
UAF Authenticator
Commands
Specification Set: fido-uaf-v1.0-rd-20140209 REVIEW DRAFT

Editors:

Davit Baghdasaryan, NokNok Labs
John Kemp, FIDO Alliance

Contributors:

Rolf Lindemann, NokNok Labs
Roni Sasson, Discretix

Abstract:

UAF Authenticators may take different forms. Implementations may range
from a secure application running inside tamper-resistant hardware to
software-only solutions on consumer devices. Independent of its form, the
implementation must follow all the normative notes stated in this docu-
ment.

This document has two goals:

1) Define the normative aspects of Authenticator implementations

2) Propose a common, non-normative set of commands implementing UAF
functionality

Copyright © 2014 FIDO Alliance

™

1

2

3

4

5
6

7

8
9

10

11
12
13
14
15

16

17

18
19

FIDO UAF Authenticator Commands

Status:

This Specification has been prepared by FIDO Alliance, Inc. This is a Review Draft
Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification
solely for the purpose of reviewing the Specification. No rights are granted to prepare
derivative works of this Specification. Entities seeking permission to reproduce portions
of this Specification for other uses must contact the FIDO Alliance to determine whether
an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third
party intellectual property rights, including without limitation, patent rights. The FIDO Al-
liance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all
such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Copyright © 2014 FIDO Alliance, Inc. All rights reserved.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 2

20

21
22
23
24
25
26
27

28
29
30
31
32

33
34
35
36

37

FIDO UAF Authenticator Commands

Table of Contents

1 Terminology .. 5

1.1 Key Words .. 5

2 Overview ... 6

2.1 Additonal Notations .. 6

3 UAF Authenticator ... 8

3.1 Types of Authenticators ... 9

4 Tags .. 11

5 Structures ... 14

5.1 RawKeyHandle ... 14

5.2 Structures to be parsed by FIDO Server ... 14

5.2.1 TAG_UAFV1_REG_RESPONSE ... 15

5.2.2 TAG_UAFV1_SIGN_RESPONSE .. 17

6 Commands .. 19

6.1 GetInfo Command .. 19

6.1.1 General Description ... 19

6.1.2 Command Structure .. 19

6.2 Register Command ... 21

6.2.1 General Description ... 21

6.2.2 Command Structure .. 23

6.2.3 Command Response .. 23

6.3 Sign Command ... 25

6.3.1 General Description ... 25

6.3.2 Command Structure .. 27

6.3.3 Command Response .. 29

6.4 Deregister Command ... 30

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 3

FIDO UAF Authenticator Commands

6.4.1 General Description ... 30

6.4.2 Command Structure .. 31

6.4.3 Command Response .. 31

7 Access Control for Commands .. 33

8 Relationship to other standards .. 34

8.1 TEE ... 34

8.2 Secure Elements .. 34

8.3 TPM .. 34

 Bibliography .. 36

 Appendix A: Security Guidelines ... 38

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 4

FIDO UAF Authenticator Commands

1 Terminology

Type names, attribute names and element names are written in italics.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this doc-
ument are to be interpreted as described in [RFC2119].

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 5

38

39

40

41

42

43

44
45
46

FIDO UAF Authenticator Commands

2 Overview

This document specifies low-level functionality which UAF Authenticators should imple-
ment in order to support the UAF protocol. While implementing the exact set of com-
mands specified in this document is not mandatory, implementors must follow all the
normative notes that apply regardless of the exact commands in use.

The overall architecture of the UAF protocol and its various operations is described in
[UAFProtocol]. The following simplified architecture diagram illustrates the interactions
and actors this document is concerned with:

2.1 Additonal Notations

● All data described in this document MUST be encoded in little-endian format.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 6

 UAF
 Client

 UAF
 Authenticator

 ASM

 Authnr
 Cmds

 ASM
 API

47

48
49
50
51

52
53
54

55

56

FIDO UAF Authenticator Commands

● The following is an example of a buffer presented in the form of a table. It reads
as follows:

○ A variable length buffer which has a 2-byte Tag in the beginning with a
value of TAG_KHANDLE_LIST.

○ The tag is followed by 2 bytes of overall Length
○ What follows is a list of KeyHandles. The sum of all KeyHandle sizes

should be equal to the value of Length.
■ Length = (N * sizeof(UINT16)) + (N * KeyHandleSize) where N is

the number of KeyHandles

1. UINT16 Tag TAG_KHANDLE_LIST

1.1 UINT16 Length Entire Length of list of KeyHandles

1.2 UINT16 Size Each entry is a KeyHandle with length
and content. This is the length part.

1.3 BYTE KeyHandle[Size] Each entry is a KeyHandle with length
and content. This is the content part.

● Details of commands are described using a pseudo-code based on Javascript
syntax.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 7

57
58
59
60
61
62
63
64
65

66
67

FIDO UAF Authenticator Commands

3 UAF Authenticator

The UAF Authenticator is an authentication component that meets the UAF protocol re-
quirements as described in [UAFProtocol]. The main functions to be provided by UAF
Authenticators are:

1. [Mandatory] Verifying the User using the verification mechanism built into the au-
thenticator. Note that the verification technology can vary from biometric verifica-
tion to simply verifying physical presence, or no user verification at all.

2. [Mandatory] Performing the cryptographic operations defined in [UAFProtocol]
3. [Mandatory] Attesting itself to the FIDO Server if there is a built-in support for at-

testation
4. [Optional] Securely displaying the transaction content to the User

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 8

 FIDO Authenticator

 ASM

 User

 Interface

 Attestation Key

 Authentication
 Keys

 Secure Display

 User
 Verification

68

69
70
71

72
73
74
75
76
77
78

FIDO UAF Authenticator Commands

Figure 1: FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

● A fingerprint sensor built into a mobile device
● PIN authenticator implemented inside a secure element
● A mobile phone acting as an authenticator to a different device
● A USB token with built-in user presence verification
● A voice or face verification technology built into a device

3.1 Types of Authenticators

There are three types of authenticators defined in this document.

● First Factor (1stF) Bound Authenticator - Bound Authenticator with first-factor ca-
pability

○ It is assumed that these authenticators MAY or MAY NOT store RawKey-
Handles in their own internal storage. If they don’t - they return KeyHandle
to ASM [UAFASM] and the latter needs to store it in its local database.

