import java.util.ArrayList;

import android.os.Parcel;
import android.os.Parcelable;

public class Authenticator implements Parcelable {

 public String AAID;
 public String description;
 public String logo;
 public long userVerification;
 public long keyProtection;
 public long attachmentHint;
 public long secureDisplay;
 public String assertionScheme;
 public long additionalInfo;
 public int authenticationAlgorithm;
 public List<Version> supportedUAFVersions;

 public static final Parcelable.Creator<Authenticator> CREATOR
 = new Parcelable.Creator<Authenticator>() {
 public Authenticator createFromParcel(Parcel in) {
 return new Authenticator(in);
 }

 public Authenticator[] newArray(int size) {
 return new Authenticator[size];
 }
 };

 private Authenticator(Parcel in) {
 AAID = in.readString();
 description = in.readString();
 logo = in.readString();
 userVerification = in.readLong();
 keyProtection = in.readLong();
 attachmentHint = in.readLong();
 secureDisplay = in.readLong();
 assertionScheme = in.readString();
 additionalInfo = in.readLong();

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 31

776

777

778
779
780

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

FIDO UAF Application API and Transport Binding Specification

 authenticationAlgorithm = in.readInt();
 in.readTypedList(supportedUAFVersions,

 Version.CREATOR);
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeString(AAID);
 dest.writeString(description);
 dest.writeString(logo);
 dest.writeLong(userVerification);
 dest.writeLong(keyProtection);
 dest.writeLong(attachmentHint);
 dest.writeLong(secureDisplay);
 dest.writeString(assertionScheme);
 dest.writeLong(additionalInfo);
 dest.writeInt(authenticationAlgorithm);
 dest.writeTypedArray(supportedUAFVersions);
 }
}

A number of constants are defined for use with the bit flag fields userVerification,
keyProtection, attachmentHint, and secureDisplay. To avoid duplication and inconsis-
tencies, please refer to the authoritative definitions found in the FIDO UAF Registry of
Predefined Values [FIDORegistry].

5.11.1 Security Considerations

Android applications may choose to implement the user-interactive portion of FIDO in at
least two ways: by authoring an Activity using Android-native user interface compo-
nents, or with an HTML-based experience by loading a WebView and injecting the UAF
DOM APIs with addJavaScriptInterface(). An application that chooses to inject the UAF
interface into a WebView MUST follow all appropriate security considerations that apply
to the DOM APIs and user agent implementers. In particular, the content of a WebView
into which an API will be injected MUST be loaded only from trusted local content or
over a secure channel as specified in [6.1] and MUST NOT contain insecure mixed-con-
tent.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 32

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

855

856
857
858
859
860
861
862
863
864

865

866
867

FIDO UAF Application API and Transport Binding Specification

6 Transport Binding Profile

This section describes general normative security requirements for how a client applica-
tion transports FIDO UAF Protocol messages, gives specific requirements for Transport
Layer Security [TLS], and describes an interoperability profile for using HTTP over TLS
[RFC2818] with the UAF Protocol.

6.1 Transport Security Requirements

The UAF Protocol contains no inherent means of identifying a Relying Party server or
for end-to-end protection of UAF Protocol messages. To perform a secure UAF Proto-
col exchange, the following abstract requirements apply:

1. The client application MUST securely authenticate the server endpoint as autho-
rized, from that client's viewpoint, to represent the Origin [RFC6454]
(scheme:host:port tuple) reported to the FIDO Client by the client application.
Most typically this will be done by using TLS and verifying the server's certificate
is valid, asserts the correct DNS name, and chains up to a root trusted by the
client platform. Clients MAY also utilize other means to authenticate a server,
such as a pre-provisioned certificate or key that is distributed with an application,
or alternate network authentication protocols such as Kerberos [RFC4120].

2. The transport mechanism for UAF Protocol messages MUST provide confiden-
tiality for the message, to prevent disclosure of their contents to unauthorized
third parties. These protections should be cryptographically bound to proof of the
server's identity in (1).

