
FIDO U2F HID Protocol Specification
FIDO Alliance Proposed Standard 14 May 2015
This version:

https://fidoalliance.org/specs/fido-undefined-undefined-ps-20150514/fido-u2f-
hid-protocol-v1.0-undefined-ps-20150514.html

Previous version:
https://fidoalliance.org/specs/fido-u2f-hid-protocol-v1.0-Member Submission-
20140721.html

Editors:
Jakob Ehrensvärd, Yubico
John Kemp, FIDO Alliance

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright © 2014-2015 FIDO Alliance All Rights Reserved.

Abstract
U2FHID protocol description and implementation specification

The purpose of this documentation is to provide a complete specification how to
implement the U2FHID protocol, where FIDO U2F messages are framed for USB
transport, using the HID protocol. General FIDO and U2F- concepts, semantics,
meaning is beyond the scope of this document and for information on these topics,
please refer to the appropriate related documentation.

https://fidoalliance.org/specs/fido-u2f-hid-protocol-v1.0-Member%20Submission-20140721.html
https://fidoalliance.org/
https://fidoalliance.org/specs/fido-undefined-undefined-ps-20150514/fido-u2f-hid-protocol-v1.0-undefined-ps-20150514.html
mailto:john@jkemp.net
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.yubico.com/
mailto:jakob@yubico.com

Status of This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you
wish to make comments regarding this document, please Contact Us. All comments
are welcome.

Implementation of certain elements of this Specification may require licenses under
third party intellectual property rights, including without limitation, patent rights. The
FIDO Alliance, Inc. and its Members and any other contributors to the Specification
are not, and shall not be held, responsible in any manner for identifying or failing to
identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS
OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a
Proposed Standard. It is a stable document and may be used as reference material or
cited from another document. FIDO Alliance's role in making the Recommendation is
to draw attention to the specification and to promote its widespread deployment.

Table of Contents

1. Document Information
1.1 Notation

1.1.1 Key Words
1.2 Definitions

2. U2FHID protocol implementation
2.1 U2FHID implementation rationale
2.2 Protocol structure and data framing
2.3 Concurrency and channels
2.4 Message- and packet structure
2.5 Arbitration

2.5.1 Transaction atomicity, idle- and busy states.
2.5.2 Transaction timeout
2.5.3 Transaction abort and re-synchronization
2.5.4 Packet sequencing

2.6 Channel locking
2.7 Protocol version and compatibility

https://fidoalliance.org/contact
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/

3. HID device implementation
3.1 Interface- and endpoint descriptors
3.2 HID report descriptor and device discovery

4. U2FHID commands
4.1 Mandatory commands

4.1.1 U2FHID_MSG
4.1.2 U2FHID_INIT
4.1.3 U2FHID_PING
4.1.4 U2FHID_ERROR

4.2 Optional commands
4.2.1 U2FHID_WINK
4.2.2 U2FHID_LOCK

4.3 Vendor specific commands
A. References

A.1 Normative references

1. Document Information

1.1 Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL
[WebIDL].

Symbolic constants such as U2FHID_MSG which are referred to when defining
messages in this documents have their values defined in [U2FHIDHeader] in the
bibliography.

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in [RFC2119].

1.2 Definitions

Term Definition

U2F Universal Second Factor

USB Universal Serial Bus

HID Human Interface Device. A specification of typical USB devices used for
human interaction, such as keyboards, mice, joysticks etc.

U2FHID U2F transport over HID as defined by this document

2. U2FHID protocol implementation
This description does not describe the actual raw U2F messages, semantics and
functionality but rather how such messages are framed for HID transport. The raw
U2F messages are defined in [U2FRawMsgs] in the bibliography.

2.1 U2FHID implementation rationale

The U2FHID protocol is designed with the following design objectives in mind

Driver-less installation on all major host platforms
Multi-application support with concurrent application access without the need for
serialization and centralized dispatching.
Fixed latency response and low protocol overhead
Scalable method for U2FHID device discovery

Since HID data is sent as interrupt packets and multiple applications may access the
HID stack at once, a non-trivial level of complexity has to be added to handle this.