○ These authenticators MAY also work as a second factor..
○ Examples

■ A fingerprint sensor built into a laptop, phone, tablet, etc
■ Embedded Secure Element in a mobile device
■ Voice verification built into a device

● First Factor Roaming Authenticator - Roaming Authenticator with first-factor ca-
pability

○ It is assumed that these authenticators have an internal matcher. The
matcher is able to verify an already enrolled user. If there is more than one
user enrolled – the matcher can also identify a user.

○ It is assumed that these authenticators are designed to store RawKeyHan-
dles in their own internal secure storage and don’t provide these to the
ASM.

○ Note that in some deployments, Bound Authenticators can act as Roam-
ing Authenticators. When this happens such an Authenticator MUST fol-
low the requirements applying to Bound Authenticators within the bound-

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 9

79

80

81
82
83
84
85

86

87

88
89
90
91
92
93
94
95
96
97

98
99

100
101
102
103
104
105
106
107
108

FIDO UAF Authenticator Commands

ary of the system the authenticator is bound to, and follow the require-
ments that apply to Roaming Authenticators in any system it connects to
externally.

○ These authenticators MAY also work as a second factor.
○ Examples

■ A Bluetooth LE based hardware token with built-in fingerprint sen-
sor

■ PIN protected USB hardware token
■ A first-factor Bound Authenticator acting as a roaming authentica-

tor to a different device on user's behalf

● Second Factor (2ndF) Authnenticator - Internal or Roaming Authenticator with
second-factor capability

○ It is assumed that these authenticators MAY or MAY NOT store RawKey-
Handles in their own internal storage. If they don’t - they return KeyHandle
to ASM and the latter needs to store it in its local database.

○ These authenticators can only work as second factors.
○ Examples

■ USB dongle with a built-in capacitive touch device for verifying
user presence

■ A “Trustlet” application running on the trusted execution environ-
ment of a mobile phone, and leveraging a secure keyboard to verify
user presence

Throughout the document there will be special conditions applying to some of these
types of authenticators.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 10

109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130

131
132

FIDO UAF Authenticator Commands

4 Tags

Informative Notes:

In this document UAF Authenticators use TLV (Type Length Value) format to commu-
nicate with outside world. All requests and response data are encoded via TLV.

Commands and existing predefined TAGs can be extended with appending other
TAGs (custom or predefined).

Refer to [FIDORegistry] for information about predefined TAGs.

TAG values defined in this section are custom and non-normative.

TLV formatted data has the following simple structure:

2 bytes 2 bytes “Length” bytes

Tag Length Data

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 11

133

134

FIDO UAF Authenticator Commands

Name Value Description

TAG_KEYHANDLE 0x1001 Represents KeyHandle.
Refer to [FIDOGlossary] for more infor-
mation about KeyHandle.

TAG_KHANDLE_LIST 0x1002 Represents a list of KeyHandles.

TAG_UNAME_LIST 0x1003 Represents a list of Usernames.
Refer to [FIDOGlossary] for more infor-
mation about username.

TAG_USERVERIFY_TOKEN 0x1004 Represents a User Verification Token.
Refer to [FIDOGlossary] for more infor-
mation about user verification tokens.

TAG_FULL_APPID 0x1005 Represents a full AppID.
Refer to [FIDOGlossary] for more infor-
mation about AppID.

TAG_KEYID 0x1006 Represents a generated KeyID.

Table 4.1: Non-normative TAGs used in this document only (0x1000 – 0x10FF)

Name Value Description

TAG_UAFV1_GETINFO_CMD 0x2001 Tag for GetInfo command.

TAG_UAFV1_GETINFO_CMD_RESP 0x2101 Tag for GetInfo command response.

TAG_UAFV1_REG_CMD 0x2002 Tag for Register command.

TAG_UAFV1_REG_CMD_RESP 0x2102 Tag for Register command response.

TAG_UAFV1_SIGN_CMD 0x2003 Tag for Sign command.

TAG_UAFV1_SIGN_CMD_RESP 0x2103 Tag for Sign command response.

TAG_UAFV1_DEREG_CMD 0x2004 Tag for Deregister command.

TAG_UAFV1_DEREG_CMD_RESP 0x2104 Tag for Deregister command re-
sponse.

Table 4.2: UAF Authenticator Command TAGs (0x2000 - 0x21FF)

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 12

FIDO UAF Authenticator Commands

Name Value Description

UAF_STATUS_OK 0x0000 Success

UAF_STATUS_ERR_UNKNOWN 0x0001 A generic error

UAF_STATUS_ERR_ACCESS_DENIED 0x0002 Access to command is denied

UAF_STATUS_USER_NOT_ENROLLED 0x0003 User is not enrolled

Table 4.3: UAF Authenticator Status Codes

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 13

FIDO UAF Authenticator Commands

5 Structures

5.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the Authenticator. Authentica-
tors may define RawKeyHandle in different ways and its internal structure is relevant
only to the specific Authenticator implementation.

This section provides a sample reference definition.

32 bytes
Depends on key type.

(e.g. 32 bytes)
Username Size

(1 byte)
Max 128 bytes

KHAccessToken Uauth.priv Size Username

Table 5.1: RawKeyHandle Structure

Normative Note:
First Factor Authenticators MUST store Username and Second Factor Authenticators
MUST NOT store it. The ability to support Username is a key difference between
first-, and second-factor Authenticators.

RawKeyHandle MUST be wrapped before leaving the Authenticator boundary since it
contains the user authentication private key (Uauth.priv).

5.2 Structures to be parsed by FIDO Server

Normative Note:

This section is normative.

The structures defined in this section are parsed by FIDO Server and Authenticators
MUST therefore follow exactly the same structure as defined here.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 14

135

136

137
138
139

140

141

FIDO UAF Authenticator Commands

5.2.1 TAG_UAFV1_REG_RESPONSE

The following TLV structure is generated by the Authenticator during processing of a
Register command. It is then delivered to FIDO Server intact, and parsed by the server.
The structure embeds a TAG_UAFV1_KRD tag which among other data contains the
newly generated Uauth.pub. The entire TAG_UAFV1_KRD tag, including the tag value
and length (1.2-1.2.14) MUST be signed with the Attestation Private Key.

