Table of Contents

Table of Contents

UAF Architectural Overview

FIDO UAF Protocol Specification v1.0

FIDO UAF Application API and Transport Binding Specification v1.0
FIDO UAF Authenticator-Specific Module API
FIDO UAF Authenticator Commands v1.0

FIDO UAF Authenticator Metadata Statements v1.0
FIDO UAF Authenticator Metadata Service v1.0
FIDO UAF Registry of Predefined Values

FIDO AppID and Facet Specification v1.0

FIDO Security Reference

FIDO Technical Glossary

13

51

73
100
128
143
155
167
173
187

README: GUIDE TO DOCS: FIDO UAF Review Draft Spec Set

The following documents make up the FIDO UAF Review Draft (RD) Spec Set
voted to RD status on 8 Oct 2014. If you are reading this guide

as a first page of a PDF file, all the documents listed below are part
of this same PDF file.

If you are reading this document as a stand-alone file, the documents
listed below ought to be in the same directory as this file, in both
.html and .pdf formats.

FIDO UAF Architectural Overview
fido-uaf-overview-v1.0-id-20141122.html

This overview document describes the various protocol design
considerations in detail and also describes the user flows in
detail. It describes the layering and intention of each of the
detailed protocol documents.

You should read this document first if you are new to UAF.

FIDO UAF Protocol Specification
fido-uaf-protocol-v1.0-id-20141122.html

This document defines the message formats and processing rules
for all UAF protocol messages.

UAF Application API and Transport Binding Specification
fido-uaf-client-api-transport-v1.0-id-20141122.html

This document describes the client side APIs and interoperability
profile for client applications to utilize FIDO UAF.

FIDO UAF Authenticator-specific Module API
fido-uaf-asm-api-v1.0-1d-20141122.html

This document defines Authenticator-specific Modules and the API
provided to the FIDO client by ASMs.

FIDO UAF Authenticator Commands
fido-uaf-authnr-cmds-v1.0-id-20141122.html

This document describes Low-level functionality that UAF
Authenticators should implement to support the UAF protocol.

FIDO UAF Authenticator Metadata Statements
fido-uaf-authnr-metadata-v1.0-id-20141122.html

This document defines the authenticator metadata. This metadata
in turn describes FIDO authenticator form factors,
characteristics, and capabilities. The metadata is used to
inform relying party interactions with, and make policy
decisions about, the authenticators.

FIDO UAF Authenticator Metadata Service
fido-uaf-metadata-service-v1.0-id-20141122.html

Baseline method for relying parties to obtain FIDO Metadata

statements.

UAF Registry of Predefined Values
fido-uaf-reg-v1.0-id-20141122.html

This document defines all the strings and constants reserved
by UAF protocols.

FIDO AppID and Facet Specification
fido-appid-and-facets-v1.0-id-20141122.html

This document defines the scope of user credentials and how
a trusted computing base which supports application
isolation may make access control decisions about which keys
can be used by which applications and web origins.

FIDO Security Reference
fido-security-ref-v1.0-id-20141122.html

Provides an analysis of FIDO security based on detailed analysis of security
threats pertinent to the FIDO protocols based on its goals, assumptions, and
inherent security measures.

FIDO Technical Glossary
fido-glossary-v1.0-id-20141122.html

Defines the technical terms and phrases used in FIDO Alliance
specifications and documents.

o

=
&

S

Q
S

UAF Architectural Overview

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-overview-id-20141122.htmi00
Previous version:
https:/fidoallian

Editors:
Salah Machani, RSA, the Security Division of EMC

Rob Philpott, RSA, the Security Division of EMC
Sampath Srinivas, Google, Inc.

John Kemp, FIDO Alliance

Copyright © 2014 FIDO Alliance All Rights Reserved.

Abstract

The FIDO UAF strong authentication framework enables online services and websites, whether on the open Internet or within enterprises, to
transparently leverage native security features of end-user computing devices for strong user authentication and to reduce the problems
associated with creating and remembering many online credentials. The FIDO UAF Reference Architecture describes the components, protocols,
and interfaces that make up the FIDO UAF strong authentication ecosystem.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Allian ifications in
https://www.fidoalliance.org/specifications/.01

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared byEIDO Alliance, Inc. Permission is hereby granted to use the Specification]
solely for the purpose of implementing the Specification. No rights Brre granted to prepare derivative works of this Specification. Entities seekingd
permission to reproduce portions of this Specification for other uses must contact the BIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual Broperty rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,00
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Introduction
1.1 Background

1.2 FIDO UAF Documentation
1.3 FIDO UAF Goals
2. FIDO UAF High-Level Architecture
2.1 FIDO UAF Client
2.2 FIDO UAF Server
2.3 FIDO UAF Protocols
2.4 FIDO UAF Authenticator Abstraction Layer
2.5 FIDO UAF Authenticator
2.6 FIDO UAF Authenticator Metadata Validation
3. FIDO UAF Usage Scenarios and Protocol Message Flows
3.1 FIDO UAF Authenticator Acquisition and User Enrollment
3.2 Authenticator Registration
3.3 Authentication
3.4 Step-up Authentication
3.5 Transaction ConfirmationOd
3.6 Authenticator Deregistration

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-overview-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf
mailto:salah.machani@rsa.com
https://www.emc.com/domains/rsa/index.htm
https://www.emc.com/domains/rsa/index.htm
https://www.google.com
mailto:john@jkemp.net
https://fidoalliance.org/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.7 Adoption of New Types of FIDO UAF Authenticators
4. Privacy Considerations
5. Relationship to Other Technologies
6. OATH, TCG, PKCS#11, and ISO 24727
7. Table of Figures

1. Introduction
This section is non-normative.

This document describes the FIDO Universal Authentication Framework (UAF) Reference Architecture. The target audience for this document is
decision makers and technical architects who need a high-level understanding of the FIDO UAF strong authentication solution and its relationship
to other relevant industry standards.

The FIDO UAF specifications are as follows:O

« FIDO UAF Protocol

« FIDO UAF Application API and Transport Binding
« FIDO UAF Authenticator Commands

o FIDO UAF Authenticator-Specific Module APIO

« FIDO UAF Authenticator Metadata Statements

« FIDO UAF Authenticator Metadata Service

« FIDO Registry of Predefined ValuesO

The following additional FIDO documents provide important information relevant to the UAF specifications:O

o FIDO AppID and Facets Specification]
« FIDO Security Reference
« FIDO Glossary

These documents may all be found on theFIDO Alliance website at http:/fidoalliance.org/: ifications/downl

1.1 Background
This section is non-normative.

The FIDO Alliance mission is to change the nature of online strong authentication by:

« Developing technical specifications defining open, scalable, hteroperable mechanisms that supplant reliance on passwords to securely
authenticate users of online services.

o Operating industry programs to help ensure successful worldwide adoption of the specifications.O
« Submitting mature technical specifications to recognized Btandards development organization(s) for formal standardization.

The core ideas driving the FIDO Alliance's efforts are 1) ease of use, 2) privacy and security, and 3) standardization. The primary objective is to
enable online services and websites, whether on the open Internet or within enterprises, to leverage native security features of end-user
computing devices for strong user authentication and to reduce the problems associated with creating and remembering many online credentials.

There are two key protocols included in the FIDO architecture that cater to two basic options for user experience when dealing with Internet
services. The two protocols share many of underpinnings but are tuned to the specific intended use cases.Ol

Universal Authentication Framework (UAF) Protocol

The UAF protocol allows online services to offer password-less and multi-factor security. The user registers their device to the online service by
selecting a local authentication mechanism such as swiping a finger, looking at the camera, Epeaking into the mic, entering a PIN, etc. The UAF
protocol allows the service to select which mechanisms are presented to the user.

Once registered, the user simply repeats the local authentication action whenever they need to authenticate to the service. The user no longer
needs to enter their password when authenticating from that device. UAF also allows experiences that combine multiple authentication
mechanisms such as fingerprint + PIN.O

This document that you are reading describes the UAF reference architecture.

Universal 2nd Factor (U2F) Protocol

The U2F protocol allows online services to augment the security of their existing password infrastructure by adding a strong second factor to user
login. The user logs in with a username and password as before. The service can also prompt the user to present a second factor device at any
time it chooses. The strong second factor allows the service to simplify its passwords (e.g. 4-digit PIN) without compromising security.

During registration and authentication, the user presents the second factor by simply pressing a button on a USB device or tapping over NFC. The
user can use their FIDO U2F device across all online services that support the protocol leveraging built-in support in web browsers.

Please refer to the FIDO website for an overview and documentation set focused on the U2F protocol.
1.2 FIDO UAF Documentation

This section is non-normative.

To understand the FIDO UAF protocol, it is recommended that new audiences start by reading this architecture overview document and become
familiar with the technical terminology used in the specifications (the Blossary). Then they should proceed to the individual UAF documents in the
recommended order listed below.

« FIDO UAF Overview: This document. Provides an introduction to the FIDO UAF architecture, protocols, and specifications.O
« FIDO Technical Glossary: Defines the technical terms and phrases Hsed in FIDO Alliance specifications and documents.O0
« Universal Authentication Framework (UAF)
o UAF Protocol Specification OMessage formats and processing rules for all UAF protocol messages.
° SQ'I:: Application API and Transport Binding SpecificationCAPIs and interoperability profile for client applications to utilize FIDOO

http://fidoalliance.org/specifications/download/

o UAF Authenticator Commands: Low-level functionality that UAF Authenticators should implement to support the UAF protocol.
o UAF Authenticator-specific Module APIBAuthenticator-specific Mlodule AP provided by an ASM to the FIDO client.

o UAF Authenticator Metadata Statements: Information describing form factors, characteristics, and capabilities of FIDO UAF
Authenticators used to inform interactions with and make policy decisions about the authenticators.

o UAF Authenticator Metadata Service : Baseline method for relying parties to access the latest Metadata statements.
o UAF Registry of Predefined ValuesHefines all the strings and Eonstants reserved by UAF protocols.

« FIDO AppID and Facet Specification I5cope of user credentials and how a trusted computing base which supports application isolation
may make access control decisions about which keys can be used by which applications and web origins.

« FIDO Security Reference: Provides an analysis of FIDO security based on detailed analysis of security threats pertinent to the FIDO
protocols based on its goals, assumptions, and inherent security measures.

The remainder of this Overview section of the reference architecture document introduces the key drivers, goals, and principles which inform the
design of FIDO UAF.

Following the Overview, this document describes:

« Ahigh-level look at the components, protocols, and APIs defined by the architecturell
« The main FIDO UAF use cases and the protocol message flows Egquired to implement them.
« The relationship of the FIDO protocols to other relevant industry standards.

1.3 FIDO UAF Goals
This section is non-normative.

In order to address today's strong authentication issues and develop a smoothly-functioning low-friction ecosystem, a comprehensive, open, multi-
vendor solution architecture is needed that encompasses:

« User devices, whether personally acquired, enterprise-issued, or enterprise BYOD, and the device's potential operating environment, e.g.
home, office, in the field, etc.00

« Authenticators®

« Relying party applications and their deployment environments

« Meeting the needs of both end users and Relying Parties

« Strong focus on both browser- and native-app-based end-user experience

This solution architecture must feature:

« FIDO UAF Authenticator discovery, attestation, and provisioning

« Cross-platform strong authentication protocols leveraging FIDO UAF Authenticators
« Auniform cross-platform authenticator API

« Simple mechanisms for Relying Party integration

The FIDO Alliance envisions an open, multi-vendor, cross-platform reference architecture with these goals:

« Support strong, multi-factor authentication: Protect Relying Parties against unauthorized access by supporting end user authentication

using two or more strong authentication factors ("something you know", "something you have", "something you are").

« Build on, but not require, existing device capabilities: Facilitate user authentication using built-in platform authenticators or capabilities
(fingerprint sensors, cameras, Bhicrophones, embedded TPM hardware), but do not preclude the use of discrete additional authenticators.

« Enable selection of the authentication mechanism Facilitate Relying Party and user choice amongst supported authentication
mechanisms in order to mitigate risks for their particular use cases.

« Simplify integration of new authentication capabilities: Enable organizations to expand their use of strong authentication to address new
use cases, leverage new device's capabilities, and address new risks with a single authentication approach.

« Incorporate extensibility for future refinements and mnovations: Design extensible protocols and APls in order to support the future
emergence of additional types of authenticators, authentication methods, and authentication protocols, while maintaining reasonable
backwards compatibility.

« Leverage existing open standards where possible, openly innovate and extend where not: An open, standardized, royalty-free
specification suite will enable the establishment of a Mrtuous-circle ecosystem, and decrease the risk, complexity, and costs associated with
deploying strong authentication. Existing gaps -- notably uniform authenticator provisioning and attestation, a uniform cross-platform
authenticator API, as well as a flexible strong authentication challenge-response frotocol leveraging the user's authenticators will be
addressed.

« Complement existing single sign-on, federation initiatives: While industry initiatives (such as OpenID, OAuth, SAML, and others) have
created mechanisms to reduce the reliance on passwords through single sign-on or federation technologies, they do not directly address the
need for an initial strong authentication interaction between end users and Relying Parties.

« Preserve the privacy of the end user. Provide the user control over the sharing of device capability information with Relying Parties, and
mitigate the potential for collusion amongst Relying Parties.

« Unify end-User Experience: Create easy, fun, and unified End-user experiences across all platforms and across similar Authenticators.

2. FIDO UAF High-Level Architecture

This section is non-normative.

The FIDO UAF Architecture is designed to meet the FIDO goals and yield the desired ecosystem benefits. It accomplishes Hhis by filling in the
status-quo's gaps using standardized protocols and APlIs.

The following diagram summarizes the reference architecture and how its components relate to typical user devices and Relying Parties.

The FIDO-specific components of the reference architecture are Bescribed below.

TLS

protocol | |T|—S<9}"

BROWSER /APP ' UAF Protocal : WEB SERVER

Cryptographic
FIDO CLIENT authentication key
reference DB

‘ FIDO SERVER

‘ Authentication
keys

FIDO AUTHENTICATOR

| Aftestation key ‘

metadata &
attestation trust ‘

" Authenticator = FIDO METADATA SERVICE
store

Certify
compliance

T

Fig. 1 FIDO UAF High-Level Architecture

2.1 FIDO UAF Client
A FIDO UAF Client implements the client side of the FIDO UAF protocols, and is responsible for:

« Interacting with specific FIDO UAF Authenticators using the FIDO OAF Authenticator Abstraction layer via the FIDO UAF Authenticator API.

« Interacting with a user agent on the device (e.g. a mobile app, browser) using user agent-specific interfaces to communicate @ith the FIDO
UAF Server. For example, a FIDO-specific browser flugin would use existing browser plugin interfaces or a mobile app may use a FIDO-
specific SDK. The user agent is then Egsponsible for communicating FIDO UAF messages to a FIDO UAF Server at a Relying Party.

The FIDO UAF architecture ensures that FIDO client software can be implemented across a range of system types, operating systems, and Web
browsers. While FIDO client software is typically platform-specific, the interactions between the Eomponents should ensure a consistent user
experience from platform to platform.

2.2 FIDO UAF Server
A FIDO UAF server implements the server side of the FIDO UAF protocols and is responsible for:

« Interacting with the Relying Party web server to communicate FIDO UAF protocol messages to a FIDO UAF Client via a device user agent.

« Validating FIDO UAF authenticator attestations against the configured authenticator metadata to ensure only trusted Buthenticators are
registered for use.

« Manage the association of registered FIDO UAF Authenticators to user accounts at the Relying Party.
« Evaluating user authentication and transaction confirmation Eésponses to determine their validity.

The FIDO UAF server is conceived as being deployable as an on-premise server by Relying Parties or as being outsourced to a FIDO-enabled
third-party service provider.

2.3 FIDO UAF Protocols
The FIDO UAF protocols carry FIDO UAF messages between user devices and Relying Parties. There are protocol messages addressing:

« Authenticator Registration: The FIDO UAF registration protocol enables Relying Parties to:

o Discover the FIDO UAF Authenticators available on a user's system or device. Discovery will convey FIDO UAF Authenticator
attributes to the Relying Party thus enabling policy decisions and enforcement to take place.

o Verify attestation assertions made by the FIDO UAF Authenticators to ensure the authenticator is authentic and trusted. VerificationO
occurs using the attestation public key certificates distributed via authenticator metadata.O

o Register the authenticator and associate it with the user's account at the Relying Party. Once an authenticator attestation has been
validated, the Relying Party can provide a unique secure identifier that is specific to the Relying Party and the BIDO UAF Authenticator.
This identifier can be used in future Mteractions between the pair {RP, Authenticator} and is not known to any other devices.
« User Authentication: Authentication is typically based on cryptographic challenge-response authentication protocols and will facilitate user
choice regarding which FIDO UAF Authenticators are employed in an authentication event.
« Secure Transaction Confirmation: If the user authenticator Mcludes the capability to do so, a Relying Party can present the user with a
secure message for confirmation. The message Ebntent is determined by the Relying Party and could be used in a variety of contexts such
as confirming a financial Eansaction, a user agreement ,or releasing patient records.
Authenticator Deregistration: Deregistration is typically required when the user account is removed at the Relying Party. The Relying Party
can trigger the deregistration by requesting the Authenticator to delete the associated UAF credential with the user account.

3

2.4 FIDO UAF Authenticator Abstraction Layer

The FIDO UAF Authenticator Abstraction Layer provides a uniform API to FIDO Clients enabling the use of authenticator-based cryptographic
services for FIDO-supported operations. It provides a uniform lower-layer "authenticator plugin" API facilitating the deployment of multi-vendor
FIDO UAF Authenticators and their requisite drivers.

2.5 FIDO UAF Authenticator

A FIDO UAF Authenticator is a secure entity, connected to or housed within FIDO user devices, that can create key material associated to a
Relying Party. The key can then be used to participate in FIDO UAF strong authentication protocols. For example, the FIDO UAF Authenticator
can provide a response to a cryptographic challenge using the key material thus authenticating itself to the Relying Party.

In order to meet the goal of simplifying integration of trusted authentication capabilities, a FIDO UAF Authenticator will be able to attest to its
particular type (e.g., biometric) and capabilities (e.g., supported crypto algorithms), as well as to its provenance. This provides a Relying Party with
a high degree of confidence that the user being authenticated is indeed the Dser that originally registered with the site.

2.6 FIDO UAF Authenticator Metadata Validation

In the FIDO UAF context, attestation is how Authenticators make claims to a Relying Party during registration that the keys they generate, and/or
certain measurements they report, originate from genuine devices with certified characteristics. Bn attestation signature, carried in a FIDO UAF
registration protocol message is validated by the FIDO UAF Server. FIDO UAF Authenticators are created with attestation private keys used to
create the signatures and the FIDO UAF Server validates the signature using that authenticator's attestation public key certificate located in thell
authenticator metadata. The metadata holding attestation certificates is shared with FIDO UAF Servers But of band.

3. FIDO UAF Usage Scenarios and Protocol Message Flows
This section is non-normative.

The FIDO UAF ecosystem supports the use cases briefly described i this section.

3.1 FIDO UAF Authenticator Acquisition and User Enroliment

It is expected that users will acquire FIDO UAF Authenticators in various ways: they purchase a new system that comes with embedded FIDO
UAF Authenticator capability; they purchase a device with an embedded FIDO UAF Authenticator, or they are given a FIDO Authenticator by their
employer or some other institution such as their bank.

After receiving a FIDO UAF Authenticator, the user must go through an authenticator-specific enrollment process, which is Butside the scope of the
FIDO UAF protocols. For example, in the case of a fingerprint sensing authenticator, the user must Eggister their fingerprint(s) with thell
authenticator. Once enroliment is complete, the FIDO UAF Authenticator is ready for registration with FIDO UAF enabled online services and
websites.

3.2 Authenticator Registration
Given the FIDO UAF architecture, a Relying Party is able to transparently detect when a user begins interacting with them while possessing an

initialized FIDO UAF Authenticator. In this initial introduction phase, the website will prompt the user regarding any detected FIDO UAF
Authenticator(s), giving the user options regarding registering it with the website or not.

User Device Relying Party

FIDO Client User Agent
(Windows, Mac,
iOS, Android, ...)

Initiate Registration

Registration Request
+ Policy

Registration Response +
Attestation + User's Public

Key
FIDO Authenticators
Validate Response
& Attestation,
Enroll User & Store User’s
Generate New Key Pair Public Key

(specific to RP WebApp)

Fig. 2 Registration Message Flow
3.3 Authentication
Following registration, the FIDO UAF Authenticator will be subsequently employed whenever the user authenticates with the website (and the

authenticator is present). The website can implement various fallback strategies for those occasions when the FIDO Authenticator is not present.
These might range from allowing conventional login with diminished privileges to disallowing login.

User Device Relying Party

FIDO Client User Agent

(Windows, Mac, App,
iOS, Android, ...) (PP

Browser, ...) Initiate Authentication
1

Authentication Regquest
+ Challenge + Policy

Authentication Response
Signed by User's Private Key

FIDO Authenticators

Validate Response
Using User's
Private Key Public Key
(specific to User + RP
WebApp)

Verify User & Unlock

Fig. 3 Authentication Message Flow

This overall scenario will vary slightly depending upon the type of FIDO UAF Authenticator being employed. Some authenticators may sample
biometric data such as a face image, fingerprint, or bice print. Others will require a PIN or local authenticator-specific passphrase entry. Stilld
others may simply be a hardware bearer authenticator. Note that it is permissible for a FIDO Client to interact with external services as part of the
authentication of the user to the authenticator as long as the FIDO Privacy Principles are adhered to.

3.4 Step-up Authentication

Step-up authentication is an embellishment to the basic website login use case. Often, online services and websites allow unauthenticated, and/or
only nominally authenticated use -- for informational browsing, for example. However, once users request more valuable interactions, such as
entering a members-only area, the website may request further higher-assurance authentication. This could proceed in several steps if the user
then wishes to purchase something, with higher-assurance steps with increasing transaction value.

FIDO UAF will smoothly facilitate this interaction style since the website will be able to discover which FIDO UAF Authenticators are available on
FIDO-wielding users' systems, and select incorporation of the appropriate one(s) in any particular authentication interaction. Thus online services
and websites will be able to dynamically tailor initial, as well as step-up authentication interactions according to what the user is able to wield and
the needed inputs to website's risk analysis engine given the interaction the user has requested.

3.5 Transaction Confirmationd

There are various innovative use cases possible given FIDO UAF-enabled Relying Parties with end-users wielding FIDO UAF Authenticators.
Website login and step-up authentication are relatively simple examples. A somewhat more advanced use case is secure transaction processing.

User Device Relying Party

FIDO Client User Agent FIDO Server

(Windows, Mac, (App,
i0S, Android, ...) Browser, ...)

Initiate Transaction

Authentication Request
+ Transaction Text

Authentication Response +
Text Hash Signed by User's
Private Key

FIDO Authenticators

Validate Response
& Text Hash
Using User's

Public Key

Verify User, Display Text,
& Unlock Private Key
(specific to User + RP
WebApp)

Fig. 4 Confirmation Message Flow

Imagine a situation in which a Relying Party wants the end-user to confirm a transaction (e.g. financial operation, privileged Bperation, etc) so that
any tampering of a transaction message during its route to the end device display and back can be detected. FIDO architecture has a concept of
"secure transaction" which provides this capability. Basically if a FIDO UAF Authenticator has a transaction confirmation display capability, FIDOO
UAF architecture makes sure that the system supports What You See is What You Sign mode (WYSIWYS). A number of different use cases can
derive from this capability -- mainly related to authorization of transactions (send money, perform a context specific privileged action, confirmationO]
of email/address, etc).

3.6 Authenticator Deregistration

There are some situations where a Relying Party may need to remove the UAF credentials associated with a specific user account in BIDO
Authenticator. For example, the user’s account is cancelled or deleted, the user’s FIDO Authenticator is lost or stolen, etc. In these situations, the
RP may request the FIDO Authenticator to delete authentication keys that are bound to user account.

User Device Relying Party
FIDO Client FIDO Server
(Windows, Mac, iOS,
Android, ...)
Contact RP _
Deregistration
Request

Delete local
key materia

FIDO Authenticators

Fig. 5 Deregistration Message Flow
3.7 Adoption of New Types of FIDO UAF Authenticators

Authenticators will evolve and new types are expected to appear in the future. Their adoption on the part of both users and Relying Parties is
facilitated by the FIDO architecture. In order to support a new FIDO UAF Authenticator type, Relying Parties need only to add a new entry to their
configuration Hescribing the new authenticator, along with its FIDO Attestation Certificate. Afterwards, end users will be able to Oise the new FIDO
UAF Authenticator type with those Relying Parties.

4. Privacy Considerations
This section is non-normative.
User privacy is fundamental to FIDO and is supported in UAF by design. Some of the key privacy-aware design elements are summarized here:

« A UAF device does not have a global identifier visible across Elying parties and does not have a global identifier within a Barticular relying
party. If for example, a person looses their UAF device, someone finding it cannot “point it at a relying party” and Biscover if the original user
had any accounts with that relying party. Similarly, if two users share a UAF device and each has registered their account with the same
relying party with this device, the relying party will not be able to discern that the two accounts share a device, based on the UAF protocol
alone.

« The UAF protocol generates unique asymmetric cryptographic key pairs on a per-device, per-user account, and per-relying party basis.
Cryptographic keys used with different replying parties will not allow any one party to link all the actions to the same user, hence the
unlinkability property of UAF.

« The UAF protocol operations require minimal personal data collection: at most they incorporate a user's relying party username. This
personal data is only used for FIDO purposes, for example to perform user registration, user verification, or authorization. Mhis personal data
does not leave the user’s computing environment and is only persisted locally when necessary.

« In UAF, user verification is performed locally. The UAF protocol Hoes not convey biometric data to relying parties, nor does it require the

storage of such data at relying parties.

Users explicitly approve the use of a UAF device with a specific relying party. Unique cryptographic keys are generated Bnd bound to a

relying party during registration only after the user’s consent.

« UAF authenticators can only be identified by their attestation Eertificates on a production batch-level or on manufacturer- and Bevice model-
level. They cannot be identified individually. The OAF specifications require implementers to ship UAF authenticators @ith the same
attestation certificate and private key in batches of @00,000 or more in order to provide unlinkability.

5. Relationship to Other Technologies

This section is non-normative.

OpenlID, SAML, and OAuth

FIDO protocols (both UAF and U2F) complement Federated Identity Management (FIM) frameworks, such as OpenlD and SAML, as well as web
authorization protocols, such as OAuth. FIM Relying Parties can leverage an initial authentication event at an identity provider (IdP). However,
OpenlID and SAML do not define Bpecific mechanisms for direct user authentication at the IdP.00

When an IdP is integrated with a FIDO-enabled authentication service, it can subsequently leverage the attributes of the strong authentication with
its Relying Parties. The following diagram illustrates this relationship. FIDO-based authentication (1) would logically occur first, and the FIMO
protocols would then leverage that authentication event into single sign-on events between the identity provider and its federated Relying Parties

(2)2

Federated Relying Party

Federated Relying Party Identity Provider and
Website Relying Party

Identity Provider Services

$

(2) Federated Identity
Management Protocols

(e.g. OpenlD, SAML)

Web Application

$

User Device

User Agent (Mobile App,
Browser, ...

0S/Server
Security
Components

1) FIDO Registration,
entication, Confirmation

FIDO Client
(Windows, Mac, iOS, Android)

FIDO Risk & Identity

Authenticator Systems
Metadata
Validation

FIDO Authenticators

Fig. 6 FIDO UAF & Federated Identity Frameworks

6. OATH, TCG, PKCS#11, and ISO 24727

These are either initiatives (OATH, Trusted Computing Group (TCG)), or industry standards (PKCS#11, ISO 24727). They all share an underlying
focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator Bbstractions.

TCG produces specifications for the Trusted Platform Module, as ell as networked trusted computing.

OATH, the "Initiative for Open AuTHentication", focuses on defining symmetric key provisioning protocols and Buthentication algorithms for
hardware One-Time Password (OTP) authenticators.

The FIDO framework shares several core notions with the foregoing efforts, such as an authentication abstraction interface, authenticator
attestation, key provisioning, and authentication algorithms. FIDO's work will leverage and extend some of these specifications.O0

Specifically, FIDO will complement them by addressing:0

« Authenticator discovery
« User experience
« Harmonization of various authenticator types, such as biometric, OTP, simple presence, smart card, TPM, etc.

7. Table of Figures

Fig. 1 FIDO UAF High-Level Architecture

Fig. 2 Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Confirmation Message Flow

Fig. 5 Deregistration Message Flow

Fig. 6 FIDO UAF & Federated Identity Frameworks

1. Also known as: Authentication Tokens, Security Tokens, etc.<.

2. FIM protocols typically convey IdP <-> RP interactions through the browser via HTTP redirects and POSTs. <.

o

=
&

S

Q
S

FIDO UAF Protocol Specification v1.00

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-id-20141122.htmi0
Previous version:
https:/fidoallian

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Eric Tiffany, EIDO Alliance
Contributors:

Dirk Balfanz, Google, Inc.
Brad Hill, PayPal, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

The goal of the Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants Basswords
while avoiding the shortcomings of current alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication mechanism for a particular end user or interaction,
while preserving the option to leverage emerging device security capabilities in the future without requiring additional integration effort.

This document describes the FIDO architecture in detall, it defines the flow and content of all UAF protocol messages and Bresents the rationale
behind the design choices.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Allian ifications in
https://www.fidoalliance.org/specifications/.0]

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared byEIDO Alliance, Inc. Permission is hereby granted to use the Specification
solely for the purpose of implementing the Specification. No rights Brre granted to prepare derivative works of this Specification. Entities seekingd
permission to reproduce portions of this Specification for other uses must contact the BIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual Broperty rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,00
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words
2. Overview
2.1 Scope
2.2 Architecture
2.3 Protocol Conversation
2.3.1 Registration
2.3.2 Authentication
2.3.3 Transaction ConfirmationO
2.3.4 Deregistration

3. Protocol Details
3.1 Shared Structures and Types
3.1.1 Version Interface
3.1.1.1 Attributes

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
https://www.noknok.com/
https://www.noknok.com/
https://fidoalliance.org/
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.1.2 Operation enumeration
3.1.3 OperationHeader dictionary

3.1.3.1 Dictionary operationteader Members
3.1.4 Authenticator Attestation ID (AAID) typedef
3.1.5 KeyID typedef
3.1.6 ServerChallenge typedef
3.1.7 FinalChallengeParams dictionary

3.1.7.1 Dictionary rinalchallengerarams Members
3.1.8 TLS ChannelBinding dictionary

3.1.8.1 Dictionary channelBinding Members
3.1.9 JwkKey dictionary

3.1.9.1 Dictionary swkkey Members
3.1.10 Extension dictionary

3.1.10.1 Dictionary extension Members
3.1.11 MatchCriteria dictionary

3.1.11.1 Dictionary Matchcriteria Members
3.1.12 Policy dictionary

3.1.12.1 Dictionary rolicy Members

3.2 Processing Rules for the Server Policy
3.2.1 Examples
3.3 Version Negotiation
3.4 Registration Operation
3.4.1 Registration Request Message
3.4.2 RegistrationRequest dictionary
3.4.2.1 Dictionary registrationrequest Members
3.4.3 AuthenticatorRegistrationAssertion dictionary
3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members
3.4.4 Registration Response Message
3.4.5 RegistrationResponse dictionary
3.4.51 Dictionary RegistrationResponse Members
3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server
3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients
3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
3.4.6.4 Registration Response Generation Rules for FIDO UAF Client
3.4.6.5 Registration Response Processing Rules for FIDO Server
3.5 Authentication Operation
3.5.1 Transaction dictionary
3.5.1.1 Dictionary transaction Members
3.5.2 Authentication Request Message
3.5.3 AuthenticationRequest dictionary
3.5.3.1 Dictionary authenticationrequest Members
3.5.4 AuthenticatorSignAssertion dictionary
3.5.41 Dictionary AuthenticatorSignAssertion Members
3.5.5 AuthenticationResponse dictionary
3.5.51 Dictionary AuthenticationResponse Members
3.5.6 Authentication Response Message

3.5.7 Authentication Processing Rules
3.5.7.1 Authentication Request Generation Rules for FIDO Server

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client
3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client
3.5.7.5 Authentication Response Processing Rules for FIDO Server
3.6 Deregistration Operation

3.6.1 Deregistration Request Message

3.6.2 DeregisterAuthenticator dictionary
3.6.2.1 Dictionary peregisterauthenticator Members

3.6.3 DeregistrationRequest dictionary
3.6.3.1 Dictionary DeregistrationRequest Members

3.6.4 Deregistration Processing Rules
3.6.4.1 Deregistration Request Generation Rules for FIDO Server
3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client
3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

4. Considerations
4.1 Protocol Core Design Considerations
4.1.1 Authenticator Metadata
4.1.2 Authenticator Attestation
4.1.2.1 Basic Attestation
4.1.2.1.1 Full Basic Attestation
4.1.2.1.2 Surrogate Basic Attestation

4.1.3 Error Handling

4.1.4 Assertion Schemes
4.1.5 Username in Authenticator
4.1.6 TLS Protected Communication
4.2 Implementation Considerations
4.2.1 Server Challenge and Random Numbers
4.3 Security Considerations
4.3.1 FIDO Authenticator Security
4.3.2 Cryptographic Algorithms
4.3.3 Application Isolation
4.3.3.1 Isolation using KHAccessToken
4.3.4 TLS Binding
4.3.5 Session Management
4.3.6 Personas
4.3.7 ServerData and KeyHandle
4.3.8 Authenticator Information retrieved through UAF Application APl vs. Metadata
4.3.9 Policy VerificationO
4.3.10 Replay Attack Protection
4.3.11 Protection against Cloned Authenticators
4.3.12 Anti-Fraud Signals
4.4 Interoperability Considerations
5. UAF Supported Assertion Schemes
5.1 Assertion Scheme "UAFV1TLV"
5.1.1 KeyRegistrationData
5.1.2 SignedData

6. DefinitionsO
7. Table of Figures

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “*, e.g. “UAF-TLV".

a»

In formulas we use “I” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member [8 DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, Imust not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.O

NOTE
Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as equired. The keyword required has been introduced by [WebIDL-ED], which is a work-in-

progress. If you are using a WeblIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.00

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The goal of this Universal Authentication Framework is to provide a unified and extensible authentication mechanism that Bupplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

The design goal of the protocol is to enable Relying Parties to leverage the diverse and heterogeneous set of security capabilities available on
end users' devices via a single, unified protocol.00

This approach is designed to allow the FIDO Relying Parties to choose the best available authentication mechanism for a particular end user or

interaction, while preserving the option for a relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

2.1 Scope

This document describes FIDO architecture in detail and defines fhe UAF protocol as a network protocol. It defines the flow and Ebntent of all UAF
messages and presents the rationale behind the design choices.

Particular application-level bindings are outside the scope of this document. This document is not intended to answer questions such as:

« What does an HTTP binding look like for UAF?
« How can a web application communicate to FIDO UAF Client?
« How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF specifications, e.g. [DAFAppAPIAndTransport] [UAFASM] [UAFAuthnrCommands].
2.2 Architecture

The following diagram depicts the entities involved in UAF protocol.

TLS
_orctcccl | |T|—S<'3"'

BROWSER /APP UAF Protocal WEB SERVER

Cryptographic
FIDO CLIENT authentication key
reference DB

‘ FIDO SERVER

Authentication
keys

FIDO AUTHENTICATOR

| Aftestation key ‘

Update

FIDO METADATA SERVICE

metadata &
attestation trust
store

" Authenticator

Certify
compliance

T

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

« FIDO Server, running on the relying party's infrastructure
« FIDO UAF Client, part of the user agent and running on the FIDO user device
« FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to the UAF Authenticator Metadata [UAFAuthnrMetadata] describing all the
authenticators it will interact with.

2.3 Protocol Conversation
The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server.
« Registration: UAF allows the relying party to register a FIDO Authenticator with the user's account at the relying party. The relying party can

specify a policy for supporting various FIDO Authenticator types. A FIDO UAF Client will only register existing authenticators in accordance
with that policy.

« Authentication: UAF allows the relying party to prompt the end user to authenticate using a previously registered FIDO Authenticator. This
authentication can be invoked any time, at the relying party's discretion.

« Transaction Confirmation:[h addition to providing a general authentication prompt, UAF offers support for prompting the user to confirm all
specific transaction.O

This prompt includes the ability to communicate additional information to the client for display to the end user, using the client's transaction

confirmation display. Mhe goal of this additional authentication operation is to enable relying parties to ensure that the user is confirming all
specified set of the transaction Betails (instead of authenticating a session to the user agent).

« Deregistration: The relying party can trigger the deletion of the account-related authentication key material.

Although this document defines the FIDO Server as the initiator Bf requests, in a real world deployment the first UAF operation @ill always follow a
user agent's (e.g. HTTP) request to a relying party.

The following sections give a brief overview of the protocol conversation for individual operations. More detailed descriptions can be found in the
sections Registration Operation, Authentication Operation, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for Egistration.

FIDO Client FIDO Server
" Login to Relying Party :
; Application ;

If you have these Authenticators — register them

[
|-t

i Fingerprint Face :
Authentication Authentication

; Voice i
User ! [TPM J [Authentication J !

Select an i |
Authenticator 1

Iy

: : Here is a proof of possession of this :
' i Authenticator type and a new key generated ;
for this account on FIDO Server

Fig. 2 UAF Registration Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIANndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.2 Authentication

The following diagram depicts the message flows for the Huthentication operation.

FIDO Client FIDO Server

¢ Initiate an authentication to Relying Party :

If you have any of these Authenticators -
authenticate with them

[
|-t

. Fingerprint Face i
! Authentication Authentication !

E Voice ;
User ! [TPM J [Authentication J !

L

Authenticate to
Authenticator(s)

i Authentication response from each
Authenticator

' -

Fig. 3 Authentication Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.

2.3.3 Transaction ConfirmationO

The following figure depicts the transaction confirmation Bhessage flow.O

FIDO Client FIDO Server

' Initiate a transaction with Relying Party :

If you have any of these Authenticators -
authenticate with them

[
|-t

. Fingerprint Face .
! Authentication Authentication !

; Voice i
User ! [TPM J [Authenﬁcaﬁon J !

Display '
Transaction Text | :

-

Authenticate to !
Authenticator(s) : :

Authentication response from each |
Authenticator

Fig. 4 Transaction Confirmation Message Flowl

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIANndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.4 Deregistration

The following diagram depicts the deregistration message flow.00

FIDO Client FIDO Server

Login to Relying Party Application ;

X

Delete local 3 Deregister this Authenticator |

registration data | ;

Fig. 5 Deregistration Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

3. Protocol Details

This section is normative.

This section provides a detailed description of operations supported by the UAF Protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

Al string literals in this specification are constructed from Onicode codepoints within the set u+0000..u+007F.

Unless otherwise specified, protocol messages are transferred @ith a UTF-8 content encoding.

NOTE
All data used in this protocol must be exchanged using a secure transport protocol (such as TLS/HTTPS) established between the FIDO

UAF Client and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section B.1.6 TLS
Protect mmunication.

The notation bases4url(byte[s..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

The notation string[5] reads as five unicode characters, represented as a OTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a WebIDL [WebIDL-ED] DOMString.

As the UTF-8 representation has variable length, the maximum byte length of string[5] iS string[4*5].

All strings are case-sensitive unless stated otherwise.

This document uses WebIDL [WebIDL-ED]to define UAF protocol messages.O

Implementations must serialize the UAF protocol messages for transmission using UTF-8 encoded JSON [RFC4627].
3.1 Shared Structures and Types

This section defines types and structures shared by various Bperations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.O

WebIDL

interface Version {
readonly attribute unsigned short major;
readonly attribute unsigned short minor;

Yi

3.1.1.1 Attributes

major Of type unsigned short, readonly
Major version, 1 for this specification.O0

minor Of type unsigned short, readonly
Minor version, 0O for this specification.O

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

WebIDL

enum Operation {
"Reg",
"Auth",
"Dereg"

Yi

Enumeration description

Reg Registration

Authentication or Transaction
ConfirmationOd

pereg Deregistration

Auth

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

WebIDL

dictionary OperationHeader {
required Version upv;
required Operation op;

DOMString appID;
DOMString serverData;
Extension]] exts;

3.1.3.1 Dictionary operationteader Members

upv Of type required Version
UAF protocol version. Major version must be 1 and minor version must be o.

op of type required Operation
Name of FIDO operation this message relates to.
NOTE

"Auth" is used for both authentication and transaction confirmation.O

app1p of type DOMString
string[0..512].

The application identifier that the relying party would like to assert.00

There are three ways to set therppio [FIDOAppIDAndFacets]:

1. If the element is missing or empty in the request, the FIDO UAF Client must set it to theracet1p of the caller.
2. If the app1p present in the message is identical to the racet1p of the caller, the FIDO UAF Client must accept it.

3. Ifitis an URI with HTTPS protocol scheme, the FIDO UAF Client must use it to load the list of trusted facet identifiers from thel
specified ORI. The FIDO UAF Client must only accept the request, if the facet identifier of the caller Bhatches one of the trusted
facet identifiers in the [t returned from dereferencing this URI.

NOTE

The new key pair that the authenticator generates will be associated with this application identifier.00

Security Relevance: The application identifier is used By the FIDO UAF Client to verify the eligibility of an application to trigger the
use of a specific Bhuth.xey. See [FIDOAppIDAndFacets]

serverData Of type DOMString
string[l..1536].

A session identifier created by the relying party.00
NOTE
The relying party can opaquely store things like expiration times for the registration session, protocol version used and other
useful information in servernata. This data is opaque to FIDO UAF Clients. FIDO Servers may reject a response that is lacking
this data or is containing unauthorized modifications to it.00

Servers that depend on the integrity ofserverpata should apply appropriate security measures, as described in Registration

Request Generation Rules for FIDO Server and section ServerData and KeyHandle.

exts Of type array of Extension
List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

WebIDL

typedef DOMString AAID;

string[9]

Each authenticator must have an aa1p to identify UAF enabled authenticator models globally. The aa1p must uniquely identify a specificO
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security Eharacteristics within the model (see urit nsiderations)

The aa1p is a string with format "V#M", where

"#" is a separator

"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.

"M" indicates the authenticator Model Code. This code consists of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the aa1p is:

AAID = 4(HEXDIG) "#' 4(HEXDIG)

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are identical.

The FIDO Alliance is responsible for assigning authenticator vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators. Authenticator vendors must assign unique
aa1Dps to authenticators with different security characteristics.

AAIDs are unique and each of them must relate to a distinct authentication metadata file ((DAFAuthnrMetadata])

NOTE

Adding new firmware/software Eatures, or changing the underlying hardware protection mechanisms will typically change the security
characteristics of an authenticator and hence would require a new aa1p to be used. Refer to (([UAFAuthnrMetadata]) for more details.

3.1.5 KeyID typedef

WebIDL

typedef DOMString KeyID;

base64url(byte[32...2048])

keyID iS @ unique identifier (within the scope of anAd1p) used to refer to a specific druth.xey. It is generated by the authenticator and registered
with a FIDO Server.

The (aa1p, key1D) tuple must uniquely identify an authenticator's registration for a relying party. Whenever a FIDO Server wants to provide specificOl
information to a particular authenticator it must use the (aa1p, xkey1D) tuple.

rey1D must be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the FIDO Server should provide the xey1p back to the authenticator for the latter to
locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage for, and cannot rely on any ASM to store, generated key handles should provide the key
handle as part of the authenticatorregistrationassertion.assertion.keyID during the registration operation (see also section ServerData and
KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the matchcriteria dictionary which is part of
the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

NOTE

The exact structure and content of a xey1p is specific to the authenticator implementation.O

3.1.6 ServerChallenge typedef

WebIDL

typedef DOMString ServerChallenge;

base64url(byte[8...64])

serverchallenge iS @ server-provided random challenge. Security Relevance: The challenge is used by the FIDO Server to verify whether an
incoming response is new, or has already been processed. See section Replay Attack Protection for more details.

The serverchallenge should be mixed into the entropy pool of the authenticator. Security Relevance: The FIDO Server should provide a challenge
containing strong cryptographic randomness whenever possible. See section Server Challen nd Random Num

NOTE

The minimum challenge length of 8 bytes follows the requirement in [SP800-63] and is equivalent to the 20 decimal digits as required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can Be used without truncation.

NOTE

The mixing of multiple sources of randomness is recommended to improve the quality of the random numbers generated by the
authenticator, as described in [RFC4086].

3.1.7 FinalChallengeParams dictionary

WebIDL

dictionary FinalChallengeParams {

required DOMString appID;
required ServerChallenge challenge;
required DOMString facetlID;

required ChannelBinding channelBinding;

Yi

3.1.7.1 Dictionary Finalchallengerarams Members

app1p Of type required DOMString
string[l..512]

The value must be taken from the app1p field Bf the operationneader
challenge Of type required ServerChallenge
The value must be taken from the challenge field of the request [2.g. RegistrationRequest.challenge, AuthenticationRequest.challenge).

facetIp Of type required DOMString
string[l..512]

The value is determined by the FIDO UAF Client and it depends on the calling application. See [FIDOAppIDAndFacets] for more details.
Security Relevance: The tacet1p is determined by the FIDO UAF Client and verified against the list of trusted facets retrieved byl
dereferencing the app1p of the calling application.

channelBinding Of type required ChannelBinding

Contains the TLS information to be sent by the FIDO Client to the FIDO Server, binding the TLS channel to the FIDO operation.
3.1.8 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

NOTE
Security Relevance:The channel binding may be verified by the FIDO Server in order i detect and prevent MITM attacks.
At this time, the following channel binding methods are supported:

o TLS ChannellD (cid_pubkey) [ChannellD]
« serverEndPoint [RFC5929]

o tlsServerCertificate [BFC5929]

« tlsUnique [RFC5929]

Further requirements:

1. If data related to any of the channel binding methods, described here, is available to the FIDO UAF Client (i.e. included in this dictionary), it
must be used according to the relevant specification .00

2. All channel binding methods described here must be supported by the FIDO Server. The FIDO Servermay reject operations if the channel
binding cannot be verified successfully.0

NOTE

« If channel binding data is accessible to the web browser or client application, it must be relayed to the FIDO UAF Client in order to
follow the assumptions made in [FIDOSecRef].

« If channel binding data is accessible to the web server, it must be relayed to the FIDO Server in order to follow the assumptions made
in [FIDOSecRef]. The FIDO Server relies on the web server to provide accurate channel binding information.

WebIDL

dictionary ChannelBinding {
DOMString serverEndPoint;
DOMString tlsServerCertificate;
DOMString tlsUnique;
DOMString cid pubkey;

Yi

3.1.8.1 Dictionary channeiBinding Members

serverEndPoint Of type DOMString

The field EErverendroint must be set to the base64url-encoded hash of the TLS server certificate if this is available. The hash functionOd
must be selected as follows:

1. if the certificate's gnaturealgorithm uses a single hash function and that hash function is either MD5 [RFC1321] or SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's Hignaturenrlgorithm uses a single hash function and that hash function is neither MD5 nor SHA-1, then use the
hash function associated with the certificate'sEli gnaturealgorithm;

3. if the certificate's Bl gnaturealgorithm uses no hash functions, or uses multiple hash functions, then this channel binding type's
channel bindings are undefined at this time (updates to this channel Binding type may occur to address this issue if it ever arises)

This field @ust be absent if the TLS server certificate is not available to the Brocessing entity (e.g., the FIDO UAF Client) or the hash
function cannot be determined as described.

tlsserverCertificate Of type DOMString
This field Bust be absent if the TLS server certificate is not available to the FIDO UAF Client.00
This field @ust be set to the base64url-encoded, DER-encoded TLS server certificate, if this data is Bvailable to the FIDO UAF Client.
t1lsunique of type DOMString
must be set to the base64url-encoded TLS channel rinished structure. It must, however, be absent, if this data is not available to the
FIDO UAF Client [RFC5929].
cid_pubkey Of type DOMString

must be absent if the client TLS stack doesn't provide TLS ChannellD [ChannellD] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if TLS ChannellD information is supported by the client-side TLS stack but has not been signaled by the TLS
(web) server.

Otherwise, it must be set to the base64url-encoded serialized [RFC4627] swkkey structure using UTF-8 encoding.
3.1.9 JwkKey dictionary

Jukkey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key [JWK].

This public key is the ChannellD public key minted by the client TLS stack for the particular relying party. [ChannellD] stipulates using only a
particular elliptic curve, and the particular coordinate type.

WebIDL

dictionary JwkKey {
required DOMString kty
required DOMString crv
required DOMString x;
required DOMString y;

"EC";
"pP_256";

Yi

3.1.9.1 Dictionary swkkey Members

kty of type required DOMString, defaulting to "ec”
Denotes the key type used for Channel ID. At this time only elliptic curve is supported by [ChannellD], so it must be set to "EC" JWA].

crv of type required DOMString, defaulting to "p-256"
Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve Ekcp256r1 is supported by [ChannellD], so
the crv parameter must be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

3.1.10 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator commands, or in the assertion signed by the
authenticator.

Each extension has an identifier, and the namespace for Extension identifiers is FIDO UAF global (i.e. doesn't Hepend on the message where the
extension is present).

Extensions can be defined in a way such that a processing Entity which doesn't understand the meaning of a specific Extension must abort
processing, or they can be specified h a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section Where extensions are allowed.

Generic extensions used in various operations.

WebIDL

dictionary Extension {
required DOMString id;
required DOMString data;
required boolean fail if unknown;

Yi

3.1.10.1 Dictionary Extension Members

id of type required DOMString
string[l..32].

Identifies the extension.O

data of type required DOMString
Contains arbitrary data with a semantics agreed between server and client. The data is base64url-encoded.

This field @ay be empty.

fail_if_unknown Of type required boolean
Indicates whether unknown extensions must be ignored (talse) or must lead to an error (true).

o Avalue of false indicates that unknown extensions must be ignored
o Avalue of true indicates that unknown extensions must result in an error.

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be passed
through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be passed
through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and fail if unknown is not set). If the
FIDO authenticator doesn't understand the meaning of the extension and fail if unknown is set, it must generate an error (see definition ofd
fail if unknown above).

When passing through an extension to the next entity, therail if unknown flag Bhust be preserved (see [UAFASM]
[UAFAuthnrCommands]).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should be
accompanied by a related (and signed) extension in the authenticator assertion (e.g. TAG_UAFV1 REG ASSERTION, TAG UAFV1 AUTH ASSERTION).
If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata statement accepts multiple
fingers but in this specific case indicates that the finger used at registration as also used for authentication) there is no need to mark the
extension as fail if unknown (i.e. tag OX3E12 should be used [UAFAuthnrCommands]). If the security has been degraded (e.g. the FIDO
authenticator according to the description in the metadata statement accepts only the finger used at registration for Buthentication but in this
specific case indicates that a different finger was used r authentication) the extension must be marked as fail if unknown (i.e. tag
0x3E11 must be used [UAFAuthnrCommands]).

3.1.11 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

The matchcriteria Object is considered to match an authenticator, if all fields in the object are considered to match (as indicated i the particular
fields).O

WebIDL

dictionary MatchCriteria {

AAID[] aaid;

DOMString([] vendorID;

KeyID][] keyIDs;
unsigned long userVerification;

unsigned short keyProtection;

unsigned short matcherProtection;
unsigned long attachmentHint;
unsigned short tcDisplay; '

unsigned short[] authenticationAlgorithms;
DOMString[] assertionSchemes;
unsigned short[] attestationTypes;
unsigned short authenticatorVersion;
Extension]] exts;

Yi

3.1.11.1 Dictionary matchcriteria Members

aaid of type array of AAID
List of AAIDs, causing matching to be restricted to certain AAIDs.

The match succeeds if at least one AAID entry in this array matches authenticatorinfo.aaid [UAFASM].

NOTE

This field corresponds toli2tadatastatement.aaid [UAFAuthnrMetadata).

vendor1p Of type array ofDOMString
The vendorID causing matching to be restricted to authenticator models of the given vendor. The first 4 characters of fhe AAID are the
vendorID (see aa1p)).

The match succeeds if at least one entry in this array matches the first 4 Eharacters of the ruthenticatorinfo.aaid [UAFASM].
NOTE
This field corresponds to the first 4 Eharacters ofuetadatastatement.aaid [UAFAuthnrMetadata).

key1IDs Of type array ofKeylD
Alist of authenticator KeyIDs causing matching to be restricted to a given set of xey1p instances. (see [UAFRegistry]).

This match succeeds if at least one entry in this array matches.

NOTE

This field corresponds to fdpregistration.keyrns [UAFASM].

userVerification Of type unsigned long
A set of 32 bit flags which may be set if Bhatching should be restricted by the user verification method (see [lUAFRegistry]).

NOTE
The match with authenticatorinfo.userverification ((UAFASM]) succeeds, if the following condition holds (written in Java):
if (
// They are equal
(AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||
// USER_VERIFY ALL is not set in both of them and they have at least one common bit set
(
((AuthenticatorInfo.userVerification & USER_VERIFY ALL) == 0) &&
((MatchCriteria.userVerification & USER_VERIFY_ALL) == 0) &&
((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
)
)
NOTE

This field value can be derived from [:tadatastatement.userverificationbetails as follows:

1. if MetadataStatement.uservVerificationDetails contains multiple entries, then:

1. if one or more entriesMetadatastatement.userverificationbetails[i] contain multiple entries, then: stop, direct
derivation is not possible. Must generate matchcriteria object by providing a list of matching AAIDs.

2. if all entries vetadatastatement.userverificationbDetails[i] Only contain a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification tO
MetadataStatement.userVerificationDetails[N-1][0].userVerification into a single value using a bitwise OR
operation.

2. if Metadatastatement.userverificationDetails contains a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification 10 MetadataStatement.userVerificationDetails[0]
[N-1].userverification into a single value using a bitwise OR operation and additionally set the flag [ser_veriFy ALL.

This method doesn't allow matching authenticators implementing complex combinations of user verification methods, such as Ekrx

AND (Fingerprint OR Speaker Recognition) (See above derivation rules). If such specific match rules are required, they need toO
be specified by providing fhe AAIDs of the matching authenticators.

keyProtection Of type unsigned short
A set of 16 bit flags which may be set if Bhatching should be restricted by the key protections used (see [UAFRegistry]).

This match succeeds, if at least one of the bit flags matches the falue of authenticatorinfo.keyprotection [UAFASM].

NOTE

This field corresponds to Etadatastatement. keyprotection [UAFAuthnrMetadata].

matcherProtection Of type unsigned short
A set of 16 bit flags which may be set if Bhatching should be restricted by the matcher protection (see [UAFRegistry]).

The match succeeds if at least one of the bit flags matches the hlue of ruthenticatorinfo.matcherprotection [UAFASM].

NOTE

This field corresponds to the [ktadatastatement.matcherprotection metadata statement. See [UAFAuthnrMetadata).

attachmentHint Of type unsigned long
A set of 32 bit flags which may be set if matching Ehould be restricted by the authenticator attachment mechanism (see [UAFRegistry]).

This field is considered to match, if at least one Bf the bit flags matches the value of Elithenticatorinfo.attachmentaint [UAFASM].

NOTE

This field corresponds to the Etadatastatement.attachmentHint metadata statement.

tcpisplay Of type unsigned short
A set of 16 bit flags which may be set if matching Ehould be restricted by the transaction confirmation Hisplay availability and type. (see

[UAFRegistry]).
This match succeeds if at least one of the bit flags matches the Halue of ruthenticatorinfo.tepisplay [UAFASM].

NOTE
This field corresponds to the [:tadatastatement. tebisplay metadata statement. See [UAFAuthnrMetadata).

authenticationAlgorithms Of type array ofunsigned short
An array containing values of supported authentication algorithm TAG values (see [UAFRegistry], prefix hr_arc_szcn) if matching
should be restricted by the supported authentication algorithms.

This match succeeds if at least one entry in this array matches the authenticatorinfo.authenticationalgorithm [UAFASM].

NOTE
This field corresponds to the [tadatastatement.authenticationalgorithm metadata statement. See [UAFAuthnrMetadata).

assertionschemes Of type array of DOMString
A list of supported assertion schemes if matching should be restricted by the supported schemes.

See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches authenticatorinfo.assertionscheme [UAFASM].

NOTE
This field corresponds to the [tadatastatement.assertionscheme metadata statement. See [UAFAuthnrMetadatal].

attestationTypes Of type array ofunsigned short
An array containing the preferred attestation TAG values (see [UAFRegistry], prefix thc_arresrarron). The order of items must be
preserved. The most-preferred attestation type comes first.00

This match succeeds if at least one entry in this array matches one entry in authenticatorinfo.attestationTypes [UAFASM].

NOTE
This field corresponds to theiidtadatastatement.attestationTypes metadata statement. See [UAFAuthnrMetadatal].

authenticatorVersion Of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equalto the field Elithenticatorversion included in TAG_UAFV1 REG ASSERTION OF
TAG UAFV1_AUTH ASSERTION Of a corresponding value in the case of a different assertion scheme.

NOTE

Since the semantic of theauthenticatorversion depends on the AAID, the field Eithenticatorversion should always be
combined with a single aaid in Matchcriteria.

This field corresponds to the [:tadatastatement.authenticatorversion metadata statement. See [UAFAuthnrMetadatal].

exts Of type array of Extension
Extensions for matching policy.

3.1.12 Policy dictionary

Contains a specification of accepted Buthenticators and a specification of disallowed Huthenticators.

WebIDL

dictionary Policy {
required MatchCriteria[][] accepted;
MatchCriterial] disallowed;

Yi

3.1.12.1 Dictionary po1icy Members

accepted Of type array of array ofrequired MatchCriteria

This field is a two-dimensional array describing the Eequired authenticator characteristics for the server to accept either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e. the sets) are alternatives (OR condition).
All elements within a set must be combined:

The first array index indicates OR conditions (i.e. the list). Bny set of authenticator(s) satisfying these matchcriteriain the first index isO
acceptable to the server for this operation.

Sub-arrays of MatchCriteria in the second index (i.e. the set) indicate that multiple authenticators (i.e. each set element) must be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the server. Servers must put their preferred authenticators first, and FIDOO
UAF Clients should respect those preferences, either by presenting authenticator options to the user in the same order, or by offering to
perform the operation using only the highest-preference authenticator(s).

disallowed Of type array of MatchCriteria
Any authenticator that matches any of MatchCriteria contained in the field disallowed Bhust be excluded from eligibility for the operation,
regardless of whether it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy
This section is normative.
The FIDO UAF Client must follow the following rules while parsing server policy:

1. During registration:

1. policy.accepted is a list of combinations. Each combination indicates a list of criteria for authenticators that the server wants the user
to register.

. Follow the priority of items inrolicy.accepted[11]. The lists are ordered with highest priority first.00

. Choose the combination whose criteria best match the features of the currently available authenticators

. Collect information about available authenticators

. Ignore authenticators which match therolicy.disallowed criteria

. Match collected information with the matching criteria imposed in the policy (see MatchCriteria dictionary for more details on matching)
7. Guide the user to register the authenticators specified in the Ehosen combination

2. During authentication and transaction confirmation:O

o o~ WD

NOTE

policy.accepted is a list of combinations. Each combination indicates a set of criteria which is enough to completely authenticate
the current pending operation

. Follow the priority of items inrolicy.accepted[11]. The lists are ordered with highest priority first.00

. Choose the combination whose criteria best match the features of the currently available authenticators

. Collect information about available authenticators

. Ignore authenticators which meet therolicy.disallowed criteria

. Match collected information with the matching criteria described in the policy

. Guide the user to authenticate with the authenticators specified h the chosen combination

. A pending operation will be approved by the server only after all criteria of a single combination are entirely met

N o o~ 0N =

3.2.1 Examples

This section is non-normative.

"accepted":
[
[{ "userVerification": 2}],
[{ "userVerification": 16}]
]
}

{

"accepted":

[

[{ "userVerification": 18}]
]

}

Combining these two bit-flags and the flag [ser_veriry arn (USER_VERIFY_ALL = 1024) into a single userverification value would match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.O

{
}

"accepted": [[{ "userVerification": 1042}]]

The next example requires two authenticators to be used:

{
"accepted":
[
[
{ "uservVerification": 2},
{ "userVerification": 16}

1
]
}

Other criteria can be specified in addition to the Bkerverification:

{
"accepted":
[
[
{ "uservVerification": 2, "attachmentHint": 1},
{ "userVerification": 16, "attachmentHint": 1}
1
]
}

The policy for accepting authenticators of vendor with ID1234 only is as follows:

{
"accepted":
[[{ "vendorID": "1234"}]]

3.3 Version Negotiation

The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [DAFRegistry]), and the ASM version, see [UAFASM].

NOTE

The Key Registration Data and Signed Data objects have to be parsed and verified by the FIDO Server. This verification is only Bossible if
the FIDO Server understands their encoding and the content. Each UAF protocol version supports a set of Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

As a consequence the FIDO UAF Client must select the authenticators which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client must perform the following steps:

1. Create a set (Fc_version_set) of version pairs, ASM version (asm_version) and UAF Protocol version (upv) and add all pairs supported by the
FIDO UAF Client into rc_version set

o €.g. [{upvl, asm _versionl}, {upv2, asm versionl}, ...]

