
FIDO U2F Raw Message Formats
Specification Set: fido-u2f-v1.0-rd-20140209 REVIEW DRAFT

Editors:
Dirk Balfanz (balfanz@google.com)

Contributors:

Abstract:

Copyright © 2014 FIDO Alliance

™

1

2

3

4

5

6

FIDO U2F Raw Message Formats

Status:

This Specification has been prepared by FIDO Alliance, Inc. This is a Review Draft Specifica-
tion and is not intended to be a basis for any implementations as the Specification may
change. Permission is hereby granted to use the Specification solely for the purpose of review-
ing the Specification. No rights are granted to prepare derivative works of this Specification. En-
tities seeking permission to reproduce portions of this Specification for other uses must contact
the FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights. The FIDO Alliance, Inc.
and its Members and any other contributors to the Specification are not, and shall not be held, re-
sponsible in any manner for identifying or failing to identify any or all such third party intellec-
tual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Copyright © 2014 FIDO Alliance, Inc. All rights reserved.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 2

7

8
9

10
11
12
13

14
15
16
17
18

19
20
21
22

23

FIDO U2F Raw Message Formats

Table of Contents

1 Notation .. 4

1.1 Key Words ... 4

2 Introduction .. 5

3 Registration Messages .. 8

3.1 Registration Request Message .. 8

3.2 Registration Response Message: Error: Test-of-User-Presence Required 8

3.3 Registration Response Message: Success ... 9

4 Authentication Messages ... 11

4.1 Authentication Request Message ... 11

4.2 Authentication Response Message: Error: Test-of-User-Presence Required 12

4.3 Authentication Response Message: Error: Bad Key Handle ... 12

4.4 Authentication Response Message: Success .. 13

5 Other Messages .. 15

5.1 GetVersion Request and Response ... 15

6 Client Data ... 16

7 Examples ... 18

7.1 Registration Example .. 18

7.2 Authentication Example .. 20

 Bibliography .. 21

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 3

FIDO U2F Raw Message Formats

1 Notation

Type names, attribute names and element names are written in italics.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

U2F specific terminology used in this document is defined in [FIDOGlossary]

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this doc-
ument are to be interpreted as described in [RFC2119].

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 4

24

25

26

27

28

29

30
31
32

FIDO U2F Raw Message Formats

2 Introduction

Note: Reading the 'FIDO U2F Overview' [U2FOverview] is recommended as a back-
ground for this document.

U2F Tokens provide cryptographic assertions that can be verified by relying parties.
Typically, the relying party is a web server, and the cryptographic assertions are used
as second-factors (in addition to passwords) during user authentication.

U2F Tokens are typically small special-purpose devices that aren’t directly connected to
the Internet (and hence, able to talk directly to the relying party). Therefore, they rely on
a FIDO Client to relay messages between the token and the relying party. Typically, the
FIDO Client is a web browser.

The U2F protocol supports two operations, registration and authentication. The registra-
tion operation introduces the relying party to a freshly-minted keypair that is under con-
trol of the U2F token. The authentication operation proves possession of a previous-
ly-registered keypair to the relying party. Both the registration and authentication opera-
tion consist of three phases:

1. Setup: In this phase, the FIDO Client contacts the relying party and obtains a
challenge. Using the challenge (and possibly other data obtained from the relying
party and/or prepared by the FIDO Client itself), the FIDO Client prepares a re-
quest message for the U2F Token.

2. Processing: In this phase, the FIDO Client sends the request message to the to-
ken, and the token performs some cryptographic operations on the message,
creating a response message. This response message is sent to the FIDO
Client.

3. Verification: In this phase, the FIDO Client transmits the token’s response mes-
sage, along with other data necessary for the relying party to verify the token re-
sponse, to the relying party. The relying party then processes the token response
and verifies its correctness. A correct registration response will cause the relying
party to register a new public key for a user, while a correct authentication re-
sponse will cause the relying party to accept that the client is in possession of the
corresponding private key.

Here is a picture illustrating the three phases:

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 5

33

34
35

36
37
38

39
40
41
42

43
44
45
46
47

48
49
50
51

52
53
54
55

56
57
58
59
60
61
62

63

FIDO U2F Raw Message Formats

At the heart of the U2F protocol are the request messages sent to the U2F token, and
the response messages received from the U2F token.1 Request messages are created
by the relying party and consumed by the U2F token. Response messages are created
by the U2F token and consumed by the relying party.