Note that if the Authenticator wants to append custom data to TAG_UAFV1_KRD struc-
ture (and thus sign with Attestation Key) – this data MUST be included as an additional
tag to TAG_UAFV1_KRD, following the PublicKey (1.2.14).

If the Authenticator wants to send additional data to FIDO Server without signing it - this
data MUST be included as an additional tag to TAG_UAFV1_REG_RESPONSE, follow-
ing TAG_ATTESTATION_CERT (1.4.2).

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REG_RESPONSE

1.1 UINT16 Length Entire Length of the structure

1.2 UINT16 Tag TAG_UAFV1_KRD

1.2.1 UINT16 Length Entire Length of the structure

1.2.2 UINT16 Size AAID size

1.2.3 BYTE AAID[Size] Authenticator AAID

1.2.4 BYTE AuthenticatorVersion Vendor assigned authenticator ver-
sion

1.2.5 UINT16 PublicKeyAlgAndEncoding Public Key algorithm and encoding.

Refer to [FIDORegistry] for infor-
mation on supported algorithms
and their values.

1.2.6 UINT16 SignatureAlgAndEncoding Signature Algorithm and Encoding.

Refer to [FIDORegistry] for infor-
mation on supported algorithms
and their values.

1.2.7 UINT16 Size Final Challenge size

1.2.8 BYTE FinalChallenge[Size] Final Challenge provided in the
Command

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 15

142

143
144
145
146
147

148
149
150

151
152
153

FIDO UAF Authenticator Commands

TLV Structure Description

1.2.9 UINT16 Size KeyID size

1.2.10 BYTE KeyID[Size] KeyID generated by Authenticator

1.2.11 UINT32 RegCounter Registration Counter.

Indicates how many times this Au-
thenticator has performed registra-
tions in the past.

1.2.12 UINT32 SignCounter Signature Counter.

Indicates how many times this Au-
thenticator has performed signa-
tures with any Uauth.priv in the
past.

1.2.13 UINT16 Size Size of Uauth.pub

1.2.14 BYTE PublicKey[Size] User authentication public key
(Uauth.pub) newly generated by
Authenticator

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Size Signature size

1.3.2 BYTE Signature[Size] Signature calculated with Attesta-
tion Private Key over
TAG_UAFV1_KRD content.

Note that entire TAG_UAFV1_KRD
content, including the tag and it’s
length field, MUST be included dur-
ing signature computation.

1.4 UINT16 Tag TAG_ATTESTATION_CERT

1.4.1 UINT16 Length Entire Length of Attestation Cert

1.4.2 BYTE Certificate[Length] Attestation Certificate byte array

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 16

FIDO UAF Authenticator Commands

5.2.2 TAG_UAFV1_SIGN_RESPONSE

The following TLV structure is generated by an Authenticator during processing of a
Sign command. It is then delivered to FIDO Server intact and parsed by the server. The
structure embeds a TAG_UAFV1_SIGNEDDATA tag. The entire
TAG_UAFV1_SIGNEDDATA tag, including the tag value and length (1.2-1.2.11) MUST
be signed with the appropriate Uauth.priv key.

Note that if the Authenticator wants to append custom data to TAG_UAFV1_SIGNED-
DATA structure (and thus sign with Uauth.priv) – this data MUST be included as an ad-
ditional tag to TAG_UAFV1_SIGNEDDATA, following the SignCounter (1.2.11).

If the Authenticator wants to send additional data to FIDO Server without signing it - this
data MUST be included as an additional tag to TAG_UAFV1_SIGN_RESPONSE, fol-
lowing TAG_SIGNATURE (1.3.2).

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_SIGN_RESPONSE

1.1 UINT16 Length Entire Length of the structure.

1.2 UINT16 Tag TAG_UAFV1_SIGNEDDATA

1.2.1 UINT16 Length Entire Length of the structure.

1.2.2 BYTE AuthenticatorVersion Vendor assigned authenticator ver-
sion.

1.2.3 BYTE AuthenticationMode Authentication Mode indicating
whether user explicitly verified or
not and indicating if there is a
transaction content or not.

● 0x01 means that user has
been explicitly verified

● 0x02 means that transac-
tion content has been
shown on secure display
and user confirmed it by ex-
plicitly verifying with authen-
ticator

1.2.4 UINT16 SignatureAlgAndEncoding Signature algorithm and encoding
scheme.

Refer to [FIDORegistry] for infor-

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 17

154

155
156
157
158
159

160
161
162

163
164
165

FIDO UAF Authenticator Commands

TLV Structure Description

mation on supported algorithms
and their values.

1.2.5 UINT16 Size Authenticator Nonce size - MUST
be at least 8 bytes

1.2.6 BYTE AuthnrNonce[Size] A nonce randomly generated by
Authenticator

1.2.7 UINT16 Size Final Challenge size

1.2.8 BYTE FinalChallenge[Size] Final Challenge provided in the
Command

1.2.9 UINT16 Size Transaction Content Hash size

1.2.10 BYTE TCHash[Size] Transaction Content Hash

1.2.11 UINT32 SignCounter Signature Counter.

Indicates how many times this Au-
thenticator has performed signa-
tures with any user authentication
keys (Uauth.priv) in the past.

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Size Signature size

1.3.2 BYTE Signature[Size] Signature calculated using
Uauth.priv over
TAG_UAFV1_SIGNEDDATA struc-
ture.

Note that entire
TAG_UAFV1_SIGNEDDATA con-
tent, including the tag and it’s
length field, MUST be included dur-
ing signature computation.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 18

FIDO UAF Authenticator Commands

6 Commands

All UAF Authenticator commands and responses are semantically similar - they are all
represented as TLV-encoded blobs. The first 2 bytes of each command is the command
code. After receiving a command, the Authenticator MUST parse the first TAG and fig-
ure out which command is being issued.

Informative Note:
Supporting exactly the same semantics of commands is not a requirement but is rec-
ommended. This applies to all commands described in this section.

6.1 GetInfo Command

6.1.1 General Description

This command returns a subset of the Authenticator’s UAF metadata.

6.1.2 Command Structure

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length - must be 0 for
this command

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 19

166

167
168
169
170

171

172

173

174

FIDO UAF Authenticator Commands

Command Response

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_GETINFO_CMD_RESP

1.1 UINT16 Length Command response length

1.2 BYTE AIVersion Authenticator Interface Version.
MUST be the number 1.
This version indicates the types of commands
and formatting associated with them supported
by Authenticator.

