
FIDO Bluetooth® Specification v1.0
FIDO Alliance Proposed Standard 11 April 2017
This version:

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.0-v1.2-
ps-20170411.html

Previous version:
https://fidoalliance.org/specs/fido-u2f-bt-protocol-v1.0-Member Submission-
20140721.html

Editors:
Alexei Czeskis, Google, Inc.
Juan Lang, Google, Inc.

Contributors:
Scott Walsh, Plantronics, Inc.
Deniz Akkaya, Yubico, Inc.
Jakub Pawlowski, Google, Inc.
Hannes Tschofenig, ARM Ltd.
Johan Verrept, VASCO Datasecurity International, Inc

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright © 2014-2017 FIDO Alliance All Rights Reserved.

Abstract
The FIDO U2F framework was designed to be able to support multiple Authenticator form
factors. This document describes the communication protocol with Authenticators over
Bluetooth low energy technology.

There are multiple form factors possible for Authenticators. Some might be low cost, low
power devices, and others might be implemented as an additional feature of a more
powerful device, such as a smartphone. The design proposed here is meant to support
multiple form factors, including but not necessarily limited to these two examples.

Status of This Document

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.0-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-bt-protocol-v1.0-Member Submission-20140721.html
https://www.google.com/
https://www.google.com/
https://www.plantronics.com/
https://www.yubico.com/
https://www.google.com/
http://arm.com/
https://www.vasco.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications and
the latest revision of this technical report can be found in the FIDO Alliance specifications
index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all
such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a
Proposed Standard. It is a stable document and may be used as reference material or cited
from another document. FIDO Alliance's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment.

Table of Contents
1. Notation

1.1 Key Words
2. Conformance
3. Pairing
4. Link Security
5. Framing

5.1 Request from Client to Authenticator
5.2 Response from Authenticator to Client
5.3 Command, Status, and Error constants

6. GATT Service Description
6.1 U2F Service
6.2 Device Information Service
6.3 Generic Access Profile service

7. Protocol Overview
8. Authenticator Advertising Format
9. Requests
10. Responses
11. Framing fragmentation
12. Notifications
13. Implementation Considerations

13.1 Bluetooth pairing: Client considerations
13.2 Bluetooth pairing: Authenticator considerations
13.3 Handling command completion
13.4 Data throughput
13.5 Advertising
13.6 Authenticator Address Type

14. Bibliography

https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact

A. References
A.1 Normative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL
[WebIDL].

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“recommended”, “may”, and “optional” in this document are to be interpreted as described in
[RFC2119].

2. Conformance
Authenticator and Client devices using Bluetooth low energy technology shall conform to
Bluetooth Core Specification 4.0 or later [BluetoothCORE]

Bluetooth SIG specified UUID values shall be found on the Assigned Numbers website
[BluetoothASSNUM]

3. Pairing
Bluetooth low energy technology is a long-range wireless protocol and thus has several
implications for privacy, security, and overall user-experience. Because it is wireless,
Bluetooth low energy technology may be subject to monitoring, injection, and other network-
level attacks.

For these reasons, Clients and Authenticators must create and use a long-term link key
(LTK) and shall encrypt all communications. Authenticator must never use short term keys.

Because Bluetooth low energy technology has poor ranging (i.e., there is no good indication
of proximity), it may not be clear to a FIDO Client with which Bluetooth low energy
technology Authenticator it should communicate. Pairing is the only mechanism defined in
this protocol to ensure that FIDO Clients are interacting with the expected Bluetooth low
energy technology Authenticator. As a result, Authenticator manufacturers should instruct
users to avoid performing Bluetooth pairing in a public space such as a cafe, shop or train
station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on
most operating systems. That is, if an Authenticator is paired to a FIDO Client which resides
on an operating system where Bluetooth pairing is "system-wide", then any application on
that device might be able to interact with an Authenticator. This issue is discussed further in
Implementation Considerations.

