FIDO UAF Protocol Specification v1.00
FIDO Alliance Proposed Standard 08 December 2014

This version:

Previous version:
https:/fidoallian
Editors:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.

Davit Baghdasaryan, Nok Nok Labs, Inc.

Eric Tiffany, EIDO Alliance
Contributors:

Dirk Balfanz, Google, Inc.

Brad Hill, PayPal, Inc.

Jeff Hodges, PayPal, Inc.

The English version of this specification is the only normative version. Non-normative flanslations may also be available.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

The goal of the Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants Basswords
while avoiding the shortcomings of current alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication mechanism for a particular end user or interaction,
while preserving the option to leverage emerging device security capabilities in the future without requiring additional integration effort.

This document describes the FIDO architecture in detall, it defines the flow and content of all UAF protocol messages and Bresents the rationale
behind the design choices.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Allian ifications in
https://www.fidoalliance.org/specifications/.0]

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual Broperty rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,00
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used
as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the specificationO
and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Key Words
2. Overview
2.1 Scope
2.2 Architecture
2.3 Protocol Conversation
2.3.1 Registration
2.3.2 Authentication
2.3.3 Transaction ConfirmationO
2.3.4 Deregistration
3. Protocol Details
3.1 Shared Structures and Types

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20141008.pdf
https://www.noknok.com/
https://www.noknok.com/
https://fidoalliance.org/
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.1.1 Version Interface

3.1.1.1 Attributes
3.1.2 Operation enumeration
3.1.3 OperationHeader dictionary

3.1.3.1 Dictionary operationteader Members
3.1.4 Authenticator Attestation ID (AAID) typedef
3.1.5 KeyID typedef
3.1.6 ServerChallenge typedef
3.1.7 FinalChallengeParams dictionary

3.1.7.1 Dictionary rinalchallengerarams Members
3.1.8 TLS ChannelBinding dictionary

3.1.8.1 Dictionary channelBinding Members
3.1.9 JwkKey dictionary

3.1.9.1 Dictionary swkkey Members
3.1.10 Extension dictionary

3.1.10.1 Dictionary extension Members
3.1.11 MatchCriteria dictionary

3.1.11.1 Dictionary Matchcriteria Members
3.1.12 Policy dictionary

3.1.12.1 Dictionary rolicy Members

3.2 Processing Rules for the Server Policy
3.2.1 Examples
3.3 Version Negotiation
3.4 Registration Operation
3.4.1 Registration Request Message
3.4.2 RegistrationRequest dictionary
3.4.2.1 Dictionary registrationrequest Members
3.4.3 AuthenticatorRegistrationAssertion dictionary
3.4.31 Dictionary AuthenticatorRegistrationAssertion Members
3.4.4 Registration Response Message
3.4.5 RegistrationResponse dictionary
3.4.51 Dictionary RegistrationResponse Members
3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server
3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients
3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
3.4.6.4 Registration Response Generation Rules for FIDO UAF Client
3.4.6.5 Registration Response Processing Rules for FIDO Server
3.5 Authentication Operation
3.5.1 Transaction dictionary
3.5.1.1 Dictionary transaction Members
3.5.2 Authentication Request Message
3.5.3 AuthenticationRequest dictionary
3.5.3.1 Dictionary authenticationrequest Members
3.5.4 AuthenticatorSignAssertion dictionary
3.5.4.1 Dictionary AuthenticatorSignAssertion Members
3.5.5 AuthenticationResponse dictionary
3.5.51 Dictionary AuthenticationResponse Members
3.5.6 Authentication Response Message

3.5.7 Authentication Processing Rules
3.5.7.1 Authentication Request Generation Rules for FIDO Server

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client
3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client
3.5.7.5 Authentication Response Processing Rules for FIDO Server
3.6 Deregistration Operation

3.6.1 Deregistration Request Message

3.6.2 DeregisterAuthenticator dictionary
3.6.2.1 Dictionary peregisterauthenticator Members

3.6.3 DeregistrationRequest dictionary
3.6.3.1 Dictionary DeregistrationRequest Members

3.6.4 Deregistration Processing Rules
3.6.4.1 Deregistration Request Generation Rules for FIDO Server
3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client
3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

4. Considerations
4.1 Protocol Core Design Considerations
4.1.1 Authenticator Metadata
4.1.2 Authenticator Attestation
4.1.2.1 Basic Attestation
4.1.2.1.1 Full Basic Attestation

4.1.2.1.2 Surrogate Basic Attestation
4.1.3 Error Handling
4.1.4 Assertion Schemes
4.1.5 Username in Authenticator
4.1.6 TLS Protected Communication

4.2 Implementation Considerations
4.2.1 Server Challenge and Random Numbers

4.3 Security Considerations
4.3.1 FIDO Authenticator Security

4.3.2 Cryptographic Algorithms

4.3.3 Application Isolation
4.3.3.1 Isolation using KHAccessToken

4.3.4 TLS Binding

4.3.5 Session Management

4.3.6 Personas

4.3.7 ServerData and KeyHandle

4.3.8 Authenticator Information retrieved through UAF Application APl vs. Metadata
4.3.9 Policy VerificationO

4.3.10 Replay Attack Protection

4.3.11 Protection against Cloned Authenticators

4.3.12 Anti-Fraud Signals

4.4 Interoperability Considerations

5. UAF Supported Assertion Schemes
5.1 Assertion Scheme "UAFVATLV"
5.1.1 KeyRegistrationData

5.1.2 SignedData

6. DefinitionsO
7. Table of Figures

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in “*, e.g. “UAF-TLV".

In formulas we use “I” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WeblIDL dictionary member [8 DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, Imust not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.O

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as Eequired. The keyword required has been introduced by [WebIDL-ED], which is a work-in-
progress. If you are using a WeblIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.00

1.1 Key Words

» o

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The goal of this Universal Authentication Framework is to provide a unified and extensible authentication mechanism that Bupplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

The design goal of the protocol is to enable Relying Parties to leverage the diverse and heterogeneous set of security capabilities available on
end users' devices via a single, unified protocol.00

This approach is designed to allow the FIDO Relying Parties to choose the best available authentication mechanism for a particular end user or

interaction, while preserving the option for a relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

2.1 Scope

This document describes FIDO architecture in detail and defines fhe UAF protocol as a network protocol. It defines the flow and Ebntent of all UAF
messages and presents the rationale behind the design choices.

Particular application-level bindings are outside the scope of this document. This document is not intended to answer questions such as:

« What does an HTTP binding look like for UAF?
« How can a web application communicate to FIDO UAF Client?
« How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF specifications, e.g. [DAFAppAPIAndTransport] [UAFASM] [UAFAuthnrCommands].
2.2 Architecture

The following diagram depicts the entities involved in UAF protocol.

TLS

protocol | |T|—S<9""

BROWSER /APP UAF Protocal WEB SERVER

Cryptographic FIDO SERVER

FIDO CLIENT authentication key
reference DB

Authentication
keys

FIDO AUTHENTICATOR

Aftestation key

Authenticatar FIDO METADATA SERVICE
metadata &
attestation trust
store

Certify

T compliance

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

« FIDO Server, running on the relying party's infrastructure
« FIDO UAF Client, part of the user agent and running on the FIDO user device
« FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to the UAF Authenticator Metadata [UAFAuthnrMetadata] describing all the
authenticators it will interact with.

2.3 Protocol Conversation

The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server.

3

Registration: UAF allows the relying party to register a FIDO Authenticator with the user's account at the relying party. The relying party can
specify a policy for supporting various FIDO Authenticator types. A FIDO UAF Client will only register existing authenticators in accordance
with that policy.

« Authentication: UAF allows the relying party to prompt the end user to authenticate using a previously registered FIDO Authenticator. This
authentication can be invoked any time, at the relying party's discretion.

« Transaction Confirmation:[h addition to providing a general authentication prompt, UAF offers support for prompting the user to confirm all
specific transaction.O

This prompt includes the ability to communicate additional information to the client for display to the end user, using the client's transaction
confirmation display. Mhe goal of this additional authentication operation is to enable relying parties to ensure that the user is confirming all
specified set of the transaction Betails (instead of authenticating a session to the user agent).

3

Deregistration: The relying party can trigger the deletion of the account-related authentication key material.

Although this document defines the FIDO Server as the initiator Bf requests, in a real world deployment the first UAF operation @ill always follow a
user agent's (e.g. HTTP) request to a relying party.

The following sections give a brief overview of the protocol conversation for individual operations. More detailed descriptions can be found in the
sections Registration Operation, Authentication Operation, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for Egistration.

FIDO Client FIDO Server
" Login to Relying Party :
; Application ;

If you have these Authenticators — register them

[
|-t

i Fingerprint Face :
Authentication Authentication

; Voice i
User ! [TPM J [Authentication J !

Select an i |
Authenticator 1

Iy

: : Here is a proof of possession of this :
' i Authenticator type and a new key generated ;
for this account on FIDO Server

Fig. 2 UAF Registration Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIANndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.2 Authentication

The following diagram depicts the message flows for the Huthentication operation.

FIDO Client FIDO Server

¢ Initiate an authentication to Relying Party :

If you have any of these Authenticators -
authenticate with them

[
|-t

. Fingerprint Face i
! Authentication Authentication !

E Voice ;
User ! [TPM J [Authentication J !

L

Authenticate to
Authenticator(s)

i Authentication response from each
Authenticator

' -

Fig. 3 Authentication Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.

2.3.3 Transaction ConfirmationO

The following figure depicts the transaction confirmation Bhessage flow.O

FIDO Client FIDO Server

' Initiate a transaction with Relying Party :

If you have any of these Authenticators -
authenticate with them

[
|-t

. Fingerprint Face .
! Authentication Authentication !

; Voice i
User ! [TPM J [Authenﬁcaﬁon J !

Display '
Transaction Text | :

-

Authenticate to !
Authenticator(s) : :

Authentication response from each |
Authenticator

Fig. 4 Transaction Confirmation Message Flowl

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIANndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.4 Deregistration

The following diagram depicts the deregistration message flow.00

FIDO Client FIDO Server

Login to Relying Party Application ;

X

Delete local 3 Deregister this Authenticator |

registration data | ;

Fig. 5 Deregistration Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

3. Protocol Details

This section is normative.

This section provides a detailed description of operations supported by the UAF Protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

Al string literals in this specification are constructed from Onicode codepoints within the set u+0000..u+007F.

Unless otherwise specified, protocol messages are transferred @ith a UTF-8 content encoding.

NOTE
All data used in this protocol must be exchanged using a secure transport protocol (such as TLS/HTTPS) established between the FIDO

UAF Client and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section B.1.6 TLS
Protect mmunication.

The notation bases4url(byte[s..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

The notation string[5] reads as five unicode characters, represented as a OTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a WebIDL [WebIDL-ED] DOMString.

As the UTF-8 representation has variable length, the maximum byte length of string[5] iS string[4*5].

All strings are case-sensitive unless stated otherwise.

This document uses WebIDL [WebIDL-ED]to define UAF protocol messages.O

Implementations must serialize the UAF protocol messages for transmission using UTF-8 encoded JSON [RFC4627].
3.1 Shared Structures and Types

This section defines types and structures shared by various Bperations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.O

WebIDL

interface Version {
readonly attribute unsigned short major;
readonly attribute unsigned short minor;

Yi

3.1.1.1 Attributes

major Of type unsigned short, readonly
Major version, 1 for this specification.O0

minor Of type unsigned short, readonly
Minor version, 0O for this specification.O

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

WebIDL

enum Operation {
"Reg",
"Auth",
"Dereg"

Yi

Enumeration description

Reg Registration

Authentication or Transaction
ConfirmationOd

pereg Deregistration

Auth

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

WebIDL

dictionary OperationHeader {
required Version upv;
required Operation op;

DOMString appID;
DOMString serverData;
Extension]] exts;

3.1.3.1 Dictionary operationteader Members

upv Of type required Version
UAF protocol version. Major version must be 1 and minor version must be o.

op of type required Operation
Name of FIDO operation this message relates to.
NOTE

"Auth" is used for both authentication and transaction confirmation.O

app1p of type DOMString
string[0..512].

The application identifier that the relying party would like to assert.00

There are three ways to set therppio [FIDOAppIDAndFacets]:

1. If the element is missing or empty in the request, the FIDO UAF Client must set it to theracet1p of the caller.
2. If the app1p present in the message is identical to the racet1p of the caller, the FIDO UAF Client must accept it.

3. Ifitis an URI with HTTPS protocol scheme, the FIDO UAF Client must use it to load the list of trusted facet identifiers from thel
specified ORI. The FIDO UAF Client must only accept the request, if the facet identifier of the caller Bhatches one of the trusted
facet identifiers in the [t returned from dereferencing this URI.

NOTE

The new key pair that the authenticator generates will be associated with this application identifier.00

Security Relevance: The application identifier is used By the FIDO UAF Client to verify the eligibility of an application to trigger the
use of a specific Bhuth.xey. See [FIDOAppIDAndFacets]

serverData Of type DOMString
string[l..1536].