1.3 BYTE AAID[9] Vendor assigned AAID

1.4 UINT32 AuthFactor Authentication Factor (as defined in [FIDOReg-
istry])

1.5 UINT32 KeyProtection Key Protection type (as defined in [FIDOReg-
istry])

1.6 UINT32 SecureDisplay Secure Display type (as defined in [FIDOReg-
istry])

1.7 UINT32 AuthenticationAlg Authentication Algorithm (as defined in [FI-
DORegistry])

1.8 BYTE Scheme[8] Authentication Scheme (as defined in [FI-
DORegistry])

1.9 BYTE IsSecondFactor Indicates if the Authenticator is designed to
function only as second factor

Informative Note:
Refer to [FIDORegistry] for bitflag definitions of AuthFactor, KeyProtection, Secure-
Display, AuthenticationAlg and Scheme.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 20

175

FIDO UAF Authenticator Commands

6.2 Register Command

6.2.1 General Description

This command generates a UAF registration assertion. This assertion can be used to
register the Authenticator with a FIDO Server.

Authenticator MUST perform the following steps:

1. If this Authenticator has a Secure Display – make sure Command.TAG_FULL_APPID is

provided, and display its content on the Secure Display when verifying the user. Update

Command.KHAccessToken with TAG_FULL_APPID:

■ Command.KHAccessToken=hash(Command.KHAccessToken |

Command.TAG_FULL_APPID)

2. If User is already enrolled with Authenticator (via biometric enrollment, PIN setup or simi-

lar mechanism) - verify the user. If the verification has been already done in a previous

command – make sure that Command.TAG_USERVERIFY_TOKEN is a valid token.

a. If verification fails - return UAF_STATUS_ACCESS_DENIED

3. If User is not enrolled with Authenticator – take the User through enrollment process.

a. If enrollment fails - return UAF_STATUS_ACCESS_DENIED

4. Generate a new key pair (Uauth.pub/Uauth.priv)

5. Create a RawKeyHandle

a. Add Uauth.priv to RawKeyHandle

b. If it’s a Bound Authenticator - add Command.KHAccessToken to RawKeyHandle

c. If it's a 1stF Authenticator - add Command.Username to RawKeyHandle

6. Wrap RawKeyHandle with Wrap.sym key

7. Create TAG_UAFV1_KRD structure

a. Copy all the mandatory fields (see section 5.2.1)

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 21

176

177

178
179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

FIDO UAF Authenticator Commands

b. If it's a 2ndF Roaming Authenticator with no internal storage for KeyHandles –

copy KeyHandle into TAG_UAFV1_KRD.KeyID. Otherwise generate a random

KeyID (note that hash of KeyHandle can be safely used as a KeyID).

8. Sign TAG_UAFV1_KRD with Attestation Private Key

9. Create TAG_UAFV1_REG_RESPONSE

a. Copy all the mandatory fields (see section 5.2.1)

b. If this is a Roaming Authenticator with internal storage for its KeyHandles

■ Add KeyID and KeyHandle into internal storage

■ Return KeyID in TAG_KEYID tag

c. If this a Bound Authenticator

■ Return KeyHandle in TAG_KEYHANDLE and KeyID in TAG_KEYID

10. Return TAG_UAFV1_REG_CMD_RESP

Error Codes:

● UAF_STATUS_ERR_ACCESS_DENIED

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 22

200

201

202

203

204

205

206

207

208

209

210

211

212

213

FIDO UAF Authenticator Commands

6.2.2 Command Structure

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_REG_CMD

1.1 UINT16 Length Command Length

1.2 UINT16 Size Final Challenge size

1.3 BYTE FinalChallenge[Size] Final Challenge provided by ASM (max
32 bytes)

1.4 UINT16 Size KHAccessToken size

1.5 BYTE KHAccessToken[Size] KHAccessToken provided by ASM
(max 32 bytes)

1.6 UINT16 Size Username size

1.7 BYTE Username[Size] Username provided by ASM (max 128
bytes)

1.8 UINT16 Length Entire Length of User Verification To-
ken

1.9 BYTE VerificationToken[Length] User Verification Token. If Authenticator
doesn't have a matcher – the length
must be 0.

1.10 UINT16 Tag TAG_FULL_APPID (optional)

This tag must be present only in case if
Authenticator has a Secure Display and
is able to show AppID to user.

1.10.1 UINT16 Length Entire Length of AppID

1.10.2 BYTE AppID[Length] Full AppID (max 256 bytes)

6.2.3 Command Response

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_REG_CMD_RESP

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 23

214

215

FIDO UAF Authenticator Commands

TLV Structure Description

1.1 UINT16 Length Entire Command Length

1.2 UINT16 StatusCode Error Code returned by Authentica-
tor

1.3 UINT16 Tag TAG_UAFV1_REG_RESPONSE

This is a placeholder for
TAG_UAFV1_REG_RESPONSE.

Refer to section 5.2.1 for details on
how this tag is defined and what
fields it contains.

...

1.4 UINT16 Tag TAG_KEYHANDLE (optional)

1.4.1 UINT16 Length Entire Length of KeyHandle

1.4.2 BYTE KeyHandle[Length] KeyHandle

1.5 UINT16 Tag TAG_KEYID (optional)

1.5.1 UINT16 Length Entire Length of KeyID

1.5.2 BYTE KeyID[Length] KeyID

Normative Note:

For Silent Authenticators, KeyHandle MUST never be stored on a FIDO Server, oth-
erwise this would enable tracking of users without providing the ability for users to
clear KeyHandles from local device.

KeyID MUST be a unique and unguessable 32 bytes byte array. The uniqueness
MUST be within the scope of AAID.

If an Authenticator is not able to protect an attestation private key - it’s RECOM-
MENDED to not support attestation at all. If an Authenticator doesn’t support attesta-
tion – the final TAG_UAFV1_KRD object MUST be signed with newly generated
Uauth.priv key. In addition the content of TAG_ATTESTATION_CERT MUST have 0
length.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 24

FIDO UAF Authenticator Commands

If Authenticator doesn’t support SignCounter or Reg Counter it MUST set these to 0
in TAG_UAFV1_KRD.