As the messages flow from relying party (through the FIDO Client) to the U2F token and
back, they undergo various transformations and encodings. Some of these transforma-
tions and encodings are up to the individual implementations and are not standardized
as part of FIDO U2F. For example, FIDO U2F does not prescribe how request and re-
sponse messages are encoded between the FIDO Client and the relying party.

However, to ensure that U2F tokens from different vendors can work across U2F-com-
pliant web sites certain encodings are standardized:

1. FIDO U2F standardizes a Javascript API that prescribes how a web application
can pass request messages into the FIDO Client (in the case where the web
browser is the FIDO Client), and what the encoding of the response messages is.

2. FIDO U2F standardizes how request and response messages are to be encoded
when sent over from the client over the USB transport to U2F tokens. In addition
to specifying the encoding, the transport level specification also specifies the for-
mat for control messages to the tokens and the format for the error responses
from the tokens. We anticipate that FIDO U2F will standardize how request and
response messages are encoded over other non-USB transports such as NFC or
Bluetooth.

In this document we describe the “raw”, or canonical, format of the messages, i.e., with-
out regard to the various encodings that are prescribed in U2F standards or that imple-
mentors might choose when sending messages around. The raw format of the mes-
sages is important to know for two reasons:

1 Note that the request message is usually obtained by the FIDO client from the relying party during the setup
phase, and therefore reaches the FIDO client as part of an HTTP response. Similarly, the response message that is
processed by the relying party during the verification phase is sent by the FIDO Client to the relying party in an
HTTP request. Beware the possibility of confusion when talking about requests and responses!

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 6

Figure 2.1: Three Phases of Registration and Authentication

64
65
66
67

68
69
70
71
72

73
74

75
76
77

78
79
80
81
82
83
84

85
86
87
88

1
2
3
4

FIDO U2F Raw Message Formats

1. The encoding of messages and parameters described elsewhere may refer to
the raw messages described in this document. For example, a Javascript API
might refer to a parameter of a function as the Base64-encoding of a raw regis-
tration response message. It is this document that describes what the raw regis-
tration response message looks like.

2. Cryptographic signatures are calculated over raw data. For example, the stan-
dard might prescribe that a certain cryptographic signature is taken over bytes 5
through 60 of a certain raw message. The implementor therefore has to know
how what the raw message looks like.

In addition to raw request messages and successful raw message responses, this docu-
ment will describe control messages and error responses for sake of completeness.
However the format of these control messages and error responses are not specified in
this document. Those formats are specified in the accompanying FIDO U2F USB trans-
port encoding document [U2FUSBFraming].

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 7

89
90
91
92
93

94
95
96
97

98
99

100
101
102

FIDO U2F Raw Message Formats

3 Registration Messages

3.1 Registration Request Message

This message is used to initiate a U2F token registration. The FIDO Client first contacts
the relying party to obtain a challenge, and then constructs the registration request mes-
sage. The registration request message has two parts:

● The challenge parameter [32 bytes]. The challenge parameter is the SHA-256
hash of the Client Data, a stringified JSON datastructure that the FIDO Client
prepares. Among other things, the Client Data contains the challenge from the
relying party (hence the name of the parameter). See below for a detailed expla-
nation of Client Data.

● The application parameter [32 bytes]. The application parameter is the SHA-256 hash of
the application identity of the application requesting the registration. (See [U2FApp-
Facet] for details.)

3.2 Registration Response Message: Error: Test-of-User-Presence Re-
quired

This is an error message that is output by the U2F token if no test-of-user-presence
could be obtained by the U2F token.

This message does not have a raw/canonical representation.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 8

Figure 3.1: Registration Request Message

103

104

105
106
107

108
109
110
111
112

113
114
115

116
117

118
119

120

FIDO U2F Raw Message Formats

3.3 Registration Response Message: Success

This message is output by the U2F token once it created a new keypair in response to
the registration request message. Note that U2F tokens SHOULD verify user presence
before returning a registration response success message (otherwise they SHOULD re-
turn a test-of-user-presence-required message - see above). Its raw representation is
the concatenation of the following:

● A reserved byte [1 byte], which for legacy reasons has the value 0x05.