2. Intersect rc_version set With the set ofupv included in UAF Message (i.e. keep only those pairs where the upv value is also contained in the
UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:
o Construct a set (authnr version_set) of version pairs including authenticator supported asm_version and the compatible upv(s).
= €.g. [{upvl, asm _versionl}, {upv2, asm versionl}, ...]
o Intersect authnr version set With Fc_version set and select highest version pair from it.
= Take the pair where the upv is highest. In all these pairs leave only the one with highest asm version.
o Use the remaining version pair with this authenticator

NOTE

Each version consists of major and minor fields. Ih order to compare two versions - compare the Major fields and if they are equal Ebompare
the Minor fields.O

Each UAF message contains a version field Iv. UAF Protocol version negotiation is always between FIDO UAF Client and FIDO Server.

3.4 Registration Operation

NOTE

The Registration operation allows the FIDO Server and the FIDO Authenticator to agree on an authentication key.

= o Sl Foocin T

| | | | | |

| | | | | |

i 1. openURL | i ~ | |

| | | l 2 open https URL |

| | | }

: a - i) : : 3. http OK + leggcy login form :
| show legacy login farm |

e Hi oo [~~~ """ttt] !

5. enter legacypassword and submit
J J:p : ,—,J’ P 6. submi form __!
L

I
| |

I I

| |

I I

I I =8 trigger UAF
| | |

I I I

| | | 9. ge
I I I

| | I I 10 UAF
I I 12 UAF reg request + I11 UAF regrequest + Selssion binding I’< ““““““
I | ApplD + TLS kinding I" _______________ I’ __________ T

} 113 retrieve list of FacetlDs idefified by ApplD (URI} |

I I I |

| | ; i |

| (P S Bt et 5

|

= . . I
15 select authentigator according to pglicy
|

16 ltrigger registration |
- -

|
17 generate KHAccessToken

18 trigger registration |

|
|
|
|
|
|
|
|
r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
19 tri '
_____ trigger___ I |
Iﬂ— user verification —: : :
I 20 verifyuser | : :
| |

|

|

|

|

|

|

| 21 generate Uauth keyl pair specific to
I ApplD (and LISEI’HEI’T‘IE_:I
2& return KRD abject _I
{incl. dttestation and Uauth puk) '}Mh

24 |return UAF reg response

. ./

|
| |
I . N -
{contains KRED} 25 return UAF req response
I I I {contains KRD| 2. gend UG
| | |
| | |
27
: : : stan
I I I e
Fig. 6 UAF Registration Sequence Diagram
The following diagram depicts the cryptographic data flow for Ehe registration sequence.
Fig. 7 UAF Registration Cryptographic Data Flow
The FIDO Server sends the ~pp1p (see section ApplD and FacetlD Assertion), the authenticator Policy, the serverchallenge and the

username to the FIDO UAF Client.

The FIDO UAF Client computes the Finalchallengerarams (FCH) from the serverchallenge and some other values and sends the app1p,
the rcu and the username to the authenticator.

The authenticator creates a Key Registration Data object (e.g. Tac_varvi_krp, see [UAFAuthnrCommands]) containing the hash of rcx, the
newly generated user public key (UAuth.pub) and some other values and signs it (see section Authenticator Attestation for more details).
This KRD object is then cryptographically verified by the FIDO Server.0

3.4.1 Registration Request Message
UAF Registration request message is represented as an array of dictionaries. Each dictionary contains an registration request for a specificl

protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the request is defined asO
RegistrationRequest dictionary.

[{
"header": {
"upv": {
"major": 1,
"minor": 0
i
"op": "Reg",
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"serverData": "IjycjPZYiWMaQltKLrJROiXQHmMYGOtSSYGjP5mgjsDaM17RQgq0
d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFgL4n
2IiUY6XZWVbOnvg"
I
"challenge": "H9iW9yA9aAXF_ lelQoi_DhUk514Ad8Tqv0zCnCgKDpo",
"username": "apa",
"policy": {

"accepted": [

[

"userVerification": 512,

"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [

1
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
1
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 2,
"keyProtection": 4,
"tcDisplay": 1,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 2,
"tcDisplay": 1,
"authenticationAlgorithms": [
1,
3
]
}
1,
[
{
"userVerification": 2,
"keyProtection": 2,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 32,
"keyProtection": 2,
"assertionSchemes": [
"UAFV1TLV"
]
T
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1TLV"
]
Y
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1TLV"
]
T
{
"userVerification": 4,
"keyProtection": 1,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1TLV"
]
}

1

'
"disallowed": [

{
"userVerification": 512,
"keyProtection": 16,
"assertionSchemes": [

"UAFVITLV"

]

Y

{

"userVerification": 256,
"keyProtection": 16

{
"aaid":
"ABCD#ABCD"
1r
"keyIDs":
"RfY RDhsf4z5PCOhnZExMeV10ZZmKOhxaSilOtkyY c4"
1
}
1
}
H

3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
required OperationHeader header;
required ServerChallenge challenge;
required DOMString username;
required Policy policy;

Yi

3.4.2.1 Dictionary registrationrequest Members

header Of type required OperationHeader
Operation header. reader.op must be "Reg"

challenge Of type required ServerChallenge
Server-provided challenge value

username Of type required DOMString
string[l..128]

A human-readable user name intended to allow the user to distinguish and select from among different accounts at the same relying
party

policy oOf typerequired Policy
Describes which types of authenticators are acceptable for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion {

required DOMString assertionScheme;

required DOMString assertion; '
DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
Extension]] exts;

Yi

3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

assertionscheme Of type required DOMString
The name of the Assertion Scheme used to encode theassertion. See UAF Supported Assertion Schemes for details.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertion Of type required DOMString
base64url (byte[1..4096]) Contains the Tac uarvi rEc aAsserTION Object containing the assertion scheme specific KeyRegistrationData
(KRD) object which in turn contains the newly generated vauth.pub and is signed by the Attestation Private Key.

This assertion must be generated by the authenticator and it must be used only in this Registration operation. The format of this
assertion can vary from one assertion scheme to another (e.g. for "UAFV1TLV" assertion scheme it must be Tac_varvi_ krp).

tcDisplayPNGCharacteristics Of type array ofDisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [UAFAuthnrMetadata]. For the definition of the DisplayPNGCharacteristicsDescriptor structure Seell
[UAFAuthnrMetadata].

exts Of type array of Extension
Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message

A UAF Registration response message is represented as an array of dictionaries. Each dictionary contains a registration response for a specific
protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the response is defined asO]
RegistrationResponse dictionary.

[{
"assertions": [
{
"assertion": "AT7uAgM-sQALLgkAQUJDRCNBQKNEDi4HAAABAQEAAAEKLiAA9t
BzZC64ecgVQOBGSQb5QtEIPC8-Vav4HsHLZDf1LaugIJLiAAZMCPn92yHv1Ip-iCiBb61i4ADg6
ZOV56 9KFQCVYSJfNgNLggAAQAAAAEAAAAMLKEABISVEtUsVKh7tmYHhJ2FBm3kHU-OCAWiUY

VijgYa81MfkjQlz6UiHbKP9_nRzIN9anprHgDGcR6q7020q_yctZAHPjUCBi5AACV8L7Y1RM
x10gPnszGO6rLFqZFmmRkhtVOTIWuWgYxd1ljOOwxam7i5qdEal9u4sfpHFZ9RGI_WHXINKHS8
FEfvAWFLuOBMIIB6TCCAY8CAQEWCQYHKOZIZjOEATB7MQswCQYDVQQGEwWIJVUZELMAKGA1UECA
wCQOExCzAJBgNVBACMA1BBMRAWDgYDVQQOKDAJOTkws SW5 jMQOwWCWYDVQQLDAREQU4 XMRMWEQ
YDVQQDDApOTkwsSW5 j IENBMRWWGgYJKoZ IhveNAQkBFglubmxAZ21lhaWwuY29tMB4XDTEOMD
gyODIxMzUOMFoXDTE3MDUyNDIxMzUOMFowgYYxCzAJBgNVBAYTAL1VTMOswCQYDVQQIDAJDQT
EWMBQGA1UEBWWNU2FuIEZyYW5jaXNjbzEQMA4GA1UECgwHTK5MLE1uYZENMASGA1UECWWERE
FOMTETMBEGA 1UEAwWWKTk5MLE1uYyBDQTECMBOGCSQGSIb3DQEJARYNbmM5sQGAdtYW1sLmNvbT
BZMBMGByqGSM4 9AgEGCCQGSM4 9AWEHAO IABCGBt3CIjnDowzSiF68C2aErYXnDUSWXOYXQIP
imO0OWg9FFAUYCa6AgKjn1RI9IEk2d803sGKROivnavmdVH-SnEWCQYHK0Z Iz jOEAQNIJADBGAL
EAzAQujXnSS9AIAh61Gz6ydypLVTsTnBzgGJ4ypIqy qUCIQCFsSuOEGCRV-04GHPBph VMrG
3NpYh2GKPjsAim_cSNmQ",
"assertionScheme": "UAFVITLV"
}
1,

"fcParams": "eyJhcHBJRCI6ImMhOdHBzOi8vdWFmLXR1c3QtMS5ub2tub2t0ZXNOLmN
vbT04NDQzL1NhbXBsZUFwcC91YWYVZmFjZXRzIiwiY2hhbGx1lbmd1lIjoiSD1pVz15Q0T1hQVh
GX2x1bFFvavV9EaFVrNTEOQWQ4 VHF 2MHpDbkNxSORwby ISImNoYW5uZWxCaws5kaWwsnIjp7£Sw
1ZmFjZXRIRCI6IMNvbS5ub2tub2suYW5kem9pzC52YWlwbGVhcHALfQ",

"header":
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"op": "Reg",
"serverData": "IjycjPZYiWMaQltKLrJROiXQHmMYGOtSSYGjP5mgjsDaM17RQgq0

d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFgL4n
2IiUY6XZWVbOnvg",
"upv': {
"major": 1,
"minor": 0

H

NOTE

Line breaks in fcParams have been inserted for improving readability.

3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.O

WebIDL

dictionary RegistrationResponse {
required OperationHeader header;
required DOMString fcParams;
required AuthenticatorRegistrationAssertion[] assertions;

Yi

3.4.5.1 Dictionary RegistrationResponse Members

header Of type required OperationHeader
Header.op must be "Reg".

fcparanms Of type required DOMString
The base64url-encoded serialized [RFC4627] Finalchallengeparams using UTF8 encoding (see FinalChallengeParams dictionary) which
contains all parameters required for the server to verify the Final Challenge.

assertions Of type array ofrequired AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed matchcriteria (See Policy). This array can be considered a list (first dimension) of setsO
(second dimension) of authenticators (identified by Ehtchcriteria). All authenticators in a specific set Bhust be registered simultaneously in order
to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

The FIDO Server must follow the following steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do
1. Create an array of MatchCriteria objects, containing the set of authenticators to be registered simultaneously that need to be
identified by Beparate MatchCriteria objects m.
1. For each collection of authenticators = to be registered simultaneously that can be identified by the Bame rule, create a
MatchCriteria object m, where
= m.aaid may be combined with (one or more Of)m.keyIDs, m.attachmentHint, m.authenticatorvVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.O

= [fm.aaid is not provided - at least m.authenticationalgorithms and m.assertionschemes must be provided
2. Addntov, e.g.v[j+l]=m.
2. Add v top.allowed, €.9. p.allowed[i+l]=v

2. Create MatchCriteria objects n] for all disallowed Authenticators.
1. For each already registered AAID for the current user
1. Create a MatchCriteria object m and add AAID and corresponding KeyIDs t0 m.aaid and m.key1bs.

The FIDO Server must include already registered AAIDs and KeyIDs into field H. disal1owed to hint that the client should not
register these again.

2. Create a MatchCriteria objectm and add the AAIDs of all disallowed Authenticators to n.aaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [DAFMetadataService]) of some authenticators might be

unacceptable. Such authenticators should be included in p.disallowed.

3. If needed - create MatchCriterian for other disallowed criteria (e.g. unsupported authenticationAlgs)
4. Add allmtop.disallowed.

2. Create a registrationrequest Object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverpata.

FIDO Servers that depend on the integrity of r.header.servernata should apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they should also cryptographically bind serverData to the related message, e.g. by re-
including r.challenge, see also section ServerData and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverpata as an opaque value. As a consequence the
FIDO server can implement any suitable cryptographic protection method.

. Generate a random challenge and assign it to r.challenge
. Assign the username of the user to be registered to r.username
. Assignp to r.policy.
5. Append r to the array o of message with various versions (registrationRequest)
3. Send o to the FIDO UAF Client

H WD

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client must perform the following steps:

. Choose the message n with major version 1 and minor version o
. Parse the message n
. If a mandatory field in UAF message is not present or a field Boesn't correspond to its type and value - reject the operation

. Filter the available authenticators with the given policy and present the filtered authenticators to User. Make sure to not iiclude already
registered authenticators for this user specified in Ekgrequest.policy.disallowed]].keyIDs

5. Obtain racet1n of the requesting Application. If the app1p is missing or empty, set the app1p to the Facet1n.

AW NO =

Verify that the racet1p is authorized for the app1p according to the algorithms in [FIDOAppIDAndFacets].

o If the racet1p Of the requesting Application is not authorized, reject the operation
6. Obtain TLS data if it is available

7. Create a FinalchallengeParams Structure fcp and set fcp.appip, fcp.challenge, fcp.facetIn, and fep.channelBinding appropriately. Serialize
[RFC4627] fcp using UTF8 encoding and base64url encode it.

o FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see section Version Negotiation) and user agrees to register:
1. Add 2pp1D, Username, FinalChallenge, AttestationType and all other required fields to the ASMRequest [DAFASM].

The FIDO UAF Client must follow the server policy and find the single preferred attestation type. B single attestation type must be
provided to the ASM.

2. Send ASMRequest to the ASM

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
See [UAFAuthnrCommands], section "Register Command".
3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

. Create a RegistrationResponse MeSsage

. COpy RegistrationRequest.header into RegistrationResponse.header

. SetregistrationResponse. fcparams 10 Finalchallenge (base64url encoded serialized and utf8 encoded FinalChallengeParams)
. Append the response from each Authenticator into registrationResponse.assertions

. Send registrationresponse message to FIDO Server

a b~ WD =

3.4.6.5 Registration Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new HBssertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (registrationResponse.header.upv) iS Not supported — reject the operation
2. If a mandatory field in UAF message is not present or a field Hoesn't correspond to its type and value - reject the operation

2. Verify that Registrationresponse.header.serverbata, if used, passes any implementation-specific checks against its validity. See alsoll
section ServerData and KeyHandle.

3. base64url decode registrationResponse.fcparams and convert it into an object (£cp)
4. Verify each field in fcp and make sure it is valid:O

1.
2.
3.
4.
5.

Make sure fcp.app1p corresponds to the one stored by the FIDO Server

Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
Make sure fcp. facet1D is in the list of trusted FacetIDs FIDOAppIDAndFacets]

Make sure fcp.channelBinding is as expected (see section ChannelBinding dictionary)

Reject the response if any of these checks fails

5. For each assertion a in RegistrationResponse.assertions

1.

2.

3.

4.

Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionscheme and make
sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to Bave and has a valid syntax.

= [f it doesn't - continue with next assertion
Retrieve the AAID from the assertion.

NOTE

The AAID in Tac_uarvi_krD is contained in a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID.

Verify that a.assertionscheme matches vetadata (AAID) .assertionScheme
= [f it doesn't match - continue with next assertion

Verify that the AAID indeed matches the policy specified [the registration request.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions included in this
RegistrationResponse in order to determine whether this AAID matches the policy.

= [f it doesn't match the policy - continue with next assertion

. Locate authenticator-specific authentication algorithms from Ehe authenticator metadata [UAFAuthnrMetadata] using the AAID.
. Hash registrationresponse. fcparams using hashing algorithm suitable for this authenticator type. Look up the hash algorithm in

authenticator metadata, field Ehthenticationalgs. It is the hash algorithm associated with the first entry Elated to a constant with prefixO
UAF_ALG_SIGN.

m FCHash = hash(RegistrationResponse.fcParams)

. if a.assertion contains an object of type Tac_uarvi rEG asserrION, then

1. ifa.assertion.TAG UAFV1_REG ASSERTION cOntains Tac uarvi xrp as first element:0
1. Obtain Metadata(AATD) .AttestationType for the AAID and make sure that a.assertion.TAG UAFVI REG ASSERTION contains
the most preferred attestation tag specified in field Mhtchcriteria.attestationTypes iN RegistrationRequest.policy (if this
field is present).00
» If a.assertion.TAG UAFV1 REG AssErTION doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one
2. Make sure that a.assertion.TAG_UAFV1_REG_ASSERTION.TAG UAFV1_KRD.FinalChallenge == FCHash
= [f comparison fails - continue with next assertion
3. Obtain Metadata(aAID).Authenticatorversion for the AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorvVersion.

» |f Metadata(AAID).Authenticatorversion IS higher (i.e. the authenticator firmware is outdated), @is recommended to
assume increased risk. See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[UAFMetadataService] for more details on this.

4. Check whether a.assertion.TAG UAFV1 REG_ASSERTION.TAG UAFV1 KRD.RegCounter iS acceptable, i.e. it is either not
supported (value is 0) or it is not exceedingly high
» If a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1_KRD.RegCounter IS exceedingly high, this assertion might be
skipped and processing will continue with next one
5. If a.assertion.TAG_UAFV1 REG_ASSERTION.TAG_UAFV1 KRD CONt@iNS TAG ATTESTATION BASIC FULL tag

1. If entry attestationrootcertificates for the AAID in the metadata [UAFAuthnrMetadata] contains at least one
element:

1. Obtain contents of alltac_arTeEsTaTIoN cerT tags from
a.assertion.TAG UAFV1 REG ASSERTION.TAG ATTESTATION BASIC FULL Object. The occurrences are ordered (see
[UAFAuthnrCommands]) and represent the attestation certificate followed by the related Ekrtificate chain.O

2. Obtain all entries of attestationrootcertificates for the AAID in authenticator Metadata, fieldO
AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to Ehe Attestation Root Certificate usingd
Certificate Path Malidation as specified in [BRFC5280]

= [f verification fails — continue with next assertiond

4. Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ATTESTATION_ BASIC_FULL.Signature USing the
attestation certificate (obtained before).O

= If verification fails — continue with next assertionOl
2. If Metadata(AAID).AttestationRootCertificates for this AAID is empty - continue with next assertion
3. Mark assertion as positively verifiedd
6. If a.assertion.TAG UAFV1_REG_ASSERTION.TAG_UAFV1_ KRD cOntains an object of type Tac ATTESTATION BASIC SURROGATE
1. There is no real attestation for the AAID, so we just assume the AAID is the real one.

2. If entry attestationrootCertificates for the AAID in the metadata is empty

» Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION BASIC_SURROGATE.Signature USiNg
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_ KRD.TAG PUB_KEY

= [f verification fails — continue with next assertiond

3. If entry attestationrootcertificates for the AAID in the metadata is not empty - continue with next assertion (as the
AAID obviously is expecting a different attestation method).

4. Mark assertion as positively verifiedd

7. If a.assertion.TAG UAFV1 REG_ASSERTION.TAG_UAFV1_ KRD contains another rac_arrestarron tag - verify the attestation by

following appropriate processing rules applicable to that attestation. Currently this document only defines the processingd
rules for Basic Attestation.

2. ifa.assertion.TAG UAFV1_REG ASSERTION contains a different object than rac_uarvi krp as first element, then follow the rulesO

specific to that object.00

3. Extract a.assertion.TAG UAFV1 REG_ASSERTION.TAG UAFV1 KRD.Publickey into PublicKey,

a.

a
a.
a

assertion

.assertion.

assertion

.assertion

.TAG_UAFV1_REG_ASSERTION.TAG UAFV1_ KRD.KeyID into KeylD,

TAG_UAFV1 REG_ASSERTION.TAG UAFV1 KRD.SignCounter into SignCounter,

.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1 KRD.TAG ASSERTION INFO.authenticatorvVersion into AuthenticatorVersion,
.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into AAID.

8. if a.assertion doesn't contain an object of typerac varvi rec asserrIon, then skip this assertion (as in this UAF v1 only
TAG UAFV1_REG_ASSERTION IS defined).0

6. For each positively verified assertion E

o Store PublicKey, KeylD, SignCounter, AuthenticatorVersion, AAID and a.tcpisplaypnccharacteristics into a record associated with
the user's identity . If an entry with the same pair of AAID and KeyID already exists then fail (should never occur).

3.5 Authentication Operation

Authenticator

NOTE

r

RP Web Server RP Web App

+ session kinding

		1 open URL		
f f f f >				
				2 open hittps URL
			f f P 3 trigger	
: : : : 7.send UAF Auth request g 6 _ie_tL_'T_U_’e:':_ElL'_”_]te_q_“_eft _______ :				
			+ApplD + TLS binding	
) P 4			
} } }	& retrieve FacetiD list ideftfied by ApplD {URI) __: :			
			I L)	
			4 9 return FacetlD list	
		f‘_________________7__________________7		
: : :	: : :			
	10. select authenticator according to pglicy			
		11 trigger		
: 12	trigger ELIthEIﬂiCEtiDHH_____ELI_tHE_H_tiEEtTD_H__—} : : :			
i [i	1c	KHAccessToken)	i	:
C 1				
13 trigger

e verficaton | } } } }
| | | | | |

14 verify user } | | | |
I I 158 unlock Uauth }and compute authenticatioﬁl result I I				
: I 16 return | : : :

—ee M - .
| I SignData | 17 return SignData > i I
I I I I 18 return UAF | |
: : : ' Auth.response | :
| | | | (contains SignData) | |
| | | | L 19 return UAF auth. response nl
| | | | | {contains SignData) L]
| | | | | 20 sem
| | | | | auth. re:
: : : : :
I I I I I 22 sen
23 send protected data

| | | | o ————— - SToT oSt

Fig. 8 UAF Authentication Sequence Diagram

During this operation, the FIDO Server asks the FIDO UAF Client to authenticate user with server-specified authenticators, and return anO]
authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously shared registration.

Fig. 9 UAF Authentication Cryptographic Data Flow

Diagram of cryptographic flow:O

The FIDO Server sends the ~pp1p (see [FIDOAppIDAndFacets]), the authenticator policy and the serverchalienge to the FIDO UAF Client.

The FIDO UAF Client computes the hash of the Finalchallengerarams, produced from the serverchalienge and other values, as described
in this document, and sends the app1p and hashed rinalchallengerarams to the Authenticator.

The authenticator creates the signedpata object (see Tac varvi stenep para in [UAFAuthnrCommands]) containing the hash of the finalO
challenge parameters, and some other values and signs it using the vauth.priv key. This assertion is then cryptographically verified by thel

FIDO Server.

3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

WebIDL

dictionary Transaction {
required DOMString contentType;
required DOMString content;)
DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;

bi

3.5.1.1 Dictionary rransaction Members

contentType Of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [UAFAuthnrMetadatal).

This version of the specification only supports the values Ekxt/plain OF image/png.

content Of type required DOMString
base64url(byte[l...])

Contains the base64-url encoded transaction content according to the contentrype to be shown to the user.
If contentrype is "text/plain" then the contentmust be ASCII encoded text with a maximum of 200 characters.
tcDisplayPNGCharacteristics Of type DisplayPNGCharacteristicsDescriptor

Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See
[UAFAuthnrMetadata]. This field Biust be present if the contentType is "image/png".

3.5.2 Authentication Request Message
UAF Authentication request message is represented as an array of dictionaries. Each dictionary contains an authentication request for a specificOl

protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the request is defined asO
AuthenticationRequest dictionary.

[{
"header": {
"upv": {
"major": 1,
"minor": 0
T
"op": "Auth",
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"serverData": "5s7n8-7_LDAtRIKKYgbAtTTOezVKC]jl2mPorYzbpxRrZ-_3wWro
MXsSF_pLYJjNVm_17bplAx4bkEwK6ibil9EHGEdfKOQ1q0tyEKNIJFOggdjVvmLioroxgThlj8Is
tpt7q"
T
"challenge": "HQ1VKTUQC1NJDOo600Wdxewrb9i5WthjfKIehFxpeuu",
"policy": {
"accepted": [

[
{

"userVerification": 512,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
1

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
1

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
2

]

"userVerification": 2,

"keyProtection": 4,

"tcDisplay": 1,

"authenticationAlgorithms": [
2

]

"userVerification": 4,
"keyProtection": 2,

"tcDisplay": 1,
"authenticationAlgorithms": [
1,
3

}
1,
[
{
"userVerification": 2,
"keyProtection": 2,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 32,
"keyProtection": 2,
"assertionSchemes": [
"UAFV1TLV"
]
by
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1TLV"
]
Y
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1TLV"
]
by
{
"userVerification": 4,
"keyProtection": 1,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
]
'
"disallowed": [

"userVerification": 512,
"keyProtection": 16,

"assertionSchemes": [
"UAFVITLV"
]
Y
{
"userVerification": 256,
"keyProtection": 16
}

H

3.5.3 AuthenticationRequest dictionary

Contains the UAF Authentication Request Message:

WebIDL

dictionary AuthenticationRequest {
required OperationHeader header;
required ServerChallenge challenge;
Transaction]] ‘transaction;
required Policy poiicy;)

Yi

3.5.3.1 Dictionary authenticationrequest Members

header Of type required OperationHeader
Header.op must be "Auth"

challenge Of type required ServerChallenge
Server-provided challenge value

transaction Of type array of Transaction
Transaction data to be explicitly confirmed by the user.00

The list contains the same transaction content in various content types and various image sizes. Refer to [UAFAuthnrMetadata] for more
information about Transaction Confirmation Display characteristics.O

policy oOf typerequired Policy
Server-provided policy defining what types of authenticators are Hcceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:O

WebIDL

dictionary AuthenticatorSignAssertion {
required DOMString assertionScheme;
required DOMString assertion; '
Extension]] exts;)

Yi

3.5.4.1 DiCﬁOnaryAuthenticatorsignAssertion Members

assertionscheme Of type required DOMString
The name of the Assertion Scheme used to encodeassertion. See UAF Supported Assertion Schemes for details.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.
assertion Of type required DOMString
base6durl(byte[1..4096]) Contains the assertion containing a signature generated by vauth.priv, i.e. TAG UAFV1_ AUTH ASSERTION.

exts Of type array of Extension
Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered authenticators.

WebIDL

dictionary AuthenticationResponse {
required OperationHeader header;
required DOMString fcParams;
required AuthenticatorSignAssertion[] assertions;

Yi

3.5.5.1 DiCﬁOnaryAuthenticationResponse Members

header Of type required OperationHeader
Header.op must be "Auth"

fcparanms Of type required DOMString
The field fcParams is the base64url-encoded serialized [BFC4627] FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) which contains all parameters required for the server to verify the Final Challenge.

assertions Of type array ofrequired AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. Each dictionary contains an authentication response for a
specific protocol version. The array Bhust not contain two dictionaries of the same protocol version. For version "1.0" the response is defined asOl

AuthenticationResponse dictionary.

[{

"assertions": [

"assertion": "Aj7WAAQ-jgALLgkAQUJIDRCNBQKNEDi4FAAABAQEADy4gAHWYJA
EX8t1b2wOxbaKOC5ZL7ACgbLo_TtiQfK3DzDsHCi4gAFwCUz-dOuafXKXJLbkUrIzjAU60Db
P8BY9iLORMCE58fEC4AAAKUIABKkwI-f3bIe Uin6IKIFvqQLgAOrpk6_nr0oVAK9hI182A0uBA
ACAAAABi5AADWDOCBVPS1X2bRNy4SvFhAwhEAOBSGUitgMUNChgUSMxss3K3ukekqlpaG7Fv
1v5mBmDCZVPt2NCTnjUXrjTp4",

"assertionScheme": "UAFVITLV"

}

1,
"fcParams": "eyJhcHBJRCI6ImMhOdHBzOi8vdWFmMLXR1lc3QtMS5ub2tub2t0ZXNOLmN

vbTo4NDQzL1NhbXBsZUFwcC91YWYVZmF jZXRzIiwiY2hhbGx1bmd1lIjoiSFEXVmMtUVVFDMUS
KRE9VNk9IPV2R47ZXdyYjlpNVd0aGpmS01l1laEZ4cGV1VSISImNOYWS5uzZWxCaws5kawsnIjp7£Sw
1ZmFjZXRIRCI6IMNvbS5ub2tub2suYW5kem9pzC52YWlwbGVhcHALfQ",
"header": {
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",

"op": "Auth",

"serverData": "5s7n8-7_LDAtRIKKYQbAtTTOezVKC]jl2mPorYzbpxRrZ-_3wWro
MXsF_pLYJjNVm_17bplAx4bkEwK6ibil9EHGEdfKOQ1q0tyEKNIJFOggdjVvmLioroxgThlj8Is
tpt7q",

"upv": {

"major": 1,
"minor": 0

H

NOTE

Line breaks in fcParams have been inserted for improving readability.

3.5.7 Authentication Processing Rules

3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of setsOl
(second dimension) of authenticators (identified by MatchCriteria). All Buthenticators in a specific set Bhust be used for authentication
simultaneously in order to match the policy. But any of those sets in the list are valid, i.e. the list elements are alternatives.

The FIDO Server must follow the steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do
1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by Beparate MatchCriteria objects .
1. For each collection of authenticators = to be used for authentication simultaneously that can be identified by the Bame rule,
create a MatchCriteria object n, where
= m.aaid may be combined with (one or more Of)m.keyIDs, m.attachmentHint, m.authenticatorvVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.O

= Ifm.aaid is not provided - at least m.authenticationAlgorithms and m.assertionSchemes must be provided

= In case of step-up authentication (i.e. in the case where it is expected the user is already known due to a previous
authentication step) every item in policy.accepted must include the 2a1p and xey1p of the authenticator registered for
this account in order to avoid ambiguities when having multiple accounts at this relying party.

2. Addntov, e.g.v[j+l]=m.
2. Add v top.allowed, €.9. p.allowed[i+l]=v

2. Create MatchCriteria objects m[] for all disallowed authenticators.
1. Create a MatchCriteria objectn and add AAIDs of all disallowed authenticators to n.aaid.

The status (as provided in the metadata TOC [UAFMetadataService]) of some authenticators might be unacceptable. Such
authenticators should be included in p.disallowed.

2. If needed - create MatchCriterian for other disallowed criteria (e.g. unsupported authenticationAlgs)
3. Add allmtop.disallowed.

2. Create an AuthenticationRequest object r with appropriate r.header for each supported version, and

1. FIDO Servers should not assume any implicit integrity protection of r.header.serverpata. FIDO Servers that depend on the integrity of
r.header.serverData should apply and verify a cryptographically secure Message Authentication Code (MAC) to serverData and they
should also cryptographically bind serverData to the related message, e.g. by re-including r.challenge, see also section ServerData

and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverbata as an opaque value. As a consequence the
FIDO server can implement any suitable cryptographic protection method.

2. Generate a random challenge and assign it tor.challenge

3. If this is a transaction confirmation operation - look up DransactionConfirmationDisplayContentTypes/Ol
TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every Rarticipating AAID, generate a list of
corresponding transaction content and insert the list into r.transaction.

= [f the authenticator reported (a dynamic) authenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during Registration
- it must be preferred over the (static) value specified in the authenticator Metadata.

4. Set r.policy to our new policy objectp created above, e.g. r.policy = p.
5. Add the authentication request message the array
3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message with major version 1 and minor version o
2. Parse the message n
o If a mandatory field in the UAF message is not present or a field doesn't correspond to its type and value then reject the Bperation

3. Obtain racet1n of the requesting Application. If the app1p is missing or empty, set the 2pp1p to the Facet1n.

Verify that the racet1p is authorized for the app1p according to the algorithms in [FIDOAppIDAndFacets].

o If the racet1p Of the requesting Application is not authorized, reject the operation
4. Filter available authenticators with the given policy and present the filtered list to User.O0

o If AuthenticationRequest.policy.accepted list is empty then suggest any registered authenticator to the user for authentication
5. Let the user select the preferred Authenticator.
6. Obtain TLS data if its available

7. Create a FinalChallengeParams structure ccp and set tcp.AppID, fecp.challenge, fep. facetID, @and fcp.channelBinding appropriately.
Serialize [RFC4627] tcp using UTF8 encoding and base64url encode it.

o FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that supports an Authenticator Interface Version AIV compatible with message version
AuthenticationRequest.header.upv (See Version Negotiation) and user agrees to authenticate with:

1. Add 2pp1p, Finalchallenge, Transactions (if present), and all other fields to the ASMRequest.O0
2. Send the ASMRequest to the ASM.

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Sign Command".

3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

a b~ WD =

. Create an AuthenticationResponse message

. COpy AuthenticationRequest.header iNtO AuthenticationResponse.header

. Fill out authenticationResponse.FinalChallengeParams With appropriate fields and then stringify it0
. Append the response from each authenticator intoauthenticationResponse.assertions

. Send AuthenticationResponse message to the FIDO Server

3.5.7.5 Authentication Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new Bissertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

The FIDO Server must follow the steps:

1. Parse the message

1.
2.

If protocol version (authenticationResponse.header.upv) iS NOt supported — reject the operation
If a mandatory field in UAF message is not present or a field Hoesn't correspond to its type and value - reject the operation

2. Verify that authenticationResponse.header.serverbata, if used, passes any implementation-specific checks against its validity. Bee also
section ServerData and KeyHandle.
3. base64url decode ruthenticationResponse.£fcParams and convert into an object (tcp)

4. Verify each field in fcp and make sure it's valid:O

1.
2.
3.
4.
5.

Make sure app1D corresponds to the one stored by the FIDO Server

Make sure racet1p is in the list of trusted FacetIDs FIDOAppIDAndFacets]

Make sure channelBinding is as expected (see section ChannelBinding dictionary)

Verify that the serverchallenge submitted by the client has been generated by the FIDO server
Reject the response if any of the above checks fails

5. For each assertion a in authenticationResponse.assertions

1.

Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionscheme and make
sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to Bave and has a valid syntax.
= If it doesn't - continue with next assertion

. Retrieve the AAID from the assertion.

NOTE

The AAID in Tac_uarvl_SIGNED_DATA iS contained in a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_AAID.

. Verify that 2. assertionscheme matches Metadata (AAID) .assertionscheme

= [f it doesn't match - continue with next assertion

. Make sure that the AAID indeed matches the policy of the Authentication Request

= [f it doesn't meet the policy — continue with next assertion

. if a.assertion contains an object of type rac_uarvi avrs asserTION, then

1. ifa.assertion.TAG UAFV1_AUTH ASSERTION contains Tac uarvl sicnep DaTA as first element:O

1. Obtain vetadata(AAID) .Authenticatorversion for this AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_AUTH ASSERTION.TAG_UAFV1_SIGNED_ DATA.TAG_ASSERTION_INFO.AuthenticatorVersion.

» If Metadata(AAID).Authenticatorversion IS higher (i.e. the authenticator firmware is outdated), @is recommended to
assume increased authentication risk. See "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[UAFMetadataService] for more details on this.

2. Retrieve a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.TAG KEYID as KeylD
3. Locate vauth.pub public key associated with (AAID, KeylID) in the user's record.
= [If such record doesn't exist - continue with next assertion
4. Verify the AAID against the AAID stored in the user's record at time of Registration.
= [f comparison fails — continue with next assertion
5. Locate authenticator specific authentication algorithms from Buthenticator metadata (field Elithenticationalgs)

6. Check the Signature Counter a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.SignCounter and make sure
it is either not supported by the authenticator (i.e. the value provided and the value stored in the user's record are both 0)
or it has been incremented (compared to the value stored in the user's record)

= [fitis greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a cloned
authenticator has been used previously).

7. Hash authenticationResponse.FinalChallengeParams USing the hashing algorithm suitable for this authenticator type. Look
up the hash algorithm in authenticator Metadata, field Elithenticationalgs. It is the hash algorithm associated with the firstd
entry related to a constant with prefix UAF_ALG_SIGN.O

m FCHash = hash(AuthenticationResponse.FinalChallengeParams)
8. Make sure that a.assertion.TAG_UAFV1_AUTH ASSERTION.TAG_UAFV1_SIGNED DATA.TAG_FINAL_CHALLENGE == FCHash
= [f comparison fails — continue with next assertion

9. If a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_ INFO.authenticationMode == 2

NOTE

The transaction hash included in this authenticationresponse must match the transaction content specified in thel

related authenticationrequest. As FIDO doesn’t mandate any specific FIDO Server API, the transaction contentl
could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web Application.

1. Make sure there is a transaction cached on Relying Party side.
= If not — continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction) and
calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for
FinalChallenge).

s For each cachedrransaction add hash(cachedTransaction) into cachedTransactionHashList

3. Make sure that a.Transactiontash iS in cachedTransactionHashList
= [fit's not in the list — continue with next assertion

10. Use vauth.pub key and appropriate authentication algorithm to verify
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_SIGNATURE

1. If signature verification fails — continue with next assertionl

2. Update signcounter in user's record with
a.assertion.TAG_UAFV1_AUTH ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter

2. ifa.assertion.TAG UAFV1_AUTH ASSErRTION contains a different object than tac uvarvi sienep paTa as first element, Hhen follow the
rules specific to that object.00

6. if a.assertion doesn't contain an object of typetac varvi avrs asserrION, then skip this assertion (as in this UAF v1 only
TAG UAFV1_AUTH AsSERTION IS defined).0

7. Treat this assertion a as positively verified.O
6. Process all positively verified authentication assertions El

3.6 Deregistration Operation

This operation allows FIDO Server to ask the FIDO Authenticator to delete keys related to the particular relying party.

NOTE

The Along with other cases FIDO Server should also trigger this operation when the user removes his account at the relying party.

3.6.1 Deregistration Request Message
The FIDO UAF Deregistration request message is represented as an array of dictionaries. Each dictionary contains a deregistration request for a

specific protocol version. The array Bhust not contain two dictionaries of the same protocol version. For version "1.0" the request is defined asOl
DeregqistrationRequest dictionary.

[{

"header": {
"op": "Dereg",
"upv': {

"major": 1,
"minor": 0

"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets"

'
"authenticators": [
{
"aaid": "ABCD#ABCD",
"keyID": "ZMCPn92yHv1Ip-iCiBb6i4ADg6z0v569KFQCVYSJENG"
}
]
H

NOTE

There is no deregistration response object.

3.6.2 DeregisterAuthenticator dictionary

WebIDL

dictionary DeregisterAuthenticator {
required AAID aaid;
required KeyID keyID;

bi

3.6.2.1 Dictionary DeregisterAuthenticator Members

aaid of type required AAID
AAID of the authenticator to deregister.

key1D Of type required KeylD
The unique KeyID related to uauth.priv. KeylD is assumed to be unique within the scope of an AAID only.

3.6.3 DeregistrationRequest dictionary

WebIDL

dictionary DeregistrationRequest {
required OperationHeader header;

required DeregisterAuthenticator[] authenticators;

Yi

3.6.3.1 Dictionary DeregistrationRequest Members

header Of type required OperationHeader
Header.op must be "Dereg".

authenticators Of type array ofrequired DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules
3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server must follow the steps:

1. Create a deregistration request message n with major version of m.header.upv set to 1 and minor version set to o
2. For each authenticator to be deregistered

1. Create DeregisterAuthenticator object o for authenticator to be deregistered

2. Seto.aaid and o.keyID appropriately

3. Append o the m.authenticators

4. delete related entry in FIDO Server's account database

3. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message with major version 1 and minor version o
2. Parse the message

o If a mandatory field initregistrationrequest message is not present or a field doesn't correspond to its type and value — reject fhe
operation

3. For each authenticator compatible with the message version peregistrationrRequest.header.upv and has an AAID equal to one of the
provideded Aa1DS:

1. Create appropriate rsurequest for Deregister function and send it to the Authenticator

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

See [UAFASM] section "Deregister request".

4. Considerations

This section is non-normative.

4.1 Protocol Core Design Considerations

This section describes the important design elements used in the protocol.
4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all supported authenticators and their corresponding Metadata. authenticator metadata
[UAFAuthnrMetadata] contains information such as:

« Supported Registration and Authentication Schemes
« Authentication Factor, Installation type, supported content-types and other supplementary information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction, FIDO Server looks up Hhe list of authenticator
metadata by AAID and retrieves the required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be identified with a unique authenticator Attestation ID (AAID).O

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating authenticator model identity during registration. It allows Relying Parties to cryptographically
verify that the authenticator reported by FIDO UAF Client is really what it claims to be.

Using authenticator Attestation, a relying party "example-rp.com" will be able to verify that the authenticator model of the "example-Authenticator",
reported with AAID "1234#5678", is not malware running on the FIDO User Device but is really a authenticator of model "1234#5678".

NORMATIVE

FIDO Authenticators should support "Basic Attestation" described below. New Attestation mechanisms may be added to the protocol over time.

NORMATIVE

FIDO Authenticators not providing sufficient protection for Bttestation keys (non-attested authenticators) must use the UAuth.priv key in order
to formally generate the same KeyRegistrationData object as attested authenticators. This behavior must be properly declared in the
Authenticator Metadata.

4.1.2.1 Basic Attestation

NORMATIVE
There are two different flavors of Basic Attestation:00
Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).
Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key

corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not provide a cryptographic proof of the
security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 Full Basic Attestation

NOTE
FIDO Servers must have access to a trust anchor for verifying attestation public keys (i.e. Attestation Certificate trust Bore) in order to follow
the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation signature during the registration process for the same

reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This sharing process shouldt be
done according to [UAFMetadataService].

NOTE

The protection measures of the Authenticator's attestation private key depend on the specific authenticator model's hplementation.

NOTE

The FIDO Server must load the appropriate Authenticator Attestation Root Certificate from its trust store based on the BAID provided in
KeyRegistrationData object.

In this Full Basic Attestation model, a large number of authenticators must share the same Attestation certificate and Bttestation Private Key in
order to provide non-linkability (see Protocol Core Design Considerations). Authenticators can only be identified on a production batch [Bvel or an
AAID level by their Attestation Certificate, and Hot individually. A large number of authenticators sharing the same Attestation Certificate providesO
better privacy, but also makes the related private key a more attractive attack target.

NOTE

A given set of authenticators sharing the same manufacturer and essential characteristics must not be issued a new Attestation Key before
at least 100,000 devices are issued the previous shared key.

Manufacturer Attestation Root

Intermediate Attestation Certificates

Intermediate Attestation Certificates

Attestation Certificate, AAID in commonName

Fig. 10 Attestation Certificate ChainO

4.1.2.1.2 Surrogate Basic Attestation

NORMATIVE

In this attestation method, the UAuth.priv key must be used to sign the Registration Data object. This behavior must be properly declared in the
Authenticator Metadata.

NOTE

FIDO Authenticators not providing sufficient protection for Bttestation keys (non-attested authenticators) must use this attestation method.

4.1.3 Error Handling

NOTE

FIDO Servers must inform the calling Relying Party Web Application Server (see EIDO Interoperability Overview) about any error conditions
encountered when generating or processing UAF messages through their proprietary API.

NORMATIVE

FIDO Authenticators must inform the FIDO UAF Client (seeEIDO Interoperability Overview) about any error conditions encountered when
processing commands through the Authenticator Specific Module (ASM). See [DAFASM] and [UAFAuthnrCommands] for details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs, Fingerprint Sensors, Secure Elements, etc.) and also
future authenticators designed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

« Cryptographic key provisioning (KeyRegistrationData)
« Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See also UAF Supported Assertion Schem

The Registration Assertion defines how and in which format a Eryptographic key is exchanged between the authenticator and the FIDO Server.
The Authentication Assertion defines how and in which format the Buthenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in [WAFRegistry].
4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e. replacing username and password). In this case the authenticator
stores the username (uniquely identifying an account at the specific relying party) internally. See lUAFAuthnrCommands], section "Sign
Command" for details.

4.1.6 TLS Protected Communication

NOTE

In order to protect the data communication between FIDO UAF Client and FIDO Server a protected TLS channel must be used by FIDO
UAF Client (or User Agent) and the Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying Party
2. The client endpoint of the TLS connection must be either the FIDO UAF Client or the User Agent / App

3. TLS Client and Server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS v1.2 or higher are not available. The "anon"
and "null" TLS crypto suites are not allowed and must be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4, SHA1) should
be avoided [[SP 800-131A]].

We recommend, that the

1. TLS Client verifies and validates the server Eertificate chain according to [BFC5280], section 6 "Certificate Path Validation". The certificated
revocation status should be checked (e.g. using OCSP [RFC2560] or CRL based validation [RFC5280]) and the TLS server identity should
be checked as well [RFC6125].

2. TLS Client's trusted certificate root store [3 properly maintained and at least requires the CAs included in the root store to annually pass Web
Trust or ETSI (ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.

See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on how to use TLS.
4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

NOTE

A serverchallenge Needs appropriate random sources in order to be effective (see [RFC4086] for more details). The (pseudo-)random
numbers used for generating the Server Challenge should successfully pass the randomness test specified in [Boron99] and they should
follow the guideline given in [SP800-90b].

4.3 Security Considerations

There is no "one size fits all" authentication method. The FIDO Boal is to decouple the user verification method from the Buthentication protocol
and the authentication server, and to support a broad range of user verification methods and a broad Eange of assurance levels. FIDO
authenticators should be able to leverage capabilities of existing computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and integrity of the user's equipment involved
and (b) on the authentication method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of authentication methods. The relying party
needs reliable information about the security relevant parts of the equipment and the authentication method itself in order to determine whether
the overall risk of an electronic authentication is acceptable in a particular business context. The FIDO Metadata[UAFMetadataService] is intended
to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security relevant parts of the equipment and the
authentication method itself to the FIDO server.

The overall security is determined by the weakest link. In order to support scalable security in FIDO, the underlying UAF protocol needs to provide
a very high conceptual security level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels.The FIDO Alliance envisions a broad range of FIDO UAF Clients, FIDO Authenticators
and FIDO Servers to be offered by various vendors. Relying parties should be able to select a FIDO Server providing the appropriate level of
security. They should also be in a position to accept FIDO Authenticators meeting the security needs of the given business context, to
compensate assurance level deficits by adding appropriate implicit authentication Bheasures, and to reject authenticators not meeting their
requirements. FIDO does not mandate a very high assurance level for FIDO Authenticators, instead it provides the basis for authenticator and
user verification method competition.O0

Authentication vs. Transaction Confirmation.Existing Cloud services are typically based on authentication. The user launches an application
(i.e. User Agent) assumed to be trusted and authenticates to the Cloud service in order to establish an authenticated communication channel
between the application and the Cloud service. After this authentication, the application can perform any actions to the Cloud service using the
authenticated channel. The service provider will attribute all those actions to the user. Essentially the user authenticates all actions performed by
the application in advance until the service connection or authentication times out. This is a very convenient way as the user doesn't get distracted
by manual actions required for the authentication. It is suitable for actions with low risk consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is typically being used when non-repudiation is required. The resulting requirement for this scenario is called What
You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The technical difference is, that @ith Authentication
the user confirms a random challenge, where [the case of Transaction Confirmation the user also confirms B human readable content, i.e. the
contract. From a security point, in the case of authentication the application needs to be trusted as it performs any action once the authenticated
communication channel has been established. In the case of Transaction Confirmation only the transaction confirmation Hisplay component
implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in order to determine the risk associated with an authentication, it is important to
know details about some components of the user's environment. Web Browsers typically send a "User Agent" string to the web server.
Unfortunately any application could send any string as "User Agent" to the relying party. So this method doesn't provide strong security. FIDO UAF
is based on a concept of cryptographic attestation. With this concept, the component to be attested owns a cryptographic secret and authenticates
its identity with this cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation Key". The relying party gets
access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an authentication, all components performing significantd
security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the [FIDO Authenticators". Security functions are:

1. Protecting the attestation key.

2. Generating and protecting the Authentication key(s), typically one per relying party and user account on relying party.
3. Verifying the user.

4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).0

Some FIDO Authenticators might implement these functions in software running on the FIDO User Device, others might implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators might even be
formally evaluated and accredited to some national or international scheme. Each FIDO Authenticator model has an attestation ID (AAID),
uniquely identifying the related security characteristics. Relying parties get access to these security properties of the FIDO Authenticators and the
reference data required for verifying the attestation.

Resilience to leaks from other verifiers.ne of the important issues with existing authentication solutions is a weak server side implementation,
affecting the security of authentication of typical users to other relying parties. It is the goal of the FIDO UAF protocol to decouple the security of
different relying parties.

Decoupling User Verification Method from Authentication Protocol.llh order to decouple the user verification method from the Buthentication
protocol, FIDO UAF is based on an extensible set of cryptographic authentication algorithms. The cryptographic secret will be unlocked after user
verification by the Buthenticator. This secret is then used for the authenticator-to-relying party authentication. The set of cryptographic algorithms
is chosen according to the capabilities of existing cryptographic hardware and computing devices. It can be extended in order to support new
cryptographic hardware.

Privacy Protection. Different regions in the world have different privacy regulations. The FIDO UAF protocol should be acceptable in all regions
and hence must support the highest level of data protection. As a consequence, FIDO UAF doesn't require transmission of biometric data to the
relying party nor does it require the storage of biometric reference data [ISOBiometrics] at the relying party. Additionally, cryptographic secrets
used for different relying parties shall not allow the parties to link actions to the same user entity. UAF supports this concept, known as non-
linkability. Consequently, the UAF protocol doesn't require a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO Authenticators on the FIDO User Device using the Discovery interface
[UAFAppAPIAndTransport]. The combination of AAIDs adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at Efff.org and https://wiki.mozilla.org/Fingerprinting). In order to

minimize the entropy added by FIDO, the user can enable/disable individual authenticators — even when they are embedded in the device (see
[UAFAppAPIAndTransport], section "privacy considerations").

4.3.1 FIDO Authenticator Security

See [UAFAuthnrCommands].

4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it is suggested that implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is also supported. See
[UAFRegistry] "Authentication Algorithms and Key Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random value. For effective security, this value

must be chosen randomly and uniformly from a set of modular integers, using a cryptographically secure process. Even slight biases in that
process may be turned into attacks on the signature schemes.

NOTE

If such random values cannot be provided under all possible environmental conditions, then a deterministic version of ECDSA should be
used (see [RFC6979]).

4.3.3 Application Isolation

Relying Party

TLS with server
__— authentication

Flatform specific
determinationof
FacetlD T
FIDO User Device

Flatform specific
determination of
CallerlD

FIDO Authenticator

Authenticator specific
~ User Verification

Fig. 11 FIDO Entity Verification OverviewO

There are two concepts implemented in FIDO UAF to prevent malicious applications from misusing AppID specific keys registered with BIDO
Authenticators. First concept is called "FacetlD Assertion" and second is based on the "KHAccessToken". For information on the FacetID concept
see [FIDOApplIDAndFacets].

4.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify the calling software entity (i.e. the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to the intended ASM. It is based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e. the ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally registered them. A malicious App on a
mobile platform won't be able to access keys by bypassing the related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the AppID, PersonalD, BSMToken and the CallerID. See [UAFASM] for more details.

NOTE

On some platforms, the ASM additionally might need special permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among applications.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g. [RFC5929] and [ChannellD]).
UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for Fhe same ApplID as the relying party and they might be able to manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and they might be able to Bhanipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique" defined in [RFC5929] might be Hifficult toO
implement.

2. Data centers might use SSL concentrators.

3. Data centers might implement load-balancing for TLS endpoints using different TLS certificates. As a consequence, Ols-server-end-point"
defined in [RFC5929], i.e. the hash of fiie TLS server certificate might be inappropriate.O

4. Unfortunately, hashing of the TLS server certificate (as in Ols-server-end-point") also limits the usefulness of the channel binding in a
particular, but quite common circumstance. If the client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-
middle, your client will see a different certificate than the one the server is using. his is actually quite common on corporate or military
networks with a high security posture that want to inspect all incoming and outgoing traffic. If the FIDO Server just gets a hash {klue, there's
no way to distinguish this from an attack. If sending the entire certificate is acceptable from a performance Perspective, the server can
examine it and determine if it is a certificate for a valid name from a non-standard issuer (likely Bdministratively trusted) or a certificate for all
different name (which almost certainly indicates a forwarding attack).

See ChannelBinding dictionary for more details.
4.3.5 Session Management

FIDO does not define any specific session management methods. However, several FIDO functions rely on a robust session management being
implemented by the relying party's web application:

FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.

FIDO Authentication
After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).
4.3.6 Personas

FIDO supports unlinkability [AnonTerminology] of accounts at different relying parties by using relying party specific keys.O
Sometimes users have multiple accounts at a particular relying party and even want to maintain unlinkability between these accounts.
Today, this is difficult and requires certain measures to be Elrictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various personas (e.g. "business", "personal"). This
is possible as roaming authenticators typically are small and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona (e.g. "business" or "personal"). Some administrative interface (not standardized by
FIDO) of the authenticator may allow maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g. authentication keys, usernames, KeyIDs, ...) related to the Persona being active at
that time.

With this concept, the User can switch to the "Personal" Persona and register new accounts. After switching back to "Business" Persona, these
accounts will not be recognized by the authenticator (until the User switches back to "Personal" Persona again).

In order to support the persona feature, the FIDO Authenticator-specific Module APl [UAFASM] supports the use of a 'PersonalD' to identify the
persona in use by the authenticator. How Personas are managed or communicated with the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see Dperation Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be echoed back
to the FIDO Server as part of the related UAF response message.

NOTE

The FIDO Server should not assume any kind of implicit integrity protection of such data nor any implicit session binding. The FIDO Server
must explicitly bind the serverData to an active session.

NOTE

In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary places (e.g. in serverData or in the
KeyHandle). In such situations, the confidentiality and integrity of such sensitive data must be protected. This can be achieved by using a
suitable encryption algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or CTR [CTRMode]. This cipher mode needs to be used
correctly. For CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first in order to Bbtain
an integral number of blocks in length. The integrity protection can be achieved by adding a MAC or a digital signature on the ciphertext,
using a different key than for the encryption, e.g. using HMAC [FIPS198-1]. Alternatively, an authenticated encryption scheme such as AES-
GCM [SP800-38D] or AES-CCM [SP800-38C] could be used. Such a scheme provides both integrity and confidentiality in a Eingle algorithm
and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by re-including the challenge value in the authenticated serverData.

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

Several authenticator properties (e.g. UserVerificationMethods, KeyProtection, TransactionConfirmationDisplay, ...) are available in the Bhetadata
[UAFAuthnrMetadata] and through the FIDO UAF Application API. The properties included in the metadata are authoritative and are provided by a
trusted source. When in doubt, decisions should be based on the properties retrieved from the Metadata as opposed to the data retrieved through
the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint" what to expect from the Authenticator. Such "hints"
are well suited to drive and optimize the user experience.

4.3.9 Policy VerificationO

FIDO UAF Response messages do not include all parameters received in the related FIDO UAF request message into the to-be-signed object. As
a consequence, any MITM could modify such entries.

FIDO Server will detect such changes if the modified value is Ohacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible FIDO Authenticator. Such a change will be
detected by FIDO Server if the weakest possible FIDO Authenticator does not match the initial policy (see Registration Response Processing
Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection
The FIDO UAF protocol specifies two different methods for Eéplay-attack protection:

1. Secure transport protocol (TLS)
2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [TLS].

Additionally, each protocol message contains some random bytes in the serverchalienge field. The FIDO server should only BEccept incoming
FIDO UAF messages which contain a valid serverchallenge value. This is done by verifying that the serverchallenge value, sent by the client, was
previously generated by the FIDO server. See rinalchallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated by the FIDO server may not be unique, and in
such cases, the same serverchallenge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security characteristics specified fr the model
(identified by the AAID). The security is better @hen only a single authenticator with that specific UAuth.Key Mstance exists. Consequently FIDO
UAF specifies some Brotection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard as such keys cannot be extracted easily.

Secondly, UAF specifies a Signature Counter (see Buthentication Response Processing Rules and [UAFAuthnrCommands]). This counter is
increased by every signature operation. If a cloned authenticator is used, then the subsequent use of the original authenticator would include a
signature counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals
There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:O

. Register the authenticator to some relying party for one account

. Commit fraud

. Deregister the Authenticator

. Register the authenticator to some relying party for another account
. Commit fraud

. Deregister the Authenticator

. and soon...

N O o~ 0NN =

NOTE

Authenticators might support a Registration Counter (regcounter). The regcounter will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios. See [UAFAuthnrCommands] for more details.

4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native PC Applications. Such applications are referred to as FIDO enabled applications.

__— UAF Client API

Relying Party Application

. UAF
__ Protocol
Specification

A

“__ UAF Client AP

FIDO Client

SN UAF ASM API

.

. UAF Authenticator FIDO Server
FIDO Authenticator ~ Commands

Fig. 12 FIDO Interoperability Overview

Web applications typically consist of the web application server and the related Web App. The Web App code (e.g. HTML and JavaScript) is
rendered and executed on the client side by the User Agent. The Web App code talks to the User Agent via a set of JavaScript APls, e.g. HTML
DOM. The FIDO DOM API is defined in [DAFAppAPIAndTransport]. The protocol between the Web App and the Relying Party Web Application
Server is typically proprietary.

Mobile Apps play the role of the User Agent and the Web App (Client). The protocol between the Mobile App and the Relying Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web App (Client). Those applications are typically expected to be independent from
any particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.00

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [DAFAppAPIAndTransport].

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO Authenticators and have
to be verified by the FIDO Server. Merification will fail if the values are modified during fansport.

The ASM API [UAFASM] specifies the standardized API to access Buthenticator Specific Modules (ASMs) on Desktop PCs and MobileO
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API. Instead it lists the minimum data set and a specificO
message format which needs to be transferred to and from the FIDO Authenticator.

5. UAF Supported Assertion Schemes

This section is normative.
5.1 Assertion Scheme "UAFV1TLV"

This Assertion Scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to encode registration and authentication assertions generated by
authenticators. This is the default assertion scheme for UAF protocol.

TAGs and Algorithms are defined in [DAFRegistry].

The authenticator must use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the Bhetadata
statement [UAFAuthnrMetadata] for each relying party. This key pair should be generated as part of the registration operation.

Conforming FIDO Servers must support all authentication algorithms and key formats listed in document [UAFRegistry].

Conforming authenticators must support at least one Authentication Algorithm and one Key Format listed in [UAFRegistry].
5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

6. DefinitionsO

See [FIDOGlossary].
7. Table of Figures

Fig. 1 The UAF Architecture

Fig. 2 UAF Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Transaction Confirmation Message Flowl
Fig. 5 Deregistration Message Flow

Fig. 6 UAF Registration Sequence Diagram

Fig. 7 UAF Registration Cryptographic Data Flow
Fig. 8 UAF Authentication Sequence Diagram
Fig. 9 UAF Authentication Cryptographic Data Flow
Fig. 10 Attestation Certificate ChainO

Fig. 11 FIDO Entity Verification OverviewO

Fig. 12 FIDO Interoperability Overview

A. References

A.1 Normative references

[ABNF]
D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNFlJanuary 2008. Internet Standard. URL:
https://tools.ietf.org/html/rfc5234
[ChannellD]
D. Balfanz Transport Layer Security (TLS) Channel IDs. (Work In Progress) URL:http://tools.ietf.org/html/draft-balfanz-tls-channelid
[Coron99]
J. Coron and D. Naccache An accurate evaluation of Maurer's universal test LNCS 1556, February 1999, URL:
http://www.jscoron.fr/publications/universal.pdf
[FIDOAppIDANndFacets]
D. Balfanz, B. Hill, FIDO AppID and Facets v1.0. FIDO Alliance Working Draft (Work in progress.) URLs:
HTML: ./fido-appid-and-facets.htmliO

PDF: fido-appid-and-facets.pdfl]
[FIDOGlossary]

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
./fido-appid-and-facets.html
./fido-appid-and-facets.html
./fido-appid-and-facets.pdf

R. Lindemann, D. Baghdasaryan B. H|II J. Kemp FIDQ nghmga Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
. l -v1.

[FIPS180-4]
FIP,S UB 15(2 ,Sgggrg Hash Stanga g (SH. §) Natlonal Institute of Standards and Technology, March 2012, URL:
i

M. Jones N Web Algorithms (JWA). Internet-Draft (Work in progress.) URL:http://t

[JWK]

Mike Jones. JSON Web Key (JWK). 28 May 2013. Internet Draft. URL:http://t
[RFC1321]

R. Rivest, The MD5 Message-Digest Algorithm (RFC 1321), IETF, April 1992, URL: http://www.ietf.org/rfc/rfc1321.txt
[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119
[RFC3629]
F. Yergeau. UTF-8, a transformation format of ISO 10646 November 2003. Internet Standard. URL:https://tools.ietf.org/html/rfc3629
[RFC4086]
D. Eastlake 3rd, J. Schiller, S. Crocker Randomness Requirements for Security (RFC 4086), IETF, June 2005, URL:
http://www.ietf.org/rfc/rfc4086.ixt

[RFC4627]
D. Crockford. Thi lication/json Media Type for JavaScript Object Notation N). July 2006. Informational. URL:
https://tools.ietf.org/html/rfc4627

[RFC4648]

S. Josefsson, The Base16, B. 2, and B 4 Data Encodings (RFC 4648), IETF, October 2006, URL:http://www.ietf.org/rfc/rfc4648.txt
[RFC5056]

N. Williams, On th f Channel Bindings t re Channels (RF{) IETF, November 2007, URL:http://www.ietf.org/rfc/rfc5056.txt
[RFC5280]

D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X. Public Key Infrastructur rtificate an rtifi

Revocation List (CRL) ProfileQIETF, May 2008, URL:http://www.ietf.org/rfc/rfc5280.txt
[RFC5929]

J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July 2010, URL:http://www.ietf.org/rfc/rfc5929.txt
[RFC6234]

D. Eastlake 3rd, T. Hansen, ure Hash Algorithm. HA and SHA- HMAC and HKDF) (RFC 6234), IETF, May 2011, URL:
http://www.ietf.org/rfc/rfc6234.txt

[RFC6979]

i f th i

IETF August 2013 URL http://www. |§tf Qrg/rfg/n‘g§979 tx

[SP800-90b]
Elaine Baker and John Kelsey, NIST ial P tion mmendation for th Entr ur for Random Bit
Generation. National Institute of Standards and Technology, August 2012, URL:http://csrc.nist. lications/drafts/800-90/draft-
90b.pdf

[UAFASM]

D. Baghdasaryan, J. Kemp EID AFAuth nticator- iﬁ Module API v1.0CFIDO Alliance Review Draft (Work in progress.) URL:
: / .pdffd

[UAFAppAPIAndTransport]
B. H|II FID AFA tion AP/ n Tr. n rt Bindin, ification v1.0FIDO Alliance Review Draft (Work in progress.) URL:
-v1. .pdffd

[UAFAuthanommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
: / m . .pdfl

[UAFAuthnrMetadata]
D. Baghdasaryan B. Hill EIDO UAF Authenticator Metadata Statements v1. . FIDO Alliance Review Draft (Work in progress.) URL:
: rg/ - t . .pdffd

[UAFReglstry]
R. L|ndemann D. Baghdasaryan B. Hill, FID IAF Registry of Predefined Values v1.aFIDO Alliance Review Draft (Work in progress.)
: rg/ /fi -vi. 209.pdfd

[WebIDL- ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL.: http://h m.github.io/wi

A.2 Informative references

[AnonTerminology]
it

0.34.. A. Pfitzmann and M. Hansen, August 2010. URL: Ritp://dud.i

[CTRMode]
H. Lipmea, P. Rogaway, D. Wagner, Comments to NIST concerning AES M f ration: CTR-M. Encryption National Institute of
Standards and Technology, accessed March 11, 2014, URL: http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/pr m /ctr/ctr-
spec.pdf
[ECDSA-ANSI]
/i

It hy f ti nature Algorithm
Amerlcan Natlonal Standards Instltute November 2005, URL tt -//webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%: A2
[FIDOSecRef]
R. Lindemann, D. Baghdasaryan B. H|II FIDQ ﬁggur/tz Ff’gfgrgngg 1.0 FIDO Alliance Review Draft (Work in progress.) URL:
: lli . /fi 201 .