6.3 Sign Command

6.3.1 General Description

This command generates a UAF assertion. This assertion can be further verified by a
FIDO Server which has a prior registration with this Authenticator.

Informative Note:

1stF Authenticators MUST implement this command in two stages.

1. The first stage will be executed only if Authenticator finds out that there are
multiple keyHandles after filtering with KHAccessToken. In this stage Authenti-
cator must return a list of usernames along with corresponding keyHandles

2. In the second stage, after user selects a username, this command will be
called with a single keyHandle and will return a UAF assertion based on this
keyHandle

2ndF Authenticators SHOULD NOT support the first stage.

Authenticator MUST take the following steps:

1. If this authenticator has a Secure Display – make sure Command.TAG_FULL_APPID is

provided and display it on Secure Display when verifying the user

a. Command.KHAccessToken=hash(Command.KHAccessToken |

Command.TAG_FULL_APPID)

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 25

216

217

218
219

220

221

222

223

224

FIDO UAF Authenticator Commands

2. If User is already enrolled with authenticator (such as biometric enrollment, PIN setup,

etc.) - verify the user. If the verification has been already done in one of previous com-

mands – make sure that Command.TAG_USERVERIFY_TOKEN is a correct token.

a. If verification fails - return UAF_STATUS_ACCESS_DENIED

3. If User is not enrolled – return UAF_STATUS_USER_NOT_ENROLLED

4. Unwrap all provided KeyHandles from Command.TAG_KEYHANDLE_LIST using

Wrap.sym

a. If it's a 1stF Roaming Authenticator

■ If Command.TAG_KEYHANDLE_LIST is empty – unwrap KeyHandles

stored in its internal storage

■ If Command.TAG_KEYHANDLE_LIST is not empty – the items in this list

are KeyIDs. Use these KeyIDs to locate KeyHandles stored in internal

storage

5. Filter RawKeyHandles with Command.KHAccessToken

a. RawKeyHandle.KHAccessToken == Command.KHAccessToken

6. If number of remaining RawKeyHandles is 0 – fail with

UAF_STATUS_ACCESS_DENIED

7. If number of remained RawKeyHandles is > 1

a. If it’s not a 1stF Authenticator – return UAF_STATUS_ACCESS_DENIED

b. Create TAG_UNAME_LIST and copy {Command.KeyHandle, RawKeyHan-

dle.username} pairs for all remaining RawKeyHandles into this tag

c. Copy TAG_UNAME_LIST into TAG_UAFV1_SIGN_CMD_RESP and return

8. If number of remaining RawKeyHandles is 1

a. Set Response.AuthenticationMode to 0x01

b. If TransactionContent is not empty

■ If this is a Silent Authenticator – return UAF_STATUS_ACCESS_DENIED

■ If Authenticator doesn’t have a built-in Secure Display – return UAF_STA-

TUS_ACCESS_DENIED

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 26

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

FIDO UAF Authenticator Commands

■ Show Command.TransactionContent and Command.TAG_FULL_APPID

on Secure Display and wait for the user to confirm it

● Return UAF_STATUS_ACCESS_DENIED if user cancels the

transaction

■ Compute hash of TransactionContent

○ TAG_UAFV1_SIGNEDDATA.TCHash = hash(Command.Transac-

tionContent)

○ Set TAG_UAFV1_SIGNEDDATA.AuthenticationMode to 0x02

c. Create TAG_UAFV1_SIGN_RESPONSE

■ Create TAG_UAFV1_SIGNEDDATA

● Increment SignCounter and put into TAG_UAFV1_SIGNEDDATA

● Copy all the mandatory fields (see section 5.2.2)

● If Command.AuthenticationMode == 0x01 - set

TAG_UAFV1_SIGNEDDATA.TCHash size to 0

■ Sign TAG_UAFV1_SIGNEDDATA with Uauth.priv

d. Copy TAG_UAFV1_SIGN_RESPONSE into TAG_UAFV1_SIGN_CMD_RESP

and return it

Error Codes:

● UAF_STATUS_ERR_ACCESS_DENIED
● UAF_STATUS_USER_NOT_ENROLLED

6.3.2 Command Structure

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_SIGN_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Size Final Challenge size

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 27

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271
272

273

FIDO UAF Authenticator Commands

TLV Structure Description

1.3 BYTE FinalChallenge[Size] Final Challenge provided by ASM
(max 32 bytes)

1.4 UINT16 Size KHAccessToken size

1.5 BYTE KHAccessToken[Size] KHAccessToken provided by ASM
(max 32 bytes)

1.6 UINT16 Size Transaction Content size

1.7 BYTE TransactionContent[Size] Transaction Content provided by ASM
(max 1024 bytes)

1.8 UINT16 Length Entire Length of this tag

1.9 BYTE VerificationToken[Length] User Verification Token. If Authentica-
tor doesn't have a Matcher – length
must be 0.

1.8 UINT16 Tag TAG_KHANDLE_LIST (optional)

1.8.1 UINT16 Length Entire Length of list of KeyHandles in
bytes.

This TAG contains one or more (>=1)
KeyHandle entries.

Each entry has a size and content.

Length = Sum(KeyHandleSizes) +
NumberOfKeyHandles * sizeof(UIN-
T16)

1.8.2 UINT16 Size Size of KeyHandle

1.8.3 BYTE KeyHandle[Size] KeyHandle

1.9 UINT16 Tag TAG_FULL_APPID (optional)

This tag must be present only in case
if Authenticator has a Secure Display
and is able to show AppID to user.

1.10.1 UINT16 Length Entire Length of AppID

1.10.2 BYTE AppID[Length] Full AppID (max 256 bytes)

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 28

FIDO UAF Authenticator Commands

6.3.3 Command Response

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_SIGN_CMD_RESP

1.1 UINT16 Length Entire Length of Command Re-
sponse

1.2 UINT16 StatusCode StatusCode returned by Authenti-
cator

1.3 UINT16 Tag TAG_UNAME_LIST (optional)

This TAG contains multiple (>=1)
{Username, Keyhandle} entries.