4. Link Security
For Bluetooth low energy technology connections, the Authenticator shall enforce Security
Mode 1, Level 2 (unauthenticated pairing with encryption) or Security Mode 1, Level 3
(authenticated pairing with encryption) before any U2F messages are exchanged.

5. Framing
Conceptually, framing defines an encapsulation of U2F raw messages responsible for
correct transmission of a single request and its response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of
the requests and responses is given first as complete frames. Fragmentation is discussed
next for each type of transport layer.

5.1 Request from Client to Authenticator

Request frames must have the following format

Offset Length Mnemonic Description
0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

Supported commands are PING and MSG. The constant values for them are described below.

The data format for the MSG command is defined in [U2FRawMsgs]. For the U2F over
Bluetooth protocol, U2F raw messages are encoded using extended length APDU
encoding.

5.2 Response from Authenticator to Client

Response frames must have the following format, which share a similar format to the
request frames:

Offset Length Mnemonic Description
0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request, the
response is a successful response. The value ERROR indicates an error, and the response
data contains an error code as a variable-length, big-endian integer. The constant value for
ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g.,
indicating an incorrectly formatted request, or possibly an error communicating with the
Authenticator’s U2F message processing layer. Errors reported by the U2F message
processing layer itself are considered a success from the encapsulation layer’s point of
view, and are reported as a complete MSG response.

Data format is defined in [U2FRawMsgs]. Note that as per [U2FRawMsgs] (and unlike the
NFC transport specification), all communication shall be done using extended length APDU
format.

5.3 Command, Status, and Error constants

The COMMAND constants and values are:

Command Constant Value
PING 0x81

KEEPALIVE 0x82

MSG 0x83

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

Status Constant Value
PROCESSING 0x01

TUP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

A resulting Keep alive message, including framing, becomes:

Offset Length Value Description
0 1 KEEPALIVE Command identifier

1 1 0x00 High part of data length

2 1 0x01 Low part of data length

3 1 0xXX Status byte (see table above)

The ERROR constants and values are:

Error Constant Value Meaning
ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID_SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

NA 0x06 Value reserved (HID)

NA 0x0a Value reserved (HID)

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

6. GATT Service Description

This profile defines two roles: FIDO Authenticator and FIDO Client.

The FIDO Client shall be a GATT Client
The FIDO Authenticator shall be a GATT Server

The following figure illustrates the mandatory services and characteristics that shall be
offered by a FIDO Authenticator as part of its GATT server:

Fig. 1 Mandatory GATT services and characteristics that must be offered by a
FIDO Authenticator. Note that the Generic Access Profile service
([BluetoothGAS]) is not present as it is already mandatory for any Bluetooth low
energy technology compliant device.

The table below summarizes additional GATT sub-procedure requirements for a FIDO
Authenticator (GATT Server) beyond those required by all GATT Servers.

GATT Sub-Procedure Requirements
Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements for a FIDO
Client (GATT Client) beyond those required by all GATT Clients.

GATT Sub-Procedure Requirements
Discover All Primary Services (*)

Discover Primary Services by Service UUID (*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures.

(**): Mandatory to support at least one of these sub-procedures.

Other GATT sub-procedures may be used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values are
big-endian coded, all strings are in UTF-8 encoding, and any characteristics not mentioned
explicitly are optional.

6.1 U2F Service

An Authenticator shall implement the U2F Service described below. The UUID for the FIDO
U2F GATT service is 0xFFFD, it shall be declared as a Primary Service. The service contains
the following characteristics:

Characteristic
Name Mnemonic Property Length UUID

U2F Control
Point u2fControlPoint Write

Defined
by
Vendor
(20-512
bytes)

F1D0FFF1-
DEAA-ECEE-
B42F-
C9BA7ED623BB

U2F Status u2fStatus Notify N/A
F1D0FFF2-
DEAA-ECEE-
B42F-
C9BA7ED623BB

U2F Control
Point Length u2fControlPointLength Read 2 bytes

F1D0FFF3-
DEAA-ECEE-
B42F-
C9BA7ED623BB

U2F Service
Revision u2fServiceRevision Read

Defined
by
Vendor
(20-512
bytes)