[FIPS198-1]
FIP,S PUB 19_&-1 Thg Kng-Ha,sh Mgs,sagg Authgntlgangn QQ@ (HMAQ) National Institute of Standards and Technology, July 2008, URL:

I
[ISOBlometrlcs]

Project Editor, Harmonized Biometric Vc ulary. ISO/IEC JTC 1. 15 November 2007, URL:http:/isotc.iso.org/livelink/...
[OWASP2013]

OWASP 2013. OWASP Top 10 - 2013. The Ten Most Critical Web Application Security Risks

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X. Internet Public Key Infrastructure Onlin rtifi
June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2

[RFC6125]
P. Saint-Andre, J. Hodges, R ntity within Internet Publi
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transgg am ,Sggur/tz (TL,S) (RFQ 6125)IETF, March 2011, URL:
http://www.ietf.org/rfc/rfc6125.ixt

[RFC6287]

D. M'Raihi, J. Rydell, S. Bajaj, S. Machani, D. Naccache, OCRA: OATH Challenge-Response Algorithm (RFC 6287), IETF, June 2011, URL:

http://www.ietf.org/rfc/rfc6287.ixt
[SHEFFER-TLS]

Y. Sheffer, R. Holz, P. Saint-Andre Recommendations for ur f TLS and DTLS Internet-Draft (Work in progress.) URL:
https://tools.ietf.org/html/draft-sheffer-tls-
[SP800-38C]

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6287.txt
https://tools.ietf.org/html/draft-sheffer-tls-bcp
https://tools.ietf.org/html/draft-sheffer-tls-bcp

M. Dworkin, NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication
and ConfidentialityONational Institute of Standards and Technology, July 2007, URL:http://csrc.nist.gov/publications/nistpubs/800-
38C/SP800-38C updated-July20 2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. November 2007 URL: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[SP800-63]
W. Burr, D. Dodson, E. Newton, R. Perlner, W.T. Polk, S. Gupta and E. Nabbus, NIST Special Publication 800-63-2: Electronic
Authentication Guideline. National Institute of Standards and Technology, August 2013, URL:
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

[TLS]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol, Version 1.2 August 2008. RFC 5246. URL:
http://tools.ietf.org/html/rfc5246

[TR-03116-4]
Technische Richtlinie TR-03116-4: eCard-Projekte der Bundesregierung: Teil 4 — Vorgaben fiir Kommunikationsverfahren im eGovernment
Bundesamt fiir Sicherheit in der Informationstechnik, 2013, URL:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf

[UAFMetadataService]
R. Lindemann FIDO UAF Metadata Service v1.0 FIDO Alliance Working Draft (Work in progress.) URL: TODO

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL: http://www.w3.org/TR/WebIDL/

http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/

o

=
&

S

Q
S

FIDO UAF Application API and Transport Binding Specification v1.00]

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-client-api-transport-v1.0-id-20141122.htmIO0
Previous version:
https:/fidoallian

Editor:
Brad Hill, PayPal, Inc.
Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
Bill Blanke, Nok Nok Labs, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

Describes APIs and an interoperability profile for client Bpplications to utilize FIDO UAF. This includes methods of communicating with a FIDO UAF
Client for both Web platform and Android applications, transport requirements, and an HTTPS interoperability profile for sending FIDO UAFO
messages to a compatible server.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Allian ifications in
https://www.fidoalliance.org/specifications/.0]

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared byEIDO Alliance, Inc. Permission is hereby granted to use the Specification]
solely for the purpose of implementing the Specification. No rights Brre granted to prepare derivative works of this Specification. Entities seekingd
permission to reproduce portions of this Specification for other uses must contact the BIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual Broperty rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,00
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Audience
2.2 Scope

2.3 Architecture
2.3.1 Protocol Conversation

3. Common DefinitionsO
3.1 UAF Status Codes

4. Shared DefinitionsO
4.1 UAFMessage Dictionary
4.1.1 Dictionary varvessage Members

4.2 Version interface

4.2.1 Attributes
4.3 Authenticator interface

4.3.1 Attributes

4.3.2 Authenticator Interface Constants
4.4 DiscoveryData dictionary

4.4.1 Dictionary piscoverybata Members

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-client-api-transport-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-client-api-transport-v1.0-rd-20140209.pdf
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

4.5 ErrorCode interface
4.5.1 Constants

5. DOM API
5.1 Feature Detection
5.2 uaf Interface
5.2.1 Methods

5.3 UAFResponseCallback
5.3.1 Callback uarresponsecallback Parameters

5.4 DiscoveryCallback
5.4.1 Callback piscoverycallback Parameters

5.5 ErrorCallback
5.5.1 Callback errorcaliback Parameters
5.6 Privacy Considerations for the DOM API

5.7 Security Considerations for the DOM API
5.7.1 Insecure Mixed Content

5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content
5.8 Implementation Notes for Browser/Plugin Authors
6. Android Intent API
6.1 Android-specific DefinitionsO
6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENTO
6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSERO
6.1.3 channelBindings
6.1.4 UAFIntentType enumeration
6.2 org.fidoalliance.intent.FIDO_OPERATION IntentO
6.2.1 UAFIntentType.DISCOVER
6.2.2 UAFIntentType.DISCOVER_RESULT
6.2.3 UAFIntentType.CHECK_POLICY
6.2.4 UAFIntentType.CHECK_POLICY_RESULT
6.2.5 UAFIntentType.UAF_OPERATION
6.2.6 UAFIntentType.UAF_OPERATION_RESULT
6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS
6.3 Security Considerations for Android Implementations
7.i0S Custom URL API
7.1 i0S-specific DefinitionsO
7.1.1 X-Callback-URL Transport
7.1.2 Secret Key Generation
7.1.3 Origin
7.1.4 channelBindings
7.1.5 UAFXType
7.2 JSON Values
7.2.1 DISCOVER
7.2.2 DISCOVER_RESULT
7.2.3 CHECK_POLICY
7.2.4 CHECK_POLICY_RESULT
7.2.5 UAF_OPERATION
7.2.6 UAF_OPERATION_RESULT
7.2.7 UAF_OPERATION_COMPLETION_STATUS
7.3 Implementation Guidelines for iOS Implementations
7.4 Security Considerations for iOS Implementations
8. Transport Binding Profiled
8.1 Transport Security Requirements
8.2 TLS Security Requirements
8.3 HTTPS Transport Interoperability Profiled
8.3.1 Obtaining a UAF Request message
8.3.2 Operation enum
8.3.3 GetUAFRequest dictionary
8.3.3.1 Dictionary cetuarrequest Members
8.3.4 ReturnUAFRequest dictionary
8.3.4.1 Dictionary returnuarrequest Members
8.3.5 SendUAFResponse dictionary
8.3.5.1 Dictionary senduarresponse Members
8.3.6 Delivering a UAF Response
8.3.7 ServerResponse Interface
8.3.7.1 Attributes
8.3.8 Token interface
8.3.8.1 Attributes
8.3.9 TokenType enum
8.3.10 Security Considerations
A. References
A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in “”, e.g. “UAF-TLV".

In formulas we use “I” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.
DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL [WebIDL-ED].
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, @must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, Imust not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.O

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as equired. The keyword required has been introduced by [WebIDL-ED], which is a work-in-
progress. If you are using a WeblIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.00

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO UAF technology replaces traditional username and password-based authentication solutions for online services, with a stronger and
simpler alternative. The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server: Registration,
Authentication, Transaction Confirmation, and Deregistration. As specified in the core frotocol, these messages do not have a defined networkO
transport, or describe how application software that a user interfaces with can use UAF. This document describes the API surface that a client
application can use to communicate with FIDO UAF Client software, and transport patterns and security requirements for delivering UAF Protocol
messages to a remote server.

The reader should also be familiar with the FIDO Glossary of Terms [FIDOGlossary] and the UAF Protocol specification [AFProtocol].

2.1 Audience

This document is of interest to client-side application authors that wish to utilize FIDO UAF, as well as implementers of web browsers, browser
plugins and FIDO clients, in that it describes the API surface they need to expose to application authors.

2.2 Scope
This document describes:

« The local ECMAScript [ECMA-262] API exposed by a FIDO UAF-enabled web browser to client-side web applications.

« The mechanisms and APIs for Android [ANDROID] applications to discover and utilize a shared FIDO UAF Client service.
« The general security requirements for applications initiating and transporting UAF protocol exchanges.

« An interoperability profile for transporting FIDO UAF messages over HTTPS [RFC2818].

The following are out of scope for this document:

« The format and details of the underlying UAF Protocol messages
« APIs for, and any details of interactions between FIDO Server software and the server-side application stack.

The goal of describing standard APIs and an interoperability profile for the transport of FIDO UAF messages here is to provide an Bxample of how
to develop a FIDO-enabled application and to promote the ease of integrating interoperable layers from different vendors to build a complete FIDO
UAF solution. For any given application instance, these particular patterns may not be ideal and are not mandatory. Applications may use alternate
transports, bundle UAF Protocol messages with other network data, or discover and utilize alternative APIs as they see fit.0

2.3 Architecture

The overall architecture of the UAF protocol and its various operations is described in the FIDO UAF Protocol Specification [UAFProtocol]. The
following simplified architecture diagram Mustrates the interactions and actors this document is concerned with:

FIDO
UAF Server
~ Protocol

Relying Party
Server
Application

TLS | System Boundary

Relying Party
Client
Application

FIDO
Client

APls FIDO
AN / Authenticator

Fig. 1 UAF Application API Architecture and Transport Layers

This document describes the shaded components in Fig 1.

2.3.1 Protocol Conversation

The core UAF protocol consists of five conceptual phases:00

3

3

3

Discovery allows the relying party server to determine the availability of FIDO capabilities at the client, including metadata about the
available authenticators.

Registration allows the client to generate and associate new key material with an account at the relying party server, subject to policy set by
the server and acceptable attestation that the authenticator and registration matches that policy.

Authentication allows a user to provide an account identifier, froof-of-possession of previously registered key material associated with that
identifier, and potentially other attested Hata, to the relying party server.

Transaction ConfirmationGllows a server to request that a FIDO client and authenticator with the appropriate capabilities display some
information to the user, request that the user authenticate locally to their FIDO authenticator to confirm it, Bnd provide proof-of-possession of
previously registered key material and an attestation of the confirmation back to the Edlying party server.

Deregistration allows a relying party server to tell an authenticator to forget selected locally managed key material associated with that
relying party in case such keys are no longer considered valid by the relying party.

Discovery does not involve a protocol exchange with the FIDO Server. However, the information available through the discovery APIs might be
communicated back to the server in an application-specific manner, such as by obtaining a UAF Arotocol request message containing an
authenticator policy tailored to the specific capabilities of the FIDO user Bevice.

Although the UAF protocol abstractly defines the FIDO Eerver as the initiator of requests, UAF client applications working as described in this
document will always transport UAF protocol messages over a client-initiated request/response protocol such as HTTP.

The protocol flow from the point of view of the relying party Blient application for registration, authentication, and transaction confirmation is asl
follows:

1. The client application either explicitly contacts the server to obtain a UAF Protocol Request Message, or this message is delivered along
with other client application content.

2. The client application invokes the appropriate API to pass the UAF protocol request message asynchronously to the FIDO UAF Client, and
receives a set of callbacks.

3. The FIDO UAF Client performs any necessary interactions with the user and authenticator(s) to complete the request and uses a callback to
either notify the client application of an error, or to return a UAF response message.

4. The client application delivers the UAF response message to the server over a transport protocol such as HTTP.
5. The server optionally returns an indication of the results of the operation and additional data such as authorization tokens or a redirect.

6. The client application optionally uses the appropriate API to inform the FIDO UAF Client of the results of the operation. This allows the FIDO
UAF Client to perform “housekeeping” tasks for a better user experience, e.g. by not attempting to use again later a key that the server
refused to register.

7. The client application optionally processes additional data returned to it in an application-specific manner, e.g. frocessing new authorization
tokens, redirecting the user to a new resource or interpreting an error code to determine if and how it should retry a failed operation.

Deregister does not involve a UAF protocol round-trip. If the relying party server instructs the client application to perform a deregistration, the
client application simply delivers the UAF protocol Request message to the FIDO UAF Client using the appropriate API. The FIDO UAF Client
does not return the results of a deregister operation to the relying party client application or FIDO Server.

UAF protocol Messages are JSON [ECMA-404] structures, but client applications are discouraged from modifying them. These messages may

contain embedded cryptographic integrity protections and any modifications might invalidate the messages from the point of ew of the FIDO UAF
Client or Server.

3. Common DefinitionsO

This section is normative.

These elements are shared by several APIs and layers.
3.1 UAF Status Codes

This table lists UAF protocol status codes.

NOTE

These codes indicate the result of the UAF operation at the FIDO Server. They do not represent the HTTP [RFC7230] layer or other
transport layers. These codes are intended for consumption by both the client-side web app and FIDO UAF Client to inform application-
specific error Eeporting, retry and housekeeping behavior.

Code Meaning
1200 | OK. Operation completed

1202 Accepted. Message accepted, but not completed at this time. The RP may need time to process the attestation, run risk scoring, etc. The
server should not send an authenticationToken with a 1202 response

1400 | Bad Request. The server did not understand the message

1401 | Unauthorized. The userid must be authenticated to perform this operation, or this KeyID is not associated with this UserID.

1403 | Forbidden. The userid is not allowed to perform this operation. Client should not retry
1404 | Not Found.

1408 | Request Timeout.

1480 | Unknown AAID. The server was unable to locate authoritative metadata for the AAID.

Unknown KeyID. The server was unable to locate a registration for the given UserlD and KeyID combination.

1481 | This error indicates that there is an invalid registration on the user's device. It is recommended that FIDO UAF Client deletes the key
from local device when this error is received.

1490 | Channel Binding Refused. The server refused to service the request due to a missing or mismatched channel binding(s).

1491 Request Invalid. The server refused to service the request because the request message nonce was unknown, expired or the server has
previously serviced a message with the same nonce and user ID.

1492 Unacceptable Authenticator. The authenticator is not acceptable according to the server's policy, for example because the capability
registry used by the server reported different capabilities than client-side discovery.

1493 | Revoked Authenticator. The authenticator is considered revoked by the server.

1494 | Unacceptable Key. The key used is unacceptable. Perhaps it is on a list of known weak keys or uses insecure parameter choices.

1495 Unacceptable Algorithm. The server believes the authenticator to be capable of using a stronger mutually-agreeable algorithm than was
presented in the request.

1496 | Unacceptable Attestation. The attestation(s) provided were not accepted by the server.

1497 Unacceptable Client Capabilities. The server was unable or unwilling to use required capabilities provided supplementally to the
authenticator by the client software.

1498 | Unacceptable Content. There was a problem with the contents of the message and the server was unwilling or unable to process it.

1500 | Internal Server Error

4. Shared Definitions

This section is normative.

NOTE

This section defines a number of JSON structures, specified @ith WebIDL [WebIDL-ED]. These structures are shared among APls for
multiple target platforms.

4.1 UAFMessage Dictionary

The UAFMessage dictionary is a wrapper object that contains the raw UAF protocol Message and additional JSON data that may be used to carry
application-specific data for use by either the Elient application or FIDO UAF Client.

WebIDL

dictionary UAFMessage {
required DOMString uafProtocolMessage;
Object additionalData;

bi

4.1.1 Dictionary varvessage Members

uafProtocolMessage Of type required DOMString
This key contains the UAF protocol Message that will be processed by the FIDO UAF Client or Server. Modification by the Blient
application may invalidate the message. A client application may examine the contents of a message, for example, to determine if a
message is still fresh. Details of the structure of the message can be found in the UAF protocol Specification [DAFProtocol].

additionalbata Of type Object

This key allows the FIDO Server or client application to attach additional data for use by the FIDO UAF Client as a JSON object, or the
FIDO UAF Client or client application to attach additional data for use by the client application.

4.2 Version interface

Describes a version of the UAF protocol or FIDO UAF Client for compatibility checking.

WebIDL

interface Version {
readonly attribute unsigned short major;
readonly attribute unsigned short minor;

bi

4.2.1 Attributes

major Of type unsigned short, readonly
Major version number.

minor Of type unsigned short, readonly
Minor version number.

4.3 Authenticator interface

Used by several phases of UAF, the authenticator interface exposes a subset of both verified metadata [DAFAuthnrMetadata] and transient
information about the state of an available authenticator.

WebIDL

interface Authenticator {

readonly attribute DOMString title;

readonly attribute AAID aaid;

readonly attribute DOMString description;

readonly attribute Version[] ‘supportedUAFVersions;
readonly attribute DOMString assertionScheme;
readonly attribute unsigned short authenticationAlgorithm;
readonly attribute unsigned short[] attestationTypes;
readonly attribute unsigned long userVerification;
readonly attribute unsigned short keyProtection;
readonly attribute unsigned short matcherProtection;
readonly attribute unsigned long attachmentHint;
readonly attribute boolean ‘isSecondFactoroOnly;
readonly attribute unsigned short tcDisplay;)
readonly attribute DOMString tcDisplayContentType;
readonly attribute DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
readonly attribute DOMString icon;

readonly attribute DOMString][] ‘supportedExtensionIDs;

bi

4.3.1 Attributes

title of type DOMString, readonly
A short, user-friendly name for the authenticator.
NOTE
This text must be localized for current locale.

If the ASM doesn't return a title in theauthenticatorinfo object [UAFASM], the FIDO UAF Client must generate a title based on
the other fields in Ehthenticatorinfo, because title must not be empty (see section 1. Notation).

aaid of type AAID, readonly
The Authenticator Attestation ID, which identifies the type and Batch of the authenticator. See [UAFProtocol] for the definition of theO
AAID structure.

description of type DOMString, readonly
A user-friendly description string for the authenticator.

NOTE

This text must be localized for current locale.

It is intended to be displayed to the user. It might deviate from the description specified in the authenticator's metadata statementO
[UAFAuthnrMetadata].

If the ASM doesn't return a description in theauthenticatorinfo object [UAFASMY], the FIDO UAF Client must generate a

meaningful description to the calling App based on the other fields in Ehthenticatorinfo, because description must not be empty
(see section 1. Notation).

supportedUAFVersions Of type array of Version, readonly
Indicates the UAF protocol Versions supported by the authenticator.

assertionscheme Of type DOMString, readonly
The assertion scheme the authenticator uses for attested data and signatures.
Assertion scheme identifiers are defined in the UAF Registry of Predefined Malues. [UAFRegistry]

authenticationAlgorithm Of type unsigned short, readonly
Supported Authentication Algorithm. The value must be related to constants with prefix hr arc sten.

attestationTypes Of type array ofunsigned short, readonly
Alist of supported attestation types. The values are defined in [DAFRegistry] by the constants with the prefix ac_arTESTATION.

userVerification Of type unsigned long, readonly
A set of bit flags indicating the user verification methods Eupported by the authenticator. The values are defined by the Eonstants with
the prefix ErR VERIFY.
keyProtection Of type unsigned short, readonly
A set of bit flags indicating the key protection used by the Buthenticator. The values are defined by the constants with fhe prefixO
KEY_PROTECTION.
matcherProtection Of type unsigned short, readonly
A set of bit flags indicating the matcher protection used by the Buthenticator. The values are defined by the constants with the prefixd
MATCHER_PROTECTION.
attachmentHint Of type unsigned long, readonly
A set of bit flags indicating how the authenticator is Qurrently connected to the FIDO User Device. The values are defined by thell
constants with the prefix ErracuvenT HINT.
NOTE
Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used in
applying server-supplied policy to guide the user experience. This can be used to, for example, prefer a device that is connected

and ready for authenticating or confirming a low-value Bansaction, rather than one that is more secure but requires more user
effort.

These values are not reflected in authenticator metadata and cannot be relied bpon by the relying party, although some models of
authenticator may provide attested measurements with similar semantics as part of UAF protocol messages.

isSecondFactoronly Of type boolean, readonly
Indicates whether the authenticator can only be used as a second-factor.

tcpisplay Of type unsigned short, readonly
A set of bit flags indicating the availability and type of Bansaction confirmation display. The values are defined by the constants with fhe
prefix BRANSACTION_CONFIRMATION DISPLAY.

This value must be 0 if transaction confirmation is not supported by the authenticator.00

tcbisplayContentType Of type DOMString, readonly
The MIME content-type [RFC2045] supported by the transaction confirmation display, such as Eext/plain OF image/png.

This value must be non-empty if transaction confirmation is supported (pisp1ay is non-zero).

tcDisplayPNGCharacteristics Of type array ofDisplayPNGCharacteristicsDescriptor, readonly
The set of PNG characteristics currently supported by the transaction confirmation display (if any).0

NOTE
See [UAFAuthnrMetadata] for additional information on the format of this field and the definition of the
DisplayPNGCharacteristicsDescriptor Structure.

This list must be non-empty if transaction confirmation is supported ([pisp1ay is non-zero).

icon of type DOMString, readonly
A PNG [PNG] icon for the authenticator, encoded as adata: url [RFC2397].

NOTE

If the ASM doesn't return an icon in theauthenticatorinfo object [UAFASM], the FIDO UAF Client must set a default icon,
because icon must not be empty (see section 1. Notation).

supportedExtensionIps Of type array of DOMString, readonly
Alist of supported UAF protocol extension identifiers. These Bhay be vendor-specific.00

4.3.2 Authenticator Interface Constants

A number of constants are defined for use with the bit flag fields [kerverification, keyProtection, attachmentHint, and tcbisplay. To avoid

duplication and inconsistencies, these are defined in the FIDO UAF Begistry of Predefined Values [DAFRegistry].

4.4 DiscoveryData dictionary

WebIDL

dictionary DiscoveryData {

required Version]] supportedUAFVersions;
required DOMString clientVendor;
required Version clientVersion;

required Authenticator[] availableAuthenticators;

Yi

4.4.1 Dictionary piscoverypata Members

supportedUAFVersions Of type array ofrequired Version
Alist of the FIDO UAF protocol versions supported by the client, most-preferred first.00

clientvendor Of type required DOMString
The vendor of the FIDO UAF Client.

clientVersion Of type required Version
The version of the FIDO UAF Client. This is a vendor-specific version for the client Ebftware, not a UAF version.

availableAuthenticators Of type array ofrequired Authenticator
An array containing Authenticator dictionaries describing the available UAF authenticators. The order is not significant. The list Bhay be
empty.

4.5 ErrorCode interface

WebIDL

interface ErrorCode {
const short NO ERROR = 0x0;
const short WAIT USER ACTION = 0x1;
const short INSECURE TRANSPORT = 0x2;
const short USER CANCELLED = 0x3;
const short UNSUPPORTED VERSION = 0x4;
const short NO SUITABLE AUTHENTICATOR = 0x5;
const short PROTOCOL ERROR = 0x6;
const short UNTRUSTED FACET ID = 0x7;
const short UNKNOWN = OxFF;

Yi

4.5.1 Constants

NO_ERROR Of type short
The operation completed with no error condition encountered. Upon receipt of this code, an application should no longer expect an
associated varresponsecallback to fire.O

WAIT_USER_ACTION Of type short
Waiting on user action to proceed. For example, selecting an authenticator in the FIDO client user interface, performing user verification,00
or completing an enroliment step with an authenticator.

INSECURE_TRANSPORT Of type short
window.location.protocol is not "https" or the DOM contains insecure mixed content.

USER_CANCELLED Of type short
The user declined any necessary part of the interaction to complete the registration.

UNSUPPORTED_VERSION Of type short
The varmessage does not specify a protocol version supported by this FIDO UAF Client.

NO_SUITABLE_AUTHENTICATOR Of type short
No authenticator matching the authenticator policy specified in fhe varmessage is available to service the request, or the user declined to
consent to the use of a suitable authenticator.

PROTOCOL_ERROR Of type short
A violation of the UAF protocol occurred. The interaction may have timed out; the origin associated with the message may not match the
origin of the calling DOM context, or the protocol message may be malformed or tampered with.

UNTRUSTED_FACET_ID Of type short
The client declined to process the operation because the caller's calculated facet identifier was not found in the Husted list for the
application identifier specified in the EBquest message.

unkNown Of type short
An error condition not described by the above-listed codes.

5. DOM API

This section is normative.

This section describes the API details exposed by a web browser or browser plugin to a client-side web application executing in a pocument [DOM]
context.

5.1 Feature Detection

FIDO's UAF DOM APIs are rooted in a newsido object, a property of window.navigator code; the existence and properties of which may be used
for feature detection.

Example 1: Feature Detection of UAF APIs

<script>

if(!!window.navigator.fido.uaf) { var useUAF = true; }
</script>
5.2 uaf Interface

The window.navigator.£fido.uaf interface is the primary means of interacting with the FIDO UAF Client. All operations are asynchronous.

WebIDL

interface uaf {

void discover (DiscoveryCallback completionCallback, ErrorCallback errorCallback);

void checkPolicy (UAFMessage message, ErrorCallback cb);

void processUAFOperation (UAFMessage message, UAFResponseCallback completionCallback, ErrorCallback errorCallback);
void notifyUAFResult (int responseCode, UAFMessage uafResponse);

bi

5.2.1 Methods

discover

Discover if the user's client software and devices support UAF and if authenticator capabilities are available that it may be willing to
accept for authentication.

Parameter Type Nullable Optional Description
completionCallback piscoverycaliback X X

The callback that receives piscoverypata from the FIDO UAF Client.
errorCallback ErrorCallback X X

A callback function to receive error and progress events.

Return type: void

checkPolicy

Ask the browser or browser plugin if it would be able to process the supplied request message without prompting the user.

Unlike other operations using anerrorcallback, this operation must always trigger the callback and return no_error if it believes that the

message can be processed and a suitable authenticator matching the embedded policy is available, or the appropriateerrorcode value
otherwise.

NOTE

Because this call should not prompt the user, it should not incur a potentially disrupting context-switch even if the FIDO UAF
Client is implemented out-of-process.

Parameter Type Nullable Optional Description

message UAFMessage X X A uarMessage containing the policy and operation to be tested.

cb ErrorCallback X X The callback function which receives the status of the operation.
Return type: void

processUAFOperation

Invokes the FIDO UAF Client, transferring control to prompt the user as necessary to complete the operation, and returns to the
callback a message in one of the supported protocol versions indicated by the UAFMessage.

Parameter Type Nullable Optional Description
message UAFMessage X X The varumessage to be used by the FIDO client software.

The callback that receives the client response varuessage from the
FIDO UAF Client, to be delivered to the relying party server.

A callback function to receive error and progress events from the
FIDO UAF Client.

completionCallback uarresponsecallback X X

errorCallback ErrorCallback X X

Return type: void

notifyUAFResult

Used to indicate the status code resulting from a FIDO UAF message delivered to the remote server. Applications must make this call
when they receive a UAF status code from a server. This allows the FIDO UAF Client to perform housekeeping for a better user
experience, for example not attempting to use keys that a server refused to register.

NOTE

If, and how, a status code is delivered by the server, is application and transport specific. A non-normative example can Be found
below in the HTTPS Transport Interoperability Profile0

Parameter Type Nullable Optional Description
responseCode int X X
uafResponse UAFMessage X X

The uatresult field of aﬂrverResponse.
The varMessage to which this responsecode applies.

Return type: void

5.3 UAFResponseCallback

A uarresponsecallback is used upon successful completion of an asynchronous operation by the FIDO UAF Client to return the protocol response
message to the client application for transport to the server.

WebIDL

callback UAFResponseCallback = void (UAFMessage uafResponse);

5.3.1 Callback UAFResponseCallback Parameters

uafResponse Of type uarmessage
The message and any additional data representing the FIDO UAF Client's response to the server's request message.

5.4 DiscoveryCallback

A piscoverycallback is used upon successful completion of an asynchronous discover operation by the FIDO UAF Client to return the
piscoverybData t0 the client application.

WebIDL

callback DiscoveryCallback = void (DiscoveryData data);

5.4.1 Callback piscoverycallback Parameters

data Of type piscoverybata
Describes the current state of FIDO UAF client software and authenticators available to the application.

5.5 ErrorCallback

An ErrorCallback is used to return progress and error codes from asynchronous operations performed by the FIDO UAF Client.

WebIDL

callback ErrorCallback = void (ErrorCode code);

5.5.1 Callback errorcaliback Parameters

code Of type Errorcode
Avalue from the errorcode interface indicating the result of the operation.

For certain operations, an ErrorCallback may be called multiple times, for example with the watr user acrron code.

5.6 Privacy Considerations for the DOM API

This section is non-normative.

Differences in the FIDO capabilities on a user device may (among many other characteristics) allow a server to "fingerprint" a E2mote client and
attempt to persistently identify it, even in the absence of any explicit session state maintenance mechanism. Although it may contribute some
amount of signal to servers attempting to fingerprint clients, the attributes Exposed by the Discovery API are designed to have a large anonymity
set size and should present little or no qualitatively new privacy risk. Nonetheless, an unusual configuration of FIDO Authenticators may bell
sufficient to Ohiquely identify a user.

It is recommended that user agents expose the Discovery API to all applications without requiring explicit user consent by default, but user agents
or FIDO Client implementers should provide users with the means to opt-out of discovery if they wish to do so for privacy reasons.

5.7 Security Considerations for the DOM API
This section is non-normative.
5.7.1 Insecure Mixed Content

When FIDO UAF APlIs are called and operations are performed in a bocument context in a web user agent, such a contextmust not contain
insecure mixed content. The exact definition insecure Bhixed content is specific to each user agent, but generally [cludes any script, plugins and
other "active" content, forming part of or with access to the DOM, that was not itself loaded over HTTPS.

The UAF APIs must immediately trigger the Errorcallback with the Insecure TrRansporT code and cease any further processing if any APls definedd
in this document are invoked by a Document context that was not loaded over a secure transport and/or which contains insecure mixed content.

5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

When retrieving or transporting UAF protocol messages over HTTP, it is important to maintain consistency among the web origin of the document
context and the origin embedded in the UAF protocol message. Mismatches may cause the protocol to fail or enable attacks against the protocol.
Therefore:

FIDO UAF messages should not be transported using methods that opt-out of the Same Origin Policy [SOP], for example, using <script
src="url”> t0 non-same-origin URLSs or by setting the access-control-allow-origin header at the server.

When transporting FIDO UAF messages using XMLHttpRequest [XHR] the client should not follow redirects that are to URLs with a different origin
than the requesting document.

FIDO UAF messages should not be exposed in HTTP responses where the entire response body parses as valid ECMAScript. Resources
exposed in this manner may be subject to unauthorized interactions by hostile applications hosted at untrusted origins through cross-origin
embedding using <script src="url”>.

Web applications should not share FIDO UAF messages across origins through channels such as postuessage () [webmessaging].

5.8 Implementation Notes for Browser/Plugin Authors

This section is non-normative.

Web applications utilizing UAF depend on services from the web browser as a trusted platform. The APIs for web applications do not provide a
means to assert an origin as an application identity for the purposes of FIDO operations as this will be provided to the FIDO UAF Client by the
browser based on its privileged understanding of the actual origin context.

The browser must enforce that the web origin communicated to the FIDO UAF Client as the application identity is accurate

The browser must also enforce that resource instances containing insecure mixed-content cannot utilize the UAF DOM APls.

6. Android Intent API

This section is normative.

This section describes how an Android [ANDROID] client application can locate and communicate with a conforming FIDO Client installation
operating on the host device.

NOTE

As with web applications, a variety of integration patterns are possible on the Android platform. The API described here allows an app to
communicate with a shared FIDO UAF Client on the user device in a loosely-coupled fashion using Android Intents.

6.1 Android-specific DefinitionsO

6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENTO

FIDO UAF Clients must declare the org.fidoalliance.uaf.permissions.FIDO CLIENT permission.

LISTING 1:
<permission android:name= "org.fidoalliance.uaf.permissions.FIDO_CLIENT"
android:label= "Act as a FIDO Client."
android:description= "This application acts as a FIDO Client. It may access authentication devices

available on the system, create and delete FIDO registrations on behalf of
other applications.”
android:protectionLevel="dangerous" />

6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSERO

Android applications requesting services from the FIDO UAF Client can do so under their own identity, or they can act as the user's agent by
explicitly declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client
to determine the caller's identity as android:apk-key-hash:<hash-of-public-key>. The FIDO UAF Client will then compare this with the list of
authorized application facets for the target ApplID and proceed if it is listed as trusted.

NOTE

See the UAF Protocol Specification [MAFProtocol] for more information on application and facet identifiers.00

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when
implementing a full web browser) it may set its origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The
application must satisfy the necessary conditions described infransport Security Requirements for authenticating the remote server before setting
the origin.

Use of the origin parameter requires the application to declare the org.fidoalliance.uaf.permissions.ACT AS WEB BROWSER permission, and the
FIDO UAF Client must verify that the calling application has this permission before processing the operation.

LISTING 2:
<permission android:name= "org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER"
android:label= "Act as a browser for FIDO registrations."
android:description= "This application may act as a web browser,

creating new and accessing existing FIDO
registrations for any domain."
android:protectionLevel="dangerous" />

6.1.3 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
Android application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is:
Map<String,String>
with the keys as defined for theddanne1rinding structure in the UAF Protocol Specification. [DAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same
channel the legitimate client is using and that messages have not been forwarded through a malicious party.

UAF defines support for the 1 s-unique and t1s-server-end-point bindings from [RFC5929], as well as server certificate and ChannellDO
[ChannellD] bindings. The client should supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.
6.1.4 UAFIntentType enumeration

This enumeration describes the type of operation for the intent implementing the Android API.

NOTE

UAF uses only a single intent to simplify behavior in the situation even where multiple FIDO clients may be installed. In such a case, the
user will be prompted which of the installed FIDO UAF clients should be used to handle an implicit intent.

If the user selected to make different FIDO UAF Clients the default for different intents representing different phases, it could produce inconsistent
results or fail to function at all.

If the application workflow requries Bhultiple calls to the client (and it usually does) the application should read the componentname from the intent
extras it receives from startactivityForresult () and pass it to setcomponent () for subsequent intents to be sure they are explicitly resolved to the
same FIDO UAF Client.

WebIDL

enum UAFIntentType {
"DISCOVER",
"DISCOVER_RESULT",
"CHECK_POLICY",
"CHECK_POLICY_RESULT",
"UAF_OPERATION",
"UAF_OPERATION_RESULT",
"UAF_OPERATION_COMPLETION_STATUS"

bi

Enumeration description

DISCOVER Discovery

DISCOVER_RESULT Discovery results

CHECK_POLICY Perform a no-op check if a message could be processed.

CHECK_POLICY_RESULT Check Policy results.

UAF_OPERATION Process a Registration, Authentication, Transaction Confirmation Br Deregistration message.
UAF_OPERATION_ RESULT UAF Operation results.

Inform the FIDO UAF Client of the completion status of a Registration, Authentication, Transaction

UAF_OPERATION_COMPLETION_ STATUS . q c q
- - - Confirmation Br Deregistration message.

6.2 org.fidoalliance.intent.FIDO_OPERATION IntentO

All interactions between a FIDO UAF Client and an application on Android takes place via a single Android intent:
org.fidoalliance.intent.FIDO_OPERATION
The specifics of the operation are carried by the MIME media type and various extra data included with the intent.O0
The operations described in this document are of MIME media typeapplication/fido.uaf client+json and this must be set as the type attribute
of any intent.

NOTE

Client applications can discover if a FIDO UAF Client (or several) is available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags) With this intent to see if any activities are available.

Extra Type Description

UAFIntentType String | One of the uarintentType enumeration values describing the intent.

discoveryData String | piscoverypata JSON dictionary.

The component name of the responding FIDO UAF Client. It must be serialized using

componentiane | String ComponentName.flattenString()O

errorCode short | errorcode value for operation

message String | varmessage request to test or process, depending on varintentType.

origin String An RFC6454 Web Origin [RFC6454] string for the request, if the caller has the

org.fidoalliance.permissions.ACT_AS_WEB_BROWSER permission.

channelBindings | String | The JSON dictionary of channel bindings for the operation.

responseCode short The uatresult field of aﬂrverResponse.

The following table shows what intent extras are expected, depending on the value of thevarintentType extra:

UAFIntentType value discoveryData componentName errorCode message origin channelBindings responseCode
"DISCOVER"
"DISCOVER_RESULT" optional required required
"CHECK_POLICY" required | optional
"CHECK_POLICY_RESULT" required required
"UAF_OPERATION" required | optional | required
"UAF_OPERATION_RESULT" required required | optional
"UAF_OPERATION_COMPLETION_STATUS" required required

6.2.1 UAFIntentType.DISCOVER

This Android intent invokes the FIDO UAF Client to discover the available authenticators and capabilties. The FIDO UAF Client generally will not
show a Ul associated with the handling of this intent, but immediately return the JSON structure. The calling application cannot depend on this
however, as the FIDO UAF Client may show a Ul for privacy purposes, allowing the user to choose whether and which authenticators to disclose

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)
http://developer.android.com/reference/android/content/ComponentName.html#flattenToString()

to the calling application.

This intent must be invoked with startactivityForresult ().
6.2.2 UAFIntentType.DISCOVER_RESULT

An intent with this type is returned by the FIDO UAF Client as an argument toonactivityresult () in response to receiving an intent of type
DISCOVER.

If the resultcode passed to onactivityResult () iS RESULT 0K, and the intent extra errorcode is NO _ERROR, this intent has an extra,
discoveryData, containing a string representation of a niscoverypata JSON dictionary with the available authenticators and capabilities.

6.2.3 UAFIntentType.CHECK_POLICY

This intent invokes the FIDO UAF Client to discover if it would be able to process the supplied message without prompting the user. The action
handling this intent should not show a Ul to the user.

This intent requires the following extras:

e message, CONtaining a string representation of a varmessage representing the request message to test.

e origin, an optional extra that allows a caller with the org.fidoalliance.uaf.permissions.ACT AS WEB BROWSER permission to supply an
RFC6454 Origin [RFC6454] string to be used instead of the application's own identity.

This intent must be invoked with startactivityForresult ().
6.2.4 UAFIntentType.CHECK_POLICY_RESULT

This Android intent is returned by the FIDO UAF Client as an argument toonactivityresult() in response to receiving a ceeck_poricy intent.

In addition to the resultcode passed to onactivityresult (), this intent has an extra, errorcode, containing an errorcode value indicating the
specific error condition or BO_ERROR if the FIDO UAF Client could process the message.

6.2.5 UAFIntentType.UAF_OPERATION

This Android intent invokes the FIDO UAF Client to process the supplied request message and return a response message ready for delivery to
the FIDO UAF Server.

The sender should assume that the FIDO UAF Client will display a user interface allowing the user to handle this intent, for example, prompting
the user to complete their verification Beremony.

This intent requires the following extras:

e message, CONtaining a string representation of a varmessage representing the request message to process.

e channelBindings, containing a string representation of a JSON dictionary as defined by the Ehannelsinding structure in the FIDO UAF
Protocol Specification [DAFProtocol].

e origin, an optional parameter that allows a caller with the org.fidoalliance.uaf.permissions.ACT AS_WEB_BROWSER permission to supply an
RFC6454 Origin [RFC6454] string to be used instead of the application's own identity.

This intent must be invoked with startactivityForresult ().
6.2.6 UAFIntentType.UAF_OPERATION_RESULT

This intent is returned by the FIDO UAF Client as an argument toonactivityresult (), in response to receiving a uar_orperaTION intent.

If the resultcode passed t0 onactivityResult() iS RESULT caNCELLED, this intent will have an extra, errorcode parameter, containing an errorcode
value indicating the specific error condition.O

If the resultcode passed to onactivityResult () iS RESULT Ok, and the errorcode is NO _ERROR, this intent has a nessage, containing astring
representation of a uarmessage, being the UAF protocol response message to be delivered to the FIDO Server.

6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

This intent must be delivered to the FIDO UAF Client to indicate the processing status of a FIDO UAF message delivered to the remote server.
This is especially important as a new registration may be considered by the client to be in a pending state until it is communicated that the server
accepted it.

6.3 Security Considerations for Android Implementations
This section is non-normative.
Android applications may choose to implement the user-interactive portion of FIDO in at least two ways:

« by authoring an Android Activity using Android-native user interface components, or
« with an HTML-based experience by loading an Android WebView and injecting the UAF DOM APIs with addgavascriptinterface().

An application that chooses to inject the UAF interface into a WebView must follow all appropriate security considerations that apply to usage of
the DOM APls, and those that apply to user agent implementers.

In particular, the content of a WebView into which an API will be injected must be loaded only from trusted local content or over a secure channel
as specified in Mransport Security Requirements and must not contain insecure mixed-content.

Applications should not declare theact as wes sBrowser permission unless they need to act as the user's agent for an un-predetermined number
of third party applications. Where an Android application has an explicit relationship with a relying party application(s), the preferred method of
access control is for those applications to list the Android application's identity as a trusted facet. See the UAF Protocol SpecificationO
[UAFProtocol] for more information on application and facet identifiers.O0

To protect against a malicious application registering itself as a FIDO UAF Client, relying party applications can obtain the identity of the
responding application, and utilize it in risk management decisions around the authentication or transaction events.

For example, a relying party might maintain a list of application identities known to belong to malware and refuse to accept operations completed
with such clients, or a list of application identities of known-good clients that receive preferred risk-scoring.

Relying party applications must make sure that a FIDO UAF Client has the org. fidoalliance.uaf.permissions.FIpo_crient Android permission
declared.

7.i0S Custom URL API

This section is normative.

This section describes how an iOS relying party application can locate and communicate with a conforming FIDO UAF Client installed on the host
device.

NOTE

Because of sandboxing and no true multitasking support, the iOS operating system offers very limited ways to do interprocess
communication (IPC).

Any IPC solution for a FIDO UAF Client must be able to:

1. Identify the calling app in order to provide FacetID approval.
2. Allow transition to another app without user intervention

Currently the only IPC method on iOS that satisfies both of these requirements is custom URL handlers.O0

Custom URL handlers use the iOS operating system to handle URL requests from the sender, launch the receiving app, and then pass the
request to the receiving app for processing. By enabling custom URL handlers for two different applications, it is possible to achieve
bidirectional IPC between them--one custom URL handler to send data from app A to app B and another custom URL handler to send data
from app B to app A.

Because iOS has no true multitasking, there must be an app transition to process each request and response. Too many app transitions can
negatively affect the user experience, so relying party applications must carefully choose when it is necessary to query the FIDO UAF
Client.

7.1 i0S-specific DefinitionsO
7.1.1 X-Callback-URL Transport

When the relying party application communicates with the FIDO UAF Client, it sends a URL with the standard x-caliback-url format (see x-
callback-url.com):

FidoUAFClientl://x-callback-url/[UAFxRequestType]?x-success=[RelyingPartyURL]://x-callback-url/
[UAFxXResponseType]&
key=[SecretKey]&
state=[STATE]&
json=[Base64EncodedJSON]

e ridouarclientl is the iOS custom URL scheme used by FIDO UAF Clients. As specified @ the x-callback-url standard, version information
for the transport layer is encoded in the URL scheme itself (in this case, ridouarciient1). This is so other applications can check for support
for the 1.0 version by using the canopenurr call.

e [UAFxRequestType] iS the type that should be used for request operations, which are described later in this document.

e [RelyingPartyURrL] iS the URL that the relying party app has registered in order to receive the response. According to the x-callback-url
standard, this is defined using the E-success parameter.

e [UAFxResponseType] iS the type that should be used for response operations, which are described later in this document.
e [secretkey] is a base64url-encoded, without padding, random key generated for each request by the calling application.

The response from the FIDO UAF Client will be encrypted with this key in order to prevent rogue applications from obtaining information by
spoofing the return URL.O

o [sTaTE] iS data that can be used to match the request with the response.
o Finally [Base64Encodedsson] contains the message to be sent to the FIDO UAF Client.

Items are stored in JSON format and then base64url-encoded without padding.
For FIDO UAF Clients, the custom URL scheme handler entrypoint is the openURL() function:

(BOOL)application: (UIApplication *)application openURL: (NSURL *)url sourceApplication:(NSString *)sourceApplication annotatio

Here, the URL above is received via theur1 parameter. For security considerations, the sourceapplication parameter contains the iOS bundle ID
of the relying party application. This bundle ID must be used to verify the applicationracet1p.

Conversely, when the FIDO UAF Client responds to the request, it sends the following URL back in standard x-caliback-url format:

[RelyingPartyURL]://x-callback-url/
[UAFxResponseType] &
state=[STATE]&
json=[Base64EncodedJWE]

The parameters in the response are similar to those of the request, except that the [Base64Encodedencryptedsson] parameter is encrypted with
the public key before being base64url-encoded without padding. [staTE] is the same staTe as was sent in the request--it is echoed back to the
sender to verify the matched response.

In the relying party application'sopenurz () handler, the ur1 parameter will be the URL listed above and the sourceapplication parameter will be
the iOS bundle ID for the FIDO client application.

http://x-callback-url.com

7.1.2 Secret Key Generation

A new secret encryption key must be generated by the calling application every time it sends a request to FIDO UAF Client. The FIDO UAF Client
must then use this key to encrypt the response message before responding to the caller.

JSON Web Encryption (JWE), JSON Serialization (JWE Section 7.2) format must be used to represent the encrypted response message.
The encryption algorithm is that specified in [A128CBC-HS256" where the JWE "Key Management Mode" employed is "Direct Encryption" and the

JWE "Content Encryption Key (CEK)" is the secret key generated by the calling application and passed to the FIDO UAF Client in the xey
parameter of the request.

{

"unprotected": {"alg": "dir", "enc": "A128CBC-HS256"},
nighs voLv,

"ciphertext": "...",

"tag's "

}

7.1.3 Origin

iOS applications requesting services from the FIDO Client can do so under their own identity, or they can act as the user's agent by explicitly
declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client
to determine the caller's identity as "ios:bundle-id". The FIDO UAF Client will then compare this with the list of authorized application facets for
the target AppID and proceed if it is listed as trusted.

See the UAF Protocol Specification [AFProtocol] for more information on application and facet identifiers.00

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when
implementing a full web browser) it may set origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The
application must satisfy the necessary conditions described in Transport Security Requirements for authenticating the remote server before setting
origin.

7.1.4 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
iOS application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure ismap<string, string> with the keys as defined for the Ehanne1lsinding structure in the FIDO UAF Protocol
Specification. [DAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same
channel the legitimate client is using and that messages have not been forwarded through a malicious party. UAF defines support for the ELs-
unique and tls-server-end-point bindings from [RFC5929], as well as server certificate and Ehanne11p [ChannellD] bindings. The client should
supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.
7.1.5 UAFxType

This value describes the type of operation for thex-callback-url operations implementing the iOS API.

WebIDL

enum UAFxType {
"DISCOVER",
"DISCOVER_RESULT",
"CHECK_POLICY",
"CHECK_POLICY_RESULT",
"UAF_OPERATION",
"UAF_OPERATION_RESULT",
"UAF_OPERATION_COMPLETION_STATUS"

bi

Enumeration description

DISCOVER Discovery
DISCOVER_RESULT Discovery results
CHECK_POLICY Perform a no-op check if a message could be processed.
CHECK_POLICY_RESULT Check Policy results.
UAF_OPERATION The UAF message operation type (for exampleregistration).
UAF_OPERATION_ RESULT UAF Operation results.
Inform the FIDO UAF Client of the completion status of a UAF operation (such as

UAF_OPERATION_COMPLETION_ STATUS . .
- - - Registration.

7.2 JSON Values

The specifics of the UAFxType operation are carried by various JSON values Encoded in the json x-callback-url parameter.

JSON value Type Description
discoveryData String piscoverybata JSON dictionary.
errorCode short Errorcode Value for operation

message String UAFMessage request to test or process, depending onuvarxType.

http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#section-7.2
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#appendix-B

JSON value Type Description

origin String An RFC6454 Web Origin [RFC6454] string for the request.
channelBindings String The channel bindings JSON dictionary for the operation.
responseCode short The uatresult field of aﬂrverResponse.

The following table shows what JSON values are expected, depending on the value of the varxType x-callback-url operation:

UAFxType operation discoveryData errorCode message origin channelBindings responseCode
"DISCOVER"
"DISCOVER_RESULT" optional required
"CHECK_POLICY" required | optional
"CHECK_POLICY_RESULT" required
"UAF_OPERATION" required | optional | required
"UAF_OPERATION_RESULT" required optional
"UAF_OPERATION_COMPLETION_STATUS" required required

7.2.1 DISCOVER

This operation invokes the FIDO UAF Client to discover the available authenticators and capabilities. The FIDO UAF Client generally will not show
a user interface associated with the handling of this operation, but will simply return the resulting JSON structure.

The calling application cannot depend on this however, as the client may show a user interface for privacy purposes, allowing the user to choose
whether and which authenticators to disclose to the calling application.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no user interface is
displayed.

7.2.2 DISCOVER_RESULT

An operation with this type is returned by the FIDO UAF Client in response to receiving an x-callback-url operation of type prscover.

If the resultcode is rEsuLT 0k, and the JSON value errorcode is NO_ERROR, then this operation has a JSON value, discoverypata, containing a
string representation of a piscoverypata JSON dictionary listing the available authenticators and their capabilities.

7.2.3 CHECK_POLICY

This operation invokes the FIDO UAF Client to discover if the client would be able to process the supplied message, without prompting the user.

The related action handling this operation should not show an interface to the user.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no Ul is displayed.

This x-callback-url operation requires the following JSON values:

e message, cONtaining a string representation of a varmessage representing the request message to test.

« origin, anoptional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.

7.2.4 CHECK_POLICY_RESULT

This operation is returned by the FIDO UAF Client in response to receiving a cueck_porzcy x-callback-url operation.

In addition to the resultcode, this x-callback-url operation has a JSON value, errorcode, containing an exrorcode value indicating the specific errordl
condition or NO_ERROR if the FIDO Cliet could process the message.

7.2.5 UAF_OPERATION

This operation invokes the FIDO UAF Client to process the supplied request message and return a result message ready for delivery to the FIDO
UAF Server. The sender should assume that the FIDO UAF Client will display a Ul to the user to handle this x-callback-url operation, e.g.
prompting the user to complete their verification ceremony.0l

This x-callback-url operation requires the following JSON values:

e message, CONtaining a string representation of a uarmessage representing the request message to process.

e channelBindings, containing a string representation of a JSON dictionary as defined by the Ehannelsinding structure in the UAF Protocol
Specification [AFProtocol].

e origin, anoptional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.
7.2.6 UAF_OPERATION_RESULT

This x-callback-url operation is returned by the FIDO UAF Client in response to receiving a uvar_orerarzon x-callback-url operation.

If the resultcode is rEsuLT cancerreD, this x-callback-url operation has a JSON value, errorcode, containing an errorcode value indicating the
specific error condition.O

If the resultcode is RESULT 0k,, and the x-callback-url JSON value errorcode is NO _ERROR, this x-callback-url operation has a JSON value,
message, containing a string representation of a uarmessage, being the UAF protocol response message to be delivered to the FIDO Server.

7.2.7 UAF_OPERATION_COMPLETION_STATUS

This x-callback-url operation must be delivered to the FIDO UAF Client to indicate the completion status of a FIDO UAF message delivered to the
remote server. This is especially important as, e.g. a new registration may be considered in a pending status until it is known the server accepted
it.

7.3 Implementation Guidelines for iOS Implementations

Each iOS Custom URL based request results in a human-noticeable context switch between the App and FIDO UAF Client and vice versa. This
will be most noticeable when invoking DISCOVER and CHECK_POLICY requests since typically these requests will be invoked automatically,
without user's involvement. Such a context switch impacts the User Experience and therefore it's recommended to avoid making these two
requests and integrate FIDO without using them.

7.4 Security Considerations for iOS Implementations

This section is non-normative.

A security concern with custom URLs under iOS is that any app can register any custom URL. If multiple applications register the same custom
URL, the behavior for handling the URL call in iOS is undefined.O

On the FIDO UAF Client side, this issue with custom URL scheme handlers is solved by using the sourceapplication parameter which provides
the bundle ID of the URL originator. This is effective as long as the device has not been jailbroken and as long as Apple has done due diligence
vetting submissions to the app store for malware with faked bundle IDs. The sourceapplication parameter can be matched with the FacetID list to
ensure that the calling app is approved to use the credentials for the relying party.

On the relying party app side, encryption is used to prevent a rogue app from spoofing fhe relying party app's response URL. The relying party app
generates a random encryption key on every request and sends it to the FIDO client. The FIDO client then encrypts the response to this key. In
this manner, only the relying party app can decrypt the response. Even in the event that malware is able to spoof the relying party app's URL and
intercept the response, it would not be able to decode it.

To protect against potentially malicious applications registering themselves to handle the FIDO UAF Client custom URL scheme, relying party
Applications can obtain the bundle-id of the responding app and utilize it in risk management decisions around the authentication or transaction
events. For example, a relying party might maintain a list of bundle-ids known to belong to malware and refuse to accept operations completed
with such clients, or a list of bundle-ids of known-good clients that receive preferred risk-scoring.

8. Transport Binding ProfileO
This section is normative.

This section describes general normative security requirements for how a client application transports FIDO UAF protocol messages, gives
specific requirements for Transport Layer Becurity [TLS], and describes an interoperability profile for Gsing HTTP over TLS [RFC2818] with the
FIDO UAF protocol.

8.1 Transport Security Requirements

This section is non-normative.

The UAF protocol contains no inherent means of identifying a relying party server, or for end-to-end protection of UAF protocol messages. To
perform a secure UAF protocol exchange, the following abstract requirements apply:

1. The client application must securely authenticate the server endpoint as authorized, from that client's viewpoint, to represent the Web origin
[RFC6454] (scheme:host:port tuple) reported to the FIDO UAF Client by the client application. Most typically this will be done by using TLS
and verifying the server's certificate is valid, asserts the Bborrect DNS name, and chains up to a root trusted by the client platform. Clients
may also utilize other means to authenticate a server, such as via a pre-provisioned certificate or key that is distributed with an application, orQ]
alternative network authentication protocols such as Kerberos [RFC4120].

2. The transport mechanism for UAF protocol messages must provide confidentiality for the message, to prevent disclosure Bf their contents to
unauthorized third parties. These protections should be cryptographically bound to proof of the server's identity as described above.

3. The transport mechanism for UAF protocol messages must protect the integrity of the message from tampering by unauthorized third parties.
These protections should be cryptographically bound to proof of the server's identity in as described above.

8.2 TLS Security Requirements

This section is non-normative.

If using HTTP over TLS ([RFC2246] [RFC4346], [RFC5246] or [TLS13draft02]) to transport an UAF protocol exchange, the following specificO
requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any other error level with the TLS connection, the HTTP client must terminate the
connection without prompting the user. For example, this includes any errors found in certificate validity Ehecking that HTTP clients employ,
such as via TLS server identity checking [RFC6125], Certificate Revocation Lists [CRLs) [RFC5280], or via the Online Certificate StatusO
Protocol (OCSP) [RFC2560].

2. Whenever comparisons are made between the presented TLS server identity (as presented during the TLS handshake, typically within the
server certificate) and the intended source TLS Eerver identity (e.g., as entered by a user, or embedded in a link), [RFC6125] server identity
checking must be employed. The client must terminate the connection without prompting the user upon any error condition.

3. The TLS server certificate must either be provisioned explicitly But-of-band (e.g. packaged with an app as a "pinned certificate") or be trustedd
by chaining to a root included in the certificate store of the operating system or a major Browser by virtue of being currently in compliance
with their root store program requirements. The client must terminate the connection without user recourse if there are any error conditions
when building the chain of trust.

4. The "anon" and "null" crypto suites are not allowed and insecure cryptographic algorithms in TLS (e.g. MD4, RC4, SHA1) should be avoided
(see NIST SP800-131A [SP800-131A]).

5. The client and server should use the latest practicable TLS version.

6. The client should supply, and the server should verify whatever practicable channel binding information is available, including a ChannellD
[ChannellD] public key, the t1s-unique and t1s-server-end-point bindings [RFC5929], and TLS server certificate binding [DAFProtocol].
This information provides protection against certain classes of network attackers and the forwarding of protocol messages, and a server may
reject a message that lacks or has channel binding data that does not verify correctly.

8.3 HTTPS Transport Interoperability Profiled
This section is normative.
Conforming applications may support this profile.0

Complex and highly-optimized applications utilizing UAF will often transport UAF protocol messages in-line with other application protocol
messages. The profile defined here for Bansporting UAF protocol messages over HTTPS is intended to:

« Provide an interoperability profile to enable easier composition Bf client-side application libraries and server-side implementations for FIDO
UAF-enabled products from different vendors.

« Provide detailed illustration of specific necessary security Aroperties for the transport layer and HTTP interfaces, especially as they may
interact with a browser-hosted application.

« This profile is also utilized in the examples that constitute the appendices of this document. This profile is Bbtional to implement. RFC 2119
key words are used in this section to indicate necessary security and other properties for implementations that intend to use this profile toO
interoperate.

. NOTE

Certain FIDO UAF operations, in particular, transaction confirmation, will always require Bn application-specific implementation. ThisO
interoperability profile only provides a skeleton framework suitable for Eéplacing username/password authentication.

8.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request messages as part of a response body containing other application content, e.g in a
script block as such:

LISTING 3:

<script type="application/json”>
{

“initialRequest”: {

// initial request message here

b

“lifetimeMillis”: 60000; // hint: this initial request is valid for 60 seconds

}

</script>

However, request messages have a limited lifetime, and an installed application cannot be delivered with a request, so client applications generally
need the ability to retrieve a fresh request.

When sending a request message over HTTPS with XMLHttpRequest [XHR] or another HTTP API:

. The URI of the server endpoint, and how it is communicated to the client, is application-specific.00

. The client must set the HTTP method to POST. RFC7231]

. The client must set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-g8”. [RFC7231]
. The client should include “application/fido+uat” as a media type in the HTTP “Accept” header. [RFC7231]

. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific Bhanner,
their authorization to perform a request.

. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the cetuarrequest dictionary.

. The server's response should set the HTTP “Content-Type” to “application/fido+uaf; charset=utf-8”

. The client should decode the response byte string as UTF-8 with error handling. HTML5]

. The decoded body of the response must consist entirely of a JSON structure described by the returnuarrequest interface.

a b~ WD =

© 0 N O

8.3.2 Operation enum

Describes the operation type of a FIDO UAF message or request for a message.