1.3.1 UINT16 Length Entire Length of list of {Username,
KeyHandles} pairs.

Length = Sum(UsernameSizes) +
Sum(KeyHandleSizes) + (Num-
berOfUsernames * sizeof(UINT16)
* 2)

1.3.2 UINT16 Size Size of Username

1.3.3 BYTE Username[Size] Username

1.3.4 UINT16 Size Size of KeyHandle

1.3.5 BYTE KeyHandle[Size] KeyHandle

1.4 UINT16 Tag TAG_UAFV1_SIGN_RESPONSE
(optional).

This is a placeholder for
TAG_UAFV1_SIGN_RESPONSE.

Refer to section 5.2.2 for details on
how this tag is defined and what
fields it contains.

...

Normative Note:

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 29

274

FIDO UAF Authenticator Commands

Silent Authenticators MUST always behave as 2ndF Authnrs.

If Authenticator doesn’t support SignCounter - it MUST set it to 0 in
TAG_UAFV1_SIGNEDDATA.

Roaming Authenticators MUST send KeyID as a TAG in the response of SIGN com-
mand.

Some Authenticators might support Secure Display functionality not inside the Au-
thenticator but within the boundaries of ASM. Typically these are software based Se-
cure Displays. When processing the Sign command with a given transaction such
Authenticators SHOULD assume that they do have a builtin Secure Display and
SHOULD include the hash of transaction content in the final assertion without display-
ing anyting to the user. Also, such Authenticator's Metadata file MUST clearly indicate
the type of Secure Display. Typically the flag of Secure Display will be SECURE_DIS-
PLAY_ANY or SECURE_DISPLAY_PRIVILEGED_SOFTWARE.
 See [FIDORegistry] for flags describing Secure Display type.

6.4 Deregister Command

6.4.1 General Description

This command deletes a registered UAF credential from Authenticator. Only Authentica-
tors which store KeyHandle in internal storage must support this command.

Authenticator MUST take the following steps:

1. If it's an Authenticator which stores KeyHandles inside its internal storage

◦ Find KeyHandle that matches Command.KeyID

◦ Unwrap found KeyHandles using Wrap.sym

◦ Make sure that RawKeyHandle.KHAccessToken == Command.KHAc-
cessToken

• If not - return UAF_STATUS_ACCESS_DENIED

◦ Delete these KeyHandles from internal storage

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 30

275

276

277
278

279

280

281

282

283
284

285

286

FIDO UAF Authenticator Commands

2. Return TAG_UAFV1_DEREG_CMD_RESP

Error Codes:

● UAF_STATUS_ERR_ACCESS_DENIED

6.4.2 Command Structure

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_DEREG_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Size KHAccessToken size

1.3 BYTE KHAccessToken[Size] KHAccessToken provided by ASM (max
32 bytes)

1.4 UINT16 Size KeyID size

1.5 BYTE KeyID[Size] KeyID provided by ASM (max 32 bytes)

6.4.3 Command Response

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_SIGN_CMD_RESP

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 StatusCode StatusCode returned by Authenticator

Informative Note:

Deregister command SHOULD not explicitly reveal whether provided keyID was reg-
istered or not.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 31

287

288

289

290

291

FIDO UAF Authenticator Commands

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 32

FIDO UAF Authenticator Commands

7 Access Control for Commands

FIDO Authenticators may implement various mechanisms to guard access to privileged
commands.

The following table summarizes the access control requirements for each command.

Terms used in the table:

• NoAuth – no access control

• UserVerify – explicit user verification

• KHAccessToken – must be known to the caller

• KeyHandleList – must be known to the caller

• KeyID - must be known to the caller

Com-
mands

1stF Bound
Authenticator

2ndF Bound
Authenticator

1stF Roaming
Authenticator

2ndF Roaming
Authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Sign UserVerify
KHAccessToken
KeyHandleList

(provided by ASM)

UserVerify
KHAccessToken
KeyHandleList

(provided by ASM)

UserVerify
KHAccessToken

UserVerify
KHAccessToken
KeyHandleList
(provided by

ASM)

Deregister KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

Table 1: Access Control for Commands

Normative Note:
All UAF Authenticators MUST satisfy the access control requirements defined above.

Authenticator vendors MAY offer additional security mechanisms.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 33

292

293
294

295

296

297

298

299

300

301

FIDO UAF Authenticator Commands

8 Relationship to other standards

The existing standard specifications most relevant to UAF authenticator are [TPM],
[TEE] and [SecureElement].

Hardware modules implementing these standards may be extended to incorporate UAF
functionality through their extensibility mechanisms such as by loading secure applica-
tions (trustlets, applets, etc) into them. Modules which do not support such extensibility
mechanisms cannot be fully leveraged within UAF framework.

8.1 TEE

In order to support UAF inside TEE a special Trustlet (trusted application running inside
TEE) may be designed which implements UAF Authenticator functionality specified in
this document and also implements some kind of user verification technology (biometric
verification, PIN or anything else).

An additional ASM must be created which knows how to work with the Trustlet.

8.2 Secure Elements

In order to support UAF inside SE a special Applet (trusted application running inside
SE) may be designed which implements UAF Authenticator functionality specified in this
document and also implements some kind of user verification technology (biometric ver-
ification, PIN or similar mechanisms).

An additional ASM must be created which knows how to work the Applet.

8.3 TPM

TPMs typically have a built-in attestation capability however this attestation model sup-
ported in TPMs is currently incompatible with UAF's basic attestation model. The future
enhancements of UAF may include compatible attestation schemes.

Typically TPMs also have a built-in PIN verification functionality which may be lever-
aged for UAF.

In order to support UAF with an existing TPM module, the vendor should write an ASM
which:

• Translates UAF data to TPM data by calling TPM APIs

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 34

302

303
304

305
306
307
308

309

310
311
312
313

314

315

316
317
318
319

320

321

322
323
324

325
326

327
328

329

FIDO UAF Authenticator Commands

• Creates assertions using TPMs API

• Reports itself as a valid UAF authenticator to UAF Client

A special AssertionScheme, designed for TPMs, must be also created (see [UAFAuthn-
rMetadata]) and published by FIDO Alliance. When FIDO Server receives an assertion
with this AssertionScheme it will treat the received data as TPM-generated data and will
parse/validate it accordingly.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 35

330

331

332
333
334
335

FIDO UAF Authenticator Commands

Bibliography

FIDO Alliance Documents:

[FIDOGlossary] Rolf Lindemann, Davit Baghdasaryan, Brad Hill, John Kemp. FIDO
Technical Glossary. Version v1.0-rd-20140209, FIDO Alliance, February 2014. See
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf

[UAFProtocol] Rolf Lindemann, Davit Baghdasaryan, Eric Tiffany. FIDO Universal
Authentication Framework Protocol. Version v1.0-rd-20140209, FIDO Alliance, February
2014. See http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf

[UAFASM] Davit Baghdasaryan, John Kemp. FIDO Universal Authentication Frame-
work Authenticator-specific Modules. Version v1.0-rd-20140209, FIDO Alliance, Febru-
ary 2014. See http://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdf

[UAFAuthnrMetadata] Davit Baghdasaryan, Brad Hill. FIDO Universal Authentica-
tion Framework Authenticator Metadata. Version v1.0-rd-20140209, FIDO Alliance, Feb-
ruary 2014. See http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-
20140209.pdf

[FIDORegistry] Rolf Lindemann, Davit Baghdasaryan, Brad Hill. FIDO Universal
Authentication Framework Registry of Predefined Values. Version v1.0-rd-20140209,
FIDO Alliance. February 2014. See http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-
20140209.pdf

Other References:

[BioVocab] Harmonized Biometric Vocabulary. Text of Standing Document 2 (SD 2)
Version 8, WD 2.8, work-in-progress, ISO/IEC JTC 1/SC 37: Biometrics, 2007-08-22.
Download:
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3
004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?
nodeid=6719683&vernum=0

[CLICKJACKING] Clickjacking: Attacks and Defenses, Lin-Shung Huang and Collin
Jackson Carnegie Mellon University; Alex Moshchuk, Helen J. Wang, and Stuart
Schlechter Microsoft Research. July 2012. Download
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf

[CommonCriteria] The Common Criteria (Specifications)

[FIPS-140-2] Security Requirements for Cryptographic Modules (Specification)

[FIPS 180-4] Secure Hash Standard (SHS) (FIPS 180-4)

[FIPS 186-4] NIST DIGITAL SIGNATURE STANDARD (DSS) (FIPS 186-4), National
Institute of Standards and Technology, July 2013

[PKCS#1] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifi-
cations Version 2.1 (RFC 3447), J. Jonsson et al, February 2003

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 36

336

337

338
339
340

341
342
343

344
345
346

347
348
349
350

351
352
353
354

355

356
357
358
359
360
361

362
363
364
365

366

367

368

369
370

371
372

http://www.ietf.org/rfc/rfc3447.txt
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.commoncriteriaportal.org/cc/
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf

FIDO UAF Authenticator Commands

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels (RFC2119), S.
Bradner, March 1997

[RFC4086] Randomness Requirements for Security (RFC 4086), D. Eastlake 3rd et al,
June 2005

[RFC5639] Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve
Generation (RFC 5639), M Lochter et al, March 2010

[SecureElement] Global Platform Card Specifications
(https://www.globalplatform.org/specifications.asp)

[SP800-131A] NIST Special Publication 800-131A, Transitions: Recommendations for
Transitioning the Use of Cryptographic Algorithms and Key Lengths, E. Barker et al, Na-
tional Institute of Standards and Technology, January 2011

[SP800-63-1] NIST Electronic Authentication Guideline SP 800-63-1 (NIST SP 800-63-
1). W. Burr et al, National Institute of Standards and Technology, December 2011

[SP-800-57] Recommendation for Key Management – Part 1: General (Revision 3)
(NIST SP 800-57)

[SP-800-38F] Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping (NIST SP 800-38F)

[SP-800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC (NIST SP 800-38D)

[SP-800-38C] Recommendation for Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality (NIST SP 800-38C)

[SP-800-63-1] Electronic Authentication Guideline (NIST SP 800-63-1)

[TEE] Global Platform Trusted Execution Environment Specifications (https://www.glob-
alplatform.org/specifications.asp)

[TEESecureDisplay] Trusted User Interface API Specficiation (https://www.globalplat-
form.org/specifications.asp)

[TPM] TPM Main Specification
(http://www.trustedcomputinggroup.org/resources/tpm_main_specification)

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 37

373
374

375
376

377
378

379
380

381
382
383

384
385

386
387

388
389

390
391

392
393

394

395
396

397
398

399
400

http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://tools.ietf.org/html/rfc5639
http://www.ietf.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc2119

FIDO UAF Authenticator Commands

Appendix A: Security Guidelines

This section is informative only.

Category Guidelines

Wrap.sym If the Authenticator has a wrapping key (Wrap.sym), then the Authen-
ticator must protect this key as its most sensitive asset. The overall
security of Authenticator highly depends on the protection of this key.

Wrap.sym strength MUST be equal or higher than the strength of se-
crets stored in RawKeyHandle. Refer to [SP-800-57] and [SP-800-
38F] publications for more information about choosing the right wrap-
ping algorithm and implementing it correctly.

It is highly recommended to generate, store and operate this key in-
side a trusted execution environment.
In situations where physical attacks and side channel attacks are con-
sidered in the threat model it is highly recommended to use a tamper-
resistant hardware module.

If the Authenticator uses Wrap.sym, it must ensure that unwrapping
corrupted KeyHandle and unwrapping data which has invalid contents
(e.g. KeyHandle from invalid origin) are indistinguishable for the
caller.

Private Keys
(Uauth.priv
and Attesta-
tion Private
Key)

This document requires (a) the attestation key to be used for attesta-
tion purposes only and (b) the authentication keys to be used for
FIDO authentication purposes only. The related to-be-signed objects
(i.e. Key Registration Data and SignData) are designed to reduce the
likelihood of such attacks:

1. They start with a tag marking them as specific FIDO objects
2. They include an Authenticator generated random value. As a

consequence all to-be-signed objects are unique with very high
probability.

3. They have a structure allowing only very few fields containing
uncontrolled values, i.e. value which are neither generated nor
verified by the Authenticator

Attestation
Private Key

Authenticator must protect Attestation Private Key as a very sensitive
asset. The overall security of Authenticator depends on the protection

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 38

401

402

FIDO UAF Authenticator Commands

Category Guidelines

level of this key.

It is highly recommended to store and operate this key inside a tam-
per-resistant hardware module.

Authenticators must ensure that the Attestation Private Key
1. Is only used to attest Authentication Keys generated and pro-

tected by the FIDO Authenticator using the FIDO defined data
structures, KeyRegistrationData.