0x2A28

U2F Service
Revision
Bitfield

u2fServiceRevisionBitfield Read/Write
See
below,
at least
1 byte

F1D0FFF4-
DEAA-ECEE-
B42F-
C9BA7ED623BB

u2fControlPoint is a write-only command buffer.

u2fStatus is a notify-only response attribute. The Authenticator will send a series of
notifications on this attribute with a maximum length of (ATT_MTU-3) using the response
frames defined above. This mechanism is used because this results in a faster transfer
speed compared to a notify-read combination.

u2fControlPointLength defines the maximum size in bytes of a single write request to
u2fControlPoint. This value shall be between 20 and 512.

u2fServiceRevision defines the revision of the U2F Service. The value is a UTF-8 string.
For version 1.0 of the specification, the value u2fServiceRevision shall be 1.0 or in raw
bytes: 0x312e30. This field shall be omitted if protocol version 1.0 is not supported.

u2fServiceRevisionBitfield defines the revision of the U2F Service. The value is a bit field.
Each bit represents the Authenticator's support of a particular protocol version. A bit value of
1 indicates support, while value 0 indicates lack of support. The length of the bitfield is 1 or
more bytes. All bytes that are 0 are omitted if all the following bytes are 0 too. The bit field is
big endian encoded with the most significant bit representing version 1.1 support, the next
most significant bit, representing the next protocol version, etc. If only version 1.0 is
supported, this characteristic shall be omitted. If the u2fServiceRevision characteristic is
present or more than 1 bit in this u2fServiceRevisionBitfield characteristic is 1, the client
shall write the value of the requested protocol version to be used for the lifetime of this
connection. If u2fServiceRevision characteristic is not present and only one bit in
u2fServiceRevisionBitfield is set, the version that bit represents shall be the default.

Byte (left to right) Bit Version
0 7 1.1

0 6 1.2
For example, a device that only supports 1.1 will only have a u2fServiceRevisionBitfield
characteristic of length 1 with value 0x80.

The u2fServiceRevision Characteristic may include a Characteristic Presentation Format
descriptor with format value 0x19, UTF-8 String.

6.2 Device Information Service

An Authenticator shall implement the Device Information Service [BluetoothDIS] with the
following characteristics:

Manufacturer Name String
Model Number String
Firmware Revision String

All values for the Device Information Service are left to the vendors. However, vendors
should not create uniquely identifiable values so that Authenticators do not become a
method of tracking users.

6.3 Generic Access Profile service

Every Authenticator shall implement the Generic Access Profile service [BluetoothGAS] with
the following characteristics:

Device Name
Appearance

7. Protocol Overview
The general overview of the communication protocol follows:

1. Authenticator advertises the FIDO U2F service.
2. Client scans for Authenticator advertising the FIDO U2F service.
3. Client performs characteristic discovery on the Authenticator.

4. If not already paired, the Client and Authenticator shall perform Bluetooth low energy
technology pairing and create a LTK. Authenticator shall only allow connections from
previously bonded Clients without user intervention.

5. Client reads the u2fControlPointLength characteristic.
6. Client registers for notifications on the u2fStatus characteristic if not already

registered.
7. Client writes a request (e.g., an enroll request) into the u2fControlPoint characteristic.
8. Authenticator evaluates the request and responds by sending notifications over

u2fStatus characteristic.
9. The protocol completes when either:

The Client unregisters for notifications on the u2fStatus characteristic, or:
The connection times out and is closed by the Authenticator.

8. Authenticator Advertising Format
When advertising, the Authenticator shall advertise the FIDO U2F service UUID.

When advertising, the Authenticator may include the TxPower value in the advertisement
(see [BluetoothXPLAD]).

