QJ-‘

Q
-
@)
(D

FIDO U2F HID Protocol Specification
FIDO Alliance Proposed Standard 11 April 2017

This version:
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-2017041 1/fido-u2f-hid-protocol-v1.1-
v1.2-ps-20170411.html

Previous version:
https://fidoalliance.org/specs/fido-u2f-hid-protocol-v1.1-Member Submission-
20140721 .html

Editors:
Jakob Ehrensvérd, Yubico
John Kemp, FIDO Alliance

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright © 2014-2017 EIDO Alliance All Rights Reserved.

Abstract

U2FHID protocol description and implementation specification

The purpose of this documentation is to provide a complete specification how to implement
the U2FHID protocol, where FIDO U2F messages are framed for USB transport, using the
HID protocol. General FIDO and U2F- concepts, semantics, meaning is beyond the scope of
this document and for information on these topics, please refer to the appropriate related
documentation.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications and
the latest revision of this technical report can be found in the FIDO Alliance specifications
index at https.//www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are welcome.



https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.1-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-hid-protocol-v1.1-Member Submission-20140721.html
mailto:jakob@yubico.com
https://www.yubico.com/
mailto:john@jkemp.net
https://fidoalliance.org
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact

Implementation of certain elements of this Specification may require licenses under third
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all
such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a
Proposed Standard. It is a stable document and may be used as reference material or cited
from another document. FIDO Alliance's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment.

Table of Contents

e 1. Document Information
o 1.1 Notation
= 1.1.1 Key Words

o 1.2 Definitions
o 2. U2FHID protocol implementation

o 2.1 U2FHID implementation rationale

o 2.2 Protocol structure and data framing
2.3 Concurrency and channels
2.4 Message- and packet structure

2.5 Arbitration
= 2.5.1 Transaction atomicity, idle- and busy states.

= 2.5.2 Transaction timeout
= 2.5.3 Transaction abort and re-synchronization
= 2.5.4 Packet sequencing

[o]

o

o

o 2.6 Channel locking

o 2.7 Protocol version and compatibility
o 3. HID device implementation

o 3.1 Interface- and endpoint descriptors

o 3.2 HID report descriptor and device discovery
e 4. U2FHID commands

o 4.1 Mandatory commands
= 4.1.1 U2FHID_MSG

= 4.1.2 U2FHID_INIT

= 4.1.3 U2FHID_PING

= 4.1.4 U2FHID_ERROR
o 4.2 Optional commands

= 4.2.1 U2FHID_WINK

= 4.2.2 U2FHID_LOCK

o 4.3 Vendor specific commands

o A. References
o A.1 Normative references

1. Document Information



1.1 Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “’, e.g. “UAF-TLV”.
In formulas we use “I” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL
[WebIDL].

Symbolic constants such as U2FHID_MSG which are referred to when defining messages in
this documents have their values defined in [U2FHIDHeader] in the bibliography.

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1.1 Key Words

LI 1 b 11 bE 11

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“‘recommended”, “may”, and “optional” in this document are to be interpreted as described in
[RFC2119].

1.2 Definitions

Term Definition
U2F Universal Second Factor
USB Universal Serial Bus
HID Human Interface Device. A specification of typical USB devices used for human
interaction, such as keyboards, mice, joysticks etc.
U2FHID | U2F transport over HID as defined by this document

2. U2FHID protocol implementation

This description does not describe the actual raw U2F messages, semantics and
functionality but rather how such messages are framed for HID transport. The raw U2F
messages are defined in [U2FRawMsgs]. For the U2FHID protocol, all raw U2F messages
are encoded using extended length APDU encoding.

2.1 U2FHID implementation rationale
The U2FHID protocol is designed with the following design objectives in mind

Driver-less installation on all major host platforms

Multi-application support with concurrent application access without the need for
serialization and centralized dispatching.

Fixed latency response and low protocol overhead
Scalable method for U2FHID device discovery

Since HID data is sent as interrupt packets and multiple applications may access the HID
stack at once, a non-trivial level of complexity has to be added to handle this.

2.2 Protocol structure and data framing

The U2F protocol is designed to be concurrent and state-less in such a way that each
performed function is not dependent on previous actions. However, there has to be some




form of "atomicity" that varies between the characteristics of the underlying transport
protocol, which for the U2FHID protocol introduces the following terminology:

e Transaction
e Message
o Packet

A transaction is the highest level of aggregated functionality, which in turn consists of a
request, followed by a response message. Once a request has been initiated, the
transaction has to be entirely completed before a second transaction can take place and a
response is never sent without a previous request.

Request- and response messages are in turn divided into individual fragments, known as
packets. The packet is the smallest form of protocol data unit, which in the case of U2FHID
are mapped into HID reports.