● A user public key [65 bytes]. This is the (uncompressed) x,y-representation of a
curve point on the P-256 NIST elliptic curve.

● A key handle length byte [1 byte], which specifies the length of the key handle
(see below).

● A key handle [length specified in previous field]. This a handle that allows the
U2F token to identify the generated key pair. U2F tokens MAY wrap the gener-
ated private key and the application id it was generated for, and output that as
the key handle.

● An attestation certificate [variable length]. This is a certificate in X.509 DER for-
mat. Parsing of the X.509 certificate unambiguously establishes its ending. The
remaining bytes in the message are

● a signature. This is a ECDSA signature (on P-256) over the following byte string:

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 9

Figure 3.2: Registration Response Message: Success

121

122
123
124
125
126

127

128
129

130
131

132
133
134
135

136
137
138

139

FIDO U2F Raw Message Formats

○ A byte reserved for future use [1 byte] with the value 0x00. This will evolve
into a byte that will allow RPs to track known-good applet version of U2F
tokens from specific vendors.

○ The application parameter [32 bytes] from the registration request mes-
sage.

○ The challenge parameter [32 bytes] from the registration request mes-
sage.

○ The above key handle [variable length]. (Note that the key handle length is
not included in the signature base string.2)

○ The above user public key [65 bytes].

The signature is to be verified by the relying party using the public key certified in
the attestation certificate. The relying party should also verify that the attestation
certificate was issued by a trusted certification authority. The exact process of
setting up trusted certification authorities is to be defined by the FIDO Alliance
and is outside the scope of this document.

Once the relying party verifies the signature, it should store the public key and key han-
dle so that they can be used in future authentication operations.

2 This doesn’t cause confusion in the signature base string, since all other parameters in the signature base string
are fixed-length.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 10

140
141
142

143
144

145
146

147
148

149

150
151
152
153
154

155
156

5
6

FIDO U2F Raw Message Formats

4 Authentication Messages

4.1 Authentication Request Message

This message is used to initiate a U2F token authentication. The FIDO Client first con-
tacts the relying party to obtain a challenge, and then constructs the authentication re-
quest message. The registration request message has five parts:

● Control byte. The control byte is determined by the FIDO Client - the relying
party cannot specify its value. The FIDO Client will set the control byte to one of
the following values:

○ 0x07 (“check-only”): if the control byte is set to 0x07 by the FIDO Client,
the U2F token is supposed to simply check whether the provided key han-
dle was originally created by this token, and whether it was created for the
provided application parameter. If so, the U2F token MUST respond with
an authentication response message:error:test-of-user-presence-required
(note that despite the name this signals a success condition). If the key
handle was not created by this U2F token, or if it was created for a differ-
ent application parameter, the token MUST respond with an authentication
response message:error:bad-key-handle.

○ 0x03 (“enforce-user-presence-and-sign”): If the FIDO client sets the
control byte to 0x03, then the U2F token is supposed to perform a real sig-
nature and respond with either an authentication response message:suc-
cess or an appropriate error response (see below). The signature
SHOULD only be provided if user presence could be validated.

Other control byte values are reserved for future use.

During registration, the FIDO Client MAY send authentication request messages
to the U2F token to figure out whether the U2F token has already been regis-
tered. In this case, the FIDO client will use the check-only value for the control

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 11

Figure 4.1: Authentication Request Message

157

158

159
160
161

162
163
164

165
166
167
168
169
170
171
172
173

174
175
176
177
178

179

180
181
182

FIDO U2F Raw Message Formats

byte. In all other cases (i.e., during authentication, the FIDO Client MUST use the
enforce-user-presence-and-sign value).

● The challenge parameter [32 bytes]. The challenge parameter is the SHA-256
hash of the Client Data, a stringified JSON datastructure that the FIDO Client
prepares. Among other things, the Client Data contains the challenge from the
relying party (hence the name of the parameter). See below for a detailed expla-
nation of Client Data.

● The application parameter [32 bytes]. The application parameter is the SHA-
256 hash of the application identity [U2FAppFacet] of the application requesting
the authentication as provided by the relying party.