When advertising in pairing mode, the Authenticator shall either: (1) set the LE Limited
Mode bit to zero and the LE General Discoverable bit to one OR (2) set the LE Limited
Mode bit to one and the LE General Discoverable bit to zero. When advertising in non-
pairing mode, the Authenticator shall set both the LE Limited Mode bit and the LE General
Discoverable Mode bit to zero in the Advertising Data Flags.

The advertisement may also carry a device name which is distinctive and user-identifiable.
For example, "ACME Key" would be an appropriate name, while "XJS4" would not be.

The Authenticator shall also implement the Generic Access Profile [BluetoothGAP] and
Device Information Service [BluetoothDIS], both of which also provide a user friendly name
for the device which could be used by the Client. The Bluetooth DIS shall contain the PnP
ID field [BluetoothPNPID].

It is not specified when or how often an Authenticator should advertise, instead that
flexibility is left to manufacturers.

9. Requests
Clients should make requests by connecting to the Authenticator and performing a write into
the u2fControlPoint characteristic.

10. Responses
Authenticators should respond to Clients by sending notifications on the u2fStatus
characteristic.

Some Authenticators might alert users or prompt them to complete the test of user
presence (e.g., via sound, light, vibration) Upon receiving any request, the Authenticators
shall send KEEPALIVE commands every kKeepAliveMillis milliseconds until completing
processing the commands. While the Authenticator is processing the request the
KEEPALIVE command will contain status PROCESSING. If the Authenticator is waiting to
complete the Test of User Presence, the KEEPALIVE command will contains status
TUP_NEEDED. While waiting to complete the Test of User Presence, the Authenticator may
alert the user (e.g., by flashing) in order to prompt the user to complete the test of user
presence. As soon the Authenticator has completed processing and confirmed user
presence, it shall stop sending KEEPALIVE commands, and send the reply.

Upon receiving a KEEPALIVE command, the Client shall assume the Authenticator is still

processing the command; the Client shall not resend the command. The Authenticator shall
continue sending KEEPALIVE messages at least every kKeepAliveMillis to indicate that it
is still handling the request. Until a client-defined timeout occurs, the Client shall not move
on to other devices when it receives a KEEPALIVE with TUP_NEEDED status, as it knows this
is a device that can satisfy its request.

11. Framing fragmentation
A single request/response sent over Bluetooth low energy technology may be split over
multiple writes and notifications, due to the inherent limitations of Bluetooth low energy
technology which is not currently meant for large messages. Frames are fragmented in the
following way:

A frame is divided into an initialization fragment and one or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description
0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 0 to (maxLen - 3) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, the start of an initialization fragment is indicated by setting the high bit in the
first byte. The subsequent two bytes indicate the total length of the frame, in big-endian
order. The first maxLen - 3 bytes of data follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ
Packet sequence 0x00..0x7f (high bit always
cleared)

1 0 to (maxLen -
1) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0,
implicitly with the high bit cleared. The sequence number must wrap around to 0 after
reaching the maximum sequence number of 0x7f.

Example for sending a PING command with 40 bytes of data with a maxLen of 20 bytes:

Frame Bytes
0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512 bytes:

Frame Bytes
0 [810190] [400 bytes of data]

12. Notifications
A client needs to register for notifications before it can receive them. Bluetooth Core
Specification 4.0 or later [BluetoothCORE] forces a device to remember the notification
registration status over different connections [BluetoothCCC]. Unless a client explicitly
unregisters for notifications, the registration will be automatically restored after restoring the
bond. A client may therefor check the notification status upon connection and only register if
notifications aren't already registered. Please note that some clients will disable notifications
from a power management point of view (see below) and the notification registration is
remembered per bond, not per client. A client must not remember the notification status in
its own data storage.

