
FIDO Registry of Predefined Values
FIDO Alliance Review Draft 25 May 2021

This version:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-rd-20210525.html

Previous version:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

Editors:
Rolf Lindemann, Nok Nok Labs, Inc.
Yuriy Ackermann, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

Copyright © 2013-2021 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by FIDO protocols. The values defined in
this document are referenced by various FIDO specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current FIDO Alliance publications and the latest revision of this
technical report can be found in the FIDO Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document,

REVIEW DRAFT

https://fidoalliance.org/
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
mailto://rolf@noknok.com/
https://www.noknok.com/
mailto://yuriy@fidoalliance.org/
https://fidoalliance.org/
https://www.noknok.com/
https://www.paypal.com/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/

please Contact Us. All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as
the Specification may change. Permission is hereby granted to use the Specification solely for the
purpose of reviewing the Specification. No rights are granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce portions of this Specification for other uses must
contact the FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and
any other contributors to the Specification are not, and shall not be held, responsible in any manner for
identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF
ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Conformance

2. Overview
3. Authenticator Characteristics

3.1 User Verification Methods
3.2 Key Protection Types
3.3 Matcher Protection Types
3.4 Authenticator Attachment Hints
3.5 Transaction Confirmation Display Types
3.6 Tags used for crypto algorithms and types

3.6.1 Authentication Algorithms
3.6.2 Public Key Representation Formats

3.7 Authenticator Attestation Types

A. References
A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

FIDO specific terminology used in this document is defined in [FIDOGlossary].

Some entries are marked as "(optional)" in this spec. The meaning of this is defined in other FIDO

https://fidoalliance.org/contact

specifications referring to this document.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in
this specification are non-normative. Everything else in this specification is normative.

The key words MUST, MUST NOT, REqUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this
specification are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of FIDO-specific constants common to multiple FIDO protocol families.
It is expected that, over time, new constants will be added to this registry. For example new authentication
algorithms and new types of authenticator characteristics will require new constants to be defined for use
within the specifications.

3. Authenticator Characteristics

This section is normative.

3.1 User Verification Methods

The USER_VERIFY constants are flags in a bitfield represented as a 32 bit long integer. They describe the
methods and capabilities of a FIDO authenticator for locally verifying a user. The operational details of
these methods are opaque to the server. These constants are used in the authoritative metadata for FIDO
authenticators, reported and queried through the UAF Discovery APIs, and used to form authenticator
policies in UAF protocol messages. Each constant has a case-sensitive string representation (in quotes),
which is used in the authoritative metadata for FIDO authenticators.

All user verification methods labeled "_INTERNAL" must be performed entirely inside the authenticator
boundary [FIDOAuthenticatorSecurityRequirements] (gathering of data, processing of data and matching
of the data).

This version of the document makes the previous assumption of implementing the user verification
methods inside the authenticator boundary explicit by adding the _INTERNAL suffix to the name. That is,
the _INTERNAL suffix doesn't change the previous meaning, it just makes this meaning more explicit.

All user verification methods labeled "_EXTERNAL" can use data gathered and pre-processed outside
the authenticator boundary, but must perform the matching entirely inside the authenticator boundary.

USER_VERIFY_PRESENCE_INTERNAL 0x00000001 "presence_internal"
This flag MUST be set if the authenticator is able to confirm user presence in any fashion. If this flag
and no other is set for user verification, the guarantee is only that the authenticator cannot be
operated without some human intervention, not necessarily that the sensing of "presence" provides
any level of user verification (e.g. a device that requires a button press to activate).

USER_VERIFY_FINGERPRINT_INTERNAL 0x00000002 "fingerprint_internal"
This flag MUST be set if the authenticator uses any type of measurement of a fingerprint for user
verification.

USER_VERIFY_PASSCODE_INTERNAL 0x00000004 "passcode_internal"

This flag MUST be set if the authenticator uses a local-only passcode (i.e. a passcode not known by
the server) for user verification.

USER_VERIFY_VOICEPRINT_INTERNAL 0x00000008 "voiceprint_internal"
This flag MUST be set if the authenticator uses a voiceprint (also known as speaker recognition) for
user verification.

USER_VERIFY_FACEPRINT_INTERNAL 0x00000010 "faceprint_internal"
This flag MUST be set if the authenticator uses any manner of face recognition to verify the user.

USER_VERIFY_LOCATION_INTERNAL 0x00000020 "location_internal"
This flag MUST be set if the authenticator uses any form of location sensor or measurement for user
verification.