● A key handle length byte [1 byte], which specifies the length of the key handle
(see below).

● A key handle [length specified in previous field]. The key handle. This is pro-
vided by the relying party, and was obtained by the relying party during registra-
tion.

4.2 Authentication Response Message: Error: Test-of-User-Presence
Required

This is an error message that is output by the U2F token if no test-of-user-presence
could be obtained by the U2F token.

The format is specified in the transport encoding FIDO U2F document.

4.3 Authentication Response Message: Error: Bad Key Handle

This is an error message that is output by the U2F token if the provided key handle was
not originally created by this token, or if the provided key handle was created by this to-
ken, but for a different application parameter.

The format is specified in the transport encoding FIDO U2F document.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 12

183
184

185
186
187
188
189

190
191
192

193
194

195
196
197

198
199

200
201

202

203

204
205
206

207

FIDO U2F Raw Message Formats

4.4 Authentication Response Message: Success

This message is output by the U2F token after processing/signing the authentication re-
quest message described above. Its raw representation is the concatenation of the fol-
lowing:

● A user presence byte [1 byte]. Bit 0 is set to 1, which means that user presence
was verified. (This version of the protocol doesn’t specify a way to request au-
thentication responses without requiring user presence.) A different value of Bit
0, as well as Bits 1 through 7, are reserved for future use. The values of Bit 1
through 7 SHOULD be 0:

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 13

Figure 4.3: User Presense Byte Layout

Figure 4.2: Authentication Response Message: Success

208

209
210
211

212
213
214
215
216

FIDO U2F Raw Message Formats

● A counter [4 bytes]. This is the big-endian representation of a counter value that
the U2F token increments every time it performs an authentication operation.
(See Implementation Considerations [U2FImplCons] for more detail.)

● a signature. This is a ECDSA signature (on P-256) over the following byte string:

○ The application parameter [32 bytes] from the authentication request mes-
sage.

○ The above user presence byte [1 byte].

○ The above counter [4 bytes].

○ The challenge parameter [32 bytes] from the authentication request mes-
sage.

The signature is to be verified by the relying party using the public key obtained
during registration.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 14

217
218
219

220

221
222

223

224

225
226

227
228

FIDO U2F Raw Message Formats

5 Other Messages

5.1 GetVersion Request and Response

The FIDO Client can query the U2F token about the U2F protocol version that it imple-
ments. The protocol version described in this document is U2F_V2.

The format of the request message is specified in the transport encoding FIDO U2F
document, and does not have a raw representation.

The response message’s raw representation is the ASCII representation of the string
‘U2F_V2’ (without quotes).

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 15

229

230

231
232

233
234

235
236

FIDO U2F Raw Message Formats

6 Client Data

Term Definition

websafe-base64 encoding This is the “Base 64 Encoding with URL and Filename Safe Al-
phabet” from Section 5 in RFC 4648 without padding.

stringified javascript object This is the JSON object (i.e., a string starting with “{“ and end-
ing with “}”) whose keys are the property names of the
javascript object, and whose values are the corresponding
property values. Only “data objects” can be stringified, i.e., only
objects whose property names and values are supported in
JSON.

Table 1: Definition of Terms used in this section

The registration and authentication request messages contain a challenge parameter,
which is defined as the SHA-256 hash of a (UTF8 representation of a) stringified JSON
datastructure that the FIDO client has to prepare. The FIDO Client MUST send the
Client Data (rather than its hash - the challenge parameter) to the relying party during
the verification phase, where the relying party can re-generate the challenge parameter
(by hashing the client data), which is necessary in order to verify the signature both on
the registration response message and authentication response message.

