
Credential Exchange Protocol

https://fidoalliance.org/specs/cx/cxp-v1.0-wd-20241003.html

GitHub

Nick Steele (1Password)

Rew Islam (Dashlane)
Anders Åberg (Bitwarden)
René Léveillé (1Password)
Oscar Hinton (Bitwarden)
Jonathan Salamon (Dashlane)
Ayman Bedair (NordPass)
Lee Campbell (Google)
Reema Bajwa (Google)

Copyright © 2024 FIDO Alliance. All Rights Reserved.

This document defines a protocol to securely move one or more credentials between two credential providing
applications same or separate devices.

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Working Draft Specification. If you wish to make
comments regarding this document, please Contact Us. All comments are welcome.

This is a Working Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. This document is merely a FIDO Alliance working group internal and member-
confidential document. It has no official standing of any kind and does not represent consensus of the FIDO
Alliance. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Working Draft, October 03, 2024

This version:

Issue Tracking:

Editor:

Contributors:

Abstract

W
ORKING DRAFT

W
ORKING DRAFT

Status of This Document

1/10

https://fidoalliance.org/
https://fidoalliance.org/specs/cx/cxp-v1.0-wd-20241003.html
https://github.com/fido-alliance/credential-exchange-feedback/issues
mailto:nick.steele@1password.com
mailto:rew.islam@dashlane.com
mailto:aaberg@bitwarden.com
mailto:rene.leveille@1password.com
mailto:ohinton@bitwarden.com
mailto:jonathan@dashlane.com
mailto:ayman.bedair@nordsec.com
mailto:leecam@google.com
mailto:reemabajwa@google.com
https://fidoalliance.org
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

Individuals and organizations use credential providers to create and manage credentials on their behalf as a
means to use stronger authentication factors. These credential providers can be used in browsers, on network
servers, and on mobile and desktop platforms, and often sharing or synchronizing credentials between different
instances of the same provider is an easy and common task.

However, the transfer of credentials between two different providers has traditionally been an infrequent
occurrence, such as when a user or organization is attempting to migrate credentials from one provider to
another. As it becomes more common for users to have multiple credential providers that they use to create a
manage credentials, it becomes important to address some of the security concerns with regard to migration
currently:

1 Introduction
1.1 Scope
1.2 Terminology

2 Protocol Overview
2.1 Participants
2.2 Supporting Different Network Conditions

3 Protocol API
3.1 Credential Types
3.2 Export Request
3.2.1 Export Request File
3.2.2 Response Modes
3.3 Export Response
3.4 Credential Payload
3.5 Supporting Types
3.5.1 HPKE Parameters ## {#sctn-hpke-parameters}
3.5.2 HPKE Modes
3.5.3 Archive Algorithms

4 IANA Considerations

5 Implementation Requirements

6 Security Considerations
6.1 Key Compromise

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

1. Introduction

Credential provider applications often export credentials to be imported in an insecure format, such as CSV,
that undermines the security of the provider and potentially opens the credential owner to vulnerability.

Credential providers have no standard structure for the exported credential CSV, which can sometimes
result in failure to properly migrate one or more credentials into a new provider.

Some credentials might be unallowed to be migrated, due to device policy or lack of algorithmic capability by
the importing credential provider.

2/10

In order to support credential provider interoperability and provide a more secure means of credential transfer
between providers, this document outlines a protocol for the import and export of one or more credentials
between two credential providers on behalf of a user or organization in both an offline or online context. Using
Diffie-Hellman key exchange, this protocol allows the creation of a secure channel or data payload between two
providers.

This protocol describes the secure transmission of one or more credentials between two credential providers on
the same or different devices managed by the same credential owner, capable of function in both online and
offline contexts. This protocol does not make any assumptions about the channels in which credential data is
passed from the source provider to the destination provider. The destruction of credentials after migration by the
credential provider source is out of scope as well.