2.3 Concurrency and channels

Additional logic and overhead is required to allow a U2FHID device to deal with multiple
“clients", i.e. multiple applications accessing the single resource through the HID stack.

Each client communicates with a U2FHID device through a logical channel, where each
application uses a unique 32-bit channel identifier for routing- and arbitration purposes.

A channel identifier is allocated by the U2F device to ensure its system-wide uniqueness.
The actual algorithm for generation of channel identifiers is vendor specific and not defined
by this specification.

Channel ID 0 is reserved and oxcsc£e£££ iS reserved for broadcast commands, i.e. at the
time of channel allocation.

2.4 Message- and packet structure

Packets are one of two types, initialization packets and continuation packets. As the
name suggests, the first packet sent in a message is an initialization packet, which also
becomes the start of a transaction. If the entire message does not fit into one packet
(including the U2FHID protocol overhead), one or more continuation packets have to be
sent in strict ascending order to complete the message transfer.

A message sent from a host to a device is known as arequest and a message sent from a
device back to the host is known as a response. A request always triggers a response and
response messages are never sent ad-hoc, i.e. without a prior request message.

The request and response messages have an identical structure. A transaction is started
with the initialization packet of the request message and ends with the last packet of the
response message.

Packets are always fixed size (defined by the endpoint- and HID report descriptors) and
although all bytes may not be needed in a particular packet, the full size always has to be
sent. Unused bytes should be set to zero.

An initialization packet is defined as

Offset | Length | Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)
5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length




‘7

(s-7) ‘DATA

Payload data (s is equal to the fixed packet “
size)

The command byte has always the highest bit set to distinguish it from a continuation
packet, which is described below.

A continuation packet is defined as

Offset | Length | Mnemonic Description
0 4 CID Channel identifier
Packet sequence 0x00..0x7f (bit 7 always
4 1 SEQ cleared)
5 (s-5) |DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7) may be sent as one
packet. A larger message is then divided into one or more continuation packets, starting
with sequence number 0, which then increments by one to a maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum
message payload length is 64 - 7 + 128 * (64 - 5) = 7609 bytes.

2.5 Arbitration

In order to handle multiple channels and clients concurrency, the U2FHID protocol has to
maintain certain internal states, block conflicting requests and maintain protocol integrity.
The protocol relies on each client application (channel) behaves politely, i.e. does not
actively act to destroy for other channels. With this said, a malign- or malfunctioning
application can cause issues for other channels. Expected errors and potentially stalling
applications should however be handled properly.

2.5.1 Transaction atomicity, idle- and busy states.

A transaction always consists of three stages:

1. A message is sent from the host to the device
2. The device processes the message
3. Aresponse is sent back from the device to the host

The protocol is built on the assumption that a plurality of concurrent applications may try ad-
hoc to perform transactions at any time, with each transaction being atomic, i.e. it cannot be
interrupted by another application once started.

The application channel that manages to get through the first initialization packet when the
device is in idle state will keep the device locked for other channels until the last packet of
the response message has been received. The device then returns to idle state, ready to
perform another transaction for the same or a different channel. Between two transactions,
no state is maintained in the device and a host application must assume that any other
process may execute other transactions at any time.

If an application tries to access the device from a different channel while the device is busy

with a transaction, that request will immediately fail with a busy-error message sent to the
requesting channel.

2.5.2 Transaction timeout

A transaction has to be completed within a specified period of time to prevent a stalling
application to cause the device to be completely locked out for access by other applications.



If for example an application sends an initialization packet that signals that continuation
packets will follow and that application crashes, the device will back out that pending
channel request and return to an idle state.

2.5.3 Transaction abort and re-synchronization

If an application for any reason "gets lost", gets an unexpected response or error, it may at
any time issue an abort-and-resynchronize command. If the device detects a SYNC
command during a transaction that has the same channel id as the active transaction, the
transaction is aborted (if possible) and all buffered data flushed (if any). The device then
returns to idle state to become ready for a new transaction.

2.5.4 Packet sequencing

The device keeps track of packets arriving in correct and ascending order and that no
expected packets are missing. The device will continue to assemble a message until all
parts of it has been received or that the transaction times out. Spurious continuation
packets appearing without a prior initialization packet will be ignored.

2.6 Channel locking

In order to deal with aggregated transactions that may not be interrupted, such as vendor
specific tunneling of APDUs, a channel lock command may be implemented. By sending a
channel lock command, the device prevents other channels from communicating with the
device until the channel lock has timed out or been explicitly unlocked by the application.

This feature is optional and has not to be considered by general U2F HID applications.

2.7 Protocol version and compatibility

The U2FHID protocol is designed to be extensible, yet maintaining backwards compatibility
to the extent it is applicable. This means that a U2FHID host shall support any version of a
device with the command set available in that particular version.

