
1
4

13
51
73

100
128
143
155
167
173
187

Table of Contents

Table of Contents
UAF Architectural Overview
FIDO UAF Protocol Specification v1.0
FIDO UAF Application API and Transport Binding Specification v1.0
FIDO UAF Authenticator-Specific Module API
FIDO UAF Authenticator Commands v1.0
FIDO UAF Authenticator Metadata Statements v1.0
FIDO UAF Authenticator Metadata Service v1.0
FIDO UAF Registry of Predefined Values
FIDO AppID and Facet Specification v1.0
FIDO Security Reference
FIDO Technical Glossary



======================================================================
README: GUIDE TO DOCS: FIDO UAF Review Draft Spec Set
======================================================================

The following documents make up the FIDO UAF Review Draft (RD) Spec Set
voted to RD status on 8 Oct 2014. If you are reading this guide
as a first page of a PDF file, all the documents listed below are part
of this same PDF file.

If you are reading this document as a stand-alone file, the documents
listed below ought to be in the same directory as this file, in both
.html and .pdf formats.

  =-=-=-=
  FIDO UAF Architectural Overview
  fido-uaf-overview-v1.0-id-20141122.html

  This overview document describes the various protocol design
  considerations in detail and also describes the user flows in
  detail. It describes the layering and intention of each of the
  detailed protocol documents. 
   
  You should read this document first if you are new to UAF.

  =-=-=-=
  FIDO UAF Protocol Specification
  fido-uaf-protocol-v1.0-id-20141122.html

  This document defines the message formats and processing rules 
  for all UAF protocol messages.
  
  
  =-=-=-=
  UAF Application API and Transport Binding Specification
  fido-uaf-client-api-transport-v1.0-id-20141122.html

  This document describes the client side APIs and interoperability
  profile for client applications to utilize FIDO UAF.

  =-=-=-=
  FIDO UAF Authenticator-specific Module API
  fido-uaf-asm-api-v1.0-id-20141122.html
  
  This document defines Authenticator-specific Modules and the API
  provided to the FIDO client by ASMs.

  
  =-=-=-=
  FIDO UAF Authenticator Commands
  fido-uaf-authnr-cmds-v1.0-id-20141122.html
    
  This document describes Low-level functionality that UAF
  Authenticators should implement to support the UAF protocol.
 
 
  =-=-=-=
  FIDO UAF Authenticator Metadata Statements
  fido-uaf-authnr-metadata-v1.0-id-20141122.html
    
  This document defines the authenticator metadata. This metadata
  in turn  describes FIDO authenticator form factors,
  characteristics, and capabilities. The metadata is used to
  inform relying party interactions with, and make policy
  decisions about, the authenticators.
  
  
  =-=-=-=
  FIDO UAF Authenticator Metadata Service
  fido-uaf-metadata-service-v1.0-id-20141122.html
  
  Baseline method for relying parties to obtain FIDO Metadata



  statements.
  
  
  =-=-=-=
  UAF Registry of Predefined Values
  fido-uaf-reg-v1.0-id-20141122.html
  
  This document defines all the strings and constants reserved
  by UAF protocols.
  
  
  =-=-=-=
  FIDO AppID and Facet Specification
  fido-appid-and-facets-v1.0-id-20141122.html
  
  This document defines the scope of user credentials and how
  a trusted computing base which supports application
  isolation may make access control decisions about which keys
  can be used by which applications and web origins.
  
  
  =-=-=-=
  FIDO Security Reference
  fido-security-ref-v1.0-id-20141122.html
  
  Provides an analysis of FIDO security based on detailed analysis of security
  threats pertinent to the FIDO protocols based on its goals, assumptions, and
  inherent security measures.

  =-=-=-=
  FIDO Technical Glossary
  fido-glossary-v1.0-id-20141122.html
  
  Defines the technical terms and phrases used in FIDO Alliance 
  specifications and documents.

  =-=-=-=



UAF Architectural Overview
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-overview-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf��
Editors:

Salah Machani, RSA, the Security Division of EMC
Rob Philpott, RSA, the Security Division of EMC
Sampath Srinivas, Google, Inc.
John Kemp, FIDO Alliance

Copyright © 2014 FIDO Alliance All Rights Reserved.

Abstract
The FIDO UAF strong authentication framework enables online services and websites, whether on the open Internet or within enterprises, to
transparently leverage native security features of end-user computing devices for strong user authentication and to reduce the problems
associated with creating and remembering many online credentials. The FIDO UAF Reference Architecture describes the components, protocols,
and interfaces that make up the FIDO UAF strong authentication ecosystem.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index� at
https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is hereby granted to use the Specification�
solely for the purpose of implementing the Specification. No rights �are granted to prepare derivative works of this Specification. Entities seeking�
permission to reproduce portions of this Specification for other uses must contact the �FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual �property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,�
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Introduction

1.1 Background
1.2 FIDO UAF Documentation
1.3 FIDO UAF Goals

2. FIDO UAF High-Level Architecture
2.1 FIDO UAF Client
2.2 FIDO UAF Server
2.3 FIDO UAF Protocols
2.4 FIDO UAF Authenticator Abstraction Layer
2.5 FIDO UAF Authenticator
2.6 FIDO UAF Authenticator Metadata Validation

3. FIDO UAF Usage Scenarios and Protocol Message Flows
3.1 FIDO UAF Authenticator Acquisition and User Enrollment
3.2 Authenticator Registration
3.3 Authentication
3.4 Step-up Authentication
3.5 Transaction Confirmation�
3.6 Authenticator Deregistration

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-overview-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf
mailto:salah.machani@rsa.com
https://www.emc.com/domains/rsa/index.htm
https://www.emc.com/domains/rsa/index.htm
https://www.google.com
mailto:john@jkemp.net
https://fidoalliance.org/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


3.7 Adoption of New Types of FIDO UAF Authenticators
4. Privacy Considerations
5. Relationship to Other Technologies
6. OATH, TCG, PKCS#11, and ISO 24727
7. Table of Figures

1. Introduction
This section is non-normative.

This document describes the FIDO Universal Authentication Framework (UAF) Reference Architecture. The target audience for this document is
decision makers and technical architects who need a high-level understanding of the FIDO UAF strong authentication solution and its relationship
to other relevant industry standards.

The FIDO UAF specifications are as follows:�

FIDO UAF Protocol
FIDO UAF Application API and Transport Binding
FIDO UAF Authenticator Commands
FIDO UAF Authenticator-Specific Module API�
FIDO UAF Authenticator Metadata Statements
FIDO UAF Authenticator Metadata Service
FIDO Registry of Predefined Values�

The following additional FIDO documents provide important information relevant to the UAF specifications:�

FIDO AppID and Facets Specification�
FIDO Security Reference
FIDO Glossary

These documents may all be found on the FIDO Alliance website at http://fidoalliance.org/specifications/download/��

1.1 Background
This section is non-normative.

The FIDO Alliance mission is to change the nature of online strong authentication by:

Developing technical specifications defining open, scalable, ��interoperable mechanisms that supplant reliance on passwords to securely
authenticate users of online services.
Operating industry programs to help ensure successful worldwide adoption of the specifications.�
Submitting mature technical specifications to recognized �standards development organization(s) for formal standardization.

The core ideas driving the FIDO Alliance's efforts are 1) ease of use, 2) privacy and security, and 3) standardization. The primary objective is to
enable online services and websites, whether on the open Internet or within enterprises, to leverage native security features of end-user
computing devices for strong user authentication and to reduce the problems associated with creating and remembering many online credentials.

There are two key protocols included in the FIDO architecture that cater to two basic options for user experience when dealing with Internet
services. The two protocols share many of underpinnings but are tuned to the specific intended use cases.�

Universal Authentication Framework (UAF) Protocol

The UAF protocol allows online services to offer password-less and multi-factor security. The user registers their device to the online service by
selecting a local authentication mechanism such as swiping a finger, looking at the camera, �speaking into the mic, entering a PIN, etc. The UAF
protocol allows the service to select which mechanisms are presented to the user.

Once registered, the user simply repeats the local authentication action whenever they need to authenticate to the service. The user no longer
needs to enter their password when authenticating from that device. UAF also allows experiences that combine multiple authentication
mechanisms such as fingerprint + PIN.�

This document that you are reading describes the UAF reference architecture.

Universal 2nd Factor (U2F) Protocol

The U2F protocol allows online services to augment the security of their existing password infrastructure by adding a strong second factor to user
login. The user logs in with a username and password as before. The service can also prompt the user to present a second factor device at any
time it chooses. The strong second factor allows the service to simplify its passwords (e.g. 4-digit PIN) without compromising security.

During registration and authentication, the user presents the second factor by simply pressing a button on a USB device or tapping over NFC. The
user can use their FIDO U2F device across all online services that support the protocol leveraging built-in support in web browsers.

Please refer to the FIDO website for an overview and documentation set focused on the U2F protocol.

1.2 FIDO UAF Documentation
This section is non-normative.

To understand the FIDO UAF protocol, it is recommended that new audiences start by reading this architecture overview document and become
familiar with the technical terminology used in the specifications (the �glossary). Then they should proceed to the individual UAF documents in the
recommended order listed below.

FIDO UAF Overview: This document. Provides an introduction to the FIDO UAF architecture, protocols, and specifications.�
FIDO Technical Glossary: Defines the technical terms and phrases �used in FIDO Alliance specifications and documents.�
Universal Authentication Framework (UAF)

UAF Protocol Specification �: Message formats and processing rules for all UAF protocol messages.
UAF Application API and Transport Binding Specification�: APIs and interoperability profile for client applications to utilize FIDO�
UAF.

http://fidoalliance.org/specifications/download/


UAF Authenticator Commands: Low-level functionality that UAF Authenticators should implement to support the UAF protocol.
UAF Authenticator-specific Module API�: Authenticator-specific �Module API provided by an ASM to the FIDO client.
UAF Authenticator Metadata Statements: Information describing form factors, characteristics, and capabilities of FIDO UAF
Authenticators used to inform interactions with and make policy decisions about the authenticators.
UAF Authenticator Metadata Service : Baseline method for relying parties to access the latest Metadata statements.
UAF Registry of Predefined Values�: defines all the strings and �constants reserved by UAF protocols.

FIDO AppID and Facet Specification �: Scope of user credentials and how a trusted computing base which supports application isolation
may make access control decisions about which keys can be used by which applications and web origins.
FIDO Security Reference: Provides an analysis of FIDO security based on detailed analysis of security threats pertinent to the FIDO
protocols based on its goals, assumptions, and inherent security measures.

The remainder of this Overview section of the reference architecture document introduces the key drivers, goals, and principles which inform the
design of FIDO UAF.

Following the Overview, this document describes:

A high-level look at the components, protocols, and APIs defined by the architecture�
The main FIDO UAF use cases and the protocol message flows �required to implement them.
The relationship of the FIDO protocols to other relevant industry standards.

1.3 FIDO UAF Goals
This section is non-normative.

In order to address today's strong authentication issues and develop a smoothly-functioning low-friction ecosystem, a comprehensive, open, multi-
vendor solution architecture is needed that encompasses:

User devices, whether personally acquired, enterprise-issued, or enterprise BYOD, and the device's potential operating environment, e.g.
home, office, in the field, etc.��
Authenticators1

Relying party applications and their deployment environments
Meeting the needs of both end users and Relying Parties
Strong focus on both browser- and native-app-based end-user experience

This solution architecture must feature:

FIDO UAF Authenticator discovery, attestation, and provisioning
Cross-platform strong authentication protocols leveraging FIDO UAF Authenticators
A uniform cross-platform authenticator API
Simple mechanisms for Relying Party integration

The FIDO Alliance envisions an open, multi-vendor, cross-platform reference architecture with these goals:

Support strong, multi-factor authentication: Protect Relying Parties against unauthorized access by supporting end user authentication
using two or more strong authentication factors ("something you know", "something you have", "something you are").
Build on, but not require, existing device capabilities: Facilitate user authentication using built-in platform authenticators or capabilities
(fingerprint sensors, cameras, �microphones, embedded TPM hardware), but do not preclude the use of discrete additional authenticators.
Enable selection of the authentication mechanism: Facilitate Relying Party and user choice amongst supported authentication
mechanisms in order to mitigate risks for their particular use cases.
Simplify integration of new authentication capabilities: Enable organizations to expand their use of strong authentication to address new
use cases, leverage new device's capabilities, and address new risks with a single authentication approach.
Incorporate extensibility for future refinements and �innovations: Design extensible protocols and APIs in order to support the future
emergence of additional types of authenticators, authentication methods, and authentication protocols, while maintaining reasonable
backwards compatibility.
Leverage existing open standards where possible, openly innovate and extend where not: An open, standardized, royalty-free
specification suite will enable the establishment of a �virtuous-circle ecosystem, and decrease the risk, complexity, and costs associated with
deploying strong authentication. Existing gaps -- notably uniform authenticator provisioning and attestation, a uniform cross-platform
authenticator API, as well as a flexible strong authentication challenge-response �protocol leveraging the user's authenticators will be
addressed.
Complement existing single sign-on, federation initiatives: While industry initiatives (such as OpenID, OAuth, SAML, and others) have
created mechanisms to reduce the reliance on passwords through single sign-on or federation technologies, they do not directly address the
need for an initial strong authentication interaction between end users and Relying Parties.
Preserve the privacy of the end user: Provide the user control over the sharing of device capability information with Relying Parties, and
mitigate the potential for collusion amongst Relying Parties.
Unify end-User Experience: Create easy, fun, and unified �end-user experiences across all platforms and across similar Authenticators.

2. FIDO UAF High-Level Architecture
This section is non-normative.

The FIDO UAF Architecture is designed to meet the FIDO goals and yield the desired ecosystem benefits. It accomplishes �this by filling in the�
status-quo's gaps using standardized protocols and APIs.

The following diagram summarizes the reference architecture and how its components relate to typical user devices and Relying Parties.

The FIDO-specific components of the reference architecture are �described below.