WebIDL

enum Operation {

Yi

Enumeration description

Reg Registration

Authentication or Transaction
ConfirmationO

pereg Deregistration

Auth

8.3.3 GetUAFRequest dictionary

WebIDL

dictionary GetUAFRequest {
Operation op;
DOMString previousRequest;
DOMString context; '

Yi

8.3.3.1 Dictionary cetvarrequest Members

op Of type Operation
The type of the UAF request message desired. Allowable string values are defined by the Operation enum. This field is Bptional but
must be set if the operation is not known to the server through other context, e.g. an operation-specific URL Bndpoint.

previousRequest Of type DOMString
If the application is requesting a new UAF request message because a previous one has expired, this optional key can include the
previous one to assist the server in locating any state that should be re-associated with a new request message, should one be issued.

context Of type DOMString
Any additional contextual information that may be useful or necessary for the server to generate the correct request message. This key
is optional and the format and nature of this data is application-specific.0

8.3.4 ReturnUAFRequest dictionary

WebIDL

dictionary ReturnUAFRequest {
required unsigned long statusCode;

DOMString 'ilafRequest_';
Operation op;
long lifetimeMillis;

Yi

8.3.4.1 Dictionary returnuarrequest Members

statusCode Of type required unsigned long
The UAF Status Code for the operation (see section3.1 UAF Status Codes).

uafRequest Of type DOMString
The new UAF Request Message, optional, if the server decided to issue one

op Of type Operation
An optional hint to the client of the operation type of the message, useful if the server might return a different type than was requested.
For example, a server might return a deregister message if an authentication request referred to a key it no longer considers valid.
Allowable string values are defined by the Operation enum.O

lifetimeMillis Of typelong
If the server returned auatrequest, this is an optional hint informing the client application of the lifetime of the message in milliseconds.

8.3.5 SendUAFResponse dictionary

WebIDL

dictionary SendUAFResponse {
required DOMString uafResponse;
DOMString context;

bi

8.3.5.1 Dictionary sendvarresponse Members

uafResponse Of type required DOMString
The UAF Response Message. Itmust be set to uarmessage.uatprotocolmessage returned by FIDO UAF Client.

context Of type DOMString
Any additional contextual information that may be useful or necessary for the server to process the response message. This key is
optional and the format and nature of this data is application-specific.O

8.3.6 Delivering a UAF Response

Although it is not the only pattern possible, an asynchronous HTTP request is a useful way of delivering a UAF Response to the remote server for
either web applications or standalone applications.

When delivering a response message over HTTPS with XMLHttpRequest [XHR] or another API:

. The URI of the server endpoint and how it is communicated to the client is application-specific.00

. The client must set the HTTP method to POST. RFC7231]

. The client must set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-8”. [RFC7231]
. The client should include “application/fido+uat” as a media type in the HTTP “Accept” header. [RFC7231]

. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific Bhanner,
their authorization to perform an operation.

. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the senduarresponse.

7. The server's response should set the “Content-Type” to “application/fido+uaf; charset=utf-8” and the body of the response must consist
entirely of a JSON structure described by the serverresponse interface.

a b~ WD =

(2]

8.3.7 ServerResponse Interface

The serverresponse interface represents the completion status and additional application-specific additional data that Eesults from successful
processing of a Register, Authenticate, or Transaction Confirmation operation. This message is not Ebrmally part of the UAF protocol, but the
statusCode should be posted to the FIDO UAF Client, for housekeeping, using the notifyuarresult () operation.

WebIDL

interface ServerResponse {
readonly attribute int statusCode;
[Optional] ’)
readonly attribute DOMString description;

[Optional]

readonly attribute Token[] additionalTokens;
[Optional] ’ '
readonly attribute DOMString location;
[Optional] ’

readonly attribute DOMString postData;
[Optional] ’

readonly attribute DOMString newUAFRequest;

Yi

8.3.7.1 Attributes

statusCode Of type int, readonly
The FIDO UAF response status code. Note that this status code describes the result of processing the tunneled UAF operation, not the
status code for the outer HTTP transport.

description of type DOMString, readonly
A detailed message describing the status code or providing additional information to the user.

additionalTokens Of type array of Token, readonly
This key contains new authentication or authorization token(s) for the client that are not natively handled by the HTTP transport. Tokens
should be processed prior to processing of 1ocation.

location Of type DOMString, readonly
If present, indicates to the client web application that it should navigate the Document context to the URI contained on this field afterd
processing any tokens.

postpata of type DOMString, readonly
If present in combination with1ocation, indicates that the client should POST the contents to the specified location after processing any
tokens.

newUAFRequest Of type DOMString, readonly
The server may use this to return a new UAF protocol message. This might be used to supply a fresh request to retry an operation in
response to a transient failure, to request additional confirmation for a transaction, or to send a Beregistration message in response to a
permanent failure.

8.3.8 Token interface

NOTE

The UAF Server is not responsible for creating additional tokens returned as part of a UAF response. Such tokens exist to provide a means
for the relying party application to update the authentication/authorization state of the client in response to a successful UAF operation. For
example, these fields could be used to allow UAF to serve as fie initial authentication leg of a federation protocol, but the scope and details
of any such federation are outside of the scope of UAF.

WebIDL

interface Token {
readonly attribute TokenType type;
readonly attribute DOMString value;
bi

8.3.8.1 Attributes

type Of type TokenType, readonly
The type of the additional authentication / authorization token.

value of type DOMString, readonly
The string value of the additional authentication / authorization token.

8.3.9 TokenType enum

WebIDL

enum TokenType {
"HTTP_COOKIE",
"OAUTH",
"OAUTH2",
"SAML1 1",
"SAML2",
"JIWT",
"OPENID_CONNECT"

Yi

Enumeration description

If the user agent is a standard web browser or other HTTP native client with a cookie store, this TokenType should not be
used. Cookies should be set directly with the Set-Cookie HTTP header for processing by the user agent. For non-HTTP or
non-browser contexts this indicates a token intended to be set as an HTTP cookie. [RFC6265] For example, a native VPN
client that authenticates with UAF might use this TokenType to automatically add a cookie to the browser cookie jar.

HTTP_COOKIE

OAUTH Indicates that the token is of type OAUTH. RFC5849].

OAUTH2 Indicates that the token is of type OAUTH2. RFC6749].

SAML1_1 Indicates that the token is of type SAML 1.1. SAML11].

SAML2 Indicates that the token is of type SAML 2.0. SAML2-CORE]

JWT Indicates that the token is of type JSON Web Token (JWT). JWT]

orenip connecT Indicates that the token is an OpenID Connect “id_token”. [OpenIDConnect]

8.3.10 Security Considerations

This section is non-normative.

It is important that the client set, and the server require, the method be POST and the “Content-Type” HTTP header be the correct values.
Because the response body is valid ECMAScript, to protect against unauthorized cross-origin access, a server must not respond to the type of
request that can be generated by a script tag, €.9. <script src="https://example.com/fido/uaf/getRequest”>. The request a user agent
generates with this kind of embedding cannot set custom headers.

Likewise, by requiring a custom “Content-Type” header, cross-origin requests cannot be made with an XMLHttpRequest [XHR] without triggering a
CORS preflight access check. [BORS]

As FIDO UAF messages are only valid when used same-origin, servers should not supply an “Access-Control-Allow-Origin” [CORS] header with
responses that would allow them to be read by non-same-origin content.

To protect from some classes of cross-origin, browser-based, distributed denial-of-service attacks, request endpoints should ignore, without
performing additional processing, all requests with an “Access-Control-Request-Method” [CORS] HTTP header or an incorrect “Content-Type”
HTTP header.

If a server chooses to respond to requests made with the GET method and without the custom “Content-Type” header, it should apply a prefixd
string such as “while(1);” or “sssBEGIN UAF RESPONsEsas” to the body of all replies and so prevent their being read through cross-origin <script>
tag embedding. Legitimate same-origin callers will need to (and alone be able to) strip this prefix string before parsing the ISON content.

A. References

A.1 Normative references

[ChannellD]
D. Balfanz Transport Layer Security (TLS) Channel IDs. (Work In Progress) URL:http:/tools.ietf.org/html/draft-balfanz-tls-channelid
[DOM]
Anne van Kesteren; Aryeh Gregor; Ms2ger; Alex Russell; Robin Berjon. W3C DOM4. 10 July 2014. W3C Last Call Working Draft. URL:
http://www.w3.org/TR/dom/
[ECMA-262]
ECMAScript Language Specification, Edition 5.10June 2011. URL: http://www.ecma-international.org/publications/standards/Ecma-262.htm
[ECMA-404]
. The JSON Data Interchange Format. 1 October 2013. Standard. URL:http://www.ecma-international.org/publications/files/ECMA-O0

ST/ECMA-404.pdf
[FIDOGlossary]

R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf00
[HTMLS5]
Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer. H{TML5. 28 October 2014. W3C
Recommendation. URL: http://www.w3.0rg/TR/htmI5/
[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). 6 July 2012. Internet Draft. URL:http://tools.ietf.org/html/draft-ietf-oauth-json-
web-token-01
[OpenIDConnect]
OpenlID Connect. OpenlD Foundation (Work in Progress) URL http://openid.net/connect/
[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition)™0 November 2003. W3C Recommendation. URL:
http://www.w3.0rg/TR/PNG
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119
[RFC2397]
L. Masinter. The "data” URL scheme. August 1998. Proposed Standard. URL:https://tools.ietf.org/html/rfc2397
[RFC2818]
E. Rescorla. HTTP Over TLS. May 2000. Informational. URL:https://tools.ietf.org/html/rfc2818
[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:http://www.ietf.org/rfc/rfc4648.txt
[RFC5849]
E. Hammer-Lahav, The OAuth 1.0 Protocol (RFC 5849), IETF, April 2010, URL: http://www.ietf.org/rfc/rfc5849.txt
[RFC5929]
J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July 2010, URL:http://www.ietf.org/rfc/rfc5929.txt
[RFC6125]
P. Saint-Andre, J. Hodges, Representation and Verification of Domain-Based Application Service Identity within Internet Public Ke
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125)0IETF, March 2011, URL:

http://www.ietf.org/rfc/rfc6125.ixt
[RFC6265]

A. Barth. HTTP State Management Mechanism. April 2011. Proposed Standard. URL:https://tools.ietf.org/html/rfc6265
[RFC6454]
A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL:https://tools.ietf.org/html/rfc6454
[RFC6749]
D. Hardt, Ed., The OAuth 2.0 Authorization Framework (RFC 6749), IETF, October 2012, URL:http://www.ietf.org/rfc/rfc6749.txt
[RFC7230]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing June 2014. Proposed Standard.
URL: https://tools.ietf.org/html/rfc7230
[RFC7231]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content June 2014. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7231
[SAML11]
E. Maler, P. Mishra and R. Philpott, The Security Assertion Markup Language (SAML) v1.1. OASIS, October 2003, URL:https://www.oasis-

open.org/standards#samivi.1
[SAML2-CORE]

Scott Cantor; John Kemp; Rob Philpott; Eve Maler. Assertions and Protocols for SAML V2.0 15 March 2005. URL:http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-0s.pdf

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf]

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification vi.0(FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf0

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values vi.aFIDO Alliance Review Draft (Work in progress.)
URL: http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf]

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.w3.org/TR/dom/
http://www.w3.org/TR/dom/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://openid.net/connect/
http://openid.net/connect/
http://www.w3.org/TR/PNG
http://www.w3.org/TR/PNG
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/

A.2 Informative references

[ANDROID]
The Android ™ Operating System. Google, Inc., the Open Handset Alliance and the Android Open Source Project (Work in progress) URL:
http://developer.android.com/
[CORS]
Anne van Kesteren. Cross-Origin Resource Sharing. 16 January 2014. W3C Recommendation. URL:http://www.w3.org/TR/cors/
[RFC2045]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies November 1996. Draft

Standard. URL: https://tools.ietf.org/html/rfc2045
[RFC2246]

T. Dierks, E. Rescorla, The TLS Protocol Version 1.0, IETF, January 1999, URL:http://www.ietf.org/rfc/rfc2246.txt
[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSFI
June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560
[RFC4120]
C. Neuman, T. Yu, S. Hartman, K. Raeburn, The Kerberos Network Authentication Protocol (V5) (RFC 4120), |IETF, July 2005, URL:
http://www.ietf.org/rfc/rfc4120.1xt
[RFC4346]
T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.1, |IETF, April 2006, URL: http://www.ietf.org/rfc/rfc4346.txt
[RFC5246]
T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol, IETF, August 2008, URL: http://www.ietf.org/rfc/rfc5246.txt
[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X.509 Public Key Infrastructure Certificate and Certificatel
Revocation List (CRL) ProfileIETF, May 2008, URL:http://www.ietf.org/rfc/rfc5280.txt
[SOP]
Same Origin Policy for JavaScript. Mozilla Developer Network, January 2014 URL:https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Same_origin_policy for JavaScript
[SP800-131A]
E. Barker, A. Roginsky, NIST Special Publication 800-131A: Transitions: Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths. National Institute of Standards and Technology, January 2011, URL:
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
[TLS13draft02]
T. Dierks, E. Rescorla, The Transport Layer Security (TLD) Protocol Version 1.3 (draft 02) IETF, July, 2014, URL:

https://tools.ietf.org/html/draft-ietf-tls-tls13-02
[UAFASM]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator-Specific Module AP v1.00FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf0
[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL: http://www.w3.org/TR/WebIDL/
[XHR]
Anne van Kesteren. XMLHttpRequest. Living Standard . URL:https://xhr.spec.whatwg.org/
[webmessaging]
lan Hickson. HTML5 Web Messaging. 1 May 2012. W3C Candidate Recommendation. URL:http://www.w3.org/TR/webmessaging/

http://developer.android.com/
http://developer.android.com/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/webmessaging/

g
4
S
S

Q

FIDO UAF Authenticator-Specific Modulel
API

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-asm-api-id-20141122.htmliO
Previous version:
https://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdfl]
Editors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance
Contributors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Roni Sasson, Discretix, Inc.

Copyright © 2013-2014 EIDO Alliance All Rights Reserved.

Abstract

UAF authenticators may be connected to a user device via various physical interfaces
(SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific Mlodule (ASM) is a software
interface on top of UAF authenticators which gives a standardized way for FIDO UAF
Clients to detect and access the functionality of UAF authenticators and hides internal
communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs, defines the UAF ASM APIO
and explains how FIDO UAF Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO FIDO UAF Client
vendors.

Status of This Document

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-asm-api-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdf
davit@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
rolf@noknok.com
https://www.noknok.com/
bhill@paypal.com
http://www.paypal.com/
Roni.Sasson@discretix.com
http://www.discretix.com/
https://www.fidoalliance.org/

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications indextat https.//www.fidoalliance.org/specifications/0

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by EIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of0d
implementing the Specification. No rights Bre granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce Portions of this Specification for(d
other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under thirdd
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not,[0
and shall not be held, responsible in any manner for identifying or failing to identify any

or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS 1S” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Code & Example format

3. ASM Requests and Responses
3.1 Request enum
3.2 StatusCode Interface
3.2.1 Constants

3.3 ASMRequest Dictionary
3.3.1 Dictionary asvrequest Members

3.4 ASMResponse Dictionary
3.4.1 Dictionary asvresponse Members

3.5 GetInfo Request
3.5.1 GetInfoOut Dictionary
3.5.1.1 Dictionary cetinfoout Members

3.5.2 Authenticatorinfo Dictionary
3.5.2.1 Dictionary authenticatorinfo Members

3.6 Register Request
3.6.1 Registerln Object
3.6.1.1 Dictionary registertn Members

3.6.2 RegisterOut Object
3.6.2.1 Dictionary registerout Members

3.6.3 Detailed Description for Processing the Register Request

https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.7 Authenticate Request
3.7.1 Authenticateln Object
3.7.1.1 Dictionary authenticatern Members

3.7.2 Transaction Object
3.7.2.1 Dictionary Transaction Members

3.7.3 AuthenticateOut Object
3.7.3.1 Dictionary authenticateout Members

3.7.4 Detailed Description for Processing the Authenticate Request

3.8 Deregister Request
3.8.1 Deregisterln Object
3.8.1.1 Dictionary peregisterin Members

3.8.2 Detailed Description for Processing the Deregister Request

3.9 GetRegistrations Request
3.9.1 GetRegistrationsOut Object
3.9.1.1 Dictionary cetregistrationsout Members

3.9.2 AppRegistration Object
3.9.2.1 Dictionary appregistration Members

3.9.3 Detailed Description for Processing the GetRegistrations
Request

3.10 OpenSettings Request

4. Using ASM API

5. Using the ASM API on various platforms
5.1 Android ASM Intent API
5.1.1 Discovering ASMs

5.2 Windows ASM API

6. Security and Privacy Guidelines
6.1 KHAccessToken

6.2 Access Control for ASM APls

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “*, e.g. “UAF-TLV”.
In formulas we use “I” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL
[WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly
marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, @ must not be
empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, imust not be an
empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.O

NOTE

Note: Certain dictionary members need to be present in order to comply with
FIDO requirements. Such members are marked in the WebIDL definitions foundO
in this document, as required. The keyword required has been introduced by
[WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser
which implements [WebIDL], then you may remove the keyword required from
your WebIDL and use other means to ensure those fields are present.00

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
‘recommended”, “may”, and “optional” in this document are to be interpreted as
described in [RFC2119].

2. Overview

This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces
(SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific module (ASM) is a software
interface on top of UAF authenticators which gives a standardized way for FIDO UAF
Clients to detect and access the functionality of UAF authenticators, and hides internal
communication complexity from clients.

The ASM is a platform-specific Ebftware component offering an API to FIDO UAF
Clients, enabling them to discover and communicate with one or more available
authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and FIDO UAF
Client vendors.

NOTE

Platform vendors might choose to not expose the ASM API defined in thisO
document to applications. They might instead choose to expose ASM
functionality through some other API (such as, for example, the Android KeyStore
API, or iOS KeyChain API). In these cases it's important to make sure that the
underlying ASM communicates with the FIDO UAF authenticator in a manner
defined in this document.O

The FIDO UAF protocol and its various operations is described in the FIDO UAF

Protocol Specification [DAFProtocol]. The following simplified architecture diagramQO
illustrates the interactions and actors this document is concerned with:

UAF
Client

ASM

Authnr

Authenticator

Fig. 1 UAF ASM API Architecture

2.1 Code & Example format

ASM requests and responses are presented in WebIDL format.

3. ASM Requests and Responses

This section is normative.

The ASM APl is defined in terms of JSON-formatted [HCMA-404] request and reply
messages. In order to send a request to an ASM, a FIDO UAF Client creates an
appropriate object (e.g., in ECMAscript), "stringifies" it (also known Bs serialization) into
a JSON-formated string, and sends it to the ASM. The ASM de-serializes the JSON-
formatted string, processes the request, constructs a response, stringifies it, returning itd
as a JSON-formatted string.

NOTE

The ASM request processing rules in this document explicitly assume that the
underlying authenticator implements the "UAFV1TLV" assertion scheme (e.g.
references to TLVs and tags) as described in [UAFProtocol]. If an authenticator
supports a different assertion scheme then the corresponding processing rules

must be replaced with appropriate assertion scheme-specific rules.O]

Authenticator implementers may create custom authenticator command interfaces other
than the one defined in [DAFAuthnrCommands]. Such implementations are not required
to implement the exact message-specific processing steps described in this section.O
However,

1. the command interfaces must present the ASM with external behavior equivalent
to that described below in order for the ASM to properly respond to the client
request messages (e.g. returning appropriate UAF status codes for specificll

conditions).

2. all authenticator implementations must support an assertion scheme as definedO
[UAFRegistry] and must return the related objects, i.e. Tac vaFv1 REG ASSERTION

and TAG UAFV1 AUTH ASSERTION.

3.1 Request enum

WebIDL

enum Request {
"GetInfo",
"Register",
"Authenticate",
"Deregister",
"GetRegistrations",
"OpenSettings"”

}i

Enumeration description

GetInfo

Register

Authenticate

Deregister

GetRegistrations

OpenSettings

Getlnfo

Register
Authenticate
Deregister
GetRegistrations
OpenSettings

3.2 StatusCode Interface

WebIDL

interface

}i

const
const
const
const

Statu
short
short
short
short

sCode {

UAF ASM STATUS OK = 0x00;

UAF ASM STATUS ERROR = 0x01;

UAF ASM STATUS ACCESS DENIED = 0x02;
UAF ASM STATUS USER CANCELLED = 0x03;

3.2.1 Constants

UAF_ASM_STATUS_OK Of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR Of type short
An unknown error has been encountered during the processing.

UAF_ASM_STATUS_ACCESS_DENIED Of type short
Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED Of type short
Indicates that user explicitly canceled the request.

3.3 ASMRequest Dictionary

All ASM requests are represented as asurequest objects.

WebIDL

dictionary ASMRequest {
required Request requestType;

Version asmVersion;
unsigned short authenticatorIndex;
object args;

Extension]] exts;

}i

3.3.1 Dictionary asvrequest Members

requestType Of type required Request
Request type

asmVersion Of type Version

ASM message version to be used with this request. For the definition of the

version dictionary see [UAFProtocol]. The ASM version must be 1.0 (i.e.
major version is 1 and minor version 0).

authenticatorIndex Of type unsigned short

Refer to the cet1info request for more details. Field authenticatorindex must

not be set for cet1nfo request.

args Of type object

Request-specific arguments. If set, this attribute @ay take one of the following

types:

® RegisterlIn
e Authenticateln

® DeregisterIn

exts Of type array of Extension
List of UAF extensions. For the definition of the Ektension dictionary see
[UAFProtocaol].

3.4 ASMResponse Dictionary

All ASM responses are represented as asvresponse oObjects.

WebIDL

dictionary ASMResponse {
required short statusCode;
object
Extension[]

}i

3.4.1 Dictionary asmresponse Members

statuscCode Of type required short
must contain one of the values defined in theddatuscode interface

responseData Of type object
Request-specific response data. This attribute Bust have one of the following

types:

® GetInfoOut
® RegisterOut
e AuthenticateOut

® GetRegistrationOut

exts Of type array of Extension
List of UAF extensions. For the definition of the Bktension dictionary see
[UAFProtocol].

3.5 GetInfo Request
Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports
2. Collect information about all of them

3. Assign indices to them (authenticatorIndeX)

4. Return the information to the caller

NOTE

Where possible, an authenticatorindex should be a persistent identifier thatd
uniquely identifies an Bluthenticator over time, even if it is repeatedly
disconnected and reconnected. This avoids possible confusion if the set of
available authenticators changes between a cetinfo request and subsequent
ASM requests, and allows a FIDO client to perform caching of information about
removable authenticators for a better user experience.

For a GetInfo request, the followingasmrequest member(s) must have the following
value(s). The remaining asvrequest members should be omitted:

e ASMRequest.requestType Must be settocetinfo

For a GetlInfo response, the followingasmresponse member(s) must have the following
value(s). The remaining asMresponse members should be omitted:

e ASMResponse.statusCode Must have one of the following values
o UAF_ASM STATUS OK
o UAF_ASM STATUS_ ERROR

e ASMResponse.responseData MUst be an object of typecetinfoout

3.5.1 GetinfoOut Dictionary

WebIDL

dictionary GetInfoOut {
required AuthenticatorInfo[] Authenticators;

}i

3.5.1.1 Dictionary cetnfoout Members

Authenticators Of type array ofrequired Authenticatorinfo
List of authenticators reported by the current ASM.may be empty an empty
list.

3.5.2 Authenticatorinfo Dictionary

WebIDL

dictionary AuthenticatoriInfo {

required unsigned short authenticatorIndex;
required Version[] asmVersions;

required boolean isUserEnrolled;
required boolean hasSettings;

required AAID SRy

required DOMString assertionScheme;
required unsigned short authenticationAlgorithm;
required unsigned short[] attestationTypes;
required unsigned long userVerification;
required unsigned short keyProtection;

required unsigned short matcherProtection;
required unsigned long attachmentHint;
required boolean isSecondFactorOnly;
required boolean isRoamingAuthenticator;
required DOMString(] supportedExtensionIDs;
required unsigned short tcDisplay;

DOMString tcDisplayContentType;
DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
DOMString

DOMString

DOMString

}i

3.5.2.1 Dictionary authenticatorinfo Members

authenticatorIndex Of type required unsigned short
Authenticator index. Unique, within the scope of all authenticators reported by
the ASM, index referring to an authenticator. This index is used by the UAF
Client to refer to the appropriate authenticator in further requests.

asmversions Of type array ofrequired Version
A list of ASM Versions that this authenticator can be used with. For the
definition of the [rsion dictionary see [UAFProtocol].

isUserEnrolled Of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators
which don't have user verification technology Bhust always return true. Bound
authenticators which support different profiles per operating system (OS) userd
must report enroliment status for the current OS user.

hasSettings Of type required boolean
A boolean value indicating whether the authenticator has its own settings. If
so, then a FIDO UAF Client can launch these settings by sending a
OpenSettings request.

aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and Batch
of the authenticator. See [UAFProtocol] for the definition of the AAIDO
structure.

assertionscheme Of type required DOMString
The assertion scheme the authenticator uses for attested data and
signatures.

AssertionScheme identifiers are defined in the UAF Protocol EbecificationO
[UAFProtocol].

authenticationAlgorithm Of type required unsigned short
Indicates the authentication algorithm that the authenticator uses.
Authentication algorithm identifiers are defined in are defined
[UAFRegistry] withuar arc prefix.0

attestationTypes Of type array ofrequired unsigned short
Indicates attestation types supported by the authenticator. Attestation type
TAGs are defined in [DAFRegistry] with Tac arresTarron prefixd

userVerification Of type required unsigned long
A set of bit flags indicating the user verification method(s) Bupported by the
authenticator. The values are defined by the [ker_ver1ry constants in
[UAFRegistry].

keyProtection Of type required unsigned short
A set of bit flags indicating the key protections used by the Buthenticator. The
values are defined by the kv proTecTION COnstants in [UAFRegistry].

matcherProtection Of type required unsigned short
A set of bit flags indicating the matcher protections used by the Buthenticator.
The values are defined by the lhrcrer proTECTION CONSstants in
[UAFRegistry].

attachmentHint Of type required unsigned long
A set of bit flags indicating how the authenticator is currently Ebnnected to the
system hosting the FIDO UAF Client software. The values are defined by thell
arTacHMENT HINT constants defined in [UAFRegistry].

NOTE

Because the connection state and topology of an authenticator may be
transient, these values are only hints that can be used by server-
supplied policy to guide the user experience, e.g. to prefer a device

that is connected and ready for authenticating or confirming a low-value
transaction, rather than one that is more secure but requires more user
effort. These values are not reflected in authenticator metadata andO
cannot be relied on by the relying party, although some models of
authenticator may provide attested measurements with similar
semantics as part of UAF protocol messages.

isSecondFactoronly Of type required boolean
Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator Of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs Of type array ofrequired DOMString

List of supported UAF extension Ids.may be an empty list.

tcpisplay Of type required unsigned short
A set of bit flags indicating the availability and type of Bhe authenticator's
transaction confirmation display. The values are Befined by thel
TRANSACTION CONFIRMATION DISPLAY constants in [UAFRegistry].

This value must be 0 if transaction confirmation is not Eupported by the
authenticator.

tcDisplayContentType Of type DOMString
Supported transaction content type [UAFAuthnrMetadatal].

This value must be present if transaction confirmation is supported, Ce.
tcDisplay IS NON-ZEro.

tcDisplayPNGCharacteristics Of type array of
DisplayPNGCharacteristicsDescriptor
Supported transaction Portable Network Graphic (PNG) type
[UAFAuthnrMetadata]. For the definition of thel
DisplayPNGCharacteristicsDescriptor Structure see [UAFAuthnrMetadata].

This list must be present if transaction confirmation is supported, Ce.
tcDisplay IS NON-ZEro.

title of type DOMString
A human-readable short title for the authenticator. It should be localized for
the current locale.

NOTE
If the ASM doesn't return a title, the FIDO UAF Client must provide a

title to the calling App. See section "Authenticator interface" in
[UAFAppAPIAndTransport].

description Of type DOMString
Human-readable longer description of what the authenticator represents.

NOTE

This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from
the description specified in the metadata statement for thell
authenticator [UAFAuthnrMetadata].

If the ASM doesn't return a description, the FIDO UAF Client will

provide a description to the calling application. See section
"Authenticator interface" in [UAFAppAPIAndTransport].

icon Of type DOMString
Portable Network Graphic (PNG) format image file representing the idon
encoded as a data: url [RFC2397].

NOTE

If the ASM doesn't return an icon, the FIDO UAF Client will provide a
default icon to the calling application. See section "Authenticator
interface" in [UAFAppAPIAndTransport].

3.6 Register Request

Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following asmMrequest member(s) must have the following
value(s). The remaining asvrequest members should be omitted:

e ASMRequest.requestType Must be settoregister

e ASMRequest.asmVersion Must be set to the desired version

e ASMRequest.authenticatorIndex Must be set to the target authenticator index
e ASMRequest.args Must be set to an object of typeregisterin

For a Register response, the following asmresponse member(s) must have the following
value(s). The remaining asvresponse members should be omitted:

e ASMResponse.statusCode mMust have one of the following values:
o UAF_ASM STATUS OK

o UAF ASM STATUS ERROR
o UAF_ASM STATUS ACCESS DENIED

o UAF_ASM STATUS USER_CANCELLED

e ASMResponse.responseData MUSt be an object of typeregisterout

3.6.1 Registerin Object

WebIDL

dictionary RegisterIn {

required DOMString appID;
required DOMString username;
required DOMString finalChallenge;

required unsigned short attestationType;

}i

3.6.1.1 Dictionary registerin Members

appID Of type required DOMString
The FIDO server Application Identity.

username Of type required DOMString
Human-readable user account name

finalchallenge Of type required DOMString
base64url-encoded challenge data [RFC4648]

attestationType Of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

dictionary RegisterOut {
required DOMString assertion;

required DOMString assertionScheme;

}i

3.6.2.1 Dictionary registerout Members

assertion Of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionscheme Of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol EpecificationO
[UAFProtocol].

3.6.3 Detailed Description for Processing the Register Request

Refer to [UAFAuthnrCommands] document for more information about the TAGs and
structure mentioned in this paragraph.

1. Locate authenticator using authenticatorindex. If the authenticator cannot be
located, then fail with uvar asu sTaTUs ERROR.

2. If a user is already enrolled with this authenticator (such as biometric enroliment,
PIN setup, etc. for example) then the ASM must request that the authenticator
verifies the user.O]

NOTE

If the authenticator supports userverificationToken (S€€
[UAFAuthnrCommands]), then the ASM must obtain this token in order to
later include it with the register command.

o If verification fails, return the _asm sTATUS ACCESS DENIED

3. If the user is not enrolled with the authenticator then take the user through the
enrollment process.
o If enrollment fails, return uar AsM STATUS ACCESS DENIED

4. Construct kaaccessToken (see section KHAccessToken for more details)

5. Hash the providedregisterin.finalchallenge using the authenticator-specific
hash function (FinalchallengeHash)

An authenticator's preferred hash function information must meet the algorithm
defined in the Ehthenticatorlnfo.authenticationAlgorithm field.O

6. Create atac varvi rRecIsTER cup Structure and pass it to the authenticator
1. COpy FinalChallengeHash, KHAccessToken, RegisterIn.Username,
UserVerificationToken, RegisterIn.AppID, RegisterIn.AttestationType
1. Depending on authenticatorType SOMe arguments may be optional.
Refer to [UAFAuthnrCommands] for more information on authenticator
types and their required arguments.

7. Invoke the command and receive the response

8. Parse Tac UAFV1 REGISTER CMD RESP

1. Parse the content of Tac AuTHENTICATOR ASSERTION (€.9.
TAG UAFV1 REG ASSERTION) and extract Tac kevip

9. If the authenticator is a bound authenticator

1. Store callerip, AppID, TAG KEYHANDLE, TAG KEYID a@nd CurrentTimestamp in the
ASM's database.

NOTE

What data an ASM will store at this stage depends on underlying
authenticator's architecture. For example some authenticators might
store AppID, KeyHandle, KeyID inside their own secure storage. In
this case ASM doesn't have to store these data in its database.

10. Create a registerout object

1. Setregisterout.assertionscheme according to
AuthenticatorInfo.assertionScheme

2. Encode the content of tac auTHENTICATOR ASSERTION (€.Q.
TAG UAFV1 REG ASSERTION) in base64url format and set as
RegisterOut.assertion.

3. Return registerout object

3.7 Authenticate Request

Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following asmrequest member(s) must have the
following value(s). The remaining asurequest members should be omitted:

e ASMRequest.requestType Must be settoauthenticate.

e ASMRequest.asmVersion Must be set to the desired version.

e ASMRequest.authenticatorIndex Must be set to the target authenticator index.
e ASMRequest.args MuUst be set to an object of typeauthenticatern

For an Authenticate response, the following asmMresponse member(s) must have the
following value(s). The remaining asmresponse members should be omitted:

e ASMResponse.statusCode mMust have one of the following values:
o UAF_ASM STATUS_OK

o UAF ASM STATUS ERROR
o UAF ASM STATUS ACCESS DENIED

o UAF_ASM STATUS USER_CANCELLED

e ASMResponse.responseData MUsSt be an object of type ruthenticateout

3.7.1 Authenticateln Object

WebIDL

dictionary AuthenticateIn {
required DOMString appID;

DOMString[] keyIDs;

required DOMString finalChallenge;

Transaction]] transaction;

}i

3.7.1.1 Dictionary authenticatern Members

appID Of type required DOMString
applD string

keyIDs Of type array of DOMString
base64url [RFC4648] encoded keylIDs

finalchallenge Of type required DOMString
base64url [RFC4648] encoded final challengel

transaction Of type array of Transaction
An array of transaction data to be confirmed by user. If multiple transactionsO
are provided, then the ASM must select the one that best matches the current
display characteristics.
NOTE

This may, for example, depend on whether user's device is positioned
horizontally or vertically at the moment of transaction.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
required DOMString contentType;

required DOMString content;

DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;

}i

3.7.2.1 Dictionary Transaction Members

contentType Of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to
its metadata statement (see [UAFAuthnrMetadata))

content Of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to
the contentType to be shown to the user.

tcDisplayPNGCharacteristics Of type DisplayPNGCharacteristicsDescriptor

Transaction content PNG characteristics. For the definition of thel
DisplayPNGCharacteristicsDescriptor Structure See [UAFAuthnrMetadata].

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {
required DOMString assertion;

required DOMString assertionScheme;

3.7.3.1 Dictionary Authenticateout Members

assertion Of type required DOMString

Authenticator UAF authentication assertion.

assertionScheme Of type required DOMString

Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the TAGs
and structure mentioned in this paragraph.

1.
2.

Locate the authenticator usingauthenticatorIndex

If no user is enrolled with this authenticator (such as biometric enroliment, PIN
setup, etc.), return vAF AsM STATUS ACCESS DENTED

The ASM must request the authenticator to verify the user.
o If verification fails, return the Asm sTATUS ACCESS DENIED

NOTE

If the authenticator supports vserverificationToken (See
[UAFAuthnrCommands]), the ASM must obtain this token in order to
later pass to sign command.

Construct kaaccessToken (see section KHAccessToken for more details)

Hash the provided authenticateIn.finalchallenge Using an authenticator-specificl
hash function (rFinalchallengeHash).

The authenticator's preferred hash function information must meet the algorithm
defined in the Elithenticatorinfo. authenticationAlgorithm field.O

If this is a Second Factor authenticator and ruthenticatein.keyips iS empty, then
return UAF_ASM STATUS ACCESS_DENIED

If Authenticateln.keylDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with
AuthenticateIn.appID and AuthenticateIn.keyIDs and obtain the
KeyHandles associated with it.

» Return uar asu status access peENTED if no entry has been found

2. If this is a roaming authenticator, then treat authenticateIn.keyIDs as
KeyHandles

Create Tac uarvi sten cwmp structure and pass it to the authenticator.

1. COpy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not
empty), FinalChallengeHash, KHAccessToken, UserVerificationToken,
KeyHandles

= Depending on AuthenticatorType some arguments may be optional.
Refer to [UAFAuthnrCommands] for more information on authenticator
types and their required arguments.

= |f multiple transactions are provided, select the one that best matches

the current display characteristics.

NOTE

This may, for example, depend on whether user's device is
positioned horizontally or vertically at the moment of transaction.

= Decode the base64url encodedauthenticateIn.Transaction.content
before passing it to the authenticator

9. Invoke the command and receive the response

10. Parse TAG UAFV1 SIGN CMD RESP

o If it's a first-factor authenticator and the response includes
TAG_USERNAME AND KEYHANDLE, then

1. Extract usernames from tac usernave anp kevHANDLE fieldsO

2. If two equal usernames are found, then choose the one which has
registered most recently

3. Show remaining distinct usernames and ask the user to choose a
single username

4. Settac UAFV1 SIGN cMD.KeyHandles tO the single KeyHandle
associated with the selected username.

5. Go to step #8 and send a newTAG UAFV1 SIGN CMD command

11. Create the authenticateout object

1. Set authenticateOut.assertionScheme as
AuthenticatorInfo.assertionScheme

2. Encode the content of tac AuTHENTICATOR ASSERTION (€.Q.
TAG UAFV1 AUTH ASSERTION) in base64url format and set as
AuthenticateOut.assertion

3. Return the authenticateout object

NOTE

Some authenticators might support "Transaction Confirmation Display"O
functionality not inside the authenticator but within the boundaries of the ASM.
Typically these are software based Transaction Confirmation Displays. WhenO
processing the sign command with a given transaction such ASM should show
transaction content in its own Ul and after user confirms it -- pass the content to
authenticator so that the authenticator includes it in the final assertion.O

See [UAFReqgistry] for flags describing Transaction Confirmation Display type.O

The authenticator metadata statement must truly indicate the type of transaction
confirmation display implementation. Dypically the "Transaction Confirmation Display"[]
flag Will be set to TRANSACTION CONFIRMATION DISPLAY ANY OF

TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE.

3.8 Deregister Request

Delete registered UAF record from the authenticator.

For a Deregister request, the following asmMrequest member(s) must have the following
value(s). The remaining asmMrequest members should be omitted:

ASMRequest.requestType MUSt be set toperegister

ASMRequest.asmVersion Must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
AsSMRequest.args mMust be set to an object of typeperegisterin

For a Deregister response, the followingasmresponse member(s) must have the
following value(s). The remaining asuresponse members should be omitted:

ASMResponse.statusCode must have one of the foIIowing values:
o UAF_ASM_STATUS OK

o UAF_ASM STATUS ERROR

o UAF_ASM STATUS ACCESS_DENIED

3.8.1 Deregisterin Object

WebIDL

dictionary DeregisterIn {
required DOMString appID;

}i

3.8.1.1 Dictionary peregisterin Members

appID Of type required DOMString

FIDO Server Application Identity

key1p Of type required DOMString

Base64url-encoded [RFC4648] key identifier of Bhe authenticator to be de-
registered.

3.8.2 Detailed Description for Processing the Deregister Request

Refer to [UAFAuthnrCommands] for more information about the TAGs and structures
mentioned in this paragraph.

1.
2.
3.

4.

5.

Locate the authenticator usingauthenticatorindex
Construct kaaccessToken (see section KHAccessToken for more details).

If this is a bound authenticator, then

o Lookup the authenticator related data in the ASM database and delete the
record associated with peregisterin.appId and beregisterIn.keyID

Create the Tac uarvi DEREGISTER cMD Structure, COpY kKHAccessToken,
DeregisteriIn.keyID and pass it to the authenticator.

Invoke the command and receive the response

3.9 GetRegistrations Request

Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the following asvrequest member(s) must have the
following value(s). The remaining asmrequest members should be omitted:

e ASMRequest.requestType Must be set tocetregistrations

e ASMRequest.asmVersion Must be set to the desired version
e ASMRequest.authenticatorIndex Must be set to corresponding ID

For a GetRegistrations response, the followingasmresponse member(s) must have the
following value(s). The remaining asuresponse members should be omitted:

e ASMResponse.statusCode mMust have one of the following values:
o UAF_ASM STATUS OK

o UAF_ASM STATUS ERROR

e The asMresponse.responsebata Must be an object of type cetregistrationsout

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut {
required AppRegistration[] appRegs;

}i

3.9.1.1 Dictionary cetregistrationsout Members

appRegs Of type array ofrequired AppRegistration
List of registrations associated with anapp1p (S€e appregistration below).
may be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration {
required DOMString applD;

}i

3.9.2.1 Dictionary appregistration Members

appID Of type required DOMString
FIDO Server Application Identity.

key1ps Of type array ofrequired DOMString
List of key identifiers associated with theddp1p

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator usingauthenticatorindex

2. If this is bound authenticator, then

o Lookup the registrations associated with CallerID and AppID in the ASM
database and construct a list of appregistration objects

NOTE

Some ASMs might not store this information inside their own

database. Instead it might have been stored inside the authenticator's
secure storage area. In this case the ASM must send a proprietary
command to obtain the necessary data.

3. Create cetregistrationsout object and return

3.10 OpenSettings Request

Display the authenticator-specific settings interface. If the authenticator has its ownQ
built-in user interface, then the ASM must invoke Tac uarvi opEN sETTINGS cMD tO
display it.

For an OpenSettings request, the following asmrequest member(s) must have the
following value(s). The remaining asurequest members should be omitted:

e ASMRequest.requestType Must be set to OpenSettings
e ASMRequest.asmVersion Must be set to the desired version
e ASMRequest.authenticatorIndex Must be set to the target authenticator index

For an OpenSettings response, the followingasmresponse member(s) must have the
following value(s). The remaining asmresponse members should be omitted:

e ASMResponse.statusCode MuUst have one of the foIIowing values:
o UAF ASM STATUS OK

4. Using ASM API

This section is non-normative.

In a typical implementation, the FIDO UAF Client will call cet1nfo during initialization
and obtain information about the authenticators. Once the information is obtained it will
typically be used during FIDO UAF message processing to find a match fbr given FIDO
UAF policy. Once a match is found the FIDO UAF Client will send the appropriate
request (Register/Authenticate/Deregister...) to this ASM.

The FIDO UAF Client may use the information obtained from a cet1nfo response to
display relevant information about an authenticator to the user.

5. Using the ASM API on various platforms

This section is normative.

5.1 Android ASM Intent API

On Android systems FIDO UAF ASMs may be implemented as a separate APK-
packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions
between the FIDO UAF Client and an ASM on Android takes place through the following
intent identifier:0

org.fidoalliance.intent.FIDO OPERATION

To carry messages described in this document, an intentmust also have its type
attribute set to application/fido.uaf asm+json.

ASMs must register that intent in their manifest file and implement a handler for it.0

FIDO UAF Clients must append an extra, message, containing a string representation of
a asMrequest, before invoking the intent.

FIDO UAF Clients must invoke ASMs by calling startaActivityForResult ()

FIDO UAF Clients should assume that ASMs will display an interface to the user in
order to handle this intent, e.g. prompting the user to complete the verification
ceremony. However, the ASM should not display any user interface when processing a
GetInforequeSt

After processing is complete the ASM will return the response intent as an argument to
onActivityResult (). The response intent will have an extra, message, containing a
string representation of a asMresponse.

5.1.1 Discovering ASMs

FIDO UAF Clients can discover the ASMs available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags) With the FIDO
Intent described above to see if any activities are available.

A typical FIDO UAF Client will enumerate all ASM applications using this function and
will invoke the cet1nfo operation for each one discovered.

5.2 Windows ASM API

On Windows, an ASM is implemented in the form of a Dynamic Link Library (DLL). The
following is an example asmplugin.h header file defining a Windows ASM API:00

/*! @file asm.h
*/

#ifndef _ ASMH

#define _ ASMH

#ifdef WIN32

#define ASM API _ declspec(dllexport)
#endif

#ifdef WIN32
#pragma warning (disable : 4251)
#endif

#define ASM FUNC extern "C" ASM APIT
#define ASM NULL 0

/*! \brief Error codes returned by ASM Plugin API.

* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.

*/

enum asmResult t

{
Success = 0, /**< Success */
Failure /**< Generic failure */

}i

/*! \brief Generic structure containing JSON string in UTF-8

* format.

* This structure is used throughout functions to pass and receives
* JSON data.

*/

struct asmJSONData_t

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)

{
int length; /**< JSON data length */

char pData; /*< JSON data */
}i

/*! \brief Enumeration event types for authenticators.

These events will be fired when an authenticator becomes
available (plugged) or unavailable (unplugged).

*/

enum asmEnumerationType t

{
Plugged = 0, /**< Indicates that authenticator Plugged to system */
Unplugged /**< Indicates that authenticator Unplugged from system */

}i

namespace ASM

{
/*! \brief Callback listener.
FIDO UAF Client must pass an object implementating this interface to
Authenticator: :Process function. This interface is used to provide
ASM JSON based response data.*/
class ICallback

{
public

virtual ~ICallback() {}
/**
This function is called when ASM's response is ready.
*
@param response JSON based event data
@param exchangeData must be provided by ASM if it needs some
data back right after calling the callback function.
The lifecycle of this parameter must be managed by ASM. ASM must
allocate enough memory for getting the data back.
*/
virtual void Callback(const asmJSONData t &response,
asmJSONData_ t &exchangeData) = 0;

}i

/*! \brief Authenticator Enumerator.

FIDO UAF Client must provide an object implementing this

interface. It will be invoked when a new authenticator is plugged or
when an authenticator has been unplugged. */

class IEnumerator

{
public
virtual ~IEnumerator() {}
/**
This function is called when an authenticator is plugged or
unplugged.
* @param eventType event type (plugged/unplugged)
@param AuthenticatorInfo JSON based GetInfoResponse object
*/
virtual void Notify(const asmEnumerationType t eventType, const
asmJSONData t &AuthenticatorInfo) = 0;
}i
}
/**
Initializes ASM plugin. This is the first function to be
called.

*
@param pEnumerationListener caller provided Enumerator

*/

ASM FUNC asmResult t asmInit(ASM::IEnumerator
*pEnumerationListener) ;
/**

Process given JSON request and returns JSON response.
*

If the caller wants to execute a function defined in ASM JSON

schema then this is the function that must be called.
*

@param pInData input JSON data

@param pListener event listener for receiving events from ASM
*/

ASM FUNC asmResult t asmProcess(const asmJSONData t *pInData,

ASM::ICallback *pListener);
/**

Unitializes ASM plugin.
*

*/
ASM FUNC asmResult t asmUninit();
#endif // __ ASMPLUGINH

A Windows-based FIDO UAF Client must look for ASM DLLs in the following registry
paths:

HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The FIDO UAF Client iterates over all keys under this path and looks for "path" field:O
[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]
"path"="<ABSOLUTE PATH TO ASM>.dll"

path must point to the absolute location of the ASM DLL.

6. Security and Privacy Guidelines

This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs
must follow these security guidelines:

o ASMs must implement a mechanism for isolating UAF credentials registered by
two different FIDO UAF Clients from one another. One FIDO UAF Client must not
have access to FIDO UAF credentials that have been registered via a different
FIDO UAF Client. This prevents malware from exercising credentials associated
with a legitimate FIDO Client.

. NOTE
ASMs must properly protect their sensitive data against malware using
platform-provided isolation capabilities in order to follow the assumptions

made in [FIDOSecRef]. Malware with root access to the system or direct
physical attack on the device are out of scope for this requirement.

NOTE

The following are examples for achieving this:

o If an ASM is bundled with a FIDO UAF Client, this isolation
mechanism is already built-in.

o If the ASM and FIDO UAF Client are implemented by the same
vendor, the vendor may implement proprietary mechanisms to bind its
ASM exclusively to its own FIDO UAF Client.

o On some platforms ASMs and the FIDO UAF Clients may be assigned
with a special privilege or permissions which regular applications don't
have. ASMs built for such platforms may avoid supporting isolation of
UAF credentials per FIDO UAF Clients since all FIDO UAF Clients will
be considered equally trusted.

o An ASM designed specifically for bound authenticators ust ensure that FIDO
UAF credentials registered with one ASM cannot be accessed by another ASM.
This is to prevent an application pretending to be an ASM from exercising
legitimate UAF credentials.

o Using a KHAccessToken offers such a mechanism.

o An ASMs must implement platform-provided security best practices for protecting
UAF related stored data.

o ASMs must not store any sensitive FIDO UAF data in its local storage, except the
following:

o CallerID, ASMToken, PersonalID, KeyID, KeyHandle, AppID

NOTE

An ASM, for example, must never store a username provided by a FIDO
Server in its local storage in a form other than being decryptable exclusively
by the authenticator.

o ASMs should ensure that applications cannot use silent authenticators for tracking
purposes. ASMs implementing support for a silent authenticator must show, during
every registration, a user interface which explains what a silent authenticator is,
asking for the users consent for the registration. Also, it is recommended that
ASMs designed to support roaming silent authenticators either

o Run with a special permission/privilege on the system, or

o Have a built-in binding with the authenticator which ensures that other
applications cannot directly communicate with the authenticator by
bypassing this ASM.

6.1 KHAccessToken

KHAccessToken iS @an access control mechanism for protecting an authenticator's FIDO
UAF credentials from unauthorized use. It is created by the ASM by mixing various
sources of information together. Typically, a kaaccessToken contains the following four
data items in it: App1D, Personalp, ASMToken and callerIb.

app1D is provided by the FIDO Server and is contained in every FIDO UAF message.

personaID iS Obtained by the ASM from the operational environment. Typically a different

rersonalD IS assigned to every operating system user account.

AsMToken iS @ randomly generated secret which is maintained and protected by the ASM.

NOTE

In a typical implementation an ASM will randomly generate an ASMToken when it
is launched the first time Bnd will maintain this secret until the ASM is uninstalled.

caller1p iS the ID the platform has assigned to the calling FIDO UAF Client (e.g.
"bundle ID" for iOS). On different platforms the caller ID can be obtained differently.

NOTE

For example on Android platform ASM can use the hash of the caller's apk-
signing-cert.

The ASM uses the kuaccessToken to establish a link between the ASM and the key
handle that is created by authenticator on behalf of this ASM.

The ASM provides the kuaccessToken to the authenticator with every command which
works with key handles.

NOTE

The following example describes how the ASM constructs and uses
KHAccessToken.

e During a register request
o Append 2ppiD
® KHAccessToken = AppID

If a bound authenticator, append asmToken, personaip and callerIn
m KHAccessToken |= ASMToken | PersonaID | CallerID

o

Hash xHAccessToken

» Hash xuaccessToken using the authenticator's hashing algorithm.
The reason of using authenticator specific hash function is tod
make sure of interoperability between ASMs. If interoperability is
not required, an ASM can use any other secure hash function it
wants.

[o]

m KHAccessToken=hash (KHAccessToken)

Provide xuaccesstoken to the authenticator

The authenticator puts the kiaccessToken iNtO RawkeyHandle (Se€
[UAFAuthnrCommands] for more details)

o

[o]

e During other commands which require xuaccessToken as input argument
o The ASM computes kHaccessToken the same way as during the
rRegister request and provides it to the authenticator along with other
arguments.

o The authenticator unwraps the provided key handle(s) and proceeds
with the command only if rRawkeyHandle.kHAccessToken iS equal to the
provided KHAccessToken.

Bound authenticators must support a mechanism for binding generated key handles to
ASMs. The binding mechanism must have at least the same security characteristics as
mechanism for protcting xuaccessToken described above. As a consequence it is

recommended to securely derive kiaccessToken from App1D, ASMToken, Persona1d and the

CallerID.

NOTE

It is recommended for roaming authenticators that the kuaccessToken contains
only the ~pp1D since otherwise users won't be able to use them on different
machines (persona1p, AsuToken and callerin are platform specific). If theO
authenticator vendor decides to do that in order to address a specific use case,l]
however, it is allowed.

Including rersonazp in the kuaccessToken is optional for all types of authenticators.
However an authenticator designed for multi-user systems will likely have to

support it.

6.2 Access Control for ASM APls

The following table summarizes the access control requirements for each API call.

ASMs must implement the access control requirements defined below. ASM vendorsQ
may implement additional security mechanisms.

Terms used in the table:

e NoAuth -- NO access control
e caller1p -- FIDO UAF Client's platform-assigned ID is verifiedd
e UservVerify -- user must be explicitly verificationO

e keyIDList -- must be known to the caller

First-factor

Second-

First-factor

Second-factor

Commands bound factor bound roaming roaming
authenticator | authenticator || authenticator | authenticator
Getlnfo NoAuth NoAuth NoAuth NoAuth
OpenSettings NoAuth NoAuth NoAuth NoAuth
Register UserVerify UserVerify UserVerify UserVerify
- UserVerify
nglrgerlfy AppID UserVerify Use_rVerify
Authenticate KeyIDList AppiD
CallerID CallerlD AppID KevIDLi
PersonalD aner eylDList
PersonalD
: .« || CallerID CallerID
GetRegistrations PersonalD PersonalD X X
AppID AppID
: KeyID KeyID AppID AppID
Deregister PersonalD PersonalD KeylID KeylID
CallerID CallerID

A. References

A.1 Normative references

[ECMA-262]
ECMAScript Language Specification, Edition 5. 10une 2011. URL.:
http://www.ecma-international.org/publications/standards/Ecma-262.htm
[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdfl1
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
[RFC4648]
S. Josefsson, The Base16. Base32, and Base64 Data Encodings (RFC 4648),
IETF, October 2006, URL: http://www.ietf.ora/rfc/rfc4648.txt
[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-00
authnr-cmds-v1.0-rd-20140209.pdf
[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf[d
[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.01
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdfd
[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Reqistry of Predefined Valuesl
v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf[]
[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL.:
http://heycam.github.io/webidl/

A.2 Informative references

[ECMA-404]
. The JSON Data Interchange Format. 1 October 2013. Standard. URL.:
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf0]

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-00
security-ref-v1.0-rd-20140209.pdf

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL.:
https://tools.ietf.org/html/rfc2397

[UAFAppAPIAndTransport]
B. Hill FIDO UAF Application API and Transport Binding Specification v1.0(FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-00
client-api-transport-v1.0-rd-20140209.pdf

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate
Recommendation. URL: http://www.w3.org/TR/WebIDL/

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/

L

Q

FIDO UAF Authenticator Commands v1.0

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-id-20141122.htmi0l
Previous version:
https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-rd-20140209.pdf00
Editors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance
Contributors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Roni Sasson, Discretix
Brad Hill, PayPal, Inc.

Copyright © 2013-2014 EIDO Alliance All Rights Reserved.

Abstract

UAF Authenticators may take different forms. Implementations may range from a secure application running inside tamper-
resistant hardware to software-only solutions on consumer devices.

This document defines normative aspects of UAF Authenticators and offers security and implementation Buidelines for
authenticator implementors.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO
Alliance specifications indextat https.//www.fidoalliance.org/specifications/O0]

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared byFIDO Alliance, Inc. Permission is hereby granted to use
the Specification solely for the purpose of implementing the Specification. No rights Bre granted to prepare derivative works
of this Specification. Entities seeking permission to reproduce Bortions of this Specification for other uses must contact thell
FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual groperty rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner fr identifying or failing to identify any or all such third
party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation

1.1 Key Words
2. Overview
3. Additional Notations
4. UAF Authenticator

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-rd-20140209.pdf
davit@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
rlindemann@noknok.com
https://www.noknok.com/
Roni.Sasson@discretix.com
http://www.discretix.com/
bhill@paypal.com
http://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

4.1 Types of Authenticators
5. Tags
5.1 Command Tags
5.2 Tags used only in Authenticator Commands
5.3 Tags used in UAF Protocol
5.4 Status Codes
6. Structures
6.1 RawKeyHandle

6.1.1 Structures to be parsed by FIDO Server
6.1.1.1 TAG_UAFV1_REG_ASSERTION

6.1.1.2 TAG_UAFV1_AUTH_ASSERTION
6.1.2 UserVerificationTokenO

6.2 Commands
6.2.1 Getinfo Command
6.2.1.1 Command Description

6.2.1.2 Command Structure
6.2.1.3 Command Response
6.2.1.4 Status Codes
6.2.2 Register Command
6.2.2.1 Command Structure
6.2.2.2 Command Response
6.2.2.3 Status Codes
6.2.2.4 Command Description
6.2.3 Sign Command
6.2.3.1 Command Structure
6.2.3.2 Command Response
6.2.3.3 Status Codes
6.2.3.4 Command Description
6.2.4 Deregister Command
6.2.4.1 Command Structure
6.2.4.2 Command Response
6.2.4.3 Status Codes
6.2.4.4 Command Description
6.2.5 OpenSettings Command
6.2.5.1 Command Structure
6.2.5.2 Command Response
6.2.5.3 Status Codes

7. KeylDs and key handles
7.1 first-factor Bound Authenticatord

7.2 2ndF Bound Authenticator
7.3 first-factor Roaming Authenticatord
7.4 2ndF Roaming Authenticator

8. Access Control for Commands

9. Relationship to other standards
9.1 TEE

9.2 Secure Elements
9.3TPM
9.4 Unreliable Transports

A. Security Guidelines
B. Table of Figures

C. References
C.1 Normative references

C.2 Informative references
1. Notation
Type names, attribute names and element names are written as code.
String literals are enclosed in “”, e.g. “UAF-TLV".

In formulas we use “I” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.Ol
1.1 Key Words

The key words must, must not, required shall, shall not, should, should not, recommended, may, and optional in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

This document specifies low-level functionality which UAF Buthenticators should implement in order to support the UAF
protocol. It has the following goals:

¢ Define normative aspects of UAF Authenticator implementationsO
« Define a set of commands hplementing UAF functionality that may be implemented by different types of authenticators
« Define hrviTrv assertion scheme-specific structures which will be parsed by a FIDO ServerQ

NOTE

The UAF Protocol supports various assertion schemes. Commands and structures defined in this document assumell
that an authenticator supports the varviTrv assertion scheme. Authenticators implementing a different assertion
scheme do not have to follow requirements specified M this document.

The overall architecture of the UAF protocol and its various operations is described in [UAFProtocol]. The following simplifiedd
architecture diagram illustrates the interactions and actors this document is concerned with:

UAF
Client

API

ASM

Authnr
Cmds UAF

Authenticator

Fig. 1 UAF Authenticator Commands

3. Additional Notations

This section is normative.
Unless otherwise specified all data described in this documentrilist be encoded in little-endian format.

All TLV structures can be parsed using a "recursive-descent" parsing approach, and tag order is not significant. In somel
cases multiple occurrences of a single tag may be allowed within a structure, in which case all values must be preserved.

All fields in TLV structures are fandatory, unless explicitly mentioned as otherwise.

4. UAF Authenticator

This section is non-normative.

The UAF Authenticator is an authentication component that meets the UAF protocol requirements as described in
[UAFProtocol]. The main functions to be provided by UAF Authenticators are:

1. [Mandatory] Verifying the user with the verification Bhechanism built into the authenticator. The verification Echnology
can vary, from biometric verification to simply fZerifying physical presence, or no user verification at all @ihe so-called
Silent Authenticator).

[Mandatory] Performing the cryptographic operations defined in [DAFProtocol]

[Mandatory] Creating data structures that can be parsed by FIDO Server.

[Mandatory] Attesting itself to the FIDO Server if there is a built-in support for attestation

[Optional] Displaying the transaction content to the user using the transaction confirmation displayd

ok 0N

ASM

FIDO Authenticator

W

Interface

User

Verification Attestation Key

> Confirmation Authentication
Display . Keys

User

Fig. 2 FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

« Afingerprint sensor built into a mobile devicell

« PIN authenticator implemented inside a secure element

« A mobile phone acting as an authenticator to a different device
« A USB token with built-in user presence verificationd

« A voice or face verification technology built into a Hevice

4.1 Types of Authenticators

There are four types of authenticators defined in this Bocument. These definitions are not normative (unless otherwise Etated)
and are provided merely for simplifying some of the descriptions.

NOTE
The following is the rationale for considering only these 4 types of authenticators:

« Bound authenticators are typically embedded into a user's computing device and thus can utilize the host's
storage for their needs. It makes more sense from an economic perspective to utilize the host's storage rather
than have embedded storage. Trusted Execution Environments (TEE), Secure Elements and Trusted Platform
Modules (TPM) are typically designed in this manner.

o First-factor roaming authenticators must have an internal storage for key handles.

« Second-factor roaming authenticators can store their key handles on an associated server, in order to avoid the
need for internal storage.

« Defining such constraints makes the specification Bimpler and clearer for defining the mainstream Lise-cases.

Vendors, however, are not limited to these constraints. For example a bound authenticator which has internal storage
for storing key handles is possible. Vendors are free to design and implement such authenticators as long as their
design follows the normative requirements described in this document.

« First-factor Bound Authenticator

o These authenticators have an internal matcher. The matcher is able to verify an already enrolled user. If there is
more than one user enrolled - the matcher can also identify a user.

o There is a logical binding between this authenticator and the device it is attached to (the binding is expressed
through a concept called KeyHandleAccessToken). This authenticator cannot be bound with more than one device.

o These authenticators do not store key handles in their own internal storage. They always return the key handle to
the ASM and the latter stores it in its local database.

o Authenticators of this type may also work as a second factor.
o Examples
= A fingerprint sensor built into a laptop, phone or fablet
= Embedded secure element in a mobile device
= Voice verification built into a deviceO

« Second-factor (2ndF) Bound Authenticator

o This type of authenticator is similar to first-factor bound authenticators, except that it can Bperate only as the
second-factor in a multi-factor authentication

o Examples
= USB dongle with a built-in capacitive touch device for verifying user presence

= A'"Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

« First Factor (1stF) Roaming Authenticator
o These authenticators are not bound to any device. User can use them with any number of devices.

o Itis assumed that these authenticators have an internal matcher. The matcher is able to verify an already enrolled
user. If there is more than one user enrolled - the matcher can also identify a user.

o Itis assumed that these authenticators are designed to store key handles in their own internal secure storage and
not expose externally.

o These authenticators may also work as a second factor.
o Examples
= A Bluetooth LE based hardware token with built-in fingerprint sensord
= PIN protected USB hardware token
= Afirst-factor bound authenticator acting as a Ebaming authenticator for a different device on the user's behalf

« Second-factor Roaming Authenticator
o These authenticators are not bound to any device. A user may use them with any number of devices.

o These authenticators may have an internal matcher. The matcher is able to verify an already enrolled user. If there
is more than one user enrolled then the matcher can also identify a particular specific user.00

o Itis assumed that these authenticators do not store key handles in their own internal storage. Instead they push
key handles to the FIDO Server and receive them back during the authentication operation.

o These authenticators can only work as second factors.
o Examples
= USB dongle with a built-in capacitive touch device for verifying user presence

= A'"Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

Throughout the document there will be special conditions applying to these types of authenticators.