A session identifier created by the relying party.00
NOTE
The relying party can opaquely store things like expiration times for the registration session, protocol version used and other
useful information in servernata. This data is opaque to FIDO UAF Clients. FIDO Servers may reject a response that is lacking
this data or is containing unauthorized modifications to it.00

Servers that depend on the integrity ofserverpata should apply appropriate security measures, as described in Registration

Request Generation Rules for FIDO Server and section ServerData and KeyHandle.

exts Of type array of Extension
List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

WebIDL

typedef DOMString AAID;

string[9]

Each authenticator must have an aa1p to identify UAF enabled authenticator models globally. The aa1p must uniquely identify a specificO
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security Eharacteristics within the model (see urit nsiderations)

The aa1p is a string with format "V#M", where

"#" is a separator

"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.

"M" indicates the authenticator Model Code. This code consists of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the aa1p is:

AAID = 4(HEXDIG) "#' 4(HEXDIG)

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are identical.

The FIDO Alliance is responsible for assigning authenticator vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators. Authenticator vendors must assign unique
aa1Dps to authenticators with different security characteristics.

AAIDs are unique and each of them must relate to a distinct authentication metadata file ((DAFAuthnrMetadata])

NOTE

Adding new firmware/software Eatures, or changing the underlying hardware protection mechanisms will typically change the security
characteristics of an authenticator and hence would require a new aa1p to be used. Refer to (([UAFAuthnrMetadata]) for more details.

3.1.5 KeyID typedef

WebIDL

typedef DOMString KeyID;

base64url(byte[32...2048])

keyID iS @ unique identifier (within the scope of anAd1p) used to refer to a specific druth.xey. It is generated by the authenticator and registered
with a FIDO Server.

The (aa1p, key1D) tuple must uniquely identify an authenticator's registration for a relying party. Whenever a FIDO Server wants to provide specificOl
information to a particular authenticator it must use the (aa1p, xkey1D) tuple.

rey1D must be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the FIDO Server should provide the xey1p back to the authenticator for the latter to
locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage for, and cannot rely on any ASM to store, generated key handles should provide the key
handle as part of the authenticatorregistrationassertion.assertion.keyID during the registration operation (see also section ServerData and
KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the matchcriteria dictionary which is part of
the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

NOTE

The exact structure and content of a xey1p is specific to the authenticator implementation.O

3.1.6 ServerChallenge typedef

WebIDL

typedef DOMString ServerChallenge;

base64url(byte[8...64])

serverchallenge iS @ server-provided random challenge. Security Relevance: The challenge is used by the FIDO Server to verify whether an
incoming response is new, or has already been processed. See section Replay Attack Protection for more details.

The serverchallenge should be mixed into the entropy pool of the authenticator. Security Relevance: The FIDO Server should provide a challenge
containing strong cryptographic randomness whenever possible. See section Server Challen nd Random Num

NOTE

The minimum challenge length of 8 bytes follows the requirement in [SP800-63] and is equivalent to the 20 decimal digits as required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can Be used without truncation.

NOTE

The mixing of multiple sources of randomness is recommended to improve the quality of the random numbers generated by the
authenticator, as described in [RFC4086].

3.1.7 FinalChallengeParams dictionary

WebIDL

dictionary FinalChallengeParams {

required DOMString appID;
required ServerChallenge challenge;
required DOMString facetlID;

required ChannelBinding channelBinding;

Yi

3.1.7.1 Dictionary Finalchallengerarams Members

app1p Of type required DOMString
string[l..512]

The value must be taken from the app1p field Bf the operationneader
challenge Of type required ServerChallenge
The value must be taken from the challenge field of the request [2.g. RegistrationRequest.challenge, AuthenticationRequest.challenge).

facetIp Of type required DOMString
string[l..512]

The value is determined by the FIDO UAF Client and it depends on the calling application. See [FIDOAppIDAndFacets] for more details.
Security Relevance: The tacet1p is determined by the FIDO UAF Client and verified against the list of trusted facets retrieved byl
dereferencing the app1p of the calling application.

channelBinding Of type required ChannelBinding

Contains the TLS information to be sent by the FIDO Client to the FIDO Server, binding the TLS channel to the FIDO operation.
3.1.8 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

NOTE
Security Relevance:The channel binding may be verified by the FIDO Server in order i detect and prevent MITM attacks.
At this time, the following channel binding methods are supported:

o TLS ChannellD (cid_pubkey) [ChannellD]
« serverEndPoint [RFC5929]

o tlsServerCertificate [BFC5929]

« tlsUnique [RFC5929]

Further requirements:

1. If data related to any of the channel binding methods, described here, is available to the FIDO UAF Client (i.e. included in this dictionary), it
must be used according to the relevant specification .00

2. All channel binding methods described here must be supported by the FIDO Server. The FIDO Servermay reject operations if the channel
binding cannot be verified successfully.0

NOTE

« If channel binding data is accessible to the web browser or client application, it must be relayed to the FIDO UAF Client in order to
follow the assumptions made in [FIDOSecRef].

« If channel binding data is accessible to the web server, it must be relayed to the FIDO Server in order to follow the assumptions made
in [FIDOSecRef]. The FIDO Server relies on the web server to provide accurate channel binding information.

WebIDL

dictionary ChannelBinding {
DOMString serverEndPoint;
DOMString tlsServerCertificate;
DOMString tlsUnique;
DOMString cid pubkey;

Yi

3.1.8.1 Dictionary channeiBinding Members

serverEndPoint Of type DOMString

The field EErverendroint must be set to the base64url-encoded hash of the TLS server certificate if this is available. The hash functionOd
must be selected as follows:

1. if the certificate's gnaturealgorithm uses a single hash function and that hash function is either MD5 [RFC1321] or SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's Hignaturenrlgorithm uses a single hash function and that hash function is neither MD5 nor SHA-1, then use the
hash function associated with the certificate'sEli gnaturealgorithm;

3. if the certificate's Bl gnaturealgorithm uses no hash functions, or uses multiple hash functions, then this channel binding type's
channel bindings are undefined at this time (updates to this channel Binding type may occur to address this issue if it ever arises)

This field @ust be absent if the TLS server certificate is not available to the Brocessing entity (e.g., the FIDO UAF Client) or the hash
function cannot be determined as described.

tlsserverCertificate Of type DOMString
This field Bust be absent if the TLS server certificate is not available to the FIDO UAF Client.00
This field @ust be set to the base64url-encoded, DER-encoded TLS server certificate, if this data is Bvailable to the FIDO UAF Client.
t1lsunique of type DOMString
must be set to the base64url-encoded TLS channel rinished structure. It must, however, be absent, if this data is not available to the
FIDO UAF Client [RFC5929].
cid_pubkey Of type DOMString

must be absent if the client TLS stack doesn't provide TLS ChannellD [ChannellD] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if TLS ChannellD information is supported by the client-side TLS stack but has not been signaled by the TLS
(web) server.

Otherwise, it must be set to the base64url-encoded serialized [RFC4627] swkkey structure using UTF-8 encoding.
3.1.9 JwkKey dictionary

Jukkey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key [JWK].

This public key is the ChannellD public key minted by the client TLS stack for the particular relying party. [ChannellD] stipulates using only a
particular elliptic curve, and the particular coordinate type.

WebIDL

dictionary JwkKey {
required DOMString kty
required DOMString crv
required DOMString x;
required DOMString y;

"EC";
"pP_256";

Yi

3.1.9.1 Dictionary swkkey Members

kty of type required DOMString, defaulting to "ec”
Denotes the key type used for Channel ID. At this time only elliptic curve is supported by [ChannellD], so it must be set to "EC" JWA].

crv of type required DOMString, defaulting to "p-256"
Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve Ekcp256r1 is supported by [ChannellD], so
the crv parameter must be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

3.1.10 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator commands, or in the assertion signed by the
authenticator.

Each extension has an identifier, and the namespace for Extension identifiers is FIDO UAF global (i.e. doesn't Hepend on the message where the
extension is present).

Extensions can be defined in a way such that a processing Entity which doesn't understand the meaning of a specific Extension must abort
processing, or they can be specified h a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section Where extensions are allowed.

Generic extensions used in various operations.

WebIDL

dictionary Extension {
required DOMString id;
required DOMString data;
required boolean fail if unknown;

Yi

3.1.10.1 Dictionary Extension Members

id of type required DOMString
string[l..32].

Identifies the extension.O

data of type required DOMString
Contains arbitrary data with a semantics agreed between server and client. The data is base64url-encoded.

This field @ay be empty.

fail_if_unknown Of type required boolean
Indicates whether unknown extensions must be ignored (talse) or must lead to an error (true).

o Avalue of false indicates that unknown extensions must be ignored
o Avalue of true indicates that unknown extensions must result in an error.

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be passed
through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be passed
through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and fail if unknown is not set). If the
FIDO authenticator doesn't understand the meaning of the extension and fail if unknown is set, it must generate an error (see definition ofd
fail if unknown above).

When passing through an extension to the next entity, therail if unknown flag Bhust be preserved (see [UAFASM]
[UAFAuthnrCommands]).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should be
accompanied by a related (and signed) extension in the authenticator assertion (e.g. TAG_UAFV1 REG ASSERTION, TAG UAFV1 AUTH ASSERTION).
If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata statement accepts multiple
fingers but in this specific case indicates that the finger used at registration as also used for authentication) there is no need to mark the
extension as fail if unknown (i.e. tag OX3E12 should be used [UAFAuthnrCommands]). If the security has been degraded (e.g. the FIDO
authenticator according to the description in the metadata statement accepts only the finger used at registration for Buthentication but in this
specific case indicates that a different finger was used r authentication) the extension must be marked as fail if unknown (i.e. tag
0x3E11 must be used [UAFAuthnrCommands]).

3.1.11 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

The matchcriteria Object is considered to match an authenticator, if all fields in the object are considered to match (as indicated i the particular
fields).O

WebIDL

dictionary MatchCriteria {

AAID[] aaid;

DOMString([] vendorID;

KeyID][] keyIDs;
unsigned long userVerification;

unsigned short keyProtection;

unsigned short matcherProtection;
unsigned long attachmentHint;
unsigned short tcDisplay; '

unsigned short[] authenticationAlgorithms;
DOMString[] assertionSchemes;
unsigned short[] attestationTypes;
unsigned short authenticatorVersion;
Extension]] exts;

Yi

3.1.11.1 Dictionary matchcriteria Members

aaid of type array of AAID
List of AAIDs, causing matching to be restricted to certain AAIDs.

The match succeeds if at least one AAID entry in this array matches authenticatorinfo.aaid [UAFASM].

NOTE

This field corresponds toli2tadatastatement.aaid [UAFAuthnrMetadata).

vendor1p Of type array ofDOMString
The vendorID causing matching to be restricted to authenticator models of the given vendor. The first 4 characters of fhe AAID are the
vendorID (see aa1p)).

The match succeeds if at least one entry in this array matches the first 4 Eharacters of the ruthenticatorinfo.aaid [UAFASM].
NOTE
This field corresponds to the first 4 Eharacters ofuetadatastatement.aaid [UAFAuthnrMetadata).

key1IDs Of type array ofKeylD
Alist of authenticator KeyIDs causing matching to be restricted to a given set of xey1p instances. (see [UAFRegistry]).

This match succeeds if at least one entry in this array matches.

NOTE

This field corresponds to fdpregistration.keyrns [UAFASM].

userVerification Of type unsigned long
A set of 32 bit flags which may be set if Bhatching should be restricted by the user verification method (see [lUAFRegistry]).

NOTE
The match with authenticatorinfo.userverification ((UAFASM]) succeeds, if the following condition holds (written in Java):
if (
// They are equal
(AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||
// USER_VERIFY ALL is not set in both of them and they have at least one common bit set
(
((AuthenticatorInfo.userVerification & USER_VERIFY ALL) == 0) &&
((MatchCriteria.userVerification & USER_VERIFY_ALL) == 0) &&
((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
)
)
NOTE

This field value can be derived from [:tadatastatement.userverificationbetails as follows:

1. if MetadataStatement.uservVerificationDetails contains multiple entries, then:

1. if one or more entriesMetadatastatement.userverificationbetails[i] contain multiple entries, then: stop, direct
derivation is not possible. Must generate matchcriteria object by providing a list of matching AAIDs.

2. if all entries vetadatastatement.userverificationbDetails[i] Only contain a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification tO
MetadataStatement.userVerificationDetails[N-1][0].userVerification into a single value using a bitwise OR
operation.

2. if Metadatastatement.userverificationDetails contains a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification 10 MetadataStatement.userVerificationDetails[0]
[N-1].userverification into a single value using a bitwise OR operation and additionally set the flag [ser_veriFy ALL.

This method doesn't allow matching authenticators implementing complex combinations of user verification methods, such as Ekrx

AND (Fingerprint OR Speaker Recognition) (See above derivation rules). If such specific match rules are required, they need toO
be specified by providing fhe AAIDs of the matching authenticators.

keyProtection Of type unsigned short
A set of 16 bit flags which may be set if Bhatching should be restricted by the key protections used (see [UAFRegistry]).

This match succeeds, if at least one of the bit flags matches the falue of authenticatorinfo.keyprotection [UAFASM].

NOTE

This field corresponds to Etadatastatement. keyprotection [UAFAuthnrMetadata].

matcherProtection Of type unsigned short
A set of 16 bit flags which may be set if Bhatching should be restricted by the matcher protection (see [UAFRegistry]).

The match succeeds if at least one of the bit flags matches the hlue of ruthenticatorinfo.matcherprotection [UAFASM].