Fig. 1 FIDO UAF High-Level Architecture

2.1 FIDO UAF Client
A FIDO UAF Client implements the client side of the FIDO UAF protocols, and is responsible for:

Interacting with specific FIDO UAF Authenticators using the FIDO �UAF Authenticator Abstraction layer via the FIDO UAF Authenticator API.
Interacting with a user agent on the device (e.g. a mobile app, browser) using user agent-specific interfaces to communicate �with the FIDO
UAF Server. For example, a FIDO-specific browser �plugin would use existing browser plugin interfaces or a mobile app may use a FIDO-
specific SDK. The user agent is then �responsible for communicating FIDO UAF messages to a FIDO UAF Server at a Relying Party.

The FIDO UAF architecture ensures that FIDO client software can be implemented across a range of system types, operating systems, and Web
browsers. While FIDO client software is typically platform-specific, the interactions between the �components should ensure a consistent user
experience from platform to platform.

2.2 FIDO UAF Server
A FIDO UAF server implements the server side of the FIDO UAF protocols and is responsible for:

Interacting with the Relying Party web server to communicate FIDO UAF protocol messages to a FIDO UAF Client via a device user agent.
Validating FIDO UAF authenticator attestations against the configured authenticator metadata to ensure only trusted �authenticators are
registered for use.
Manage the association of registered FIDO UAF Authenticators to user accounts at the Relying Party.
Evaluating user authentication and transaction confirmation �responses to determine their validity.

The FIDO UAF server is conceived as being deployable as an on-premise server by Relying Parties or as being outsourced to a FIDO-enabled
third-party service provider.

2.3 FIDO UAF Protocols
The FIDO UAF protocols carry FIDO UAF messages between user devices and Relying Parties. There are protocol messages addressing:

Authenticator Registration: The FIDO UAF registration protocol enables Relying Parties to:
Discover the FIDO UAF Authenticators available on a user's system or device. Discovery will convey FIDO UAF Authenticator
attributes to the Relying Party thus enabling policy decisions and enforcement to take place.
Verify attestation assertions made by the FIDO UAF Authenticators to ensure the authenticator is authentic and trusted. Verification�
occurs using the attestation public key certificates distributed via authenticator metadata.�
Register the authenticator and associate it with the user's account at the Relying Party. Once an authenticator attestation has been
validated, the Relying Party can provide a unique secure identifier that is specific to the Relying Party and the ��FIDO UAF Authenticator.
This identifier can be used in future �interactions between the pair {RP, Authenticator} and is not known to any other devices.

User Authentication: Authentication is typically based on cryptographic challenge-response authentication protocols and will facilitate user
choice regarding which FIDO UAF Authenticators are employed in an authentication event.
Secure Transaction Confirmation: If the user authenticator �includes the capability to do so, a Relying Party can present the user with a
secure message for confirmation. The message �content is determined by the Relying Party and could be used in a variety of contexts such
as confirming a financial ��transaction, a user agreement ,or releasing patient records.
Authenticator Deregistration: Deregistration is typically required when the user account is removed at the Relying Party. The Relying Party
can trigger the deregistration by requesting the Authenticator to delete the associated UAF credential with the user account.

2.4 FIDO UAF Authenticator Abstraction Layer
The FIDO UAF Authenticator Abstraction Layer provides a uniform API to FIDO Clients enabling the use of authenticator-based cryptographic
services for FIDO-supported operations. It provides a uniform lower-layer "authenticator plugin" API facilitating the deployment of multi-vendor
FIDO UAF Authenticators and their requisite drivers.

2.5 FIDO UAF Authenticator
A FIDO UAF Authenticator is a secure entity, connected to or housed within FIDO user devices, that can create key material associated to a
Relying Party. The key can then be used to participate in FIDO UAF strong authentication protocols. For example, the FIDO UAF Authenticator
can provide a response to a cryptographic challenge using the key material thus authenticating itself to the Relying Party.

In order to meet the goal of simplifying integration of trusted authentication capabilities, a FIDO UAF Authenticator will be able to attest to its
particular type (e.g., biometric) and capabilities (e.g., supported crypto algorithms), as well as to its provenance. This provides a Relying Party with
a high degree of confidence that the user being authenticated is indeed the �user that originally registered with the site.



2.6 FIDO UAF Authenticator Metadata Validation
In the FIDO UAF context, attestation is how Authenticators make claims to a Relying Party during registration that the keys they generate, and/or
certain measurements they report, originate from genuine devices with certified characteristics. �An attestation signature, carried in a FIDO UAF
registration protocol message is validated by the FIDO UAF Server. FIDO UAF Authenticators are created with attestation private keys used to
create the signatures and the FIDO UAF Server validates the signature using that authenticator's attestation public key certificate located in the�
authenticator metadata. The metadata holding attestation certificates is shared with FIDO UAF Servers �out of band.

3. FIDO UAF Usage Scenarios and Protocol Message Flows
This section is non-normative.

The FIDO UAF ecosystem supports the use cases briefly described �in this section.

3.1 FIDO UAF Authenticator Acquisition and User Enrollment
It is expected that users will acquire FIDO UAF Authenticators in various ways: they purchase a new system that comes with embedded FIDO
UAF Authenticator capability; they purchase a device with an embedded FIDO UAF Authenticator, or they are given a FIDO Authenticator by their
employer or some other institution such as their bank.

After receiving a FIDO UAF Authenticator, the user must go through an authenticator-specific enrollment process, which is �outside the scope of the
FIDO UAF protocols. For example, in the case of a fingerprint sensing authenticator, the user must �register their fingerprint(s) with the�
authenticator. Once enrollment is complete, the FIDO UAF Authenticator is ready for registration with FIDO UAF enabled online services and
websites.

3.2 Authenticator Registration
Given the FIDO UAF architecture, a Relying Party is able to transparently detect when a user begins interacting with them while possessing an
initialized FIDO UAF Authenticator. In this initial introduction phase, the website will prompt the user regarding any detected FIDO UAF
Authenticator(s), giving the user options regarding registering it with the website or not.

Fig. 2 Registration Message Flow

3.3 Authentication
Following registration, the FIDO UAF Authenticator will be subsequently employed whenever the user authenticates with the website (and the
authenticator is present). The website can implement various fallback strategies for those occasions when the FIDO Authenticator is not present.
These might range from allowing conventional login with diminished privileges to disallowing login.



Fig. 3 Authentication Message Flow

This overall scenario will vary slightly depending upon the type of FIDO UAF Authenticator being employed. Some authenticators may sample
biometric data such as a face image, fingerprint, or �voice print. Others will require a PIN or local authenticator-specific passphrase entry. Still�
others may simply be a hardware bearer authenticator. Note that it is permissible for a FIDO Client to interact with external services as part of the
authentication of the user to the authenticator as long as the FIDO Privacy Principles are adhered to.

3.4 Step-up Authentication
Step-up authentication is an embellishment to the basic website login use case. Often, online services and websites allow unauthenticated, and/or
only nominally authenticated use -- for informational browsing, for example. However, once users request more valuable interactions, such as
entering a members-only area, the website may request further higher-assurance authentication. This could proceed in several steps if the user
then wishes to purchase something, with higher-assurance steps with increasing transaction value.

FIDO UAF will smoothly facilitate this interaction style since the website will be able to discover which FIDO UAF Authenticators are available on
FIDO-wielding users' systems, and select incorporation of the appropriate one(s) in any particular authentication interaction. Thus online services
and websites will be able to dynamically tailor initial, as well as step-up authentication interactions according to what the user is able to wield and
the needed inputs to website's risk analysis engine given the interaction the user has requested.

3.5 Transaction Confirmation�
There are various innovative use cases possible given FIDO UAF-enabled Relying Parties with end-users wielding FIDO UAF Authenticators.
Website login and step-up authentication are relatively simple examples. A somewhat more advanced use case is secure transaction processing.



Fig. 4 Confirmation Message Flow�

Imagine a situation in which a Relying Party wants the end-user to confirm a transaction (e.g. financial operation, privileged ��operation, etc) so that
any tampering of a transaction message during its route to the end device display and back can be detected. FIDO architecture has a concept of
"secure transaction" which provides this capability. Basically if a FIDO UAF Authenticator has a transaction confirmation display capability, FIDO�
UAF architecture makes sure that the system supports What You See is What You Sign mode (WYSIWYS). A number of different use cases can
derive from this capability -- mainly related to authorization of transactions (send money, perform a context specific privileged action, confirmation��
of email/address, etc).

3.6 Authenticator Deregistration
There are some situations where a Relying Party may need to remove the UAF credentials associated with a specific user account in �FIDO
Authenticator. For example, the user’s account is cancelled or deleted, the user’s FIDO Authenticator is lost or stolen, etc. In these situations, the
RP may request the FIDO Authenticator to delete authentication keys that are bound to user account.

Fig. 5 Deregistration Message Flow

3.7 Adoption of New Types of FIDO UAF Authenticators
Authenticators will evolve and new types are expected to appear in the future. Their adoption on the part of both users and Relying Parties is
facilitated by the FIDO architecture. In order to support a new FIDO UAF Authenticator type, Relying Parties need only to add a new entry to their
configuration �describing the new authenticator, along with its FIDO Attestation Certificate. Afterwards, end users will be able to �use the new FIDO
UAF Authenticator type with those Relying Parties.



4. Privacy Considerations
This section is non-normative.

User privacy is fundamental to FIDO and is supported in UAF by design. Some of the key privacy-aware design elements are summarized here:

A UAF device does not have a global identifier visible across �relying parties and does not have a global identifier within a �particular relying
party. If for example, a person looses their UAF device, someone finding it cannot “point it at a relying party” and �discover if the original user
had any accounts with that relying party. Similarly, if two users share a UAF device and each has registered their account with the same
relying party with this device, the relying party will not be able to discern that the two accounts share a device, based on the UAF protocol
alone.
The UAF protocol generates unique asymmetric cryptographic key pairs on a per-device, per-user account, and per-relying party basis.
Cryptographic keys used with different replying parties will not allow any one party to link all the actions to the same user, hence the
unlinkability property of UAF.
The UAF protocol operations require minimal personal data collection: at most they incorporate a user's relying party username. This
personal data is only used for FIDO purposes, for example to perform user registration, user verification, or authorization. �This personal data
does not leave the user’s computing environment and is only persisted locally when necessary.
In UAF, user verification is performed locally. The UAF protocol �does not convey biometric data to relying parties, nor does it require the
storage of such data at relying parties.
Users explicitly approve the use of a UAF device with a specific relying party. Unique cryptographic keys are generated �and bound to a
relying party during registration only after the user’s consent.
UAF authenticators can only be identified by their attestation �certificates on a production batch-level or on manufacturer- and �device model-
level. They cannot be identified individually. The �UAF specifications require implementers to ship UAF authenticators �with the same
attestation certificate and private key in batches of �100,000 or more in order to provide unlinkability.

5. Relationship to Other Technologies
This section is non-normative.

OpenID, SAML, and OAuth
FIDO protocols (both UAF and U2F) complement Federated Identity Management (FIM) frameworks, such as OpenID and SAML, as well as web
authorization protocols, such as OAuth. FIM Relying Parties can leverage an initial authentication event at an identity provider (IdP). However,
OpenID and SAML do not define �specific mechanisms for direct user authentication at the IdP.�

When an IdP is integrated with a FIDO-enabled authentication service, it can subsequently leverage the attributes of the strong authentication with
its Relying Parties. The following diagram illustrates this relationship. FIDO-based authentication (1) would logically occur first, and the FIM�
protocols would then leverage that authentication event into single sign-on events between the identity provider and its federated Relying Parties
(2).2

Fig. 6 FIDO UAF & Federated Identity Frameworks

6. OATH, TCG, PKCS#11, and ISO 24727
These are either initiatives (OATH, Trusted Computing Group (TCG)), or industry standards (PKCS#11, ISO 24727). They all share an underlying
focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator �abstractions.



TCG produces specifications for the Trusted Platform Module, as �well as networked trusted computing.

OATH, the "Initiative for Open AuTHentication", focuses on defining symmetric key provisioning protocols and �authentication algorithms for
hardware One-Time Password (OTP) authenticators.

The FIDO framework shares several core notions with the foregoing efforts, such as an authentication abstraction interface, authenticator
attestation, key provisioning, and authentication algorithms. FIDO's work will leverage and extend some of these specifications.�

Specifically, FIDO will complement them by addressing:�

Authenticator discovery
User experience
Harmonization of various authenticator types, such as biometric, OTP, simple presence, smart card, TPM, etc.

7. Table of Figures
Fig. 1 FIDO UAF High-Level Architecture
Fig. 2 Registration Message Flow
Fig. 3 Authentication Message Flow
Fig. 4 Confirmation Message Flow�
Fig. 5 Deregistration Message Flow
Fig. 6 FIDO UAF & Federated Identity Frameworks

1. Also known as: Authentication Tokens, Security Tokens, etc.↩

2. FIM protocols typically convey IdP <-> RP interactions through the browser via HTTP redirects and POSTs.↩



FIDO UAF Protocol Specification v1.0�
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��
Editors:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Eric Tiffany, FIDO Alliance

Contributors:
Dirk Balfanz, Google, Inc.
Brad Hill, PayPal, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
The goal of the Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants �passwords
while avoiding the shortcomings of current alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication mechanism for a particular end user or interaction,
while preserving the option to leverage emerging device security capabilities in the future without requiring additional integration effort.