NORMATIVE

In some deployments, the combination of ASM and a bound authenticator can act as a roaming authenticator (for example
when an ASM with an embedded authenticator on a mobile device acts as a roaming authenticator for another device).
When this happens such an authenticator must follow the requirements applying to bound authenticators within the

boundary of the system the authenticator is bound to, and follow the requirements that apply to roaming authenticators in
any other system it connects to externally.

NOTE

As stated above, the bound authenticator does not store key handles and roaming authenticators to store them. In the
example above the ASM would store the key handles of the bound authenticator and hence meets this assumptions.

5. Tags

This section is normative.

In this document UAF Authenticators use "Tag-Length-Value" (TLV) format to communicate with the outside world. All
requests and response data must be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by BEppending other TLV tags (custom or predefined).00

Refer to [UAFRegistry] for information about predefined MLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g. a UINT32[4] will have length 16.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to Bccommodate the
limitations of some hardware platforms.

Arrays are implicit. The description of some structures indicates where multiple values are permitted, and in these cases, if
same tag appears more than once, all values are signifanct and should be treated as an array.

For convenience in decoding TLV-formatted messages, all composite tags - those with values that must be parsed by
recursive descent - have the 13th bit (0x1000) set.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it
cannot process that tag.

Since UAF Authenticators may have extremely constrained processing environments, an ASM must follow a normative
ordering of structures when sending commands.

It is assumed that ASM and Server have sufficient resources to handle parsing Eags in any order so structures send from
authenticator may use tags in any order.

5.1 Command Tags

Name Value Description
TAG_UAFV1_GETINFO_CMD 0x3401 Tag for Getinfo command.
TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 | Tag for Getinfo command response.
TAG_UAFV1_REGISTER_CMD 0x3402 | Tag for Register command.
TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 | Tag for Register command response.
TAG_UAFV1_SIGN_CMD 0x3403 | Tag for Sign command.
TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 | Tag for Sign command response.
TAG_UAFV1_DEREGISTER_CMD 0x3404 | Tag for Deregister command.
TAG_UAFV1_DEREGISTER_CMD_RESPONSE 0x3604 | Tag for Deregister command response.
TAG_UAFV1_OPEN_SETTINGS_CMD 0x3406 | Tag for OpenSettings command.
TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE 0x3606 | Tag for OpenSettings command response.

Table 4.1.1: UAF Authenticator Command TLV tags (0x3400 - 0x34FF, 0x3600-0x36FF)
5.2 Tags used only in Authenticator Commands

Name Value Description

Represents key handle.

TAG_KEYHANDLE 0x2801 | Refer to [FIDOGlossary] for more information about key
handle.

Represents an associated Username and key handle.

This is a composite tag that contains a TAG_USERNAME and
TAG_KEYHANDLE that identify a registration valid oin the
TAG_USERNAME_AND_KEYHANDLE 0x3802 | authenticator.

Refer to [FIDOGlossary] for more information about
username.

Represents a User Verification Token.O

TAG_USERVERIFY_TOKEN 0x2803 | Refer to [FIDOGlossary] for more information about user
verification tokens.O

Name

TAG_APPID

Value Description

0x2804

A full AppID as a UINT8[] encoding of a UTF-8 string.

Refer to [FIDOGlossary] for more information about AppID.

TAG_KEYHANDLE_ACCESS_TOKEN

0x2805 | Represents a key handle Access Token.

TAG_USERNAME

0x2806 | A Username as a UINT8J[] encoding of a UTF-8 string.

TAG_ATTESTATION_TYPE

0x2807 | Represents an Attestation Type.

TAG_STATUS_CODE

0x2808 | Represents a Status Code.

TAG_AUTHENTICATOR_METADATA

0x2809 | Represents a more detailed set of authenticator information.

TAG_ASSERTION_SCHEME

0x280A A UINT8[] containing the UTF8-encoded Assertion Scheme as

defined in [UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS

If an authenticator contains a PNG-capable transaction
confirmation display that I3 not implemented by a higher-level

0x280B | layer, this tag is describing this display. See

[UAFAuthnrMetadata] for additional information on the format
of this field.O

TAG_TC_DISPLAY_CONTENT_TYPE

A UINT8J] containing the UTF-8-encoded transaction display

0x280C | content type as defined in lAFAuthnrMetadata].

("image/png")

TAG_AUTHENTICATOR_INDEX

0x280D | Authenticator Index

TAG_API_VERSION

0x280E | API Version

TAG_AUTHENTICATOR_ASSERTION

The content of this TLV tag is an assertion generated by the

0X280F authenticator. Since authenticators may generate assertions

in different formats - the content format may vary from
authenticator to authenticator.

TAG_TRANSACTION_CONTENT

0x2810 | Represents transaction content sent to the authenticator.

TAG_AUTHENTICATOR_INFO

0x3811 Includes detailed information about authenticator's

capabilities.

TAG_SUPPORTED_EXTENSION_ID

0x2812 | Represents extension ID supported by authenticator.

Table 4.2.1: Non-Command Tags (0x2800 - 0x28FF, 0x3800 - 0x38FF)

5.3 Tags used in UAF Protocol

Name Value Description
TAG_UAFV1_REG_ASSERTION 0x3E01 | Authenticator response to Register command.
TAG_UAFV1_AUTH_ASSERTION 0x3E02 | Authenticator response to Sign command.

TAG_UAFV1_KRD O0x3EO03 | Key Registration Data
TAG_UAFV1_SIGNED_DATA O0x3EO04 [Data signed by authenticator with the UAuth.priv key
Each entry contains a single X.509 DER-encoded [[TU-X690-
2008] certificate. Multiple occurrences are allowed and form the
attestation certificate chain. Multiple occurrences must be
TAG_ATTESTATION_CERT Ox2E05 ordered. The attestation certificate itself Bhust occur first. Hach
subsequent occurrence (if exists) must be the issuing certificated
of the previous occurrence.
TAG_SIGNATURE 0x2E06 | A cryptographic signature
TAG_ATTESTATION_BASIC_FULL 0x3E07 | Full Basic Attestation as defined in [MAFProtocol]
TAG_ATTESTATION_BASIC_SURROGATE | 0x3E08 | Surrogate Basic Attestation as defined in [MAFProtocol]
TAG_KEYID 0x2E09 | Represents a KeyID.
Represents a Final Challenge.
TAG_FINAL_CHALLENGE 0x2EOA | Refer to [UAFProtocol] for more information about the Final

Challenge.

Name

Value

Description
Represents an authenticator Attestation ID.

TAG_AAID 0x2E0B Refer to [UAFProtocol] for more information about the AAID.
TAG_PUB_KEY 0x2EO0C | Represents a Public Key.
TAG_COUNTERS 0x2EO0D | Represents a use counters for the authenticator.
Represents assertion information necessary for message
TAG_ASSERTION_INFO 0x2EOE processing,
TAG_AUTHENTICATOR_NONCE 0x2EOF | Represents a nonce value generated by the authenticator.
TAG_TRANSACTION_CONTENT_HASH 0x2E10 | Represents a hash of transaction content.
This is a composite tag indicating that the content is an extension.
If the tag is 0x3E11 - it's a critical extension and if the recipient
does not understand the contents of this tag, it must abort
processing of the entire message.
This tag has two embedded tags - TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more information about UAF
extensions refer to [UAFProtocol]
Ox3E11,
TAG_EXTENSION OX3E12
NOTE
This tag can be appended to any command and response.
Using tag Ox3E11 (as opposed to tag 0x3E12) has the
same meaning as the flag kil if unknown in
[UAFProtocol].
TAG_EXTENSION_ID Ox2E13 Represents extension ID. Content of this tag is a UINT8][]
encoding of a UTF-8 string.
TAG_EXTENSION_DATA Ox2E14 Represents extension data. Content of this tag is a UINT8J[] byte

array.

Table 4.3.1: Tags used in the UAF Protocol (0x2E00 - Ox2EFF, Ox3E00 - Ox3EFF). Normatively defined in [DAFRegistry]

5.4 Status Codes
Name Value Description
UAF_CMD_STATUS_OK 0x00 | Success
UAF_CMD_STATUS_ERR_UNKNOWN 0x01 | An unknown error
UAF_CMD_STATUS_ACCESS_DENIED 0x02 | Access to this operation is denied
UAF_CMD_STATUS_USER_NOT_ENROLLED 0x03 | Jser is not enrolled with the
UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT | 0x04 | Transaction content cannot be rendered

UAF_CMD_STATUS_USER_CANCELLED 0x05 | User has cancelled the operation
UAF_CMD_STATUS_CMD_NOT_SUPPORTED 0x06 | Command not supported
UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED 0x07 | Required attestation not supported

Table 4.4.1: UAF Authenticator Status Codes (0x00 - OxFF)

6. Structures

This section is normative.

6.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the authenticator. Authenticators may define RawKeyHandle in0
different ways and the internal structure is relevant only to the specific authenticator implementation.O

RawKeyHandle for a typical first-factor bound authenticator@as the following structure.

Depends on hashing Depends on key type. Username Size

algorithm (e.g. 32 bytes) (e.g. 32 bytes) (1 byte) Max 128 bytes

KHAccessToken UAuth.priv Size Username

Table 5.1: RawKeyHandle Structure

First Factor authenticators must store Username inside RawKeyHandle and Second Factor authenticators must not store it.
The ability to support Username is a key difference between first-, and Eecond-factor authenticators.

RawKeyHandle must be cryptographically wrapped before leaving the authenticator boundary since it contains the user
authentication private key (UAuth.priv).

6.1.1 Structures to be parsed by FIDO Server

The structures defined in this section are created by UAF Authenticators Bind parsed by FIDO Servers.

Authenticators must generate these structures if they implement "UAFV1TLV" assertion scheme.

NOTE

"UAFV1TLV" assertion scheme assumes that the authenticator has exclusive control over all data included inside
TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.

The nesting structure must be preserved, but the order of tags within a composite tag is not normative. FIDO Servers must
be prepared to handle tags appearing in any order.

6.1.1.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the authenticator during processing of a Register command. It is then delivered to
FIDO Server intact, and parsed by the server. The structure embeds a TAG_UAFV1_KRD tag which among other data
contains the newly generated UAuth.pub.

If the authenticator wants to append custom data to TAG_UAFV1_KRD structure (and thus sign with Attestation Key) - this
data must be included as an additional tag inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as an
additional tag inside TAG_UAFV1_REG_ASSERTION and not inside TAG_UAFV1_KRD.

Currently this document only specifies MAG_ATTESTATION_BASIC_FULL and TAG_ATTESTATION_BASIC_SURROGATE.

In case if the authenticator is required to perform "Some_Other_Attestation" on TAG_UAFV1_KRD - it must use the TLV tag
and content defined for (Bome_Other_Attestation" (defined in [DAFRegistry]).

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REG_ASSERTION
1.1 UINT16 Length Length of the structure
1.2 UINT16 Tag TAG_UAFV1_KRD
1.2.1 UINT16 Length Length of the structure
1.2.2 UINT16 Tag TAG_AAID
1.2.2.1 | UINT16 Length Length of AAID
1.2.2.2 | UINT8[] AAID Authenticator Attestation ID
1.2.3 UINT16 Tag TAG_ASSERTION_INFO
1.2.3.1 | UINT16 Length Length of Assertion Information

UINT16 . . .
1.2.32 AuthenticatorVersion Vendor assigned authenticator version

UINT8 For Registration this must be 0x01 indicating that the user has explicitly verified theO
1.2.3.3 I :

AuthenticationMode action.

Signature Algorithm and Encoding of the attestation signature.
1034 UINT16
e SignatureAlgAndEncoding | Refer to [UAFRegistry] for information on supported algorithms and their values.

UINT16 Public Key algorithm and encoding of the newly generateduauth. pub key.

1.2.3.5 | puplickeyAlgAndEncoding , , _ , ,
Refer to [UAFRegistry] for information on supported algorithms and their values.

TLV Structure Description

1.24 UINT16 Tag TAG_FINAL_CHALLENGE

1.2.4.1 | UINT16 Length Final Challenge length

1.2.4.2 | UINT8J[] FinalChallenge (binary value of) Final Challenge provided in the Command

1.2.5 UINT16 Tag TAG_KEYID

1.2.5.1 | UINT16 Length Length of KeyID

1.2.5.2 | UINT8[] KeylD (binary value of) KeylD generated by Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 | UINT16 Length Length of Counters
Signature Counter.

1.26.2 | UINT32 SignCounter Indicates how many times this authenticator has performed signatures in the past.
Registration Counter.

1.2.6.3 | UINT32 RegCounter Indi;:ates how many times this authenticator has performed registrations in the
past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 | UINT16 Length Length of UAuth.pub

1.2.7.2 | UINT8J[] PublicKey User authentication public key (UAuth.pub) newly generated by authenticator

1.3

gt;hoice UINT16 Tag TAG_ATTESTATION_BASIC_FULL

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 | UINT16 Length Length of signature
Signature calculated with Basic Attestation Private Key over TAG_UAFV1_KRD
content.

1.3.22 | UINT8]] Signature The entire TAG_UAFV1_KRD content, including the tag and it's length field, Bust
be included during signature computation.
TAG_ATTESTATION_CERT (multiple occurrences possible)
Multiple occurrences must be ordered. The attestation certificate Bhust occur first.00

133 UINT16 Tag Each subsequent occurrence (if exists) must be the issuing certificate of fhe
previous occurrence. The last occurence must be chained to one of the certificatesO
included in field El:testationrootcertificate in the related Metadata Statement
[UAFAuthnrMetadatal].

1.3.3.1 | UINT16 Length Length of Attestation Cert

1.3.3.2 | UINT8J] CertificateO X.509 DER-encoded [ITU-X690-2008] Attestation Certificate (chain).O

1.3

(2¢;hoice UINT16 Tag TAG_ATTESTATION_BASIC_SURROGATE

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 | UINT16 Length Length of signature
Signature calculated with newly generated UAuth.priv key over TAG_UAFV1_KRD
content.

1.322 | VINT8[] Signature The entire TAG_UAFV1_KRD content, including the tag and it's length field, Bust
be included during signature computation.

6.1.1.2 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an authenticator during processing of a Sign command. It is then delivered to
FIDO Server intact and parsed by the server. The structure embeds a TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom data to TAG_UAFV1_SIGNED_DATA structure (and thus sign with Attestation
Key) - this data must be included as an additional tag inside TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as an
additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside TAG_UAFV1_SIGNED_DATA.

1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION
1.1 UINT16 Length Length of the structure.
1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA
1.2.1 UINT16 Length Length of the structure.
1.2.2 | UINT16 Tag TAG_AAID
1.2.2.1 | UINT16 Length Length of AAID
1.2.2.2 | UINT8[] AAID Authenticator Attestation ID
1.2.3 | UINT16 Tag TAG_ASSERTION_INFO
1.2.3.1 | UINT16 Length Length of Assertion Information
1232 Xlljl;lr;l;nBticatorVersion Vendor assigned authenticator version.
Authentication Mode indicating whether user explicitly verified or not and indicating if00
there is a transaction content or not.
1.233 Xllm;; 8nticationMo de ¢ 0x01 means that user has.; been explicitly verifiedOd .
» 0x02 means that transaction content has been shown on the display and user
confirmed it by Explicitly verifying with authenticator
Signature algorithm and encoding format.
1034 | UINT16 . , , , . .
SignatureAlgAndEncoding | Refer to [UAFRegistry] for information on supported algorithms and their values.
1.2.4 | UINT16 Tag TAG_AUTHENTICATOR_NONCE
1.2.4.1 | UINT16 Length Length of authenticator Nonce -must be at least 8 bytes
1.2.4.2 | UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by Authenticator
1.2.5 | UINT16 Tag TAG_FINAL_CHALLENGE
1.2.5.1 | UINT16 Length Length of Final Challenge
1.2.5.2 | UINT8[] FinalChallenge (binary value of) Final Challenge provided in the Command
1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH
1261 | UINTI6 Length o, Suthentioation, not ransaction eonfimation @ oo o ode == 0T
1.2.6.2 | UINT8[] TCHash (binary value of) Transaction Content Hash
1.2.7 | UINT16 Tag TAG_KEYID
1.2.7.1 | UINT16 Length Length of KeyID
1.2.7.2 | UINT8[] KeyID (binary value of) KeylD
1.2.8 | UINT16 Tag TAG_COUNTERS
1.2.8.1 | UINT16 Length Length of Counters
Signature Counter.
1.2.8.2 | UINTS32 SignCounter Indicates how many times this authenticator has performed signatures in the past.
1.3 UINT16 Tag TAG_SIGNATURE
1.3.1 UINT16 Length Length of Signature

TLV Structure Description

Signature calculated using UAuth.priv over TAG_UAFV1_SIGNED_DATA structure.

1.3.2 UINTS8[] Signature The entire TAG_UAFV1_SIGNED_DATA content, including the tag and it's length
field, Bhust be included during signature computation.

6.1.2 UserVerificationTokenO

This specification doesn't specify how exactly user verification must be performed side the authenticator. Verification isO
considered to be an authenticator, and vendor, specific operation.O

This document provides an example on how the "vendor_specific_UserVerify" command (a command which kerifies the user
using Authenticator's built-in technology) could be securely bound to UAF Register and Sign commands. This binding is done
through a concept called userverificationToken. Such a binding allows decoupling "vendor_specific_UserVerify" and "UAFO
Register/Sign" commands from each other.

Here is how it is defined:O

« The ASM invokes the "vendor_specific_UserVerify" command. Ihe authenticator verifies the user and returns all
UserVerificationToken back.

« The ASM invokes UAF.Register/Sign command and passes userverificationToken t0 it. The authenticator verifies theOd
validity of userverificationToken and performs the FIDO operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement this Binding in a very

different way. For example an authenticator vendor may decide to append a UAF Register request directly to their
"vendor_specific_UserVerify" command and process both as a single command.O

If userverificationToken binding is implemented, it should either meet one of the following criteria or implement a mechanism
providing similar, or better security:

e UserVerificationToken must allow performing only a single UAF Register or UAF Sign operation.
e UserverificationToken Must be time bound, and allow performing multiple UAF operations within the specified time.O

6.2 Commands
This section is non-normative.

NORMATIVE

UAF Authenticators which are designed to be interoperable with ASMs from different vendors must implement the
command interface defined in this section. Examples of such authenticators:O

o Bound Authenticators in which the core authenticator functionality is developed by one vendor, and the ASM is
developed by another vendor

» Roaming Authenticators

NORMATIVE

UAF Authenticators which are tightly integrated with a custom ASM (typically bound authenticators) may implement a
different command interface.

All UAF Authenticator commands and responses are semantically similar - they are all represented as TLV-encoded blobs.
The first 2 bytes of each command is the command code. Bfter receiving a command, the authenticator must parse the firstd
TLV tag and figure out which command is being issued.O]

6.2.1 Getinfo Command
6.2.1.1 Command Description

This command returns information about internal authenticators. It may return 0 or more authenticators. Each authenticator
has an assigned authenticatorindex Which is used in other commands as an authenticator reference.

6.2.1.2 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length - must be 0 for this command

6.2.1.3 Command Response

TLV Structure Description

1

UINT16 Tag

TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1

UINT16 Length

Response length

1.2 UINT16 Tag TAG_STATUS_CODE
1.21 UINT16 Length Status Code Length
122 UINT16 Value Status Code returned by Authenticator
1.3 UINT16 Tag TAG_API_VERSION
1.3.1 UINT16 Length Length of API Version (must be 0x0001)
Authenticator API Version (must be 0x01). This version indicates the types of
1.3.2 UINT8 Version commands, and formatting associated with them, that are supported by the
authenticator.
14 UINT16 Tag TAG_AUTHENTICATOR_INFO (multiple occurrences possible)
1.4.1 UINT16 Length Length of Authenticator Info
1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.4.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
1.4.2.2 | UINT8 Authenticatorindex Authenticator Index
1.4.3 UINT16 Tag TAG_AAID
1.4.3.1 | UINT16 Length Length of AAID
1.4.3.2 | UINT8[] AAID Vendor assigned AAID
1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA
1.4.4.1 | UINT16 Length Length of Authenticator Metadata
Indicates whether the authenticator is bound or roaming, and whether it is first-,00
or second-factor only. The ASM must use this information to understand how to
work with the authenticator.
Predefined values:O
« 0x0001 - Indicates second-factor authenticator (first-factor when the flagO
is not set)
« 0x0002 - Indicates roaming authenticator (bound authenticator when the
flag is not set)d
o 0x0004 - Key handles will be stored inside authenticator and won't be
1.4.4.2 | UINT16 AuthenticatorType returned to ASM
o 0x0008 - Authenticator has a built-in Ul for enroliment and verification.O
ASM should not show its custom Ul
« 0x0010 - Authenticator has a built-in Ul for settings, and supports
OpenSettings command.
« 0x0020 - Authenticator expects TAG_APPID to be passed as an
argument to commands where it is defined as an optional argumentd
e 0x0040 - At least one user is enrolled in the authenticator. Authenticators
which don't support the concept of user enroliment (e.g.
USER_VERIFY_NONE, USER_VERIFY_PRESENCE) must always have
this bit set.
Indicates maximum number of key handles this authenticator can receive and
1.4.4.3 | UINT8 MaxKeyHandles process in a single command. This information will be used by the ASM when
invoking SIGN command with multiple key handles.
1.4.4.4 | UINT32 UserVerificationO User Verification method (as defined in [UAFRegistry])
1.4.4.5 | UINT16 KeyProtection Key Protection type (as defined in [IAFRegistry]).
1.4.4.6 | UINT16 MatcherProtection Matcher Protection type (as defined in [IAFRegistry]).
Transaction Confirmation type (as defined in [MAFRegistry]).
1447 UINT16 NOTE

TransactionConfirmationDisplayL]

If Authenticator doesn't support Transaction Confirmation - this valuell
must be set to 0.

TLV Structure Description

1.4.4.8 | UINT16 AuthenticationAlg Authentication Algorithm (as defined in [AFRegistry]).

1.45 | UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)

1.4.5.1 | UINT16 Length Length of content type.

1.65.2 | UNTa] ContentTye Iransacton Confmaon Display Cortent Type, See EIFALetadat) o
146 UINT16 Tag g,:%_i;lt'gd_)DlSPLAY_PNG_CHARACTERISTICS (optional,multiple occurrences
1.4.6.1 | UINT16 Length Length of display characteristics information.

1.4.6.2 | UINT32 Width See [UAFAuthnrMetadata] for additional information.

1.4.6.3 | UINT32 Height See [UAFAuthnrMetadata] for additional information.

1.4.6.4 | UINT8 BitDepth See [UAFAuthnrMetadata] for additional information.

1.4.6.5 | UINT8 ColorType See [UAFAuthnrMetadata] for additional information.

1.4.6.6 | UINT8 Compression See [UAFAuthnrMetadata] for additional information.

1.4.6.7 | UINTS Filter See [UAFAuthnrMetadata] for additional information.

1.4.6.8 | UINT8 Interlace See [UAFAuthnrMetadata] for additional information.

1.4.6.9 | UINT8[] PLTE See [UAFAuthnrMetadata] for additional information.

1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME

1.4.7.1 | UINT16 Length Length of Assertion Scheme

1.4.7.2 | UINT8[] AssertionScheme Assertion Scheme (as defined in lUAFRegistry])

1.4.8 UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)

1.4.8.1 | UINT16 Length Length of AttestationType

1.4.8.2 | UINT16 AttestationType Attestation Type (as defined in [UAFRegistry])

1.4.9 UINT16 Tag TAG_SUPPORTED_EXTENSION_ID (optional, multiple occurrences possible)
1.4.9.1 | UINT16 Length Length of SupportedExtensionID

1.4.9.2 | UINT8[] SupportedExtensionID | SupportedExtensionID as a UINT8[] encoding of a UTF-8 string

6.2.1.4 Status Codes

e UAF_CMD STATUS_OK

e UAF_CMD_STATUS_ERR_ UNKNOWN

6.2.2 Register Command

This command generates a UAF registration assertion. This assertion can be used to register the authenticator with a FIDO

Server.

6.2.2.1 Command Structure

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of Authenticatorindex (must be 0x0001)
122 UINT8 Authenticatorindex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINTS8[] AppID AppID (max 512 bytes)

TLV Structure Description

1.4 UINT16 Tag TAG_FINAL_CHALLENGE
1.4.1 UINT16 Length Final Challenge Length
1.4.2 UINTS8[] FinalChallenge Final Challenge provided by ASM (max 32 bytes)
1.5 UINT16 Tag TAG_USERNAME
1.5.1 UINT16 Length Length of Username
15.2 UINTS8[] Username Username provided by ASM (max 128 bytes)
1.6 UINT16 Tag TAG_ATTESTATION_TYPE
1.6.1 UINT16 Length Length of AttestationType
1.6.2 UINT16 AttestationType Attestation Type to be used
1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN
1.7.1 UINT16 Length Length of KHAccessToken
1.7.2 UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)
1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)
1.8.1 UINT16 Length Length of VerificationTokenO
1.8.2 UINTSJ] VerificationTokenO User verification tokenO
6.2.2.2 Command Response
1 UINT16 Tag TAG_UAFV1_REGISTER_CMD_RESPONSE
1.1 UINT16 Length Command Length
1.2 UINT16 Tag TAG_STATUS_CODE
1.2.1 UINT16 Length Status Code Length
1.2.2 UINT16 Value Status code returned by Authenticator
1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION
1.3.1 UINT16 Length Length of Assertion
1.3.2 UINTS8[] Assertion Registration Assertion (see section TAG_UAFV1 REG ASSERTION).
1.4 UINT16 Tag TAG_KEYHANDLE (optional)
1.4.1 UINT16 Length Length of key handle
142 UINTS8[] Value (binary value of) key handle

6.2.2.3 Status Codes

e UAF CMD STATUS OK

e UAF CMD STATUS_ ACCESS DENIED

e UAF_CMD STATUS_USER_CANCELLED

e UAF_CMD STATUS_ATTESTATION NOT_ SUPPORTED

e UAF_CMD_STATUS_ERR_ UNKNOWN

6.2.2.4 Command Description

The authenticator must perform the following steps (see below table for command structure):

1. If this authenticator has a transaction confirmation display and is able to display AppID, then make Eure
command.TAG_APPID iS provided, and show its content on the display when verifying the user. Update
Command . KHAccessToken With Tac_app1D:

o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function
is a cryptographic hash function.

= For example: Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)
2. If the user is already enrolled with this authenticator (via biometric enroliment, PIN setup or similar mechanism) - verify

the user. If the verification has been already Bone in a previous command - make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

1. If verification fails - return Bhr_cup_sTaTUS ACCESS DENIED

3. If the user is not enrolled with the authenticator then take the user through the enroliment process.
1. If enrollment fails - return var _cvp STATUS ACCESS DENIED
2. If user explicitly cancels the operation - return var cvMp STATUS USER CANCELLED

4. Make sure that Command.TAG_ATTESTATION_TYPE is supported. If not - return
UAF_CMD_STATUS_ATTESTATION_NOT SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv)
6. Create a RawKeyHandle
1. Add UAuth.priv to RawKeyHandle

2. Add Command.KHAccessToken to RawKeyHandle
3. If a first-factor authenticator, then add Bommand.Username to RawKeyHandle
7. Wrap RawKeyHandle with Wrap.sym key

8. Create TAG_UAFV1_KRD structure

1. If this is a second-factor roaming authenticator - place key handle inside TAG_KEYID. Otherwise generate a
random KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section IAG_UAFV1 REG ASSERTION)
9. Perform attestation on TAG_UAFV1_KRD based on provided Command.AttestationType.

10. Create TAG_AUTHENTICATOR_ASSERTION
1. Create TAG_UAFV1_REG_ASSERTION

1. Copy all the mandatory fields (see section IAG _UAFV1 REG ASSERTION)
2. If this is a first-factor roaming authenticator - add KeyID and key handle into internal Etorage
3. If this is a bound authenticator - return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

11. Return TAG_UAFV1_REGISTER_CMD_RESPONSE
1. uar cMp STATUS OK as a status

2. Add TAG_AUTHENTICATOR_ASSERTION
3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

NORMATIVE

The authenticator must not process a register command without verifying the user (or enrolling the user, if this is the firstO
time the user has used the authenticator).

The authenticator must generate a unique UAuth key pair each time the Register command is called.

The authenticator should either store key handle in its internal secure storage or cryptographically wrap it and export it to
the ASM.

For silent authenticators, the key handle must never be stored on a FIDO Server, otherwise this would enable tracking of
users without providing the ability for users to clear key handles from the local device.

If KeylD is not the key handle itself (e.g. such as in case of a second-factor roaming authenticator) - imust be a unique
and unguessable byte array with a maximum length of 32 bytes. It must be unique within the scope of the AAID.

NOTE

If the KeylID is generated randomly (instead of, for example, being derived from a key handle) - it should be stored
inside RawKeyHandle so that it can be accessed by the authenticator while processing the Sign command.

If the authenticator doesn't SUppOI’tSignCounter or regcounter it must set these to 0 in TAG_UAFV1_KRD. Theregcounter
must be set to 0 when a factory reset for the authenticator is performed. The signcounter must be set to 0 when a factory
reset for the authenticator is performed.

6.2.3 Sign Command

This command generates a UAF assertion. This assertion can be further verified by a FIDO Server which has a priorQd
registration with this authenticator.

6.2.3.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_SIGN_CMD

1.1 UINT16 Length Length of Command

TLV Structure Description

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of Authenticatorindex (must be 0x0001)

1.2.2 | UINT8 Authenticatorindex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 | UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE

1.4.1 UINT16 Length Length of Final Challenge

1.4.2 | UINT8J] FinalChallenge (binary value of) Final Challenge provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)

1.5.1 | UINT16 Length Length of Transaction Content

1.5.2 | UINT8J[] TransactionContent (binary value of) Transaction Content provided by ASM

1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.6.1 UINT16 Length Length of KHAccessToken

1.6.2 | UINT8[] KHAccessToken (binary value of) KHAccessToken provided by ASM (max 32 bytes)

1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.7.1 | UINT16 Length Length of the User Verification TokenO

1.7.2 | UINTB8[] VerificationTokenO User Verification TokenO

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)

1.8.1 UINT16 Length Length of KeyHandle

1.8.2 | UINT8[] KeyHandle (binary value of) key handle

6.2.3.2 Command Response

1 UINT16 Tag TAG_UAFV1_SIGN_CMD_RESPONSE

1.1 UINT16 Length | Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.21 UINT16 Length | Status Code Length

1.2.2 UINT16 Value Status code returned by authenticator
TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)

ljs (choice UINT16 Tag This TLV tag contains multiple (>=1) {Username, Keyhandle} entries.
If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present

1.3.1 UINT16 Length | Length of the structure

1.3.2 UINT16 Tag TAG_USERNAME

1.3.21 UINT16 Length | Length of Username

1.3.22 H!sl\gr?a[\%e Username

1.3.3 UINT16 Tag TAG_KEYHANDLE

1.3.3.1 UINT16 Length | Length of keyrandie

1.3.3.2 gcla';llaglrldle (binary value of) key handle

TLV Structure Description

. TAG_AUTHENTICATOR_ASSERTION (optional)
1.3 (choice UINT16 Tag

2) If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present
1.3.1 UINT16 Length | Assertion Length
132 UINTS[] Authentication assertion generated by the authenticator (see section
o Assertion TAG_UAFV1 _AUTH ASSERTION).
6.2.3.3 Status Codes

e UAF_CMD_STATUS_OK

e UAF CMD STATUS ACCESS DENIED

e UAF CMD STATUS USER NOT ENROLLED

e UAF CMD STATUS USER CANCELLED

e UAF CMD STATUS_ CANNOT RENDER TRANSACTION CONTENT
e UAF_CMD STATUS_ERR UNKNOWN

6.2.3.4 Command Description

NOTE

First-factor authenticators should implement this command in two stages.

1. The first stage will be executed only if fhe authenticator finds out that there are multiple key handles after filteringO
with the KHAccessToken. In this stage, the authenticator must return a list of usernames along with
corresponding key handles

2. In the second stage, after the user selects a username, this command will be called with a single key handle and
will return a UAF assertion based on this key handle

If a second-factor authenticator is presented with more than one valid key handles, it must exercise only the first onell
and ignore the rest.

The command is implemented in two stages to ensure that only one assertion can be generated for each command
invocation.

Authenticators must take the following steps:

1. If this authenticator has a transaction confirmation Hisplay, and is able to display the AppID - make sure
Command.TAG_APPID is provided, and show it on the display when verifying the user.
o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such a mixing
function is a cryptographic hash function.

= Command.KHAccessToken=hash(Command.KHAccessToken | Command. TAG_APPID)

2. If the user is already enrolled with the authenticator (such as biometric enroliment, PIN setup, etc.) then verify the user.
If the verification has already been done in one of the frevious commands, make sure that
Command.TAG USERVERIFY TOKEN i§ a valid token.

1. If verification fails - return fhr cup STATUS ACCESS DENIED
2. If the user explicitly cancels the operation - return uar cMp STATUS USER CANCELLED

3. If the user is not enrolled then return var cup STATUS USER NOT ENROLLED

4. Unwrap all provided key handles from Command.TAG_KEYHANDLE values using Wrap.sym
1. If a first-factor roaming authenticator:O0

= If Command.TAG_KEYHANDLE are provided, then the items in this list are KeylDs. Use these KeyIDs to
locate key handles stored in internal storage

= |f no Command.TAG_KEYHANDLE are provided - unwrap all key handles stored in internal storage
5. Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken ==
Command.KHAccessToken)
6. If the number of remaining RawKeyHandles is 0, then fail with uar_cup_sTatus_access DENIED

7. If number of remaining RawKeyHandles is > 1
1. If this is a second-factor authenticator, then choose the first RawKeyHandle only and jump to step #8.0

2. Copy {Command.KeyHandle, RawKeyHandle.username} for all remaining RawKeyHandles into
TAG_USERNAME_AND_KEYHANDLE tag.

= [f this is a first-factor roaming authenticator, then the returned TAG_USERNAME_AND_KEYHANDLEs Bhust
be ordered by the key handle registration date (the latest-registered key handle must come the latest).

3. Copy TAG_USERNAME_AND_KEYHANDLE into TAG_UAFV1_SIGN_CMD_RESPONSE and return

8. If number of remaining RawKeyHandles is 1
1. Create TAG_UAFV1_SIGNED_DATA and set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01

2. If Transactioncontent iS not empty
= |f this is a silent authenticator, then return uar cup sTATUS ACCESS DENIED

= |f the authenticator doesn't support transaction confirmation (it has set Bransactionconfirmationbisplay 0 0
in the response to a cet1nfo Command), then return var cup STATUS ACCESS DENTIED

= |f the authenticator has a built-in transaction confirmation display, then Bhow command.TransactionContent
and command.T2AG aPPID (Optional) on display and wait for the user to confirm it:0

= Returnuar cvp sTaTUS USER CANCELLED if user cancels the transaction

= Return uar cup STATUS CANNOT RENDER TRANSACTION CONTENT if provided transaction content cannot be
rendered

= Compute hash of TransactionContent

= TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)

= Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02
3. Create TAG_UAFV1_AUTH_ASSERTION
= Fill'in the rest of TAG_UAFV1_SIGNED_DATA fieldsO
= Increment SignCounter and put into TAG_UAFV1_SIGNED_DATA
= Copy all the mandatory fields (see Eection TAG _UAFV1 AUTH ASSERTION)

» |f TAG_UAFV1_SIGNED_DATA.AuthenticationMode == 0x01 - set
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Length to O

= Sign TAG_UAFV1_SIGNED_DATA with UAuth.priv

4. Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

5. Copy TAG_AUTHENTICATOR_ASSERTION into TAG_UAFV1_SIGN_CMD_RESPONSE and return

NORMATIVE

Authenticator must not process Sign command without verifying the user first.00

Authenticator must not reveal Username without verifying the user first.00

bound authenticators must not process Sign command without validating KHAccessToken first.0

UAuth.priv keys must never leave Authenticator's security boundary in plaintext form. UAuth.priv protection boundary is
specified in lktadata. keyprotection field in Metadata [UAFAuthnrMetadatal).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display - Emust display provided
transaction content in this display and include the hash of content inside TAG_UAFV1_SIGNED_DATA structure.

Silent Authenticators must not operate in first-factor mode in order to follow the Bssumptions made in [FIDOSecRef].

If Authenticator doesn't support signcounter, then itmust set it to 0 in TAG_UAFV1_SIGNED_DATA. The signcounter
must be set to 0 when a factory reset for the Authenticator is performed, in order to follow the assumptions made in
[FIDOSecRef].

Some Authenticators might support Transaction Confirmation display Einctionality not inside the Authenticator but within

the boundaries of ASM. Typically these are software based Transaction Confirmation displays. When processing the SignO
command with a given transaction such Authenticators should assume that they do have a builtin Transaction ConfirmationO
display and should include the hash of transaction content in the final assertion @Without displaying anything to the user.

Also, such Authenticator's Metadata file Bhust clearly indicate the type of Transaction Confirmation display. Typically thel
flag of Transaction Confirmation Hisplay will be TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE. See [UAFRegistry] for flags describingd
Transaction Confirmation Display type.

6.2.4 Deregister Command

This command deletes a registered UAF credential from Authenticator.

6.2.4.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)

1.2.2 | UINT8 Authenticatorindex Authenticator Index

1.3 | UINT16 Tag TAG_APPID (optional)

1.3.1 | UINT16 Length Length of AppID

TLV Structure Description

1.3.2 | UINTS8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 | UINT16 Length Length of KeyID

1.4.2 | UINT8[] KeylD (binary value of) KeyID provided by ASM

1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.5.1 | UINT16 Length Length of KeyHandle Access Token

1.5.2 | UINT8[] KHAccessToken (binary value of) KeyHandle Access Token provided by ASM (max 32 bytes)

6.2.4.2 Command Response
TLV Structure Description
1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response
1.2 UINT16 Tag TAG_STATUS_CODE
1.21 UINT16 Length Status Code Length
1.2.2 UINT16 StatusCode StatusCode returned by Authenticator
6.2.4.3 Status Codes

e UAF_CMD_STATUS_OK

e UAF_CMD_STATUS_ACCESS_DENIED

e UAF CMD STATUS CMD NOT SUPPORTED
e UAF CMD STATUS_ERR_UNKNOWN

6.2.4.4 Command Description

Authenticator must take the following steps:

1. If this authenticator has a Transaction Confirmation display and is able to display AppID, then make Bure
Command.TAG_APPID is provided

o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function
is a cryptographic hash function.

= Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If this Authenticator doesn't store key handles internally, then return uar_cup_STATUS cMD NOT SUPPORTED
3. Find KeyHandle that matches Command.KeyID
4. Unwrap found key handles using Wrap.sym
5. Make sure that RawKeyHandle.KHAccessToken == Command.KHAccessToken
o If not, then return var _cip STATUS ACCESS DENIED
6. Delete this KeyHandle from internal storage

7. Return uar cup STATUS 0K

NORMATIVE
bound authenticators must not process Deregister command without validating KHAccessToken first.00

Deregister command should not explicitly reveal whether the provided keylD was registered or not.

6.2.5 OpenSettings Command

This command instructs the Authenticator to open its built-in settings Ul (e.g. change PIN, enroll new fingerprint, etc).0

Authenticator must return uar_cup_status cup not surpporteD if it doesn't support such functionality.

6.2.5.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD

TLV Structure Description

1.1 UINT16 Length Entire Command Length
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.2.1 UINT16 Length Length of Authenticatorindex (must be 0x0001)
122 UINT8 Authenticatorindex Authenticator Index
6.2.5.2 Command Response
1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response
1.2 UINT16 Tag TAG_STATUS_CODE
1.21 UINT16 Length Status Code Length
122 UINT16 StatusCode StatusCode returned by Authenticator

6.2.5.3 Status Codes

e UAF_CMD STATUS_OK
e UAF_CMD_STATUS_CMD NOT_SUPPORTED
e UAF_CMD_STATUS_ERR_UNKNOWN

7. KeylDs and key handles
This section is non-normative.
There are 4 types of Authenticators defined in this document and due to their specifics they behave Hifferently while

processing commands. One of the main differences between them is how they store and process key handles. This section
tries to clarify it by describing the behavior of every type of Authenticator during the processing of relevant command.

7.1 first-factor Bound Authenticator]

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
Register database.
ComirEi] KeylID is a randomly generated 32 bytes number (or simply the hash of KeyHandle).
When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID (since it
doesn't know which KeylIDs to provide). In this scenario ASM selects all key handles and passes to
Sign Authenticator.
Command
During step-up authentication (when there is a user session) Server provides relevant KeylDs. ASM selects
key handles that correspond to provided KeylDs and pass to Authenticator.
Deregister Since Authenticator doesn't store key handles, then there is nothing to delete inside Authenticator.
Command ASM finds the KeyHandle corresponding to provided KeyID and deletes it.00

7.2 2ndF Bound Authenticator

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
Register database.
ezl KeylID is a randomly generated 32 bytes number (or simply the hash of KeyHandle).
This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
Sign user session (no cookies, a clear machine).
Command
During step-up authentication (when there is a user session) Server provides relevant KeylDs. ASM selects
key handles that correspond to provided KeylDs and pass to Authenticator.

Deregister
Command

Since Authenticator doesn't store key handles, then there is nothing to delete inside it.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.O

7.3 first-factor Roaming Authenticatord

Authenticator stores key handles inside its internal storage. KeyHandle is never returned back to ASM.
Register
Command | KeylD is a randomly generated 32 bytes number (or simply the hash of KeyHandle)
When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID (since it
doesn't know which KeylDs to provide). In this scenario Authenticator uses all key handles that correspond to
Sign the provided AppID.
Command
During step-up authentication (when there is a user session) Server provides relevant KeylDs. Authenticator
selects key handles that correspond to provided KeylDs and uses them.
Deregister
e Authenticator finds the right KeyHandle and deletes it from its storage.O

7.4 2ndF Roaming Authenticator

Register Neither Authenticator nor ASM store key handles. Instead KeyHandle is sent to the Server (in place of KeyID)
Command | and stored in User's record. From Server's perspective it's a KeyID. In fact KeyID is the KeyHandle.
This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
Sign user session (no cookies, a clear machine).
Command During step-up authentication Server provides KeylDs which are in fact key handles. Authenticator finds theO
right KeyHandle and uses it.
Deregister | g0 Authenti ASM don’ key handles, then there is nothi | lient si
Command | Since uthenticator and ASM don't store key handles, then there is nothing to delete on client side.
8. Access Control for Commands

This section is normative.

FIDO Authenticators may implement various mechanisms to guard access to privileged commands.

The following table summarizes the access control requirements for each command.

All UAF Authenticators must satisfy the access control requirements defined below.0

Authenticator vendors may offer additional security mechanisms.

Terms used in the table:

¢« NoAuth

- no access control

o UserVerify - explicit user verificationdl

o KHAccessToken - must be known to the caller
« KeyHandleList - must be known to the caller

« KeylID - must be known to the caller

Command

2ndF Bound
Authenticator

First-factor Bound
Authenticator

First-factor Roaming
Authenticator

2ndF Roaming
Authenticator

Getlnfo NoAuth NoAuth NoAuth NoAuth

OpenSettings | NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify
UserVerify UserVerify UserVerif UserVerify

Sign KHAccessToken KHAccessToken KHACcG esZTok en KHAccessToken
KeyHandleList KeyHandleList KeyHandleList

Dt KHAccessToken KHAccessToken KHAccessToken KHAccessToken

9 KeylD KeylD KeyID KeyID

Table 1: Access Control for Commands

9. Relationship to other standards

This section is non-normative.
The existing standard specifications most relevant to UAF Buthenticator are [TPM], [TEE] and [SecureElement].

Hardware modules implementing these standards may be extended to incorporate UAF functionality through their
extensibility mechanisms such as by loading secure applications (trustlets, applets, etc) into them. Modules which do not
support such extensibility mechanisms cannot be fully leveraged within UAF framework.

9.1 TEE

In order to support UAF inside TEE a special Trustlet (trusted application running inside TEE) may be designed which
implements UAF Authenticator functionality specified in Ehis document and also implements some kind of user verificationO
technology (biometric verification, PIN or Bhything else).

An additional ASM must be created which knows how to work with the Trustlet.

9.2 Secure Elements

In order to support UAF inside Secure Element (SE) a special Applet (trusted application running inside SE) may be designed
which implements UAF Authenticator functionality specified in this Bocument and also implements some kind of user
verification Eechnology (biometric verification, PIN or similar Bhechanisms).

An additional ASM must be created which knows how to work the Applet.

9.3 TPM

TPMs typically have a built-in attestation capability however the attestation model supported in TPMs is currently incompatible
with UAF's basic attestation model. The future enhancements of UAF may include compatible attestation schemes.

Typically TPMs also have a built-in PIN verification flinctionality which may be leveraged for UAF. In order to support UAF with
an existing TPM module, the vendor should write an ASM which:

o Translates UAF data to TPM data by calling TPM APIs
o Creates assertions using TPMs API
« Reports itself as a valid UAF authenticator to FIDO UAF Client

A special AssertionScheme, designed for TPMs, must be also created (see [UAFAuthnrMetadata]) and published by FIDO
Alliance. When FIDO Server receives an assertion with this AssertionScheme it will treat the received data as TPM-generated
data and will parse/validate it accordingly.

9.4 Unreliable Transports

The command structures described in this document assume a reliable transport and provide no support at the application-
layer to detect or correct for issues such as unreliable ordering, duplication, dropping or modification of messages. H the
transport layer(s) between the ASM and Authenticator are not reliable, the non-normative private contract between the ASM
and Authenticator may need to provide a means to detect and correct such errors.

A. Security Guidelines

This section is non-normative.

Category Guidelines

Registered ApplDs and KeylDs must not be returned by an authenticator in plaintext, without firstd

AppIDs and performing user verification.O

KeylDs If an attacker gets physical access to a roaming authenticator, then it should not be easy to read out

AppIDs and KeylIDs.

Category Guidelines

Authenticators must protect the attestation private key as a very sensitive asset. The overall security of
the authenticator depends on the protection level of this key.

It is highly recommended to store and operate this key inside a tamper-resistant hardware module, e.g.
[SecureElement].

It is assumed by registration assertion schemes, that the authenticator has exclusive control over the data

Attestation being signed with the attestation key.

Private Key FIDO Authenticators must ensure that the attestation private key:

1. is only used to attest authentication keys generated and protected by the authenticator, using the
FIDO-defined data structures, ReyRegistrationData.

2. is never accessible outside the security boundary of the authenticator.

Attestation must be implemented in a way such that two different relying parties cannot link registrations,
authentications or other transactions (see [UAFProtocol]).

Vendors should strive to pass common security standard certifications with authenticators, such asO]
CertificationsO | [FIPS140-2], [CommonCriteria] and similar. Passing such certifications will positively impact the UAFO
implementation of the authenticator.

The crypto kernel is a module of the authenticator implementing cryptographic functions (key generation,
signing, wrapping, etc) necessary for UAF, and having access to UAuth.priv, Attestation Private Key and
Wrap.sym.

For optimal security, this module should reside within the same security boundary as the UAuth.priv,
Att.priv and Wrap.sym keys. If it resides within a different security boundary, then the implementation
must guarantee the same level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted execution environment

[TEE].

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

Cryptographic | Software-based authenticators must make sure to use state of the art code protection and obfuscation
(Crypto) techniques to protect this module, and whitebox encryption techniques to protect the associated keys.
Kernel
Authenticators need good random number generators using a high quality entropy source, for:

1. generating authentication keys
2. generating signatures
3. computing authenticator-generated challenges

The authenticator's random number generator (RNG) should be such that it cannot be disabled or
controlled in a way that may cause it to generate predictable outputs.

If the authenticator doesn't have sufficient entropy Ebr generating strong random numbers, it should fail
safely.

See the section of this table regardingrandom numbers

It is highly recommended to use authenticated encryption while wrapping key handles with Wrap.sym.

KeyHandle Algorithms such as AES-GCM and AES-CCM are most suitable for this operation.

The user verification method ghou!d include liveness Qetection [NISTCBiometrics], i.e. a technique to
Liveness ensure that the sample submitted is actually from a (live) user.
Detection

In the case of PIN-based matching, this could be implemented using TEESecureDisplay] in order to
ensure that malware can't emulate PIN entry.

Category Guidelines

By definition, the matcher component is part of the Buthenticator. This does not impose any restrictions
on the authenticator implementation, but implementers need to make sure that there is a proper security
boundary binding the matcher and the other parts of the authenticator together.

Tampering with the matcher module may have significant security consequences. It is highlyd
recommended for this module to reside within the integrity boundaries of the authenticator, and be
capable of detecting tampering.

It is highly recommended to run this module inside a trusted execution environment [TEE] or inside a
secure element [SecureElement].

Authenticators which have separated matcher and CryptoKernel modules should implement mechanisms
which would allow the CryptoKernel to securely receive assertions from the matcher module indicating
the user's local verification status.O

Matcher Software based Authenticators (if not in trusted execution environment) must make sure to use state of
the art code protection and obfuscation techniques to protect this module.

When an Authenticator receives an invalid UserVerificationToken it should treat this as an attack, Bind
invalidate the cached UserVerificationToken.O

A UserVerificationToken should have a lifetime not Elxceeding 10 seconds.

Authenticators must implement anti-hammering protections for their matchers.

Biometrics based authenticators must protect the captured biometrics data (such as fingerprints) as Well
as the reference data (templates), and make sure that the biometric data never leaves the security
boundaries of authenticators.

Matchers must only accept verification reference data Enrolled by the user, i.e. they must not include any
default PINs or default biometric reference data.

This document requires (a) the attestation key to be used for attestation purposes only and (b) the
authentication keys to be used for FIDO authentication purposes only. The related to-be-signed objects
(i.e. Key Registration Data and SignData) are designed to reduce the likelihood of such attacks:

Private Keys

(UAuth.priv 1. They start with a tag marking them as specific BIDO objects
and Attestation 2. They include an authenticator-generated random value. As a consequence all to-be-signed objects
Private Key) are unique with a very high probability.

3. They have a structure allowing only very few fields containing uncontrolled values, i.e. values @hich
are neither generated nor verified by the Buthenticator

The FIDO Authenticator uses its random number generator to generate authentication key pairs, client
side challenges, and potentially for creating ECDSA signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the FIDO Authenticator to work with good random
numbers only.

The (pseudo-)random numbers used by authenticators should successfully pass the randomness test

Eﬁnmdboerps specified I [Coron99] and they should follow the guidelines given in [SP800-90b].
Additionally, authenticators may choose to incorporate entropy provided by the FIDO Server via the
serverChallenge Sent in requests (see [UAFProtocol]).
When mixing multiple entropy sources, a suitable mixing function should be used, such as those
described in [RFC4086].
The regcounter provides an anti-fraud signal to the relying parties. Using theregcounter, the relying party
can detect authenticators which have been excessively registered.
If the rRegcounter is implemented: ensure that

RegCounter 1. itis increased by any registration operation and

2. it cannot be manipulated/modified otherwise (e.g. via API calls, Eic.)

A registration counter should be implemented as a global counter, i.e. one covering registrations to all
ApplDs. This global counter should be increased by 1 upon any registration operation.

Note: The RegCounter value should not be decreased by peregistration operations.

Category Guidelines

When an attacker is able to extract a Uauth.priv key from a registered authenticator, this key can be used
independently from the original authenticator. This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent cloning authenticators. In
some situations the protection measures might not be sufficient.00

If the Authenticator maintains a signature counter signcounter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If the signcounter is implemented: ensure that

1. Itis increased by any authentication / transaction confirmation operation andO
SignCounter 2. it cannot be manipulated/modified otherwise (e.g. BPI calls, etc.)

Signature counters should be implemented that are dedicated for each private key in order to preserve
the user's privacy.

A per-key signcounter should be increased by 1, whenever the corresponding UAuth.priv key signs an
assertion.

A per-key signcounter should be deleted whenever the corresponding UAuth key is deleted.
If the authenticator is not able to handle many different signature counters, then a global signature

counter covering all private keys should be implemented. A global signcounter should be increased by a
random positive integer value whenever any of the UAuth.priv keys is used to sign an assertion.

A transaction confirmation display must ensure that the user is fresented with the provided transaction

Transaction content, e.g. not overlaid by other display elements and clearly recognizable. See [CLICKJACKING] for
Confirmationd | some examples of threats and potential counter-measures
Display

For more guidelines refer to [TEESecureDisplay].

An authenticator must protect all UAuth.priv keys as its most sensitive assets. The overall security of the
authenticator depends significantlyldn the protection level of these keys.

It is highly recommended that this key is generated, stored and operated inside a trusted execution
environment.

In situations where physical attacks and side channel attacks are considered within the threat model, it is
highly recommended to use a tamper-resistant hardware module.

FIDO Authenticators must ensure that UAuth.priv keys:

UAuth.priv 1. are specific to the particular account at one Eglying party (relying party is identified by an BppID)

2. are generated based on good random numbers with sufficient entropy. The challenge provided byO
the FIDO Server during registration and authentication operations should be mixed into the entropy
pool in order to provide additional entropy.

3. are never directly revealed, i.e. always remain in exclusive control of the FIDO Authenticator

4. are only being used for the defined Buthentication modes, i.e.
1. authenticating to the application (as identified by the ApplID) they have been Generated for, or

2. confirming transactions to the application (as Identified by AppID) they have been generatedO
for, or

3. are only being used to create the FIDO defined data structures, i.e. KRD, SignData.Ol

A username must not be returned in plaintext in any condition other than the conditions described for the

Username SIGN command. In all other conditions usernames must be stored within a keynandie.
Verificationd The verification reference data, such as fingerprint Emplates or the reference value of a PIN, are by
Reference definition part of the authenticator. Mhis does not impose any particular restrictions on the authenticator

Data implementation, but implementers need to make sure that there is a proper security boundary binding all
parts of the authenticator together..

Category Guidelines

If the authenticator has a wrapping key (Wrap.sym), then the authenticator must protect this key as its
most sensitive asset. The overall security of the authenticator depends on the protection of this key.

Wrap.sym key strength must be equal or higher than the strength of secrets stored in a RawKeyHandle.
Refer to [SP800-57] and [SP800-38F] publications for more information about choosing the right wrapping
algorithm and implementing it correctly.

Wrap.sym It is highly recommended to generate, store and operate this key inside a trusted execution environment.

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

If the authenticator uses Wrap.sym, it must ensure that unwrapping corrupted KeyHandle and unwrapping
data which has invalid contents (e.g. KeyHandle from invalid origin) are indistinguishable to the caller.

B. Table of Figures

Fig. 1 UAF Authenticator Commands
Fig. 2 FIDO Authenticator Logical Sub-Components

C. References

C.1 Normative references

[Coron99]
J. Coron and D. Naccache An accurate evaluation of Maurer's universal test LNCS 1556, February 1999, URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in
progress.) URL: http:/fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf00

[ITU-X690-2008]
X.690: Information technology - ASN. 1 encoding rules: Specification of Basic Encoding Rules (BER), Canonicall
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). International
Telecommunications Union, November 2008 URL.: http://www.itu.int/rec/T-REC-X.690-200811-l/en

[SP800-90b]
Elaine Baker and John Kelsey, NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for
Random Bit Generation. National Institute of Standards and Technology, August 2012, URL:
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill EIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Review Draft (Work in
progress.) URL: http:/fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf0

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification vi.0CFIDO Alliance Review Draft (Work in
progress.) URL: http:/fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf]

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values vi.aFIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf0l

C.2 Informative references

[CLICKJACKING]
D. Lin-Shung Huang, C. Jackson, A. Moshchuk, H. Wang, S. Schlechter Clickjacking: Attacks and Defenses. USENIX,
July 2012, URL: https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdfld

[CommonCriteria]
CommonCriteria Publications. CCRA Members, Work in progress, accessed March 2014. URL:
http://www.commoncriteriaportal.org/cc/

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO Alliance Review Draft (Work in progress.)
URL: http:/ffidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf0]

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. National Institute of Standards and Technology,
May 2001, URL: http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf00

[NSTCBiometrics]
NSTC Subcommittee on Biometrics, Biometrics Glossary. National Science and Technology Council. 14 September
2006, URL: http:/biometrics.gov/Documents/Glossary.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC4086]
D. Eastlake 3rd, J. Schiller, S. Crocker Randomness Requirements for Security (RFC 4086), IETF, June 2005, URL.:
http://www.ietf.org/rfc/rfc4086.txt

[SP800-38F]
M. Dworkin, NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. National Institute of Standards and Technology, December 2012, URL:
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-57]

Recommendation for Key Management — Part 1: General (Revision 3) SP800-57. July 2012. U.S. Department of

http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Commerce/National Institute of Standards and Technology. URL: hitp://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57 part1 rev3 general.pdf

[SecureElement]
GlobalPlatform Card SpecificationsfGlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.aspld

[TEE]
GlobalPlatform Trusted Execution Environment SpecificationslGlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.aspll

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API SpecificationsiGlobalPlatform. Accessed March 2014. URL.:
https://www.globalplatform.org/specifications.aspl]

[TPM]
TPM Main SpecificationTrusted Computing Group. Accessed March 2014. URL:
http://www.trustedcomputinggroup.org/resources/tpm main_specification]

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

QO I ‘
2
3
~z§>é
&
S

FIDO UAF Authenticator Metadata Statements
vi.0

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-id-20141122.htmi0
Previous version:
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdfl]
Editors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

FIDO authenticators may have many different form factors, characteristics and capabilities. This document
defines a Blandard means to describe the relevant pieces of information about an authenticator in order to
interoperate with it, or to make risk-based policy decisions about transactions involving a particular
authenticator.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current FIDO Alliance publications and the latest revision of this technical
report can be found in the FIDO Alliance specifications indextat https.//www.fidoalliance.org/specifications/]

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document,
please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by EFIDO Alliance, Inc. Permission is
hereby granted to use the Specification solely for the purpose of implementing the Specification. No rightsO
are granted to prepare derivative works of this Specification. Entities seeking permission to reproducel
portions of this Specification for other uses must contact the BIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectuald
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any
other contributors to the Specification are not, and shall not be held, responsible in any manner for
identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS I1IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://fidoalliance.org/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Scope

2.2 Audience
2.3 Architecture

3. Types
3.1 CodeAccuracyDescriptor dictionary
3.11 Dictionary CodeAccuracyDescriptor Members

3.2 BiometricAccuracyDescriptor dictionary
3.2.1 Dictionary BiometricAccuracyDescriptor Members

3.3 PatternAccuracyDescriptor dictionary
3.3.1 Dictionary PatternAccuracyDescriptor Members

3.4 VerificationMethodDescriptor dictionaryld
3.4.1 Dictionary VerificationMethodDescriptor Members

3.5 verificationMethodANDCombinations typedefld

3.6 rgbPalletteEntry dictionary
3.6.1 Dictionary rgbralletteEntry Members

3.7 DisplayPNGCharacteristicsDescriptor dictionary
3.71 Dictionary DisplayPNGCharacteristicsDescriptor Members

4. Metadata Keys
4.1 Dictionary MetadataStatement Members

5. Metadata Statement Format

6. Additional Considerations
6.1 Field updates and metadata

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in “’, e.g. “UAF-TLV”.

In formulas we use “I” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL [WebIDL-ED].
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, Emust not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, @must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.0

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements.
Such members are marked in the WebIDL definitions found in this document, as Eequired. The
keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using
a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your
WeblIDL and use other means to ensure those fields are present.00

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”; “should not’, “recommended”,
“may”, and “optional” in this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety
of different devices in a competitive marketplace. Much of the complexity behind this variety is hidden from
Relying Party applications, but in order to accomplish the goals of FIDO, Relying Parties must have some
means of discovering and verifying various characteristics of authenticators. Relying Parties can learn a
subset of verifiable information for authenticators certified By the FIDO Alliance with an Authenticator
Metadata statement. The URL to access that Metadata statement is provided by the Metadata TOC fileOl
accessible through the Metadata Service [UAFMetadataService].

For definitions of terms, please refer to the FIDO Glossary [FIDOGlossary].

2.1 Scope

This document describes the format of and information contained in Authenticator Metadata statements. For
a definitive list Bf possible values for the various types of information, refer to the FIDO Registry of
Predefined Values [OAFRegistry].

The description of the processes and methods by which authenticator metadata statements are distributed
and the methods how these statements can be verified are described in fhe UAF Metadata Service
Specification [DAFMetadataService].

2.2 Audience
The intended audience for this document includes:

o FIDO authenticator vendors who wish to produce metadata statements for their products.