2.2 Protocol structure and data framing

The U2F protocol is designed to be concurrent and state-less in such a way that each
performed function is not dependent on previous actions. However, there has to be
some form of "atomicity" that varies between the characteristics of the underlying
transport protocol, which for the U2FHID protocol introduces the following
terminology:

Transaction
Message
Packet

A transaction is the highest level of aggregated functionality, which in turn consists of
a request, followed by a response message. Once a request has been initiated, the
transaction has to be entirely completed before a second transaction can take place
and a response is never sent without a previous request.

Request- and response messages are in turn divided into individual fragments,
known as packets. The packet is the smallest form of protocol data unit, which in the
case of U2FHID are mapped into HID reports.

2.3 Concurrency and channels

Additional logic and overhead is required to allow a U2FHID device to deal with
multiple "clients", i.e. multiple applications accessing the single resource through the
HID stack. Each client communicates with a U2FHID device through a logical
channel, where each application uses a unique 32-bit channel identifier for routing-
and arbitration purposes.

A channel identifier is allocated by the U2F device to ensure its system-wide
uniqueness. The actual algorithm for generation of channel identifiers is vendor
specific and not defined by this specification.

Channel ID 0 is reserved and 0xffffffff is reserved for broadcast commands, i.e. at
the time of channel allocation.

2.4 Message- and packet structure

Packets are one of two types, initialization packets and continuation packets. As
the name suggests, the first packet sent in a message is an initialization packet, which
also becomes the start of a transaction. If the entire message does not fit into one
packet (including the U2FHID protocol overhead), one or more continuation packets
have to be sent in strict ascending order to complete the message transfer.

A message sent from a host to a device is known as a request and a message sent
from a device back to the host is known as a response. A request always triggers a
response and response messages are never sent ad-hoc, i.e. without a prior request
message.

The request and response messages have an identical structure. A transaction is
started with the initialization packet of the request message and ends with the last
packet of the response message.

Packets are always fixed size (defined by the endpoint- and HID report descriptors)
and although all bytes may not be needed in a particular packet, the full size always
has to be sent. Unused bytes should be set to zero.

An initialization packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s - 7) DATA Payload data (s is equal to the fixed packet size)

The command byte has always the highest bit set to distinguish it from a continuation
packet, which is described below.

A continuation packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)

5 (s - 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7) may be sent as
one packet. A larger message is then divided into one or more continuation packets,
starting with sequence number 0, which then increments by one to a maximum of
127.

With a packet size of 64 bytes (max for full-speed devices), this means that the
maximum message payload length is 64 - 7 + 128 * (64 - 5) = 7609 bytes.

2.5 Arbitration

In order to handle multiple channels and clients concurrency, the U2FHID protocol
has to maintain certain internal states, block conflicting requests and maintain
protocol integrity. The protocol relies on each client application (channel) behaves
politely, i.e. does not actively act to destroy for other channels. With this said, a
malign- or malfunctioning application can cause issues for other channels. Expected
errors and potentially stalling applications should however be handled properly.

2.5.1 Transaction atomicity, idle- and busy states.

A transaction always consists of three stages:

1. A message is sent from the host to the device
2. The device processes the message
3. A response is sent back from the device to the host

The protocol is built on the assumption that a plurality of concurrent applications may
try ad-hoc to perform transactions at any time, with each transaction being atomic, i.e.
it cannot be interrupted by another application once started.

The application channel that manages to get through the first initialization packet
when the device is in idle state will keep the device locked for other channels until the
last packet of the response message has been received. The device then returns to
idle state, ready to perform another transaction for the same or a different channel.
Between two transactions, no state is maintained in the device and a host application
must assume that any other process may execute other transactions at any time.

If an application tries to access the device from a different channel while the device is
busy with a transaction, that request will immediately fail with a busy-error message
sent to the requesting channel.

2.5.2 Transaction timeout

A transaction has to be completed within a specified period of time to prevent a
stalling application to cause the device to be completely locked out for access by
other applications. If for example an application sends an initialization packet that
signals that continuation packets will follow and that application crashes, the device
will back out that pending channel request and return to an idle state.

2.5.3 Transaction abort and re-synchronization

If an application for any reason "gets lost", gets an unexpected response or error, it
may at any time issue an abort-and-resynchronize command. If the device detects a
SYNC command during a transaction that has the same channel id as the active
transaction, the transaction is aborted (if possible) and all buffered data flushed (if
any). The device then returns to idle state to become ready for a new transaction.