This document describes the FIDO architecture in detail, it defines the flow and content of all UAF protocol messages and ��presents the rationale
behind the design choices.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index� at
https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is hereby granted to use the Specification�
solely for the purpose of implementing the Specification. No rights �are granted to prepare derivative works of this Specification. Entities seeking�
permission to reproduce portions of this Specification for other uses must contact the �FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual �property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,�
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Scope
2.2 Architecture
2.3 Protocol Conversation

2.3.1 Registration
2.3.2 Authentication
2.3.3 Transaction Confirmation�
2.3.4 Deregistration

3. Protocol Details
3.1 Shared Structures and Types

3.1.1 Version Interface
3.1.1.1 Attributes

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
https://www.noknok.com/
https://www.noknok.com/
https://fidoalliance.org/
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


3.1.2 Operation enumeration
3.1.3 OperationHeader dictionary

3.1.3.1 Dictionary OperationHeader Members
3.1.4 Authenticator Attestation ID (AAID) typedef
3.1.5 KeyID typedef
3.1.6 ServerChallenge typedef
3.1.7 FinalChallengeParams dictionary

3.1.7.1 Dictionary FinalChallengeParams Members
3.1.8 TLS ChannelBinding dictionary

3.1.8.1 Dictionary ChannelBinding Members
3.1.9 JwkKey dictionary

3.1.9.1 Dictionary JwkKey Members
3.1.10 Extension dictionary

3.1.10.1 Dictionary Extension Members
3.1.11 MatchCriteria dictionary

3.1.11.1 Dictionary MatchCriteria Members
3.1.12 Policy dictionary

3.1.12.1 Dictionary Policy Members
3.2 Processing Rules for the Server Policy

3.2.1 Examples
3.3 Version Negotiation
3.4 Registration Operation

3.4.1 Registration Request Message
3.4.2 RegistrationRequest dictionary

3.4.2.1 Dictionary RegistrationRequest Members
3.4.3 AuthenticatorRegistrationAssertion dictionary

3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members
3.4.4 Registration Response Message
3.4.5 RegistrationResponse dictionary

3.4.5.1 Dictionary RegistrationResponse Members
3.4.6 Registration Processing Rules

3.4.6.1 Registration Request Generation Rules for FIDO Server
3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients
3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
3.4.6.4 Registration Response Generation Rules for FIDO UAF Client
3.4.6.5 Registration Response Processing Rules for FIDO Server

3.5 Authentication Operation
3.5.1 Transaction dictionary

3.5.1.1 Dictionary Transaction Members
3.5.2 Authentication Request Message
3.5.3 AuthenticationRequest dictionary

3.5.3.1 Dictionary AuthenticationRequest Members
3.5.4 AuthenticatorSignAssertion dictionary

3.5.4.1 Dictionary AuthenticatorSignAssertion Members
3.5.5 AuthenticationResponse dictionary

3.5.5.1 Dictionary AuthenticationResponse Members
3.5.6 Authentication Response Message
3.5.7 Authentication Processing Rules

3.5.7.1 Authentication Request Generation Rules for FIDO Server
3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client
3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client
3.5.7.5 Authentication Response Processing Rules for FIDO Server

3.6 Deregistration Operation
3.6.1 Deregistration Request Message
3.6.2 DeregisterAuthenticator dictionary

3.6.2.1 Dictionary DeregisterAuthenticator Members
3.6.3 DeregistrationRequest dictionary

3.6.3.1 Dictionary DeregistrationRequest Members
3.6.4 Deregistration Processing Rules

3.6.4.1 Deregistration Request Generation Rules for FIDO Server
3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client
3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

4. Considerations
4.1 Protocol Core Design Considerations

4.1.1 Authenticator Metadata
4.1.2 Authenticator Attestation

4.1.2.1 Basic Attestation
4.1.2.1.1 Full Basic Attestation
4.1.2.1.2 Surrogate Basic Attestation

4.1.3 Error Handling



4.1.4 Assertion Schemes
4.1.5 Username in Authenticator
4.1.6 TLS Protected Communication

4.2 Implementation Considerations
4.2.1 Server Challenge and Random Numbers

4.3 Security Considerations
4.3.1 FIDO Authenticator Security
4.3.2 Cryptographic Algorithms
4.3.3 Application Isolation

4.3.3.1 Isolation using KHAccessToken
4.3.4 TLS Binding
4.3.5 Session Management
4.3.6 Personas
4.3.7 ServerData and KeyHandle
4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata
4.3.9 Policy Verification�
4.3.10 Replay Attack Protection
4.3.11 Protection against Cloned Authenticators
4.3.12 Anti-Fraud Signals

4.4 Interoperability Considerations
5. UAF Supported Assertion Schemes

5.1 Assertion Scheme "UAFV1TLV"
5.1.1 KeyRegistrationData
5.1.2 SignedData

6. Definitions�
7. Table of Figures
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member �is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, �it must not be an empty list.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

The goal of this Universal Authentication Framework is to provide a unified and extensible authentication mechanism that �supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

The design goal of the protocol is to enable Relying Parties to leverage the diverse and heterogeneous set of security capabilities available on
end users' devices via a single, unified protocol.�

This approach is designed to allow the FIDO Relying Parties to choose the best available authentication mechanism for a particular end user or
interaction, while preserving the option for a relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

2.1 Scope
This document describes FIDO architecture in detail and defines �the UAF protocol as a network protocol. It defines the flow and ��content of all UAF
messages and presents the rationale behind the design choices.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as �required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-
progress. If you are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.�



Particular application-level bindings are outside the scope of this document. This document is not intended to answer questions such as:

What does an HTTP binding look like for UAF?
How can a web application communicate to FIDO UAF Client?
How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF specifications, e.g. [�UAFAppAPIAndTransport] [UAFASM] [UAFAuthnrCommands].

2.2 Architecture
The following diagram depicts the entities involved in UAF protocol.

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

FIDO Server, running on the relying party's infrastructure
FIDO UAF Client, part of the user agent and running on the FIDO user device
FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to the UAF Authenticator Metadata [UAFAuthnrMetadata] describing all the
authenticators it will interact with.

2.3 Protocol Conversation
The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server.

Registration: UAF allows the relying party to register a FIDO Authenticator with the user's account at the relying party. The relying party can
specify a policy for supporting various FIDO Authenticator types. A FIDO UAF Client will only register existing authenticators in accordance
with that policy.

Authentication: UAF allows the relying party to prompt the end user to authenticate using a previously registered FIDO Authenticator. This
authentication can be invoked any time, at the relying party's discretion.

Transaction Confirmation:� In addition to providing a general authentication prompt, UAF offers support for prompting the user to confirm a�
specific transaction.�

This prompt includes the ability to communicate additional information to the client for display to the end user, using the client's transaction
confirmation display. �The goal of this additional authentication operation is to enable relying parties to ensure that the user is confirming a�
specified set of the transaction �details (instead of authenticating a session to the user agent).

Deregistration: The relying party can trigger the deletion of the account-related authentication key material.

Although this document defines the FIDO Server as the initiator �of requests, in a real world deployment the first UAF operation �will always follow a
user agent's (e.g. HTTP) request to a relying party.

The following sections give a brief overview of the protocol conversation for individual operations. More detailed descriptions can be found in the
sections Registration Operation, Authentication Operation, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for �registration.



Fig. 2 UAF Registration Message Flow

2.3.2 Authentication

The following diagram depicts the message flows for the �authentication operation.

Fig. 3 Authentication Message Flow

2.3.3 Transaction Confirmation�

The following figure depicts the transaction confirmation ��message flow.�

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.



Fig. 4 Transaction Confirmation Message Flow�

2.3.4 Deregistration

The following diagram depicts the deregistration message flow.�

Fig. 5 Deregistration Message Flow

3. Protocol Details
This section is normative.

This section provides a detailed description of operations supported by the UAF Protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

All string literals in this specification are constructed from �Unicode codepoints within the set U+0000..U+007F.

Unless otherwise specified, protocol messages are transferred �with a UTF-8 content encoding.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

The notation string[5] reads as five unicode characters, represented as a �UTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a WebIDL [WebIDL-ED] DOMString.

As the UTF-8 representation has variable length, the maximum byte length of string[5] is string[4*5].

All strings are case-sensitive unless stated otherwise.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

All data used in this protocol must be exchanged using a secure transport protocol (such as TLS/HTTPS) established between the FIDO
UAF Client and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section �4.1.6 TLS
Protected Communication.



This document uses WebIDL [WebIDL-ED]to define UAF protocol messages.�

Implementations must serialize the UAF protocol messages for transmission using UTF-8 encoded JSON [RFC4627].

3.1 Shared Structures and Types
This section defines types and structures shared by various �operations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.�

WebIDL

interface Version {
    readonly    attribute unsigned short major;
    readonly    attribute unsigned short minor;
};

3.1.1.1 Attributes

major of type unsigned short, readonly
Major version, 1 for this specification.�

minor of type unsigned short, readonly
Minor version, 0 for this specification.�

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

WebIDL

enum Operation {
    "Reg",
    "Auth",
    "Dereg"
};

Enumeration description
Reg Registration

Auth Authentication or Transaction
Confirmation�

Dereg Deregistration

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

WebIDL

dictionary OperationHeader {
    required Version   upv;
    required Operation op;
    DOMString          appID;
    DOMString          serverData;
    Extension[]        exts;
};

3.1.3.1 Dictionary OperationHeader Members

upv of type required Version
UAF protocol version. Major version must be 1 and minor version must be 0.

op of type required Operation
Name of FIDO operation this message relates to.

appID of type DOMString
string[0..512].

The application identifier that the relying party would like to assert.�

There are three ways to set the AppID [FIDOAppIDAndFacets]:

1. If the element is missing or empty in the request, the FIDO UAF Client must set it to theFacetID of the caller.
2. If the appID present in the message is identical to the FacetID of the caller, the FIDO UAF Client must accept it.
3. If it is an URI with HTTPS protocol scheme, the FIDO UAF Client must use it to load the list of trusted facet identifiers from the�

specified �URI. The FIDO UAF Client must only accept the request, if the facet identifier of the caller �matches one of the trusted
facet identifiers in the �list returned from dereferencing this URI.

NOTE

"Auth" is used for both authentication and transaction confirmation.�

NOTE



serverData of type DOMString
string[1..1536].

A session identifier created by the relying party.�

exts of type array of Extension
List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

WebIDL

typedef DOMString AAID;

string[9]

Each authenticator must have an AAID to identify UAF enabled authenticator models globally. The AAID must uniquely identify a specific�
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security �characteristics within the model (see Security Considerations).

The AAID is a string with format "V#M", where

"#" is a separator

"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.

"M" indicates the authenticator Model Code. This code consists of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the AAID is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)

The FIDO Alliance is responsible for assigning authenticator vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators. Authenticator vendors must assign unique
AAIDs to authenticators with different security characteristics.

AAIDs are unique and each of them must relate to a distinct authentication metadata file ([�UAFAuthnrMetadata])

3.1.5 KeyID typedef

WebIDL

typedef DOMString KeyID;

base64url(byte[32...2048])

KeyID is a unique identifier (within the scope of an �AAID) used to refer to a specific �UAuth.Key. It is generated by the authenticator and registered
with a FIDO Server.

The (AAID, KeyID ) tuple must uniquely identify an authenticator's registration for a relying party. Whenever a FIDO Server wants to provide specific�
information to a particular authenticator it must use the (AAID, KeyID) tuple.

KeyID must be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the FIDO Server should provide the KeyID back to the authenticator for the latter to
locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage for, and cannot rely on any ASM to store, generated key handles should provide the key
handle as part of the AuthenticatorRegistrationAssertion.assertion.KeyID during the registration operation (see also section ServerData and
KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the MatchCriteria dictionary which is part of
the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

The new key pair that the authenticator generates will be associated with this application identifier.�

Security Relevance: The application identifier is used �by the FIDO UAF Client to verify the eligibility of an application to trigger the
use of a specific �UAuth.Key. See [FIDOAppIDAndFacets]

NOTE
The relying party can opaquely store things like expiration times for the registration session, protocol version used and other
useful information in serverData. This data is opaque to FIDO UAF Clients. FIDO Servers may reject a response that is lacking
this data or is containing unauthorized modifications to it.�

Servers that depend on the integrity of serverData should apply appropriate security measures, as described in Registration
Request Generation Rules for FIDO Server and section ServerData and KeyHandle.

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are identical.

NOTE

Adding new firmware/software �features, or changing the underlying hardware protection mechanisms will typically change the security
characteristics of an authenticator and hence would require a new AAID to be used. Refer to ([UAFAuthnrMetadata]) for more details.



3.1.6 ServerChallenge typedef

WebIDL

typedef DOMString ServerChallenge;

base64url(byte[8...64])

ServerChallenge is a server-provided random challenge. Security Relevance: The challenge is used by the FIDO Server to verify whether an
incoming response is new, or has already been processed. See section Replay Attack Protection for more details.

The ServerChallenge should be mixed into the entropy pool of the authenticator. Security Relevance: The FIDO Server should provide a challenge
containing strong cryptographic randomness whenever possible. See section Server Challenge and Random Numbers.

3.1.7 FinalChallengeParams dictionary

WebIDL

dictionary FinalChallengeParams {
    required DOMString       appID;
    required ServerChallenge challenge;
    required DOMString       facetID;
    required ChannelBinding  channelBinding;
};

3.1.7.1 Dictionary FinalChallengeParams Members

appID of type required DOMString
string[1..512]

The value must be taken from the appID field �of the OperationHeader

challenge of type required ServerChallenge

The value must be taken from the challenge field of the request �(e.g. RegistrationRequest.challenge, AuthenticationRequest.challenge).

facetID of type required DOMString
string[1..512]

The value is determined by the FIDO UAF Client and it depends on the calling application. See [FIDOAppIDAndFacets] for more details.
Security Relevance: The facetID is determined by the FIDO UAF Client and verified against the list of trusted facets retrieved by�
dereferencing the appID of the calling application.

channelBinding of type required ChannelBinding

Contains the TLS information to be sent by the FIDO Client to the FIDO Server, binding the TLS channel to the FIDO operation.

3.1.8 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

Further requirements:

NOTE

The exact structure and content of a KeyID is specific to the authenticator implementation.�

NOTE

The minimum challenge length of 8 bytes follows the requirement in [SP800-63] and is equivalent to the 20 decimal digits as required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can �be used without truncation.

NOTE

The mixing of multiple sources of randomness is recommended to improve the quality of the random numbers generated by the
authenticator, as described in [RFC4086].

NOTE

Security Relevance:The channel binding may be verified by the FIDO Server in order �to detect and prevent MITM attacks.