NOTE

This field corresponds to the [ktadatastatement.matcherprotection metadata statement. See [UAFAuthnrMetadata).

attachmentHint Of type unsigned long
A set of 32 bit flags which may be set if matching Ehould be restricted by the authenticator attachment mechanism (see [UAFRegistry]).

This field is considered to match, if at least one Bf the bit flags matches the value of Elithenticatorinfo.attachmentaint [UAFASM].

NOTE

This field corresponds to the Etadatastatement.attachmentHint metadata statement.

tcpisplay Of type unsigned short
A set of 16 bit flags which may be set if matching Ehould be restricted by the transaction confirmation Hisplay availability and type. (see

[UAFRegistry]).
This match succeeds if at least one of the bit flags matches the Halue of ruthenticatorinfo.tepisplay [UAFASM].

NOTE
This field corresponds to the [:tadatastatement. tebisplay metadata statement. See [UAFAuthnrMetadata).

authenticationAlgorithms Of type array ofunsigned short
An array containing values of supported authentication algorithm TAG values (see [UAFRegistry], prefix hr_arc_szcn) if matching
should be restricted by the supported authentication algorithms.

This match succeeds if at least one entry in this array matches the authenticatorinfo.authenticationalgorithm [UAFASM].

NOTE
This field corresponds to the [tadatastatement.authenticationalgorithm metadata statement. See [UAFAuthnrMetadata).

assertionschemes Of type array of DOMString
A list of supported assertion schemes if matching should be restricted by the supported schemes.

See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches authenticatorinfo.assertionscheme [UAFASM].

NOTE
This field corresponds to the [tadatastatement.assertionscheme metadata statement. See [UAFAuthnrMetadatal].

attestationTypes Of type array ofunsigned short
An array containing the preferred attestation TAG values (see [UAFRegistry], prefix thc_arresrarron). The order of items must be
preserved. The most-preferred attestation type comes first.00

This match succeeds if at least one entry in this array matches one entry in authenticatorinfo.attestationTypes [UAFASM].

NOTE
This field corresponds to theiidtadatastatement.attestationTypes metadata statement. See [UAFAuthnrMetadatal].

authenticatorVersion Of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equalto the field Elithenticatorversion included in TAG_UAFV1 REG ASSERTION OF
TAG UAFV1_AUTH ASSERTION Of a corresponding value in the case of a different assertion scheme.

NOTE

Since the semantic of theauthenticatorversion depends on the AAID, the field Eithenticatorversion should always be
combined with a single aaid in Matchcriteria.

This field corresponds to the [:tadatastatement.authenticatorversion metadata statement. See [UAFAuthnrMetadatal].

exts Of type array of Extension
Extensions for matching policy.

3.1.12 Policy dictionary

Contains a specification of accepted Buthenticators and a specification of disallowed Huthenticators.

WebIDL

dictionary Policy {
required MatchCriteria[][] accepted;
MatchCriterial] disallowed;

Yi

3.1.12.1 Dictionary po1icy Members

accepted Of type array of array ofrequired MatchCriteria

This field is a two-dimensional array describing the Eequired authenticator characteristics for the server to accept either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e. the sets) are alternatives (OR condition).
All elements within a set must be combined:

The first array index indicates OR conditions (i.e. the list). Bny set of authenticator(s) satisfying these matchcriteriain the first index isO
acceptable to the server for this operation.

Sub-arrays of MatchCriteria in the second index (i.e. the set) indicate that multiple authenticators (i.e. each set element) must be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the server. Servers must put their preferred authenticators first, and FIDOO
UAF Clients should respect those preferences, either by presenting authenticator options to the user in the same order, or by offering to
perform the operation using only the highest-preference authenticator(s).

disallowed Of type array of MatchCriteria
Any authenticator that matches any of MatchCriteria contained in the field disallowed Bhust be excluded from eligibility for the operation,
regardless of whether it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy
This section is normative.
The FIDO UAF Client must follow the following rules while parsing server policy:

1. During registration:

1. policy.accepted is a list of combinations. Each combination indicates a list of criteria for authenticators that the server wants the user
to register.

. Follow the priority of items inrolicy.accepted[11]. The lists are ordered with highest priority first.00

. Choose the combination whose criteria best match the features of the currently available authenticators

. Collect information about available authenticators

. Ignore authenticators which match therolicy.disallowed criteria

. Match collected information with the matching criteria imposed in the policy (see MatchCriteria dictionary for more details on matching)
7. Guide the user to register the authenticators specified in the Ehosen combination

2. During authentication and transaction confirmation:O

o o~ WD

NOTE

policy.accepted is a list of combinations. Each combination indicates a set of criteria which is enough to completely authenticate
the current pending operation

. Follow the priority of items inrolicy.accepted[11]. The lists are ordered with highest priority first.00

. Choose the combination whose criteria best match the features of the currently available authenticators

. Collect information about available authenticators

. Ignore authenticators which meet therolicy.disallowed criteria

. Match collected information with the matching criteria described in the policy

. Guide the user to authenticate with the authenticators specified h the chosen combination

. A pending operation will be approved by the server only after all criteria of a single combination are entirely met

N o o~ 0N =

3.2.1 Examples

This section is non-normative.

"accepted":
[
[{ "userVerification": 2}],
[{ "userVerification": 16}]
]
}

{

"accepted":

[

[{ "userVerification": 18}]
]

}

Combining these two bit-flags and the flag [ser_veriry arn (USER_VERIFY_ALL = 1024) into a single userverification value would match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.O

{
}

"accepted": [[{ "userVerification": 1042}]]

The next example requires two authenticators to be used:

{
"accepted":
[
[
{ "uservVerification": 2},
{ "userVerification": 16}

1
]
}

Other criteria can be specified in addition to the Bkerverification:

{
"accepted":
[
[
{ "uservVerification": 2, "attachmentHint": 1},
{ "userVerification": 16, "attachmentHint": 1}
1
]
}

The policy for accepting authenticators of vendor with ID1234 only is as follows:

{
"accepted":
[[{ "vendorID": "1234"}]]

3.3 Version Negotiation

The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [DAFRegistry]), and the ASM version, see [UAFASM].

NOTE

The Key Registration Data and Signed Data objects have to be parsed and verified by the FIDO Server. This verification is only Bossible if
the FIDO Server understands their encoding and the content. Each UAF protocol version supports a set of Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

As a consequence the FIDO UAF Client must select the authenticators which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client must perform the following steps:

1. Create a set (Fc_version_set) of version pairs, ASM version (asm_version) and UAF Protocol version (upv) and add all pairs supported by the
FIDO UAF Client into rc_version set

o €.g. [{upvl, asm _versionl}, {upv2, asm versionl}, ...]

2. Intersect rc_version set With the set ofupv included in UAF Message (i.e. keep only those pairs where the upv value is also contained in the
UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:
o Construct a set (authnr version_set) of version pairs including authenticator supported asm_version and the compatible upv(s).
= €.g. [{upvl, asm _versionl}, {upv2, asm versionl}, ...]
o Intersect authnr version set With Fc_version set and select highest version pair from it.
= Take the pair where the upv is highest. In all these pairs leave only the one with highest asm version.
o Use the remaining version pair with this authenticator

NOTE

Each version consists of major and minor fields. Ih order to compare two versions - compare the Major fields and if they are equal Ebompare
the Minor fields.O

Each UAF message contains a version field Iv. UAF Protocol version negotiation is always between FIDO UAF Client and FIDO Server.

3.4 Registration Operation

NOTE

The Registration operation allows the FIDO Server and the FIDO Authenticator to agree on an authentication key.

Authenticator

open URL

RP Web Server § RPWeb App

28 return ver

			!		
			l 2 open https URL		
: : : : : S
3. http OK + leggcy login form
I I 4. show legacyjlogin form I {1 ———————— E——————g-qr—J——El ——————— I
D e e ey I L 1 | |
5. enter legacypassword and submit
: : J J:p : nJr ';: 6. submi form : =:
| | | | | |
I I I I I I 7. werify passwlprd
| | | | | | |
: : : : : : 8. trigger UAF
| | | | | | |
| | | | | | |
| | | | | | | 9. ge
| | | | | | |
10, UAF
I I I I 12 UAF reg request + I11 UAF regrequest + Selssion binding I“ ‘‘‘‘‘‘‘‘
I I I | ApplD + TLS binding [T T I’ __________ '|[
} } } 113 rstrieve list of FacetDs idefified by ApplD (URI) _ | }
: : : : s | :
| | | (P S fz8retln l_a_cgt_lflﬂﬁi _________ : |
: : 15 selectauthentic}atoraccording to pqllicg,r : : :
| | | | | | |
| | 16 ltrigger registration | | | |
| | i | | |
| | | | | | |
| | 17 generate KHAccessToken | | | |
| | | | | | |
I I 18 trigger registration | I I I I
| g 19 trigger ™% T T | | | |
Iﬂ— user verification —: : : : : :
I 20 verifyuser | : : : : :
| | | | | |
| | 21 generate Uauth keyl pair specific to | | | |
I I ApplD (and LISEI’HEI’T‘IE}I I I I
I 2& return KRD abject _I I I I
I fincl Eilttestation and Uauth puk) " | 23 return KRD > | I I
I I I 24 !return UAF req. response .—,1_| I
{contains KRED} I 25 return UAF req response |
I I I I | {contains KRD| Lo 22 s UG
| | | | | |
| | | | | |
7o
| | | | | | 2
| | | | | | Slon
| | | | | |

Fig. 6 UAF Registration Sequence Diagram

The following diagram depicts the cryptographic data flow for Ehe registration sequence.

generate:
key k
key k
handle h

Registration MNote: This represents a FIDO UAF 1stF Embedded
Authenticator.
_ Relying
ASM + FIDO Client Party
1stF eAuthnr + Browser (mycorp.com)
select Authenticator according to policy; username. polic
check ApplD, get tisData (i.e. channel id, etc.); < STEEO S

pub

priv

generate APIKey random, compute access key
ak = hash(Appl D|APIKey|Personal D|Calleri D)
fep = {a, challenge, facetlD, tlsData}

username u, ak; hash(fcp)

ApplID, challenge

|
y

a

fc
aaid, kpub, fc, h, attestation cert, reg-cntr, cnfr,
signature(aaid, fc,reg-cntr,cntr, kpub) "]]
aaid, kpub, fc, h, attestation cert,
s reg-cntr, cntr, s store:
key kpub
handle h
Fig. 7 UAF Registration Cryptographic Data Flow
ID and FacetlD Assertion), the authenticator Policy, the serverchalienge and the

The FIDO Server sends the 2pp1p (See section A

username to the FIDO UAF Client.

The FIDO UAF Client computes the Finalchallengerarams (FCH) from the serverchallenge and some other values and sends the app1p,
the rcu and the username to the authenticator.

The authenticator creates a Key Registration Data object (e.g. Tac_uvarvi_krp, see [UAFAuthnrCommands]) containing the hash of rcx, the
newly generated user public key (UAuth.pub) and some other values and signs it (see section Authenticator Attestation for more details).
This KRD object is then cryptographically verified by the FIDO Server.0

3.4.1 Registration Request Message
UAF Registration request message is represented as an array of dictionaries. Each dictionary contains an registration request for a specificl

protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the request is defined asO
RegistrationRequest dictionary.

[{
"header": {
"upv": {
"major": 1,
"minor": 0
T,
"op": "Reg",
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"serverData": "IjycjPZYiWMaQltKLrJROiXQHmMYGOtSSYGjP5mgjsDaM17RQgq0
d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFgL4n
2IiUY6XZWVbOnvg"
T
"challenge": "H9iW9yA9aAXF lelQoi_DhUk514Ad8Tqv0zCnCgKDpo",
"username": "apa",
"policy": {
"accepted": [
[
{
"userVerification": 512,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
1
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
1
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 2,
"keyProtection": 4,
"tcDisplay": 1,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 2,
"tcDisplay": 1,
"authenticationAlgorithms": [
1,
3
]
}
1,
[
{
"userVerification": 2,
"keyProtection": 2,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 32,
"keyProtection": 2,
"assertionSchemes": [
"UAFV1TLV"
]
T
{

"userVerification": 2,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 2,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

}
]

'
"disallowed": [

"userVerification": 512,
"keyProtection": 16,

"assertionSchemes": [
"UAFVITLV"
]
I
{
"userVerification": 256,
"keyProtection": 16
I
{
"aaid":
"ABCD#ABCD"
1,
"keyIDs":
"RfY RDhsf4z5PCOhnZExMeV10ZZmKOhxaSilOtkY c4"
]
}

1
}
H

3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
required OperationHeader header;
required ServerChallenge challenge;
required DOMString username;
required Policy policy;

Yi

3.4.2.1 Dictionary registrationrequest Members

header Of type required OperationHeader
Operation header. teader.op must be "Reg"

challenge Of type required ServerChallenge
Server-provided challenge value

username Of type required DOMString
string[l..128]

A human-readable user name intended to allow the user to distinguish and select from among different accounts at the same relying
party

policy oOf typerequired Policy
Describes which types of authenticators are acceptable for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion {

required DOMString assertionScheme;

required DOMString assertion; '
DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
Extension]] exts;

Yi

3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

assertionscheme Of type required DOMString
The name of the Assertion Scheme used to encode theassertion. See UAF Supported Assertion Schemes for details.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertion Of type required DOMString
base64url (byte[1..4096]) Contains the Tac uarvi rEc AsserTION Object containing the assertion scheme specific KeyRegistrationData
(KRD) object which in turn contains the newly generated vauth.pub and is signed by the Attestation Private Key.