USER_VERIFY_EYEPRINT_INTERNAL 0x00000040 "eyeprint_internal"
This flag MUST be set if the authenticator uses any form of eye biometrics for user verification.

USER_VERIFY_PATTERN_INTERNAL 0x00000080 "pattern_internal"
This flag MUST be set if the authenticator uses a drawn pattern for user verification.

USER_VERIFY_HANDPRINT_INTERNAL 0x00000100 "handprint_internal"
This flag MUST be set if the authenticator uses any measurement of a full hand (including palm-print,
hand geometry or vein geometry) for user verification.

USER_VERIFY_PASSCODE_EXTERNAL 0x00000800 "passcode_external"
This flag MUST be set if the authenticator uses a local-only passcode (i.e. a passcode not known by
the server) for user verification that might be gathered outside the authenticator boundary.

USER_VERIFY_PATTERN_EXTERNAL 0x00001000 "pattern_external"
This flag MUST be set if the authenticator uses a drawn pattern for user verification that might be
gathered outside the authenticator boundary.

USER_VERIFY_NONE 0x00000200 "none"
This flag MUST be set if the authenticator will respond without any user interaction (e.g. Silent
Authenticator).

USER_VERIFY_ALL 0x00000400 "all"
If an authenticator sets multiple flags for the "_INTERNAL" and/or "_EXTERNAL" user verification
types, it MAY also set this flag to indicate that all verification methods with respective flags set will be
enforced (e.g. faceprint AND voiceprint). If flags for multiple user verification methods are set and
this flag is not set, verification with only one is necessary (e.g. fingerprint OR passcode).

3.2 Key Protection Types

The KEY_PROTECTION constants are flags in a bit field represented as a 16 bit long integer. They describe
the method an authenticator uses to protect the private key material for FIDO registrations. Refer to
[UAFAuthnrCommands] for more details on the relevance of keys and key protection. These constants
are reported and queried through the UAF Discovery APIs and used to form authenticator policies in UAF
protocol messages. Each constant has a case-sensitive string representation (in quotes), which is used in
the authoritative metadata for FIDO authenticators.

When used in metadata describing an authenticator, several of these flags are exclusive of others (i.e.
can not be combined) - the certified metadata may have at most one of the mutually exclusive string
constant values. When used in authenticator policy, any bit may be set to 1, e.g. to indicate that a server
is willing to accept authenticators using either KEY_PROTECTION_SOFTWARE or KEY_PROTECTION_HARDWARE.

NOTE

These flags must be set according to the effective security of the keys, in order to follow the
assumptions made in [FIDOSecRef]. For example, if a key is stored in a secure element but
software running on the FIDO User Device could call a function in the secure element to export the

KEY_PROTECTION_SOFTWARE 0x0001 "software"
This flag MUST be set if the authenticator uses software-based key management. Exclusive in
authenticator metadata with KEY_PROTECTION_HARDWARE, KEY_PROTECTION_TEE,
KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_HARDWARE 0x0002 "hardware"
This flag SHOULD be set if the authenticator uses hardware-based key management. Exclusive in
authenticator metadata with KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_TEE 0x0004 "tee"
This flag SHOULD be set if the authenticator uses the Trusted Execution Environment [TEE] for key
management. In authenticator metadata, this flag should be set in conjunction with
KEY_PROTECTION_HARDWARE. Mutually exclusive in authenticator metadata with
KEY_PROTECTION_SOFTWARE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_SECURE_ELEMENT 0x0008 "secure_element"
This flag SHOULD be set if the authenticator uses a Secure Element [SecureElement] for key
management. In authenticator metadata, this flag should be set in conjunction with
KEY_PROTECTION_HARDWARE. Mutually exclusive in authenticator metadata with KEY_PROTECTION_TEE,
KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_REMOTE_HANDLE 0x0010 "remote_handle"
This flag MUST be set if the authenticator does not store (wrapped) UAuth keys at the client, but relies
on a server-provided key handle. This flag MUST be set in conjunction with one of the other
KEY_PROTECTION flags to indicate how the local key handle wrapping key and operations are
protected. Servers MAY unset this flag in authenticator policy if they are not prepared to store and
return key handles, for example, if they have a requirement to respond indistinguishably to
authentication attempts against userIDs that do and do not exist. Refer to [UAFProtocol] for more
details.

3.3 Matcher Protection Types

The MATCHER_PROTECTION constants are flags in a bit field represented as a 16 bit long integer. They
describe the method an authenticator uses to protect the matcher that performs user verification. These
constants are reported and queried through the UAF Discovery APIs and used to form authenticator
policies in UAF protocol messages. Refer to [UAFAuthnrCommands] for more details on the matcher
component. Each constant has a case-sensitive string representation (in quotes), which is used in the
authoritative metadata for FIDO authenticators.