At this time, the following channel binding methods are supported:

TLS ChannelID (cid_pubkey) [ChannelID]
serverEndPoint [RFC5929]
tlsServerCertificate [�RFC5929]
tlsUnique [RFC5929]



1. If data related to any of the channel binding methods, described here, is available to the FIDO UAF Client (i.e. included in this dictionary), it
must be used according to the relevant specification .�

2. All channel binding methods described here must be supported by the FIDO Server. The FIDO Server may reject operations if the channel
binding cannot be verified successfully.�

WebIDL

dictionary ChannelBinding {
    DOMString serverEndPoint;
    DOMString tlsServerCertificate;
    DOMString tlsUnique;
    DOMString cid_pubkey;
};

3.1.8.1 Dictionary ChannelBinding Members

serverEndPoint of type DOMString

The field �serverEndPoint must be set to the base64url-encoded hash of the TLS server certificate if this is available. The hash function�
must be selected as follows:

1. if the certificate's �signatureAlgorithm uses a single hash function and that hash function is either MD5 [RFC1321] or SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's �signatureAlgorithm uses a single hash function and that hash function is neither MD5 nor SHA-1, then use the
hash function associated with the certificate's�signatureAlgorithm;

3. if the certificate's �signatureAlgorithm uses no hash functions, or uses multiple hash functions, then this channel binding type's
channel bindings are undefined at this time (updates to this channel �binding type may occur to address this issue if it ever arises)

This field �must be absent if the TLS server certificate is not available to the �processing entity (e.g., the FIDO UAF Client) or the hash
function cannot be determined as described.

tlsServerCertificate of type DOMString

This field �must be absent if the TLS server certificate is not available to the FIDO UAF Client.�

This field �must be set to the base64url-encoded, DER-encoded TLS server certificate, if this data is �available to the FIDO UAF Client.

tlsUnique of type DOMString
must be set to the base64url-encoded TLS channel Finished structure. It must, however, be absent, if this data is not available to the
FIDO UAF Client [RFC5929].

cid_pubkey of type DOMString

must be absent if the client TLS stack doesn't provide TLS ChannelID [ChannelID] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if TLS ChannelID information is supported by the client-side TLS stack but has not been signaled by the TLS
(web) server.

Otherwise, it must be set to the base64url-encoded serialized [RFC4627] JwkKey structure using UTF-8 encoding.

3.1.9 JwkKey dictionary

JwkKey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key [JWK].

This public key is the ChannelID public key minted by the client TLS stack for the particular relying party. [ChannelID] stipulates using only a
particular elliptic curve, and the particular coordinate type.

WebIDL

dictionary JwkKey {
    required DOMString kty = "EC";
    required DOMString crv = "P-256";
    required DOMString x;
    required DOMString y;
};

3.1.9.1 Dictionary JwkKey Members

kty of type required DOMString, defaulting to "EC"
Denotes the key type used for Channel ID. At this time only elliptic curve is supported by [ChannelID], so it must be set to "EC" [JWA].

crv of type required DOMString, defaulting to "P-256"
Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve �secp256r1 is supported by [ChannelID], so
the crv parameter must be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

NOTE

If channel binding data is accessible to the web browser or client application, it must be relayed to the FIDO UAF Client in order to
follow the assumptions made in [FIDOSecRef].
If channel binding data is accessible to the web server, it must be relayed to the FIDO Server in order to follow the assumptions made
in [FIDOSecRef]. The FIDO Server relies on the web server to provide accurate channel binding information.



3.1.10 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator commands, or in the assertion signed by the
authenticator.

Each extension has an identifier, and the namespace for �extension identifiers is FIDO UAF global (i.e. doesn't �depend on the message where the
extension is present).

Extensions can be defined in a way such that a processing �entity which doesn't understand the meaning of a specific �extension must abort
processing, or they can be specified �in a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section �where extensions are allowed.

Generic extensions used in various operations.

WebIDL

dictionary Extension {
    required DOMString id;
    required DOMString data;
    required boolean   fail_if_unknown;
};

3.1.10.1 Dictionary Extension Members

id of type required DOMString
string[1..32].

Identifies the extension.�

data of type required DOMString
Contains arbitrary data with a semantics agreed between server and client. The data is base64url-encoded.

This field �may be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (true).

A value of false indicates that unknown extensions must be ignored
A value of true indicates that unknown extensions must result in an error.

3.1.11 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

The MatchCriteria object is considered to match an authenticator, if all fields in the object are considered to match (as indicated �in the particular
fields).�

WebIDL

dictionary MatchCriteria {
    AAID[]           aaid;
    DOMString[]      vendorID;
    KeyID[]          keyIDs;
    unsigned long    userVerification;
    unsigned short   keyProtection;
    unsigned short   matcherProtection;
    unsigned long    attachmentHint;
    unsigned short   tcDisplay;
    unsigned short[] authenticationAlgorithms;
    DOMString[]      assertionSchemes;
    unsigned short[] attestationTypes;
    unsigned short   authenticatorVersion;
    Extension[]      exts;
};

3.1.11.1 Dictionary MatchCriteria Members

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be passed
through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be passed
through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and fail_if_unknown is not set). If the
FIDO authenticator doesn't understand the meaning of the extension and fail_if_unknown is set, it must generate an error (see definition of�
fail_if_unknown above).

When passing through an extension to the next entity, the fail_if_unknown flag �must be preserved (see [UAFASM]
[UAFAuthnrCommands]).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should be
accompanied by a related (and signed) extension in the authenticator assertion (e.g. TAG_UAFV1_REG_ASSERTION, TAG_UAFV1_AUTH_ASSERTION).
If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata statement accepts multiple
fingers but in this specific case indicates that the finger used at registration ���was also used for authentication) there is no need to mark the
extension as fail_if_unknown (i.e. tag 0x3E12 should be used [UAFAuthnrCommands]). If the security has been degraded (e.g. the FIDO
authenticator according to the description in the metadata statement accepts only the finger used at registration for �authentication but in this
specific case indicates that a different finger was used ��for authentication) the extension must be marked as fail_if_unknown (i.e. tag
0x3E11 must be used [UAFAuthnrCommands]).



aaid of type array of AAID
List of AAIDs, causing matching to be restricted to certain AAIDs.

The match succeeds if at least one AAID entry in this array matches AuthenticatorInfo.aaid [UAFASM].

vendorID of type array of DOMString
The vendorID causing matching to be restricted to authenticator models of the given vendor. The first 4 characters of �the AAID are the
vendorID (see AAID)).

The match succeeds if at least one entry in this array matches the first 4 �characters of the AuthenticatorInfo.aaid [UAFASM].

keyIDs of type array of KeyID
A list of authenticator KeyIDs causing matching to be restricted to a given set of KeyID instances. (see [UAFRegistry]).

This match succeeds if at least one entry in this array matches.

userVerification of type unsigned long
A set of 32 bit flags which may be set if �matching should be restricted by the user verification method (see �[UAFRegistry]).

keyProtection of type unsigned short
A set of 16 bit flags which may be set if �matching should be restricted by the key protections used (see [UAFRegistry]).

This match succeeds, if at least one of the bit flags matches the �value of AuthenticatorInfo.keyProtection [UAFASM].

matcherProtection of type unsigned short
A set of 16 bit flags which may be set if �matching should be restricted by the matcher protection (see [UAFRegistry]).

The match succeeds if at least one of the bit flags matches the �value of AuthenticatorInfo.matcherProtection [UAFASM].

NOTE

This field corresponds to �MetadataStatement.aaid [UAFAuthnrMetadata].

NOTE

This field corresponds to the first 4 ��characters ofMetadataStatement.aaid [UAFAuthnrMetadata].

NOTE

This field corresponds to �AppRegistration.keyIDs [UAFASM].

NOTE
The match with AuthenticatorInfo.userVerification ([UAFASM]) succeeds, if the following condition holds (written in Java):

if (
        // They are equal
        (AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||

        // USER_VERIFY_ALL is not set in both of them and they have at least one common bit set
        (
            ((AuthenticatorInfo.userVerification & USER_VERIFY_ALL) == 0) &&
            ((MatchCriteria.userVerification & USER_VERIFY_ALL) == 0) &&
            ((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
        )
   )
      

NOTE
This field value can be derived from �MetadataStatement.userVerificationDetails as follows:

1. if MetadataStatement.userVerificationDetails contains multiple entries, then:
1. if one or more entries MetadataStatement.userVerificationDetails[i] contain multiple entries, then: stop, direct

derivation is not possible. Must generate MatchCriteria object by providing a list of matching AAIDs.
2. if all entries MetadataStatement.userVerificationDetails[i] only contain a single entry, then: combine all entries

MetadataStatement.userVerificationDetails[0][0].userVerification to
MetadataStatement.userVerificationDetails[N-1][0].userVerification into a single value using a bitwise OR
operation.

2. if MetadataStatement.userVerificationDetails contains a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification to MetadataStatement.userVerificationDetails[0]
[N-1].userVerification into a single value using a bitwise OR operation and additionally set the flag �USER_VERIFY_ALL.

This method doesn't allow matching authenticators implementing complex combinations of user verification methods, such as �PIN
AND (Fingerprint OR Speaker Recognition) (see above derivation rules). If such specific match rules are required, they need to�
be specified by providing �the AAIDs of the matching authenticators.

NOTE

This field corresponds to �MetadataStatement.keyProtection [UAFAuthnrMetadata].

NOTE

This field corresponds to the �MetadataStatement.matcherProtection metadata statement. See [UAFAuthnrMetadata].



attachmentHint of type unsigned long
A set of 32 bit flags which may be set if matching �should be restricted by the authenticator attachment mechanism (see [UAFRegistry]).

This field is considered to match, if at least one �of the bit flags matches the value of �AuthenticatorInfo.attachmentHint [UAFASM].

tcDisplay of type unsigned short
A set of 16 bit flags which may be set if matching �should be restricted by the transaction confirmation �display availability and type. (see
[UAFRegistry]).

This match succeeds if at least one of the bit flags matches the �value of AuthenticatorInfo.tcDisplay [UAFASM].

authenticationAlgorithms of type array of unsigned short
An array containing values of supported authentication algorithm TAG values (see [UAFRegistry], prefix �UAF_ALG_SIGN) if matching
should be restricted by the supported authentication algorithms.

This match succeeds if at least one entry in this array matches the AuthenticatorInfo.authenticationAlgorithm [UAFASM].

assertionSchemes of type array of DOMString
A list of supported assertion schemes if matching should be restricted by the supported schemes.

See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches AuthenticatorInfo.assertionScheme [UAFASM].

attestationTypes of type array of unsigned short
An array containing the preferred attestation TAG values (see [UAFRegistry], prefix �TAG_ATTESTATION). The order of items must be
preserved. The most-preferred attestation type comes first.�

This match succeeds if at least one entry in this array matches one entry in AuthenticatorInfo.attestationTypes [UAFASM].

authenticatorVersion of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equal to the field �AuthenticatorVersion included in TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION or a corresponding value in the case of a different assertion scheme.

exts of type array of Extension
Extensions for matching policy.

3.1.12 Policy dictionary

Contains a specification of accepted �authenticators and a specification of disallowed �authenticators.

WebIDL

dictionary Policy {
    required MatchCriteria[][] accepted;
    MatchCriteria[]            disallowed;
};

3.1.12.1 Dictionary Policy Members

accepted of type array of array of required MatchCriteria

NOTE

This field corresponds to the �MetadataStatement.attachmentHint metadata statement.

NOTE

This field corresponds to the �MetadataStatement.tcDisplay metadata statement. See [UAFAuthnrMetadata].

NOTE

This field corresponds to the �MetadataStatement.authenticationAlgorithm metadata statement. See [UAFAuthnrMetadata].

NOTE

This field corresponds to the �MetadataStatement.assertionScheme metadata statement. See [UAFAuthnrMetadata].

NOTE

This field corresponds to the �MetadataStatement.attestationTypes metadata statement. See [UAFAuthnrMetadata].

NOTE

Since the semantic of the authenticatorVersion depends on the AAID, the field �authenticatorVersion should always be
combined with a single aaid in MatchCriteria.

This field corresponds to the �MetadataStatement.authenticatorVersion metadata statement. See [UAFAuthnrMetadata].



This field is a two-dimensional array describing the �required authenticator characteristics for the server to accept either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e. the sets) are alternatives (OR condition).

All elements within a set must be combined:

The first array index indicates OR conditions (i.e. the list). �Any set of authenticator(s) satisfying these MatchCriteria in the first index is�
acceptable to the server for this operation.

Sub-arrays of MatchCriteria in the second index (i.e. the set) indicate that multiple authenticators (i.e. each set element) must be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the server. Servers must put their preferred authenticators first, and FIDO�
UAF Clients should respect those preferences, either by presenting authenticator options to the user in the same order, or by offering to
perform the operation using only the highest-preference authenticator(s).

disallowed of type array of MatchCriteria
Any authenticator that matches any of MatchCriteria contained in the field disallowed �must be excluded from eligibility for the operation,
regardless of whether it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy
This section is normative.

The FIDO UAF Client must follow the following rules while parsing server policy:

1. During registration:
1. Policy.accepted is a list of combinations. Each combination indicates a list of criteria for authenticators that the server wants the user

to register.
2. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest priority first.�
3. Choose the combination whose criteria best match the features of the currently available authenticators
4. Collect information about available authenticators
5. Ignore authenticators which match the Policy.disallowed criteria
6. Match collected information with the matching criteria imposed in the policy (see MatchCriteria dictionary for more details on matching)
7. Guide the user to register the authenticators specified in the �chosen combination

2. During authentication and transaction confirmation:�

1. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest priority first.�
2. Choose the combination whose criteria best match the features of the currently available authenticators
3. Collect information about available authenticators
4. Ignore authenticators which meet the Policy.disallowed criteria
5. Match collected information with the matching criteria described in the policy
6. Guide the user to authenticate with the authenticators specified �in the chosen combination
7. A pending operation will be approved by the server only after all criteria of a single combination are entirely met

3.2.1 Examples

This section is non-normative.

Combining these two bit-flags and the flag ��USER_VERIFY_ALL (USER_VERIFY_ALL = 1024) into a single userVerification value would match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.�

The next example requires two authenticators to be used:

NOTE

Policy.accepted is a list of combinations. Each combination indicates a set of criteria which is enough to completely authenticate
the current pending operation

EXAMPLE 1: Policy matching either a FPS-, or Face Recognition-based Authenticator
{
  "accepted": 
  [ 
 [{ "userVerification": 2}],
     [{ "userVerification": 16}]
  ]
}

EXAMPLE 2: Policy matching authenticators implementing FPS and Face Recognition as alternative combination of user verification methods.�
{
  "accepted": 
  [ 
 [{ "userVerification": 18}]
  ]
}

EXAMPLE 3: Policy matching authenticators implementing FPS and Face Recognition as mandatory combination of user verification methods.�
{
  "accepted": [ [{ "userVerification": 1042}] ]
}

EXAMPLE 4: Policy matching the combination of a FPS based and a Face Recognition based authenticator



Other criteria can be specified in addition to the �userVerification:

The policy for accepting authenticators of vendor with ID 1234 only is as follows:

3.3 Version Negotiation
The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [�UAFRegistry]), and the ASM version, see [UAFASM].