This assertion must be generated by the authenticator and it must be used only in this Registration operation. The format of this
assertion can vary from one assertion scheme to another (e.g. for "UAFV1TLV" assertion scheme it must be Tac_varvi xrp).

tcDisplayPNGCharacteristics Of type array ofDisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [UAFAuthnrMetadata]. For the definition of the DisplayPNGCharacteristicsDescriptor structure Seell
[UAFAuthnrMetadata].

exts Of type array of Extension
Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message

A UAF Registration response message is represented as an array of dictionaries. Each dictionary contains a registration response for a specific
protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the response is defined asO]
RegistrationResponse dictionary.

[{
"assertions": [
{

"assertion": "AT7uAgM-sQALLgkAQUJDRCNBQKNEDi4HAAABAQEAAAEKLiAA9t
BzZC64ecgVQOBGSQb5QtEIPC8-Vav4HsHLZDf1LaugIJLiAAZMCPn92yHv1Ip-iCiBb61i4ADg6
ZOV56 9KFQCVYSJEfNgNLggAAQAAAAEAAAAMLKEABISVEtUsSVKh7tmYHhJ2FBm3kHU-OCAWiUY
VijgYa81MfkjQlz6UiHbKP9_nRzIN9anprHgDGcR6q7020q_yctZAHPjUCBi5AACV8L7Y1RM
x10gPnszGO6rLFqZFmmRkhtVOTIWuWgYxd1ljOOwxam7i5qdEal9u4sfpHFZ9RGI_WHXINKHS8
FfvAWFLuOBMIIB6TCCAY8CAQEWCQYHKOZIZjOEATB7MQOswCQYDVQQGEwWIJVUZELMAKGA1UECA
wCQOExCzAJBgNVBACMA1BBMRAWDgYDVQQOKDAJOTkws SW5 jMQOwWCwWYDVQQLDAREQU4 XxMRMWEQ
YDVQQDDApOTkwsSW5 j IENBMRWWGgYJKoZ IhveNAQkBFglubmxAZ21lhaWwuY29tMB4XDTEOMD
gyODIxMzUOMFoXDTE3MDUyNDIxMzUOMFowgYYxCzAJBgNVBAYTAL1VTMOswCQYDVQQIDAJDQT
EWMBQGA1UEBWwWNU2FuIEZyYW5jaXNjbzEQMA4GA1UECgwHTK5MLE1uYZENMASGA1UECWWERE
FOMTETMBEGA 1UEAWWKTk5MLE1uYyBDQTECMBOGCSQGSIb3DQEJARYNbmM5sQGAdtYW1sLmNvbT
BZMBMGByqGSM4 9AgEGCCgGSM4 9AWEHAOIABCGBt3CIjnDowzSiF68C2aErYXnDUSWXOYXQIP
imOOWg9FFAUYCa6AgKjn1RI9IEk2d803sGKROivnavmdVH-SnEWCQYHK0Z Iz jOEAQNIJADBGAL
EAzZAQUJXnSS9AIAh61Gz6ydypLVTsTnBzqGJI4ypIqy qUCIQCFsuOEGCRV-04GHPBph VMrG
3NpYh2GKPjsAim_cSNmQ",

"assertionScheme": "UAFVITLV"

}

1,

"fcParams": "eyJhcHBJRCI6ImMhOdHBzOi8vdWFmLXR1lc3QtMS5ub2tub2t0ZXNOLmN
vbT04NDQzL1NhbXBsZUFwcC91YWYVZmFjZXRzIiwiY2hhbGx1lbmd1lIjoiSD1pVz15Q0T1hQVh
GX2x1bFFvavV9EaFVrNTEOQWQ4 VHF 2MHpDbkNxSORwby ISImNoYW5uZWxCaws5kawsnIjp7£Sw
1ZmFjZXRIRCI6IMNvbS5ub2tub2suYW5kem9pzC52YWlwbGVhcHALfQ",

"header": {
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"op": "Reg",
"serverData": "IjycjPZYiWMaQltKLrJROiXQHmMYGOtSSYGjP5mgjsDaM17RQgq0

d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFgL4n
2IiUY6XZWVbOnvg",
"upv': {
"major": 1,
"minor": 0

H

NOTE

Line breaks in fcParams have been inserted for improving readability.

3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.O

WebIDL

dictionary RegistrationResponse {
required OperationHeader header;
required DOMString fcParams;
required AuthenticatorRegistrationAssertion[] assertions;

Yi

3.4.5.1 Dictionary RegistrationResponse Members

header Of type required OperationHeader
Header.op must be "Reg".

fcparanms Of type required DOMString
The base64url-encoded serialized [RFC4627] rinalchallengerarams using UTF8 encoding (see FinalChallengeParams dictionary) which
contains all parameters required for the server to verify the Final Challenge.

assertions Of type array ofrequired AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed matchcriteria (See Policy). This array can be considered a list (first dimension) of setsO

(second dimension) of authenticators (identified by Ehtchcriteria). All authenticators in a specific set Bhust be registered simultaneously in order
to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

The FIDO Server must follow the following steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an array of MatchCriteria objects, containing the set of authenticators to be registered simultaneously that need to be
identified by Beparate MatchCriteria objects m.

1. For each collection of authenticators a to be registered simultaneously that can be identified by the Bame rule, create a
MatchCriteria object m, where

= m.aaid may be combined with (one or more Of)m.keyIDs, m.attachmentHint, m.authenticatorvVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.O

= [fm.aaid is not provided - at least m.authenticationalgorithms and m.assertionschemes must be provided
2. Addntov, e.g.v[j+l]=m.
2. Add v top.allowed, €.9. p.allowed[i+l]=v

2. Create MatchCriteria objects n 1 for all disallowed Authenticators.
1. For each already registered AAID for the current user
1. Create a MatchCriteria object m and add AAID and corresponding KeyIDs t0 m.aaid and m.keyIbs.

The FIDO Server must include already registered AAIDs and KeyIDs into field H. disal1owed to hint that the client should not
register these again.

2. Create a MatchCriteria objectm and add the AAIDs of all disallowed Authenticators to n.aaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [DAFMetadataService]) of some authenticators might be
unacceptable. Such authenticators should be included in p.disallowed.

3. If needed - create MatchCriterian for other disallowed criteria (e.g. unsupported authenticationAlgs)
4. Add allmtop.disallowed.

2. Create a registrationrequest Object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverpata.

FIDO Servers that depend on the integrity of r.header.servernata should apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they should also cryptographically bind serverData to the related message, e.g. by re-
including r.challenge, see also section ServerData and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverpata as an opaque value. As a consequence the
FIDO server can implement any suitable cryptographic protection method.

. Generate a random challenge and assign it to r.challenge
. Assign the username of the user to be registered to r.username
. Assignp to r.policy.
5. Append = to the array o of message with various versions (registrationRequest)
3. Send o to the FIDO UAF Client

H WD

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client must perform the following steps:

. Choose the message n with major version 1 and minor version o
. Parse the message n
. If a mandatory field in UAF message is not present or a field Boesn't correspond to its type and value - reject the operation

. Filter the available authenticators with the given policy and present the filtered authenticators to User. Make sure to not iiclude already
registered authenticators for this user specified in Ekgrequest.policy.disallowed]].keyIDs

5. Obtain racet1n of the requesting Application. If the app1p is missing or empty, set the 2pp1p to the Facetin.

AW NO =

Verify that the racet1p is authorized for the app1p according to the algorithms in [FIDOAppIDAndFacets].

o If the racet1p Of the requesting Application is not authorized, reject the operation
6. Obtain TLS data if it is available

7. Create a FinalchallengeParams Structure fcp and set fcp.appip, fep.challenge, fcp.facetIn, and fep.channelBinding appropriately. Serialize
[RFC4627] fcp using UTF8 encoding and base64url encode it.

o FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see section Version Negotiation) and user agrees to register:
1. Add 2pp1D, Username, FinalChallenge, AttestationType and all other required fields to the ASMRequest [DAFASM].

The FIDO UAF Client must follow the server policy and find the single preferred attestation type. B single attestation type must be
provided to the ASM.

2. Send ASMRequest to the ASM
3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
See [UAFAuthnrCommands], section "Register Command".

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

. Create a RegistrationResponse MeSsage

. COpy RegistrationRequest.header into RegistrationResponse.header

. SetregistrationResponse. fcparams 10 Finalchallenge (base64url encoded serialized and utf8 encoded FinalChallengeParams)
. Append the response from each Authenticator into registrationResponse.assertions

. Send registrationresponse message to FIDO Server

a b~ WD =

3.4.6.5 Registration Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new Bissertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (registrationResponse.header.upv) iS Not supported — reject the operation
2. If a mandatory field in UAF message is not present or a field Hoesn't correspond to its type and value - reject the operation

2. Verify that Registrationresponse.header.serverbata, if used, passes any implementation-specific checks against its validity. See alsol
section ServerData and KeyHandle.
3. base64url decode registrationResponse.fcparams and convert it into an object (£cp)
4. Verify each field in fcp and make sure it is valid:O
1. Make sure tcp.app1n corresponds to the one stored by the FIDO Server
2. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
3. Make sure fcp. facet1n is in the list of trusted FacetIDs FIDOAppIDAndFacets]
4. Make sure fcp.channelBinding is as expected (see section ChannelBinding dictionary)
5. Reject the response if any of these checks fails

5. For each assertion a in RegistrationResponse.assertions

1. Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionscheme and make
sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to Bave and has a valid syntax.

= [f it doesn't - continue with next assertion
2. Retrieve the AAID from the assertion.

NOTE

The AAID in Tac_uarvi_krD is contained in a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID.

3. Verify that a.assertionscheme matches vetadata(AAID) .assertionScheme
= [f it doesn't match - continue with next assertion

4. Verify that the AAID indeed matches the policy specified @ the registration request.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions included in this
RegistrationResponse in order to determine whether this AAID matches the policy.

= [f it doesn't match the policy - continue with next assertion

5. Locate authenticator-specific authentication algorithms from Hhe authenticator metadata [UAFAuthnrMetadata] using the AAID.

6. Hash registrationresponse.fcparams USing hashing algorithm suitable for this authenticator type. Look up the hash algorithm in
authenticator metadata, field Ehthenticationalgs. It is the hash algorithm associated with the first entry Elated to a constant with prefixO
UAF_ALG_SIGN.

m FCHash = hash(RegistrationResponse.fcParams)

7. if a.assertion contains an object of type rac_uarvi rEG asserrIOn, then
1. ifa.assertion.TAG UAFV1_REG ASSERTION contains Tac uarvi xrp as first element:0
1. Obtain Metadata(AATD) .AttestationType for the AAID and make sure that a.assertion.TAG UAFVI REG ASSERTION contains
the most preferred attestation tag specified in field Mhtchcriteria.attestationTypes iN RegistrationRequest.policy (if this
field is present).00
» If a.assertion.TAG UAFVI REG AssErTION doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one

2. Make sure that a.assertion.TAG_UAFV1_REG_ASSERTION.TAG UAFV1_KRD.FinalChallenge == FCHash
= [f comparison fails - continue with next assertion

3. Obtain Metadata(aAID).Authenticatorversion for the AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorVersion.
» If Metadata(AAID).Authenticatorversion IS higher (i.e. the authenticator firmware is outdated), @is recommended to
assume increased risk. See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[UAFMetadataService] for more details on this.

4. Check whether a.assertion.TAG UAFV1 REG_ASSERTION.TAG UAFV1 KRD.RegCounter iS acceptable, i.e. it is either not
supported (value is 0) or it is not exceedingly high
» If a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.RegCounter IS exceedingly high, this assertion might be
skipped and processing will continue with next one
5. If a.assertion.TAG_UAFV1 REG_ASSERTION.TAG_UAFV1 KRD CONt@iNS TAG ATTESTATION BASIC FULL tag
1. If entry attestationrootcertificates for the AAID in the metadata [UAFAuthnrMetadata] contains at least one

element:

1. Obtain contents of alltac_arTeEsTaTIon cerT tags from
a.assertion.TAG UAFV1 REG ASSERTION.TAG ATTESTATION BASIC FULL Object. The occurrences are ordered (see
[UAFAuthnrCommands]) and represent the attestation certificate followed by the related Ekrtificate chain.O

2. Obtain all entries of attestationrootcertificates for the AAID in authenticator Metadata, fieldO
AttestationRootCertificates.
3. Verify the attestation certificate and the entire certificate chain up to Ehe Attestation Root Certificate usingd
Certificate Path Malidation as specified in [BRFC5280]
= If verification fails — continue with next assertionOl
4. Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ATTESTATION_ BASIC_FULL.Signature USing the
attestation certificate (obtained before).O
= If verification fails — continue with next assertionOl

2. If Metadata(AAID).AttestationRootCertificates for this AAID is empty - continue with next assertion
3. Mark assertion as positively verifiedd

6. If a.assertion.TAG UAFV1 REG_ASSERTION.TAG_UAFV1_ KRD cOntains an object of type Tac ATTESTATION BASIC SURROGATE
1. There is no real attestation for the AAID, so we just assume the AAID is the real one.

2. If entry attestationrootCertificates for the AAID in the metadata is empty

» Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION BASIC_SURROGATE.Signature USiNg
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1 KRD.TAG PUB_KEY

= [f verification fails — continue with next assertiond

3. If entry attestationrootcertificates for the AAID in the metadata is not empty - continue with next assertion (as the
AAID obviously is expecting a different attestation method).