MATCHER_PROTECTION_SOFTWARE 0x0001 "software"
This flag MUST be set if the authenticator's matcher is running in software. Exclusive in authenticator
metadata with MATCHER_PROTECTION_TEE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_TEE 0x0002 "tee"

key either in the clear or using an arbitrary wrapping key, then the effective security is
KEY_PROTECTION_SOFTWARE and not KEY_PROTECTION_SECURE_ELEMENT.

NOTE

These flags must be set according to the effective security of the matcher, in order to follow the
assumptions made in [FIDOSecRef]. For example, if a passcode based matcher is implemented in
a secure element, but the passcode is expected to be provided as unauthenticated parameter, then
the effective security is MATCHER_PROTECTION_SOFTWARE and not MATCHER_PROTECTION_ON_CHIP.

This flag SHOULD be set if the authenticator's matcher is running inside the Trusted Execution
Environment [TEE]. Mutually exclusive in authenticator metadata with
MATCHER_PROTECTION_SOFTWARE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_ON_CHIP 0x0004 "on_chip"
This flag SHOULD be set if the authenticator's matcher is running on the chip. Mutually exclusive in
authenticator metadata with MATCHER_PROTECTION_TEE, MATCHER_PROTECTION_SOFTWARE

3.4 Authenticator Attachment Hints

The ATTACHMENT_HINT constants are flags in a bit field represented as a 32 bit long. They describe the
method FIDO authenticators use to communicate with the FIDO User Device. These constants are
reported and queried through the UAF Discovery APIs [UAFAppAPIAndTransport], and used to form
Authenticator policies in UAF protocol messages. Because the connection state and topology of an
authenticator may be transient, these values are only hints that can be used by server-supplied policy to
guide the user experience, e.g. to prefer a device that is connected and ready for authenticating or
confirming a low-value transaction, rather than one that is more secure but requires more user effort.
Each constant has a case-sensitive string representation (in quotes), which is used in the authoritative
metadata for FIDO authenticators.

ATTACHMENT_HINT_INTERNAL 0x0001 "internal"
This flag MAY be set to indicate that the authenticator is permanently attached to the FIDO User
Device.

A device such as a smartphone may have authenticator functionality that is able to be used both
locally and remotely. In such a case, the FIDO client MUST filter and exclusively report only the
relevant bit during Discovery and when performing policy matching.

This flag cannot be combined with any other ATTACHMENT_HINT flags.

ATTACHMENT_HINT_EXTERNAL 0x0002 "external"
This flag MAY be set to indicate, for a hardware-based authenticator, that it is removable or remote
from the FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able to be used both
locally and remotely. In such a case, the FIDO UAF Client MUST filter and exclusively report only the
relevant bit during discovery and when performing policy matching.
This flag MUST be combined with one or more other ATTACHMENT_HINT flag(s).

ATTACHMENT_HINT_WIRED 0x0004 "wired"
This flag MAY be set to indicate that an external authenticator currently has an exclusive wired
connection, e.g. through USB, Firewire or similar, to the FIDO User Device.

ATTACHMENT_HINT_WIRELESS 0x0008 "wireless"
This flag MAY be set to indicate that an external authenticator communicates with the FIDO User
Device through a personal area or otherwise non-routed wireless protocol, such as Bluetooth or
NFC.

ATTACHMENT_HINT_NFC 0x0010 "nfc"

NOTE

These flags are not a mandatory part of authenticator metadata and, when present, only indicate
possible states that may be reported during authenticator discovery.

This flag MAY be set to indicate that an external authenticator is able to communicate by NFC to the
FIDO User Device. As part of authenticator metadata, or when reporting characteristics through
discovery, if this flag is set, the ATTACHMENT_HINT_WIRELESS flag SHOULD also be set as well.

ATTACHMENT_HINT_BLUETOOTH 0x0020 "bluetooth"
This flag MAY be set to indicate that an external authenticator is able to communicate using Bluetooth
with the FIDO User Device. As part of authenticator metadata, or when reporting characteristics
through discovery, if this flag is set, the ATTACHMENT_HINT_WIRELESS flag SHOULD also be set.

ATTACHMENT_HINT_NETWORK 0x0040 "network"
This flag MAY be set to indicate that the authenticator is connected to the FIDO User Device over a
non-exclusive network (e.g. over a TCP/IP LAN or WAN, as opposed to a PAN or point-to-point
connection).