3. The transport mechanism for UAF Protocol messages MUST protect the integrity
of the message from tampering by unauthorized third parties. These protections
should be cryptographically bound to proof of the server's identity in (1).

6.2 TLS Security Requirements

If using HTTP over TLS to transport an UAF Protocol exchange, the following specific
requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any other error level
with the TLS connection, the HTTP client MUST terminate the connection without
prompting the user. For example, this includes any errors found in certificate va-
lidity checking that HTTP clients employ, such as via TLS server identity check-
ing [RFC6125], Certificate Revocation Lists (CRLs) [RFC5280], or via the Online
Certificate Status Protocol (OCSP) [RFC2560].

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 33

868

869
870
871
872

873

874
875
876

877
878
879
880
881
882
883
884

885
886
887
888

889
890
891

892

893
894

895

896
897
898
899
900
901

FIDO UAF Application API and Transport Binding Specification

2. Whenever comparisons are made between the presented TLS server identity (as
presented during the TLS handshake, typically within the server certificate) and
the intended source TLS server identity (e.g., as entered by a user, or embedded
in a link), [RFC6125] server identity checking MUST be employed. The client
MUST terminate the connection without prompting the user on any error condi-
tion.

3. The TLS server certificate MUST either be provisioned explicitly out-of-band (e.g.
packaged with an app as a "pinned certificate") or be trusted by chaining to a root
included in the certificate store of the operating system or a major browser by
virtue of being currently in compliance with their root store program requirements.
The client MUST terminate the connection without user recourse if there are any
error conditions when building the chain of trust.

4. The "anon" and "null" crypto suites are not allowed and insecure cryptographic
algorithms in TLS (e.g. MD4, RC4, SHA1) SHOULD be avoided (see NIST
SP800-131A [SP800-131A]).

5. The client and server SHOULD use the latest practicable TLS version.

6. The client SHOULD supply and the server SHOULD verify whatever practicable
channel binding information is available, including a ChannelID [CHANNELID]
public key, the tls-unique and tls-server-endpoint bindings [RFC5929], and TLS
server certificate binding [UAFProtocol]. This information provides protection
against certain classes of network attackers and the forwarding of protocol mes-
sages, and a server MAY reject a message that lacks or has channel binding
data that does not verify correctly.

6.3 HTTPS Transport Interoperability Profile

This section is non-normative.

Complex and highly-optimized applications utilizing UAF will often transport UAF proto-
col messages in-line with other application protocol messages. The profile defined here
for transporting UAF protocol messages over HTTPS is intended to:

• Provide an interoperability profile to enable easier composition of client-side ap-
plication libraries and server-side implementations for FIDO UAF-enabled prod-
ucts from different vendors.

• Provide detailed illustration of specific necessary security properties for the trans-
port layer and HTTP interfaces, especially as they may interact with a browser-
hosted application.

This profile is also utilized in the examples that constitute the Appendices of this docu-
ment. This profile is OPTIONAL to implement. RFC 2119 key words are used in this

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 34

902
903
904
905
906
907

908
909
910
911
912
913

914
915
916

917

918
919
920
921
922
923
924

925

926

927

928
929
930

931
932
933

934
935
936

937
938

FIDO UAF Application API and Transport Binding Specification

section to indicate necessary security and other properties for implementations that in-
tend to use this profile to interoperate.

It is important to note that certain UAF operations, in particular Transaction Confirma-
tion, will always require application-specific implementation. This interoperability profile
only provides a skeleton framework suitable for replacing username/password authenti-
cation.

6.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request messages as part of a
response body containing other application content, e.g in a script block as such:
...
<script type=”application/json”>
{
 “initialRequest”: {
 // initial request message here
 },
 “lifetimeMillis”: 60000; // hint: this initial request is valid for 60
seconds
}
</script>
...