13. Implementation Considerations
13.1 Bluetooth pairing: Client considerations

As noted in the Pairing section, a disadvantage of using standard Bluetooth pairing is that
the pairing is "system-wide" on most operating systems. That is, if an Authenticator is paired
to a FIDO Client which resides on an operating system where Bluetooth pairing is "system-
wide", then any application on that device might be able to interact with an Authenticator.
This poses both security and privacy risks to users.

While Client operating system security is partly out of FIDO's scope, further revisions of this
specification may propose mitigations for this issue.

13.2 Bluetooth pairing: Authenticator considerations

The method to put the Authenticator into Pairing Mode should be such that it is not easy for
the user to do accidentally especially if the pairing method is Just Works. For example, the
action could be pressing a physically recessed button or pressing multiple buttons. A visible
or audible cue that the Authenticator is in Pairing Mode should be considered. As a counter
example, a silent, long press of a single non-recessed button is not advised as some users
naturally hold buttons down during regular operation.

Note that at times, Authenticators may legitimately receive communication from an unpaired
device. For example, a user attempts to use an Authenticator for the first time with a new
Client: he turns it on, but forgets to put the Authenticator into pairing mode. In this situation,
after connecting to the Authenticator, the Client will notify the user that he needs to pair his
Authenticator. The Authenticator should make it easy for the user to do so, e.g., by not
requiring the user to wait for a timeout before being able to enable pairing mode.

Some Client platforms (most notably iOS) do not expose the AD Flag LE Limited and
General Discoverable Mode bits to applications. For this reason, Authenticators are also
strongly recommended to include the Service Data field [BluetoothSD] in the Scan
Response. The Service Data field is 3 or more octets long. This allows the Flags field to be
extended while using the minimum number of octets within the data packet. All octets that
are 0x00 are not transmitted as long as all other octets after that octet are also 0x00 and it is
not the first octet after the service UUID. The first 2 bytes contain the FIDO Service UUID,
the following bytes are flag bytes.

To help Clients show the correct UX, Authenticators can use the Service Data field to
specify whether or not Authenticators will require a Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)
7 Device is in pairing mode.

file:///Users/apowers/Projects/fido-releases/u2f-1.2/.fido-template/BluetoothSD

6 Device requires Passkey Entry [BluetoothPESTK].

13.3 Handling command completion

It is important for low-power devices to be able to conserve power by shutting down or
switching to a lower-power state when they have satisfied a Client's requests. However, the
U2F protocol makes this hard as it typically includes more than one command/response.
This is especially true if a user has more than one key handle associated with an account or
identity, multiple key handles may need to be tried before getting a successful outcome.
Furthermore, Clients that fail to send follow up commands in a timely fashion may cause the
Authenticator to drain its battery by staying powered up anticipating more commands.

A further consideration is to ensure that a user is not confused about which command she is
confirming by completing the test of user presence. That is, if a user performs the test of
user presence, that action should perform exactly one operation.

We combine these considerations into the following series of recommendations:

Upon initial connection to an Authenticator, and upon receipt of a response from an
Authenticator, if a Client has more commands to issue, the Client must transmit the
next command or fragment within kMaxCommandTransmitDelayMillis milliseconds.
Upon final response from an Authenticator, if the Client decides it has no more
commands to send it should indicate this by disabling notifications on the u2fStatus
characteristic. When the notifications are disabled the Authenticator may enter a low
power state or disconnect and shut down.
Any time the Client wishes to send a U2F APDU, it must have first enabled
notifications on the u2fStatus characteristic and wait for the ATT acknowledgment to
be sure the Authenticator is ready to process APDU messages.
Upon successful completion of a command which required a test of user presence,
e.g. upon a successful authentication or registration command, the Authenticator can
assume the Client is satisfied, and may reset its state or power down.
Upon sending a command response that did not consume a test of user presence, the
Authenticator must assume that the Client may wish to initiate another command, and
leave the connection open until the Client closes it or until a timeout of at least
kErrorWaitMillis elapses. Examples of command responses that do not consume
user presence include failed authenticate or register commands, as well as get version
responses, whether successful or not. After kErrorWaitMillis milliseconds have
elapsed without further commands from a Client, an Authenticator may reset its state
or power down.