» FIDO server implementers who need to consume metadata statements to verify characteristics of
authenticators and attestation statements, make proper algorithm choices for protocol messages,
create policy statements or tailor various other modes of operation to authenticator-specificO
characteristics.

o FIDO relying parties who wish to
o create custom policy statements about which authenticators they will accept

o risk score authenticators based on their characteristics

o verify attested authenticator IDs for cross-referencing with
third party metadata

2.3 Architecture

TLS

protocol ‘ |T|-S ey

BROWSER fAPP - UAF Protocol : WEB SERVER

Cryptagraphic FIDO SERVER

FIDO CLIENT authentication key
reference DB

I Authentication
heys

FIDO AUTHENTICATOR

| Attestation key Undate

Authenticator = FIDO METADATA SERVICE
metadata & -
attestation trust
store

Certify

T compliance

Fig. 1 The UAF Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the
information contained in the authoritative statement is used in several other places. How a server obtains
these metadata statements is described in [UAFMetadataService].

The workflow around an authenticator metadata statement is as [bllows:

1. The authenticator vendor produces a metadata statement describing the characteristics of an
authenticator.

2. The metadata statement is submitted to the FIDO Aliance as part of the FIDO certification process.O
The FIDO Alliance distributes the metadata as described in [UAFMetadataService].

3. AFIDO relying party configures its registration policy to allow Buthenticators matching certain
characteristics to be registered.

4. The FIDO server sends a registration challenge message containing this policy statement.

5. The FIDO UAF Client receives the policy statement as part of the challenge message. It queries
available authenticators for their self-reported characteristics and (with the user's input) selects an
authenticator that matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message
contains the AAID for the authenticator and, optionally, a signature made with the private key
corresponding to the public key in the authenticator's attestation certificate.d

7. The FIDO Server looks up the metadata statement for the authenticator using the authenticator's
AAID. If the metadata statement lists an attestation certificate(s), it ierifies that an attestationd
signature is present, and made with the private key corresponding to either (a) one of the certificatesO
listed in this metadata statement or (b) corrsponding to the public key in a certificate that Bhains to one
of the issuer certificates listed in the authenticator's metadata statement.0

8. The FIDO Server next verifies that the authenticator meets the Briginally supplied registration policy
based on its authoritative metadata statement. This prevents a faulty, modified, or compromised FIDOO
UAF Client from registering authenticators that are out of policy.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the
authenticator, based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested AAID of the authenticator with other
metadata databases published by third parties. Such third-party metadata might, for example, inform
the FIDO Server if an authenticator has achieved certifications relevant to certain markets or industryd
verticals, or whether it meets application-specific regulatory E2quirements.

3. Types
This section is normative.

3.1 CodeAccuracyDescriptor dictionary

The codeaccuracypescriptor describes the relevant accuracy/complexity aspects of passcode user
verification methods.O0

NOTE
One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral systembase (radix) and minzen, instead of the number of potential
combinations since there is sufficient evidence [[PhonePasscodes] [MoreTopWorstPasswords] that
users don't select their code evenly distributed at random. So software might take into account the
various probability distributions for different bases. This essentially means that in practice, passcodes
are not as secure as they could be if randomly chosen.

WebIDL

dictionary CodeAccuracyDescriptor {
required unsigned short base;
required unsigned short minLength;
unsigned short

unsigned short

}i

3.1.1 Dictionary CodeAccuracyDescriptor Members

base Of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength Of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4
digits.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for
some time). 0 means it will never block.

blockSlowdown Of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or
similar). 0 means this user verification Bhethod will be blocked, either permanently or until an
alternative user verification method method succeeded. BIl alternative user verification methodsO
must be specified appropriately in the Metadata indderverificationbetails.

3.2 BiometricAccuracyDescriptor dictionary

The BiometricAccuracybescriptor describes relevant accuracy/complexity aspects in the case of a
biometric user verification method.O

NOTE

The False Acceptance Rate (FAR) and False Rejection Rate (FRR) values typically are
interdependent via the Receiver Operator Characteristic (ROC) curve.

The False Artefact Acceptance Rate (FAAR) value reflects the capability of detecting presentationd
attacks, such as the detection of rubber finger presentation.O]

The FAR, FRR, and FAAR values given here must reflect the actual configuration of thell
authenticators (as opposed to being theoretical best case values).

At least one of the valuesmust be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.baDesc must be omitted.

WebIDL

dictionary BiometricAccuracyDescriptor {

double FAR;
double FRR;
double EER;
double FAAR ;

unsigned short maxReferenceDataSets;

unsigned short bl

+i

3.2.1 Dictionary BiometricAccuracyDescriptor NMembers

FaRr of type double
The false acceptance rate [ISO19795-1] for a single reference data set, i.e. the percentage of
non-matching data sets that are accepted as valid ones. For example a FAR of 0. 12 would be
encoded as 0.001.

NOTE
The resulting FAR when all reference data sets are used is maxrReferencebataSets * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean
better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

FRR Of type double
The false rejection rate for a single reference data set, i.e. the percentage of presented valid data
sets that lead to a (false) non-acceptance. For example a FRR of 0. 12 would be encoded as
0.001.

NOTE

The false rejection rate is relevant for the convenience. Lower false acceptance rates mean
better convenience.

EER Of type double
The equal error rate for a single reference data set.

FaAR Of type double
The false artefact acceptance rate [ISO30107-1], i.e. the percentage of artefacts that are
incorrectly accepted by the system. For example a FAAR of 0.12 would be encoded as 0.001.

NOTE

The false artefact acceptance rate is relevant for the security of the system. Lower false
artefact acceptance rates imply better security.

maxReferenceDataSets Of type unsigned short
Maximum number of alternative reference data sets, e.g. 3 if the user is allowed to enroll 3
different fingers to a fingerprint based authenticator.0

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for

some time). 0 means it will never block.

blockSlowdown Of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or
similar). 0 means that this user verification Bhethod will be blocked either permanently or until an

alternative user verification method succeeded. BIl alternative user verification methods Bhust be
specified appropriately in the metadata in [kerverificationbetails.

3.3 PatternAccuracyDescriptor dictionary

The rpatternaccuracybescriptor describes relevant accuracy/complexity aspects in the case that a pattern
is used as the user verification method.O

NOTE

One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern]

screen unlock. The mincomplexity would be 1624 in that case, based on the user choosing a 4-digit
PIN, the minimum allowed for this mechanism.

WebIDL

dictionary PatternAccuracyDescriptor {
required unsigned long minC
unsigned short
unsigned short

}i

3.3.1 Dictionary PatternAccuracybDescriptor Members

minComplexity Of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the
right one, i.e. 1/probability in the case of equal distribution.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this
method (at least temporarily). 0 means it will never block.

blockslowdown Of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar
mechanism). 0 means this user verification Bhethod will be blocked, either permanently or until an

alternative user verification method method succeeded. BIl alternative user verification methodsl
must be specified appropriately in the metadata underdderverificationbetails.

3.4 VerificationMethodDescriptor dictionaryd
A descriptor for a specific Base user verification methodas implemented by the authenticator.

A base user verification method must be chosen from the list of those described in (IAFRegistry]
NOTE

In reality, several of the methods described above might be combined. For example, a fingerprintd
based user verification can be combined with an alternative password.OI

The specification of the related AccuracyDescriptor is optional, but recommended.O

WebIDL

dictionary VerificationMethodDescriptor {
required unsigned long userVerification;
CodeAccuracyDescriptor caDesc;

+i

3.4.1 Dictionary VerificationMethodDescriptor Members

userVerification Of type required unsigned long
a single user_veriry constant (see [UAFRegistry]), not a bit flag combinationLT his value must

be non-zero.

cabesc Of type CodeAccuracyDescriptor
May optionally be used in the case of methoduser VERTIFY PASSCODE.

babesc Of type BiometricAccuracyDescriptor
May optionally be used in the case of methoduser VERTFY FINGERPRINT, USER VERIFY VOICEPRINT,
USER_VERIFY FACEPRINT, USER VERIFY EYEPRINT, Of USER VERIFY HANDPRINT.

pabesc Of type PatternAccuracyDescriptor
may optionally be used in case of methoduser VERIFY PATTERN.

3.5 verificationMethodANDCombinations typedefld

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations must be non-empty. It is a list containing the list of base user
verification methods which must be passed as part Bf a successful user verification.O

This list will contain only a single entry if using a single user verification method is sufficient.O

If this list contains multiple entries, then all of the listed user verification methods Bhust be passed as part of
the user verification process.OI

3.6 rgbPalletteEntry dictionary

The rgbralletteEntry is an RGB three-sample tuple pallete entry

WebIDL

dictionary rgbPalletteEntry {
required unsigned short rj;
required unsigned short g;
required unsigned short ﬁ;

}i

3.6.1 Dictionary rgbralletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.7 DisplayPNGCharacteristicsDescriptor dictionary

The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNGO
[PNG] spec for IHDR (image header) and PLTE (palette table)

WebIDL

dictionary DisplayPNGCharacteristicsDescriptor {
required unsigned long w ;
required unsigned long h
required octet b

required octet P
required octet -
required octet 3
required octet iR
rgbPalletteEntry|] plte;

}i

3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

width Of type required unsigned long
image width

height Of type required unsigned long
image height

bitbepth Of type required octet
Bit depth - bits per sample or per palette index.

colorType Of type required octet
Color type defines the PNG image type.O

compression Of type required octet
Compression method used to compress the image data.

filter Of type required octet

Filter method is the preprocessing method applied to the image data before compression.

interlace Of typerequired octet
Interlace method is the transmission order of the image data.

plte of type array of rgbPalletteEntry
1 to 256 palette entries

4. Metadata Keys

This section is normative.

WebIDL

dictionary MetadataStatement {

required AAID aaid;

required DOMString description;

required unsigned short authenticatorVersion;
required Version[] upv;

required DOMString assertionScheme;

required unsigned short authenticationAlgorithm;
required unsigned short publicKeyAlgAndEncoding;
required unsigned short[] attestationTypes;

required VerificationMethodANDCombinations[] userVerificationDetails;
required unsigned short keyProtection;

required unsigned short matcherProtection;

required unsigned long attachmentHint;

required boolean EEEEEBHHFEEEBEOnly;

required unsigned short tcDisplay;

DOMString £Eﬁi§§ié§ContentType;
DisplayPNGCharacteristicsDescriptor|] tcDisplayPNGCharacteristics;
required DOMString[] attestationRootCertificates;
required DOMString icon;

}i

4.1 Dictionary Metadatastatement Members

aaid of type required AAID
The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure.Ol

description Of type required DOMString
A human-readable short description of the authenticator.

NOTE

This description should help an administrator configuring authenticator policies. Mhis
description might deviate from the description returned by the ASM for that authenticator.

authenticatorVersion Of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorversion meeting the requirements specified in thisO
metadata statement.

Adding new statusreport entries with status urpaTe avarrasre t0 the metadata Toc object
[UAFMetadataService] must also change this authenticatorversion if the update fixes severell
security issues, e.g. the ones reported by preceding statusreport entries with status code
USER_VERIFICATION_ BYPASS, ATTESTATION KEY COMPROMISE, USER_KEY REMOTE COMPROMISE,
USER_KEY PHYSICAL COMPROMISE, REVOKED.

It is recommended to assume increased risk if this version is higher (newer) than the firmwarell
version present in an authenticator. For example, if a statusreport entry with status

USER VERIFICATION BYPASS Of USER KEY REMOTE COMPROMISE precedes the urpaTE AVATILABLE entry,
than any firmware version lower (older) than the one BEbecified in the metadata statement isO
assumed to be vulnerable.

upv Of type array ofrequired Version
The UAF protocol version(s) supported by this authenticator. See [UAFProtocol] for the definitionO
of the version structure.

assertionScheme Of type required DOMString
The assertion scheme supported by the Authenticator. Must be set to one of the enumerated
Strings defined in the FIDO UAF Begistry of Predefined Values [DAFRegistry].

authenticationAlgorithm Of type required unsigned short
The authentication algorithm supported by the authenticator. Must be set to one of the uar arc
constants defined in the HIDO UAF Registry of Predefined Values [DAFRegistry]. This value must
be non-zero.

publicKeyAlgAndEncoding Of type required unsigned short
The public key format used by the authenticator during registration operations. Must be set to one
of the uar arc kev constants defined in the HIDO UAF Registry of Predefined Valuesl
[UAFRegistry]. Because this information is not present in APIs related to authenticator discovery
or policy, a FIDO server must be prepared to accept and process any and all key representations
defined for any public key algorithm it supports. Mhis value must be non-zero.

attestationTypes Of type array ofrequired unsigned short
The supported attestation type(s). (e.g. Tac_arTestarron Basic runn) See UAF Registry for more
information [UAFRegistry].

userVerificationDetails Of type array ofrequired VerificationMethodANDCombinations
A list alternative VerificationMethodANDCombinations. Bach of these entries is one alternative
user verification method. Hach of these alternative user verification methods might fkelf be an
"AND" combination of multiple modalities.

All effectively available alternative user verification methodsdust be properly specified here. B
user verification method is considered effectively available if this method can be used b either:

« enroll new verification reference data to one of the user verification methodsO
or
» unlock the UAuth key directly after successful user verificationd

keyProtection Of type required unsigned short
A 16-bit number representing the bit fields defined by the Kty _rrorecTION constants in the FIDO
Registry of Predefined Malues [UAFRegistry].

This value must be non-zero.

matcherProtection Of type required unsigned short
A 16-bit number representing the bit fields defined by the lhTcuer proTECTION CONstants in the
FIDO Registry of Predefined Malues [UAFRegistry].

This value must be non-zero.

NOTE

If multiple matchers are implemented, then this value must reflect the Weakest
implementation of all matchers.

attachmentHint Of type required unsigned long
A 32-bit number representing the bit fields defined by the ElrracamenT nInT constants in the FIDO
Registry of Predefined Malues [UAFRegistry].

NOTE

The connection state and topology of an authenticator may be transient and cannot be
relied on as authoritative by a relying party, but the metadata field should Bave all the bit
flags set for the topologies possible for the Buthenticator. For example, an authenticator
instantiated as a single-purpose hardware token that can communicate over bluetooth
should set ATTACHMENT HINT EXTERNAL but NOt ATTACHMENT HINT INTERNAL.

isSecondFactoronly Of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some
other authentication method as a first factor (e.g. username+password).00

tcbisplay Of type required unsigned short
A 16-bit number representing the bit fields defined by the EkansacrIon conrIRMATIOM DISPLAY
constants in the FIDO Registry of Predefined Malues [UAFRegistry].

This value must be 0, if transaction confirmation is not supported by the authenticator.d0

tcDisplayContentType of type DOMString

Supported MIME content type [RFC2049] for the transaction confirmation Hisplay, such as
text/plain Of image/png.

This value must be present if transaction confirmation is supported, k. tcpisplay iS Non-zero.

tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor

Alist of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative
of supported image characteristics for displaying a PNG image.

This list must be present if transaction confirmation is supported, k. tcpisplay is hon-zero.

attestationRootCertificates Of type array ofrequired DOMString

Each element of this array represents a PKIX RFC5280] trust root X.509 certificate that is validO
for this AAID. Multiple certificates might be used for different batches without Histinct AAIDs. The
array does not represent a certificate Ehain, but only the trust anchor of that chain.

Each array element is a Base64-encoded (section 4 of [RFC4648]), DER-encoded [TU-X690-
2008] PKIX certificate Malue. Each element must be dedicated for authenticator attestation.
NOTE
A certificate listed here is a trust root. It might be the Elctual certificate presented by thell
authenticator, or it might be an issuing authority certificate from the vendor that the Blctual
certificate in the authenticator chains to.O

The attestation certificate itself and the ordered certificate Bhain is included in the
registration assertion (see [UAFAuthnrCommands]).

Either
» the manufacturer attestation root certificated
or
« the root certificate related to a specific AAIDO

must be specified included here.O

In the case (a), the root certificate might cover multiple Buthenticator types (i.e. multiple AAIDs).
In this case, the AAID must be specified in the SubjectDN CommonName (oid 2.5.4.3) of thell
Attestation Certificate. In the case (b) it is not required to include the AAID in Bhe SubjectDN
CommonName of the attestation certificate, as the Ebot certificate only covers a single AAID.O

In the case of surrogate basic attestation (see UAFProtocol], section "Surrogate Basic
Attestation"), no attestation root certificate is required/used. Bo this array must be empty in that
case.

icon Of type required DOMString

A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

5. Metadata Statement Format

This section is non-normative.

NORMATIVE

A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary
MetadataStatement.

Example of the metadata statement for an authenticator with:

« authenticatorVersion 2.

Fingerprint based user verification with false acceptance rate of 0.001.0
Authenticator is embedded with the FIDO User device.

The authentication keys are protected by TEE.

The (fingerprint) matcher is implemented in TEE.O

The Transaction Confirmation Display is implemented in a TEE.O
The Transaction Confirmation Display supports display of "image/png" objects only.00

Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color
(=Color Type 2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) andO

no interlacing support (interlace method=0).

The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.O

It supports the "UAFV1TLV" assertion scheme.

It uses the uar arc s1icN EcDsA sHa256 Rraw authentication algorithm.

It uses the uar arc kEv Ecc x962 Rraw public key format (0x100=256 decimal).

It only implements the Tac arTEsTarTon BasTc rFurnn method (0x3E07=15879 decimal).
It implements UAF protocol version 1.0 only.

{ "aaid": "1234#5678",

"description": "FIDO Alliance Sample UAF Authenticator",
"authenticatorvVersion": 2,

"upv": [{ "major": 1, "minor": 0 }1],

"assertionScheme": "UAFV1TLV",

"authenticationAlgorithm": 1,

"publicKeyAlgAndEncoding": 256,

"attestationTypes": [15879],

"userVerificationDetails": [[{ "userVerification": 2, "baDesc": { "FAR":
"keyProtection": 6,

"matcherProtection": 2,

"attachmentHint": 1,

"isSecondFactorOnly": "false",

"tcDisplay": 4,

"tcDisplayContentType": ["image/png"],

"tcDisplayPNGCharacteristics": [{"width": 320, "height": 480, "bitDepth": 16,

"colorType": 2, "compression": 0, "filter": 0, "interlace": 0}],

"attestationRootCertificates": [
"MIICPTCCAeOgAwWIBAgIJAOuexvU30y2wMAOGCCgGSM4 9BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHR1c3RhdG1lvbiBSb290MRYWFAYDVQQKDA1GSURPIEFsbGlhbmN1
MREwDWYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGF sbyBBbHRVMQswCQYDVQQI
DAJDQTELMAKGA1UEBhMCVVMwHhCNMTQwWN jE4MTMzMzMyWhcNNDEXMTAZMTMzMzMy
WjB7MSAwWHgYDVQQDDBATYW1wbGUgQXR0OZXNOYXRpb24gUm9vdDEWMBQGA1UECgwWN
RK1ETyBBbGxpYWS5JjZTERMASGA1UECWWIVUFGIFRXRYWXE jAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOEXCZzAJBgNVBAYTALVTMFKkWEWYHKOZIZzjOCAQYIKOZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrgOBb58pxGgHIRYyX/ 6NQME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It7zE4w8hk5EJ/MB8GA1UdIWQYMBaAFPOHA3CLhXFbC0It7zE4w8hk5EJ/MAWG
AlUJEwQFMAMBAf8wWCgYIKoZIzjOEAWIDSAAWRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZzf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
19=="1,

"icon": "data:image/png;base64,
iVBORWOKGgOAAAANSUhEUgAAAES8AAAAVCAYAAACiwIfcAAAAAXNSROIArs4c6QAAAARNQU1IBAACK
jwv8YQUAAAAJCEhZcwAADSMAAA7DAcAVGQAAAahSURBVGhD7Zr5bxR1GME9KZzTB8AM/YEhE2W7p
QZCWKKBc1SpHAT1ELARE 7kNECCA3FKkWKOCKKSCFISKBcgVCDWGNESAAYidwgggIBiRiMhFc/4wy8
884zuI9Nd1lnGT£ZJP2n3n0++88933fveBBx+PqCzJkTUVBbLmpUDWVBTImpcCSZVvXLCAX9R055k19
bb5atf599fG+/erA541g47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7aiin7QZPMwbdys2erU2XMg
Udy8+ZcaNmGimE8yXN3RUd3al8nF0fUlovZ+0CTzWpd2Vj+eOmlbEyy6Dx41i5pUMGWve05069227
dtuWBIuffr6oWpVOFPNLhowl751Nm21LvPH3rVtWjfz66Lfgql8tX7FRLIIYFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvpOkZHMTZg9x7bLHcMnThbl6eJ+mVEQq8yaUZONG64 i
XZ%+0/kqg6u0ZFO0QtatdWKfXnRQ9I9IBF91R50IFnk54 JNOmkUigqlO3XDW+M1+98mKB6tW7 riWpZcPc+
0zg4tLrY1lUc86E6eGDjIMubVpcusearfgIYGRk6brhzZVr/JcHzooL7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkzOPeemMRYVVUQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYgj6oua¥YvEe
nW/W1lYjp8cwbMm682tPwqWlR4tj/2SH13IRIY14moZvXpiSgDr7dXtQHxa/PK3/+BWsK1dTgHU6V
8tQJI3bwFkwpFrU0OQ50s1r3levm8zZcqgl7+BBaw7K81EK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVg6Rgw4pksmbdi3bu2De7YfaBBxcqfvgPrUjFONTQ221fdUVVT68rT
JKF5DnSmUjgdgqg4mSS9pms fDIR3G6ToH0iW9aV7/LWLHYXK11TDtOLTAtkYIaamplQjVv++uyGUxV
dJODNVXSm+b1lgRxpl84ddfX1Lpl0/d69tsod0vs5hGre9dxu8o+fpLR1cGhNTD6Z57CIKMWXefJIdO
Z94bb90gd1ROnNS7qITTzHimMgivb03g0DdVyk3WQOBhBztK35YKNdOnc803acS6£fDZFgKaXLsEJp5
rdrliBgp89cJcs/m7Tvs0rkjGEN4b0kPoZn3UJuIOrnZz22yPlfmvUx+059SgebVim+zSuYNVhg7T
WbDiLVv1jplLlop6CLXP+2gtvGLIL/1vimISdMBgzSoFZyu6Tqgd+jzxgsPavIBCgee/NjYk6v61K
9cwiUc/STtf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqgS5cv26q7ceb8efVYaReP3iFU8zjlknSw
ZXHMmnCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1£G3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537FjqyzOHdInHEuzmXq/Wjx0bvNMbv7nhywsX2avsWtC8+48aLleap
E7p5wKZi0A2AQRV5nvR4E+uJc+b6 1kApgInxBgmd/4V5QP/mt 18HDC7sRHEftmeu51mhvV0rn/ALX2
32bgd4BFnDx7VilcWS2uff0IbB47gexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1l+ugCadri
XGfwMPPtViavhU3YMOAANuUb/RO7L0y0Se0adE88ApsXFGEff30ynhl1JgM51CU6VNIEZzgnpvHBFUyY
iVraePiwJ53DF5ZTZnomENg85kNUd20Ji2Wpr40OmmkfN4x4zHf iVFc8Dv8NzuhNgOidilGvA6DGu
eZwO78AAQN6CciEk6+rw5VevjvgNDYPOOIUwaKShrxAuXL1kH4aYuGEMYDc10WF5Ta31hPJOfcUhr
U/J1lINi6éc6elRYdBpo6++Yfjx611GNEfRM4MD5rJ1j3FoGHNnjDSBNarYUgMLyMs zKpb7tXpoHfPs8
h3WplLzNfNk54XxC1lwDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRJHEKkk72zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GgxQ6BzeNboBk5n8k4nebRh+k1hWfxTFOD1EyWUs5nv+dgQgKaxzuCdEOL
sH102NQ8ahOmXr12La3m0f9wik9+wLNTMY/86MPo8yi310£fxmT6PWogG9+DZukYna56mSZt5WWSy
5gVAlrwUyJgXAlnzkiai/gHSD7RkTyihogAAAABJRUSErkJggg=="

}

0.001 } }]

Example of an User Verification Methodsléntry for an authenticator with:

o Fingerprint based user verification method, with:O
o the ability for the user to enroll up to 5 fingers (reference data sets) withO

= a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01%0
(0.0001).

= The fingerprint verification will be blocked after 5 unsuccessful attempts.O

» A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verificationO
method. Entering the PIN will be required to re-activate fingerprint based user verification after it hasO
been blocked.

[

[{ "userVerification": 2, "baDesc": { "FAR": 0.00002, "maxReferenceDataSets": 5,
"maxRetries": 5, "blockSlowdown": 0} }1,
[{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } } 1]

]

6. Additional Considerations

This section is non-normative.

6.1 Field updates and metadata

Metadata statements are intended to be stable once they have been published. When authenticators are
updated in the field, such updates are expected to improve the authenticator security dor example, improve
FRR or FAR). The authenticatorversion must be updated if firmware updates fixing severe security Bsues
(e.g. as reported previously) are available.

NOTE

The metadata statement is assumed to relate to all authenticators having the same AAID.

NOTE

The FIDO Server is recommended to assume increased risk if theauthenticatorversion specified in0
the metadata statement is newer (higher) than the one present in the authenticator.

NORMATIVE

Significant changes in authenticator Einctionality are not anticipated in firmware updates. Hor example, if
an authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a
user verification method, the vendor would Bhust assign a new AAID to this authenticator.

NORMATIVE
A single authenticator implementation could report itself as two "virtual" authenticators using different
AAIDs. Such implementations must properly (i.e. according to the security characteristics claimed in the

metadata) protect vauth keys and other sensitive data from the other "virtual" authenticator - just as a
normal authenticator would do.

NOTE
Authentication keys (vauth.pub) registered for one AAID cannot be used by authenticators reporting a

different AAID - even when running on the same hardware (see section "Authentication Response
Processing Rules for FIDO Server" in [UAFProtocol]).

A. References

A.1 Normative references

[1ISO19795-1]
ISO/IEC JTC 1/SC 37, Information Technology - Biometric peformance testing and reporting - Part 1:
Principles and framework, URL: http://www.iso.org/iso/catalogue detail.htm?csnumber=41447
[1ISO30107-1]
ISO/IEC JTC 1/SC 37, Information Technology - Biometrics - Presentation attack detection - Part 1:
Framework, URL.: http://www.iso.org/iso/catalogue detail.htm?csnumber=53227
[RFC2049]
N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance
Criteria and Examples (RFC 2049), IETF, November 1996, URL:http://www.ietf.org/rfc/rfc2049.txt
[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:
https://tools.ietf.org/html/rfc2397
[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL.:

http://heycam.github.io/webidl/

A.2 Informative references

[AndroidUnlockPattern]
Android Unlock Pattern Security Analysis. Sinustrom.info web site. URL:
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/'
[ECMA-262]
ECMAScript Language Specification, Edition 5. 100June 2011. URL: http://www.ecma-
international.org/publications/standards/Ecma-262.htm
[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance
Review Draft (Work in progress.) URL: http:/fidoalliance.org/specs/fido-glossary-v1.0-rd-00
20140209.pdf
[ITU-X690- 2008]
X.690: Inf

) ol . e) .
Canonical Encoding Rules (CER) and Distinguished Encod/ng Rules (DER), (T-REC-X.690-200811).

International Telecommunications Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-

200811-l/en

[MoreTopWorstPasswords]
10000 Top Passwords, Mark Burnett (Accessed July 11, 2014) URL:https://xato.net/passwords/more-
top-worst-passwords/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition)[10 November 2003.
W3C Recommendation. URL: http://www.w3.0rg/TR/PNG

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current

Practice. URL: https://tools.ietf.org/html/rfc2119
[RFC4648]

S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006,
URL: http://www.ietf.org/rfc/rfc4648.txt
[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) ProfiledIETF, May 2008, URL:
http://www.ietf.org/rfc/rfc5280.txt
[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: http:/fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
[UAFMetadataService]
R. Lindemann FIDO UAF Metadata Service v1.0 FIDO Alliance Working Draft (Work in progress.)
URL: TODO
[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0fFIDO Alliance
Review Draft (Work in progress.) URL: http:/fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-00

20140209.pdf
[UAFRegistry]

R. Lindemann, D. Baghdasaryan, B. Hill, EIDO UAF Registry of Predefined Values v1.a(FIDO Alliance
Review Draft (Work in progress.) URL: http:/fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf0
[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL:
http://www.w3.org/TR/WebIDL/
[iPhonePasscodes]
Most Common iPhone Passcodes, Daniel Amitay (Accessed July 11, 2014) URL:
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
http://www.w3.org/TR/PNG
http://www.w3.org/TR/PNG
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

-
Q
&
S

Q

FIDO UAF Authenticator Metadata Service v1.0
FIDO Alliance Implementation Draft 22 November 2014

This version:
https://ffidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.htmi00
Editor:
Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

The FIDO UAF Authenticator Metadata Specification defines Bb-called "Authenticator Metadata" statements. The
metadata statements contain the "Trust Anchor" required to validate the attestation object, and they also describe
several other important characteristics of the authenticator.

The metadata service described in this document defines a baseline method for relying parties to access the latest]
metadata statements.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found
in the FIDO Alliance specifications indextat https.//www.fidoalliance.org/specifications/O]

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become
a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All
comments are welcome.

This Implementation Draft Specification has been prapared by EIDO Alliance, Inc. Permission is hereby

granted to use the Specification solely for the purpose of implementing the Specification. No rights Bre granted to
prepare derivative works of this Specification. Entities seeking permission to reproduce Bortions of this Specificationd
for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property
rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors
to the Specification are not, and shall not be held, responsible in any manner Ebr identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2.1 Scope
2.2 Detailed Architecture

3. Metadata Service Details
3.1 Metadata TOC Format
3.1.1 Metadata TOC Payload Entry Dictionary
3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

3.1.2 StatusReport dictionary
3.1.2.1 Dictionary statusreport Members

3.1.3 AuthenticatorStatus enum

3.1.4 Metadata TOC Payload Dictionary
3.1.4.1 Dictionary vetadataTocPayload Members

3.1.5 Metadata TOC
3.1.5.1 Examples

3.1.6 Metadata TOC object Processing Rules

4., Considerations

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “”, e.g. “UAF-TLV".

ulu

In formulas we use “I” to denote byte wise concatenation operations.

The notation base64url (byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with
URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WeblIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, @Imust not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, HMST NOT be an empty list.

UAF specific terminology used in this document is defined in FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.O0

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this document, as quired. The keyword required
has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which

implements [WeblIDL], then you may remove the keyword required from your WebIDL and use other means to
ensure those fields are present.0]

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO UAF specification defines Authenticator Metadata Etatements [UAFAuthnrMetadata].

These metadata statements contain the "Trust Anchor" required to verify the attestation object (more specifically theO
KeyRegistrationData Object), and they also describe several other important characteristics of the authenticator,
including its AAID, supported authentication and registration assertion schemes, and key protection flags.O

These characteristics can be used when defining policies [IAFProtocol] about which authenticators are acceptable
for registration or authentication.

The metadata service described in this document defines a baseline method for relying parties to access the latestd
metadata statements.

FIDO Server

FIDO Authenticator

Afttestation Object

1. Verify 2. Support policy
attestation configuration
object using using Metadata
trust anchor

from Metadata

Afttestation Key

Metadata

Authenticator Vendor | Metadata Service

__ Provide Metadata
as part of FIDO Certification

Fig. 1 UAF Metadata Service Architecture Overview

2.1 Scope
This document describes the FIDO Metadata Service architecture in detail and it defines the structure and interfacel

to access this service. It also defines the flow of the metadata related messages Bnd presents the rationale behind
the design choices.

2.2 Detailed Architecture

The metadata "table-of-contents" (TOC) file contains a list of metadata statements Eglated to the authenticators
known to the FIDO Alliance (FIDO Authenticators).

The FIDO Server downloads the metadata TOC (file) from a well-known FIDO URL and caches it locally.O

The FIDO Server verifies the integrity and authenticity of this Bhetadata TOC file using the digital signature. It thenO
iterates through the individual entries and loads the metadata statements related to authenticator AAIDs relevant to
the relying party.

Individual metadata statements will be downloaded from the URL specified in the entry of the TOC file, and may bell
cached by the FIDO Server as required.

The integrity of the metadata statements will be verified by the BIDO Server using the hash value included in the
related entry of the metadata TOC file.OO

Direction of data flow

Direction of connection

A

Download
Metacdata

Statement from
Authenticator Vendor

Authenticator Vendor

Provide Metadata

Fig. 2 UAF Metadata Service Architecture

NOTE

as part of FIDO Cerlification”

FIDO Server

2. Download & 1. Download &
verify Metadata verify Metadata
Staterment from TOC from well-
URL supplied in known URL
Metadata TOC

: T
Download

Metadata Download
Statement from Metadata TOC
Metadata Service
+ |

Metadata Service

The single arrow indicates the direction of the network connection, the double arrow indicates the direction of

the data flow.O

NOTE

The Metadata TOC (file) is freely accessible at a well-known URL published by the BIDO Alliance.

NOTE

The relying party decides how frequently the metadata rervice is accessed to check for metadata TOC

updates.

3. Metadata Service Details

This section is normative.

NOTE

The relying party can decide whether it wants to use the metadata service and whether or not it wants to
accept certain authenticators for registration or authentication.

The relying party could also obtain metadata directly from authenticator vendors or other trusted sources.

3.1 Metadata TOC Format

NOTE

The metadata service makes the metadata TOC object (see Metadata TOC) accessible to FIDO Servers.

This object is a "table-of-contents" for metadata, as it includes the AAID, the download URL and the hash
value of the individual metadata Statements. The TOC object contains one signature.

3.1.1 Metadata TOC Payload Entry Dictionary

Represents the MetadataTOCPayloadEntry

WebIDL

dictionary MetadataTOCPayloadEntry {

required AAID aaid;

required DOMString hash;

required DOMString url;

required StatusReport[] statusReports;

required DOMString timeOfLastStatusChange;

3.1.1.1 Dictionary MetadataTocrayloadentry Members

aaid of type required AAID
The AAID of the authenticator this metadata TOC payload entry relates to. See [UAFProtocol] for the
definition of the AAID structure.O

hash of type required DOMString

base64url(string[1l..512])

The hash value computed over the Base64url encoding of the UTF-8 representation of the JSON encoded
metadata statement available at ur1 and as defined in [MAFAuthnrMetadata]. The hash algorithm related
to the signature algorithm specified in the JWTHeader (see Metadata TOC) must be used.

NOTE

This method of base64url-encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

url of type required DOMString
Uniform resource locator (URL) of the encoded metadata statement for this authenticator model (identified
by its AAID). This URL must point to the base64url encoding of the UTF-8 representation of the JSON
encoded Metadata Statement as defined in [DAFAuthnrMetadata).

encodedMetadataStatement = Base64url(utf8(JSONMetadataStatement))

NOTE

This method of the base64url encoding the UTF-8 representation is also used by JWT [JWT] to
avoid encoding ambiguities.

statusReports Of type array ofrequired StatusReport
An array of status reports applicable to this authenticator.

timeOfLastStatusChange Of type required DOMString
ISO-8601 formatted date since when the status report array was set to the current value.

{ "no": 1234, "next-update": "2014-03-31",
"entries": [
{ "aaid": "1234#5678",
"hash": "90da8da6de23248abb34da0d4861£f4b30a793e198a8d5baa7£f98£260db71lacd4"”,
"url": "https://fidoalliance.org/metadata/1234%x23abcd",
"statusReports": [
{ status: "FIDO_CERTIFIED", effectiveDate: "2014-01-04"}

1,
"timeOfLastStatusChange": "2014-01-04"
Y
{ "aaid": "9876#4321",
"hash": "785d16df640fd7b50ed174cb5645cc0£f1e72b7£19¢c£22959052dd20b9541c64d",
"url": "https://authnr-vendor-a.com/metadata/9876%x234321",
"statusReports": [
{ status: "FIDO_CERTIFIED", effectiveDate: "2014-01-07"},
{ status: "UPDATE_AVAILABLE", effectiveDate: "2014-03-08",
url: "https://example.com/updatel234" }

1r
"timeOfLastStatusChange": "2014-02-19"
}

NOTE

The character # is a reserved character and not allowed in URLs RFC3986]. As a consequence it has been
replaced by its hex value ¢x23.

The authenticator vendors can decide to let the metadata service publish its metadata statements or to

publish metadata statements themselves. Authenticator vendors can restrict access to the metadata
statements they publish themselves.

3.1.2 StatusReport dictionary

NOTE
Contains an authenticatorstatus and additional data associated with it, if any.

New statusreport entries will be added to report known issues present in firmware updates.O

The latest statusreport entry must reflect the "current" status. For example, if the latest entry has status
USER_VERIFICATION BYPASS, then itis recommended assuming an increased risk associated with all authenticators of
this AAID; if the latest entry has status vepate avarrasre, then the update is intended to address at least all previous
issues reported in this StatusReport dictionary.

WebIDL

dictionary StatusReport {
required AuthenticatorStatus status;

DOMString effecﬁiveDate}
DOMString certificate;
DOMString url;

3.1.2.1 Dictionary statusreport Members

status Of type required AuthenticatorStatus
Status of the authenticator. Additional fields Bhay be set depending on this value.

effectivebate Of type DOMString
ISO-8601 formatted date since when the status code was set, if applicable. If no date is given, the status
is assumed to be effective while present.

certificate Of type DOMString
Base64-encoded [RFC4648] (not base64url!) DER [ITU-X690-2008] PKIX certificate value Eglated to the
current status, if applicable.

NOTE

As an example, this could be an Attestation Root Certificate (see [MAFAuthnrMetadata)) related to a
set of compromised authenticators (ATTESTATION_KEY_COMPROMISE).

url of type DOMString
HTTPS URL where additional information may be found related to the current status, if applicable.

NOTE

For example a link to a web page describing an available firmware update in the case of statusO
UPDATE AVAILABLE, Of @ link to a description of an identified issue in the case of Btatus
USER_VERIFICATION_BYPASS.

3.1.3 AuthenticatorStatus enum

This enumeration describes the status of an authenticator model as identified by its BAID and potentially some
additional information (such as a specific attestation key).OO

WebIDL

enum AuthenticatorStatus {
"FIDO_CERTIFIED",
"NOT_FIDO_CERTIFIED",
"USER_VERIFICATION_ BYPASS",
"ATTESTATION_ KEY COMPROMISE",

"USER_KEY REMOTE_COMPROMISE",
"USER_KEY_ PHYSICAL_ COMPROMISE",
"UPDATE_AVAILABLE",
"REVOKED"

}i

Enumeration description

FIDO CERTIFIED This authenticator is FIDO certified.O
NOT FIDO_ CERTIFIED This authenticator is not FIDO certified.O0

Indicates that malware is able to bypass the user verification. his means that
USER_VERIFICATION BYPASS the authenticator could be used without user's consent and potentially even

without user's knowledge.

Indicates that an attestation key for this authenticator is known to be
ATTESTATION KEY COMPROMISE compromised. Additional data should be supplied, including the key identifierd
and the date of compromise, if known.

This authenticator has identified weaknesses that allow Ebgistered keys to be
compromised and should not be trusted. This would include both, e.g. weak
entropy that causes predictable keys to be generated or side channels that
allow keys or signatures to be forged, guessed or extracted.

This authenticator has known weaknesses in its key protection mechanism(s)
USER_KEY PHYSICAL coMprOMISE that allow user keys to be extracted by an adversary in physical possession of
the device.

A software or firmware update is available for the device. Bdditional data should
be supplied including a URL where users can obtain an update and the date the
update was published.

USER_KEY_ REMOTE_COMPROMISE

When this code is used, then the field Elithenticatorversion in the metadata
Statement [UAFAuthnrMetadata] must be updated, if the update fixes severell
security issues, e.g. the ones reported by preceding StatusReport entries with
status code USER VERIFICATION BYPASS, ATTESTATION KEY COMPROMISE,

UPDATE AVAILABLE USER_KEY_REMOTE_COMPROMISE, USER_KEY PHYSICAL_COMPROMISE, REVOKED.

NOTE

Relying parties might want to inform users about available firmwareQ
updates.

The FIDO Alliance has determined that this authenticator should not be trusted
REVOKED for any reason, for example if it is known to be a fraudulent product or contain a
deliberate backdoor.

3.1.4 Metadata TOC Payload Dictionary

Represents the MetadataTOCPayload

WebIDL

dictionary MetadataTOCPayload {
required Number no;
required DOMString nextUpdate;
required MetadataTOCPayloadEntry[] entries;

}i

3.1.4.1 Dictionary MetadataTocrayload Members

no of type required Number
The serial number of this UAF Metadata TOC Payload. Serial numbers must be consecutive and stricly
monotonical, i.e. the successor TOC will have a no value exactly incremented by one.

nextUpdate Of type required DOMString
ISO-8601 formatted date when the next update will be provided at latest.

entries Of type array ofrequired MetadataTOCPayloadEntry
List of zero or more MetadataTOCPayloadEntry objects.

3.1.5 Metadata TOC

The metadata table of contents (TOC) is a JSON Web Token (see JWT] and [JWS]).

It consists of three elements:

« The base64url encoding, without padding, of the UTF-8 encoded JWT Header (see example below),

o the base64url encoding, without padding, of the UTF-8 encoded UAF Metadata TOC Payload (see example at
the beginning of section Metadata TOC Format),

« and the base64url-encoded, also without padding, JWS Signature [JWS] computed over the to-be-signed
payload, i.e.

tbsPayload = EncodedJWTHeader | "." | EncodedMetadataTOCPayload

All three elements of the TOC are concatenated by a period ("."):
MetadataTOC = EncodedJWTHeader | "." | EncodedMetadataTOCPayload | "." | EncodedJWSSignature

The hash algorithm related to the signing algorithm specified in the JWT Header (e.g. SHA256 in the Ekse of
"ES256") must also be used to compute the hash of the metadata statements (see section Metadata TOC Payload

Entry Dictionary).

3.1.5.1 Examples

This section is non-normative.

eyAiQUFJRCI6ICIXMjMO0IZzU2NzgiLAOKICAIiQXROZXNOYXRpb25Sb29002VydGlmaWNhdGUiOiAL
TULJQ1BUQONBZU9NQXdJQKFnSUpBT3V1eHZVMO095MndNQWIHQONXRINNND1CQU1DTUhzeE1EQWVC
Z05WQkFNTQOKRjFOaGJIJYQOnNaUOJCZEhSbGMzUmhkR2x2Ym1CU2IyOTBNU113RkFZRFZRUUtEQTFH
UlVSUE1FRnNNiR2x0Ym1ObAOKTVJIFAOR3WURWUVFMREFOV1FVWWAWRMRITERFUO1CQUdBMVVFQnd3
S1VHRnNieUJCYkhSdk1Rc3dDUV1EV1FRSQOKREFKRFFURUXNQWtHQTFVRUJOTUNWVk13SGhjTk1U
UXdOakUOTVRNek16TX1XaGNOTKkRFeE1UQXpNVE16TXpNeQOKV2pCNO1TQXdIZ11EV1IFRRERCZFRZ
VzF3YkdVZ1FYUJjBaWE4wWVhScGIyNGdVbT12ZERFV01CUUdBMVVFQ2d3Tg0KUmt sSRVR5QkJiR3hw
WVclalpURVINQThHQTFVRUN3dO1WVUZHSUZSWFJI5d3hFakFROmdOVkJIBY01DVkJoYkc4Zw0KUVd4
MGJ6RUXNQWtHQTFVRUNBAONRMEV4Q3pBSkJnT1ZCQV1UQWXWVE1Ga3dFd11IS29aSXpgMENBUV1J
S29aSQ0KemowREFRYORRZO0FFSDhodjJEMEhYYTUSL0JtcFE3UlplaEwvRk1HekZkMVFCZz12QVVw
T10zYWpudVESNFBSNwOKYU16SDMzblVTOnI4ZkhZRHIXT0JiNThweEdxSEpSeVgvNk5RTUUOdOhR
WURWUJjBPQkJZRUZQbOhBMONMaHhGYg0KQzBJdDd6RTR30GhrNUVKLO01COEdABMVVkSXdRWU1CYUFG
UG9IQTNDTGh4RmJDME1ON3pFNHc4aGs l1RUoVTUF3RwOKQTFVZEV3UUZNQU1CQWY4dONnWUlLb1lpJ
emowRUF3SURTQUF3U1FJaEFKMDZRU1hOOW1oSWJIFS11LSWpzUGtyaQOKVmMRMSWAOZnNiRFNINOVy
SmZ6cjRBaUJIxbl1DWmYwK3pINTVhUWVBSGpJekE5WG02M3JydUF4Q105cHM5ejIJYTgO0KbFEIPSIS
DQogICJEZXNjcmlwdGlvbiI6ICIGSURPIEFsbGlhbmN1IFNhbXBsZSBVQUYgQXV0aGVudGljYXRv
ciIsDQogICJIVc2VyVmVyaWZpY2F0aW9uTWVv0aG9kecyI6IDIsDQogICIWYWxpZEF0dGFjaGl1lbnRU
eXBlcyI6IDESDQogICJILZX10cm90ZWNOaW9uIljogNiwNCiAgIklhdGNoZXJQcm90ZWNOaw9uIjog
MiwNCiAgI1N1Y3VyZURpc3BsYXkiOiAOLAOKICAiU2VjdXJ1RGlzcGxheUNvbnR1bnRUeXBlcyI6
IFsiaWlhZ2UvcG5nI10sDQogICITZWN1cmVEaXNwbGF5UES5HQ2hhemF jdGVyaXNOaWwNzIjogWlsw
LDASMSw2NCwwLDASMSwyMjQsMTYsMiwwLDASMF1dLAOKICAi1aXNTZWNvbmRGYWNOb3JPbmx5Ijog
ImZhbHN1IiwNCiAgIkljb24i0iAiZGFOYTppbWFnZS9wbmc7YmFzZTYOLG1WQk9SdzBLR2dVQUFB
QU5 TVWhFVWdBQUFFOEFBQUF2Q0FZQUFBQ213SmZ jQUFBQUFYT1NSME1BcnMO0YzZRQUFBQVJuUVUx
OkFBQ3gNCmp3djhZUVVBQUFBSMNFaFpjd0FBRENNQUFBNORBY2R2cUdRQUFBYWhTVVJICVkdoRDda
cjVieFJsRO1mOUt6VEI4QUOVWUVORTIXN3ANC1FaY1dLS0JjbFNwSEFUbEVMQVJIFN2tORUNDQTNG
aldLMENLS1NDRk1zS0JjZ1ZDRFAHTkVTZEFZaWR3Z2dnSkJpUmlNaEZ jLzR3eTgNCjg4NHp1lOUSk
bG5HVGZaS1AybjNuTysrODg5MzNmdmVCOngrUHFDekprVFV20mIMbXBVRFd2Q1RIbXBjQ1Nad1lhM
Q2RYOVIWNVNrMTKNCmMJIiNWF0Z jUS50WZHKy 9 1ckE1NDFXNDAhUDFMTFZhOVNJeVZOVWk4SWk4ZDVr
R1RzaTMwTkZ2N2FpOW4 3UVpQTXdiZH1zMmVyVTJYTXENC1VkeTgrWmNhTm1HaWlFOH1YTjNSVWQz
YTE4bkYwZ1Vsb3ZaKzBDVHpXcGQyVmorZU9tMWIFeXk2RHg0aTVwVU1HV3Z1bzUwNnEyMjcNCmRO
dvdCSXVmzZnI2bldwVjBGUE5MaG93MTc1MUS5tMjFMd1BIM3JWdFdgZno2NkxmcWw4ddFg3R1IsOV1G
UlhzbVNzZWI5Y2VPR2JZazcNCk1OVWNHUGC4WnNiTWUSCcmZRVWFhVi9KTVg5c3FkekRDU3ZwMGta
SG1UWmc5eDdiTEhjTW5UaGIXNMVKK2 1WZ1FXOH1hVVpRTkc2NGKNClhaKzAva3E2dU9aRk8wUXRh
dGRXS2ZYb1JROT1CajkxUjVPSUZuazUlak4wbWtVaXFsTzNYRFcrTWwrOThtS0I2dFc3cldwWmNQ
YysNCjB6ZzROTHJIZbFVjODZFNmVHRGpJITXViVnBjdXN1YXJmZz01ZR1JrNmJyaFpWci9KYOh6b29M
NzUIMGplZExFeGI9wV2NBcGkyW1lVxaHUNCjJdKTHZyVnNRVTgxemt 6T1B1ZWINU112VnVRc1g3UGIp
RFFZNUp2Wm9uZnRLKZFWWThIOXV0eDUzMGgwb2IramlSWXFgNm91YV12RWUNCmM5XL1dsWWpwOGN3
Yk1tNjgydFB3cVcxUjR0ai8yU0gxM01SS11sNG1viWnZYcGlTcURYN2RYdFFIeGEVUEszLytCV3NL
MWRUZOhIN1YNCjhO0UUozY¥YndGa3dwRnJVT1E1MHMxcjNsZXZtOHpaY3ExXNytCOmF3NO0s4bEVLNXF6
alllYXJrOUE4cDdOMOd6REsrbmQzRFFvdys2VUMNCjhTVk44Mml1djM4aWw03 TnRhWHRWMUNWCTZS
Z3c0cGtzbWJkaTNidTJEZTdZZmFCOnhjcWZ2cVByVWpGUUSUUTIybGZkVVZWVDY4c1ONCKkpLRIVE
bINtVWpnZHFNNG1TUZz1lwbXNmREpSMOc2VGIIMG1XOWFWNOXXTEhZWEtsbFREADBMVEF0allJYWFt
cDFRalZ2Kyt1eUdVeFYNCmRKMEROV1hTbStiMXFSeHBsODRkZGZYMUxwMU8vVZDY5dHNvZDB2czVo
R3J10Xh10G8rzZnBMUJjFJjR2hOVEQ2WjU30z1LTVAYZWZKZE8SNClo5NGIJiOWIXZDFST25TN3FJVFR6
SG1ltTXFpdmJPM2cwRGRWeWszV1FCaEJ6dESszNVILTmRPbmM4TzNhY1M2ZkRaRmdLYVhMc0VKcDUN
CnJkcmxpOnFwOD1jSmNzL203VHZzMHIrakdmT jRiIMGtQOb1lpuM1VKdU1Pcm5aMjJ5UDFmbXZVeCtP
NWATcWViVjFtK3pTdV1OVmhxN1QNC1diRG1MVnZsanBsTGxvcDZDTFhQKzJxdHZHTEIMLzF2aWlJ
U2RNOmd6U29GWnl11N1RxZCtgenhnclBhVj1lCQ3F1z25S90allrNnY2bEsSNCjljd21VYy9TVHRmMMUhE
CE0zYjU5Mnk3aDNUaHg1b3pLNj1lITHBZV3VBd2FxUzVidjI2cTdjZWI4ZWZWWWFSZVAZaUZVOHPg
MWtuU3cNC1lpYSE1ltbkNgWTBPZ2FsbzdVUWZTQ00zcVFRcjJIIL1hGUDdzc1h4NDVZbDkxQOnl1lQ2Vw
NG1lvWm9IKzFmRzN4RDROVDd40Gt3eWo4dbncNCmI5ZXYyN1YwQjZkKzdINHpLdnVkQUg1lMzdGanF5
ek9IZEpuSEVlemlYcS9XanhPYnZOTWJI2N250eXdzWDJhVnNXdEM4KzQ4YUx1YXANCkU3cDV3S1lpp
MEEYQVFSVjVudlIORSt1SmMrYjYxa0FwcUlueEJnbWQVNFY1UVAVbXQXOEhEQzdzUkhmdG11dTVs
bWhWMHJuLOFMWDINC jMyYnFkNEJGbkR4N1ZpMWNXUzJ1ZmYwSWICNDdxZXh4bVVqOVF1dF1gdXBk
M3RZRDZhY1dCQklyaCthcE5iT0tyTkYxK3VnQ2EQOcmkNC1lhHZndNUFBOVM1lhdmhVM11NTOFBbnvVv
Yi9SMDAMMH1PU2VPYWRFODhBcHNYRkdmZ jMweW50bEpnTTUxQ1U2dk45RXpnbnB2SEJGVXKNCm1W
cmF1lUGL13SjUzZREY1W1Rabm9tRU5SnODVrT1VKMmMIKaTIXcHIOT21ta2ZONHg0ekhmavVZGYzhEdjhO
enVoTnFPaWRpbEd2QTZER3UNCmVad0830EFBUW42Y21FazYrcnclVmN2anZxTKkRZUE9vSVV3YULT
aHJ40XVYTGxr SDRhWXVHZk1ZRGMXMFAGNVRhMzFOUEpPZmNVaHINC1lUvSmxJTmk2YzZ1bFJZZEJw
bzYrK1llmang2MWxHTmMZ SbTRNRDVyYSjFgM0ZvROhuakRTQk5hc11VZ01MeUlzektwY jdOWHBVSGZQ
czgNCmgzV3AXTHpOZk5rNTRYeEMxXdORHVW1ZelhZZWZoNnovY0t0VmOORUJ4YT1WUUdEellyMOxy
VU1SakhFS2trN3phRktZUUEyaEdRVTENCnorODVOR1dwWERya3ozdngxMEdxeFE20nplTmJvQOms 1
bjhrNG51Y1JoK2sxaFdmeFRGMEQxRX1XVXM1bnYrZGdRcUtheHplQ2RFMGKNCNNIbDAYT1E4YWgw
bVhyMTIMYTNtMGY5d21rOSt3TESUTVkvODZNUG84eWkzMUImeG1lUN1BXb3FHOStEWnVrWW5hNTZt

UlpONVAXU3kNCjVxVKExcndVeUpxWEFsbnpraWFpL2dIU0Q3UmtUeWlob2dBQUFBQkpSVTVFcmtK
Z2dnPTOiLAOKICAiQXNzZXJ0aW9uU2NoZW11IjogI1lVBRIYXVEXWIiwNCiAgIkF1dGhlbnRpY2F0
aW9uQWxnb3JpdGhtIjogMSWNCiAgIkF0dGVzdGF0aW9uVH1wZXMiOiBbMTYzOTFALAOKICALIVVBW
IjogWlsxLDBAXQOKEfQOK

{"typ":"JWT",
"alg":"ES256"
"x5t#S5256":"7231962210d2933ec993a77b4a7203898ab74cdf974ff02d2de3flec7cb9de68"}

In order to produce the tbsPayload, we first need the base64url-encoded (without padding) JWT Header:O

eyJ0eXAi0iJKV1QiLAogIMFsZyI6TkVIMjU2IiwkKICI4NXQjUZIINiI6IjcyMzESNIyMTBkMjkz
M2V3jOTkzYTc3YjRhNzIwMzg50GFiNZRjZGY5NZRmZ jAyZDIkZ TNMMWV jN2NiOWRINjgifQ

then we have to append a period (".") and the base64url encoding of thezncodedretadataTocrayload (taken from the
example in section Metadata TOC Format):

eyJ0eXAi0iJKV1QiLAOgIMFsZyI6IkVIMjU2IiwKICI4NXQjUZI1INiI6IjcyMzE5N]IyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg50GFiNzRjZGY5NZRmZ jAyZDIkZTNmMWVjN2NiOWRINFgifQ.
eyAibm8i0iAxXMjMOLCAibmv4dC11cGRhdGUiOiAiMzEtMDMtMJjAXNCIsDQogICJI1lbnRyaWvzIjog
WwOKICAgeyAiYWFpZCI6ICIXMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIzZ
MjQ4YWJIiMzRKYTBKNDg2MWYO0Y jMwYTc5M2UXOThhOGQ1YMFhN2Y50GYyNjBkY jexYWNKNCISIAOK
ICAgICAidXJIsIjogImh0dHBz0i8vZmlkb2FsbGlhbmN1Lm9yZy9tZXRhZGF0YS8xMjMOJIXgyM2Fi
Y2QiLCANCiAgICAgINNOYXR1lcyI6ICImaWRvQ2VydGlmaWVkIgOKICAgICALIdGl1tZUIMTGFzdFNO
YXR1cONOYW5nZSI6ICIiLAOKICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAXNCOWMSOWNCIg
fSWNCiAgIHsgImFhaWQiOiAiOTg3NiMOMzIxXIiwgDQogICAgICJOYXNoIjogIjc4NWOXNmMRMN jOw
ZmQ3YjUwZWQxNzRjYJU2NDV Y zBmMWU3MmMI3Z jE5Y2YyMjk10TA1MMRKMjBiOTUOMWM2NGQiLAOK
ICAgICAidXJIsIjogImh0dHBz0i8vYXV0aG5yLXZ1lbmRvcilhLmNvbS9tZXRhZGF0YS850Dc2IXgy
MzQzMJEiLAOKICAGICAic3RhdHVzIjogImZpZGIDZXJI0aWZzpZWQiDQogICAGICI0aWl1T2ZMYXNO
U3RhdHVzQ2hhbmd1IjogIjIwMTQtMDItMTkiLAOKICAGICALY2VydGlmawNhdGlvbkRhdGUiOiAL
MJjAXNCOwWMSOwNyIgfQOKICBADQp9DQo

and finally we have to append another period (".") followed by the base64url-encoded signature.O

eyJ0eXAi0iJKV1QiLAOgIMFsZyI6IKVTMjU2IiwkKICJT4ANXQjUZIINiI6IjcyMzE5NJIyMTBkMjkz
M2V3jOTkzYTc3YjRhNzIwMzg50GFiNzRjZGY5NzRmZ jAy ZDIk ZTNMMWViN2NiOWRINgifQ.
eyAibm8i0iAxMiMOLCAibmvV4dC11cGRhdGUiOiAiMzELMDMtMAXNCISDQogICIlbnRyaWvzIjog
WwOKICAgeyAiYWFpZCI6ICIXMjMOIzU2NzgiL.CANCiAgICAgImhhc2giOiAiOTBKYThkYTZkZTIzZ
MjQ4YWIiMzRKYTBKNDg2MWY0Y jMwYTc5M2UxOThhOGQ1YmMFhN2Y50GYyNjBkY jcxYWNKNCISIAOK
ICAgICAidXJIsIjogImh0dHBz0i8vZmlkb2FsbGlhbmN1Lm9yZy9tZXRhZGF0YS8xMjMOJIXgyM2Fi
Y2QiLCANCiAgICAgInNOYXR1lcyI6ICImaWRvQ2VydGlmaWVkIgOKICAgGICAiIdGltZUIMTGFzdFNO
YXR1cONoYW5nZSI6ICIiLAOKICAGICAiLIY2VydGlmaWwNhdGlvbkRhdGUiOiAIMFAXNCOWMSOWNCIg
fSWNCiAgIHsgImFhaWQiOiAiOTg3NiMOMzIXIiwgDQogICAgICJoYXNoIjogIjc4NWQXNmMRMN jOw
ZmQ3YjUwZWQxNzRjYjU2NDVJYzBmMWU3MmMI3ZjE5Y2YyMjk 10TA1MMRKMjBiOTUOMWM2NGQiLAOK
ICAgICAidXJsIjogImh0dHBz0i8vYXV0aG5yLXZ1lbmRvcilhLmNvbS9tZXRhZGF0YS850Dc2JXgy
MzQzMjEiLAOKICAgICAic3RhdHVZIjogImZpZGIDZXJ0aWZpZWQiDQogICAGICI0aWllT2ZMYXNO
U3RhdHVzQ2hhbmd1lIjogIjIwMTQtMDItMTkiLAOKICAGICAiY2VydGlmaWNhdGlvbkRhdGUiOiAL
MJjAXNCOwWMSOwNyIgfQOKICBADQpPI9DQOo.
AP-goJ3VPzj7L61CE1UzHzJYOnszFQ8d2hJz51sPASgyABK5VXOFnAHZBTQRRkgwGqQULy 6Pt TyUV
zKxMOHrvoyZzq

NOTE

The line breaks are for display purposes only.

The signature in the example above was computed with the following ECDSA key

x: d4166baB8843d1731813f46f1af32174b5c2£6013831fb16f12c9c0blB8af3adb4
y: 861bc2f803a2241£4939bd0d8ecd34e468e42f7fdccd424edblc3ce7cdddlde
d: 3744c426764f331f153e182d24£f133190b6393cead80a8eeclc722fcelblfe2d

3.1.6 Metadata TOC object Processing Rules

The FIDO Server must follow these processing rules:

1. The FIDO Server must be able to download the latest metadata TOC object from the well-known URL, when
appropriate. The nextupdate field Bf the Metadata TOC specifies a date when the Bownload should occur at
latest.

2. If the x5u attribute is present in the JWT Header, then:

1. The FIDO Server must verify that the URL specified by the £3u attribute has the same web-origin as the
URL used to download the metadata TOC from. The FIDO Server should ignore the file if the web-originO
differs (in order to prevent loading objects from arbitrary sites).

2. The FIDO Server must download the certificate (chain) from the URL specified By the x5u attribute [JWS].
The certificate chain Bhust be verified to properly chain to the metadata TOC signing trust anchorQl
according to [RFC5280]. All certificates in the chain Bhust be checked for revocation according to
[RFC5280].

3. The FIDO Server should ignore the file if the chain cannot be verified or if one Bf the chain certificates isO
revoked.

3. If the x5u attribute is missing, the Metadata TOC signing trust anchor is considered the TOC signing certificate]
chain.

4. Verify the signature of the Metadata TOC object using the TOC signing certificate Ehain (as determined by the
steps above). The FIDO Server should ignore the file if the signature is invalid. @ should also ignore the file if itsO
number (no) is less or equal to the number of the last Metadata TOC object cached locally.