ATTACHMENT_HINT_READY 0x0080 "ready"
This flag MAY be set to indicate that an external authenticator is in a "ready" state. This flag is set by
the ASM at its discretion.

ATTACHMENT_HINT_WIFI_DIRECT 0x0100 "wifi_direct"
This flag MAY be set to indicate that an external authenticator is able to communicate using WiFi
Direct with the FIDO User Device. As part of authenticator metadata and when reporting
characteristics through discovery, if this flag is set, the ATTACHMENT_HINT_WIRELESS flag SHOULD also
be set.

3.5 Transaction Confirmation Display Types

The TRANSACTION_CONFIRMATION_DISPLAY constants are flags in a bit field represented as a 16 bit long
integer. They describe the availability and implementation of a transaction confirmation display capability
required for the transaction confirmation operation. These constants are reported and queried through the
UAF Discovery APIs and used to form authenticator policies in UAF protocol messages. Each constant
has a case-sensitive string representation (in quotes), which is used in the authoritative metadata for
FIDO authenticators. Refer to [UAFAuthnrCommands] for more details on the security aspects of
TransactionConfirmation Display.

TRANSACTION_CONFIRMATION_DISPLAY_ANY 0x0001 "any"
This flag MUST be set to indicate that a transaction confirmation display, of any type, is available on
this authenticator. Other TRANSACTION_CONFIRMATION_DISPLAY flags MAY also be set if this flag is set. If
the authenticator does not support a transaction confirmation display, then the value of
TRANSACTION_CONFIRMATION_DISPLAY MUST be set to 0.

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE 0x0002 "privileged_software"
This flag MUST be set to indicate, that a software-based transaction confirmation display operating in
a privileged context is available on this authenticator.

A FIDO client that is capable of providing this capability MAY set this bit (in conjunction with

NOTE

Generally this should indicate that the device is immediately available to perform user
verification without additional actions such as connecting the device or creating a new
biometric profile enrollment, but the exact meaning may vary for different types of devices.
For example, a USB authenticator may only report itself as ready when it is plugged in, or a
Bluetooth authenticator when it is paired and connected, but an NFC-based authenticator
may always report itself as ready.

TRANSACTION_CONFIRMATION_DISPLAY_ANY) for all authenticators of type ATTACHMENT_HINT_INTERNAL,
even if the authoritative metadata for the authenticator does not indicate this capability.

This flag is mutually exclusive with TRANSACTION_CONFIRMATION_DISPLAY_TEE and
TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_TEE 0x0004 "tee"
This flag SHOULD be set to indicate that the authenticator implements a transaction confirmation
display in a Trusted Execution Environment ([TEE], [TEESecureDisplay]). This flag is mutually
exclusive with TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and
TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE 0x0008 "hardware"
This flag SHOULD be set to indicate that a transaction confirmation display based on hardware
assisted capabilities is available on this authenticator. This flag is mutually exclusive with
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and
TRANSACTION_CONFIRMATION_DISPLAY_TEE.

TRANSACTION_CONFIRMATION_DISPLAY_REMOTE 0x0010 "remote"
This flag SHOULD be set to indicate that the transaction confirmation display is provided on a distinct
device from the FIDO User Device. This flag can be combined with any other flag.

3.6 Tags used for crypto algorithms and types

These tags indicate the specific authentication algorithms, public key formats and other crypto relevant
data.

3.6.1 Authentication Algorithms

The ALG_SIGN constants are 16 bit long integers indicating the specific signature algorithm and encoding.

Each constant has a case-sensitive string representation (in quotes), which is used in the authoritative
metadata for FIDO authenticators.

ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW 0x0001 "secp256r1_ecdsa_sha256_raw"
An ECDSA signature on the NIST secp256r1 curve which MUST have raw R and S buffers, encoded
in big-endian order. This is the signature encoding as specified in [ECDSA-ANSI].

I.e. [R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

NOTE

Software based transaction confirmation displays might be implemented within the
boundaries of the ASM rather than by the authenticator itself [UAFASM].

NOTE

FIDO UAF supports RAW and DER signature encodings in order to allow small footprint
authenticator implementations.

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: -7, crv: 1)

ALG_SIGN_SECP256R1_ECDSA_SHA256_DER 0x0002 "secp256r1_ecdsa_sha256_der"
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the NIST secp256r1 curve.