As a consequence the FIDO UAF Client must select the authenticators which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client must perform the following steps:

1. Create a set (FC_Version_Set) of version pairs, ASM version (asm_version) and UAF Protocol version (upv) and add all pairs supported by the
FIDO UAF Client into FC_Version_Set

e.g. [{upv1, asm_version1}, {upv2, asm_version1}, ...]
2. Intersect FC_Version_Set with the set of upv included in UAF Message (i.e. keep only those pairs where the upv value is also contained in the

UAF Message).
3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:

Construct a set (Authnr_Version_Set) of version pairs including authenticator supported asm_version and the compatible upv(s).
e.g. [{upv1, asm_version1}, {upv2, asm_version1}, ...]

Intersect Authnr_Version_Set with FC_Version_Set and select highest version pair from it.
Take the pair where the upv is highest. In all these pairs leave only the one with highest asm_version.

Use the remaining version pair with this authenticator

3.4 Registration Operation

{
  "accepted": 
  [ 
 [ 
   { "userVerification": 2}, 
   { "userVerification": 16}
 ]
  ]
}

EXAMPLE 5: Policy requiring the combination of a bound FPS based and a bound Face Recognition based authenticator
{
  "accepted": 
  [ 
 [
   { "userVerification": 2, "attachmentHint": 1},
   { "userVerification": 16, "attachmentHint": 1}
        ]
  ]
}

EXAMPLE 6: Policy accepting all authenticators from vendor with ID 1234
{
  "accepted": 
  [ [{ "vendorID": "1234"}] ]
}

NOTE

The Key Registration Data and Signed Data objects have to be parsed and verified by the FIDO Server. This verification is only ��possible if
the FIDO Server understands their encoding and the content. Each UAF protocol version supports a set of Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

NOTE

Each version consists of major and minor fields. �In order to compare two versions - compare the Major fields and if they are equal �compare
the Minor fields.�

Each UAF message contains a version field �upv. UAF Protocol version negotiation is always between FIDO UAF Client and FIDO Server.

NOTE

The Registration operation allows the FIDO Server and the FIDO Authenticator to agree on an authentication key.



3.4.1 Registration Request Message

UAF Registration request message is represented as an array of dictionaries. Each dictionary contains an registration request for a specific�
protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the request is defined as�
RegistrationRequest dictionary.

Fig. 6 UAF Registration Sequence Diagram

The following diagram depicts the cryptographic data flow for �the registration sequence.

Fig. 7 UAF Registration Cryptographic Data Flow

The FIDO Server sends the AppID (see section AppID and FacetID Assertion), the authenticator Policy, the ServerChallenge and the
Username to the FIDO UAF Client.

The FIDO UAF Client computes the FinalChallengeParams (FCH) from the ServerChallenge and some other values and sends the AppID,
the FCH and the Username to the authenticator.

The authenticator creates a Key Registration Data object (e.g. TAG_UAFV1_KRD, see [UAFAuthnrCommands]) containing the hash of FCH, the
newly generated user public key (UAuth.pub) and some other values and signs it (see section Authenticator Attestation for more details).
This KRD object is then cryptographically verified by the FIDO Server.�

EXAMPLE 7: UAF Registration Request
[{
    "header": {
      "upv": {
        "major": 1,
        "minor": 0
      },
      "op": "Reg",
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "serverData": "IjycjPZYiWMaQ1tKLrJROiXQHmYG0tSSYGjP5mgjsDaM17RQgq0
dl3NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFqL4n
2IiUY6XZWVbOnvg"
    },
    "challenge": "H9iW9yA9aAXF_lelQoi_DhUk514Ad8Tqv0zCnCqKDpo",
    "username": "apa",
    "policy": {
      "accepted": [
        [
          {
            "userVerification": 512,



            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 4,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 2,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1,
              3
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 2,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 32,
            "keyProtection": 2,
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 4,
            "keyProtection": 1,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ]
      ],
      "disallowed": [
        {
          "userVerification": 512,
          "keyProtection": 16,
          "assertionSchemes": [
            "UAFV1TLV"
          ]
        },
        {
          "userVerification": 256,
          "keyProtection": 16
        },



3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
    required OperationHeader header;
    required ServerChallenge challenge;
    required DOMString       username;
    required Policy          policy;
};

3.4.2.1 Dictionary RegistrationRequest Members

header of type required OperationHeader
Operation header. Header.op must be "Reg"

challenge of type required ServerChallenge
Server-provided challenge value

username of type required DOMString
string[1..128]

A human-readable user name intended to allow the user to distinguish and select from among different accounts at the same relying
party

policy of type required Policy
Describes which types of authenticators are acceptable for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion {
    required DOMString                    assertionScheme;
    required DOMString                    assertion;
    DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
    Extension[]                           exts;
};

3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode the assertion. See UAF Supported Assertion Schemes for details.

assertion of type required DOMString
base64url(byte[1..4096]) Contains the TAG_UAFV1_REG_ASSERTION object containing the assertion scheme specific �KeyRegistrationData
(KRD) object which in turn contains the newly generated UAuth.pub and is signed by the Attestation Private Key.

This assertion must be generated by the authenticator and it must be used only in this Registration operation. The format of this
assertion can vary from one assertion scheme to another (e.g. for "UAFV1TLV" assertion scheme it must be TAG_UAFV1_KRD).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [UAFAuthnrMetadata]. For the definition of the DisplayPNGCharacteristicsDescriptor structure See�
[UAFAuthnrMetadata].

exts of type array of Extension
Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message

A UAF Registration response message is represented as an array of dictionaries. Each dictionary contains a registration response for a specific�
protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the response is defined as�
RegistrationResponse dictionary.

        {
          "aaid": [
            "ABCD#ABCD"
          ],
          "keyIDs": [
            "RfY_RDhsf4z5PCOhnZExMeVloZZmK0hxaSi10tkY_c4"
          ]
        }
      ]
    }
}]

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

EXAMPLE 8: Registration Response
[{
    "assertions": [
      {
        "assertion": "AT7uAgM-sQALLgkAQUJDRCNBQkNEDi4HAAABAQEAAAEKLiAA9t
BzZC64ecgVQBGSQb5QtEIPC8-Vav4HsHLZDflLaugJLiAAZMCPn92yHv1Ip-iCiBb6i4ADq6
ZOv569KFQCvYSJfNgNLggAAQAAAAEAAAAMLkEABJsvEtUsVKh7tmYHhJ2FBm3kHU-OCdWiUY



3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.�

WebIDL

dictionary RegistrationResponse {
    required OperationHeader                      header;
    required DOMString                            fcParams;
    required AuthenticatorRegistrationAssertion[] assertions;
};

3.4.5.1 Dictionary RegistrationResponse Members

header of type required OperationHeader
Header.op must be "Reg".

fcParams of type required DOMString
The base64url-encoded serialized [RFC4627] FinalChallengeParams using UTF8 encoding (see FinalChallengeParams dictionary) which
contains all parameters required for the server to verify the Final Challenge.

assertions of type array of required AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules

3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets�
(second dimension) of authenticators (identified by �MatchCriteria). All authenticators in a specific set �must be registered simultaneously in order
to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

The FIDO Server must follow the following steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an array of MatchCriteria objects, containing the set of authenticators to be registered simultaneously that need to be
identified by �separate MatchCriteria objects m.

1. For each collection of authenticators a to be registered simultaneously that can be identified by the �same rule, create a
MatchCriteria object m, where

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.�
If m.aaid is not provided - at least m.authenticationAlgorithms and m.assertionSchemes must be provided

2. Add m to v, e.g. v[j+1]=m.
2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed Authenticators.
1. For each already registered AAID for the current user

1. Create a MatchCriteria object m and add AAID and corresponding KeyIDs to m.aaid and m.KeyIDs.

The FIDO Server must include already registered AAIDs and KeyIDs into field �p.disallowed to hint that the client should not
register these again.

2. Create a MatchCriteria object m and add the AAIDs of all disallowed Authenticators to m.aaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [�UAFMetadataService]) of some authenticators might be

VijgYa81MfkjQ1z6UiHbKP9_nRzIN9anprHqDGcR6q7O20q_yctZAHPjUCBi5AACv8L7YlRM
x10gPnszGO6rLFqZFmmRkhtV0TIWuWqYxd1jO0wxam7i5qdEa19u4sfpHFZ9RGI_WHxINkH8
FfvAwFLu0BMIIB6TCCAY8CAQEwCQYHKoZIzj0EATB7MQswCQYDVQQGEwJVUzELMAkGA1UECA
wCQ0ExCzAJBgNVBAcMAlBBMRAwDgYDVQQKDAdOTkwsSW5jMQ0wCwYDVQQLDAREQU4xMRMwEQ
YDVQQDDApOTkwsSW5jIENBMRwwGgYJKoZIhvcNAQkBFg1ubmxAZ21haWwuY29tMB4XDTE0MD
gyODIxMzU0MFoXDTE3MDUyNDIxMzU0MFowgYYxCzAJBgNVBAYTAlVTMQswCQYDVQQIDAJDQT
EWMBQGA1UEBwwNU2FuIEZyYW5jaXNjbzEQMA4GA1UECgwHTk5MLEluYzENMAsGA1UECwwERE
FOMTETMBEGA1UEAwwKTk5MLEluYyBDQTEcMBoGCSqGSIb3DQEJARYNbm5sQGdtYWlsLmNvbT
BZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABCGBt3CIjnDowzSiF68C2aErYXnDUsWXOYxqIP
im0OWg9FFdUYCa6AgKjn1R99Ek2d803sGKROivnavmdVH-SnEwCQYHKoZIzj0EAQNJADBGAi
EAzAQujXnSS9AIAh6lGz6ydypLVTsTnBzqGJ4ypIqy_qUCIQCFsuOEGcRV-o4GHPBph_VMrG
3NpYh2GKPjsAim_cSNmQ",
        "assertionScheme": "UAFV1TLV"
      }
    ],
    "fcParams": "eyJhcHBJRCI6Imh0dHBzOi8vdWFmLXRlc3QtMS5ub2tub2t0ZXN0LmN
vbTo4NDQzL1NhbXBsZUFwcC91YWYvZmFjZXRzIiwiY2hhbGxlbmdlIjoiSDlpVzl5QTlhQVh
GX2xlbFFvaV9EaFVrNTE0QWQ4VHF2MHpDbkNxS0RwbyIsImNoYW5uZWxCaW5kaW5nIjp7fSw
iZmFjZXRJRCI6ImNvbS5ub2tub2suYW5kcm9pZC5zYW1wbGVhcHAifQ",
    "header": {
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "op": "Reg",
      "serverData": "IjycjPZYiWMaQ1tKLrJROiXQHmYG0tSSYGjP5mgjsDaM17RQgq0
dl3NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFqL4n
2IiUY6XZWVbOnvg",
      "upv": {
        "major": 1,
        "minor": 0
      }
    }
}]

NOTE

Line breaks in fcParams have been inserted for improving readability.



unacceptable. Such authenticators should be included in p.disallowed.

3. If needed - create MatchCriteria m for other disallowed criteria (e.g. unsupported authenticationAlgs)
4. Add all m to p.disallowed.

2. Create a RegistrationRequest object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData.

FIDO Servers that depend on the integrity of r.header.serverData should apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they should also cryptographically bind serverData to the related message, e.g. by re-
including r.challenge, see also section ServerData and KeyHandle.

2. Generate a random challenge and assign it to r.challenge
3. Assign the username of the user to be registered to r.username
4. Assign p to r.policy.
5. Append r to the array o of message with various versions (RegistrationRequest)

3. Send o to the FIDO UAF Client

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client must perform the following steps:

1. Choose the message m with major version 1 and minor version 0
2. Parse the message m
3. If a mandatory field in UAF message is not present or a field ��doesn't correspond to its type and value - reject the operation
4. Filter the available authenticators with the given policy and present the filtered authenticators to User. Make sure to not �include already

registered authenticators for this user specified in �RegRequest.policy.disallowed[].keyIDs
5. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation
6. Obtain TLS data if it is available
7. Create a FinalChallengeParams structure fcp and set fcp.appID, fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately. Serialize

[RFC4627] fcp using UTF8 encoding and base64url encode it.
FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see section Version Negotiation) and user agrees to register:
1. Add AppID, Username, FinalChallenge, AttestationType and all other required fields to the ASMRequest [�UAFASM].

The FIDO UAF Client must follow the server policy and find the single preferred attestation type. �A single attestation type must be
provided to the ASM.

2. Send ASMRequest to the ASM

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Register Command".

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create a RegistrationResponse message
2. Copy RegistrationRequest.header into RegistrationResponse.header
3. Set RegistrationResponse.fcParams to FinalChallenge (base64url encoded serialized and utf8 encoded FinalChallengeParams)
4. Append the response from each Authenticator into RegistrationResponse.assertions
5. Send RegistrationResponse message to FIDO Server

3.4.6.5 Registration Response Processing Rules for FIDO Server

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (RegistrationResponse.header.upv) is not supported – reject the operation
2. If a mandatory field in UAF message is not present or a field ��doesn't correspond to its type and value - reject the operation

2. Verify that RegistrationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. See also�
section ServerData and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverData as an opaque value. As a consequence the
FIDO server can implement any suitable cryptographic protection method.

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new �assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.



3. base64url decode RegistrationResponse.fcParams and convert it into an object (fcp)
4. Verify each field in fcp and make sure it is valid:�

1. Make sure fcp.appID corresponds to the one stored by the FIDO Server
2. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
3. Make sure fcp.facetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]
4. Make sure fcp.channelBinding is as expected (see section ChannelBinding dictionary)
5. Reject the response if any of these checks fails

5. For each assertion a in RegistrationResponse.assertions
1. Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and make

sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to �have and has a valid syntax.
If it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

3. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

4. Verify that the AAID indeed matches the policy specified �in the registration request.

If it doesn't match the policy - continue with next assertion
5. Locate authenticator-specific authentication algorithms from �the authenticator metadata [UAFAuthnrMetadata] using the AAID.
6. Hash RegistrationResponse.fcParams using hashing algorithm suitable for this authenticator type. Look up the hash algorithm in

authenticator metadata, field �AuthenticationAlgs. It is the hash algorithm associated with the first entry �related to a constant with prefix�
UAF_ALG_SIGN.