5. Write the verified object to a local cache as required.O
6. lterate through the individual entries (of typemetadataTrocrayloadentry). FOr each entry:
1. Ignore the entry if the AAID is not relevant to the relying party (e.g. not acceptable by any policy)

2. Download the metadata statement from the URL specified by the field [}-1. Some authenticator vendors
might require authentication in order to provide access to the data. Conforming FIDO Servers should
support the HTTP Basic, and HTTP Digest authentication schemes, as defined in [BRFC2617].

3. Check whether the status report of the authenticator model identified by the BAID has changed
compared to the cached entry by looking at the fields Eimeofraststatuschange and statusreport. Update
the status of the cached entry. It is up to the relying party to specify behavior for authenticators with
status reports that indicate a lack of certification, or known security issues. However, the status rRevoxep
indicates significant security issues E&lated to such authenticators.

NOTE

Authenticators with an unacceptable status should be marked accordingly. This information is
required for building registration and authentication policies included in the registration request and
the authentication request [UAFProtocol].

4. Compute the hash value of the (Base64url encoding without padding of the UTF-8 encoded) metadata
statement downloaded from the URL and verify the hash value to the hash specified I the field Eksh of
the metadata TOC object. Ignore the downloaded metadata statement if the hash value doesn't match.

5. Update the cached metadata statement according to the dowloaded one.

4. Considerations

This section is non-normative.
This section describes the key considerations for designing this metadata service.

Need for Authenticator Metadata \When defining policies for Ecceptable authenticators, it is often better to describe
the required authenticator characteristics in a generic way than to list individual authenticator AAIDs. The metadata
statements provide such information. Authenticator Metadata also provides the trust anchor required to verify
attestation objects.

The metadata service provides a standardized method to access such metadata statements.

Integrity and Authenticity Metadata statements include information relevant for the security. Some business
verticals might even have the need to document authenticator policies and trust anchors used for verifying
attestation objects for auditing purposes.

It is important to have a strong method to verify and proof integrity and authenticity and the freshness of metadata
statements. We are using a single digital signature to protect the integrity and authenticity of the Metadata TOC
object and we protect the integrity and authenticity of the individual metadata statements by including cryptographic
their hash values into the Metadata TOC object. This allows for flexible distribution of the Bhetadata statements and
the Metadata TOC object using standard content distribution networks.

Organizational Impact Authenticator vendors can delegate the publication of metadata statements to the metadata
service in its entirety. Even if authenticator vendors choose to publish metadata statements themselves, the effort is
very limited as the metadata statement can be published like a normal document on a website. The FIDO Alliance
has control over the FIDO certification process and receives the Metadata as part of that @rocess anymway. With this
metadata service, the list of known Authenticators needs to be updated, signed and published regularly. A single
signature needs to be generated in order to protect the integrity and authenticity of the metadata TOC object.

Performance Impact Metadata TOC objects and metadata statements can be cached by the FIDO Server.
The update policy can be specified by the Eelying party.

The metadata TOC object includes a date for the next scheduled update. As a result there is no additional impactto
the FIDO Server during FIDO Authentication or FIDO Registration operations.

Updating the Metadata TOC object and metadata statements can be performed asynchronously. This reduces the
availability requirements for the metadata service and the load for the FIDO Server.

The metadata TOC object itself is relatively small as it does not contain the individual metadata statements. So
downloading the metadata TOC object does not generate excessive data traffic.O

Individual metadata statements are expected to change less frequently than the metadata TOC object. Only the
modified metadata statements need be downloaded by the FIDO Server.O0

Non-public Metadata Statements Some authenticator vendors might want to provide access to metadata
statements only to their subscribed customers.

They can publish the metadata statements on access protected URLs. The access URL and the cryptographic hash
of the metadata statement is included in the metadata TOC object.

High Security Environments Some high security environments might only trust internal policy authorities. FIDO
Servers in such environments could be restricted to use metadata TOC objects from a proprietary trusted source
only. The metadata service is the baseline for most relying parties.

Extended Authenticator Information Some relying parties might want additional information about authenticators
before accepting them. The policy configuration is under control of the relying party, so it is possible to Binly accept
authenticators for which additional data is available and meets the requirements.

A. References

A.1 Normative references

[Jws]
M. Jones JSON Web Signature (JWS). Internet-Draft (Work in progress.) URL:http://tools.ietf.org/html/draft-
ietf-jose-json-web-signature

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). 6 July 2012. Internet Draft. URL:

http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
[RFC4648]

S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X.509 Public Key Infrastructure
Certificate and Cettificate Revocation List (CRL) ProfiledIETF, May 2008, URL.:

http://www.ietf.org/rfc/rfc5280.txt
[UAFAuthnrMetadata]

D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Review Draft

(Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf0
[WebIDL-ED]

Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.qgithub.io/webidl/

A.2 Informative references

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf0

[ITU-X690-2008]
X.690:

Canonical Encoding Rules (CER) and Distinguished Encod/ng Rules (DER). (T-REC-X.690-200811).
International Telecommunications Union, November 2008 URL.: http://www.itu.int/rec/T-REC-X.690-200811-l/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119
[RFC2617]
J. Franks; P. Hallam-Baker; J. Hostetler; S. Lawrence; P. Leach; A. Luotonen; L. Stewart HT TP Authentication:
Basic and Digest Access Authentication. June 1999. Draft Standard. URL:https://tools.ietf.org/html/rfc2617
[RFC3986]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntaxtanuary 2005.
Internet Standard. URL.: https://tools.ietf.org/html/rfc3986
[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0(FIDO Alliance Review Draft
(Work in progress.) URL: http:/fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdfl]
[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL:
http://www.w3.org/TR/WeblIDL/

http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/

g
4
S
S

Q

FIDO UAF Registry of Predefined Values(]

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-reg-v1.0-id-20141122.htmi
Previous version:
https://fidoalliance.org/specs/fido-uaf-reg-vi1.0-rd-20140209.pdf[]
Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. he
values defined in this document are referenced by various UAF specifications.O

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications indextat https://www.fidoalliance.org/specifications/.0]

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by EIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of0d
implementing the Specification. No rights Bre granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce Portions of this Specification forll

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-reg-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under thirdO
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not,00
and shall not be held, responsible in any manner for identifying or failing to identify any

or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words
2. Overview

3. Authenticator Characteristics
3.1 User Verification MethodsO

3.2 Key Protection Types

3.3 Matcher Protection Types

3.4 Authenticator Attachment Hints

3.5 Transaction Confirmation Display TypesO

3.6 Tags used for crypto algorithms and types
3.6.1 Authentication Algorithms

3.6.2 Public Key Representation Formats
3.7 Assertion Schemes

4. Predefined TagsO
4.1 Tags used in the protocol

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in “*, e.g. “UAF-TLV”.

In formulas we use “I” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in FIDOGIlossary].

All diagrams, examples, notes in this specification are non-normative.O]

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
‘recommended”, “may”, and “optional” in this document are to be interpreted as
described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of UAF-specific constants that are used and
referenced in various UAF specifications. 0 is expected that, over time, new constants
will be added to this registry. For example new authentication algorithms and new types
of authenticator characteristics will require new constants to be defined Ebr use within
the specifications.O]

3. Authenticator Characteristics

This section is normative.

3.1 User Verification MethodsO

The user veriry constants are flags in a bitfield represented Bs a 32 bit long integer.
They describe the methods and capabilities of an UAF authenticator for locally verifying
a user. The operational details of these methods are opaque to the server. These
constants are used in the authoritative metadata for an authenticator, reported and
queried through the UAF Discovery APls, and used to form authenticator policies in
UAF protocol messages.

All user verification methods must be performed locally by the authenticator i order to
meet FIDO privacy principles.

USER_VERIFY_PRESENCE 0x01
This flag Bust be set if the authenticator is able to confirm user presence @ any
fashion. If this flag and no Bther is set for user verification, the guarantee is onlyOd
that the authenticator cannot be operated without some human intervention, not
necessarily that the presence verification provides any level Bf authentication of
the human's identity. (e.g. a device that requires a touch to activate)
USER_VERIFY_FINGERPRINT 0x02
This flag Bust be set if the authenticator uses any type of measurement of a
fingerprint for user verification.O
USER_VERIFY_PASSCODE 0x04
This flag Bust be set if the authenticator uses a local-only passcode (i.e. a
passcode not known by the server) for user verification.Ol
USER_VERIFY_VOICEPRINT 0x08
This flag Bust be set if the authenticator uses a voiceprint (also known as speaker
recognition) for user verification.O
USER_VERIFY_FACEPRINT 0x10
This flag Bust be set if the authenticator uses any manner of face recognition to
verify the user.
USER_VERIFY_LOCATION 0x20
This flag Bust be set if the authenticator uses any form of location sensor or
measurement for user verification.Ol
USER_VERIFY_EYEPRINT 0x40
This flag Bust be set if the authenticator uses any form of eye biometrics for user
verification.O
USER_VERIFY_ PATTERN 0x80
This flag Bust be set if the authenticator uses a drawn pattern for user verification.OI
USER_VERIFY_HANDPRINT 0x100
This flag Bust be set if the authenticator uses any measurement of a full hand
(including palm-print, hand geometry or vein geometry) for user verification.O
USER_VERIFY_NONE 0x200
This flag Bust be set if the authenticator will respond without any user interaction
(e.g. Silent Authenticator).
USER_VERIFY_ALL 0x400

If an authenticator sets multiple flags for user verification types, ity also set this
flag to indicate that all verification methods will be enforced [&.g. faceprint AND
voiceprint). If flags for multiple User verification methods are set and this flag is notO
set, verification with Binly one is necessary (e.g. fingerprint OR passcode).O

3.2 Key Protection Types

The xev_proTECTION COnstants are flags in a bit field Epresented as a 16 bit long
integer. They describe the method an authenticator uses to protect the private key
material for FIDO registrations. Refer to [UAFAuthnrCommands] for more details on the
relevance of keys and key protection. These constants are used in the authoritative
metadata for an authenticator, reported and queried through the UAF Discovery APIs,
and used to form authenticator policies in UAF protocol messages.

When used in metadata describing an authenticator, several of these flags areé&kclusive
of others (i.e. can not be combined) - the certified metadata may have Bt most one of
the mutually exclusive bits set to 1. When used in authenticator policy, any bit may be
setto 1, e.g. to indicate that a server is willing to accept authenticators using either

KEY PROTECTION_ SOFTWARE OI KEY PROTECTION HARDWARE.

NOTE

These flags must be set according to the &ifective security of the keys, in order to
follow the assumptions made in [FIDOSecRef]. For example, if a key is stored in
a secure element but software running on the FIDO User Device could call a
function in the secure element to export the key either in the clear or using an
arbitrary wrapping key, then the effective security iS kEv PROTECTION SOFTWARE
and not KEY PROTECTION SECURE_ELEMENT.

KEY PROTECTION_SOFTWARE 0x01
This flag Bust be set if the authenticator uses software-based key management.
Exclusive in authenticator metadata with xkey PROTECTION HARDWARE,
KEY PROTECTION_TEE, KEY PROTECTION_SECURE_ELEMENT

KEY PROTECTION_ HARDWARE 0x02
This flag Ehould be set if the authenticator uses hardware-based key
management. Exclusive in authenticator metadata with xev_proTECTION SOFTWARE

KEY_ PROTECTION_TEE 0x04
This flag Ehould be set if the authenticator uses the Trusted Execution
Environment [TEE] for key management. In authenticator metadata, this flagd
should be set in conjunction with kev proTECTION HARDWARE. EXClUsive in
authenticator metadata with key PROTECTTON SOFTWARE,
KEY PROTECTION_SECURE_ELEMENT

KEY_ PROTECTION_SECURE_ELEMENT 0x08
This flag Ehould be set if the authenticator uses a Secure Element
[SecureElement] for key management. In authenticator metadata, this flag shouldO
be set in conjunction with kevy proTECTION HARDWARE. EXClusive in authenticator
metadata with kEy PROTECTION TEE, KEY PROTECTION SOFTWARE

KEY PROTECTION_ REMOTE_ HANDLE 0x10
This flag @ust be set if the authenticator does not store (wrapped) UAuth keys at
the client, but relies on a server-provided key handle. This flag Bhust be set in
conjunction with one of the other xev_proTrcTION flags to indicate how the locald
key handle wrapping key and operations are protected. Servers may unset this
flag in authenticator policy if they are not prepared to store and return key
handles, for example, if they have a requirement to respond indistinguishably to
authentication attempts against userlDs that do and do not exist. Refer to
[UAFProtocol] for more details.

3.3 Matcher Protection Types

The uaTcuErR PrOTECTION cOnstants are flags in a bit field E&presented as a 16 bit long
integer. They describe the method an authenticator uses to protect the matcher that
performs user verification. Mhese constants are used in the authoritative metadata for
an authenticator, reported and queried through the UAF Discovery APIs, and used to
form authenticator policies in UAF protocol messages. Refer to [UAFAuthnrCommands]
for more details on the matcher component.

NOTE

These flags must be set according to the éifective security of the matcher, in
order to follow the assumptions made in [FIDOSecRef]. For example, if a
passcode based matcher is implemented in a secure element, but the passcode
is expected to be provided as unauthenticated parameter, then the effective
security iS MATCHER PROTECTION SOFTWARE and NOt MATCHER PROTECTION ON CHIP.

MATCHER_PROTECTION_SOFTWARE 0x01
This flag Bust be set if the authenticator's matcher is running in software.
Exclusive in authenticator metadata with vaTceER PROTECTION TEE,
MATCHER PROTECTION ON_CHIP

MATCHER_PROTECTION_TEE 0x02
This flag Bhould be set if the authenticator's matcher is running inside the Trusted
Execution Environment [TEE]. Exclusive in authenticator metadata with
MATCHER_PROTECTION_ SOFTWARE, MATCHER PROTECTION ON_CHIP

MATCHER PROTECTION ON CHIP 0x04
This flag Ehould be set if the authenticator's matcher is running on the chip.
Exclusive in authenticator metadata with uaTcuer proTECTION TEE,
MATCHER_PROTECTION_ SOFTWARE

3.4 Authenticator Attachment Hints

The arracuvenT HINT constants are flags in a bit field EBpresented as a 32 bit long. They
describe the method an authenticator uses to communicate with the FIDO User Device.
These constants are reported and queried through the UAF Discovery APls
[UAFAppAPIAndTransport], and used to form Authenticator policies in UAF protocol
messages. Because the connection state and topology of an authenticator may be
transient, these values are only hints that can be used by server-supplied policy to
guide the user experience, e.g. to prefer a device that is connected and ready for
authenticating or confirming a low-value transaction, Eather than one that is more secure
but requires more user effort.

NOTE

These flags are not a mandatory part of authenticator metadata and, When
present, only indicate possible states that may be reported during authenticator
discovery.

ATTACHMENT HINT INTERNAL 0x01
This flag Bhay be set to indicate that the authenticator is permanently attached to
the FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able
to be used both locally and remotely. In such a case, the FIDO client must filter
and exclusively report only the relevant bit during Discovery and when performing
policy matching.

This flag cannot be combined with any otherddracuvent =int flags.O

ATTACHMENT HINT EXTERNAL 0x02
This flag Bhay be set to indicate, for a hardware-based authenticator, that it is
removable or remote from the FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able to
be used both locally and remotely. In such a case, the FIDO UAF Client must filterO
and exclusively report only the relevant bit during discovery and when performing
policy matching.

ATTACHMENT HINT WIRED 0x04
This flag May be set to indicate that an external authenticator currently has an
exclusive wired connection, e.g. through USB, Firewire or similar, to the FIDO
User Device.

ATTACHMENT HINT WIRELESS 0x08
This flag Bhay be set to indicate that an external authenticator communicates with
the FIDO User Device through a personal area or otherwise non-routed wireless
protocol, such as Bluetooth or NFC.

ATTACHMENT HINT NFC 0x10
This flag Bay be set to indicate that an external authenticator is able to
communicate by NFC to the FIDO User Device. As part of authenticator metadata,
or when reporting characteristics through discovery, if this flag is set, theO
arracHMENT HINT wIrRELESS flag Ehould also be set as well.

ATTACHMENT HINT BLUETOOTH 0x20
This flag Bay be set to indicate that an external authenticator is able to
communicate using Bluetooth with the FIDO User Device. As part of authenticator
metadata, or when reporting characteristics through discovery, if this flag is set,0]
the arracavenT HINT wirELESS flag Ehould also be set.

ATTACHMENT HINT NETWORK 0x40
This flag Bhay be set to indicate that the authenticator is connected to the FIDO
User Device ver a non-exclusive network (e.g. over a TCP/IP LAN or WAN, as
opposed to a PAN or point-to-point connection).

ATTACHMENT HINT_ READY 0x80
Thif flag bhay be set to indicate that an external authenticator is in a "ready" state.
This flag 3 set by the ASM at its discretion.

NOTE

Generally this should indicate that the device is immediately available to
perform user verification without additional Bctions such as connecting the
device or creating a new biometric profile enrollment, but the exactO
meaning may vary for different types of devices. For example, a USB
authenticator may only report itself as ready when it is plugged in, or a
Bluetooth authenticator when it is paired and connected, but an NFC-based
authenticator may always report itself as ready.

ATTACHMENT HINT WIFI_ DIRECT 0x100
This flag Bhay be set to indicate that an external authenticator is able to
communicate using WiFi Direct with the FIDO User Device. As part of
authenticator metadata and when reporting characteristics through discovery, if
this flag is set, the Erracuvent #int wireress flag Ehould also be set.

3.5 Transaction Confirmation Display TypesO

The TransacTION coNFIRMATION DISPLAY constants are flags I a bit field represented asOl
a 16 bit long integer. They describe the availability and implementation of a transaction
confirmation display capability required Ebr the transaction confirmation operation.O
These constants are used in the authoritative metadata for an authenticator, reported
and queried through the UAF Discovery APIs, and used to form authenticator policies in

UAF protocol messages. Refer to [UAFAuthnrCommands] for more details on the
security aspects of TransactionConfirmation Display.O

TRANSACTION_CONFIRMATION DISPLAY_ ANY 0x01
This flag Bust be set to indicate, that some form of transaction confirmationO
display is available on this authenticator.

TRANSACTION_ CONFIRMATION_ DISPLAY PRIVILEGED_SOFTWARE 0x02
This flag Bust be set to indicate, that a software-based transaction confirmationO
display operating in a privileged context is available on this authenticator.

A FIDO client that is capable of providing this capability may set this bit for all
authenticators of type arracumenT HINT TNTERNAL, €ven if the authoritative
metadata for the authenticator does not indicate this capability.

NOTE

Software based transaction confirmation displays might be implementedO
within the boundaries of the ASM rather than by the authenticator itself
[UAFASM].

TRANSACTION_ CONFIRMATION_ DISPLAY TEE 0x04
This flag Ehould be set to indicate that the authenticator implements a transaction
confirmation Bisplay in a Trusted Execution Environment ([TEE],
[TEESecureDisplay]).

TRANSACTION CONFIRMATION DISPLAY HARDWARE 0x08
This flag Ehould be set to indicate that a transaction confirmation display based onO
hardware assisted capabilities is available on this authenticator.

TRANSACTION_ CONFIRMATION DISPLAY REMOTE 0x10
This flag Ehould be set to indicate that the transaction confirmation display I3
provided on a distinct device from the FIDO User Device.

3.6 Tags used for crypto algorithms and types

These tags indicate the specific authentication algorithms, public key formats and otherO
crypto relevant data.

3.6.1 Authentication Algorithms

The var arc s1cn constants are 16 bit long integers indicating the specific Bignature
algorithm and encoding.

NOTE

FIDO UAF supports RAW and DER signature encodings in order to allow small
footprint authenticator implementations.

UAF_ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW 0x01
An ECDSA signature on the NIST secp256r1 curve whichmust have raw R and S
buffers, encoded in big-endian order.

l.e. [R (32 bytes), S (32 bytes)]
UAF_ALG_SIGN SECP256R1_ECDSA SHA256 DER 0x02

~ DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the NIST
secp256r1 curve.

l.e. a DER encoded sEQuENCE { r INTEGER, s INTEGER }

UAF_ALG_SIGN_RSASSA_PSS_SHA256_RAW 0x03
RSASSA-PSS [RFC3447] signature must have raw S buffers, encoded in big-
endian order [RFC4055] [RFC4056]. The default parameters as specified inO
[RFC4055] must be assumed, i.e.

o Mask Generation Algorithm MGF1 with SHA256
o Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

« Trailer Field value of 1, which represents the trailer field with hexadecimall
value oxac.

l.e.[s (256 bytes)]

UAF_ALG_SIGN_RSASSA PSS_SHA256_DER 0x04
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing
the RSASSA-PSS [RFC3447] signature [RFC4055] [RFC4056]. The default
parameters as specified in [BFC4055] must be assumed, i.e.

o Mask Generation Algorithm MGF1 with SHA256
« Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

« Trailer Field value of 1, which represents the trailer field with hexadecimall
value oxac.

l.e. a DER encodedocter strIne (including its tag and length bytes).
UAF_ALG_SIGN_SECP256K1_ECDSA_SHA256_RAW 0x05
An ECDSA signature on the secp256k1 curve which must have raw R and S
buffers, encoded in big-endian order.
l.e.[R (32 bytes), S (32 bytes)]
UAF_ALG_SIGN_SECP256K1_ECDSA_SHA256_DER 0x06
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the secp256k1
curve.

l.e. a DER encoded sEQUENCE { r INTEGER, s INTEGER }
3.6.2 Public Key Representation Formats

The var arc kevy constants are 16 bit long integers indicating the specific Bublic Key
algorithm and encoding.
NOTE

FIDO UAF supports RAW and DER encodings in order to allow small footprint
authenticator implementations. By definition, the authenticator must encode thell
public key as part of the registration assertion.

UAF_ALG_KEY_ ECC_X962_ RAW 0x100

Raw ANSI X9.62 formatted Elliptic Curve public key [SEC1].

l.e. [0x04, x (32 bytes), Y (32 bytes)]. Where the byte 0x04 denotes the
uncompressed point compression method.

UAF_ALG_KEY_ECC_X962_DER 0x101

DER [ITU-X690-2008] encoded ANSI X.9.62 formatted subjectpublickeyInfo
[RFC5480] specifying an elliptic curve public key.

l.e. a DER encoded subjectrublickeyInfo as defined in [BIFC5480].

Authenticator implementations must generate namedcurve in the ecrarameters
object which is included in the algorithmidentifier. A FIDO UAF Server must
accept namedcurve in the ecrarameters object which is included in the
AlgorithmIdentifier.

UAF_ALG_KEY_RSA_2048_PSS_RAW 0x102

Raw encoded RSASSA-PSS public key RFC3447].

The default parameters according to [RFC4055] must be assumed, i.e.

o Mask Generation Algorithm MGF1 with SHA256
« Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

 Trailer Field value of 1, which represents the trailer field with Bexadecimal
value oxzc.

Thatis, (n (256 bytes), e (N-n bytes)].Where u is the total length of the field.O

This total length should be taken from the object containing this key, e.g. the TLV
encoded field.O

UAF_ALG_KEY_RSA 2048 _PSS_DER 0x103

ASN.1 DER [ITU-X690-2008] encoded RSASSA-PSS RFC3447] public key
[RFC4055].

The default parameters according to RFC4055] must be assumed, i.e.

o Mask Generation Algorithm MGF1 with SHA256
o Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

 Trailer Field value of 1, which represents the trailer field with hexadecimalO
value oxzc.

That is, a DER encoded sEQUENCE { n INTEGER, e INTEGER }.

3.7 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFVI1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange
an asymmetric authentication key generated by the authenticator. The
authenticator must generate a key pair (UAuth.pub/UAuth.priv) to be used with
algorithm suites listed in section Authentication Algorithms (with prefix Ehr arc).
This assertion scheme is using a compact Tag Length Value (TLV) encoding for
the KRD and SignData messages generated by the authenticators. This is the
default assertion scheme for the UAF protocol.

4. Predefined TagsO

This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV)
sequence. The tag is a 2-byte unique unsigned value describing the type of field fhe
data represents, the length is a 2-byte unsigned value indicating the size of the value in

bytes, and the value is the variable-sized series of bytes which contain data for this item
in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits Yalues up to Ox3FFF)
should be used to accommodate the limitations of some hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must
abort processing the entire message if it cannot process that tag.

A tag that has the 13th bit (Ox1000) set indicates a composite tag that can be parsed by
recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG _UAFV1 REG ASSERTION 0x3EO1

The content of this tag is the authenticator response to a Register command.
TAG_UAFV1_AUTH_ASSERTION 0x3EO02

The content of this tag is the authenticator response to a Sign command.
TAG_UAFV1_KRD 0x3E03

Indicates Key Registration Data.
TAG_UAFV1_SIGNED_ DATA 0x3E04

Indicates data signed by the authenticator using UAuth.priv key.
TAG_ATTESTATION_CERT 0x2EO05

Indicates DER encoded attestation certificate.O]
TAG_SIGNATURE 0x2EO06

Indicates a cryptographic signature.
TAG_ATTESTATION_BASIC_FULL 0x3EO07

Indicates full basic attestation as defined in [AFProtocol].
TAG ATTESTATION BASIC_ SURROGATE 0x3E08

Indicates surrogate basic attestation as defined in [MAFProtocol].
TAG_KEYID 0x2E09

Represents a generated KeyID.
TAG_FINAL_CHALLENGE Ox2EOA

Represents a generated final challenge as defined in [IAFProtocol].
TAG_AAID 0x2EOB

Represents an Authenticator Attestation ID as defined in [MAFProtocol].
TAG_PUB_KEY 0x2EOC

Represents a generated public key.
TAG_COUNTERS 0x2EOD

Represents the use counters for an authenticator.
TAG_ASSERTION_INFO Ox2EOE

Represents authenticator information necessary for message processing.
TAG_AUTHENTICATOR_NONCE 0x2EOF

Represents a nonce value generated by the authenticator.
TAG_TRANSACTION_CONTENT_HASH O0x2E10

Represents a hash of the transaction content sent to the authenticator.
TAG_EXTENSION Ox3E1ll, Ox3El2

This is a composite tag indicating that the content is an extension.
TAG_EXTENSION_ID Ox2E1l3

Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8

string.
TAG_EXTENSION_ DATA Ox2E1l4

Represents extension data. Content of this tag is a UINT8[] byte array.

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdfl]

[ITU-X690-2008]
X.690: Information technology - ASN. 1 encoding rules: Specification of Basidl
Encoding Rules (BER). Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER). (T-REC-X.690-200811). International Telecommunications
Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-200811-1/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2. 10February 2003. Informational. URL:
https://tools.ietf.org/html/rfc3447

[RFC4055]
J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSAO
Cryptography for use in the Internet X.509 Public Key Infrastructure Cetrtificatell
and Certificate Revocation List (CRL) ProfiledJune 2005. Proposed Standard.
URL: https://tools.ietf.org/html/rfc4055

[RFC4056]
J. Schaad. Use of the RSASSA-PSS Signature Algorithm in Cryptographic
Message Syntax (CMS). June 2005. Proposed Standard. URL.:
https://tools.ietf.org/html/rfc4056

[RFC5480]
S. Turner; D. Brown; K. Yiu; R. Housley; T. Polk. Elliptic Curve Cryptography
Subject Public Key Information. March 2009. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5480

[SEC1]
Standards for Efficient Cryptography Group (SECG), BEC1: Elliptic Curve
Cryptography, Version 2.0, September 2000.

A.2 Informative references

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-00
security-ref-v1.0-rd-20140209.pdf
[SecureElement]
GlobalPlatform Card Specifications{GlobalPlatform. Accessed March 2014. URL.:
https://www.globalplatform.org/specifications.aspl]
[TEE]
GlobalPlatform Trusted Execution Environment SpecificationslGlobalPlatform.
Accessed March 2014. URL: https://www.globalplatform.org/specifications.aspl]
[TEESecureDisplay]
GlobalPlatform Trusted User Interface API SpecificationsGlobalPlatform.
Accessed March 2014. URL: https://www.globalplatform.org/specifications.aspl]
[UAFASM]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator-Specific Module API v1.000
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf[]
[UAFAppAPIAndTransport]
B. Hill EIDO UAF Application API and Transport Binding Specification v1.0(FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-00
client-api-transport-v1.0-rd-20140209.pdf
[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-00
authnr-cmds-v1.0-rd-20140209.pdf

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
http://secg.org/download/aid-780/sec1-v2.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.000
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdfd

http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf

' ™ 4/\'%
a

Q
-
@]
(¢

FIDO AppID and Facet Specification v1.00

FIDO Alliance Implementation Draft 22 November 2014

This version:

https://fidoalliance.org/specs/fido-appid-and-facets-v1.0-id-20141122.htmiO0
Previous version:

https://fidoalliance.org/specs/f
Editors:

Dirk Balfanz, Google. Inc.

Brad Hill, PayPal, Inc.
Contributors:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.

Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

The FIDO family of protocols introduce a new security concept,Application Facets, to describe the scope of user credentials and how a trusted
computing base which supports application isolation may make access control decisions about which keys can be used by which applications
and web origins.

This document describes the motivations for and requirements for implementing the Application Facet concept and how it applies to the FIDO
protocols.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications indextat
https://www.fidoalliance.org/specifications/0

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance
Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by EFIDO Alliance, Inc. Permission is hereby granted to use the Specificationd
solely for the purpose of implementing the Specification. No rights Bre granted to prepare derivative works of this Specification. EntitiesO
seeking permission to reproduce portions of this Specification for other uses must contact the BIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual froperty rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,00
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS I1S” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Motivation
2.2 Avoiding App-Phishing
2.3 Comparison to OAuth and OAuth2
2.4 Non-Goals
3. The AppID and FacetID Assertions

3.1 Processing Rules for AppID and FacetID Assertions
3.1.1 Determining the FacetID of a Calling Application
3.1.2 Determining if a Caller's FacetID is Authorized for an ApplD
3.1.3 TrustedFacets structure
3.1.3.1 Dictionary Trustedracets Members

3.1.4 AppID Example 1:

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-appid-and-facets-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-appid-and-facets-v1.0-ID-20141009.html
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com
https://www.noknok.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact

3.1.5 AppID Example 2:
3.1.6 Obtaining FacetID of Android Native App

3.1.7 Additional Security Considerations
3.1.7.1 Wildcards in TrustedFacet identifiersO

A. References
A.1 Normative references

A.2 Informative references

1. Notation
Type names, attribute names and element names are written ascode.

String literals are enclosed in “”, e.g. “UAF-TLV”.

“»

In formulas we use “I” to denote byte wise concatenation operations.
This document applies to both the U2F protocol and the UAF protocol. UAF specific terminology used in this document is defined inO
[FIDOGilossary].

All diagrams, examples, notes in this specification are non-normative.O

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

Modern networked applications typically present several ways that a user can interact with them. This document introduces the concept of an
Application Facetto describe the identities of a single logical application across various platforms. For example, the application MyBank may
have an Android app, an iOS app, and a Web app accessible from a browser. These are all facets of the MyBank application.

The FIDO architecture provides for simpler and stronger authentication than traditional username and password approaches while avoiding
many of the shortfalls of alternative authentication schemes. At the core of the FIDO protocols are challenge and response operations
performed with a public/private keypair that serves as a user's credential.

To minimize frequently-encountered issues around privacy, entanglements with concepts of "identity", and the necessity for trusted third

parties, keys in FIDO are tightly scoped and dynamically provisioned between the user and each Relying Party and only optionally associated
with a server-assigned username. This approach contrasts with, for example, traditional PKIX client certificates Bs used in TLS, which introduce
a trusted third party, mix in their implementation details identity assertions with holder-of-key cryptographic proofs, lack audience restrictions,
and may even be sent in the cleartext portion of a protocol handshake without the user's notification or consent.00

While the FIDO approach is preferable for many reasons, it introduces several challenges.

« What set of Web origins and native applications (facets) make up a single logical application and how can they be reliably identified?0

« How can we avoid making the user register a new key for each web browser or application on their device that accesses services
controlled by the same target entity?

« How can access to registered keys be shared without violating the security guarantees around application isolation and protection from
malicious code that users expect on their devices?

« How can a user roam credentials between multiple devices, each with a user-friendly Trusted Computing Base for FIDO?

This document describes how FIDO addresses these goals (where adequate platform mechanisms exist for enforcement) by allowing an
application to declare a credential scope that crosses all the various facets it presents to the user.

2.1 Motivation

FIDO conceptually sets a scope for registered keys to the tuple of (Username, Authenticator, Relying Party). But what constitutes a Relying
Party? It is quite common for a user to access the same set of services from a Relying Party, on the same device, in one or more web
browsers as well as one or more dedicated apps. As the Relying Party may require the user to perform a costly ceremony in order to prove her
identity and register a new FIDO key, it is undesirable that the user should have to repeat this ceremony multiple times on the same device,
once for each browser or app.

2.2 Avoiding App-Phishing

FIDO provides for user-friendly verification ceremonies to allow access to registered keys, Buch as entering a simple PIN code and touching a
device, or scanning a finger. It should Bot matter for security purposes if the user re-uses the same verification inputs across Belying Parties,
and in the case of a biometric, she may have no choice.

Modern operating systems that use an "app store" distribution model often make a promise to the user that it is "safe to try" any app. They do
this by providing strong isolation between applications, so that they may not read each others' data or mutually interfere, and by requiring
explicit user permission to access shared system resources.

If a user were to download a maliciously constructed game that instructs her to activate her FIDO authenticator in order to "save your
progress" but actually unlocks her banking credential and takes over her account, FIDO has failed, because the risk of phishing has only been
moved from the password to an app download. FIDO must not violate a platform's promise that any app is "safe to try" by keeping good
custody of the high-value shared state that a registered key represents.

2.3 Comparison to OAuth and OAuth2

The OAuth and OAuth2 of protocols were designed for a server-to-server security model with the assumption that each application instance
can be issued, and keep, an "application secret". This approach is ill-suited to the "app store" security model. Although it is common for
services to provision an OAuth-style application secret into their apps in an attempt to allow only authorized/official apps to connect, any suchO
"secret" is in fact shared among everyone with access to the app store and can be trivially recovered thorough basic reverse engineering.

In contrast, FIDO's facet concept is designed for the "app store" model from the start. It relies on client-side platform isolation features to make
sure that a key registered by a user with a member of a well-behaved "trusted club" stays within that trusted club, even if the user later installs

a malicious app, and does not require any secrets hard-coded into a shared package to do so. The user must, however, still make good
decisions about which apps and browsers they are willing to preform a registration ceremony with. App store policing can assist here by
removing applications which solicit users to register FIDO keys to for Relying Parties in order to make illegitmate or fraudulent use of them.

2.4 Non-Goals

The Application Facet concept does not attempt to strongly identify the calling application to a service across a network. Remote attestation of
an application identity is an explicit non-goal.

If an unauthorized app can convince a user to provide all the information to it required to register a new FIDO key, the Relying Party cannot
use FIDO protocols or the Facet concept to recognize as unauthorized, or deny such an application from performing FIDO operations, and an
application that a user has chosen to trust in such a manner can also share access to a key outside of the mechanisms described in this
document.

The facet mechanism provides a way for registered keys to maintain their proper scope when created and accessed from a Trusted Computing
Base (TCB) that provides isolation of malicious apps. A user can also roam their credentials between multiple devices with user-friendly TCBs
and credentials will retain their proper scope if this mechanism is correctly implemented by each. However, no guarantees can be made in
environments where the TCB is user-hostile, such as a device with malicious code operating with "root" level permissions. On environments
that do not provide application isolation but run all code with the privileges of the user, (e.g. traditional desktop operating systems) an intact
TCB, including web browsers, may successfully enforce scoping of credentials for web origins only, but cannot meaningfully enforce
application scoping.

3. The AppID and FacetID Assertions

When a user performs a Registration operation [JAFArchOverview] a new private key is created by their authenticator, and the public key is
sent to the Relying Party. As part of this process, each key is associated with an 2pp1p. The app1Dp is @ URL carried as part of the protocol
message sent by the server and indicates the target for this credential. By default, the audience of the credential is restricted to the Same
Origin of the app1D. In some circumstances, a Relying Party may desire to apply a larger scope to a key. If that appro URL has the https
scheme, a FIDO client may be able to dereference and process it as a TrustedracetList that designates a scope or audience restriction that
includes multiple facets, such as other web origins within the same DNS zone of control of the AppID's origin, or URLs indicating the identity of
other types of trusted facets such as mobile apps.

NOTE

Users may also register multiple keys on a single authenticator for an app1p, such as for cases where they have multiple accounts. Such
registrations may have a Relying Party assigned username or local nicknames associated to allow them to be distinguished by the user,
or they may not (e.g. for 2nd factor use cases, the user account associated with a key may be communicated out-of-band to what is
specified by FIDO protocols). BIl registrations that share an 2pp1p, also share these same audience restriction.

3.1 Processing Rules for AppID and FacetID Assertions
3.1.1 Determining the FacetID of a Calling Application

In the Web case, the FacetID must be the Web Origin [RFC6454] of the web page triggering the FIDO operation, written as a URI with an
empty path. Default ports are omitted and any path component is ignored.

An example FacetID is shown below:

https://login.mycorp.com/

In the Android [ANDROID] case, the FacetID must be a URI derived from the SHA-1 hash of the APK signing certificate [APK-Signing], such
as:

android:apk-key-hash:<shal_hash-of-apk-signing-cert>

The SHA-1 hash can be computed as follows:

Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert -alias androiddebugkey -keystore \
<path-to-apk-signing-keystore> &>2 /dev/null | openssl shal \
-binary | openssl base64 | sed 's/=//g'

In the iOS [IOS] case, the FacetlD must be the BundlelD BundlelD] URI of the application:

ios:bundle-id:<ios-bundle-id-of-app>
3.1.2 Determining if a Caller's FacetID is Authorized for an AppID

1. If the AppID is not an HTTPS URL, and matches the FacetID of the caller, no additional processing is necessary and the operation may
proceed.

2. If the ApplID is null or empty, the clientmust set the AppID to be the FacetID of the caller, and the operation may proceed without
additional processing.

3. If the caller's FacetID is annttps:// Origin sharing the same host as the AppID, (e.g. if an application hosted at
https://fido.example.com/my2App Set an AppID of https://fido.example.com/myAppId), NO additional processing is necessary and the
operation may proceed. This algorithm may be continued asynchronously for purposes of caching the Trusted Facet List, if desired.

4. Begin to fetch the Trusted Facet List using the HTTP GET method. The location must be identified with an HTTPS URL.O

5. The URL must be dereferenced with an anonymous fetch. That is, the HTTP GET must include no cookies, authentication, Origin or
Referer headers, and present no TLS certificates or other forms of credentials.O

6. The response must set a MIME Content-Type of "application/fido.trusted-apps+json".00
7. The caching related HTTP header fields in the HTTP response (e.g. “Expires”)dhould be respected when fetching a Trusted Facets List.

8. The server hosting the Trusted Facets List must respond uniformly to all clients. That is, it must not vary the contents of the response
body based on any credential material, including ambient authority such as originating IP address, supplied with the request.

9. If the server returns an HTTP redirect (status code 3xx) the servermust also send the HTTP header r1po-appIp-Redirect-Authorized:
true and the clientmust verify the presence of such a header before following the redirect. This protects against abuse of open

http://www.whatwg.org/specs/web-apps/current-work/multipage/fetching-resources.html#attr-crossorigin-anonymous

redirectors within the target domain by unauthorized parties. If this check has passed, restart this algorithm from step 4.
10. ATrusted Facet List may contain an unlimited number of entries, but clientsmay truncate or decline to process large responses.
11. From among the objects in thetrustedracet array, select the one with the version matching that of the protocol message version.

12. The scheme of URLs in ids must identify either an application identity (e.g. using the apk:, ios: or similar scheme) or annhttps: Web
Origin [RFC6454].

13. Entries in ids using the https:// scheme must contain only scheme, host and port components, with an optional trailing /. Any path,
query string, username/password, or fragment information must be discarded.

14. All Web Origins listed must have host names under the scope of the same least-specific Brivate label in the DNS, using the following
algorithm:

1. Obtain the list of public DNS suffixes Hlom https:/publicsuffix.org/list/effective tld names.datthe client may cache such data), or
equivalent functionality as available on the platform.

2. Extract the host portion of the original AppID URL, before following any redirects.

3. The least-specific private label is the portion of the host portion of the AppID URL that Bhatches a public suffix plus one additionald
label to the left.

4. For each Web Origin in the TrustedFacets list, the calculation of the least-specific frivate label in the DNS must be a case-
insensitive match of that of the AppID URL itself. Entries that do not match must be discarded.

15. If the TrustedFacets list cannot be retrieved and successfully parsed according to these rules, the client must abort processing of the
requested FIDO operation.

16. After processing the trustedracets entry of the correct version and removing any invalid entries, if the caller's FacetlD matches one
listed in ids, the operation is allowed.

3.1.3 TrustedFacets structure

The JSON resource hosted at the AppID URL consists of a dictionary containing a single member, trustedracets which is an array of
Trustedracets dictionaries.

WebIDL

dictionary TrustedFacets {
Version version;
DOMString[] ids;

}i

3.1.3.1 Dictionary rrustedracets Members

version Of type Version
The protocol version to which this set of trusted facets applies. See [UAFProtocol] for the definition of theErsion structure.

ids of type array of DOMString
An array of URLs identifying authorized facets for this AppID.

3.1.4 AppID Example 1:

".com" is a public suffix. "https://www.example.com/appID" is provided as an AppID. he body of the resource at this location contains:

{

"trustedFacets" : [{
"version": { "major": 1, "minor" : 0 },
"ids": [
"https://register.example.com", // VALID, shares "example.com" label
"https://fido.example.com", // VALID, shares "example.com" label
"http://www.example.com", // DISCARD, scheme is not https:
"http://www.example-test.com", // DISCARD, "example-test.com" does not match
"https://www.example.com:444" // VALID, port is not significant

1
I3
}

For this policy, "https://www.example.com" and "https://register.example.com" would have access to the keys registered for this AppID, and
"https://user1.example.com" would not.

3.1.5 AppID Example 2:

"hosting.example.com" is a public suffix, operated under "example.com" and sed to provide hosted cloud services for many companies.
"https://companyA.hosting.example.com/applD" is provided as an AppID. The body of the resource at this location contains:

{

"trustedFacets" : [{
"version": { "major": 1, "minor" : 0 },
"ids": [
"https://register.example.com", // DISCARD, does not share "companyA.hosting.example.com" label

"https://fido.companyA.hosting.example.com"”, // VALID, shares "companyA.hosting.example.com" label
"https://xyz.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
"https://companyB.hosting.example.com" // DISCARD, "companyB.hosting.example.com" does not match

13!

For this policy, "https://fido.companyA.hosting.example.com" would have Hccess to the keys registered for this AppID, and
"https://register.example.com" and "https://companyB.hosting.example.com" would not as a public-suffix exists between these DNS names and
the ApplID's.

3.1.6 Obtaining FacetID of Android Native App

https://publicsuffix.org/list/effective_tld_names.dat

This section is non-normative.

The following code demonstrates how a FIDO Client can obtain and construct the FacetID of a calling Android native application.

private String getFacetID(Context aContext, int callingUid) {
String packageNames[] = aContext.getPackageManager ().getPackagesForUid(callingUid);

if (packageNames == null) {
return null;

}

try {
PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_ SIGNATURES);

byte[] cert = info.signatures[0].toByteArray();
InputStream input = new ByteArrayInputStream(cert);

CertificateFactory cf = CertificateFactory.getInstance("X509");
X509Certificate ¢ = (X509Certificate) cf.generateCertificate(input);

MessageDigest md = MessageDigest.getInstance("SHAl");

return "android:apk-key-hash:" +
Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);

catch (PackageManager.NameNotFoundException e) {
e.printStackTrace();

catch (CertificateException e) {
e.printStackTrace();

catch (NoSuchAlgorithmException e) {
e.printStackTrace();

catch (CertificateEncodingException e) {
e.printStackTrace();

return null;

3.1.7 Additional Security Considerations

The UAF protocol supports passing FacetID to the FIDO Server and including the FacetID in the computation of the authentication response.

Trusting a web origin facet implicitly trusts all subdomains under the named entity because web user agents do not provide a security barrier
between such origins. So, in ApplD Example 1, although not explicitly listed, "https://foobar.register.example.com" would still have effective
access to credentials registered for the AppID "https://www.example.com/appID" because it can effectively act as
"https://register.example.com".

The component implementing the controls described here must reliably identify callers to securely enforce the mechanisms. Platform inter-
process communication mechanisms which allow such identification Ehould be used when available.

It is unlikely that the component implementing the controls described here can verify the integrity and intent of the entries on a
TrustedracetList. If a trusted facet can be compromised or enlisted as a confused deputy [FIDOGlossary] by a malicious party, it may be
possible to trick a user into completing an authentication ceremony under the control of that malicious party.

3.1.7.1 Wildcards in TrustedFacet identifiers(]

This section is non-normative.
Wildcards are not supported in TrustedFacet identifiers. Mhis follows the advice of RFC6125 [RFC6125], section 7.2.

FacetIDs are URIs that uniquely identify specific Becurity principals that are trusted to interact with a given registered credential. Wildcards
introduce undesirable ambiguitiy in the defintion of the principal, Bs there is no consensus syntax for what wildcards mean, how they are
expanded and where they can occur across different applications and protocols in common use. For schemes indicating application identities,
it is not clear that wildcarding is appropriate in any fashion. For Web Origins, it broadly increases the scope of the credential to potentially
include rogue or buggy hosts.

Taken together, these ambiguities might introduce exploitable differences in identity checking behavior among client implementations and
would necessitate overly complex and inefficient identity checking algorithms.O

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdfl]l

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC6125]
P. Saint-Andre, J. Hodges, Representation and Verification of Domain-Based Application Service Identity within Internet Public Ke
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125)0IETF, March 2011, URL:

http://www.ietf.org/rfc/rfc6125.txt
[RFC6454]

A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL:https://tools.ietf.org/html/rfc6454
[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification vi.0fFIDO Alliance Review Draft (Work in progress.) URL:

http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf00

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf

A.2 Informative references

[ANDROID]
The Android™ Operating System. Google, Inc., the Open Handset Alliance and the Android Open Source Project (Work in progress)
URL: http://developer.android.com/

[APK-Signing]
Signing Your Applications.The Android™ Operating System. Google, Inc., the Open Handset Alliance and the Android Open Source

Project (Accessed 11-March-2014) URL: http://developer.android.com/tools/publishing/app-signing.html
[BundlelD]

"Configuring your Xcode Project for Distribution", section "About Bundle IDs"RApple, Inc. Accessed March 11, 2014. URL:

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Configuring YourApp/Configuring YourApp.html
[UAFArchOverview]
R. Philpott, S. Srinivas, J. Kemp FIDO UAF Architectural Overview v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf0
[i0S]
iOS Dev CenterApple, Inc. (Accessed March 11, 2014) URL:https://developer.apple.com/devcenter/ios/index.action

http://developer.android.com/
http://developer.android.com/
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
http://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action

O - ‘
E
&
0\5
O
A
3

FIDO Security Reference

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.htmi0O0

Previous version:
https://fidoalliance. i i . .htmiO

Editors:
Rolf Lindemann, Nok Nok L Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Brad Hill, PayPal, Inc.
Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

This document analyzes the FIDO security. The analysis is performed on the basis of the FIDO Universal Authentication Framework (UAF)
specification and FIDO Universal 2nd Factor (U2F) specifications as of the date of this publication.O

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Allian ifications in
https://www.fidoalliance.org/specifications/.01

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared byEIDO Alliance, Inc. Permission is hereby granted to use the Specification]
solely for the purpose of implementing the Specification. No rights Brre granted to prepare derivative works of this Specification. Entities seekingd
permission to reproduce portions of this Specification for other uses must contact the BIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual Broperty rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,00
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words
2. Introduction
2.1 Intended Audience
3. Attack ClassificationO
4. UAF Security Goals
4.1 Assets to be Protected

5. FIDO Security Measures
5.1 Relation between Measures and Goals

6. UAF Security Assumptions
6.1 Discussion

7. Threat Analysis
7.1 Threats to Client Side
7.1.1 Exploiting User’s pattern matching weaknesses

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
7.1.3 Creating a Fake Client
7.1.4 Threats to FIDO Authenticator
7.2 Threats to Relying Party
7.2.1 Threats to FIDO Server Data
7.3 Threats to the Secure Channel between Client and Relying Party

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-ID-20141009.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https:/fidoalliance.org/
https://fidoalliance.org/contact

7.3.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

7.4 Threats to the Infrastructure
7.4.1 Threats to FIDO Authenticator Manufacturers

7.4.2 Threats to FIDO Server Vendors
7.4.3 Threats to FIDO Metadata Service Operators

7.5 Threats Specific to UAF with a second factor / U2FO

8. Acknowledgements

A. References
A.1 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in ”, e.g. “UAF-TLV".

In formulas we use “I” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in FIDOGIlossary].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Introduction

This document analyzes the security properties of the FIDO UAF and U2F families of protocols. Although a brief architectural summary is
provided below, readers should familiarize themselves with the the FIDO Glossary of Terms [FIDOGlossary] for definitions &f terms used
throughout. For technical details of various aspects of the architecture, readers should refer to the FIDO Alliance specifications in the Bibliography.O

s :
oo | [Teste |

BROWSER/APP UAF Protocol

Cryptographic ‘ FIDO SERVER.

FIDO CLIENT authentication key
reference DB

| Authentication
- keys

FIDOAUTHENTICATOR

] Attestation key ‘ Update

Authenticator FIDO METADATA SERVICE
metadata & ‘

attestation frust

store] |
Certify
compliance

T

Fig. 1 FIDO Reference Architecture

Conceptually, FIDO involves a conversation between a computing environment controlled by a Relying Party and one controlled by the user to be
authenticated. The Relying Party's environment consists conceptually of at least a web server and the server-side portions of a web application,
plus a FIDO Server. The FIDO Server has a trust store, containing the (public) trust anchors for the attestation of FIDO Authenticators. The user's
environment, referred to as the FIDO user device, consists of one or more FIDO Authenticators, a piece of software called the FIDO Client that is
the endpoint for UAF and U2F conversations, and User Agent software. The User Agent software may be a browser hosting a web application
delivered by the Relying Party, or it may be a standalone application delivered by the Relying Party. In either case, the FIDO Client, while a
conceptually distinct entity, may actually be implemented in whole or part within the boundaries of the User Agent.

2.1 Intended Audience

This document assumes a technical audience that is proficient with security analysis of Bomputing systems and network protocols as well as the
specifics of the FIDO architecture Bnd protocol families. It discusses the security goals, security measures, security assumptions and a series of
threats to FIDO systems, including the user's computing environment, the Relying Party's computing environment, and the supply chain, including
the vendors of FIDO components.

3. Attack ClassificationO
We want to distinguish the following threat classes (all leading to the impersonation of the user):

1. Automated attacks focused on relying parties, which affect the user but cannot be prevented by the user

2. Automated attacks which are performed once and lead to the ability to impersonate the user on an on-going basis without involving him or
his device directly.

3. Automated attacks which involve the user or his device for each successful impersonation.
. Automated attacks to sessions authenticated by the user.
5. Not automatable attacks to the user or his device which are performed once and lead to the ability to impersonate the user on an on-going

IS

basis without involving him or his device directly.
6. Not automatable attacks to the user or his device which involve the user or his device for each successful impersonation.

Counter Exar
Measures

Use robust &
spoofing resistant i i i i
Al Physically aﬂackmg Physically aﬂackmg
user devices user devices
steal data for misuse them for
Use SE based key impersonation impersonation
protection.

Use Transaction EuroGrak
Confirmation with Remotel Remotely Remotely
TEE based : :
Transacton 0tely attacking lots attacking lots
Dty attacking lots) .
play) of user devices of user devices
of user devices
Use TEE or SE teal data for misuse them misuse
S eten ifneg rso‘;:tion for authenticated FlashCre
Use HW based P impersonation sessions
user verification.
Use asymmetric i Recent
crypto. 2. FIDO Remotely attackm_g =] sc_arvers R
steal data for impersonation steal pas:

Fig. 2 Attack Classes

The first four attack classes are considered scalable as they are automated (or at least can be automated). Mhe attack classes 5 and 6 are not
automatable; they involve some kind of manual/physical interaction of the attacker with the user or his device. We will attribute the threats
analyzed in this document with the related attack class (AC1 — ACB6).

NOTE

1. FIDO UAF uses asymmetric cryptography to protect against this class of attacks. This gives control back to the user, i.e. when using
good random numbers, the user’s authenticator can make breaking the key as hard as the underlying factoring (in the case of RSA)
or discrete logarithm (in the case of DSA or ECDSA) problem.

2. Once counter-measures for this kind of attack are commonly in place, attackers will likely focus on another attack class.

3. The numbers at the attack classes do not imply a feasibility ranking of the related attacks, e.g. it is not necessarily more difficult toOl
perform (4) than it is to perform (3).

4. Feasibility of attack class (1) cannot be influenced by the user at all. his makes this attack class really bad.

5. The concept of physical security (i.e. “protect your Authenticator from being stolen”), related to attack classes (5) and (6) is much
better internalized by users than the concept of logical security, related to attack classes (2), (3) and (4).

6. In order to protect against misuse of authenticated sessions (e.g. MITB attacks), the FIDO Authenticator must support the concept of
transaction confirmation and the relying party must use it.0

7. For an attacker to succeed, any attack class is sufficient.00

4. UAF Security Goals

In this section the specific security goals of UAF are described. Mhe FIDO UAF protocol [UAFProtocol] supports a variety of different FIDO
Authenticators. Even though the security of those authenticators varies, the UAF protocol and the FIDO Server should provide a very high level of
security - at least on a conceptual level. In reality it might require a FIDO Authenticator with a high security level in order to fully leverage the UAF
security strength.

NOTE

In certain environments the overall security of the explicit authentication (as provided by FIDO) is less important, as it might be
supplemented with a high degree of implicit authentication or the application doesn’t even require a high level of authentication strength.

The FIDO U2F protocol [U2FOverview] supports a more constrained set of Authenticator capabilities. It shares the same security goals as UAF,
with the exception of [SG-14] Transaction Non- Repudiation. The UAF protocol has the following security goals:

[SG-1]
Strong User Authentication: Authenticate (i.e. recognize) a user and/or a device to a relying party with high (cryptographic) strength.

[SG-2]
Credential Guessing Resilience: Provide robust protection against eavesdroppers, e.g. be resilient to physical observation, resilient to
targeted impersonation, resilient to throttled and unthrottled guessing.
[SG-3]
Credential Disclosure Resilience: Be resilient to phishing attacks and real-time phishing attack, including resilience to online attacks by
adversaries able to actively manipulate network traffic.O
[SG-4]
Unlinkablity: Protect the protocol conversation such that any two relying parties cannot link the conversation to one user (i.e. be unlinkable).
[SG-5]
Verifier Leak Resilience: Be Ebsilient to leaks from other relying parties 1.e., nothing that a verifier could possibly leak can help an attackerl
impersonate the user to another relying party.
[SG-6]
Authenticator Leak Resilience: Be resilient to leaks from other FIDO Authenticators. l.e., nothing that a particular FIDO Authenticator could
possibly leak can help an attacker to impersonate any other user to any relying party.
[SG-7]
User Consent: Notify the user before a relationship to a new relying party is being established (requiring explicit consent).
[SG-8]
Limited PII: Limit the amount of personal identifiable information (PIl) exposed fd the relying party to the absolute minimum.
[SG-9]
Attestable Properties: Relying Party must be able to verify FIDO Authenticator model/type (in order to calculate the associated risk).
[SG-10]
DoS Resistance: Be resilient to Denial of Service Attacks. |.e. prevent attackers from inserting invalid registration information for a legitimate
user for the next login phase. Afterward, the legitimate user will not be able to login successfully anymore.
[SG-11]
Forgery Resistance: Be resilient to Forgery Attacks (Impersonation Attacks). 1.e. prevent attackers from attempting to modify intercepted
communications in order to masquerade as the legitimate user and login to the system.
[SG-12]
Parallel Session Resistance: Be resilient to Parallel Session Attacks. Without knowing a user’s authentication credential, an attacker can
masquerade as the legitimate user by creating a valid authentication message out of some eavesdropped communication between the user
and the server.
[SG-13]
Forwarding Resistance: Be resilient to Forwarding and Replay Attacks. Having intercepted previous communications, an attacker can
impersonate the legal user to authenticate to the system. The attacker can replay or forward the intercepted messages.
[SG-14]
Transaction Non-Repudiation: Provide strong cryptographic non-repudiation for secure transactions.
[SG-15]
Respect for Operating Environment Security Boundaries: Ensure that registrations and key material as a shared system resource is
appropriately protected according to the operating environment privilege boundaries in place on the FIDO user device.

NOTE

For a definition of the phrases printed inilics, refer to [QuestToReplacePasswords] and to [PasswordAuthSchemesKeylssues]

4.1 Assets to be Protected
Independent of any particular implementation, the UAF protocol assumes some assets to be present and to be protected.

1. Cryptographic Authentication Key. Typically keys in FIDO are unique for each tuple of (relying party, user account, authenticator).

2. Cryptographic Authentication Key Reference. This is the cryptographic material stored at the relying party and used to uniquely verify the
Cryptographic Authentication Key, typically the public portion of an asymmetric key pair.

3. Authenticator Attestation Key(as stored in each authenticator). This should only be usable to attest a Cryptographic Authentication Key and
the type and manufacturing batch of an Authenticator. Attestation keys and certificates are shared By a large number of authenticators in a
device class from a given vendor in order to prevent their becoming a linkable identifier across relying parties. Authenticator Bttestation
certificates may be self-signed, or signed by an authority key Ebntrolled by the vendor.

4. Authenticator Attestation Authority Key. An authenticator vendor may elect to sign authenticator attestation certificates with a per-vendorQl
certificate authority Key.

5. Authenticator Attestation Authority Certificate. Contained in the initial/default trust Etore as part of the FIDO Server and contained in the
active trust store maintained by each relying party.

6. Active Trust Store. Contains all trusted attestation master certificates for a given BIDO server.

7. All data items suitable for uniquely identifying the authenticator across relying parties. An attack on those would break the non-linkability
security goal.

8. Private key of Relying Party TLS server certificate.l

9. TLS root certificate trust store for the user's browser/app.0

5. FIDO Security Measures

NOTE

Particular implementations of FIDO Clients, Authenticators, Servers and participating applications may not implement all of these security
measures (e.g. Secure Display, [SM-10] Transaction Confirmation) and they also might (and should) implement Bdd itional security
measures.

NOTE

The U2F protocol lacks support for [SM-5] Secure Display, [SM-10] Transaction Confirmation, Bas only server-supplied [SM-8] Protocol
Nonces, and [SM-3] Authenticator Class Attestation is implicit as there is only a single class of device.

[SM-1] (U2F + UAF)
Key Protection: Authentication key is protected against misuse. User unlocks cryptographic authentication key stored in FIDO Authenticator
(Except silent authenticators).
[SM-2] (U2F + UAF)
Unique Authentication Keys: Cryptographic authentication key is specific and Lnique to the tuple of (FIDO Authenticator, User, Relying
Party).
[SM-3] (U2F + UAF)
Authenticator Class Attestation: Hardware-based FIDO Authenticators support authenticator attestation using a shared attestation certificate.O]

Each relying party receives regular updates of the trust store (through attestation service).

[SM-4] (UAF)
Authenticator Status Checking: Relying Parties will be notified of compromised Buthenticators or authenticator attestation keys. The FIDO
Server must take this information into account. Authenticator manufacturers have to inform FIDO alliance about compromised authenticators.

[SM-5] (UAF)
User Consent: FIDO Client implements a user interface for getting user’s consent on any actions (except authentication with silent
authenticator) and displaying RP name (derived from server URL).

[SM-6] (U2F + UAF)
Cryptographically Secure Verifier Database: The relying party stores only the Public portion of an asymmetric key pair, or an encrypted key
handle, as a cryptographic authentication key reference.

[SM-7] (U2F + UAF)
Secure Channel with Server Authentication: The TLS protocol with server authentication or a transport with equivalent properties is used as
transport protocol for UAF. The use of https is enforced by a browser or Relying Party application.

[SM-8] (UAF)
Protocol Nonces: Both server and client supplied nonces are used for UAF registration and authentication. U2F requires server supplied
nonces.

[SM-9] (U2F + UAF)
Authenticator Certification: Only Authenticators meeting certification requirements Hefined by the BIDO Alliance and accurately describing
their relevant characteristics will have have their related attestation keys included in the default Trust Store.

[SM-10] (UAF)
Transaction Confirmation (WYSIWYS): Secure Display (WYSIWYS) (optionally) thplemented by the FIDO Authenticators is used by FIDO
Client for displaying relying party name and transaction data to be confirmed by the user.00

[SM-11] (U2F + UAF)
Round Trip Integrity: FIDO server verifies that the transaction data related to flhie server challenge received in the UAF message from the
FIDO client is identical to the transaction data and server challenge delivered as part of the UAF request message.

[SM-12] (U2F + UAF)
Channel Binding: Relying Party servers may verify the continuity of a secure channel with a client application.