However, request messages have a limited lifetime, and an installed application cannot
be delivered with a request, so client applications generally need the ability to retrieve a
fresh request.

When requesting a request message over HTTPS with XMLHttpRequest [XHR] or an-
other HTTP API:

1. The URI of the server endpoint and how it is communicated to the client is appli-
cation-specific.

2. The client MUST set the HTTP method to POST. [RFC2616]

3. The client MUST set the HTTP “Content-Type” header to “application/fido+uaf;
charset=utf8”. [RFC2616]

4. The client SHOULD include “application/fido+uaf” as a media type in the HTTP
“Accept” header. [RFC2616]

5. The client MAY need to supply additional headers, such as a Cookie [RFC6265],
to demonstrate, in an application-specific manner, their authorization to perform a
request.

6. The entire POST body MUST consist entirely of a JSON [ECMA-404] structure
described by the GetUAFRequest interface.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 35

939
940

941
942
943
944

945

946
947
948
949
950
951
952
953
954
955
956
957
958

959

960
961
962

963
964

965
966

967

968
969

970
971

972
973
974

975
976

FIDO UAF Application API and Transport Binding Specification

The server's response SHOULD set the “Content-Type” to “application/fido+uaf;
charset=utf8” and the body of the response MUST consist entirely of a JSON structure
described by the ReturnUAFRequest interface.

6.3.2 Operation Enum

enum Operation {
"Reg", // Registration
"Auth", // Authentication or Transaction Confirmation
"Dereg", // Deregistration

}

6.3.3 GetUAFRequest Interface

interface GetUAFRequest {
Operation op;
DOMString previousRequest;
DOMString context;

}

op of type Operation

The type of the UAF Request Message desired. Allowable string values are de-
fined by the Operation enum. This field is OPTIONAL but MUST be set if the op-
eration is not known to the server through other context. (e.g. an operation-spe-
cific URL endpoint)

previousRequest of type DOMString

If the application is requesting a new UAF request message because a previous
one has expired, it may OPTIONALLY include the previous one to assist the
server in locating any state that should be re-associated with a new request mes-
sage, should one be issued.

context of type DOMString

Any additional contextual information that may be useful or necessary for the
server to generate the correct request message. This key is OPTIONAL and the
format and nature of this data is application-specific.

6.3.4 ReturnUAFRequest Interface

interface ReturnUAFRequest {
int statusCode;
DOMString uafRequest;

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 36

977
978
979

980

981
982
983
984
985

986

987
988
989
990
991
992

993

994
995
996
997

998

999

1000
1001
1002
1003

1004

1005

1006
1007
1008

1009

1010
1011
1012

FIDO UAF Application API and Transport Binding Specification

Operation op;
long lifetimeMillis;

}

statusCode of type int

The UAF Status Code for the operation.

uafRequest of type DOMString

The new UAF Request Message, OPTIONAL, if the server decided to issue one.

op of type Operation

An OPTIONAL hint to the client of the operation type of the message, useful if
the server might return a different type than was requested. For example, a
server might return a deregister message if an authentication request referred to
a key it no longer considers valid. Allowable string values are defined by the Op-
eration enum.

lifetimeMillis of type long

If the server returned a uafRequest, this is an OPTIONAL hint informing the client
application of the lifetime of the message in milliseconds.

6.3.5 Delivering a UAF Response

Although it is not the only pattern possible, an asynchronous HTTP request is a useful
way of delivering a UAF Response to the remote server for either web applications or
standalone apps.