2.5.4 Packet sequencing

The device keeps track of packets arriving in correct and ascending order and that no
expected packets are missing. The device will continue to assemble a message until
all parts of it has been received or that the transaction times out. Spurious
continuation packets appearing without a prior initialization packet will be ignored.

2.6 Channel locking

In order to deal with aggregated transactions that may not be interrupted, such as
vendor specific tunneling of APDUs, a channel lock command may be implemented.
By sending a channel lock command, the device prevents other channels from
communicating with the device until the channel lock has timed out or been explicitly
unlocked by the application.

This feature is optional and has not to be considered by general U2F HID
applications.

2.7 Protocol version and compatibility

The U2FHID protocol is designed to be extensible, yet maintaining backwards
compatibility to the extent it is applicable. This means that a U2FHID host shall
support any version of a device with the command set available in that particular
version.

3. HID device implementation
This description assumes knowledge of the USB- and HID specifications and is
intended to provide the basics for implementing a U2FHID device. There are several
ways to implement USB devices and reviewing these different methods is beyond the
scope of this document. This specification targets the interface part, where a device is
regarded as either a single- or multiple interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12
Mbit/s). Although not excluded per se, USB low-speed devices are not practical to use
given the 8-byte report size limitation together with the protocol overhead.

3.1 Interface- and endpoint descriptors

The device implements two endpoints (except the control endpoint 0), one for IN- and
one for OUT transfers. The packet size is vendor defined, but the reference
implementation assumes a full-speed device with two 64-bytes endpoints.

Interface Descriptor

Mnemonic Value Description

bNumEndpoints 2 One IN- and one OUT endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x01 1, OUT

bMaxPacketSize 64 64 bytes packets

bInterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x81 1, IN

bMaxPacketSize 64 64 bytes packets

bInterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may
be defined freely by the vendor and the host application is responsible for querying
these values and handle these accordingly. For the sake of clarity, the values listed
above are used in the following examples.

3.2 HID report descriptor and device discovery

A HID report descriptor is required for all HID devices, even though the reports and
their interpretation (scope, range, etc.) makes very little sense from an operating
system perspective. The U2FHID just provides two "raw" reports, which basically map
directly to the IN and OUT endpoints. However, the HID report descriptor has an
important purpose in U2FHID, as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

A unique Usage Page is defined for the FIDO alliance and under this realm, a
U2FHID Usage is defined as well. During U2FHID device discovery, all HID devices
present in the system are examined and devices that match this usage pages and
usage are then considered to be U2FHID devices.

The length values specified by the HID_INPUT_REPORT_BYTES and the
HID_OUTPUT_REPORT_BYTES should typically match the respective endpoint sizes defined
in the endpoint descriptors.

4. U2FHID commands
The U2FHID protocol implements the following commands. These commands are not
related to U2F commands, which are send using the U2FHID_MSG command

4.1 Mandatory commands

The following list describes the minimum set of commands required by an U2FHID
device. Optional- and vendor-specific commands may be implemented as described
in respective sections of this document.

4.1.1 U2FHID_MSG

EXAMPLE 1

// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {
 HID_UsagePage (FIDO_USAGE_PAGE),
 HID_Usage (FIDO_USAGE_U2FHID),
 HID_Collection (HID_Application),
 HID_Usage (FIDO_USAGE_DATA_IN),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_INPUT_REPORT_BYTES),
 HID_Input (HID_Data | HID_Absolute | HID_Variable),
 HID_Usage (FIDO_USAGE_DATA_OUT),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),
 HID_Output (HID_Data | HID_Absolute | HID_Variable),
HID_EndCollection
};

This command sends an encapsulated U2F message to the device. The semantics of
the data message is defined in the U2F protocol specification.

Request

CMD U2FHID_MSG

BCNT 4..n

DATA n bytes

Response at success

CMD U2FHID_MSG

BCNT 2..n

DATA N bytes

4.1.2 U2FHID_INIT

This command synchronizes a channel and optionally requests the device to allocate
a unique 32-bit channel identifier (CID) that can be used by the requesting application
during its lifetime. The requesting application generates a nonce that is used to match
the response. When the response is received, the application compares the sent
nonce with the received one. After a positive match, the application stores the
received channel id and uses that for subsequent transactions.

To allocate a new channel, the requesting application shall use the broadcast channel
U2FHID_BROADCAST_CID. The device then responds the newly allocated channel
in the response, using the broadcast channel.