4. Mark assertion as positively verifiedd
7. If a.assertion.TAG UAFV1 REG_ASSERTION.TAG_UAFV1_ KRD contains another tac_arrestarron tag - verify the attestation by

following appropriate processing rules applicable to that attestation. Currently this document only defines the processingd
rules for Basic Attestation.

2. ifa.assertion.TAG UAFV1_REG ASSERTION contains a different object than rac_uarvi krp as first element, then follow the rulesO
specific to that object.00

3. Extract a.assertion.TAG UAFV1 REG_ASSERTION.TAG UAFV1 KRD.Publickey into PublicKey,
a.assertion.TAG_UAFV1_REG ASSERTION.TAG_UAFV1_KRD.KeyID into KeylD,
a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.SignCounter into SignCounter,
a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.TAG ASSERTION INFO.authenticatorversion into AuthenticatorVersion,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into AAID.

8. if a.assertion doesn't contain an object of typerac varvi rec asserrron, then skip this assertion (as in this UAF v1 only
TAG UAFV1_REG_ASSERTION IS defined).0

6. For each positively verified assertion E

o Store PublicKey, KeylD, SignCounter, AuthenticatorVersion, AAID and a.tcpisplaypnccharacteristics into a record associated with
the user's identity . If an entry with the same pair of AAID and KeyID already exists then fail (should never occur).

3.5 Authentication Operation

NOTE

Authenticator

r

RP Web Server RP Web App

12| trigger authentication'd_
{ipcl. KHAcce ssToken) |

13 trigger |

authentication

| | | | | |

| | | | | |

| | | 1 open URL | | |

I f f f Lt | |

| | | | | 2 open hittps URL | |

I I I I i i 1 g trigger
| | | | | | |

| | | | | | |

| | | | | | |

I I I I I I I !
| | | | | | |

| | | | | | [R
: : : : 7. send UAF Auth request | 6. return UAF authtequest :

| | | | +ApplD + TLS binding | |

| |) P 4 |

| | | | | |

} } } | 8 retrieve FacetiD list idshtified by ApplD (URI) __}

| | | | | L]

| | | | 4 9 return FacetlD list | |

| | | |‘_____________________________________I

| | | | |

| | 10. select authenticator according to pglicy |

| | | | |

I | | 11 trigger I

} !

|

|

| user verfication |

14 verify user > l
|

I 15 unlock Uauth }and compute authenticatior

| 16 retum |
SignData ’

17 return SignData

Fig. 8 UAF Authentication Sequence Diagram

+ session kinding

|
|
|
|
|
|
|
|
|
|
|
1| result
|
|
|
H
I 18 return UAF
l Auth response
| (contains SignData) |
| L 19 return UAF auth. response
| | {contains SignData)
| | 20 sem
I I auth. re:
| |
| |
| |
: : 22 sen
| |
| PR 23 send protected data
|
|
|
|
I

During this operation, the FIDO Server asks the FIDO UAF Client to authenticate user with server-specified authenticators, and return anO]
authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously shared registration.

Authentication
_ Relying
ASM + FIDO Client Party
1stF eAuthnr + Browser (mycorp.com)
select Authenticator according to policy; < policy, .AppIDI, challenge
check ApplD, get tisData (i.e. channel id, etc.); ——
check ak lookup key handle h and access key ak; a
- fep = {a, challenge, facetlD, tisData}

retrieve:

key kpriv < h, ak; hash(fcp)

fromh; AN — /

cnir++ fc

generate

Authnr fc, n, cntr, signature(fc,n,cntr) lookup k

Nonce n — — > P oo

' : ' from DB
s fcp, n, cntr, s o check:

policy +
signature
using
key kpub

Fig. 9 UAF Authentication Cryptographic Data Flow

Diagram of cryptographic flow:O

The FIDO Server sends the 2pp1p (see [FIDOAppIDAndFacets]), the authenticator policy and the serverchalienge to the FIDO UAF Client.

The FIDO UAF Client computes the hash of the Finalchallengerarams, produced from the serverchallienge and other values, as described
in this document, and sends the app1p and hashed Finalchallengerarams to the Authenticator.

The authenticator creates the signedpata object (see Tac varvi stenep pata in [UAFAuthnrCommands]) containing the hash of the finalO

challenge parameters, and some other values and signs it using the vauth.priv key. This assertion is then cryptographically verified by thel
FIDO Server.

3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

WebIDL

dictionary Transaction {
required DOMString contentType;
required DOMString content;)
DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;

Yi

3.5.1.1 Dictionary rransaction Members

contentType Of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [UAFAuthnrMetadatal).

This version of the specification only supports the values Ekxt/plain Of image/png.

content Of type required DOMString
base64url(byte[l...])

Contains the base64-url encoded transaction content according to the contentrype to be shown to the user.

If contentrype is "text/plain" then the contentmust be the base64-url encoding of the ASCIl encoded text with a maximum of 200
characters.

tcDisplayPNGCharacteristics Of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See
[UAFAuthnrMetadata). This field Bhust be present if the contentType is "image/png".

3.5.2 Authentication Request Message
UAF Authentication request message is represented as an array of dictionaries. Each dictionary contains an authentication request for a specificOl

protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the request is defined asO
AuthenticationRequest dictionary.

[{
"header": {
"upv": {
"major": 1,
"minor": 0
T
"op": "Auth",
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"serverData": "5s7n8-7_LDAtRIKKYgbAtTTOezVKC]jl2mPorYzbpxRrZ-_3wWro
MXsF_pLYJjNVm_17bplAx4bkEwK6ibil9EHGEdfKOQ1q0tyEKNIJFOggdjVvmLioroxgThlj8Is
tpt7q"
T
"challenge": "HQ1VKTUQC1NJDOo60OWdxewrb9i5WthjfKIehFxpeuU",
"policy": {
"accepted": [

[
{

"userVerification": 512,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
1

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
1

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
2

]

"userVerification": 2,

"keyProtection": 4,

"tcDisplay": 1,

"authenticationAlgorithms": [
2

]

"userVerification": 4,
"keyProtection": 2,
"tcDisplay": 1,
"authenticationAlgorithms": [
1,
3

"userVerification": 2,

"keyProtection": 2,

"authenticationAlgorithms": [
2

]

"userVerification": 32,

"keyProtection": 2,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 2,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 2,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

}
]

'
"disallowed": [

{

"userVerification": 512,

"keyProtection": 16,

"assertionSchemes": [
"UAFVITLV"

1

"userVerification": 256,
"keyProtection": 16

H

3.5.3 AuthenticationRequest dictionary

Contains the UAF Authentication Request Message:

WebIDL

dictionary AuthenticationRequest {
required OperationHeader header;
required ServerChallenge challenge;
Transaction]] ‘transaction;
required Policy poiicy;)

Yi

3.5.3.1 Dictionary authenticationrequest Members

header Of type required OperationHeader
Header.op must be "Auth"

challenge Of type required ServerChallenge
Server-provided challenge value

transaction Of type array of Transaction
Transaction data to be explicitly confirmed by the user.00

The list contains the same transaction content in various content types and various image sizes. Refer to [UAFAuthnrMetadata] for more
information about Transaction Confirmation Display characteristics.Ol

policy oOf typerequired Policy
Server-provided policy defining what types of authenticators are Hcceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:O

WebIDL

dictionary AuthenticatorSignAssertion {
required DOMString assertionScheme;
required DOMString assertion; '
Extension]] exts;)

bi

3.5.4.1 DiCﬁOnaryAuthenticatorsignAssertion Members

assertionscheme Of type required DOMString
The name of the Assertion Scheme used to encodeassertion. See UAF Supported Assertion Schemes for details.
NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertion Of type required DOMString
base6durl(byte[1..4096]) Contains the assertion containing a signature generated by vauth.priv, i.. TAG UAFV1_ AUTH ASSERTION.

exts Of type array of Extension
Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered authenticators.

WebIDL

dictionary AuthenticationResponse {
required OperationHeader header;
required DOMString fcParams;
required AuthenticatorSignAssertion[] assertions;

bi

3.5.5.1 DiCﬁOnaryAuthenticationResponse Members

header Of type required OperationHeader
Header.op must be "Auth"

fcparanms Of type required DOMString
The field fcParams is the base64url-encoded serialized [BFC4627] FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) which contains all parameters required for the server to verify the Final Challenge.

assertions Of type array ofrequired AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. Each dictionary contains an authentication response for a
specific protocol version. The array Bhust not contain two dictionaries of the same protocol version. For version "1.0" the response is defined asOl

AuthenticationResponse dictionary.

[{

"assertions": [

{

"assertion": "Aj7WAAQ-jgALLgkAQUJIDRCNBQKNEDi4FAAABAQEADYy4gAHWYJA
EX8t1b2wOxbaKOC5ZL7ACgbLo_TtiQfK3DzDsHCi4gAFwCUz-dOuafXKXJLbkUrIzjAU60Db
P8B9iLORMCE58fEC4AAAKUIABKkwI-f3bIe Uin6IKIFvVQLgAOrpk6_nr0oVAK9hI182A0uBA
ACAAAABi5AADWDOCBVPS1X2bRNy4SvFhAwhEAOBSGUitgMUNChgUSMxss3K3ukekqlpaG7Fv
1v5mBmDCZVPt2NCTnjUXrjTp4",

"assertionScheme": "UAFVITLV"

}

1,

"fcParams": "eyJhcHBJRCI6ImMhOdHBzOi8vdWFmLXR1c3QtMS5ub2tub2t0ZXNOLmN
vbT04NDQzL1NhbXBsZUFwcC91YWYVZmF jZXRzIiwiY2hhbGx1bmd1lIjoiSFEXVmMtUVVFDMUS
KRE9VNk9IPV2R47ZXdyYjlpNVd0aGpmS011laEZ4cGV1VSISImNOYWS5uzZWxCaws5kawsnIjp7£Sw
1ZmFjZXRIRCI6IMNvbS5ub2tub2suYW5kem9pzC52YWlwbGVhcHALfQ",

"header": {

"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",

"op": "Auth",

"serverData": "5s7n8-7_LDAtRIKKYgbAtTTOezVKC]jl2mPorYzbpxRrZ-_3wWro
MXsSF_pLYJjNVm_17bplAx4bkEwK6ibil9EHGEdfKOQ1q0tyEKNIJFOggdjVvmLioroxgThlj8Is
tpt7q",

"upv": {

"major": 1,
"minor": 0

H

NOTE

Line breaks in fcParams have been inserted for improving readability.

3.5.7 Authentication Processing Rules
3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of setsO
(second dimension) of authenticators (identified by MatchCriteria). All Buthenticators in a specific set Bhust be used for authentication
simultaneously in order to match the policy. But any of those sets in the list are valid, i.e. the list elements are alternatives.

The FIDO Server must follow the steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by Beparate MatchCriteria objects .

1. For each collection of authenticators = to be used for authentication simultaneously that can be identified by the Bame rule,
create a MatchCriteria object n, where
= m.aaid may be combined with (one or more Of)m.keyIDs, m.attachmentHint, m.authenticatorvVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.O

» Ifm.aaid is not provided - at least m.authenticationAlgorithms and m.assertionSchemes must be provided

= In case of step-up authentication (i.e. in the case where it is expected the user is already known due to a previous
authentication step) every item in rolicy.accepted must include the 2a1p and xey1p of the authenticator registered for
this account in order to avoid ambiguities when having multiple accounts at this relying party.

2. Addnto v, €.0. v[Jj+1l]=m
2. Add v top.allowed, €.9. p.allowed[i+l]=v

2. Create MatchCriteria objects n[j for all disallowed authenticators.
1. Create a MatchCriteria objectn and add AAIDs of all disallowed authenticators to n.aaid.

The status (as provided in the metadata TOC [UAFMetadataService]) of some authenticators might be unacceptable. Such
authenticators should be included in p.disallowed.

2. If needed - create MatchCriterian for other disallowed criteria (e.g. unsupported authenticationAlgs)
3. Add allmtop.disallowed.
2. Create an AuthenticationRequest object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverpata. FIDO Servers that depend on the integrity of
r.header.serverData should apply and verify a cryptographically secure Message Authentication Code (MAC) to serverData and they
should also cryptographically bind serverData to the related message, e.g. by re-including r.challenge, see also section ServerData
and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverbata as an opaque value. As a consequence the
FIDO server can implement any suitable cryptographic protection method.

2. Generate a random challenge and assign it tor.challenge

3. If this is a transaction confirmation operation - look up MransactionConfirmationDisplayContentTypes/O
TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every Rarticipating AAID, generate a list of
corresponding transaction content and insert the list into r.transaction.

= [f the authenticator reported (a dynamic) authenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during Registration
- it must be preferred over the (static) value specified in the authenticator Metadata.