FCHash = hash(RegistrationResponse.fcParams)

7. if a.assertion contains an object of type TAG_UAFV1_REG_ASSERTION, then
1. if a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_UAFV1_KRD as first element:�

1. Obtain Metadata(AAID).AttestationType for the AAID and make sure that a.assertion.TAG_UAFV1_REG_ASSERTION contains
the most preferred attestation tag specified in field ��MatchCriteria.attestationTypes in RegistrationRequest.policy (if this
field is present).�

If a.assertion.TAG_UAFV1_REG_ASSERTION doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one

2. Make sure that a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.FinalChallenge == FCHash
If comparison fails - continue with next assertion

3. Obtain Metadata(AAID).AuthenticatorVersion for the AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), �it is recommended to
assume increased risk. See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[UAFMetadataService] for more details on this.

4. Check whether a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is acceptable, i.e. it is either not
supported (value is 0) or it is not exceedingly high

If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is exceedingly high, this assertion might be
skipped and processing will continue with next one

5. If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD contains TAG_ATTESTATION_BASIC_FULL tag
1. If entry AttestationRootCertificates for the AAID in the metadata [UAFAuthnrMetadata] contains at least one

element:
1. Obtain contents of all TAG_ATTESTATION_CERT tags from

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION_BASIC_FULL object. The occurrences are ordered (see
[UAFAuthnrCommands]) and represent the attestation certificate followed by the related �certificate chain.�

2. Obtain all entries of AttestationRootCertificates for the AAID in authenticator Metadata, field�
AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to ��the Attestation Root Certificate using�
Certificate Path �Validation as specified in [�RFC5280]

If verification fails – continue with next assertion�
4. Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ATTESTATION_BASIC_FULL.Signature using the

attestation certificate (obtained before).�
If verification fails – continue with next assertion�

2. If Metadata(AAID).AttestationRootCertificates for this AAID is empty - continue with next assertion
3. Mark assertion as positively verified�

6. If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD contains an object of type TAG_ATTESTATION_BASIC_SURROGATE
1. There is no real attestation for the AAID, so we just assume the AAID is the real one.
2. If entry AttestationRootCertificates for the AAID in the metadata is empty

Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION_BASIC_SURROGATE.Signature using
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_PUB_KEY

If verification fails – continue with next assertion�
3. If entry AttestationRootCertificates for the AAID in the metadata is not empty - continue with next assertion (as the

AAID obviously is expecting a different attestation method).
4. Mark assertion as positively verified�

7. If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD contains another TAG_ATTESTATION tag - verify the attestation by

NOTE

The AAID in TAG_UAFV1_KRD is contained in a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions included in this
RegistrationResponse in order to determine whether this AAID matches the policy.



following appropriate processing rules applicable to that attestation. Currently this document only defines the processing�
rules for Basic Attestation.

2. if a.assertion.TAG_UAFV1_REG_ASSERTION contains a different object than TAG_UAFV1_KRD as first element, then follow the rules�
specific to that object.�

3. Extract a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.PublicKey into PublicKey,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.KeyID into KeyID,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.SignCounter into SignCounter,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ASSERTION_INFO.authenticatorVersion into AuthenticatorVersion,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into AAID.

8. if a.assertion doesn't contain an object of type TAG_UAFV1_REG_ASSERTION, then skip this assertion (as in this UAF v1 only
TAG_UAFV1_REG_ASSERTION is defined).�

6. For each positively verified assertion �a
Store PublicKey, KeyID, SignCounter, AuthenticatorVersion, AAID and a.tcDisplayPNGCharacteristics into a record associated with
the user's identity . If an entry with the same pair of AAID and KeyID already exists then fail (should never occur).

3.5 Authentication Operation

NOTE

Fig. 8 UAF Authentication Sequence Diagram

During this operation, the FIDO Server asks the FIDO UAF Client to authenticate user with server-specified authenticators, and return an�
authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously shared registration.

Fig. 9 UAF Authentication Cryptographic Data Flow

Diagram of cryptographic flow:�

The FIDO Server sends the AppID (see [FIDOAppIDAndFacets]), the authenticator policy and the ServerChallenge to the FIDO UAF Client.

The FIDO UAF Client computes the hash of the FinalChallengeParams, produced from the ServerChallenge and other values, as described
in this document, and sends the AppID and hashed FinalChallengeParams to the Authenticator.

The authenticator creates the SignedData object (see TAG_UAFV1_SIGNED_DATA in [UAFAuthnrCommands]) containing the hash of the final�
challenge parameters, and some other values and signs it using the UAuth.priv key. This assertion is then cryptographically verified by the�
FIDO Server.



3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

WebIDL

dictionary Transaction {
    required DOMString                  contentType;
    required DOMString                  content;
    DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.5.1.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [UAFAuthnrMetadata]).

This version of the specification only supports the values �text/plain or image/png.

content of type required DOMString
base64url(byte[1...])

Contains the base64-url encoded transaction content according to the contentType to be shown to the user.

If contentType is "text/plain" then the content must be ASCII encoded text with a maximum of 200 characters.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the �DisplayPNGCharacteristicsDescriptor structure See
[UAFAuthnrMetadata]. This field �must be present if the contentType is "image/png".

3.5.2 Authentication Request Message

UAF Authentication request message is represented as an array of dictionaries. Each dictionary contains an authentication request for a specific�
protocol version. The array must not contain two dictionaries of the same protocol version. For version "1.0" the request is defined as�
AuthenticationRequest dictionary.

EXAMPLE 9: UAF Authentication Request
[{
    "header": {
      "upv": {
        "major": 1,
        "minor": 0
      },
      "op": "Auth",
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "serverData": "5s7n8-7_LDAtRIKKYqbAtTTOezVKCjl2mPorYzbpxRrZ-_3wWro
MXsF_pLYjNVm_l7bplAx4bkEwK6ibil9EHGfdfKOQ1q0tyEkNJFOgqdjVmLioroxgThlj8Is
tpt7q"
    },
    "challenge": "HQ1VkTUQC1NJDOo6OOWdxewrb9i5WthjfKIehFxpeuU",
    "policy": {
      "accepted": [
        [
          {
            "userVerification": 512,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 4,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 2,



3.5.3 AuthenticationRequest dictionary

Contains the UAF Authentication Request Message:

WebIDL

dictionary AuthenticationRequest {
    required OperationHeader header;
    required ServerChallenge challenge;
    Transaction[]            transaction;
    required Policy          policy;
};

3.5.3.1 Dictionary AuthenticationRequest Members

header of type required OperationHeader
Header.op must be "Auth"

challenge of type required ServerChallenge
Server-provided challenge value

transaction of type array of Transaction
Transaction data to be explicitly confirmed by the user.�

The list contains the same transaction content in various content types and various image sizes. Refer to [UAFAuthnrMetadata] for more
information about Transaction Confirmation Display characteristics.�

policy of type required Policy
Server-provided policy defining what types of authenticators are �acceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1,
              3
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 2,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 32,
            "keyProtection": 2,
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 4,
            "keyProtection": 1,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ]
      ],
      "disallowed": [
        {
          "userVerification": 512,
          "keyProtection": 16,
          "assertionSchemes": [
            "UAFV1TLV"
          ]
        },
        {
          "userVerification": 256,
          "keyProtection": 16
        }
      ]
    }
}]



Represents a response generated by a specific Authenticator:�

WebIDL

dictionary AuthenticatorSignAssertion {
    required DOMString assertionScheme;
    required DOMString assertion;
    Extension[]        exts;
};

3.5.4.1 Dictionary AuthenticatorSignAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode assertion. See UAF Supported Assertion Schemes for details.

assertion of type required DOMString
base64url(byte[1..4096]) Contains the assertion containing a signature generated by UAuth.priv, i.e. TAG_UAFV1_AUTH_ASSERTION.

exts of type array of Extension
Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered authenticators.

WebIDL

dictionary AuthenticationResponse {
    required OperationHeader              header;
    required DOMString                    fcParams;
    required AuthenticatorSignAssertion[] assertions;
};

3.5.5.1 Dictionary AuthenticationResponse Members

header of type required OperationHeader
Header.op must be "Auth"

fcParams of type required DOMString
The field fcParams is the base64url-encoded serialized [�RFC4627] FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) which contains all parameters required for the server to verify the Final Challenge.

assertions of type array of required AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. Each dictionary contains an authentication response for a
specific protocol version. The array �must not contain two dictionaries of the same protocol version. For version "1.0" the response is defined as�
AuthenticationResponse dictionary.

3.5.7 Authentication Processing Rules

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

EXAMPLE 10: UAF Authentication Response
[{
    "assertions": [
      {
        "assertion": "Aj7WAAQ-jgALLgkAQUJDRCNBQkNEDi4FAAABAQEADy4gAHwyJA
EX8t1b2wOxbaKOC5ZL7ACqbLo_TtiQfK3DzDsHCi4gAFwCUz-dOuafXKXJLbkUrIzjAU6oDb
P8B9iLQRmCf58fEC4AAAkuIABkwI-f3bIe_Uin6IKIFvqLgAOrpk6_nr0oVAK9hIl82A0uBA
ACAAAABi5AADwDOcBvPslX2bRNy4SvFhAwhEAoBSGUitgMUNChgUSMxss3K3ukekq1paG7Fv
1v5mBmDCZVPt2NCTnjUxrjTp4",
        "assertionScheme": "UAFV1TLV"
      }
    ],
    "fcParams": "eyJhcHBJRCI6Imh0dHBzOi8vdWFmLXRlc3QtMS5ub2tub2t0ZXN0LmN
vbTo4NDQzL1NhbXBsZUFwcC91YWYvZmFjZXRzIiwiY2hhbGxlbmdlIjoiSFExVmtUVVFDMU5
KRE9vNk9PV2R4ZXdyYjlpNVd0aGpmS0llaEZ4cGV1VSIsImNoYW5uZWxCaW5kaW5nIjp7fSw
iZmFjZXRJRCI6ImNvbS5ub2tub2suYW5kcm9pZC5zYW1wbGVhcHAifQ",
    "header": {
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "op": "Auth",
      "serverData": "5s7n8-7_LDAtRIKKYqbAtTTOezVKCjl2mPorYzbpxRrZ-_3wWro
MXsF_pLYjNVm_l7bplAx4bkEwK6ibil9EHGfdfKOQ1q0tyEkNJFOgqdjVmLioroxgThlj8Is
tpt7q",
      "upv": {
        "major": 1,
        "minor": 0
      }
    }
}]

NOTE

Line breaks in fcParams have been inserted for improving readability.



3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets�
(second dimension) of authenticators (identified by MatchCriteria). All �authenticators in a specific set �must be used for authentication
simultaneously in order to match the policy. But any of those sets in the list are valid, i.e. the list elements are alternatives.

The FIDO Server must follow the steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by �separate MatchCriteria objects m.

1. For each collection of authenticators a to be used for authentication simultaneously that can be identified by the �same rule,
create a MatchCriteria object m, where

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.�
If m.aaid is not provided - at least m.authenticationAlgorithms and m.assertionSchemes must be provided
In case of step-up authentication (i.e. in the case where it is expected the user is already known due to a previous
authentication step) every item in Policy.accepted must include the AAID and KeyID of the authenticator registered for
this account in order to avoid ambiguities when having multiple accounts at this relying party.

2. Add m to v, e.g. v[j+1]=m.
2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed authenticators.
1. Create a MatchCriteria object m and add AAIDs of all disallowed authenticators to m.aaid.

The status (as provided in the metadata TOC [UAFMetadataService]) of some authenticators might be unacceptable. Such
authenticators should be included in p.disallowed.

2. If needed - create MatchCriteria m for other disallowed criteria (e.g. unsupported authenticationAlgs)
3. Add all m to p.disallowed.

2. Create an AuthenticationRequest object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData. FIDO Servers that depend on the integrity of

r.header.serverData should apply and verify a cryptographically secure Message Authentication Code (MAC) to serverData and they
should also cryptographically bind serverData to the related message, e.g. by re-including r.challenge, see also section ServerData
and KeyHandle.

2. Generate a random challenge and assign it to r.challenge
3. If this is a transaction confirmation operation - look up �TransactionConfirmationDisplayContentTypes/�

TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every �participating AAID, generate a list of
corresponding transaction content and insert the list into r.transaction.

If the authenticator reported (a dynamic) AuthenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during Registration
- it must be preferred over the (static) value specified in �the authenticator Metadata.

4. Set r.policy to our new policy object p created above, e.g. r.policy = p.
5. Add the authentication request message the array

3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message with major version 1 and minor version 0
2. Parse the message m

If a mandatory field in the UAF message is not present or a �field doesn't correspond to its type and value then reject the �operation
3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation
4. Filter available authenticators with the given policy and present the filtered list to User.�

If AuthenticationRequest.policy.accepted list is empty then suggest any registered authenticator to the user for authentication
5. Let the user select the preferred Authenticator.
6. Obtain TLS data if its available
7. Create a FinalChallengeParams structure fcp and set fcp.AppID, fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately.

Serialize [RFC4627] fcp using UTF8 encoding and base64url encode it.
FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that supports an Authenticator Interface Version AIV compatible with message version
AuthenticationRequest.header.upv (see Version Negotiation) and user agrees to authenticate with:

1. Add AppID, FinalChallenge, Transactions (if present), and all other fields to the ASMRequest.�
2. Send the ASMRequest to the ASM.

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Sign Command".

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverData as an opaque value. As a consequence the
FIDO server can implement any suitable cryptographic protection method.