When delivering a response message over HTTPS with XMLHttpRequest [XHR] or an-
other API:

1. The URI of the server endpoint and how it is communicated to the client is appli-
cation-specific.

2. The client MUST set the HTTP method to POST. [RFC2616]

3. The client MUST set the HTTP “Content-Type” header to “application/fido+uaf;
charset=utf8”. [RFC2616]

4. The client SHOULD include “application/fido+uaf” as a media type in the HTTP
“Accept” header. [RFC2616]

5. The client MAY need to supply additional headers, such as a Cookie [RFC6265],
to demonstrate, in an application-specific manner, their authorization to perform
an operation.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 37

1013
1014
1015

1016

1017

1018

1019

1020

1021

1022

1023
1024
1025
1026
1027

1028

1029

1030
1031

1032

1033
1034
1035

1036
1037

1038
1039

1040

1041
1042

1043
1044

1045
1046
1047

FIDO UAF Application API and Transport Binding Specification

6. The entire POST body MUST consist entirely of a the JSON [ECMA-404] struc-
ture described by the UAFMessage.uafProtocolMessage with any additionalData
array removed.

7. The server's response SHOULD set the “Content-Type” to “application/fido+uaf;
charset=utf8” and the body of the response MUST consist entirely of a JSON
structure described by the ServerResponse interface.

6.3.6 ServerResponse Interface

The ServerResponse interface represents the completion status and additional applica-
tion-specific additional data that results from successful processing of a Register, Au-
thenticate, or Transaction Confirmation operation. This message is not formally part of
the UAF Protocol, but the uafResult should be posted to the FIDO Client for housekeep-
ing using through the notifyUAFResult() operation.
interface ServerResponse {

 readonly int statusCode;
 readonly DOMString description;
 readonly Token[] additionalTokens;
 readonly DOMString location;
 readonly DOMString postData;
 readonly DOMString newUAFRequest;

 interface Token {
 enum TokenType {
 "HTTP_COOKIE",
 "OAUTH",
 "OAUTH2",
 "SAML1_1",
 "SAML2",
 "JWT",
 "OPENID_CONNECT"
 };
 readonly TokenType type;
 readonly DOMString value;
 }
}

6.3.6.1 Attributes

statusCode of type int, readonly

The FIDO UAF response status code. Note that this status code describes the
result of processing the tunneled UAF operation, not the status code for the outer
HTTP transport.

No exceptions.

description of type DOMString, readonly

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 38

1048
1049
1050

1051
1052
1053

1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083

1084

1085
1086
1087

1088

1089

FIDO UAF Application API and Transport Binding Specification

A detailed message describing the status code or providing additional information
to the user.

No exceptions.

additionalTokens of type ServerResponse.Token[], readonly

This key contains new authentication or authorization token(s) for the client that
are not natively handled by the HTTP transport. Tokens SHOULD be processed
prior to processing of location.

Note: The FIDO Server is not responsible for creating these tokens, they exist to
provide a means for the relying party application to update the authentication/au-
thorization state of the client in response to a successful FIDO operation. For ex-
ample, these fields could be used to allow FIDO to serve as the initial authentica-
tion leg of a federation protocol, but the scope and details of any such federation
are outside of the scope of FIDO.

No exceptions.

location of type DOMString, readonly

If present, indicates to the client web application that it should navigate the Docu-
ment context to the URI contained on this field after processing any tokens.

No exceptions.

postData of type DOMString, readonly

If present in combination with location, indicates that the client should POST the
contents to the location after processing any tokens.

No exceptions.

newUAFRequest of type DOMString, readonly

The server may use this to return a new UAF protocol message. This might be
used to supply a fresh request to retry an operation in response to a transient
failure, to request additional confirmation for a transaction or it a deregistration
message in response to a permanent failure.

No exceptions.

6.3.6.2 ServerResponse.AdditionalToken Attributes

type of type TokenType, readonly

The type of the additional authentication / authorization token.

No exceptions.

value of type DOMString, readonly

The value of the additional authentication / authorization token.