I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: -7, crv: 1)

ALG_SIGN_RSASSA_PSS_SHA256_RAW 0x0003 "rsassa_pss_sha256_raw"
RSASSA-PSS [RFC3447] signature MUST have raw S buffers, encoded in big-endian order
[RFC4055] [RFC4056]. The default parameters as specified in [RFC4055] MUST be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER
ALG_KEY_COSE(kty: 3, alg: -37)

ALG_SIGN_RSASSA_PSS_SHA256_DER 0x0004 "rsassa_pss_sha256_der"
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the RSASSA-PSS
[RFC3447] signature [RFC4055] [RFC4056]. The default parameters as specified in [RFC4055] MUST

be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

I.e. a DER encoded OCTET STRING (including its tag and length bytes).

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER
ALG_KEY_COSE(kty: 3, alg: -37)

ALG_SIGN_SECP256K1_ECDSA_SHA256_RAW 0x0005 "secp256k1_ecdsa_sha256_raw"

An ECDSA signature on the secp256k1 curve which MUST have raw R and S buffers, encoded in big-
endian order.

I.e.[R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: -47, crv: 8)

ALG_SIGN_SECP256K1_ECDSA_SHA256_DER 0x0006 "secp256k1_ecdsa_sha256_der"
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the secp256k1 curve.

I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_ECC_X962_RAW
ALG_KEY_ECC_X962_DER
ALG_KEY_COSE(kty: 2, alg: -47, crv: 8)

ALG_SIGN_SM2_SM3_RAW 0x0007 (optional) "sm2_sm3_raw"
Chinese SM2 elliptic curve based signature algorithm combined with SM3 hash algorithm [OSCCA-
SM2][OSCCA-SM3]. We use the 256bit curve [OSCCA-SM2-curve-param].

This algorithm is suitable for authenticators using the following key representation format:
ALG_KEY_ECC_X962_RAW.

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_RAW 0x0008 "rsa_emsa_pkcs1_sha256_raw"
This is the EMSA-PKCS1-v1_5 signature as defined in [RFC3447]. This means that the encoded
message EM will be the input to the cryptographic signing algorithm RSASP1 as defined in
[RFC3447]. The result s of RSASP1 is then encoded using function I2OSP to produce the raw
signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T

with the padding string PS with length=emLen - tLen - 3 octets having the value 0xff for each
octet, e.g. (0x) ff ff ff ff ff ff ff ff
with the DER [ITU-X690-2008] encoded DigestInfo value T: (0x)30 31 30 0d 06 09 60 86 48
01 65 03 04 02 01 05 00 04 20 | H, where H denotes the bytes of the SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER

NOTE

Implementers should verify that their implementation of the PKCS#1 V1.5 signature follows
the recommendations in [RFC3218] to protect against adaptive chosen-ciphertext attacks

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_DER 0x0009 "rsa_emsa_pkcs1_sha256_der"
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the EMSA-PKCS1-
v1_5 signature as defined in [RFC3447]. This means that the encoded message EM will be the
input to the cryptographic signing algorithm RSASP1 as defined in [RFC3447]. The result s of
RSASP1 is then encoded using function I2OSP to produce the raw signature. The raw signature is
DER [ITU-X690-2008] encoded as an OCTET STRING to produce the final signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T

with the padding string PS with length=emLen - tLen - 3 octets having the value 0xff for each
octet, e.g. (0x) ff ff ff ff ff ff ff ff
with the DER encoded DigestInfo value T: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02
01 05 00 04 20 | H, where H denotes the bytes of the SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_RSA_2048_RAW
ALG_KEY_RSA_2048_DER

ALG_SIGN_RSASSA_PSS_SHA384_RAW 0x000A "rsassa_pss_sha384_raw"
RSASSA-PSS [RFC3447] signature MUST have raw S buffers, encoded in big-endian order
[RFC4055] [RFC4056]. The default parameters as specified in [RFC4055] MUST be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA384
Salt Length of 48 bytes, i.e. the length of a SHA384 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -38)

ALG_SIGN_RSASSA_PSS_SHA512_RAW 0x000B "rsassa_pss_sha512_raw"
RSASSA-PSS [RFC3447] signature MUST have raw S buffers, encoded in big-endian order
[RFC4055] [RFC4056]. The default parameters as specified in [RFC4055] MUST be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA512
Salt Length of 64 bytes, i.e. the length of a SHA512 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal value 0xBC.

such as Bleichenbacher.