3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create an AuthenticationResponse message
2. Copy AuthenticationRequest.header into AuthenticationResponse.header
3. Fill out AuthenticationResponse.FinalChallengeParams with appropriate fields and then stringify it�
4. Append the response from each authenticator into AuthenticationResponse.assertions
5. Send AuthenticationResponse message to the FIDO Server

3.5.7.5 Authentication Response Processing Rules for FIDO Server

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (AuthenticationResponse.header.upv) is not supported – reject the operation
2. If a mandatory field in UAF message is not present or a field ��doesn't correspond to its type and value - reject the operation

2. Verify that AuthenticationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. �See also
section ServerData and KeyHandle.

3. base64url decode AuthenticationResponse.fcParams and convert into an object (fcp)
4. Verify each field in fcp and make sure it's valid:�

1. Make sure AppID corresponds to the one stored by the FIDO Server
2. Make sure FacetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]
3. Make sure ChannelBinding is as expected (see section ChannelBinding dictionary)
4. Verify that the ServerChallenge submitted by the client has been generated by the FIDO server
5. Reject the response if any of the above checks fails

5. For each assertion a in AuthenticationResponse.assertions
1. Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and make

sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to �have and has a valid syntax.
If it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

3. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

4. Make sure that the AAID indeed matches the policy of the Authentication Request
If it doesn't meet the policy – continue with next assertion

5. if a.assertion contains an object of type TAG_UAFV1_AUTH_ASSERTION, then
1. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains TAG_UAFV1_SIGNED_DATA as first element:�

1. Obtain Metadata(AAID).AuthenticatorVersion for this AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), �it is recommended to
assume increased authentication risk. See "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[UAFMetadataService] for more details on this.

2. Retrieve a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_KEYID as KeyID
3. Locate UAuth.pub public key associated with (AAID, KeyID) in the user's record.

If such record doesn't exist - continue with next assertion
4. Verify the AAID against the AAID stored in the user's record at time of Registration.

If comparison fails – continue with next assertion
5. Locate authenticator specific authentication algorithms from �authenticator metadata (field �AuthenticationAlgs)
6. Check the Signature Counter a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter and make sure

it is either not supported by the authenticator (i.e. the value provided and the value stored in the user's record are both 0)
or it has been incremented (compared to the value stored in the user's record)

If it is greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a cloned
authenticator has been used previously).

7. Hash AuthenticationResponse.FinalChallengeParams using the hashing algorithm suitable for this authenticator type. Look
up the hash algorithm in authenticator Metadata, field �AuthenticationAlgs. It is the hash algorithm associated with the first�
entry related to a constant with prefix UAF_ALG_SIGN.�

FCHash = hash(AuthenticationResponse.FinalChallengeParams)

8. Make sure that a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_FINAL_CHALLENGE == FCHash
If comparison fails – continue with next assertion

9. If a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.authenticationMode == 2

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new �assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

NOTE

The AAID in TAG_UAFV1_SIGNED_DATA is contained in a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_AAID.

NOTE

The transaction hash included in this AuthenticationResponse must match the transaction content specified in the�



1. Make sure there is a transaction cached on Relying Party side.
If not – continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction) and
calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for
FinalChallenge).

For each cachedTransaction add hash(cachedTransaction) into cachedTransactionHashList
3. Make sure that a.TransactionHash is in cachedTransactionHashList

If it's not in the list – continue with next assertion
10. Use UAuth.pub key and appropriate authentication algorithm to verify

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_SIGNATURE
1. If signature verification fails – continue with next assertion�
2. Update SignCounter in user's record with

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter

2. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains a different object than TAG_UAFV1_SIGNED_DATA as first element, �then follow the
rules specific to that object.�

6. if a.assertion doesn't contain an object of type TAG_UAFV1_AUTH_ASSERTION, then skip this assertion (as in this UAF v1 only
TAG_UAFV1_AUTH_ASSERTION is defined).�

7. Treat this assertion a as positively verified.�
6. Process all positively verified authentication assertions �a.

3.6 Deregistration Operation
This operation allows FIDO Server to ask the FIDO Authenticator to delete keys related to the particular relying party.

3.6.1 Deregistration Request Message

The FIDO UAF Deregistration request message is represented as an array of dictionaries. Each dictionary contains a deregistration request for a
specific protocol version. The array �must not contain two dictionaries of the same protocol version. For version "1.0" the request is defined as�
DeregistrationRequest dictionary.

3.6.2 DeregisterAuthenticator dictionary

WebIDL

dictionary DeregisterAuthenticator {
    required AAID  aaid;
    required KeyID keyID;
};

3.6.2.1 Dictionary DeregisterAuthenticator Members

aaid of type required AAID
AAID of the authenticator to deregister.

keyID of type required KeyID
The unique KeyID related to UAuth.priv. KeyID is assumed to be unique within the scope of an AAID only.

3.6.3 DeregistrationRequest dictionary

WebIDL

dictionary DeregistrationRequest {
    required OperationHeader           header;

related AuthenticationRequest. As FIDO doesn’t mandate any specific FIDO Server API, the transaction content�
could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web Application.

NOTE

The Along with other cases FIDO Server should also trigger this operation when the user removes his account at the relying party.

EXAMPLE 11: UAF Deregistration Request
[{
    "header": {
      "op": "Dereg",
      "upv": {
        "major": 1,
        "minor": 0
      },
  "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets"
    },
    "authenticators": [
      {
        "aaid": "ABCD#ABCD",
        "keyID": "ZMCPn92yHv1Ip-iCiBb6i4ADq6ZOv569KFQCvYSJfNg"
      }
    ]
}]

NOTE

There is no deregistration response object.



    required DeregisterAuthenticator[] authenticators;
};

3.6.3.1 Dictionary DeregistrationRequest Members

header of type required OperationHeader
Header.op must be "Dereg".

authenticators of type array of required DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules

3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server must follow the steps:

1. Create a deregistration request message m with major version of m.header.upv set to 1 and minor version set to 0
2. For each authenticator to be deregistered

1. Create DeregisterAuthenticator object o for authenticator to be deregistered
2. Set o.aaid and o.keyID appropriately
3. Append o the m.authenticators
4. delete related entry in FIDO Server's account database

3. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message with major version 1 and minor version 0
2. Parse the message

If a mandatory field in �DeregistrationRequest message is not present or a field doesn't correspond to its type and value – reject �the
operation

3. For each authenticator compatible with the message version DeregistrationRequest.header.upv and has an AAID equal to one of the
provideded AAIDs:

1. Create appropriate ASMRequest for Deregister function and send it to the Authenticator

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

See [UAFASM] section "Deregister request".

4. Considerations
This section is non-normative.

4.1 Protocol Core Design Considerations
This section describes the important design elements used in the protocol.

4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all supported authenticators and their corresponding Metadata. authenticator metadata
[UAFAuthnrMetadata] contains information such as:

Supported Registration and Authentication Schemes
Authentication Factor, Installation type, supported content-types and other supplementary information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction, FIDO Server looks up �the list of authenticator
metadata by AAID and retrieves the required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be identified with a unique authenticator Attestation ID (AAID).�

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating authenticator model identity during registration. It allows Relying Parties to cryptographically
verify that the authenticator reported by FIDO UAF Client is really what it claims to be.

Using authenticator Attestation, a relying party "example-rp.com" will be able to verify that the authenticator model of the "example-Authenticator",
reported with AAID "1234#5678", is not malware running on the FIDO User Device but is really a authenticator of model "1234#5678".

NORMATIVE

FIDO Authenticators should support "Basic Attestation" described below. New Attestation mechanisms may be added to the protocol over time.

NORMATIVE

FIDO Authenticators not providing sufficient protection for �Attestation keys (non-attested authenticators) must use the UAuth.priv key in order
to formally generate the same KeyRegistrationData object as attested authenticators. This behavior must be properly declared in the
Authenticator Metadata.



4.1.2.1 Basic Attestation

NORMATIVE

There are two different flavors of Basic Attestation:�

Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).

Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key
corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not provide a cryptographic proof of the
security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 Full Basic Attestation

In this Full Basic Attestation model, a large number of authenticators must share the same Attestation certificate and �Attestation Private Key in
order to provide non-linkability (see Protocol Core Design Considerations). Authenticators can only be identified on a production batch �level or an
AAID level by their Attestation Certificate, and �not individually. A large number of authenticators sharing the same Attestation Certificate provides�
better privacy, but also makes the related private key a more attractive attack target.

Fig. 10 Attestation Certificate Chain�

4.1.2.1.2 Surrogate Basic Attestation

NORMATIVE

In this attestation method, the UAuth.priv key must be used to sign the Registration Data object. This behavior must be properly declared in the
Authenticator Metadata.

4.1.3 Error Handling

NOTE

FIDO Servers must have access to a trust anchor for verifying attestation public keys (i.e. Attestation Certificate trust �store) in order to follow
the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation signature during the registration process for the same
reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This sharing process shouldt be
done according to [UAFMetadataService].

NOTE

The protection measures of the Authenticator's attestation private key depend on the specific authenticator model's �implementation.

NOTE

The FIDO Server must load the appropriate Authenticator Attestation Root Certificate from its trust store based on the �AAID provided in
KeyRegistrationData object.

NOTE

A given set of authenticators sharing the same manufacturer and essential characteristics must not be issued a new Attestation Key before
at least 100,000 devices are issued the previous shared key.

NOTE

FIDO Authenticators not providing sufficient protection for �Attestation keys (non-attested authenticators) must use this attestation method.



NORMATIVE

FIDO Authenticators must inform the FIDO UAF Client (see FIDO Interoperability Overview) about any error conditions encountered when
processing commands through the Authenticator Specific Module (ASM). See [�UAFASM] and [UAFAuthnrCommands] for details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs, Fingerprint Sensors, Secure Elements, etc.) and also
future authenticators designed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

Cryptographic key provisioning (KeyRegistrationData)
Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See also UAF Supported Assertion Schemes.

The Registration Assertion defines how and in which format a �cryptographic key is exchanged between the authenticator and the FIDO Server.

The Authentication Assertion defines how and in which format the �authenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in �[UAFRegistry].

4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication �factor (i.e. replacing username and password). In this case the authenticator
stores the username (uniquely identifying an account at the specific relying party) internally. See �[UAFAuthnrCommands], section "Sign
Command" for details.

4.1.6 TLS Protected Communication

We recommend, that the

1. TLS Client verifies and validates the server �certificate chain according to [�RFC5280], section 6 "Certificate Path Validation". The certificate��
revocation status should be checked (e.g. using OCSP [RFC2560] or CRL based validation [RFC5280]) and the TLS server identity should
be checked as well [RFC6125].

2. TLS Client's trusted certificate root store �is properly maintained and at least requires the CAs included in the root store to annually pass Web
Trust or ETSI (ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.

See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on how to use TLS.

4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

4.3 Security Considerations
There is no "one size fits all" authentication method. The FIDO �goal is to decouple the user verification method from the �authentication protocol
and the authentication server, and to support a broad range of user verification methods and a broad �range of assurance levels. FIDO
authenticators should be able to leverage capabilities of existing computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and integrity of the user's equipment involved
and (b) on the authentication method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of authentication methods. The relying party
needs reliable information about the security relevant parts of the equipment and the authentication method itself in order to determine whether
the overall risk of an electronic authentication is acceptable in a particular business context. The FIDO Metadata[UAFMetadataService] is intended
to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security relevant parts of the equipment and the
authentication method itself to the FIDO server.

NOTE

FIDO Servers must inform the calling Relying Party Web Application Server (see FIDO Interoperability Overview) about any error conditions
encountered when generating or processing UAF messages through their proprietary API.

NOTE

In order to protect the data communication between FIDO UAF Client and FIDO Server a protected TLS channel must be used by FIDO
UAF Client (or User Agent) and the Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying Party
2. The client endpoint of the TLS connection must be either the FIDO UAF Client or the User Agent / App
3. TLS Client and Server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS v1.2 or higher are not available. The "anon"

and "null" TLS crypto suites are not allowed and must be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4, SHA1) should
be avoided [[SP 800-131A]].

NOTE

A ServerChallenge needs appropriate random sources in order to be effective (see [RFC4086] for more details). The (pseudo-)random
numbers used for generating the Server Challenge should successfully pass the randomness test specified in [�Coron99] and they should
follow the guideline given in [SP800-90b].



The overall security is determined by the weakest link. In order to support scalable security in FIDO, the underlying UAF protocol needs to provide
a very high conceptual security level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels.� The FIDO Alliance envisions a broad range of FIDO UAF Clients, FIDO Authenticators
and FIDO Servers to be offered by various vendors. Relying parties should be able to select a FIDO Server providing the appropriate level of
security. They should also be in a position to accept FIDO Authenticators meeting the security needs of the given business context, to
compensate assurance level deficits by adding appropriate implicit authentication �measures, and to reject authenticators not meeting their
requirements. FIDO does not mandate a very high assurance level for FIDO Authenticators, instead it provides the basis for authenticator and
user verification method competition.�

Authentication vs. Transaction Confirmation.� Existing Cloud services are typically based on authentication. The user launches an application
(i.e. User Agent) assumed to be trusted and authenticates to the Cloud service in order to establish an authenticated communication channel
between the application and the Cloud service. After this authentication, the application can perform any actions to the Cloud service using the
authenticated channel. The service provider will attribute all those actions to the user. Essentially the user authenticates all actions performed by
the application in advance until the service connection or authentication times out. This is a very convenient way as the user doesn't get distracted
by manual actions required for the authentication. It is suitable for actions with low risk consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is typically being used when non-repudiation is required. The resulting requirement for this scenario is called What
You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The technical difference is, that �with Authentication
the user confirms a random challenge, where �in the case of Transaction Confirmation the user also confirms ��a human readable content, i.e. the
contract. From a security point, in the case of authentication the application needs to be trusted as it performs any action once the authenticated
communication channel has been established. In the case of Transaction Confirmation only the transaction confirmation ��display component
implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in order to determine the risk associated with an authentication, it is important to
know details about some components of the user's environment. Web Browsers typically send a "User Agent" string to the web server.
Unfortunately any application could send any string as "User Agent" to the relying party. So this method doesn't provide strong security. FIDO UAF
is based on a concept of cryptographic attestation. With this concept, the component to be attested owns a cryptographic secret and authenticates
its identity with this cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation Key". The relying party gets
access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an authentication, all components performing significant�
security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the �"FIDO Authenticators". Security functions are:

1. Protecting the attestation key.
2. Generating and protecting the Authentication key(s), typically one per relying party and user account on relying party.
3. Verifying the user.
4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).�

Some FIDO Authenticators might implement these functions in software running on the FIDO User Device, others might implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators might even be
formally evaluated and accredited to some national or international scheme. Each FIDO Authenticator model has an attestation ID (AAID),
uniquely identifying the related security characteristics. Relying parties get access to these security properties of the FIDO Authenticators and the
reference data required for verifying the attestation.