In the case where the FIDO Client is a web browser, the client data is defined as follows
(in WebIDL):

dictionary ClientData {
 // the constant ‘navigator.id.getAssertion’ for authentication, and
 // ‘navigator.id.finishEnrollment’ for registration
 DOMString typ;
 // the websafe-base64-encoded challenge provided by the relying party
 DOMString challenge;
 // the facet id of the caller, i.e., the web origin of the relying party.
 // (Note: this might be more accurately called ‘facet_id’, but
 // for compatibility with existing implementations within Chrome we keep
 // the legacy name.)
 DOMString origin;
 // The Channel ID public key used by this browser to communicate with the
 // above origin. This parameter is optional, and missing if the browser
 // doesn’t support Channel ID. It is present and set to the constant
 // ‘unused’ if the browser supports Channel ID, but is not using
 // Channel ID to talk to the above origin (presumably because the origin
 // server didn’t signal support for the Channel ID TLS extension).
 // Otherwise (i.e., both browser and origin server at the above
 // origin support Channel ID), it is present and of type JwkKey

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 16

237

238
239
240
241
242
243
244

245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

http://www.w3.org/TR/WebIDL/
https://tools.ietf.org/html/rfc4648#section-5
https://tools.ietf.org/html/rfc4648#section-5

FIDO U2F Raw Message Formats

 (DOMString or JwkKey) cid_pubkey;
}
// A dictionary representing the public key used by a browser for the
// Channel ID TLS extension. The current version of the Channel ID draft
// prescribes the algorithm (ECDSA) and curve used, so the dictionary will
// have the following parameters:
dictionary JwkKey {
 // signature algorithm used for Channel ID, i.e., the constant ‘EC’
 DOMString kty;
 // Elliptic curve on which this public key is defined, i.e., the constant
 // ‘P-256’
 DOMString crv;
 // websafe-base64-encoding of the x coordinate of the public
 // key (big-endian, 32-byte value)
 DOMString x;
 // websafe-base64-encoding of the y coordinate of the public
 // key (big-endian, 32-byte value)
 DOMString y;
}

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 17

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

FIDO U2F Raw Message Formats

7 Examples

7.1 Registration Example

Assume we have a U2F token with the following private attestation key:
f3fccc0d00d8031954f90864d43c247f4bf5f0665c6b50cc17749a27d1cf7664

the corresponding public key:
048d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2-
fa3e6c378b53d795c4a4dffb4199edd7862f23abaf0203b4b8911ba0569994e101

and the following attestation cert:
[
[
 Version: V3
 Subject: CN=PilotGnubby-0.4.1-47901280001155957352
 Signature Algorithm: SHA256withECDSA, OID = 1.2.840.10045.4.3.2
 Key: EC Public Key
 X: 8d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2fa
 Y: 3e6c378b53d795c4a4dffb4199edd7862f23abaf0203b4b8911ba0569994e101
 Validity: [From: Tue Aug 14 11:29:32 PDT 2012,
 To: Wed Aug 14 11:29:32 PDT 2013]
 Issuer: CN=Gnubby Pilot
 SerialNumber: [47901280 00115595 7352]
]
 Algorithm: [SHA256withECDSA]
 Signature:
 0000: 30 44 02 20 60 CD B6 06 1E 9C 22 26 2D 1A AC 1D 0D. `....."&-...
 0010: 96 D8 C7 08 29 B2 36 65 31 DD A2 68 83 2C B8 36 ).6e1..h.,.6
 0020: BC D3 0D FA 02 20 63 1B 14 59 F0 9E 63 30 05 57 c..Y..c0.W
 0030: 22 C8 D8 9B 7F 48 88 3B 90 89 B8 8D 60 D1 D9 79 "....H.;....`..y
 0040: 59 02 B3 04 10 DF Y.....
]

The attestation cert in hex form:
3082013c3081e4a003020102020a47901280001155957352300a06082a8648ce3d0403023017311530130
603550403130c476e756262792050696c6f74301e170d3132303831343138323933325a170d3133303831
343138323933325a3031312f302d0603550403132650696c6f74476e756262792d302e342e312d3437393
0313238303030313135353935373335323059301306072a8648ce3d020106082a8648ce3d030107034200
048d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2-
fa3e6c378b53d795c4a4dffb4199ed-
d7862f23abaf0203b4b8911ba0569994e101300a06082a8648ce3d0403020347003044022060cd-
b6061e9c22262d1aac1d96d8c70829b2366531dda268832cb836bcd30d-
fa0220631b1459f09e6330055722c8d89b7f48883b9089b88d60d1d9795902b30410df