Request

CMD U2FHID _INIT

BCNT 8

DATA 8 byte nonce

Response at success

CMD U2FHID _INIT

BCNT 17 (see note below)

DATA 8 byte nonce

DATA+8 4 byte channel ID

DATA+12 U2FHID protocol version identifier

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented by the device. An
U2FHID host shall accept a response size that is longer than the anticipated size to
allow for future extensions of the protocol, yet maintaining backwards compatibility.
Future versions will maintain the response structure to this current version, but
additional fields may be added.

The meaning and interpretation of the version number is vendor defined.

The following device capabilities flags are defined. Unused values are reserved for
future use and must be set to zero by device vendors.

CAPABILITY_WINK Implements the WINK function

4.1.3 U2FHID_PING

Sends a transaction to the device, which immediately echoes the same data back.
This command is defined to be an uniform function for debugging-, latency- and
performance measurements.

Request

CMD U2FHID_PING

BCNT 0..n

DATA n bytes

Response at success

CMD U2FHID_PING

BCNT n

DATA N bytes

4.1.4 U2FHID_ERROR

This command code is used in response messages only.

CMD U2FHID_ERROR

BCNT 1

DATA Error code

The following error codes are defined

ERR_INVALID_CMD The command in the request is invalid

ERR_INVALID_PAR The parameter(s) in the request is invalid

ERR_INVALID_LEN The length field (BCNT) is invalid for the request

ERR_INVALID_SEQ The sequence does not match expected value

ERR_MSG_TIMEOUT The message has timed out

ERR_CHANNEL_BUSY The device is busy for the requesting channel

4.2 Optional commands

The following commands are defined by this specification but are optional and does
not have to be implemented.

4.2.1 U2FHID_WINK

The wink command performs a vendor-defined action that provides some visual- or
audible identification a particular U2F device. A typical implementation will do a short
burst of flashes with a LED or something similar. This is useful when more than one
device is attached to a computer and there is confusion which device is paired with
which connection.

Request

CMD U2FHID_WINK

BCNT 0

DATA N/A

Response at success

CMD U2FHID_WINK

BCNT 0

DATA N/A

4.2.2 U2FHID_LOCK

The lock command places an exclusive lock for one channel to communicate with the
device. As long as the lock is active, any other channel trying to send a message will
fail. In order to prevent a stalling- or crashing application to lock the device

indefinitely, a lock time up to 10 seconds may be set. An application requiring a longer
lock has to send repeating lock commands to maintain the lock.

Request

CMD U2FHID_LOCK

BCNT 1

DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock

Response at success

CMD U2FHID_LOCK

BCNT 0

DATA N/A

4.3 Vendor specific commands

A U2FHID may implement additional vendor specific commands that are not defined
in this specification, yet being U2FHID compliant. Such commands, if implemented
must have a command in the range between U2FHID_VENDOR_FIRST and
U2FHID_VENDOR_LAST.

A. References

A.1 Normative references

[ECMA-262]
ECMAScript Language Specification, Edition 5.1. June 2011. URL:
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary.
FIDO Alliance Proposed Standard. URLs:
HTML: fido-glossary.html
PDF: fido-glossary.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[U2FHIDHeader]
J. Ehrensvard, FIDO U2F HID Header Files v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: https://github.com/fido-alliance/u2f-
specs/blob/master/inc/u2f_hid.h

[U2FRawMsgs]
D. Balfanz, FIDO U2F Raw Message Formats v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-u2f-raw-message-
formats-v1.0-rd-20140209.pdf

[WebIDL]

file:///Users/aczeskis/Projects/fido/u2f-specs/fido-glossary.pdf
https://tools.ietf.org/html/rfc2119
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://fidoalliance.org/specs/fido-u2f-raw-message-formats-v1.0-rd-20140209.pdf
file:///Users/aczeskis/Projects/fido/u2f-specs/fido-glossary.html
https://github.com/fido-alliance/u2f-specs/blob/master/inc/u2f_hid.h
https://github.com/fido-alliance/u2f-specs/blob/master/inc/u2f_hid.h
http://fidoalliance.org/specs/fido-u2f-raw-message-formats-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate
Recommendation. URL: http://www.w3.org/TR/WebIDL/

http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/