4. Set r.policy to our new policy objectp created above, e.g. r.policy = p.
5. Add the authentication request message the array
3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message with major version 1 and minor version o
2. Parse the message n
o If a mandatory field in the UAF message is not present or a field doesn't correspond to its type and value then reject the Bperation

3. Obtain racet1n of the requesting Application. If the app1p is missing or empty, set the 2pp1p to the Facet1n.

Verify that the racet1p is authorized for the app1p according to the algorithms in [FIDOAppIDAndFacets].

o If the racet1D Of the requesting Application is not authorized, reject the operation
4. Filter available authenticators with the given policy and present the filtered list to User.O0
o If AuthenticationRequest.policy.accepted list is empty then suggest any registered authenticator to the user for authentication
5. Let the user select the preferred Authenticator.
6. Obtain TLS data if its available
7. Create a FinalChallengeParams structure ccp and set cp.AppID, fecp.challenge, fep. facetID, @and fcp.channelBinding appropriately.
Serialize [RFC4627] tcp using UTF8 encoding and base64url encode it.
o FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that supports an Authenticator Interface Version AIV compatible with message version
AuthenticationRequest.header.upv (See Version Negotiation) and user agrees to authenticate with:

1.

Add 2pp1p, Finalchallenge, Transactions (if present), and all other fields to the ASMRequest.O0

2. Send the ASMRequest to the ASM.

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Sign Command".

3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

a b~ WD =

. Create an AuthenticationResponse message

. COpy AuthenticationRequest.header iNtO AuthenticationResponse.header

. Fill out authenticationResponse.FinalChallengeParams With appropriate fields and then stringify it0
. Append the response from each authenticator intoauthenticationResponse.assertions

. Send AuthenticationResponse message to the FIDO Server

3.5.7.5 Authentication Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new Bissertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

The FIDO Server must follow the steps:

1. Parse the message

1.
2.

If protocol version (authenticationResponse.header.upv) iS NOt supported — reject the operation
If a mandatory field in UAF message is not present or a field Hoesn't correspond to its type and value - reject the operation

2. Verify that authenticationResponse.header.serverbata, if used, passes any implementation-specific checks against its validity. Bee also
section ServerData and KeyHandle.
3. base64url decode ruthenticationResponse.fcParams and convert into an object (tcp)

4. Verify each field in fcp and make sure it's valid:O

1.
2.
3.
4.
5.

Make sure app1D corresponds to the one stored by the FIDO Server

Make sure racet1p is in the list of trusted FacetIDs FIDOAppIDAndFacets]

Make sure channelBinding is as expected (see section ChannelBinding dictionary)

Verify that the serverchallenge submitted by the client has been generated by the FIDO server
Reject the response if any of the above checks fails

5. For each assertion a in authenticationResponse.assertions

1.

Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionscheme and make
sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to Bave and has a valid syntax.
= If it doesn't - continue with next assertion

. Retrieve the AAID from the assertion.

NOTE

The AAID in Tac_uarv1_SIGNED_DATA iS contained in a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_ SIGNED_DATA.TAG_AAID.

. Verify that 2. assertionscheme matches Metadata (AAID) .assertionscheme

= [f it doesn't match - continue with next assertion

. Make sure that the AAID indeed matches the policy of the Authentication Request

= [f it doesn't meet the policy — continue with next assertion

. ifa.assertion contains an object of type rac_varvi avrs asserTION, then

1. ifa.assertion.TAG UAFV1_AUTH ASSERTION contains Tac uarvi sicnep DaTa as first element:O

1. Obtain vetadata(AAID) .Authenticatorversion for this AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_AUTH ASSERTION.TAG_UAFV1_SIGNED_ DATA.TAG_ASSERTION_INFO.AuthenticatorvVersion.

» If Metadata(AAID).Authenticatorversion IS higher (i.e. the authenticator firmware is outdated), @is recommended to
assume increased authentication risk. See "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[UAFMetadataService] for more details on this.

2. Retrieve a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.TAG KEYID as KeylD

3. Locate vauth.pub public key associated with (AAID, KeyID) in the user's record.
= [If such record doesn't exist - continue with next assertion

4. Verify the AAID against the AAID stored in the user's record at time of Registration.
= [f comparison fails — continue with next assertion

5. Locate authenticator specific authentication algorithms from Buthenticator metadata (field Elithenticationalgs)

6. Check the Signature Counter a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.SignCounter and make sure
it is either not supported by the authenticator (i.e. the value provided and the value stored in the user's record are both 0)
or it has been incremented (compared to the value stored in the user's record)

= [fit is greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a cloned
authenticator has been used previously).

7. Hash authenticationResponse.FinalChallengeParams USiNg the hashing algorithm suitable for this authenticator type. Look
up the hash algorithm in authenticator Metadata, field Elithenticationalgs. It is the hash algorithm associated with the firstd
entry related to a constant with prefix UAF_ALG_SIGN.O

m FCHash = hash(AuthenticationResponse.FinalChallengeParams)

8. Make sure that a.assertion.TAG_UAFV1_AUTH ASSERTION.TAG_UAFV1_SIGNED DATA.TAG_FINAL_CHALLENGE == FCHash
= [f comparison fails — continue with next assertion
9. If a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_ INFO.authenticationMode == 2

NOTE

The transaction hash included in this authenticationresponse must match the transaction content specified in thel
related authenticationrequest. As FIDO doesn’t mandate any specific FIDO Server API, the transaction contentl
could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web Application.

1. Make sure there is a transaction cached on Relying Party side.
= If not — continue with next assertion
2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction) and
calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for
FinalChallenge).

= For each cachedrransaction add hash(cachedTransaction) into cachedTransactionHashList

3. Make sure that a.Transactiontash iS iN cachedTransactionHashList
= [fit's not in the list — continue with next assertion

10. Use vauth.pub key and appropriate authentication algorithm to verify
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_SIGNATURE

1. If signature verification fails — continue with next assertionl

2. Update signcounter in user's record with
a.assertion.TAG_UAFV1_AUTH ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter

2. ifa.assertion.TAG UAFV1 AUTH ASSErRTION contains a different object than tac uvarvi sienep paTa as first element, Hhen follow the
rules specific to that object.00

6. if a.assertion doesn't contain an object of typetac varvi avrs asserrION, then skip this assertion (as in this UAF v1 only
TAG UAFV1_AUTH AsSErRTION iS defined).0
7. Treat this assertion a as positively verified.O

6. Process all positively verified authentication assertions El

3.6 Deregistration Operation

This operation allows FIDO Server to ask the FIDO Authenticator to delete keys related to the particular relying party.

NOTE

The Along with other cases FIDO Server should also trigger this operation when the user removes his account at the relying party.

3.6.1 Deregistration Request Message

The FIDO UAF Deregistration request message is represented as an array of dictionaries. Each dictionary contains a deregistration request for a
specific protocol version. The array Bhust not contain two dictionaries of the same protocol version. For version "1.0" the request is defined asOl

DeregqistrationRequest dictionary.

[{

"header": {
"op": "Dereg",
"upv': {

"major": 1,
"minor": 0

iy
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets"
I
"authenticators": [
{
"aaid": "ABCD#ABCD",
"keyID": "ZMCPn92yHv1Ip-iCiBb6i4ADg6z0v569KFQCVYSJENG"
}
]
H

NOTE

There is no deregistration response object.

3.6.2 DeregisterAuthenticator dictionary

WebIDL

dictionary DeregisterAuthenticator {
required AAID aaid;
required KeyID keyID;

bi

3.6.2.1 Dictionary DeregisterAuthenticator Members

aaid of type required AAID
AAID of the authenticator to deregister.

key1D Of type required KeylD

The unique KeyID related to uauth.priv. KeylD is assumed to be unique within the scope of an AAID only.

3.6.3 DeregistrationRequest dictionary

WebIDL

dictionary DeregistrationRequest {
required OperationHeader header;
required DeregisterAuthenticator[] authenticators;

Yi

3.6.3.1 Dictionary DeregistrationRequest Members

header Of type required OperationHeader
Header.op must be "Dereg".

authenticators Of type array ofrequired DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules
3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server must follow the steps:

1. Create a deregistration request message n with major version of m.header.upv set to 1 and minor version set to o

2. For each authenticator to be deregistered
1. Create DeregisterAuthenticator object o for authenticator to be deregistered

2. Seto.aaid and o.key1p appropriately
3. Append o the m.authenticators
4. delete related entry in FIDO Server's account database

3. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message with major version 1 and minor version o

2. Parse the message

o If a mandatory field initregistrationrequest message is not present or a field doesn't correspond to its type and value — reject fhe
operation

3. For each authenticator compatible with the message version peregistrationRequest.header.upv and has an AAID equal to one of the
provideded Aa1Ds:

1. Create appropriate rsurequest for Deregister function and send it to the Authenticator

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

See [UAFASM] section "Deregister request".

4. Considerations

This section is non-normative.

4.1 Protocol Core Design Considerations

This section describes the important design elements used in the protocol.
4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all supported authenticators and their corresponding Metadata. authenticator metadata
[UAFAuthnrMetadata] contains information such as:

« Supported Registration and Authentication Schemes
« Authentication Factor, Installation type, supported content-types and other supplementary information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction, FIDO Server looks up Hhe list of authenticator
metadata by AAID and retrieves the required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be identified with a unique authenticator Attestation ID (AAID).O

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating authenticator model identity during registration. It allows Relying Parties to cryptographically
verify that the authenticator reported by FIDO UAF Client is really what it claims to be.

Using authenticator Attestation, a relying party "example-rp.com" will be able to verify that the authenticator model of the "example-Authenticator",
reported with AAID "1234#5678", is not malware running on the FIDO User Device but is really a authenticator of model "1234#5678".

NORMATIVE

FIDO Authenticators should support "Basic Attestation" described below. New Attestation mechanisms may be added to the protocol over time.

NORMATIVE
FIDO Authenticators not providing sufficient protection for Bttestation keys (non-attested authenticators) must use the UAuth.priv key in order

to formally generate the same KeyRegistrationData object as attested authenticators. This behavior must be properly declared in the
Authenticator Metadata.

4.1.2.1 Basic Attestation

NORMATIVE
There are two different flavors of Basic Attestation:0O0
Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).
Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key

corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not provide a cryptographic proof of the
security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 Full Basic Attestation

NOTE
FIDO Servers must have access to a trust anchor for verifying attestation public keys (i.e. Attestation Certificate trust Btore) in order to follow
the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation signature during the registration process for the same

reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This sharing process shouldt be
done according to [UAFMetadataService].

NOTE

The protection measures of the Authenticator's attestation private key depend on the specific authenticator model's hplementation.

NOTE

The FIDO Server must load the appropriate Authenticator Attestation Root Certificate from its trust store based on the BAID provided in
KeyRegistrationData object.

In this Full Basic Attestation model, a large number of authenticators must share the same Attestation certificate and Bttestation Private Key in
order to provide non-linkability (see Protocol Core Design Considerations). Authenticators can only be identified on a production batch Bvel or an
AAID level by their Attestation Certificate, and Hot individually. A large number of authenticators sharing the same Attestation Certificate providesO
better privacy, but also makes the related private key a more attractive attack target.

NOTE

A given set of authenticators sharing the same manufacturer and essential characteristics must not be issued a new Attestation Key before
at least 100,000 devices are issued the previous shared key.

Manufacturer Attestation Root

Intermediate Attestation Certificates

Intermediate Attestation Certificates

P

Attestation Certificate, AAID in commonName

Fig. 10 Attestation Certificate ChainO

4.1.2.1.2 Surrogate Basic Attestation

NORMATIVE

In this attestation method, the UAuth.priv key must be used to sign the Registration Data object. This behavior must be properly declared in the
Authenticator Metadata.

NOTE

FIDO Authenticators not providing sufficient protection for Bttestation keys (non-attested authenticators) must use this attestation method.

4.1.3 Error Handling

NOTE

FIDO Servers must inform the calling Relying Party Web Application Server (see FIDO Interoperability Overview) about any error conditions
encountered when generating or processing UAF messages through their proprietary API.

NORMATIVE

FIDO Authenticators must inform the FIDO UAF Client (seeFIDO Interoperability Overview) about any error conditions encountered when
processing commands through the Authenticator Specific Module (ASM). See [DAFASM] and [UAFAuthnrCommands] for details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs, Fingerprint Sensors, Secure Elements, etc.) and also
future authenticators designed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

« Cryptographic key provisioning (KeyRegistrationData)
« Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See also UAF Supported Assertion Schemes.

The Registration Assertion defines how and in which format a Eryptographic key is exchanged between the authenticator and the FIDO Server.
The Authentication Assertion defines how and in which format the Buthenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in [WUAFRegistry].
4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e. replacing username and password). In this case the authenticator
stores the username (uniquely identifying an account at the specific relying party) internally. See lUAFAuthnrCommands], section "Sign
Command" for details.

4.1.6 TLS Protected Communication

NOTE

In order to protect the data communication between FIDO UAF Client and FIDO Server a protected TLS channel must be used by FIDO
UAF Client (or User Agent) and the Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying Party

2. The client endpoint of the TLS connection must be either the FIDO UAF Client or the User Agent / App

3. TLS Client and Server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS v1.2 or higher are not available. The "anon"
and "null" TLS crypto suites are not allowed and must be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4, SHA1) should
be avoided [[SP 800-131A]].

We recommend, that the
1. TLS Client verifies and validates the server Ekrtificate chain according to [BFC5280], section 6 "Certificate Path Validation". The certificatell

revocation status should be checked (e.g. using OCSP [RFC2560] or CRL based validation [RFC5280]) and the TLS server identity should
be checked as well [RFC6125].

2. TLS Client's trusted certificate root store [3 properly maintained and at least requires the CAs included in the root store to annually pass Web
Trust or ETSI (ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.