{::boilerplate bcp14-tagged} Certain security-related terms are to be understood in the sense defined in [RFC494
9]. These terms include, but are not limited to, "attack", "authentication" "authorization", "certificate", "credential",
"encryption", "identity", "sign", "signature", "trust", "validate", and "verify".

 ┌──┐
 │ Authorizing Party │
 └─────┬──┬─────┘

 │ (2) Determine (1) Create Export │
 Migration Key Request
┌────────────┴──┐ ┌────┴──────────┐
│ ◀─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤ │
│ │ │ │
│ │ │ │
│ │ │ │
│┌─────────────┐│ │ │
││ (3)Encrypt ││ │ │
││ Credential ││ │ │
││ Data ││ │ │
│└─────────────┘│ │ │
│ │ (4) Send Export Response │ │
│ │─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ▶┌─────────────┐│
│ │ ││ (5) Decrypt ││
│ │ ││ Bundle ││
│ │ │└─────────────┘│
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ Exporter │ │ Importer │
│ │ │ │
└───────────────┘ └───────────────┘

The flow illustrated above shows the following:

Because organizations lack a secure means of migrating user credentials, often they will apply device policy
that prevents the export of credentials to a new provider under any circumstances, opting to create multiple
credentials for a service.

1.1. Scope

1.2. Terminology

2. Protocol Overview

3/10

An entity that is able to access and authenticate with the credentials stored within a credential provider. The
credential owner is in charge of authorizing or delegating authorization of the migration between the Exporter
and the Importer In the case of a credential owner being an individual or is authorized by an organization to
manage these credentials, they can be referred to as the end-user.

Hardware or software capable of storing and managing credentials on behalf of a Credential Owner. While
there can be assumptions in this document that the credential providers are distinct participants, a single
provider MAY operate as both the Importer and Exporter in an exchange.

The importing provider, or importer, initiates the export request and is the final storage destination for the
exported credentials.

The exporting provider, or exporter, encrypts and transfers the credential data to the importing provider.

An OPTIONAL authority that can grant and attest certificates on behalf of a Credential Owner. These
certificates are used to authenticate the credential agent and MAY be used to create the migration key used
on behalf of the source and importing provider.

This protocol can work in both online and offline scenarios, as well as in air-gapped networks where one or both
devices might not have access to the internet. Different network conditions might result in participants like an
authorizing party or another outside service from being included, but the core exchange protocol should not be
affected.

Credential Types are defined through the Credential Exchange Format [CXF] as the CredentialType enum.
The exported credentials MUST be formatted using [CXF] in order to have interoporability.

1. The importing credential provider initiates the flow by creating an export request for the exporting provider.
The import request includes a challenge, the scope of the export request, and a declaration of the type of
encryption scheme to be used. In most cases, this will use Diffie-Hellman and the importer will provide a
public key in the export request.

2. If an end-user and/or authorizing party approves the request, the exporter uses the export request key to
generate or retrieve the migration key used to encrypt the credential data.

3. The source collects and encrypts the requested credential data for export and signs the challenge provided
by the importer.

4. The export response is sent to the destination provider and includes the encrypted credential data, the
signed challenge response, and the public key of the source credential provider’s migration key.

5. The importing provider validates the challenge and retreives the migration key, decrypting the credential
data which is formatted normatively with CXF, and then stores the result.

2.1. Participants

Credential Owner

Credential Provider

Importing Provider
Importer

Exporting Provider
Exporter

Authorizing Party

2.2. Supporting Different Network Conditions

3. Protocol API

3.1. Credential Types

3.2. Export Request 4/10

https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html#
https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html#enumdef-credentialtype

The export request initiates the protocol which contains a set of encryption parameters. These encryption
parameters MUST have an associated public key if it is necessary for that instance of given parameters. This
request or elements of it MAY be created by the authorizing party if one is present, or created by the destination
credential provider with or without input from the credential owner.