[SM-13] (UAF)
Key Handle Access Token: Authenticators not intended to roam between untrusted systems are able to constrain the use of registration keys
within the privilege boundaries defined by the operating environment of the user device. (per-user, or perapplication, Br per-user + per-
application as appropriate)

[SM-14] (U2F + UAF)
Trusted Facet List: A Relying Party can declare the application identities allowed to access its registered keys, for operating environments on
user devices that support this concept.

[SM-15] (U2F + UAF)
Signature Counter: Authenticators send a monotonically increasing signature counter that a Relying Party can check to possibly detect
cloned authenticators.

5.1 Relation between Measures and Goals

Security Goal Supporting Security Measures

[SM-1] Key Protection

[SM-12] Channel Binding
[SG-1] Strong User Authentication
[SM-14] Trusted Facet List

[SM-15] Signature Counter

[SM-1] Key Protection
[SG-2] Credential Guessing Resilience
[SM-6] Cryptographically Secure Verifier Databasell

[SM-1] Key Protection
[SG-3] Credential Disclosure Resilience [SM-9] Authenticator CertificationO

[SM-15] Signature Counter

[SM-2] Unique Authentication Keys
[SG-4] Unlinkability
[SM-3] Authenticator Class Attestation

[SG-5] Verifier Leak Resii 0 [SM-2] Unique Authentication Keys
-5] Verifier Leak Resilience
[SM-6] Cryptographically Secure Verifier Databasell

[SM-9] Authenticator CertificationO
[SG-6] Authenticator Leak Resilience
[SM-15] Signature Counter

[SM-1] Key Protection
[SM-5] User Consent
SG-7] User Consent
[] [SM-7] Secure Channel with Server Authentication

[SM-10] Transaction Confirmation (WYSIWYS)O

Security Goal Supporting Security Measures

[SG-8] Limited PII [SM-2] Unique Authentication Keys

[SM-3] Authenticator Class Attestation
[SG-9] Attestable Properties [SM-4] Authenticator Status Checking

[SM-9] Authenticator CertificationO

[SG-10] DoS Resistance [SM-8] Protocol Nonces

[SM-7] Secure Channel with Server Authentication
[SM-8] Protocol Nonces

[SG-11] Forgery Resistance
[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-7] Secure Channel with Server Authentication
[SM-8] Protocol Nonces

[SG-12] Parallel Session Resistance
[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-7] Secure Channel with Server Authentication
[SM-8] Protocol Nonces

[SG-13] Forwarding Resistance
[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-1] Key Protection

[SM-2] Unique Authentication Keys

[SM-8] Protocol Nonces

[SG-14] Transaction Non-Repudiation [SM-9] Authenticator CertificationO

[SM-10] Transaction Confirmation (WYSIWYS)O
[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-13] Key Handle Access Token
[SG-15] Respect for Operating Environment Security Boundaries
[SM-14] Trusted Facet List

6. UAF Security Assumptions

Today’s computer systems and cryptographic algorithms are not provably secure. In this section we list the security assumptions, i.e. assumptions
on security provided by other components. A violation of any of these assumptions will prevent reliable achievement of the Security Goals.

[SA-1]
The cryptographic algorithms and parameters (key size, mode, output length, etc.) in use are not subject to unknown weaknesses that make
them unfit for their purpose @ encrypting, digitally signing, and authenticating messages.

[SA-2]
Operating system privilege separation mechanisms relied up on by the software modules involved in a FIDO operation on the user device
perform as advertised. E.g. boundaries between user and kernel mode, between user accounts, and between applications (where
applicable) are securely enforced and security principals can be mutually, securely identifiable.0

[SA-3]
Applications on the user device are able to establish secure channels that provide trustworthy server authentication, and confidentiality andO
integrity for messages (e.g., through TLS).

[SA-4]
The secure display implementation is protected against spoofing and tampering.00

[SA-5]
The computing environment on the FIDO user device and the and applications involved in a FIDO operation act as trustworthy agents of the
user.

[SA-6]
The inherent value of a cryptographic key resides in the confidence it imparts, Bnd this commodity decays with the passage of time,
irrespective of any compromise event. As a result the effective assurance level of authenticators will be reduced over time.

[SA-7]
The computing resources at the Relying Party involved in processing a FIDO operation act as trustworthy agents of the Relying Party.

6.1 Discussion

With regard to [SA-5] and malicious computation on the FIDO user's device, only very limited guarantees can be made within the scope of these
assumptions. Malicious code privileged at the level of the trusted computing base can always violate [SA-2] and [SA- 3]. Malicious code privileged
at the level of the user's account in traditional multi-user environments will also likely be able to violate [SA-3].

FIDO can also provide only limited protections when a user chooses to deliberately violate [SA-5], e.g. by roaming a USB authenticator to an
untrusted system like a kiosk, or by granting permissions to access all authentication keys to a malicious app in a mobile environment. Transaction
Confirmation can be used as a method to protect against compromised BIDO user devices.

In to components such as the FIDO Client, Server, Authenticators and the mix of software and hardware modules they are comprised of, the end-
to-end security goals also depend on correct implementation and adherence to FIDO security guidance by other participating components,
including web browsers and relying party applications. Some configurations and uses may not be able to meet all security goals. For example,0
authenticators may lack a secure display, they may be composed only of unattestable software components, they may be deliberately designed to
roam between untrusted operating environments, and some operating environments may not provide all necessary security primitives (e.g., secure
IPC, application isolation, modern TLS implementations, etc.)

7. Threat Analysis
7.1 Threats to Client Side

7.1.1 Exploiting User’s pattern matching weaknesses

1 11-'1 Homograph Mis-Registration Violates
The user registers a FIDO authentication key with a fraudulent web site instead of the genuine Relying Party.
Consequences: The fraudulent site may convince the user to disclose a set of non-FIDO credentials sufficient to allow theO
attacker to register a FIDO Authenticator under its own control, at the genuine Relying Party, on the user's behalf, violating

AC3 [SG-1] Strong User Authentication. SG-1
Mitigations: Disclosure of non-FIDO credentials is outside of the scope of the FIDO security measures, but Relying Parties
should be aware that the initial strength of an authentication key is no better than the identity-proofing applied as part of thel
registration process.

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications

g FIDO Client Corrpution Violates
Attacker gains ability to execute code in the security context of the FIDO Client.
Consequences: Violation of [SA-5].

AC3 Mitigations: When the operating environment on the FIDO user device allows, the FIDO Client should operate in a SA-5
privileged and isolated context under [SA-2] to protect itself from malicious modification by anything outside of the TrustedO
Computing Base.

1 -2'2 Logical/Physical User Device Attack Violates
Attacker gains physical access to the FIDO user device but not the FIDO Authenticator.
Consequences: Possible violation of [SA-5] by installing malicious software or otherwise tampering with the FIDO user
device.

AC3

/ Mitigations: [SM-1] Key Protection prevents the disclosure of authentication keys or other assets during a transient SA-5

AC5 | compromise of the FIDO user device.
A persistent compromise of the FIDO user device can lead to a violation of [SA-5] unless additional protection measures
outside the scope of FIDO are applied to the FIDO user device. (e,g. whole disk encryption and boot-chain integrity)

1 -2'3 User Device Account Access Violates
Attacker gains access to a user's login credentials on the FIDO user device.
Consequences: Authenticators might be remotely abused, or weakly-verifying authenticators might be locally abused,

AC3 | Violating [SG-1] Strong User Authentication and [SG-13] Transaction Non-Repudiation. SG-1

{’-\04 Possible violation of [SA-5] by the installation of malicious software. 22;3
Mitigations: Relying Parties can use [SM-9] Authenticator Certification Bnd [SM-3] Authenticator Class Attestation to
determine the nature of authenticators and not rely on weak, or weakly-verifying authenticators for high value operations.

1 -2' 4 App Server Verification Errord Violates

T

operation.

If the malicious application attempts to communicate directly with an Authenticator that uses [SM-13]
KeyHandleAccessToken, it should not be able to access keys registered by other FIDO Clients.

If the operating environment on the FIDO user device supports it, the FIDO client may be able to determine the application's
identity and verify if it is authorized to target that Relying Party using a [SM-14] Trusted Facet List.

1.2.4 App Server Verification ErrorQd Violates
A client application fails to properly validate the remote sever identity, accepts forged or stolen credentials for a remote
server, or allows weak or missing cryptographic protections for the secure channel.
Consequences: An active network adversary can modify the Relying Party's authenticator policy and downgrade the client's
choice of authenticator to make it easier to attack.
An active network adversary can intercept or view FIDO messages intended for the Relying Party. It may be able to use this SG-11
AC3 ability to violate [SG-12] Parallel Session Resistance, [SG-11] Forgery Resistance or [SG-13] Forwarding Resistance, SG-12‘
Mitigations: The server can verify [SM-8] Protocol Nonces to detect replayed messages and protect from an adversary that 5G-13
can read but not modify traffic in a secure channel.O
The server can mandate a channel with strong cryptographic protections to prevent message forgery and can verify a [SM-
12] Channel Binding to detect forwarded messages.
155 RP Web App Corruption Violates
An attacker is able to obtain malicious execution in the security context of the Relying Party application (e.g. via Cross-Site
Scripting) or abuse the secure channel or session identifier after the user has successfully authenticated.]
Consequences: The attacker is able to control the user's session, violating [SG-14] Transaction Non-Repudiation. SG-14
Mitigations: The server can employ [SM-10] Transaction Confirmation to gain BEdditional assurance for high value
operations.
1 1; 6 Fingerprinting Authenticators Violates
A remote adversary is able to uniquely identify a FIDO user device using the fingerprint Bf discoverable configuration of itsO
FIDO Authenticators.
Consequences: The exposed information violates [SG-8] Limited PII, allowing an adversary to violate [SG-7] User Consent
by strongly authenticating the user without their knowledge and [SG-4] Unlinkablity by sharing that fingerprint.00 284
7,
Mitigations: [SM-3] Authenticator Class Attestation ensures that the fingerprint of an Authenticator will not be unique.Ol SG-8
For web browsing situations where this threat is most prominent, user agents may provide additional user controls around the
discoverability of FIDO Authenticators.
127 App to FIDO Client full MITM attack Violates
Malicious software on the FIDO user device is able to read, tamper with, or spoof the endpoint of inter-process
communication channels between the FIDO Client and browser or Relying Party application.
Consequences: Adversary is able to subvert [SA-2].
AC3 | Mitigations: On platforms where [SA-2] is not strong the security of the system may depend on preventing malicious SA-2
applications from arriving on the FIDO user device. Such protections, e.g. app store policing, are outside the scope of FIDO.
When using [SM-10] Transaction Confirmation, the user would see the Etlevant ApplID and transaction text and decide
whether or not to accept an action.
1 1; 8 Authenticator to App Read-Only MITM attack Violates
An adversary is able to obtain an authenticator's signed protocol response message.
Consequences: The attacker attempts to replay the message to authenticate as the user, violating [SG-1] Strong User SG-1
AC3 Authentication, [SG-13] Forwarding Resistance and [SG-12] Parallel Session Resistance. SG-1’2
Mitigations: The server can use [SM-8] Protocol Nonces to detect replay of messages and verify [SM-11] Round Trip SG-13
Integrity to detect modified messages.O
T Malicious App Violates
1.29
A user installs an application that represents itself as being associated with to one Relying Party application but actually
initiates a protocol conversation with a different Relying Party and attempts to abuse previously registered authentication keys
at that Relying Party.
Consequences: Adversary is able to violate [SG-7] User Consent by misrepresenting the target of authentication.
Other consequences equivalent to [T-1.2.5]
AC3 | Mitigations: If a [SM-5] Transaction Confirmation Display is present, the user Bhay be able to verify the true target of an SG-7

T-

1.4.4

1.2.10 Phlshlng Attack Violates
A Phisher convinces the user to enter his PIN used for user verification into an application / @eb site disclosing the PIN to
the Phisher. In the traditional username/password world this enables the attacker to successfully impersonate the user (to
the relying party).
Consequences: None as the phisher additionally would need access to the Authenticator in order to pass user verificationd
[SM-1]. In FIDO, the user verification PIN (if user Zrification is done via PIN) is not known to the Eelying party and hence
isn't sufficient for user impersonation. O user verification is done using an alternative user verification method, this appliesd
accordingly.
Mitigations: In FIDO, the Uauth.priv key is used to sign a relying party supplied challenge. without (use) access to that key,
no impersonation is possible.
7.1.3 Creating a Fake Client
1 -;'1 Malicious FIDO Client Violates
Attacker convinces users to install and use a malicious FIDO Client.
Consequences: Violation of [SA-5]
Mitigations: Mitigating malicious software installation is outside the scope of FIDO.
AC3 If an authenticator implements [SM-1] Key Protection, the user may be able to recover full control of their registered SA-5
authentication keys by removing the malicious software from their user device.
When using [SM-10] Transaction Confirmation, the user sees the real ApplIDs Bind transaction text and can decide to accept
or reject the action.
7.1.4 Threats to FIDO Authenticator
1 1‘;' 1 Malicious Authenticator Violates
Attacker convinces users to use a maliciously implemented authenticator.
Consequences: The fake authenticator does not implement any appropriate security measures and is able to violate all
security goals of FIDO.
AC2 Mitigations: A user may be unable to distinguish a malicious authenticator, but a Relying Party can use [SM-3] Authenticator SG-1
Class Attestation to identify and only allow registration of reliable authenticators that have passed [SM-9] Authenticator
Certification
A Relying Party can additionally rely on [SM-4] Authenticator Status Checking to check if an attestation presented by a
malicious authenticator has been marked as compromised.
1 -2'2 Uauth.priv Key Compromise Violates
Attacker succeeds in extracting a user's cryptographic authentication key for use in a different context.
Consequences: The attacker could impersonate the user with a cloned authenticator that does not do trustworthy user
verification, violating [SG-1].0
Mitigations: [SM-1] Key Protection measures are intended to prevent this. sG
AC2 A
Relying Parties can check [SM-9] Authenticator Certification attributes to determine Hhe type of key protection in use by a
given authenticator class.
Relying Parties can additionally verify the [SM-15] Signature Counter and detect that an authenticator has been cloned if it
ever fails to advance relative to the prior operation.
1 -2'3 User Verification By-Pass[Violates
Attacker could use the cryptographic authentication key (inside the authenticator) either with or without being noticed by the
legitimate user.
Consequences: Attacker could impersonate user, violating [SG-1].
AC3 Mitigations: A user can only register and a Relying Party only allow authenticators that perform [SM-1] Key Protection with SG-1
an appropriately secure user verification process.O
Does not apply to Silent Authenticators.
T- Physical Authenticator Attack Violates

T-

1.4.11

1.4.4 Physical Authenticator Attack Violates
Attacker could get physical access to FIDO Authenticator (e.g. by stealing it).

Consequences: Attacker could launch offline attack in order to use Fhe authentication key. If this offline attack succeeds, thell
attacker could successfully impersonate the user, violating [SG-1] Strong User Authentication.
Attacker can introduce a low entropy situation to recover an ECDSA signature key (or optherwise extract the Uauth.priv key),

AC5 | violating [SG-9] Attestable Properties if the attestation key is targeted or [SG-1] Strong User Authentication if a user key is

/ targeted. SG-1

AC6
Mitigations: [SM-1] Key Protection includes requirements to implement strong protections for key material, including
resistance to offline attacks and low entropy situations.O
Relying Parties should use [SM-3] Authenticator Class Attestation to only accept Authenticators implementing a sufficientlyOl
strong user verification method.OI

1 11;-6 Fake Authenticator Violates
Attacker is able to extract the authenticator attestation key from an authenticator, e.g. by neutralizing physical
countermeasures in a laboratory setting.

Consequences: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or software device that
represents itself as a legitimate one. SG-9
Mitigations: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-compromised keys.

Identification of such compromise is outside the strict Ecope of the FIDO protocols.

1 -2'7 Transaction Confirmation Display Overlay AttackO Violates
Attacker is able to subvert [SM-5] Secure Display functionality (WYSIWYS), perhaps by overlaying the display with false
information.

Consequences: Violation of [SG-14] Transaction Non-Repudiation.

Mitigations: Implementations must take care to protect [SA-4] in their implementation of a secure display, e.g. by

implementing a distinct hardware display or employing appropriate privileges in the operating environment of the user device | SG-14
to protect against spoofing and tampering.O0

[SM-9] Authenticator Certification will provide Relying Parties with metadata Bbout the nature of a transaction confirmationd

display information that can be used to assess whether it matches the assurance level and risk tolerance of the Relying Party

for that particular transaction.

1 -2-8 Signature Algorithm Attack Violates
A cryptographic attack is discovered against the public key cryptography system used to sign data by the FIDO authenticator.
Consequences: Attacker is able to use messages generated by the client to violate [SG-2] Credential Guessing Resistance
Mitigations: [SM-8] Protocol Nonces, including client-generated entropy, limit the amount of control any adversary has over

AC2 ; . SG-2
the internal structure of an authenticator.

[SM-1] Key Protection for non-silent authenticators requires user interaction to authorize any operation performed with the
authentication key, severely limiting the rate at which an adversary can perform adaptive cryptographic attacks.

s 0 Abuse Functionality Violates
It might be possible for an attacker to abuse the Authenticator functionality by sending commands with invalid parameters or
invalid commands to the Authenticator.

Consequences: This might lead to e.g. user verification by-pass or potential key extraction, vO SG-1
Mitigations: Proper robustness (e.g. due to testing) of the Authenticator firmware.O
1 I'w Random Number prediction Violates
It might be possible for an attacker to get access to information allowing the prediction of RNG data.
Consequences: This might lead to key compromise situation (T-1.4.2) when using ECDSA (if the k value is used multiple
times or if it is predictable). SG-1
Mitigations: Proper robustness of the Authenticator's RNG and verification of the relevant Bperating environment
parameters (e.g. temperature, ...).
T- Firmware Rollback Violates

T- i i
1.4.11 Firmware Rollback Violates
Attacker might be able to install a previous and potentially buggy version of the firmware.O
Consequences: This might lead to successful attacks, e.g. T-1.4.9. SG-1
Mitigations: Proper robustness firmware verification method.O
1 1'12 User Verification Data InjectionO Violates
Attacker might be able to inject pre-captured user verification data into the Buthenticator. For example, if a password is used
as user verification method, the attacker Ebuld capture the password entered by the user and then send the correct
password to the Authenticator (by-passing the expected keyboard/PIN pad). Passwords could be captured ahead of the
attack e.g. by convincing the user to enter the password into a malicious app (“phishing”) or by spying directly or indirectly
the password data.
AC3, | In another example, some malware could play an audio stream which would be recorded by the microphone and used by a SG-1
AC6 | Speaker-Recognition based Authenticator.
Consequences: This might lead to successful user impersonation (if the attacker has access to valid user verification data).O
Mitigations: Use a physically secured user verification input method, Elg. Fingerprint Sensor or Trusted-User-Interface for
PIN entry which cannot be by-passed by malware.
1 1'1 3 Verification Reference Data ModificationOl Violates
The Attacker gained physical access to the Authenticator and modifies Merification Reference Data (e.g. hashed PIN value)O
stored in the Authenticator and adds reference data known or reproducible by the attacker.
ﬁgg Consequences: The attacker would be recognized as the legitimate User and could impersonate the user. SG-1
Mitigations: Proper protection of the the verification reference data the Authenticator.
7.2 Threats to Relying Party
7.2.1 Threats to FIDO Server Data
211 FIDO Server DB Read Attack Violates
Attacker could obtains read-access to FIDO Server registration database.
Consequences:Attacker can access all cryptographic key handles and authenticator characteristics associated with a
username. If an authenticator or combination of authenticators is unique, they might use this to try to violate [SG-2]
Unlinkability
Attacker attempts to perform factorization of public keys by virtue of having access to a large corpus of data, violating [SG-5]
Verifier Leak Resiliance and [BG-2] Credential Guessing Resilience G
-2,
Mitigations: [SM-2] Unique Authentication Keys help prevent disclosed key material from being useful against any other SG-5
Relying Party, even if successfully attacked.
The use of an [SM-6] Cryptographically Secure Verifier Database helps assure Hhat it is infeasible to attack any leaked verifier(
keys.
[SM-9] Authenticator Certification should help prevent authenticators with poor Entropy from entering the market, reducing the
likelihood that even a large corpus of key material will be useful in mounting attacks.
211-' 2 FIDO Server DB Modification Attackdl Violates
Attacker gains write-access to the FIDO Server registration database.
Consequences: Violation of [SA-7]
The attacker may inject a key registration under its control, violating [SG-1] Strong User Authentication SA-7
Mitigations: Mitigating such attacks is outside the scope of the FIDO specifications. he Relying Party must maintain the
integrity of any information it relies up on to identify a user as part of [SA-7].
2-2'1 WebApp Malware Violates
Attacker gains ability to execute code in the security context of the Relying Party web application or FIDO Server.
Consequences: Attacker is able to violate [SG-1], [SG-10], [SG-9] and any other Relying Party controls.
Mitigations: The consequences of such an incident are limited to the relationship between the user and that particular gg;
Relying Party by [SM-1], [SM-2], and [SM-5]. SG- p
Even within the Relying Party to user relationship, a user can be protected by [SM-10] Transaction Confirmation if the
compromise does not include to the user's computing environment

7.3 Threats to the Secure Channel between Client and Relying Party

7.3.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

FIDO takes as a base assumption that [SA-3] applications on the user device are able to establish secure channels that provide trustworthy server
authentication, and confidentiality End integrity for messages. e.g. through TLS. [T-1.2.4] Discusses some consequences of violations of this

assumption due to implementation errors in a browser or client application, but other threats exist in different layers.

—
3.1.1 TLS Proxy

Violates

The FIDO user device is administratively configured to connect through a proxy that terminates LS connections. The client
trusts this device, but the connection between the user and FIDO server is no longer end-to-end secure.

Consequences: Any such proxies introduce a new party into the protocol. If this party is untrustworthy, consequences may
be as for [T-1.2.4]

Mitigations: Mitigations for [T-1.2.4] apply, except that the proxy is considered trusted by the client, so certain methods of
[SM-12] Channel Binding may indicate a compromised channel even in the absence of an attack. Servers should use
multiple methods and adjust their risk scoring appropriately. A trustworthy client that reports a server certificate that isO0
unknown to the server and does not chain to a public root may indicate a client behind such a proxy. A client reporting a
server certificate that is unknown to the server but validates for the server's identity according & commonly used public trust
roots is more likely to indicate [T-3.1.2]

SG-11,
SG-12,
SG-13

4

31.2 Fraudulent TLS Server Certificatel

Violates

An attacker is able to obtain control of a certificate credential for a Relying Party, flerhaps from a compromised Certification
Authority or poor protection practices by the Relying Party.

Consequences:As for [T-1.2.4].

Mitigations:As for [T-1.2.4].

3.1.3 Protocol level real-time MITM attack

Violates

An adversary can intercept and manipulate network packages sent from the relying party to the client. The adversary uses
this capability to (a) terminate the underlying TLS session from the client at the adversary and to (b) simultaneously use
another TLS session from the adversary to the relying party. In the traditional username/password world, this allows the
adversary to intercept the username and the password and then successfully impersonate the user at the relying party.

Consequences: None if FIDO channelBinding [SM-12] or transaction confirmation [SM-10] Bre used.

Mitigations: In the case of channelBinding [SM-12], the FIDO server will detect the MITM in the TLS channel by comparing
the channel binding information provided by the client and the channel binding information retrieved locally by the server.

In the case of transaction confirmation [SM-10], the user verifies and approves H particular transaction. The adversary could
modify the transaction before approval. This would lead to rejection by the user. Alternatively, the adversary could modify the
transaction after approval. This will break the signature in the transaction confirmation response. he FIDO Server will not
accept it as a consequence.

7.4 Threats to the Infrastructure

7.4.1 Threats to FIDO Authenticator Manufacturers

—

411 Manufacturer Level Attestation Key Compromise

Violates

Attacker obtains control of an attestation key or attestation key issuing key.

Consequences: Same as [T-1.4.6]: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or
software device that represents itself as a legitimate one.

Mitigations: Same as [T-1.4.6]: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-
compromised keys. Identification of such compromise is outside the strict scope of the FIDO protocols.O0

SG-9

4

4.1.2 Malicious Authenticator HW

Violates

FIDO Authenticator manufacturer relies on hardware or software components that generate weak cryptographic
authentication key material or contain backdoors.

Consequences: Effective violation of [SA-1] in the context of such an Authenticator.

Mitigations: The process of [SM-9] Authenticator Certification may reveal a subset of such Hhreats, but it is not possible that
all such can be revealed with black box testing and white box examination may be is economically infeasible. Users and
Relying Parties with special concerns about this class of threat must exercise their own necessary caution about the
trustworthiness and verifiability of their vendors and Bupply chain.

SA-1

7.4.2 Threats to FIDO Server Vendors

4-2'1 Vendor Level Trust Anchor Injection Attack

Violates

T-

5.1.3

4.2.1 Vendor Level Trust Anchor Injection Attack Violates
Attacker adds malicious trust anchors to the trust list shipped by a FIDO Server vendor.
Consequences: Attacker can deploy fake Authenticators which Relying Parties cannot detect as such, which do not
implement any appropriate security measures, and is able to violate all security goals of FIDO. SA-7
Mitigations: This type of supply chain threat is outside the strict scope of the FIDO protocols and violates [SA-7]. Relying
Parties can their trust list against definitive Bata published by the FIDO Alliance.
7.4.3 Threats to FIDO Metadata Service Operators
4;'1 Metadata Service Signing Key Compromise Violates
The attacker gets access to the private Metadata signing key.
Consequences: The attacker could sign invalid Metadata. The attacker could
« make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).
« make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)
« inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchord
and the cross signed original attestation root certificate. his malicious trust anchors could be used to sign attestation SG-9
certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but notO :
protecting their keys as stated in the metadata.
Mitigations: The Metadata Service operator should protect the Metadata signing key appropriately, e.g. using a hardware
protected key storage.
Relying parties could use out-of-band methods to cross-check Metadata Statements with the respective vendors and cross-
check the revocation state of the Metadata signing key with the provider of the Metadata Service.
41:;' 5 Metadata Service Data Injection Violates
The attacker injects malicious Authenticator data into the Metadata source.
Consequences: The attacker could make the Metadata Service operator sign invalid Metadata. The attacker could
« make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).
« make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)
« inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchord SG-9
and the cross signed original attestation root certificate. his malicious trust anchors could be used to sign attestation
certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but not
protecting their keys as stated in the metadata.
Mitigations: The Metadata Service operator could carefully review the delta between the old and the new Metadata.
Authenticator vendors could verify the published Metadata related to their Authenticators.
7.5 Threats Specific to UAF with a second factor / U2FO
511-' 1 Error Status Side Channel Violates
Relying parties issues an authentication challenge to an authenticator and can infer from error status if it is already enrolled.
Consequences: U2F authenticators not requiring user interaction may be used to track users without their consent by
issuing a pre-authentication challenge to a U2F token, revealing the identity of an otherwise anonymous user. Users would
be identifiable By relying parties without their knowledge, violating [SG-7] SG-7
Mitigations: The U2F specification recommends that browsers prompt users whether to allow fhis operation using
mechanisms similar to those defined for other privacy sensitive Bperations like Geolocation.
T Malicious RP Violates
5.1.2
Malicious relying party mounts a cryptographic attack on a key handle it is storing.
Consequences: U2F does not have a protocol-level notion of [SG-14] Transaction Non-Repudiation but If the Relying Party
is able to recover the contents of the key handle it might forge logs of protocol exchanges to associate the user with actions
he or she did not perform.
If the Relying Party is able to recover the key used to wrap a key handle, that key is likely shared, and might be used to
decrypt key handles stored with other Relying Parties and violate [SG-1] Strong User Authentication.
Mitigations: None. U2F depends on [SA-1] to hold for key wrapping operations.
T- Physical U2F Authenticator Attack Violates

T-

51.3 Physical U2F Authenticator Attack Violates

Attacker gains physical access to U2F Authenticator (e.g., by stealing it).
Consequences: Same as for T-1.4.4

A U2F authenticator has weak local user verification. If the attacker can guess fie username and password/PIN, they can
impersonate the user, violating [SG-1] Strong User Authentication SG-1

Mitigations: Relying Parties can use strong additional factors.

Relying Parties should provide users a means to revoke keys associated with a lost device.

8. Acknowledgements

We thank iSECpartners for their review of, and contributions to, this document.
A. References

A.1 Informative references

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf00

[PasswordAuthSchemesKeylssues]
Chwei-Shyong Tsai, Cheng-Chi Lee, and Min-Shiang Hwang, Password Authentication Schemes: Current Status and Key Issues
International Journal of Network Security, Vol.3, No.2, PP.101-115, Sept. 2006, URL: http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-
v3-n2-p101-115.pdf

[QuestToReplacePasswords]
Joseph Bonneau, Cormac Herley, Paul C. van Oorschot and Frank Stajano,The Quest to Replace Passwords: A Framework for
Comparative Evaluation of Web Authentication Schemes, Microsoft Research, Carleton University and University of Cambridge, March
2012, URL: http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[U2FOverview]
S. Srinivas, D. Balfanz, E. Tiffany, FIDO U2F Overview v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http:/fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf0

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0(FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf0l

https://www.isecpartners.com
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf

g
4
S
S

Q

FIDO Technical Glossary

FIDO Alliance Implementation Draft 22 November 2014

This version:
https://fidoalliance.org/specs/fido-glossary-v1.0-id-20141122.htmi
Previous version:
https://fidoalliance.org/specs/fido-glossary-v1.0-1D-20141009.htmli
Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal
Contributor:
Jeff Hodges, PayPal

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. TheOl
values defined in this document are referenced by various UAF specifications.O

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications indextat https.//www.fidoalliance.org/specifications/.0

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by EIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose ofd

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-glossary-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-glossary-v1.0-ID-20141009.html
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

implementing the Specification. No rights Bre granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce Portions of this Specification forll
other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under thirdO
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not,[0
and shall not be held, responsible in any manner for identifying or failing to identify any

or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS I1S” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Introduction
3. DefinitionsOd

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “’, e.g. “UAF-TLV”.
In formulas we use “I” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in FIDOGIlossary].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
‘recommended”, “may”, and “optional” in this document are to be interpreted as
described in [RFC2119].

2. Introduction

This document is the FIDO Alliance glossary of normative technical terms.

This document is not an exhaustive compendium of all FIDO technical terminology
because the FIDO terminology is built upon existing terminology. Thus many terms that
are commonly used within this context are not listed. They may be found in the
glossaries/documents/specifications keferenced in the bibliography. Terms defined herell
that are not attributed to other glossaries/documents/specifications are being defined
here.

This glossary is expected to evolve along with theFIDO Alliance specifications andO
documents.

3. Definitionsd
AAID

Authenticator Attestation ID. See Attestation ID.
Application

A set of functionality provided by a common entity (the application owner, aka the
Relying Party), and perceived by the user as belonging together.

Application Facet
An (application) facet is how an application is implemented on various platforms.
For example, the application MyBank may have an Android app, an iOS app, and
a Web app. These are all facets of the MyBank application.

Application Facet ID

A platform-specific identifier (URI) for an application facet.O

e For Web applications, the facet id is the RFC6454 origin RFC6454].

« For Android applications, the facet id is the URI android:apk-key-
hash:<hash-of-apk-signing-cert>

» ForiOS, the facet id is the URI ios:bundle-id <ios-bundle-id-of-app>

AppID
The ApplID is an identifier for a set of different Facets of a relying party'sO]
application. The ApplID is a URL pointing to the TrustedFacets, i.e. list of FacetlDs
related to this ApplD.

Attestation
In the FIDO context, attestation is how Authenticators make claims to a Relying
Party that the keys they generate, and/or certain measurements they report,
originate from genuine devices with certified characteristics.O0

Attestation Certificated
A public key certificate related to an Attestation Key.Ol

Authenticator Attestation ID / AAID
A unique identifier assigned to a model, class or batch of FIDO Authenticators Hhat
all share the same characteristics, and which a Relying Party can use to look up
an Attestation Public Key and Authenticator Metadata for the device.

Attestation [Public / Private] Key
A key used for FIDO Authenticator attestation.

Attestation Root Certificate

A root certificate explicitly trusted by the EIDO Alliance, to which Attestation
Certificates chain to.O

Authentication

Authentication is the process in which user employs their FIDO Authenticator to

prove possession of a registered key to a relying party.
Authentication Algorithm

The combination of signature and hash algorithms used for authenticator-to-
relying party authentication.

Authentication Scheme

The combination of an Authentication Algorithm with a message syntax or framing
that is used by an Authenticator when constructing a response.

Authenticator, Authnr
See FIDO Authenticator.
Authenticator, 1stF / First Factor

A FIDO Authenticator that transactionally provides a username and at least two
authentication factors: cryptographic key material (something you have) plus user
verification (something you know / something you are) and so can be used byl
itself to complete an authentication.

It is assumed that these authenticators have an internal matcher. The matcher is
able to verify an already enrolled user. If there is more than one user enrolled —
the matcher is also able to identify the right user.

Examples of such authenticator is a biometric sensor or a PIN based verification.Ol
Authenticators which only verify presence, such as a physical button, or perform
no verification at all, cannot act as a first-factor authenticator.O]

Authenticator, 2ndF / Second Factor

A FIDO Authenticator which acts only as a second factor. Second-factor
authenticators always require a single key handle to be provided before
responding to a sign command. They might or might not have a user verificationO
method. It is assumed that these authenticators may or may not have an internal
matcher.

Authenticator Attestation

The process of communicating a cryptographic assertion to a relying party that a
key presented during authenticator registration was created and protected by a
genuine authenticator with verified characteristics.O]

Authenticator Metadata

Verified information about the characteristics of a certified authenticator,0]
associated with an AAID and available from the FIDO Alliance. FIDO Servers are
expected to have access to up-to-date metadata to be able to interact with a given
authenticator.

Authenticator Policy
A JSON data structure that allows a relying party to communicate to a FIDO
Client the capabilities or specific authenticators that are allowed or disallowed forl
use in a given operation.

ASM / Authenticator Specific Modulel

Software associated with a FIDO Authenticator that provides a uniform interface
between the hardware and FIDO Client software.

AV
ASM Version
Bound Authenticator

A FIDO Authenticator or combination of authenticator and ASM, which uses an
access control mechanism to restrict the use of registered keys to trusted FIDO
Clients and/or trusted FIDO User Devices. Compare to a Roaming Authenticator.

Certificated

An X.509v3 certificate defined by the profile specified in EFC5280] and its
successors.

Channel Binding

See: [RFC5056], [RFC5929] and [ChannellD]. A channel binding allows
applications to establish that the two end-points of a secure channel at one
network layer are the same as at a higher layer by binding authentication to the
higher layer to the channel at the lower layer.

Client

This term is used “in context”, and may refer to a FIDO UAF Client or some other
type of client, e.g. a TLS client. See FIDO Client.

Confused Deputy Problem

A confused deputy is a computer program that is innocently fooled by some other
party into misusing its authority. It is a specific type of privilege escalation.O]

Correlation Handle

Any piece of information that may allow, in the context of FIDO protocols, implicit
or explicit association and or attribution of multiple actions, believed by the user to
be distinct and unrelated, back to a single unique entity. An example of a
correlation handle outside of the FIDO context is a client certificate used inQ
traditional TLS mutual authentication: because it sends the same data to multiple
Relying Parties, they can therefore collude to uniquely identify and track the user
across unrelated activities. [AnonTerminology]

Deregistration
A phase of a FIDO protocol in which a Relying Party tells a FIDO Authenticator to
forget a specified piece of (or all) locally managed key material associated with all
specific Relying Party account, in case such keys are no longer considered validd
by the Relying Party.

Discovery
A phase of a FIDO protocol in which a Relying Party is able to determine the
availability of FIDO capabilities at the client’s device, including metadata about the
available authenticators.

E(K,D)
Denotes the Encryption of data D with key K

ECDSA

Elliptic Curve Digital Signature Algorithm, as defined by ANSI X9.62 ECDSA-

ANSI].
Enroliment

The process of making a user known to an authenticator. This might be a
biometric enrollment as defined in [NSTCBiometrics] or involve processes such as
taking ownership of, and setting a PIN or password for, a non-biometric
cryptographic storage device. Enroliment may happen as part of a FIDO protocol
ceremony, or it may happen outside of the FIDO context for multi-purpose
authenticators.

Facet

See Application Facet
Facet ID

See Application Facet ID
FIDO Authenticator

An authentication entity that meets the FIDO Alliance’s requirements and which
has related metadata.

A FIDO Authenticator is responsible for user verification, and maintaining the
cryptographic material required for the relying party authentication.

It is important to note that a FIDO Authenticator is only considered such for, and in
relation to, its participation in FIDO Alliance protocols. Because the FIDO Alliance
aims to utilize a diversity of existing and future hardware, many devices used for
FIDO may have other primary or secondary uses. To the extent that a device is
used for non-FIDO purposes such as local operating system login or network login
with non-FIDO protocols, it is not considered a FIDO Authenticator and its
operation in such modes is not subject to FIDO Alliance guidelines or restrictions,
including those related to security and privacy.

A FIDO Authenticator may be referred to as simply an authenticator or
abbreviated as “authnr”. Important distinctions in an authenticator’s capabilities
and user experience may be experienced depending on whether it is a roaming or
bound authenticator, and whether it is a first-factor, Gr second-factor authenticator.

It is assumed by registration assertion schemes that the authenticator has
exclusive control over the data being signed by the attestation key.

Some authentication assertion schemes (e.g. TAG_UAFV1_AUTH_ASSERTION)
assume the authenticator to have exclusive control over the data being signed by
the vauth key.

FIDO Client

This is the software entity processing the UAF or U2F protocol messages on the
FIDO User Device. FIDO Clients may take one of two forms:

« A software component implemented in a user agent (either web browser or
native application).

« A standalone piece of software shared by several user agents. (web
browsers or native applications).

FIDO Data / FIDO Information

Any information gathered or created as part of completing a FIDO transaction.

This includes but is not limited to, biometric measurements of or reference data
for the user and FIDO transaction history.

FIDO Server

Server software typically deployed in the relying party’s infrastructure that meets
UAF protocol server requirements.

FIDO UAF Client
See FIDO Client.
FIDO User Device

The computing device where the FIDO Client operates, and from which the user
initiates an action that utilizes FIDO.

Key Identifier (KeylD)O

The KeylID is an opaque identifier for a key Eegistered by an authenticator with a
FIDO Server, for first-factor authenticators. It is used in concert With an AAID to
identify a particular authenticator that holds the necessary key. Thus key
identifiers Bhust be unique within the scope of an AAID.

One possible implementation is that the KeyID is the SHA256 hash of the
KeyHandle managed by the ASM.

KeyHandle

A key container created by a FIDO Authenticator, containing a private key and
(optionally) other data (such as Username). A key handle may be wrapped
(encrypted with a key known only to the authenticator) or unwrapped. In the
unwrapped form it is referred to as a raw key handle. Second-factor authenticators
must retrieve their key handles from the relying party to function. First-factor
authenticators manage the storage of their own key handles, either internally (for
roaming authenticators) or via the associated ASM (for bound authenticators).

Key Registration

The process of securely establishing a key between FIDO Server and FIDO
Authenticator.

KeyRegistrationData (KRD)

A xeyregistrationData Object is created and returned by an authenticator as the
result of the authenticator's register command. The KRD object contains items
such as the authenticator's AAID, the newly generated UAuth.pub key, as well as
other authenticator-specific information such as algorithms used by theld
authenticator for performing cryptographic operations, and counter values. The
KRD object is signed using the authenticator's attestation private key.

KHAccessToken

A secret value that acts as a guard for authenticator commands. KHAccessTokens
are generated and provided by an ASM.

Matcher

A component of a FIDO Authenticator which is able to perform (local) user
verification, e.g. biometric comparison [[(BOBiometrics], PIN verification, etc.O

Matcher Protections

The security mechanisms that an authenticator may use to protect the matcher
component.
Persona

All relevant data stored in an authenticator (e.g. cryptographic keys) are related to
a single "persona" (e.g. “business” or “personal” persona). Some administrative
interface (not standardized by FIDO) provided by the authenticator may allow
maintenance and switching of personas.

The user can switch to the “Personal” Persona and register new accounts. After
switching back to the “Business” Persona, these accounts will not be recognized
by the authenticator (until the User switches back to “Personal” Persona again).

This mechanism may be used to provide an additional measure of privacy to the
user, where the user wishes to use the same authenticator in multiple contexts,
without allowing correlation via the authenticator across those contexts.

PersonalD

An identifier provided by an ASM, PersonalD is used to associate Bifferent
registrations. It can be used to create virtual identities on a single authenticator, for
example to differentiate “personal” and “business” accounts. PersonalDs can be
used to manage privacy settings on the authenticator.

Reference Data

A (biometric) reference data (also called template) is a digital reference of distinct
characteristics that have been extracted from a biometric sample. Biometric
reference data is used during the biometric user verification @rocess
[ISOBiometrics]. Non-biometric reference data is used in conjunction with PIN-
based user verification.Ol

Registration

A FIDO protocol operation in which a user generates and associates new key
material with an account at the Relying Party, subject to policy set by the server,
and acceptable attestation that the authenticator and registration matches that

policy.
Registration Scheme

The registration scheme defines how the authentication key is being Exchanged
between the FIDO Server and the FIDO Authenticator.

Relying Party
A web site or other entity that uses a FIDO protocol to directly authenticate users
(i.e., performs peer-entity authentication). Note that if FIDO is composed with
federated identity management protocols (e.g., SAML, OpenlID Connect, etc.), the
identity provider will also be playing the role of a FIDO Relying Party.

Roaming Authenticator

A FIDO Authenticator configured to move between different BIDO Clients and
FIDO User Devices lacking an established trust relationship by:

1. Using only its own internal storage for registrations

2. Allowing registered keys to be employed without access control mechanisms
at the API layer. (Roaming authenticators still may perform user verification.)d

Compare to Bound Authenticator.

S(K, D)
Signing of data D with key K

Server Challenge
A random value provided by the FIDO Server in the UAF protocol requests.

Sign Counter
A monotonically increasing counter maintained by the Authenticator. It is
increased on every use of the UAuth.priv key. This value can be used by the FIDO
Server to detect cloned authenticators.

SignedData

A signedpnata Object is created and returned by an authenticator as the result of
the authenticator's sign command. The to-be-signed data input to the signature
operation is represented in the returned SignedData object as intact values or as
hashed values. The SignedData object also contains general information about
the authenticator and its mode, a nonce, information about authenticator-specificll
cryptographic algorithms, and a use counter. The signedpata object is signed
using a relying party-specific UAuth.priv key.O

Silent Authenticator
FIDO Authenticator that does not prompt the user or perform any user verification.O
Step-up Authentication
An authentication which is performed on top of an already authenticated session.
Example: The user authenticates the session initially using a username and
password, and the web site later requests a FIDO authentication on top of this

authenticated session.

One reason for requesting step-up authenication could be a request for a high
value resource.

FIDO U2F is always used as a step-up authentication. FIDO UAF could be used
as step-up authentication, but it could also be used as an initial authentication
mechanism.

Note: In general, there is no implication that the step-up authentication method
itself is "stronger" than the initial authentication. Since the step-up authentication
is performed on top of an existing authentication, the resulting combined
authentication strength will increase most likely, but it will never decrease.
Template
See reference data.
TLS
Transport Layer Security

Token

In FIDO U2F, the term Token is often used to mean what is called an authenticator
in UAF. Also, note that other uses of “token”, e.g. KHAccessToken, User
Verification Token, etc., are separately distinct. If they are not explicitly Befined,O
their meaning needs to be determined from context.

Transaction Confirmationd

An operation in the FIDO protocol that allows a relying party to request that a
FIDO Client, and authenticator with the appropriate capabilities, display some
information to the user, request that the user authenticate locally to their FIDO
Authenticator to confirm the information, and provide proof-of-possession ofl]
previously registered key material and an attestation of the confirmation back tod
the relying party.

Transaction Confirmation DisplayQ
This is a feature of FIDO Authenticators able to show content of a message to a
user, and protect the integrity of this message. It could be implemented using the
GlobalPlatform specified TrustedUI [MIEESecureDisplay].

TrustedFacets

The data structure holding a list of trusted FacetIDs. The ApplD is used to retrieve
this data structure.

TTEXT
Transaction Text, i.e. text to be confirmed in the case of transaction confirmation.O

Type-length-value/tag-length-value (TLV)
A mechanism for encoding data such that the type, length and value of the data
are given. Typically, the type and length data fields are of a fixed size. This Ebrmat
offers some advantages over other data encoding mechanisms, that make it
suitable for some of the FIDO UAF protocols.

Universal Second Factor (U2F)
The FIDO protocol and family of authenticators which enable a cloud service to
offer its users the options of using an easy—to—use, strongly—secure open
standards—based second-factor device for authentication. The protocol relies on
the server to know the (expected) user before triggering the authentication.

Universal Authentication Framework (UAF)
. The FIDO Protocol and family of authenticators which enable a service to offer its
users flexible and teroperable authentication. This protocol allows triggering the
authentication before the server knows the user.

UAF Client
See FIDO Client.

UAuth.pub / UAuth.priv / UAuth.key
User authentication keys generated by FIDO Authenticator. UAuth.pub is the
public part of key pair. UAuth.priv is the private part of the key. UAuth.key is the
more generic notation to refer to UAuth.priv.

UINT8
An 8 bit (1 byte) unsigned integer.

UINT16

A 16 bit (2 bytes) unsigned integer.

UINT32
A 32 bit (4 bytes) unsigned integer.
UPV
UAF Protocol Version
User
Relying party’s user, and owner of the FIDO Authenticator.
User Agent

The user agent is a client application that is acting on behalf of a user in a client-
server system. Examples of user agents include web browsers and mobile apps.

User VerificationOd

The process by which a FIDO Authenticator locally authorizes use of key material,
for example through a touch, pin code, fingerprint match or other biometric.O0

User Verification TokenO

The user verification token is generated by Buthenticator and handed to the ASM
after successful user verification. Without having this token, the ASM Elannot
invoke special commands such as register Of sign.

The lifecycle of the user verification token is Bhanaged by the authenticator. The
concrete techniques for generating such a token and managing its lifecycle are
vendor-specific and non-normative.ll

Username
A human-readable string identifying a user’s account at a relying party.
Verification Factor

The specific means by which local user verification is accomplished. BEl.g.
fingerprint, voiceprint, or PIN.O

This is also known as modality.
Web Application, Client-Side

The portion of a relying party application built on the "Open Web Platform" which
executes in the context of the user agent. When the term “Web Application”
appears unqualified or without specific context in FIDO Bocuments, it generally
refers to either the client-side portion or the combination of both client-side and
server-side pieces of such an application.

Web Application, Server-Side

The portion of a relying party application that executes on the web server, and
responds to HTTP requests. When the term “Web Application” appears unqualifiedd
or without specific context in FIDO Bocuments, it generally refers to either the
client-side portion or the combination of both client-side and server-side pieces of
such an application.

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdfl]

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

A.2 Informative references

[AnonTerminology]
"Anonymity. Unlinkability, Unobservability. Pseudonymity. and Identity
Management - A Consolidated Proposal for Terminology", Version 0.34.. A.
Pfitzmann and M. Hansen, August 2010. URL.: Bkip://dud.inf.tu-
dresden.de/literatur/Anon _Terminology v0.34.pdf

[ChannellD]
D. Balfanz Transport Layer Security (TLS) Channel IDs. (Work In Progress) URL.:
http://tools.ietf.org/html/draft-balfanz-tls-channelid

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA), ANSI X9.62-2005. American National
Standards Institute, November 2005, URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[ISOBiometrics]
Project Editor, Harmonized Biometric Vocabulary. ISO/IEC JTC 1. 15 November
2007, URL: http://isotc.iso.org/livelink/...

[NSTCBiometrics]
NSTC Subcommittee on Biometrics, Biometrics Glossary. National Science and
Technology Council. 14 September 2006, URL:
http://biometrics.gov/Documents/Glossary.pdf

[RFC5056]
N. Williams, On the Use of Channel Bindings to Secure Channels (RFC 5056)
IETF, November 2007, URL.: http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;/nternet X.509
Public Key Infrastructure Cetrtificate and Certificate Revocation List (CRL) Profilel]
IETF, May 2008, URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5929]
J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July
2010, URL: http://www.ietf.ora/rfc/rfc5929.txt

[RFC6454]
A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL:
https://tools.ietf.org/html/rfc6454

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API SpecificationsGlobalPlatform.
Accessed March 2014. URL: https://www.globalplatform.org/specifications.aspl]

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp

	Table of Contents
	UAF Architectural Overview
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	1.1 Background
	1.2 FIDO UAF Documentation
	1.3 FIDO UAF Goals

	2. FIDO UAF High-Level Architecture
	2.1 FIDO UAF Client
	2.2 FIDO UAF Server
	2.3 FIDO UAF Protocols
	2.4 FIDO UAF Authenticator Abstraction Layer
	2.5 FIDO UAF Authenticator
	2.6 FIDO UAF Authenticator Metadata Validation

	3. FIDO UAF Usage Scenarios and Protocol Message Flows
	3.1 FIDO UAF Authenticator Acquisition and User Enrollment
	3.2 Authenticator Registration
	3.3 Authentication
	3.4 Step-up Authentication
	3.5 Transaction Confirmation
	3.6 Authenticator Deregistration
	3.7 Adoption of New Types of FIDO UAF Authenticators

	4. Privacy Considerations
	5. Relationship to Other Technologies
	OpenID, SAML, and OAuth
	6. OATH, TCG, PKCS#11, and ISO 24727
	7. Table of Figures

	FIDO UAF Protocol Specification v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Architecture
	2.3 Protocol Conversation
	2.3.1 Registration
	2.3.2 Authentication
	2.3.3 Transaction Confirmation
	2.3.4 Deregistration

	3. Protocol Details
	3.1 Shared Structures and Types
	3.1.1 Version Interface
	3.1.2 Operation enumeration
	3.1.3 OperationHeader dictionary
	3.1.4 Authenticator Attestation ID (AAID) typedef
	3.1.5 KeyID typedef
	3.1.6 ServerChallenge typedef
	3.1.7 FinalChallengeParams dictionary
	3.1.8 TLS ChannelBinding dictionary
	3.1.9 JwkKey dictionary
	3.1.10 Extension dictionary
	3.1.11 MatchCriteria dictionary
	3.1.12 Policy dictionary

	3.2 Processing Rules for the Server Policy
	3.2.1 Examples

	3.3 Version Negotiation
	3.4 Registration Operation
	3.4.1 Registration Request Message
	3.4.2 RegistrationRequest dictionary
	3.4.3 AuthenticatorRegistrationAssertion dictionary
	3.4.4 Registration Response Message
	3.4.5 RegistrationResponse dictionary
	3.4.6 Registration Processing Rules

	3.5 Authentication Operation
	3.5.1 Transaction dictionary
	3.5.2 Authentication Request Message
	3.5.3 AuthenticationRequest dictionary
	3.5.4 AuthenticatorSignAssertion dictionary
	3.5.5 AuthenticationResponse dictionary
	3.5.6 Authentication Response Message
	3.5.7 Authentication Processing Rules

	3.6 Deregistration Operation
	3.6.1 Deregistration Request Message
	3.6.2 DeregisterAuthenticator dictionary
	3.6.3 DeregistrationRequest dictionary
	3.6.4 Deregistration Processing Rules

	4. Considerations
	4.1 Protocol Core Design Considerations
	4.1.1 Authenticator Metadata
	4.1.2 Authenticator Attestation
	4.1.3 Error Handling
	4.1.4 Assertion Schemes
	4.1.5 Username in Authenticator
	4.1.6 TLS Protected Communication

	4.2 Implementation Considerations
	4.2.1 Server Challenge and Random Numbers

	4.3 Security Considerations
	4.3.1 FIDO Authenticator Security
	4.3.2 Cryptographic Algorithms
	4.3.3 Application Isolation
	4.3.4 TLS Binding
	4.3.5 Session Management
	4.3.6 Personas
	4.3.7 ServerData and KeyHandle
	4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata
	4.3.9 Policy Verification
	4.3.10 Replay Attack Protection
	4.3.11 Protection against Cloned Authenticators
	4.3.12 Anti-Fraud Signals

	4.4 Interoperability Considerations

	5. UAF Supported Assertion Schemes
	5.1 Assertion Scheme "UAFV1TLV"
	5.1.1 KeyRegistrationData
	5.1.2 SignedData

	6. Definitions
	7. Table of Figures
	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Application API and Transport Binding Specification v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Audience
	2.2 Scope
	2.3 Architecture
	2.3.1 Protocol Conversation

	3. Common Definitions
	3.1 UAF Status Codes

	4. Shared Definitions
	4.1 UAFMessage Dictionary
	4.1.1 Dictionary UAFMessage Members

	4.2 Version interface
	4.2.1 Attributes

	4.3 Authenticator interface
	4.3.1 Attributes
	4.3.2 Authenticator Interface Constants

	4.4 DiscoveryData dictionary
	4.4.1 Dictionary DiscoveryData Members

	4.5 ErrorCode interface
	4.5.1 Constants

	5. DOM API
	5.1 Feature Detection
	5.2 uaf Interface
	5.2.1 Methods

	5.3 UAFResponseCallback
	5.3.1 Callback UAFResponseCallback Parameters

	5.4 DiscoveryCallback
	5.4.1 Callback DiscoveryCallback Parameters

	5.5 ErrorCallback
	5.5.1 Callback ErrorCallback Parameters

	5.6 Privacy Considerations for the DOM API
	5.7 Security Considerations for the DOM API
	5.7.1 Insecure Mixed Content
	5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

	5.8 Implementation Notes for Browser/Plugin Authors

	6. Android Intent API
	6.1 Android-specific Definitions
	6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT
	6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
	6.1.3 channelBindings
	6.1.4 UAFIntentType enumeration

	6.2 org.fidoalliance.intent.FIDO_OPERATION Intent
	6.2.1 UAFIntentType.DISCOVER
	6.2.2 UAFIntentType.DISCOVER_RESULT
	6.2.3 UAFIntentType.CHECK_POLICY
	6.2.4 UAFIntentType.CHECK_POLICY_RESULT
	6.2.5 UAFIntentType.UAF_OPERATION
	6.2.6 UAFIntentType.UAF_OPERATION_RESULT
	6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

	6.3 Security Considerations for Android Implementations

	7. iOS Custom URL API
	7.1 iOS-specific Definitions
	7.1.1 X-Callback-URL Transport
	7.1.2 Secret Key Generation
	7.1.3 Origin
	7.1.4 channelBindings
	7.1.5 UAFxType

	7.2 JSON Values
	7.2.1 DISCOVER
	7.2.2 DISCOVER_RESULT
	7.2.3 CHECK_POLICY
	7.2.4 CHECK_POLICY_RESULT
	7.2.5 UAF_OPERATION
	7.2.6 UAF_OPERATION_RESULT
	7.2.7 UAF_OPERATION_COMPLETION_STATUS

	7.3 Implementation Guidelines for iOS Implementations
	7.4 Security Considerations for iOS Implementations

	8. Transport Binding Profile
	8.1 Transport Security Requirements
	8.2 TLS Security Requirements
	8.3 HTTPS Transport Interoperability Profile
	8.3.1 Obtaining a UAF Request message
	8.3.2 Operation enum
	8.3.3 GetUAFRequest dictionary
	8.3.4 ReturnUAFRequest dictionary
	8.3.5 SendUAFResponse dictionary
	8.3.6 Delivering a UAF Response
	8.3.7 ServerResponse Interface
	8.3.8 Token interface
	8.3.9 TokenType enum
	8.3.10 Security Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Authenticator-Specific Module API
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Code & Example format

	3. ASM Requests and Responses
	3.1 Request enum
	3.2 StatusCode Interface
	3.2.1 Constants

	3.3 ASMRequest Dictionary
	3.3.1 Dictionary ASMRequest Members

	3.4 ASMResponse Dictionary
	3.4.1 Dictionary ASMResponse Members

	3.5 GetInfo Request
	3.5.1 GetInfoOut Dictionary
	3.5.2 AuthenticatorInfo Dictionary

	3.6 Register Request
	3.6.1 RegisterIn Object
	3.6.2 RegisterOut Object
	3.6.3 Detailed Description for Processing the Register Request

	3.7 Authenticate Request
	3.7.1 AuthenticateIn Object
	3.7.2 Transaction Object
	3.7.3 AuthenticateOut Object
	3.7.4 Detailed Description for Processing the Authenticate Request

	3.8 Deregister Request
	3.8.1 DeregisterIn Object
	3.8.2 Detailed Description for Processing the Deregister Request

	3.9 GetRegistrations Request
	3.9.1 GetRegistrationsOut Object
	3.9.2 AppRegistration Object
	3.9.3 Detailed Description for Processing the GetRegistrations Request

	3.10 OpenSettings Request

	4. Using ASM API
	5. Using the ASM API on various platforms
	5.1 Android ASM Intent API
	5.1.1 Discovering ASMs

	5.2 Windows ASM API

	6. Security and Privacy Guidelines
	6.1 KHAccessToken
	6.2 Access Control for ASM APIs

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Authenticator Commands v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	3. Additional Notations
	4. UAF Authenticator
	4.1 Types of Authenticators

	5. Tags
	5.1 Command Tags
	5.2 Tags used only in Authenticator Commands
	5.3 Tags used in UAF Protocol
	5.4 Status Codes

	6. Structures
	6.1 RawKeyHandle
	6.1.1 Structures to be parsed by FIDO Server
	6.1.2 UserVerificationToken

	6.2 Commands
	6.2.1 GetInfo Command
	6.2.2 Register Command
	6.2.3 Sign Command
	6.2.4 Deregister Command
	6.2.5 OpenSettings Command

	7. KeyIDs and key handles
	7.1 first-factor Bound Authenticator
	7.2 2ndF Bound Authenticator
	7.3 first-factor Roaming Authenticator
	7.4 2ndF Roaming Authenticator

	8. Access Control for Commands
	9. Relationship to other standards
	9.1 TEE
	9.2 Secure Elements
	9.3 TPM
	9.4 Unreliable Transports

	A. Security Guidelines
	B. Table of Figures
	C. References
	C.1 Normative references
	C.2 Informative references

	FIDO UAF Authenticator Metadata Statements v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 CodeAccuracyDescriptor dictionary
	3.1.1 Dictionary CodeAccuracyDescriptor Members

	3.2 BiometricAccuracyDescriptor dictionary
	3.2.1 Dictionary BiometricAccuracyDescriptor Members

	3.3 PatternAccuracyDescriptor dictionary
	3.3.1 Dictionary PatternAccuracyDescriptor Members

	3.4 VerificationMethodDescriptor dictionary
	3.4.1 Dictionary VerificationMethodDescriptor Members

	3.5 verificationMethodANDCombinations typedef
	3.6 rgbPalletteEntry dictionary
	3.6.1 Dictionary rgbPalletteEntry Members

	3.7 DisplayPNGCharacteristicsDescriptor dictionary
	3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Authenticator Metadata Service v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Detailed Architecture

	3. Metadata Service Details
	3.1 Metadata TOC Format
	3.1.1 Metadata TOC Payload Entry Dictionary
	3.1.2 StatusReport dictionary
	3.1.3 AuthenticatorStatus enum
	3.1.4 Metadata TOC Payload Dictionary
	3.1.5 Metadata TOC
	3.1.6 Metadata TOC object Processing Rules

	4. Considerations
	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Registry of Predefined Values
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	3. Authenticator Characteristics
	3.1 User Verification Methods
	3.2 Key Protection Types
	3.3 Matcher Protection Types
	3.4 Authenticator Attachment Hints
	3.5 Transaction Confirmation Display Types
	3.6 Tags used for crypto algorithms and types
	3.6.1 Authentication Algorithms
	3.6.2 Public Key Representation Formats

	3.7 Assertion Schemes

	4. Predefined Tags
	4.1 Tags used in the protocol

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO AppID and Facet Specification v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Motivation
	2.2 Avoiding App-Phishing
	2.3 Comparison to OAuth and OAuth2
	2.4 Non-Goals

	3. The AppID and FacetID Assertions
	3.1 Processing Rules for AppID and FacetID Assertions
	3.1.1 Determining the FacetID of a Calling Application
	3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
	3.1.3 TrustedFacets structure
	3.1.4 AppID Example 1:
	3.1.5 AppID Example 2:
	3.1.6 Obtaining FacetID of Android Native App
	3.1.7 Additional Security Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Security Reference
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	2.1 Intended Audience

	3. Attack Classification
	4. UAF Security Goals
	4.1 Assets to be Protected

	5. FIDO Security Measures
	5.1 Relation between Measures and Goals

	6. UAF Security Assumptions
	6.1 Discussion

	7. Threat Analysis
	7.1 Threats to Client Side
	7.1.1 Exploiting User’s pattern matching weaknesses
	7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
	7.1.3 Creating a Fake Client
	7.1.4 Threats to FIDO Authenticator

	7.2 Threats to Relying Party
	7.2.1 Threats to FIDO Server Data

	7.3 Threats to the Secure Channel between Client and Relying Party
	7.3.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

	7.4 Threats to the Infrastructure
	7.4.1 Threats to FIDO Authenticator Manufacturers
	7.4.2 Threats to FIDO Server Vendors
	7.4.3 Threats to FIDO Metadata Service Operators

	7.5 Threats Specific to UAF with a second factor / U2F

	8. Acknowledgements
	A. References
	A.1 Informative references

	FIDO Technical Glossary
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	3. Definitions
	A. References
	A.1 Normative references
	A.2 Informative references