No exceptions

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 39

1090
1091

1092

1093

1094
1095
1096

1097
1098
1099
1100
1101
1102

1103

1104

1105
1106

1107

1108

1109
1110

1111

1112

1113
1114
1115
1116

1117

1118

1119

1120

1121

1122

1123

1124

FIDO UAF Application API and Transport Binding Specification

6.3.6.3 ServerResponse.AdditionalToken enum TokenType

HTTP_COOKIE

If the user agent is a standard web browser or other HTTP native client
with a cookie store, this TokenType SHOULD NOT be used. Cookies
should be set directly with the Set-Cookie HTTP header for processing by
the user agent. For non-HTTP or non-browser contexts this indicates a to-
ken intended to be set as an HTTP cookie. [RFC6265] For example, a na-
tive VPN client that authenticates with UAF might use this TokenType to
automatically add a cookie to the browser cookie jar.

OAUTH

Indicates that the token is of type OAUTH. [RFC5849].

OAUTH2

Indicates that the token is of type OAUTH2. [RFC6749].

SAML1_1

Indicates that the token is of type SAML 1.1. [SAML1_1].

SAML2

Indicates that the token is of type SAML 2.0. [SAML2]

JWT

Indicates that the token is of type JSON Web Token (JWT). [JWT]

OPENID_CONNECT

Indicates that the token is an OpenID Connect “id_token”. [OPENIDCON-
NECT]

6.3.7 Security Considerations

It is important that the client set, and the server require, the method be POST and the
“Content-Type” header be the correct value. Because the response body is valid EC-
MAScript, to protect against unauthorized cross-origin access, a server MUST NOT re-
spond to the type of request that can be generated by a script tag, e.g. <script
src=”https://example.com/fido/uaf/getRequest”>. The request a user agent generates
with this kind of embedding cannot set custom headers.

Likewise, by requiring a custom “Content-Type” header, cross-origin requests cannot be
made with an XMLHttpRequest without triggering a CORS preflight access check.
[CORS]

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 40

1125

1126

1127
1128
1129
1130
1131
1132
1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145
1146

1147

1148

1149
1150
1151
1152
1153
1154

1155
1156
1157

FIDO UAF Application API and Transport Binding Specification

As UAF messages are only valid when used same-origin, servers SHOULD NOT supply
an “Access-Control-Allow-Origin” [CORS] header with responses that would allow them
to be read by non-same-origin content.

To protect from some classes of cross-origin, browser-based, distributed denial-of-ser-
vice attacks, request endpoints SHOULD ignore, without performing additional process-
ing, all requests with an “Access-Control-Request-Method” [CORS] HTTP header or an
incorrect “Content-Type” HTTP header.

If a server chooses to respond to requests made with the GET method and without the
custom “Content-Type” header, it SHOULD apply a prefix string such as “while(1);” or
“&&&BEGIN_UAF_RESPONSE&&&” to the body of all replies and so prevent their be-
ing read through cross-origin <script> tag embedding. Legitimate same-origin callers
will need to (and alone be able to) strip this prefix string before parsing the JSON con-
tent.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 41

1158
1159
1160

1161
1162
1163
1164

1165
1166
1167
1168
1169
1170

FIDO UAF Application API and Transport Binding Specification

Bibliography

FIDO Alliance Documents:

[FIDOGlossary] Rolf Lindemann, Davit Baghdasaryan, Brad Hill, John Kemp. FIDO
Technical Glossary. Version v1.0-rd-20140209, FIDO Alliance, February 2014. See
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf

[UAFAuthnrMetadata] Davit Baghdasaryan, Brad Hill. FIDO Universal Authentica-
tion Framework Authenticator Metadata. Version v1.0-rd-20140209, FIDO Alliance, Feb-
ruary 2014. See http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-
20140209.pdf

[UAFProtocol] Rolf Lindemann, Davit Baghdasaryan, Eric Tiffany. FIDO Universal
Authentication Framework Protocol. Version v1.0-rd-20140209, FIDO Alliance, February
2014. See http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf

[FIDORegistry] Rolf Lindemann, Davit Baghdasaryan, Brad Hill. FIDO Universal
Authentication Framework Registry of Predefined Values. Version v1.0-rd-20140209,
FIDO Alliance. February 2014. See http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-
20140209.pdf