ExportRequest = {
 version: uint .size 2 .default 0,
 hpke: [+ HpkeParameters],
 archive: [+ ArchiveAlgorithm / tstr],
 mode: tstr,
 importer: tstr,
 ? credentialTypes: [+ CredentialType / tstr],
 ? knownExtensions: [+ tstr],
 }

The protocol version that the Importing Provider wants to use in the exchange. The version MUST
correspond to a published level of the CXP standard.

This member defines a list of HPKE Parameters that the Importing Provider supports in order of preference.
It is up to the Exporting Provider to select a matching set of parameters that both support.

This member defines a list of archiving algorithms that the Importing Provider supports in order of
preference. It is up to the Exporting Provider to select an algorithm that both support. The values of this list
SHOULD be members of Archive Algorithm and the Exporting Provider MUST ignore any unknown values.

Defines the Response Mode of how the Exporting Provider should respond.

This member is the Relying Party Identifier of the Importing Provider.

This OPTIONAL member lists the types of credentials that the Importing Provider understands and requests
from the Exporting Provider. This list SHOULD be validated by the user before initiating the exchange. The
values in the list SHOULD be members of CredentialType and the Exporting Provider MUST ignore any
unknown values.

If this member is not present then it is understood that the Importing Provider is requesting all credential
types. If this member is present but the list is empty, the Exporting Provider MUST send only the Account
object without any Collection information.

This OPTIONAL member lists the extensions that the Importing Provider understands. This list SHOULD be
members of name defined in [CXF] and the Exporting Provider MUST ignore all unknown values.

If this member is not present, then it is understood that the Importing Provider is requesting all extensions
that the Exporting Provider wishes to include. If this member is present but the list is empty, the Exporting
Provider MUST NOT include any extensions in the resulting export.

In response modes where the Importer cannot directly request an exchange from an Exporter, the Export
Request SHALL be stored as a JSON-encoded document to be supplied to the Exporter by the Credential
Owner.

3.2. Export Request

version

hpke

archive

mode

importer

credentialTypes

knownExtensions

3.2.1. Export Request File

3.2.2. Response Modes 5/10

https://www.w3.org/TR/webauthn-3/#relying-party-identifier
https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html#enumdef-credentialtype
https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html#dictdef-account
https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html#dictdef-collection
https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html#dom-extension-name

Response modes allow providers to negotiate on how they wish to store or receive the Export Response. They
do not change the response payload, but allow for different usage scenarios.

ResponseMode =
 "direct" /
 "indirect"/
 "self"

In the case that a platform or Exporter provides an interface or transport over which the exchange ceremony
can take place, the Importer may submit the Export Request using this layer and if indirect is requested, the
Exporter MUST return the Export Response over the same transport or return an appropriate error.

For a platform or Exporter that does not provide a direct means of exchange, or at the request of the
Credential Owner, an Importer can request indirect mode from the Exporter, which MUST output the Export
Response to the filesystem. The Importer MAY request this mode in the case that a direct means of
exchange is possible, or produce an Export Request as file that can be provided to the Exporter by the
Credential Owner.

This mode SHOULD be used in cases where the Exporter and Importer are the same entity in the exchange.
If self is requested, the Credential Provider may want use a symmetric key provided by the Credential Owner
or Authorizing Party to derive the {ExportResponse} encryption key. This mode is meant to facilitate the
secure storage and backup of credentials for a Credential Owner outside of the credential providers.

Includes both the credential payload and any metadata necessary to decrypt and marshall the credentials into
the importer’s storage. The response can be received directly by the Importer. If it cannot be received directly, the
Export Response SHALL be stored as a JSON-encoded document to be supplied to the Importer by the
Credential Owner.

ExportResponse = {
 version: uint .size 2 .default 0,
 hpke: HPKEParameters,
 archive: ArchiveAlgorithm / tstr,
 exporter: tstr,
 payload: b64url,
}

The protocol version that the Exporting Provider understands. The value SHOULD be the same as version
however there is the possibility of the Exporting Provider having a previous version of the protocol
implemented and therefore responding with a lower version. The Importing Provider MAY refuse this version
downgrade.