Now let’s assume that we use the following client data
{"typ":"navigator.id.finishEnrollment","challenge":"vqrS6WXDe1JUs5_c3i4-LkKIHRr-
3XVb3azuA5TifHo","cid_pubkey":{"kty":"EC","crv":"P-256","x":"HzQwlfXX7Q4S5MtCCnZUNB-
w3RMzPO9tOyWjBqRl4tJ8","y":"XVguGFLIZx1fXg3wNqfdbn75hi4-_7-
BxhMljw42Ht4"},"origin":"http://example.com"}

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 18

285

286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

http://example.com/

FIDO U2F Raw Message Formats

with hash:
4142d21c00d94ffb9d504ada8f99b721f4b191ae4e37ca0140f696b6983cfacb

and application id:
http://example.com

with hash:
f0e6a6a97042a4f1f1c87f5f7d44315b2d852c2df5c7991cc66241bf7072d1c4

to construct a registration request message.

Let’s say the U2F token generates the following key pair:

Private key:
9a9684b127c5e3a706d618c86401c7cf6fd827fd0bc18d24b0eb842e36d16df1

Public key:
04b174bc49c7ca254b70d2e5c207cee9cf174820ebd77ea3c65508c26da51b657c1c-
c6b952f8621697936482da0a6d3d3826a59095daf6cd7c03e2e60385d2f6d9

Associated key handle:
2a552dfdb7477ed65fd84133f86196010b2215b57-
da75d315b7b9e8fe2e3925a6019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c
25

The signature base string for the registration response message is therefore:
00f0e6a6a97042a4f1f1c87f5f7d44315b2d852c2df5c7991cc66241bf7072d1c44142d21c00d94ff-
b9d504ada8f99b721f4b191ae4e37ca0140f696b6983cfacb2a552dfd-
b7477ed65fd84133f86196010b2215b57-
da75d315b7b9e8fe2e3925a6019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c
2504b174bc49c7ca254b70d2e5c207cee9cf174820ebd77ea3c65508c26da51b657c1c-
c6b952f8621697936482da0a6d3d3826a59095daf6cd7c03e2e60385d2f6d9

A possible signature over the base string with the above private attestation key is:
304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017d-
b9230e402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871

Which means the whole registration response message is:
0504b174bc49c7ca254b70d2e5c207cee9cf174820ebd77ea3c65508c26da51b657c1c-
c6b952f8621697936482da0a6d3d3826a59095daf6cd7c03e2e60385d2f6d9402a552dfd-
b7477ed65fd84133f86196010b2215b57-
da75d315b7b9e8fe2e3925a6019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c
253082013c3081e4a003020102020a47901280001155957352300a06082a8648ce3d04030230173115301
30603550403130c476e756262792050696c6f74301e170d3132303831343138323933325a170d31333038
31343138323933325a3031312f302d0603550403132650696c6f74476e756262792d302e342e312d34373
930313238303030313135353935373335323059301306072a8648ce3d020106082a8648ce3d0301070342
00048d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2-
fa3e6c378b53d795c4a4dffb4199ed-
d7862f23abaf0203b4b8911ba0569994e101300a06082a8648ce3d0403020347003044022060cd-
b6061e9c22262d1aac1d96d8c70829b2366531dda268832cb836bcd30d-
fa0220631b1459f09e6330055722c8d89b7f48883b9089b88d60d1d9795902b30410d-
f304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017d-
b9230e402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871

from which (together with challenge and application parameters) the signature base
string and signature can be extracted, and verified with the public key from the attesta-
tion cert.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 19

329
330
331
332
333
334
335

336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

FIDO U2F Raw Message Formats

7.2 Authentication Example

Let’s assume we have a U2F device with private key:
ffa1e110dde5a2f8d93c4df71e2d4337b7bf5ddb60c75dc2b6b81433b54dd3c0

and corresponding public key:
04d368f1b665bade3c33a20f1e429c7750d5033660c019119d29aa4ba7abc04aa7c80a46bbe11-
ca8cb5674d74f31f8a903f6bad105fb6ab74aefef4db8b0025e1d

Example application id:
https://gstatic.com/securitykey/a/example.com

Example client data:
{"typ":"navigator.id.getAssertion","challenge":"opsXqUifDriAAmWclinfbS0e-
USY0CgyJHe_Otd7z8o","cid_pubkey":{"kty":"EC","crv":"P-256","x":"HzQwlfXX7Q4S5MtCC-
nZUNBw3RMzPO9tOyWjBqRl4tJ8","y":"XVguGFLIZx1fXg3wNqfdbn75hi4-_7-BxhMljw42Ht4"},"ori-
gin":"http://example.com"}