See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on how to use TLS.
4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

NOTE

A serverchallenge Needs appropriate random sources in order to be effective (see [RFC4086] for more details). The (pseudo-)random
numbers used for generating the Server Challenge should successfully pass the randomness test specified in [Boron99] and they should
follow the guideline given in [SP800-90b].

4.3 Security Considerations

There is no "one size fits all" authentication method. The FIDO Boal is to decouple the user verification method from the Buuthentication protocol
and the authentication server, and to support a broad range of user verification methods and a broad Eange of assurance levels. FIDO
authenticators should be able to leverage capabilities of existing computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and integrity of the user's equipment involved
and (b) on the authentication method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of authentication methods. The relying party
needs reliable information about the security relevant parts of the equipment and the authentication method itself in order to determine whether
the overall risk of an electronic authentication is acceptable in a particular business context. The FIDO Metadata[UAFMetadataService] is intended
to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security relevant parts of the equipment and the
authentication method itself to the FIDO server.

The overall security is determined by the weakest link. In order to support scalable security in FIDO, the underlying UAF protocol needs to provide
a very high conceptual security level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels.The FIDO Alliance envisions a broad range of FIDO UAF Clients, FIDO Authenticators
and FIDO Servers to be offered by various vendors. Relying parties should be able to select a FIDO Server providing the appropriate level of
security. They should also be in a position to accept FIDO Authenticators meeting the security needs of the given business context, to
compensate assurance level deficits by adding appropriate implicit authentication Bheasures, and to reject authenticators not meeting their
requirements. FIDO does not mandate a very high assurance level for FIDO Authenticators, instead it provides the basis for authenticator and
user verification method competition.O0

Authentication vs. Transaction Confirmation.Existing Cloud services are typically based on authentication. The user launches an application
(i.e. User Agent) assumed to be trusted and authenticates to the Cloud service in order to establish an authenticated communication channel
between the application and the Cloud service. After this authentication, the application can perform any actions to the Cloud service using the
authenticated channel. The service provider will attribute all those actions to the user. Essentially the user authenticates all actions performed by
the application in advance until the service connection or authentication times out. This is a very convenient way as the user doesn't get distracted
by manual actions required for the authentication. It is suitable for actions with low risk consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is typically being used when non-repudiation is required. The resulting requirement for this scenario is called What
You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The technical difference is, that @ith Authentication
the user confirms a random challenge, where [the case of Transaction Confirmation the user also confirms B human readable content, i.e. the
contract. From a security point, in the case of authentication the application needs to be trusted as it performs any action once the authenticated
communication channel has been established. In the case of Transaction Confirmation only the transaction confirmation Hisplay component
implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in order to determine the risk associated with an authentication, it is important to
know details about some components of the user's environment. Web Browsers typically send a "User Agent" string to the web server.
Unfortunately any application could send any string as "User Agent" to the relying party. So this method doesn't provide strong security. FIDO UAF
is based on a concept of cryptographic attestation. With this concept, the component to be attested owns a cryptographic secret and authenticates
its identity with this cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation Key". The relying party gets
access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an authentication, all components performing significantd
security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the [FIDO Authenticators". Security functions are:

1. Protecting the attestation key.

2. Generating and protecting the Authentication key(s), typically one per relying party and user account on relying party.
3. Verifying the user.

4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).0

Some FIDO Authenticators might implement these functions in software running on the FIDO User Device, others might implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators might even be
formally evaluated and accredited to some national or international scheme. Each FIDO Authenticator model has an attestation ID (AAID),
uniquely identifying the related security characteristics. Relying parties get access to these security properties of the FIDO Authenticators and the
reference data required for verifying the attestation.

Resilience to leaks from other verifiers.ne of the important issues with existing authentication solutions is a weak server side implementation,
affecting the security of authentication of typical users to other relying parties. It is the goal of the FIDO UAF protocol to decouple the security of
different relying parties.

Decoupling User Verification Method from Authentication Protocol.llh order to decouple the user verification method from the Buthentication
protocol, FIDO UAF is based on an extensible set of cryptographic authentication algorithms. The cryptographic secret will be unlocked after user
verification by the Buthenticator. This secret is then used for the authenticator-to-relying party authentication. The set of cryptographic algorithms
is chosen according to the capabilities of existing cryptographic hardware and computing devices. It can be extended in order to support new
cryptographic hardware.

Privacy Protection. Different regions in the world have different privacy regulations. The FIDO UAF protocol should be acceptable in all regions
and hence must support the highest level of data protection. As a consequence, FIDO UAF doesn't require transmission of biometric data to the
relying party nor does it require the storage of biometric reference data [ISOBiometrics] at the relying party. Additionally, cryptographic secrets
used for different relying parties shall not allow the parties to link actions to the same user entity. UAF supports this concept, known as non-
linkability. Consequently, the UAF protocol doesn't require a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO Authenticators on the FIDO User Device using the Discovery interface
[UAFAppAPIAndTransport]. The combination of AAIDs adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at Eiff.org and https://wiki.mozilla.org/Fingerprinting). In order to

minimize the entropy added by FIDO, the user can enable/disable individual authenticators — even when they are embedded in the device (see
[UAFAppAPIAndTransport], section "privacy considerations").

4.3.1 FIDO Authenticator Security
See [UAFAuthnrCommands].
4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it is suggested that implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is also supported. See
[UAFRegistry] "Authentication Algorithms and Key Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random value. For effective security, this value

must be chosen randomly and uniformly from a set of modular integers, using a cryptographically secure process. Even slight biases in that
process may be turned into attacks on the signature schemes.

NOTE

If such random values cannot be provided under all possible environmental conditions, then a deterministic version of ECDSA should be
used (see [RFC6979]).

4.3.3 Application Isolation

Relying Party

TLS with server
___——— authentication

Flatform specific
determination of
FacetlD i
FIDO User Device

Flatform specific
determination of
CallerlD

FIDO Authenticator

Authenticator specific
~ User Verification

Fig. 11 FIDO Entity Verification OverviewO
There are two concepts implemented in FIDO UAF to prevent malicious applications from misusing AppID specific keys registered with BIDO

Authenticators. First concept is called "FacetlD Assertion" and second is based on the "KHAccessToken". For information on the FacetlD concept
see [FIDOApplIDAndFacets].

4.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify the calling software entity (i.e. the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to the intended ASM. It is based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e. the ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally registered them. A malicious App on a
mobile platform won't be able to access keys by bypassing the related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the AppID, PersonalD, BSMToken and the CallerID. See [UAFASM] for more details.

NOTE

On some platforms, the ASM additionally might need special permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among applications.

4.3.4 TLS Binding
Various channel binding methods have been proposed (e.g. [RFC5929] and [ChannellD]).
UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for he same AppID as the relying party and they might be able to manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and they might be able to Bhanipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique" defined in [RFC5929] might be Hifficult toO

implement.
2. Data centers might use SSL concentrators.

3. Data centers might implement load-balancing for TLS endpoints using different TLS certificates. As a consequence, Ois-server-end-point"
defined in [RFC5929], i.e. the hash of fiie TLS server certificate might be inappropriate.O

4. Unfortunately, hashing of the TLS server certificate (as in Ols-server-end-point") also limits the usefulness of the channel binding in a
particular, but quite common circumstance. If the client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-
middle, your client will see a different certificate than the one the server is using. his is actually quite common on corporate or military
networks with a high security posture that want to inspect all incoming and outgoing traffic. If the FIDO Server just gets a hash {&lue, there's
no way to distinguish this from an attack. If sending the entire certificate is acceptable from a performance Perspective, the server can
examine it and determine if it is a certificate for a valid name from a non-standard issuer (likely Bdministratively trusted) or a certificate for all
different name (which almost certainly indicates a forwarding attack).

See ChannelBinding dictionary for more details.
4.3.5 Session Management

FIDO does not define any specific session management methods. However, several FIDO functions rely on a robust session management being
implemented by the relying party's web application:
FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.
FIDO Authentication
After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).
4.3.6 Personas

FIDO supports unlinkability [AnonTerminology] of accounts at different relying parties by using relying party specific keys.O
Sometimes users have multiple accounts at a particular relying party and even want to maintain unlinkability between these accounts.
Today, this is difficult and requires certain measures to be Elrictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various personas (e.g. "business", "personal"). This
is possible as roaming authenticators typically are small and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona (e.g. "business" or "personal"). Some administrative interface (not standardized by
FIDO) of the authenticator may allow maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g. authentication keys, usernames, KeyIDs, ...) related to the Persona being active at
that time.

With this concept, the User can switch to the "Personal" Persona and register new accounts. After switching back to "Business" Persona, these
accounts will not be recognized by the authenticator (until the User switches back to "Personal" Persona again).

In order to support the persona feature, the FIDO Authenticator-specific Module APl [UAFASM] supports the use of a 'PersonalD' to identify the
persona in use by the authenticator. How Personas are managed or communicated with the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see Dperation Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be echoed back
to the FIDO Server as part of the related UAF response message.

NOTE

The FIDO Server should not assume any kind of implicit integrity protection of such data nor any implicit session binding. The FIDO Server
must explicitly bind the serverData to an active session.

NOTE

In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary places (e.g. in serverData or in the
KeyHandle). In such situations, the confidentiality and integrity of such sensitive data must be protected. This can be achieved by using a
suitable encryption algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or CTR [CTRMode]. This cipher mode needs to be used
correctly. For CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first in order to Bbtain
an integral number of blocks in length. The integrity protection can be achieved by adding a MAC or a digital signature on the ciphertext,
using a different key than for the encryption, e.g. using HMAC [FIPS198-1]. Alternatively, an authenticated encryption scheme such as AES-
GCM [SP800-38D] or AES-CCM [SP800-38C] could be used. Such a scheme provides both integrity and confidentiality in a Eingle algorithm
and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by re-including the challenge value in the authenticated serverData.

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

Several authenticator properties (e.g. UserVerificationMethods, KeyProtection, TransactionConfirmationDisplay, ...) are available in the Bhetadata

[UAFAuthnrMetadata] and through the FIDO UAF Application API. The properties included in the metadata are authoritative and are provided by a
trusted source. When in doubt, decisions should be based on the properties retrieved from the Metadata as opposed to the data retrieved through
the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint" what to expect from the Authenticator. Such "hints"
are well suited to drive and optimize the user experience.

4.3.9 Policy VerificationO

FIDO UAF Response messages do not include all parameters received in the related FIDO UAF request message into the to-be-signed object. As
a consequence, any MITM could modify such entries.

FIDO Server will detect such changes if the modified value is Ohacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible FIDO Authenticator. Such a change will be
detected by FIDO Server if the weakest possible FIDO Authenticator does not match the initial policy (see Registration Response Processing
Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection
The FIDO UAF protocol specifies two different methods for Eéplay-attack protection:

1. Secure transport protocol (TLS)
2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [TLS].

Additionally, each protocol message contains some random bytes in the serverchalienge field. The FIDO server should only BEccept incoming
FIDO UAF messages which contain a valid serverchallenge value. This is done by verifying that the serverchallenge value, sent by the client, was
previously generated by the FIDO server. See rinalchallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated by the FIDO server may not be unique, and in
such cases, the same serverchallenge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security characteristics specified fr the model
(identified by the AAID). The security is better @hen only a single authenticator with that specific UAuth.Key Mstance exists. Consequently FIDO
UAF specifies some frotection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard as such keys cannot be extracted easily.

Secondly, UAF specifies a Signature Counter (see Buthentication Response Processing Rules and [UAFAuthnrCommands]). This counter is
increased by every signature operation. If a cloned authenticator is used, then the subsequent use of the original authenticator would include a
signature counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals
There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:0

. Register the authenticator to some relying party for one account

. Commit fraud

. Deregister the Authenticator

. Register the authenticator to some relying party for another account
. Commit fraud

. Deregister the Authenticator

. and so on...

N o o~ 0N =

NOTE

Authenticators might support a Registration Counter (regcounter). The regcounter will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios. See [UAFAuthnrCommands] for more details.

4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native PC Applications. Such applications are referred to as FIDO enabled applications.

__— UAF Client API

Relying Party Application

. UAF
__ Protocol
Specification

-

“__ UAF Client AP

FIDO Client
S\ UAF ASM API i
UAF Authenticator FIDO Server
FIDO Authenticator ~ Commands

Fig. 12 FIDO Interoperability Overview
Web applications typically consist of the web application server and the related Web App. The Web App code (e.g. HTML and JavaScript) is
rendered and executed on the client side by the User Agent. The Web App code talks to the User Agent via a set of JavaScript APls, e.g. HTML
DOM. The FIDO DOM API is defined in [DAFAppAPIAndTransport]. The protocol between the Web App and the Relying Party Web Application
Server is typically proprietary.

Mobile Apps play the role of the User Agent and the Web App (Client). The protocol between the Mobile App and the Relying Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web App (Client). Those applications are typically expected to be independent from
any particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.00

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [DAFAppAPIAndTransport].

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO Authenticators and have
to be verified by the FIDO Server. Merification will fail if the values are modified during fansport.

The ASM API [UAFASM] specifies the standardized API to access Buthenticator Specific Modules (ASMs) on Desktop PCs and MobileO
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API. Instead it lists the minimum data set and a specificO
message format which needs to be transferred to and from the FIDO Authenticator.