NOTE

Implementers should verify that their implementation of the PKCS#1 V1.5 signature follows
the recommendations in [RFC3218] to protect against adaptive chosen-ciphertext attacks
such as Bleichenbacher.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -39)

ALG_SIGN_RSASSA_PKCSV15_SHA256_RAW 0x000C "rsassa_pkcsv15_sha256_raw"
RSASSA-PKCS1-v1_5 [RFC3447] with SHA256(aka RS256) signature MUST have raw S buffers,
encoded in big-endian order [RFC8017] [RFC4056]

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -257)

ALG_SIGN_RSASSA_PKCSV15_SHA384_RAW 0x000D "rsassa_pkcsv15_sha384_raw"
RSASSA-PKCS1-v1_5 [RFC3447] with SHA384(aka RS384) signature MUST have raw S buffers,
encoded in big-endian order [RFC8017] [RFC4056]

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -258)

ALG_SIGN_RSASSA_PKCSV15_SHA512_RAW 0x000E "rsassa_pkcsv15_sha512_raw"
RSASSA-PKCS1-v1_5 [RFC3447] with SHA512(aka RS512) signature MUST have raw S buffers,
encoded in big-endian order [RFC8017] [RFC4056]

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -259)

ALG_SIGN_RSASSA_PKCSV15_SHA1_RAW 0x000F "rsassa_pkcsv15_sha1_raw"
RSASSA-PKCS1-v1_5 [RFC3447] with SHA1(aka RS1) signature MUST have raw S buffers,
encoded in big-endian order [RFC8017] [RFC4056]

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 3, alg: -65535)

ALG_SIGN_SECP384R1_ECDSA_SHA384_RAW 0x0010 "secp384r1_ecdsa_sha384_raw"
An ECDSA signature on the NIST secp384r1 curve with SHA384(aka: ES384) which MUST have raw
R and S buffers, encoded in big-endian order. This is the signature encoding as specified in
[ECDSA-ANSI].

I.e. [R (48 bytes), S (48 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 2, alg: -35, crv: 2)

ALG_SIGN_SECP521R1_ECDSA_SHA512_RAW 0x0011 "secp521r1_ecdsa_sha512_raw"
An ECDSA signature on the NIST secp521r1 curve with SHA512(aka: ES512) which MUST have raw
R and S buffers, encoded in big-endian order. This is the signature encoding as specified in
[ECDSA-ANSI].

I.e. [R (66 bytes), S (66 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 2, alg: -36, crv: 3)

ALG_SIGN_ED25519_EDDSA_SHA512_RAW 0x0012 "ed25519_eddsa_sha512_raw"
An EdDSA signature on the curve Ed25519, which MUST have raw R and S buffers, encoded in big-
endian order. This is the signature encoding as specified in [RFC8032].

I.e. [R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 1, alg: -8, crv: 6)

ALG_SIGN_ED448_EDDSA_SHA512_RAW 0x0013 "ed448_eddsa_sha512_raw"
An EdDSA signature on the curve Ed448, which MUST have raw R and S buffers, encoded in big-
endian order. This is the signature encoding as specified in [RFC8032].

I.e. [R (57 bytes), S (57 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

ALG_KEY_COSE(kty: 1, alg: -8, crv: 7)

3.6.2 Public Key Representation Formats

The ALG_KEY constants are 16 bit long integers indicating the specific Public Key algorithm and encoding.

Each constant has a case-sensitive string representation (in quotes), which is used in the authoritative
metadata for FIDO authenticators.

ALG_KEY_ECC_X962_RAW 0x0100 "ecc_x962_raw"
Raw ANSI X9.62 formatted Elliptic Curve public key [SEC1].

NOTE

FIDO UAF supports RAW and DER encodings in order to allow small footprint authenticator
implementations. By definition, the authenticator must encode the public key as part of the
registration assertion.

I.e. [0x04, X (32 bytes), Y (32 bytes)]. Where the byte 0x04 denotes the uncompressed point
compression method.

ALG_KEY_ECC_X962_DER 0x0101 "ecc_x962_der"
DER [ITU-X690-2008] encoded ANSI X.9.62 formatted SubjectPublicKeyInfo [RFC5480] specifying
an elliptic curve public key.

I.e. a DER encoded SubjectPublicKeyInfo as defined in [RFC5480].

Authenticator implementations MUST generate namedCurve in the ECParameters object which is
included in the AlgorithmIdentifier. A FIDO UAF Server MUST accept namedCurve in the
ECParameters object which is included in the AlgorithmIdentifier.

ALG_KEY_RSA_2048_RAW 0x0102 "rsa_2048_raw"
Raw encoded 2048-bit RSA public key [RFC3447].

That is, [n (256 bytes), e (N-256 bytes)]. Where N is the total length of the field.

This total length should be taken from the object containing this key, e.g. the TLV encoded field.