Constant Value
kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kKeepAliveMillis 500 milliseconds

13.4 Data throughput

Bluetooth low energy technology does not have particularly high throughput, this can cause
noticeable latency to the user if request/responses are large. Some ways that implementers
can reduce latency are:

Support the maximum MTU size allowable by hardware (up to the 512 bytes max from
the Bluetooth specifications).
Make the attestation certificate as small as possible, do not include unnecessary
extensions.

13.5 Advertising

Though the standard doesn’t appear to mandate it (in any way that we’ve found thus far),
advertising and device discovery seems to work better when the Authenticators advertise on
all 3 advertising channels and not just one.

13.6 Authenticator Address Type

In order to enhance the user's privacy and specifically to guard against tracking, it is
recommended that Authenticators use Resolvable Private Addresses (RPAs) instead of
static addresses.

14. Bibliography
[BluetoothASSNUM] Bluetooth Assigned Numbers. URL: https://www.bluetooth.org/en-
us/specification/assigned-numbers

[BluetoothCORE] Bluetooth Core Specification 4.0. URL:
https://www.bluetooth.com/specifications/adopted-specifications

[BluetoothDIS] Device Information Service v1.1. URL:
https://www.bluetooth.com/specifications/adopted-specifications

[BluetoothGAP] Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C,
Section 12. URL: https://www.bluetooth.com/specifications/adopted-specifications

[BluetoothGAS] Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3,
Part C, Section 12. URL:
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?
u=org.bluetooth.service.generic_access.xml

[BluetoothCCC] Client Characteristic Configuration. Bluetooth Core Specification 4.0,
Volume 3, Part G, Section 3.3.3.3. URL: https://www.bluetooth.com/specifications/adopted-
specifications

[BluetoothXPLAD] Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume
3, Part C, Section 11. URL: https://www.bluetooth.com/specifications/adopted-specifications

[BluetoothSD] Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3,
Part C, Section 11. URL: https://www.bluetooth.com/specifications/adopted-specifications

[BluetoothPESTK] Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H,
Section 2.3.5.3 URL: https://www.bluetooth.com/specifications/adopted-specifications

[BluetoothPNPID] PnP ID. https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.characteristic.pnp_id.xml URL:
https://www.bluetooth.com/specifications/adopted-specifications

A. References
A.1 Normative references

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO
Alliance Implementation Draft. URLs:
HTML: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-v1.2-ps-
20170411.html
PDF: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-v1.2-ps-
20170411.pdf

https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.pnp_id.xml
https://www.bluetooth.com/specifications/adopted-specifications
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-v1.2-ps-20170411.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[U2FRawMsgs]
D. Balfanz, FIDO U2F Raw Message Formats v1.0. FIDO Alliance Review Draft (Work
in progress.) URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-
raw-message-formats-v1.2-ps-20170411.pdf

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016.
W3C Editor's Draft. URL: https://heycam.github.io/webidl/

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.pdf
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

	FIDO Bluetooth® Specification v1.0
	FIDO Alliance Proposed Standard 11 April 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Conformance
	3. Pairing
	4. Link Security
	5. Framing
	5.1 Request from Client to Authenticator
	5.2 Response from Authenticator to Client
	5.3 Command, Status, and Error constants

	6. GATT Service Description
	6.1 U2F Service
	6.2 Device Information Service
	6.3 Generic Access Profile service

	7. Protocol Overview
	8. Authenticator Advertising Format
	9. Requests
	10. Responses
	11. Framing fragmentation
	12. Notifications
	13. Implementation Considerations
	13.1 Bluetooth pairing: Client considerations
	13.2 Bluetooth pairing: Authenticator considerations
	13.3 Handling command completion
	13.4 Data throughput
	13.5 Advertising
	13.6 Authenticator Address Type

	14. Bibliography
	A. References
	A.1 Normative references