3. HID device implementation

This description assumes knowledge of the USB- and HID specifications and is intended to
provide the basics for implementing a U2FHID device. There are several ways to implement
USB devices and reviewing these different methods is beyond the scope of this document.
This specification targets the interface part, where a device is regarded as either a single- or
multiple interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s).

Although not excluded per se, USB low-speed devices are not practical to use given the 8-
byte report size limitation together with the protocol overhead.

3.1 Interface- and endpoint descriptors

The device implements two endpoints (except the control endpoint 0), one for IN- and one
for OUT transfers. The packet size is vendor defined, but the reference implementation
assumes a full-speed device with two 64-byte endpoints.

Interface Descriptor

Mnemonic Value Description

One IN- and one OUT
endpoint

bNumEndpoints 2

binterfaceClass 0x03 | HID




binterfaceSubClass | 0x00 | No interface subclass

binterfaceProtocol | 0x00 | No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 | Interrupt transfer
bEndpointAdresss | 0x01 |1, OUT
bMaxPacketSize |64 64 bytes packets

5 Poll every 5
millisecond

binterval

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 | Interrupt transfer
bEndpointAdresss | 0x81 |1, IN
bMaxPacketSize |64 64 bytes packets

Poll every 5

binterval 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be
defined freely by the vendor and the host application is responsible for querying these
values and handle these accordingly. For the sake of clarity, the values listed above are
used in the following examples.

3.2 HID report descriptor and device discovery

A HID report descriptor is required for all HID devices, even though the reports and their
interpretation (scope, range, etc.) makes very little sense from an operating system
perspective. The U2FHID just provides two "raw" reports, which basically map directly to the
IN and OUT endpoints. However, the HID report descriptor has an important purpose in
U2FHID, as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

// HID report descriptor

const uint8 t HID ReportDescriptor[] = {
HID UsagePage ( FIDO USAGE_PAGE ),
HID Usage ( FIDO USAGE U2FHID ),
HID Collection ( HID Application ),
HID Usage ( FIDO USAGE DATA IN ),
HID LogicalMin ( 0 ),
HID LogicalMaxS ( Oxff ),
HID ReportSize ( 8 ),
HID ReportCount ( HID INPUT REPORT_BYTES ),
HID Input ( HID Data | HID Absolute | HID Variable ),
HID Usage ( FIDO USAGE DATA OUT ),
HID LogicalMin ( 0 ),
HID LogicalMaxS ( Oxff ),
HID ReportSize ( 8 ),
HID ReportCount ( HID OUTPUT REPORT BYTES ),
HID Output ( HID Data | HID Absolute | HID Variable ),
HID EndCollection



}i

A unique Usage Page is defined for the FIDO alliance and under this realm, a U2FHID
Usage is defined as well. During U2FHID device discovery, all HID devices present in the
system are examined and devices that match this usage pages and usage are then
considered to be U2FHID devices.

The length values specified by theurp 1neuT rEPORT BYTES and the

nIp ouTPUT REPORT BYTES should typically match the respective endpoint sizes defined in the
endpoint descriptors.

4. U2FHID commands

The U2FHID protocol implements the following commands.

4.1 Mandatory commands

The following list describes the minimum set of commands required by an U2FHID device.
Optional- and vendor-specific commands may be implemented as described in respective
sections of this document.

4.1.1 U2FHID_MSG

This command sends an encapsulated U2F message to the device. The semantics of the
data message is defined in the U2F protocol specification.

Request

CMD |U2FHID_MSG
BCNT | 4..n
DATA | n bytes

Response at success

CMD |U2FHID_MSG
BCNT | 2..n
DATA | N bytes

4.1.2 U2FHID_INIT

This command synchronizes a channel and optionally requests the device to allocate a
unique 32-bit channel identifier (CID) that can be used by the requesting application during
its lifetime. The requesting application generates a nonce that is used to match the
response. When the response is received, the application compares the sent nonce with the
received one. After a positive match, the application stores the received channel id and uses
that for subsequent transactions.

To allocate a new channel, the requesting application shall use the broadcast channel
U2FHID_BROADCAST_CID. The device then responds the newly allocated channel in the
response, using the broadcast channel.

Request

U2FHID
|C'V'D |_INIT |




BCNT | 8
DATA | 8 byte nonce

Response at success

CMD U2FHID _INIT
BCNT 17 (see note below)
DATA 8 byte nonce
DATA+8 |4 byte channel ID

U2FHID protocol version
DATA+12 identifier

DATA+13 | Major device version number

DATA+14 | Minor device version number

DATA+15 | Build device version number
DATA+16 | Capabilities flags

The protocol version identifies the protocol version implemented by the device. An U2FHID
host shall accept a response size that is longer than the anticipated size to allow for future
extensions of the protocol, yet maintaining backwards compatibility. Future versions will
maintain the response structure to this current version, but additional fields may be added.