Other References:

[ANDROID] The AndroidTM Operating System, Google Inc., the Open Handset Alliance
and the Android Open Source Project. Work in progress. See:
http://developer.android.com/

[CHANNELID] Transport Layer Security (TLS) Channel IDs, D. Balfanz, Work in
progress. (draft-balfanz-tls-channel-id-00)

[CORS] Cross-Origin Resource Sharing, A. van Kesteren, Ed., World Wide Web Con-
sortium, January 2014

[DOMTR] Document Object Model (DOM) Technical Reports, World Wide Web Consor-
tium. Work in progress.

[ECMA-262] ECMAScript Language Specification, Editing 5.1, A. Wirfs-Brock, Editor.
Ecma International, June 2011.

Unofficial HTML version available at http://es5.github.com/.

[ECMA-404] The JSON Data Interchange Format, ECMA International, October 2013

[JWT] JSON Web Token (JWT), draft-ietf-oauth-json-web-token, M. Jones, Work in
progress.

[OPENIDCONNECT] OpenID Connect, OpenID Foundation, Work in progress.

[PNG] Portable Network Graphics (PNG) Specification (Second Edition) Information
technology – Computer graphics and image processing – Portable Network Graphics
(PNG): Functional specification. ISO/IEC 15948:2003 (E), D. Duce, Ed., World Wide
Web Consortium, November 2003

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 42

1171

1172

1173
1174
1175

1176
1177
1178
1179

1180
1181
1182

1183
1184
1185
1186

1187

1188
1189
1190

1191
1192

1193
1194

1195
1196

1197
1198

1199

1200

1201
1202

1203

1204
1205
1206
1207

http://www.w3.org/TR/PNG/
http://openid.net/connect/
http://tools.ietf.org/html/draft-jones-json-web-token
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://es5.github.com/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/DOM/DOMTR
http://www.w3.org/TR/cors/
http://tools.ietf.org/html/draft-balfanz-tls-channelid-00
http://developer.android.com/
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf

FIDO UAF Application API and Transport Binding Specification

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels (RFC2119), S.
Bradner, March 1997

[RFC2397] The "data" URL scheme (RFC2397), L. Masinter, August 1998

[RFC2560] X.509 Internet Public Key Infrastructure Online Certificate Status Protocol –
OCSP (RFC2560), M. Myers et al, June 1999

[RFC2616] Hypertext Transfer Protocol – HTTP/1.1 (RFC2616), R. Fielding et al, June
1999

[RFC2818] HTTP over TLS (RFC2818) , E. Rescorla, May 2000

[RFC4120] The Kerberos Network Authentication Service (V5) (RFC4120), C. Neuman
et al, July 2005

[RFC5280] Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile (RFC5280), D. Cooper et al, May 2008

[RFC5849] The OAuth 1.0 Protocol (RFC5849), E. Hammer-Lahav, Ed., April 2010

[RFC5929] Channel Bindings for TLS (RFC 5929), J. Altman et al, July 2010

[RFC6125] Representation and Verification of Domain-Based Application Service Iden-
tity within Internet Public Key Infrastructure using X.509 (PKIX) Certificates in the Con-
text of Transport Layer Security (TLS) (RFC6125), P. Saint-Andre et al, March 2011

[RFC6265] HTTP State Management Mechanism (RFC6265), A.Barth, April 2011

[RFC6454] The Web Origin Concept (RFC6454), A. Barth, December 2011

[RFC6749] The OAuth 2.0 Authorization Framework (RFC6749), D. Hardt, Ed., October
2012

[SAML1_1] Security Assertion Markup Language (SAML) v.1.1, OASIS, October 2003

[SAML2] Security Assertion Markup Language (SAML) v2.0, OASIS, March 2005

[SOP] Same-Origin Policy, Mozilla Developer Network, January 2014

[SP800-131A] NIST Special Publication 800-131A, Transitions: Recommendations for
Transitioning the Use of Cryptographic Algorithms and Key Lengths, E. Barker et al, Na-
tional Institute of Standards and Technology, January 20111

[TLS] The TLS Protocol Version 1.0 (RFC 2246), Version 1.1 (RFC 4346), Version 1.2
(RFC 5246)
[WebIDL] Web IDL, World Wide Web Consortium, work in progress.