ALG_KEY_RSA_2048_DER 0x0103 "rsa_2048_der"
ASN.1 DER [ITU-X690-2008] encoded 2048-bit RSA [RFC3447] public key [RFC4055].

That is a DER encoded SEQUENCE { n INTEGER, e INTEGER }.

ALG_KEY_COSE 0x0104 "cose"

COSE_Key format, as defined in Section 7 of [RFC8152]. This encoding includes its own field for
indicating the public key algorithm.

3.7 Authenticator Attestation Types

The ATTESTATION constants are 16 bit long integers indicating the specific attestation that authenticator
supports.

Each constant has a case-sensitive string representation (in quotes), which is used in the authoritative
metadata for FIDO authenticators.

ATTESTATION_BASIC_FULL 0x3E07 "basic_full"
Indicates full basic attestation, based on an attestation private key shared among a class of
authenticators (e.g. same model). Authenticators must provide its attestation signature during the
registration process for the same reason. The attestation trust anchor is shared with FIDO Servers
out of band (as part of the Metadata). This sharing process should be done according to
[FIDOMetadataService].

ATTESTATION_BASIC_SURROGATE 0x3E08 "basic_surrogate"
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the
UAuth.priv key, i.e. the key corresponding to the UAuth.pub key included in the attestation object.
As a consequence it does not provide a cryptographic proof of the security characteristics. But it is
the best thing we can do if the authenticator is not able to have an attestation private key.

ATTESTATION_ECDAA 0x3E09 "ecdaa"
Indicates use of elliptic curve based direct anonymous attestation as defined in
[FIDOEcdaaAlgorithm]. Support for this attestation type is optional at this time. It might be required
by FIDO Certification.

ATTESTATION_ATTCA 0x3E0A "attca"
Indicates PrivacyCA attestation as defined in [TCG-CMCProfile-AIKCertEnroll]. Support for this
attestation type is optional at this time. It might be required by FIDO Certification.

ATTESTATION_ANONCA 0x3E0C "anonca"
In this case, the authenticator uses an Anonymization CA which dynamically generates per-
credential attestation certificates such that the attestation statements presented to Relying Parties
do not provide uniquely identifiable information, e.g., that might be used for tracking purposes. The
applicable [WebAuthn] attestation formats "fmt" are Google SafetyNet Attestation "android-
safetynet", Android Keystore Attestation "android-key", Apple Anonymous Attestation "apple", and
Apple Application Attestation "apple-appattest".

ATTESTATION_NONE 0x3E0B "none"
Indicates absence of attestation.

A. References

A.1 Normative references

[ECDSA-ANSI]
. Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport
Using Elliptic Curve Cryptography ANSI X9.63-2011 (R2017). 2017. URL:
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)

[FIDOAuthenticatorSecurityRequirements]
Rolf Lindemann; Dr. Joshua E. Hill; Douglas Biggs. FIDO Authenticator Security Requirements.
November 2020. Final Draft. URL: https://fidoalliance.org/specs/fido-security-requirements/fido-
authenticator-security-requirements-v1.4-fd-20201102.html

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA
Algorithm. Review Draft. URL: https://fidoalliance.org/specs/common-specs/fido-ecdaa-algorithm-
v2.1-rd-20210525.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL:
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-rd-20210525.html

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html

[ITU-X690-2008]
. X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-
200811). November 2008. URL: https://www.itu.int/rec/T-REC-X.690-200811-S

[OSCCA-SM2]
SM2: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves: Part 1: General. December
2010. URL: http://www.sca.gov.cn/sca/xwdt/2010-
12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf

[OSCCA-SM2-curve-param]
SM2: Elliptic Curve Public-Key Cryptography Algorithm: Recommended Curve Parameters.
December 2010. URL: http://www.sca.gov.cn/sca/xwdt/2010-
12/17/1002386/files/b965ce832cc34bc191cb1cde446b860d.pdf

[OSCCA-SM3]
SM3 Cryptographic Hash Algorithm. December 2010. URL: http://www.sca.gov.cn/sca/xwdt/2010-
12/17/1002389/files/302a3ada057c4a73830536d03e683110.pdf

[RFC2119]

https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/common-specs/fido-ecdaa-algorithm-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-ecdaa-algorithm-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-ecdaa-algorithm-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-ecdaa-algorithm-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-rd-20210525.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b965ce832cc34bc191cb1cde446b860d.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b965ce832cc34bc191cb1cde446b860d.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b965ce832cc34bc191cb1cde446b860d.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002389/files/302a3ada057c4a73830536d03e683110.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002389/files/302a3ada057c4a73830536d03e683110.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002389/files/302a3ada057c4a73830536d03e683110.pdf