The meaning and interpretation of the version number is vendor defined.

The following device capabilities flags are defined. Unused values are reserved for future
use and must be set to zero by device vendors.

Implements the WINK
CAPABILITY_WINK function

4.1.3 U2FHID_PING

Sends a transaction to the device, which immediately echoes the same data back. This
command is defined to be an uniform function for debugging-, latency- and performance
measurements.

Request

CMD |U2FHID_PING
BCNT | 0..n
DATA | n bytes

Response at success

CMD |U2FHID_PING
BCNT | n
DATA | N bytes

4.1.4 U2FHID_ERROR



This command code is used in response messages only.

CMD |U2FHID_ERROR
BCNT | 1
DATA | Error code

The following error codes are defined

ERR_INVALID_CMD The command in the request is invalid
ERR_INVALID_PAR The parameter(s) in the request is invalid

The length field (BCNT) is invalid for the
request

ERR_INVALID_LEN

ERR_INVALID_SEQ The sequence does not match expected value
ERR_MSG_TIMEOUT | The message has timed out
ERR_CHANNEL_BUSY | The device is busy for the requesting channel

4.2 Optional commands

The following commands are defined by this specification but are optional and does not
have to be implemented.

4.2.1 U2FHID_WINK

The wink command performs a vendor-defined action that provides some visual- or audible
identification a particular U2F device. A typical implementation will do a short burst of
flashes with a LED or something similar. This is useful when more than one device is
attached to a computer and there is confusion which device is paired with which connection.

Request

CMD | U2FHID_WINK
BCNT |0
DATA | N/A

Response at success

CMD | U2FHID_WINK
BCNT |0
DATA | N/A

4.2.2 U2FHID_LOCK

The lock command places an exclusive lock for one channel to communicate with the
device. As long as the lock is active, any other channel trying to send a message will fail. In
order to prevent a stalling- or crashing application to lock the device indefinitely, a lock time
up to 10 seconds may be set. An application requiring a longer lock has to send repeating
lock commands to maintain the lock.

Request




CMD |U2FHID_LOCK
BCNT | 1

Lock time in seconds 0..10. A value of 0 immediately releases the
DATA lock

Response at success

CMD |U2FHID_LOCK
BCNT |0
DATA | N/A

4.3 Vendor specific commands

A U2FHID may implement additional vendor specific commands that are not defined in this
specification, yet being U2FHID compliant. Such commands, if implemented must have a
command in the range between U2FHID_VENDOR_FIRST and U2FHID_VENDOR_LAST.

A. References

A.1 Normative references

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/
[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO
Alliance Implementation Draft. URLs:
HTML.: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-v1.2-ps-
20170411.html
PDF: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-vi.2-ps-
20170411.pdf
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
[U2FHIDHeader]
J. Ehrensvard, FIDO U2F HID Header Files vi.0 FIDO Alliance Review Draft (Work in
progress.) URL: https://github.com/fido-alliance/u2f-specs/blob/master/inc/u2f hid.h
[U2FRawMsgs]
D. Balfanz, FIDO U2F Raw Message Formats v1.Q FIDO Alliance Review Draft (Work
in progress.) URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-
raw-message-formats-v1.2-ps-20170411.pdf
[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016.
W3C Editor's Draft. URL: https://heycam.github.io/webidl/



https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-glossary-v1.2-ps-20170411.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://github.com/fido-alliance/u2f-specs/blob/master/inc/u2f_hid.h
https://github.com/fido-alliance/u2f-specs/blob/master/inc/u2f_hid.h
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.pdf
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

	FIDO U2F HID Protocol Specification
	FIDO Alliance Proposed Standard 11 April 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Document Information
	1.1 Notation
	1.1.1 Key Words

	1.2 Definitions

	2. U2FHID protocol implementation
	2.1 U2FHID implementation rationale
	2.2 Protocol structure and data framing
	2.3 Concurrency and channels
	2.4 Message- and packet structure
	2.5 Arbitration
	2.5.1 Transaction atomicity, idle- and busy states.
	2.5.2 Transaction timeout
	2.5.3 Transaction abort and re-synchronization
	2.5.4 Packet sequencing

	2.6 Channel locking
	2.7 Protocol version and compatibility

	3. HID device implementation
	3.1 Interface- and endpoint descriptors
	3.2 HID report descriptor and device discovery

	4. U2FHID commands
	4.1 Mandatory commands
	4.1.1 U2FHID_MSG
	4.1.2 U2FHID_INIT
	4.1.3 U2FHID_PING
	4.1.4 U2FHID_ERROR

	4.2 Optional commands
	4.2.1 U2FHID_WINK
	4.2.2 U2FHID_LOCK

	4.3 Vendor specific commands

	A. References
	A.1 Normative references