[WEBMESSAGING] HTML5 Web Messaging, I. Hickson, World Wide Web Consortium,
work in progress.

[XHR] XMLHttpRequest, J. Aubourg et al, World Wide Web Consortium, work in
progress.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 43

1208
1209

1210

1211
1212

1213
1214

1215

1216
1217

1218
1219

1220

1221

1222
1223
1224

1225

1226

1227
1228

1229

1230

1231

1232
1233
1234

1235
1236

1237

1238
1239

1240
1241

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/WebIDL/
http://tools.ietf.org/html/rfc5246
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc2246.txt
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://www.oasis-open.org/standards#samlv2.0
https://www.oasis-open.org/standards#samlv1.1
http://tools.ietf.org/html/rfc6749
http://www.ietf.org/rfc/rfc6454.txt
https://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc5929
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5280
http://www.ietf.org/rfc/rfc4120.txt
http://tools.ietf.org/html/rfc2818
http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc2560
http://tools.ietf.org/html/rfc2397
http://tools.ietf.org/html/rfc2119

	1 Notation
	1.1 Key Words
	1.2 Revision History

	2 Overview
	2.1 Audience
	2.2 Scope
	2.3 Architecture
	2.4 Protocol Conversation

	3 Common Definitions
	3.1 UAF Status Codes

	4 DOM API
	4.1 Feature Detection
	4.2 UAFMessage Dictionary
	4.3 UAFResponseCallback
	4.3.1 Arguments

	4.4 ErrorCallback
	4.4.1 ErrorCode Values

	4.5 notifyUAFResult Operation
	4.5.1 Arguments

	4.6 Version Interface
	4.7 Authenticator Interface
	4.7.1 Constants
	4.7.2 Attributes

	4.8 Discovery Interface
	4.8.1 Attributes
	4.8.2 Operations
	4.8.2.1 Arguments

	4.8.3 Privacy Considerations

	4.9 FIDOClient Interface
	4.9.1 Operations
	4.9.1.1 Arguments

	4.10 Security Considerations for the DOM API
	4.10.1 Insecure Mixed Content
	4.10.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content
	4.10.3 Implementation Notes for Browser/Plugin Authors

	5 Android API
	5.1 IUAFClient.aidl
	5.1.1 channelBindings
	5.1.2 origin
	5.1.2.1 org.fidialliance.uaf.permissions.ACT_AS_WEB_BROWSER

	5.2 IUAFErrorCallback.aidl
	5.3 IUAFResponseCallback.aidl
	5.4 UAFMesage.aidl
	5.5 UAFMessage.java
	5.6 Version.aidl
	5.7 Version.java
	5.8 Discovery.aidl
	5.9 Discovery.java
	5.10 Authenticator.aidl
	5.11 Authenticator.java
	5.11.1 Security Considerations

	6 Transport Binding Profile
	6.1 Transport Security Requirements
	6.2 TLS Security Requirements
	6.3 HTTPS Transport Interoperability Profile
	6.3.1 Obtaining a UAF Request message
	6.3.2 Operation Enum
	6.3.3 GetUAFRequest Interface
	6.3.4 ReturnUAFRequest Interface
	6.3.5 Delivering a UAF Response
	6.3.6 ServerResponse Interface
	6.3.6.1 Attributes
	6.3.6.2 ServerResponse.AdditionalToken Attributes
	6.3.6.3 ServerResponse.AdditionalToken enum TokenType

	6.3.7 Security Considerations

	Bibliography