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current
Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1. February 2003. obsoleted by RFC 8017. URL:
https://tools.ietf.org/html/rfc3447

[RFC4055]
J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSA Cryptography for
use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. June 2005. Proposed Standard. URL: https://datatracker.ietf.org/doc/html/rfc4055

[RFC4056]
J. Schaad. Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax (CMS).
June 2005. Proposed Standard. URL: https://datatracker.ietf.org/doc/html/rfc4056

[RFC5480]
S.Turner; D. Brown; K. Yiu; R. Housley; T. Polk. Elliptic Curve Cryptography Subject Public Key
Information. Mar, 2009. Standards Track. URL: https://tools.ietf.org/html/rfc5480

[RFC8017]
K. Moriarty; B. Kaliski; J. Jonsson; A. Rusch. PKCS #1: RSA Cryptography Specifications Version
2.2. November 2016. URL: https://tools.ietf.org/html/rfc8017

[RFC8032]
S. Josefsson; I. Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). January 2017.
Informational. URL: https://datatracker.ietf.org/doc/html/rfc8032

[RFC8152]
J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed Standard. URL:
https://datatracker.ietf.org/doc/html/rfc8152

[SEC1]
. SEC1: Elliptic Curve Cryptography, Version 2.0. September 2000. URL:
http://secg.org/download/aid-780/sec1-v2.pdf

[TCG-CMCProfile-AIKCertEnroll]
. TCG Infrastructure Working Group - A CMC Profile for AIK Certificate Enrollment. URL:
https://trustedcomputinggroup.org/wp-
content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf

[WebAuthn]
Dirk Balfanz (Google); Alexei Czeskis (Google); Jeff Hodges (Google); J.C. Jones (Mozilla); Michael
B. Jones (Microsoft); Akshay Kumar (Microsoft); Rolf Lindemann (Nok Nok Labs); Emil Lundberg
(Yubico); Vijay Bharadwaj (Microsoft); Arnar Birgisson (Google); Hubert Le Van Gong (PayPal);
Angelo Liao (Microsoft); John Bradley (Yubico); Christiaan Brand (Google); Adam Langley (Google);
Giridhar Mandyam (qualcomm); Nina Satragno (Google); Nick Steele (Gemini); Jiewen Tan (Apple);
Shane Weeden (IBM); Mike West (Google); Jeffrey Yasskin (Google). Web Authentication: An API
for accessing Public Key Credentials Level 2. 8 April 2021. TR. URL:
https://www.w3.org/TR/webauthn-2/

A.2 Informative references

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hill; D. Biggs. FIDO Security Reference. 25 May 2021.
Review Draft. URL: https://fidoalliance.org/specs/fido-common-specs-v2.2-rd-20210525/fido-
security-ref-v2.2-rd-20210525.html

[RFC3218]
E. Rescorla. Preventing the Million Message Attack on Cryptographic Message Syntax. January
2002. Informational. URL: https://datatracker.ietf.org/doc/html/rfc3218

[SecureElement]

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc4055
https://datatracker.ietf.org/doc/html/rfc4055
https://datatracker.ietf.org/doc/html/rfc4055
https://datatracker.ietf.org/doc/html/rfc4055
https://datatracker.ietf.org/doc/html/rfc4056
https://datatracker.ietf.org/doc/html/rfc4056
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://datatracker.ietf.org/doc/html/rfc3218
https://datatracker.ietf.org/doc/html/rfc3218

. GlobalPlatform Card Specification v2.3.1. March 2018. URL: https://globalplatform.org/specs-
library/card-specification-2-2-release-notes/

[TEE]
. GlobalPlatform Trusted Execution Environment Specifications. URL:
https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
. GlobalPlatform Trusted User Interface API Specifications. URL:
https://www.globalplatform.org/specifications.asp

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific
Module API. Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-
uaf-asm-api-v1.2-ps-20201020.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding
Specification. Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-
20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill; J. Hodges; K. Yang. FIDO UAF
Authenticator Commands. Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-
20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF
Protocol Specification v1.2. Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-
20201020/fido-uaf-protocol-v1.2-ps-20201020.html

https://globalplatform.org/specs-library/card-specification-2-2-release-notes/
https://globalplatform.org/specs-library/card-specification-2-2-release-notes/
https://globalplatform.org/specs-library/card-specification-2-2-release-notes/
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

	Local Disk
	FIDO Registry of Predefined Values