Hash of the above client data (challenge parameter):
ccd6ee2e47baef244d49a222db496bad0ef5b6f93aa7cc4d30c4821b3b9dbc57
Hash of the above application id (application parameter):
4b0be934baebb5d12d26011b69227fa5e86df94e7d94aa2949a89f2d493992ca

Assuming counter = 1 and user_presence = 1, signature base string is:
4b0be934baebb5d12d26011b69227fa5e86df94e7d94aa2949a89f2d493992ca0100000001c-
cd6ee2e47baef244d49a222db496bad0ef5b6f93aa7cc4d30c4821b3b9dbc57

A possible signature with above private key is:
304402204b5f0cd17534cedd8c34ee09570ef542a353df4436030ce43d406de870b847780220267bb998-
fac9b7266eb60e7cb0b5eabdfd5ba9614f53c7b22272ec10047a923f

Authentication Response Message:
0100000001304402204b5f0cd17534cedd8c34ee09570ef542a353d-
f4436030ce43d406de870b847780220267bb998fac9b7266eb60e7cb0b5e-
abdfd5ba9614f53c7b22272ec10047a923f

The above signature and signature base string can be reconstructed from the authenti-
cation response message and the challenge and application parameters, and can be
verified with the above public key.

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 20

375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

FIDO U2F Raw Message Formats

Bibliography

FIDO Alliance Documents:

[FIDOGlossary] Rolf Lindemann, Davit Baghdasaryan, Brad Hill, John Kemp. FIDO
Technical Glossary. Version v1.0-rd-20140209, FIDO Alliance, February 2014. See
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf

[U2FAppFacet] Dirk Balfanz. FIDO U2F Application Isolation through Facet Identifi-
cation. Version v1.0-rd-20140209, FIDO Alliance, February 2014. See
http://fidoalliance.org/specs/fido-u2f-application-isolation-through-facet-identification-
v1.0-rd-20140209.pdf

[U2FImplCons] Dirk Balfanz. FIDO U2F Implementation Considerations. Version
v1.0-rd-20140209, FIDO Alliance, February 2014. See http://fidoalliance.org/specs/fido-
u2f-implementation-considerations-v1.0-rd-20140209.pdf

[U2FOverview] Sampath Srinivas, Dirk Balfanz, Eric Tiffany. FIDO Universal 2nd
Factor (U2F) Overview. Version v1.0-rd-20140209, FIDO Alliance, February 2014. See
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf

[U2FUSBFraming] Dirk Balfanz. FIDO U2F USB Framing of APDUs. Version v1.0-rd-
20140209, FIDO Alliance, February 2014. See http://fidoalliance.org/specs/fido-u2f-usb-
framing-of-apdus-v1.0-rd-20140209.pdf

Other References:

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels (RFC2119), S.
Bradner, March 1997

Copyright © 2014 FIDO Alliance: REVIEW DRAFT Page 21

405

406

407
408
409

410
411
412
413

414
415
416

417
418
419

420
421
422

423

424
425

http://tools.ietf.org/html/rfc2119
http://fidoalliance.org/specs/fido-u2f-usb-framing-of-apdus-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-usb-framing-of-apdus-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-implementation-considerations-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-implementation-considerations-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-application-isolation-through-facet-identification-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-application-isolation-through-facet-identification-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf

	1 Notation
	1.1 Key Words

	2 Introduction
	3 Registration Messages
	3.1 Registration Request Message
	3.2 Registration Response Message: Error: Test-of-User-Presence Required
	3.3 Registration Response Message: Success

	4 Authentication Messages
	4.1 Authentication Request Message
	4.2 Authentication Response Message: Error: Test-of-User-Presence Required
	4.3 Authentication Response Message: Error: Bad Key Handle
	4.4 Authentication Response Message: Success

	5 Other Messages
	5.1 GetVersion Request and Response

	6 Client Data
	7 Examples
	7.1 Registration Example
	7.2 Authentication Example

	Bibliography