This member defines the encryption parameters selected by the Exporting Provider. The value MUST
correspond to an entry in hpke.

This member defines the archiving algorithm selected by the Exporting Provider. The value MUST
correspond to an entry in archive.

This member is the Relying Party Identifier or the Exporting Provider.

3.2.2. Response Modes

direct

indirect

self

3.3. Export Response

version

hpke

archive

exporter

payload

6/10

https://www.w3.org/TR/webauthn-3/#relying-party-identifier

This contains the base64url encoded Credential Payload.

One or more normatively formatted credentials that are passed inside the export response. The format MUST
follow the zip archive format as defined in [CXF] where each file is separately encrypted using the key defined by
the selected HPKE Parameters. The file names are replaced with the anonymous identifier in the export request.
All files are stored as JSON Web Encryption files.

CXP-Export/
├─ index.jwe
├─ documents/
│ ├─ 1b3.jwe
│ ├─ d5f.jwe
│ ├─ 7h9.jwe

HPKEParameters = {
 mode: HPKEMode / tstr,
 kem: uint .size 2,
 kdf: uint .size 2,
 aead: uint .size 2,
 key: JWK
}

The encryption mode as defined in [RFC9180] and SHOULD be a member of HPKE Mode. The Exporting
Provider SHOULD ignore any HPKE Parameters where this value is unknown.

The encryption key encapsulation method as defined in [RFC9180]. The value SHOULD be from the HPKE
KEM Identifiers IANA table, the Exporting Provider SHOULD ignore any HPKE Parameters where this value
is unknown.

The encryption key derivation function as defined in [RFC9180]. The value SHOULD be from the HPKE KDF
Identifiers IANA table, the Exporting Provider SHOULD ignore any HPKE Parameters where this value is
unknown.

The authenticated encryption with additional data algorithm as defined in [RFC9180]. The value SHOULD be
from the HPKE AEAD Identifiers IANA table, the Exporting Provider SHOULD ignore any HPKE Parameters
where this value is unknown.

This member is only present in the case that the option is not using a pre-shared key. It is a JSON Web Key
representing that provider’s key necessary for the other provider’s generation of the AEAD key.

3.4. Credential Payload

3.5. Supporting Types

3.5.1. HPKE Parameters ## {#sctn-hpke-parameters}

mode

kem

kdf

aead

key

3.5.2. HPKE Modes

7/10

https://www.iana.org/assignments/hpke/hpke.xhtml#hpke-kem-ids
https://www.iana.org/assignments/hpke/hpke.xhtml#hpke-kdf-ids
https://www.iana.org/assignments/hpke/hpke.xhtml#hpke-aead-ids
https://www.rfc-editor.org/rfc/rfc7517.html#section-4

HPKEMode =
 "base" /
 "psk" /
 "auth" /
 "auth-psk"

Base mode of encrypting a public key.

Authenticates the possession of a pre-shared key.

Authenticates the possession of a KEM private key.

Authenticates possession of both a pre-shared key and a KEM private key.

ArchiveAlgorithm =
 "deflate"

Archiving through the use of the DEFLATE algorithm defined in [RFC1951].

This document has no IANA actions.

This section defines which algorithms and features of this specification are mandatory to implement. Applications
using this specification can impose additional requirements upon implementations that they use.

This document outlines a secure means of credential exchange through the encryption of credentials but does
not make any considerations for the security and threats inroduced by Credential Providers themselves. This
section outlines considerations to make when implementing CXP and potential areas of vulnerability in objects
used.