5. UAF Supported Assertion Schemes
This section is normative.
5.1 Assertion Scheme "UAFV1TLV"

This Assertion Scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to encode registration and authentication assertions generated by
authenticators. This is the default assertion scheme for UAF protocol.

TAGs and Algorithms are defined in [DAFRegistry].

The authenticator must use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the thetadata
statement [UAFAuthnrMetadata] for each relying party. This key pair should be generated as part of the registration operation.

Conforming FIDO Servers must support all authentication algorithms and key formats listed in document [UAFRegistry].

Conforming authenticators must support at least one Authentication Algorithm and one Key Format listed in [UAFRegistry].
5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

6. DefinitionsO

See [FIDOGlossary].

7. Table of Figures

Fig. 1 The UAF Architecture

Fig. 2 UAF Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Transaction Confirmation Message Flowl
Fig. 5 Deregistration Message Flow

Fig. 6 UAF Registration Sequence Diagram

Fig. 7 UAF Registration Cryptographic Data Flow
Fig. 8 UAF Authentication Sequence Diagram
Fig. 9 UAF Authentication Cryptographic Data Flow
Fig. 10 Attestation Certificate ChainO

Fig. 11 FIDO Entity Verification OverviewO

Fig. 12 FIDO Interoperability Overview

A. References

A.1 Normative references

[ABNF]
D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNFJanuary 2008. Internet Standard. URL:
https://tools.ietf.org/html/rfc5234
[ChannellD]
D. Balfanz Transport Layer Security (TLS) Channel IDs. (Work In Progress) URL :http:/tools.ietf.org/html/draft-balfanz-tls-channelid
[Coron99]
J. Coron and D. Naccache An accurate evaluation of Maurer's universal test LNCS 1556, February 1999, URL:
http://www.jscoron.fr/publications/universal.pdf
[FIDOAppIDANndFacets]
D. Balfanz, B. Hill, R. Lindemann, D. Baghdasaryan, FIDO AppID and Facets v1.0. FIDO Alliance Proposed Standard. URLs:
HTML: fido-appid-and-facets-v1.0-ps-20141208.htmI0

PDF: fido-appid-and-facets-v1.0-ps-20141208.pdf00
[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Proposed Standard. URLs:
HTML: fido-glossary-v1.0-ps-20141208.htmi0O0
PDF: fido-glossary-v1.0-ps-20141208.pdf00
[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). National Institute of Standards and Technology, March 2012, URL:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdfll
[JWA]
M. Jones JSON Web Algorithms (JWA). Internet-Draft (Work in progress.) URL:http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
[JWK]
Mike Jones. JSON Web Key (JWK). 28 May 2013. Internet Draft. URL:http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
[RFC1321]
R. Rivest, The MD5 Message-Digest Algorithm (RFC 1321), IETF, April 1992, URL: http://www.ietf.org/rfc/rfc1321.txt
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119
[RFC3629]
F. Yergeau. UTF-8, a transformation format of ISO 10646 November 2003. Internet Standard. URL:https://tools.ietf.org/html/rfc3629
[RFC4086]
D. Eastlake 3rd, J. Schiller, S. Crocker Randomness Requirements for Security (RFC 4086), IETF, June 2005, URL:
http://www.ietf.org/rfc/rfc4086.ixt
[RFC4627]
D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON). July 2006. Informational. URL:
https://tools.ietf.org/html/rfc4627
[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:http://www.ietf.org/rfc/rfc4648.txt
[RFC5056]
N. Williams, On the Use of Channel Bindings to Secure Channels (RFC 5056) IETF, November 2007, URL:http://www.ietf.org/rfc/rfc5056.txt
[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X.509 Public Key Infrastructure Certificate and Certificatel
Revocation List (CRL) ProfileQIETF, May 2008, URL:http://www.ietf.org/rfc/rfc5280.txt
[RFC5929]
J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July 2010, URL:http://www.ietf.org/rfc/rfc5929.txt
[RFC6234]
D. Eastlake 3rd, T. Hansen, US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) (RFC 6234), |IETF, May 2011, URL:

http://www.ietf.org/rfc/rfc6234.ixt
[RFC6979]

T. Pornin, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) (RFC6979)
IETF, August 2013, URL: http://www.ietf.org/rfc/rfc6979.txt

[SP800-90b]
Elaine Baker and John Kelsey, NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for Random Bit
Generation. National Institute of Standards and Technology, August 2012, URL:http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-
90b.pdf

[UAFASM]
D. Baghdasaryan, J. Kemp, R. Lindemann, B. Hill, R. Sasson, FIDO UAF Authenticator-Specific Module APOFIDO Alliance Proposed
Standard. URLs:
HTML: fido-uaf-asm-api-v1.0-ps-20141208.htmI0O

PDF: fido-uaf-asm-api-v1.0-ps-20141208.pdf[0
[UAFAppAPIAndTransport]

B. Hill, D. Baghdasaryan, B. Blanke, FIDO UAF Application APl and Transport Binding SpecificationtIFFIDO Alliance Proposed Standard.
URLs:
HTML: fido-uaf-client-api-transport-v1.0-ps-20141208.htmi0

PDF: fido-uaf-client-api-transport-v1.0-ps-20141208.pdf[0
[UAFAuthnrCommands]

D. Baghdasaryan, J. Kemp, R. Lindemann, R. Sasson, B. Hill, FIDO UAF Authenticator Commands v1.0. FIDO Alliance Proposed Standard.
URLs:
HTML: fido-uaf-authnr-cmds-v1.0-ps-20141208.htmi0O

PDF: fido-uaf-authnr-cmds-v1.0-ps-20141208.pdf00
[UAFAuthnrMetadata]

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-appid-and-facets-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-appid-and-facets-v1.0-ps-20141208.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-glossary-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-glossary-v1.0-ps-20141208.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-asm-api-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-asm-api-v1.0-ps-20141208.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-client-api-transport-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-client-api-transport-v1.0-ps-20141208.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-authnr-cmds-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-authnr-cmds-v1.0-ps-20141208.pdf

B. Hill, D. Baghdasaryan, J. Kemp, FIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Proposed Standard. URLs:

HTML: fido-uaf-authnr-metadata-v1.0-ps-20141208.htmi0
PDF: fido-uaf-authnr-metadata-v1.0-ps-20141208.pdf0]
[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined ValuesLFIDO Alliance Proposed Standard. URLs:
HTML: fido-uaf-reg-v1.0-ps-20141208.htmiO
PDF: fido-uaf-reg-v1.0-ps-20141208.pdfl
[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

A.2 Informative references

[AnonTerminology]
"Anonymity, Unlinkability, Unobservability. Pseudonymity, and Identity Management - A Consolidated Proposal for Terminology", Version
0.34.. A. Pfitzmann and M. Hansen, August 2010. URL: Ritp://dud.inf.tu-dresden.de/literatur/Anon Terminology v0.34.pdf

[CTRMode]

H. Lipmea, P. Rogaway, D. Wagner, Comments to NIST concerning AES Modes of Operation: CTR-Mode Encryption National Institute of
Standards and Technology, accessed March 11, 2014, URL.: http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-
spec.pdf

[ECDSA-ANSI]

Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-2005
American National Standards Institute, November 2005, URL: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[FIDOSecRef]

R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Security Reference. FIDO Alliance Proposed Standard. URLs:
HTML: fido-security-ref-v1.0-ps-20141208.htmlIO0
PDF: fido-security-ref-v1.0-ps-20141208.pdf[]

[FIPS198-1]

FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC). National Institute of Standards and Technology, July 2008, URL:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1 final.pdf0l

[ISOBiometrics]

Project Editor, Harmonized Biometric Vocabulary. ISO/IEC JTC 1. 15 November 2007, URL:http://isotc.iso.org/livelink/...

[OWASP2013]

OWASP 2013. OWASP Top 10 - 2013. The Ten Most Critical Web Application Security Risks

[RFC2560]

M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSFI
June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560

[RFC6125]

P. Saint-Andre, J. Hodges, Representation and Verification of Domain-Based Application Service Identity within Internet Public Ke

Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125)0IETF, March 2011, URL:

http://www.ietf.org/rfc/rfc6125.ixt

[RFC6287]
D. M'Raihi, J. Rydell, S. Bajaj, S. Machani, D. Naccache,OCRA: OATH Challenge-Response Algorithm (RFC 6287), IETF, June 2011, URL:
http://www.ietf.org/rfc/rfc6287.ixt

[SHEFFER-TLS]
Y. Sheffer, R. Holz, P. Saint-Andre Recommendations for Secure Use of TLS and DTLS Internet-Draft (Work in progress.) URL:
https://tools.ietf.org/html/draft-sheffer-tls-bcp

[SP800-38C]
M. Dworkin, NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication
and ConfidentialityONational Institute of Standards and Technology, July 2007, URL:http://csrc.nist.gov/publications/nistpubs/800-
38C/SP800-38C updated-July20 2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. November 2007 URL: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[SP800-63]
W. Burr, D. Dodson, E. Newton, R. Perlner, W.T. Polk, S. Gupta and E. Nabbus, NIST Special Publication 800-63-2: Electronic
Authentication Guideline. National Institute of Standards and Technology, August 2013, URL:
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

[TLS]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol, Version 1.2 August 2008. RFC 5246. URL:
http://tools.ietf.org/html/rfc5246

[TR-03116-4]
Technische Richtlinie TR-03116-4: eCard-Projekte der Bundesregierung: Teil 4 — Vorgaben fiir Kommunikationsverfahren im eGovernment
Bundesamt fiir Sicherheit in der Informationstechnik, 2013, URL:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf

[UAFMetadataService]
R. Lindemann, B. Hill, D. Baghdasaryan, FIDO UAF Metadata Service v1.0 FIDO Alliance Proposed Standard. URLs:
HTML: fido-uaf-metadata-service-v1.0-ps-20141208.htmi00
PDF: fido-uaf-metadata-service-v1.0-ps-20141208.pdf0

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL: http://www.w3.org/TR/WebIDL/

https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-authnr-metadata-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-authnr-metadata-v1.0-ps-20141208.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-reg-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-reg-v1.0-ps-20141208.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-v1.0-ps-20141208.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6287.txt
https://tools.ietf.org/html/draft-sheffer-tls-bcp
https://tools.ietf.org/html/draft-sheffer-tls-bcp
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-metadata-service-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-metadata-service-v1.0-ps-20141208.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/

	FIDO UAF Protocol Specification v1.0
	FIDO Alliance Proposed Standard 08 December 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Architecture
	2.3 Protocol Conversation
	2.3.1 Registration
	2.3.2 Authentication
	2.3.3 Transaction Confirmation
	2.3.4 Deregistration

	3. Protocol Details
	3.1 Shared Structures and Types
	3.1.1 Version Interface
	3.1.2 Operation enumeration
	3.1.3 OperationHeader dictionary
	3.1.4 Authenticator Attestation ID (AAID) typedef
	3.1.5 KeyID typedef
	3.1.6 ServerChallenge typedef
	3.1.7 FinalChallengeParams dictionary
	3.1.8 TLS ChannelBinding dictionary
	3.1.9 JwkKey dictionary
	3.1.10 Extension dictionary
	3.1.11 MatchCriteria dictionary
	3.1.12 Policy dictionary

	3.2 Processing Rules for the Server Policy
	3.2.1 Examples

	3.3 Version Negotiation
	3.4 Registration Operation
	3.4.1 Registration Request Message
	3.4.2 RegistrationRequest dictionary
	3.4.3 AuthenticatorRegistrationAssertion dictionary
	3.4.4 Registration Response Message
	3.4.5 RegistrationResponse dictionary
	3.4.6 Registration Processing Rules

	3.5 Authentication Operation
	3.5.1 Transaction dictionary
	3.5.2 Authentication Request Message
	3.5.3 AuthenticationRequest dictionary
	3.5.4 AuthenticatorSignAssertion dictionary
	3.5.5 AuthenticationResponse dictionary
	3.5.6 Authentication Response Message
	3.5.7 Authentication Processing Rules

	3.6 Deregistration Operation
	3.6.1 Deregistration Request Message
	3.6.2 DeregisterAuthenticator dictionary
	3.6.3 DeregistrationRequest dictionary
	3.6.4 Deregistration Processing Rules

	4. Considerations
	4.1 Protocol Core Design Considerations
	4.1.1 Authenticator Metadata
	4.1.2 Authenticator Attestation
	4.1.3 Error Handling
	4.1.4 Assertion Schemes
	4.1.5 Username in Authenticator
	4.1.6 TLS Protected Communication

	4.2 Implementation Considerations
	4.2.1 Server Challenge and Random Numbers

	4.3 Security Considerations
	4.3.1 FIDO Authenticator Security
	4.3.2 Cryptographic Algorithms
	4.3.3 Application Isolation
	4.3.4 TLS Binding
	4.3.5 Session Management
	4.3.6 Personas
	4.3.7 ServerData and KeyHandle
	4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata
	4.3.9 Policy Verification
	4.3.10 Replay Attack Protection
	4.3.11 Protection against Cloned Authenticators
	4.3.12 Anti-Fraud Signals

	4.4 Interoperability Considerations

	5. UAF Supported Assertion Schemes
	5.1 Assertion Scheme "UAFV1TLV"
	5.1.1 KeyRegistrationData
	5.1.2 SignedData

	6. Definitions
	7. Table of Figures
	A. References
	A.1 Normative references
	A.2 Informative references