2. Never is accessible outside the FIDO Authenticator boundary.

Attestation must be implemented in a way that two different relying
parties cannot link registrations, authentications or other transactions.

Uauth.priv Authenticator must protect all Uauth.priv keys as its most sensitive
assets. The overall security of Authenticator highly depends on the
protection level of these keys.

It is highly recommended to generate, store and operate this key in-
side a trusted execution environment.
In situations where physical attacks and side channel attacks are con-
sidered in the threat model it is highly recommended to use a tamper-
resistant hardware module.

FIDO Authenticators must ensure that Uauth.priv keys

1. are specific to the particular account at one relying party (rely-
ing party is identified by an AppID)

2. are generated based on good random numbers with sufficient
entropy. The challenge provided by FIDO Server SHOULD be
mixed into the entropy pool in order to add additional entropy.

3. are never directly revealed, i.e. always remain in exclusive
control of the FIDO Authenticator

4. are only being used for the defined Authentication Modes, i.e.
a. authenticating to the AppID they have been generated

for, or
b. confirming transaction to the AppID they have been

generated for, or
5. are only being used to create the FIDO defined data struc-

tures, i.e. KRD, SignData.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 39

FIDO UAF Authenticator Commands

Category Guidelines

Username Username MUST NOT be returned in plaintext in any condition other
than the conditions described for SIGN command. In all other condi-
tions Usernames MUST be stored inside KeyHandle.

AppIDs and
KeyIDs

Registered AppIDs and KeyIDs MUST NOT be returned by authenti-
cator in plaintext without user verification first.

If attacker gets physical access to a roaming authenticator - it should
not be easy to read out AppIDs and KeyIDs.

Crypto Kernel Crypto Kernel is a module of the Authenticator implementing crypto
functions (key generation, signing, wrapping, etc) necessary for UAF
and having access to Uauth.priv, Attestation Private Key and
Wrap.sym.

This module must reside within the same security boundaries as
Uauth.priv, Att.priv and Wrap.sym keys are residing. If it resides in a
different module than the implementation must guarantee the same
level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key in-
side a trusted execution environments.
In situations where physical attacks and side channel attacks are con-
sidered in the threat model it is highly recommended to use a tamper-
resistant hardware module.

“Software” based Authenticators must make sure to use state of the
art code protection and obfuscation techniques to protect this module
and whitebox encryption techniques to protect the associated keys.

Authenticators need good Random Number Generators using good
entropy source enough for

1. generating authentication keys
2. generating signatures
3. computing Authenticator generated challenges

Authenticator’s RNG should be such that it cannot be disabled or con-
trolled in a way that may cause it to generate predictable outputs.

If the Authenticator doesn’t have sufficient entropy for generating

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 40

FIDO UAF Authenticator Commands

Category Guidelines

strong random numbers, it should fail safe.

KeyHandle It is highly recommended to use authenticated encryption while wrap-
ping KeyHandles with Wrap.sym. Algorithms such as AES-GCM and
AES-CCM are most suitable for this operation.

Matcher Tampering with the Matcher module may have significant security
consequences. It is highly recommended for this module to reside
within integrity boundaries of Authenticator and detect tampering of it-
self.

It is highly recommended to run this module inside a trusted execu-
tion environment (TEE).

Authenticators which have separated Matcher and CryptoKernel mod-
ules should implement mechanisms which would allow CryptoKernel
to securely receive assertions from Matcher module indicating user’s
local verification status.

Software based Authenticators (if not in trusted execution environ-
ment) must make sure to use state of the art code protection and ob-
fuscation techniques to protect this module.

When Authenticator receives a wrong UserVerificationToken it should
treat it as an attack and invalidate the cached UserVerificationToken.

UserVerificationToken should have a lifetime not longer than 10 sec-
onds.

Authenticators must implement anti-hammering for their matchers.

Biometrics based authenticators must protect the captured biometrics
data (such as fingerprints) as well as the reference data (templates)
and make sure that they never leave the security boundaries of au-
thenticators.

Random
Numbers

The FIDO Authenticator uses its random number generator to gener-
ate authentication key pairs, client side challenges and potentially for
creating ECDSA signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the FIDO Authentica-
tor to work with good random numbers only.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 41

FIDO UAF Authenticator Commands

Category Guidelines

Secure
Display

Secure Display MUST ensure that the user is presented with the pro-
vided Transaction Content, e.g. not overlaid by other display ele-
ments and clearly recognizable. See [Clickjack] for some examples of
threats and potential counter-measures

For more guidelines refer to [TEESecureDisplay].

Certifications Vendors must strive passing security standard certifications with Au-
thenticators, such as [FIPS-140-2], [CommonCriteria] and similar.
Passing such certifications will positively impact the UAF implementa-
tion inside Authenticator.

SignCounter Good protection measures of the Attestation Private Key is one
method to prevent cloning authenticators. In some situations the pro-
tection measures might not be sufficient.

If the Authenticator maintains a SignCounter, then the FIDO Server
would have an additional method to detect cloned authenticators.

If SignCounter is implemented: ensure that
1. It is increased by any authentication / transaction confirmation

operation and
2. it cannot be manipulated/modified otherwise (e.g. API calls,

etc.)

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 42

	1 Terminology
	1.1 Key Words

	2 Overview
	2.1 Additonal Notations

	3 UAF Authenticator
	3.1 Types of Authenticators

	4 Tags
	5 Structures
	5.1 RawKeyHandle
	5.2 Structures to be parsed by FIDO Server
	5.2.1 TAG_UAFV1_REG_RESPONSE
	5.2.2 TAG_UAFV1_SIGN_RESPONSE

	6 Commands
	6.1 GetInfo Command
	6.1.1 General Description
	6.1.2 Command Structure
	Command Response

	6.2 Register Command
	6.2.1 General Description
	6.2.2 Command Structure
	6.2.3 Command Response

	6.3 Sign Command
	6.3.1 General Description
	6.3.2 Command Structure
	6.3.3 Command Response

	6.4 Deregister Command
	6.4.1 General Description
	6.4.2 Command Structure
	6.4.3 Command Response

	7 Access Control for Commands
	8 Relationship to other standards
	8.1 TEE
	8.2 Secure Elements
	8.3 TPM

	Bibliography
	Appendix A: Security Guidelines