If one of the Credential Providers is compromised, or the encrypting credentials used by the Credential Owner or
Authorizing Party to create the Export Response are compromised, the integrity of the the protocol is no longer
ensured. It is important that the key material used provides a strong guarantee of security and privacy for the
user, and that in the event of a breach to the Credential Providers, the Credential Owner is informed and can
take remediation steps.

base

psk

auth

auth-psk

3.5.3. Archive Algorithms

deflate

4. IANA Considerations

5. Implementation Requirements

6. Security Considerations

6.1. Key Compromise

Index

Terms defined by this specification 8/10

Terms defined by this specification

aead, in § 3.5.1

archive
dfn for Export Request, in § 3.2

dfn for ExportResponse, in § 3.3

Archive Algorithms, in § 3.5.3

auth, in § 3.5.2

Authorizing Party, in § 2.1

auth-psk, in § 3.5.2

base, in § 3.5.2

Credential Owner, in § 2.1

Credential Payload, in § 3.4

Credential Provider, in § 2.1

credentialTypes, in § 3.2

deflate, in § 3.5.3

direct, in § 3.2.2

Exporter, in § 2.1

exporter, in § 3.3

Exporting Provider, in § 2.1

Export Request, in § 3.2

Export Response, in § 3.3

hpke
dfn for Export Request, in § 3.2

dfn for ExportResponse, in § 3.3

HPKE Modes, in § 3.5.2

HPKE Parameters, in § 3.5.1

Importer, in § 2.1

importer, in § 3.2

Importing Provider, in § 2.1

indirect, in § 3.2.2

kdf, in § 3.5.1

kem, in § 3.5.1

key, in § 3.5.1

knownExtensions, in § 3.2

mode
dfn for Export Request, in § 3.2

dfn for HPKE Parameters, in § 3.5.1

payload, in § 3.3

psk, in § 3.5.2

Response modes, in § 3.2.2

self, in § 3.2.2

version
dfn for Export Request, in § 3.2

9/10

R. Léveillé. Credential Exchange Format. June 20, 2024. FIDO Alliance Working Draft. URL:
https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html

R. Shirey. Internet Security Glossary, Version 2. August 2007. Informational. URL: https://www.rfc-
editor.org/rfc/rfc4949

M. Jones. JSON Web Key (JWK). May 2015. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc7517

R. Barnes; et al. Hybrid Public Key Encryption. February 2022. Informational. URL: https://www.rfc-
editor.org/rfc/rfc9180

Dirk Balfanz (Google); et al. Web Authentication: An API for accessing Public Key Credentials Level 2. 8
April 2021. TR. URL: https://www.w3.org/TR/webauthn-2/

P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. May 1996. Informational. URL:
https://www.rfc-editor.org/rfc/rfc1951

dfn for ExportResponse, in § 3.3

Terms defined by reference

[CXF] defines the following terms:
Account

Collection

CredentialType

cxf

name

[RFC7517] defines the following terms:
JWK

[WebAuthn] defines the following terms:
relying party identifier

References

Normative References

[CXF]

[RFC4949]

[RFC7517]

[RFC9180]

[WebAuthn]

Informative References

[RFC1951]

↑
→

10/10

https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html
https://drafts.fidoalliance.org/fido-2/stable-links-to-latest/cxf.html
https://www.rfc-editor.org/rfc/rfc4949
https://www.rfc-editor.org/rfc/rfc4949
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc9180
https://www.rfc-editor.org/rfc/rfc9180
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc1951

	Credential Exchange Protocol
	Working Draft, October 03, 2024
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Terminology

	2. Protocol Overview
	2.1. Participants
	2.2. Supporting Different Network Conditions

	3. Protocol API
	3.1. Credential Types
	3.2. Export Request
	3.2.1. Export Request File
	3.2.2. Response Modes

	3.3. Export Response
	3.4. Credential Payload
	3.5. Supporting Types
	3.5.1. HPKE Parameters ## {#sctn-hpke-parameters}
	3.5.2. HPKE Modes
	3.5.3. Archive Algorithms

	4. IANA Considerations
	5. Implementation Requirements
	6. Security Considerations
	6.1. Key Compromise

	Index
	Terms defined by this specification
	Terms defined by reference

	References
	Normative References
	Informative References