Resilience to leaks from other verifiers.� One of the important issues with existing authentication solutions is a weak server side implementation,
affecting the security of authentication of typical users to other relying parties. It is the goal of the FIDO UAF protocol to decouple the security of
different relying parties.

Decoupling User Verification Method from Authentication Protocol.� In order to decouple the user verification method from the �authentication
protocol, FIDO UAF is based on an extensible set of cryptographic authentication algorithms. The cryptographic secret will be unlocked after user
verification by the �Authenticator. This secret is then used for the authenticator-to-relying party authentication. The set of cryptographic algorithms
is chosen according to the capabilities of existing cryptographic hardware and computing devices. It can be extended in order to support new
cryptographic hardware.

Privacy Protection. Different regions in the world have different privacy regulations. The FIDO UAF protocol should be acceptable in all regions
and hence must support the highest level of data protection. As a consequence, FIDO UAF doesn't require transmission of biometric data to the
relying party nor does it require the storage of biometric reference data [ISOBiometrics] at the relying party. Additionally, cryptographic secrets
used for different relying parties shall not allow the parties to link actions to the same user entity. UAF supports this concept, known as non-
linkability. Consequently, the UAF protocol doesn't require a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO Authenticators on the FIDO User Device using the Discovery interface
[UAFAppAPIAndTransport]. The combination of AAIDs adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at �eff.org and https://wiki.mozilla.org/Fingerprinting). In order to
minimize the entropy added by FIDO, the user can enable/disable individual authenticators – even when they are embedded in the device (see
[UAFAppAPIAndTransport], section "privacy considerations").

4.3.1 FIDO Authenticator Security

See [UAFAuthnrCommands].

4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it is suggested that implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is also supported. See
[UAFRegistry] "Authentication Algorithms and Key Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random value. For effective security, this value
must be chosen randomly and uniformly from a set of modular integers, using a cryptographically secure process. Even slight biases in that
process may be turned into attacks on the signature schemes.

4.3.3 Application Isolation

NOTE

If such random values cannot be provided under all possible environmental conditions, then a deterministic version of ECDSA should be
used (see [RFC6979]).



Fig. 11 FIDO Entity Verification Overview�

There are two concepts implemented in FIDO UAF to prevent malicious applications from misusing AppID specific keys registered with �FIDO
Authenticators. First concept is called "FacetID Assertion" and second is based on the "KHAccessToken". For information on the FacetID concept
see [FIDOAppIDAndFacets].

4.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify the calling software entity (i.e. the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to the intended ASM. It is based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e. the ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally registered them. A malicious App on a
mobile platform won't be able to access keys by bypassing the related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the AppID, PersonaID, �ASMToken and the CallerID. See [UAFASM] for more details.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g. [RFC5929] and [ChannelID]).

UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for �the same AppID as the relying party and they might be able to manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and they might be able to �manipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique" defined in [RFC5929] might be �difficult to�
implement.

2. Data centers might use SSL concentrators.
3. Data centers might implement load-balancing for TLS endpoints using different TLS certificates. As a consequence, �"tls-server-end-point"

defined in [RFC5929], i.e. the hash of �the TLS server certificate might be inappropriate.�
4. Unfortunately, hashing of the TLS server certificate (as in �"tls-server-end-point") also limits the usefulness of the channel binding in a

particular, but quite common circumstance. If the client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-
middle, your client will see a different certificate than the one the server is using. �This is actually quite common on corporate or military
networks with a high security posture that want to inspect all incoming and outgoing traffic. If the FIDO Server just gets a hash �value, there's
no way to distinguish this from an attack. If sending the entire certificate is acceptable from a performance �perspective, the server can
examine it and determine if it is a certificate for a valid name from a non-standard issuer (likely �administratively trusted) or a certificate for a�
different name (which almost certainly indicates a forwarding attack).

NOTE

On some platforms, the ASM additionally might need special permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among applications.



See ChannelBinding dictionary for more details.

4.3.5 Session Management

FIDO does not define any specific session management methods. ��However, several FIDO functions rely on a robust session management being
implemented by the relying party's web application:

FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.

FIDO Authentication
After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).

4.3.6 Personas

FIDO supports unlinkability [AnonTerminology] of accounts at different relying parties by using relying party specific keys.�

Sometimes users have multiple accounts at a particular relying party and even want to maintain unlinkability between these accounts.

Today, this is difficult and requires certain measures to be �strictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various personas (e.g. "business", "personal"). This
is possible as roaming authenticators typically are small and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona (e.g. "business" or "personal"). Some administrative interface (not standardized by
FIDO) of the authenticator may allow maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g. authentication keys, usernames, KeyIDs, …) related to the Persona being active at
that time.

With this concept, the User can switch to the "Personal" Persona and register new accounts. After switching back to "Business" Persona, these
accounts will not be recognized by the authenticator (until the User switches back to "Personal" Persona again).

In order to support the persona feature, the FIDO Authenticator-specific �Module API [UAFASM] supports the use of a 'PersonaID' to identify the
persona in use by the authenticator. How Personas are managed or communicated with the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see �Operation Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be echoed back
to the FIDO Server as part of the related UAF response message.

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

Several authenticator properties (e.g. UserVerificationMethods, �KeyProtection, TransactionConfirmationDisplay, ...) are available in the �metadata
[UAFAuthnrMetadata] and through the FIDO UAF Application API. The properties included in the metadata are authoritative and are provided by a
trusted source. When in doubt, decisions should be based on the properties retrieved from the Metadata as opposed to the data retrieved through
the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint" what to expect from the Authenticator. Such "hints"
are well suited to drive and optimize the user experience.

4.3.9 Policy Verification�

FIDO UAF Response messages do not include all parameters received in the related FIDO UAF request message into the to-be-signed object. As
a consequence, any MITM could modify such entries.

FIDO Server will detect such changes if the modified value is �unacceptable.

NOTE

The FIDO Server should not assume any kind of implicit integrity protection of such data nor any implicit session binding. The FIDO Server
must explicitly bind the serverData to an active session.

NOTE

In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary places (e.g. in serverData or in the
KeyHandle). In such situations, the confidentiality and integrity of such sensitive data must be �protected. This can be achieved by using a
suitable encryption algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or CTR [CTRMode]. This cipher mode needs to be used
correctly. For CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first in order to �obtain
an integral number of blocks in length. The integrity protection can be achieved by adding a MAC or a digital signature on the ciphertext,
using a different key than for the encryption, e.g. using HMAC [FIPS198-1]. Alternatively, an authenticated encryption scheme such as AES-
GCM [SP800-38D] or AES-CCM [SP800-38C] could be used. Such a scheme provides both integrity and confidentiality in a �single algorithm
and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by re-including the challenge value in the authenticated serverData.



For example, a MITM could replace a generic policy by a policy specifying only the weakest possible FIDO Authenticator. Such a change will be
detected by FIDO Server if the weakest possible FIDO Authenticator does not match the initial policy (see Registration Response Processing
Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection

The FIDO UAF protocol specifies two different methods for �replay-attack protection:

1. Secure transport protocol (TLS)
2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [TLS].

Additionally, each protocol message contains some random bytes in the ServerChallenge field. The FIDO server should only �accept incoming
FIDO UAF messages which contain a valid ServerChallenge value. This is done by verifying that the ServerChallenge value, sent by the client, was
previously generated by the FIDO server. See FinalChallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated by the FIDO server may not be unique, and in
such cases, the same ServerChallenge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security characteristics specified �for the model
(identified by the AAID). The security is better �when only a single authenticator with that specific UAuth.Key �instance exists. Consequently FIDO
UAF specifies some �protection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard as such keys cannot be extracted easily.

Secondly, UAF specifies a Signature Counter (see �Authentication Response Processing Rules and [UAFAuthnrCommands]). This counter is
increased by every signature operation. If a cloned authenticator is used, then the subsequent use of the original authenticator would include a
signature counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals

There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:�

1. Register the authenticator to some relying party for one account
2. Commit fraud
3. Deregister the Authenticator
4. Register the authenticator to some relying party for another account
5. Commit fraud
6. Deregister the Authenticator
7. and so on...

4.4 Interoperability Considerations
FIDO supports Web Applications, Mobile Applications and Native PC Applications. Such applications are referred to as FIDO enabled applications.

Fig. 12 FIDO Interoperability Overview

Web applications typically consist of the web application server and the related Web App. The Web App code (e.g. HTML and JavaScript) is
rendered and executed on the client side by the User Agent. The Web App code talks to the User Agent via a set of JavaScript APIs, e.g. HTML
DOM. The FIDO DOM API is defined in [�UAFAppAPIAndTransport]. The protocol between the Web App and the Relying Party Web Application
Server is typically proprietary.

NOTE

Authenticators might support a Registration Counter (RegCounter). The RegCounter will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios. See [UAFAuthnrCommands] for more details.



Mobile Apps play the role of the User Agent and the Web App (Client). The protocol between the Mobile App and the Relying Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web App (Client). Those applications are typically expected to be independent from
any particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.�

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [�UAFAppAPIAndTransport].

5. UAF Supported Assertion Schemes
This section is normative.

5.1 Assertion Scheme "UAFV1TLV"
This Assertion Scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to encode registration and authentication assertions generated by
authenticators. This is the default assertion scheme for UAF protocol.

TAGs and Algorithms are defined in [�UAFRegistry].

The authenticator must use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the �metadata
statement [UAFAuthnrMetadata] for each relying party. This key pair should be generated as part of the registration operation.

Conforming FIDO Servers must support all authentication algorithms and key formats listed in document [UAFRegistry].

Conforming authenticators must support at least one Authentication Algorithm and one Key Format listed in [UAFRegistry].

5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

6. Definitions�
See [FIDOGlossary].

7. Table of Figures
Fig. 1 The UAF Architecture
Fig. 2 UAF Registration Message Flow
Fig. 3 Authentication Message Flow
Fig. 4 Transaction Confirmation Message Flow�
Fig. 5 Deregistration Message Flow
Fig. 6 UAF Registration Sequence Diagram
Fig. 7 UAF Registration Cryptographic Data Flow
Fig. 8 UAF Authentication Sequence Diagram
Fig. 9 UAF Authentication Cryptographic Data Flow
Fig. 10 Attestation Certificate Chain�
Fig. 11 FIDO Entity Verification Overview�
Fig. 12 FIDO Interoperability Overview

A. References
A.1 Normative references
[ABNF]

D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNF�. January 2008. Internet Standard. URL:
https://tools.ietf.org/html/rfc5234

[ChannelID]
D. Balfanz Transport Layer Security (TLS) Channel IDs. (Work In Progress) URL: http://tools.ietf.org/html/draft-balfanz-tls-channelid

[Coron99]
J. Coron and D. Naccache An accurate evaluation of Maurer's universal test. LNCS 1556, February 1999, URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOAppIDAndFacets]
D. Balfanz, B. Hill, FIDO AppID and Facets v1.0. FIDO Alliance Working Draft (Work in progress.) URLs: 
HTML: ./fido-appid-and-facets.html�
PDF: fido-appid-and-facets.pdf�

[FIDOGlossary]

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO Authenticators and have
to be verified by the FIDO Server. �Verification will fail if the values are modified during ��transport.

The ASM API [UAFASM] specifies the standardized API to access �authenticator Specific Modules (ASMs) on Desktop PCs and Mobile�
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API. Instead it lists the minimum data set and a specific�
message format which needs to be transferred to and from the FIDO Authenticator.

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
./fido-appid-and-facets.html
./fido-appid-and-facets.html
./fido-appid-and-facets.pdf


R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). National Institute of Standards and Technology, March 2012, URL:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf���

[JWA]
M. Jones JSON Web Algorithms (JWA). Internet-Draft (Work in progress.) URL: http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms

[JWK]
Mike Jones. JSON Web Key (JWK). 28 May 2013. Internet Draft. URL: http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11

[RFC1321]
R. Rivest, The MD5 Message-Digest Algorithm (RFC 1321), IETF, April 1992, URL: http://www.ietf.org/rfc/rfc1321.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC3629]
F. Yergeau. UTF-8, a transformation format of ISO 10646. November 2003. Internet Standard. URL: https://tools.ietf.org/html/rfc3629

[RFC4086]
D. Eastlake 3rd, J. Schiller, S. Crocker Randomness Requirements for Security (RFC 4086), IETF, June 2005, URL:
http://www.ietf.org/rfc/rfc4086.txt

[RFC4627]
D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON). July 2006. Informational. URL:
https://tools.ietf.org/html/rfc4627

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5056]
N. Williams, On the Use of Channel Bindings to Secure Channels (RFC 5056), IETF, November 2007, URL: http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk; Internet X.509 Public Key Infrastructure Certificate and Certificate��
Revocation List (CRL) Profile�, IETF, May 2008, URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5929]
J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July 2010, URL: http://www.ietf.org/rfc/rfc5929.txt

[RFC6234]
D. Eastlake 3rd, T. Hansen, US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) (RFC 6234), IETF, May 2011, URL:
http://www.ietf.org/rfc/rfc6234.txt

[RFC6979]
T. Pornin, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) (RFC6979),
IETF, August 2013, URL: http://www.ietf.org/rfc/rfc6979.txt

[SP800-90b]
Elaine Baker and John Kelsey, NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for Random Bit
Generation. National Institute of Standards and Technology, August 2012, URL: http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-
90b.pdf

[UAFASM]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator-Specific Module API v1.0�. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf��

[UAFAppAPIAndTransport]
B. Hill FIDO UAF Application API and Transport Binding Specification v1.0�. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf��

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf��

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values v1.0�. FIDO Alliance Review Draft (Work in progress.)
URL: http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

A.2 Informative references
[AnonTerminology]

"Anonymity, Unlinkability, Unobservability, Pseudonymity, and Identity Management - A Consolidated Proposal for Terminology", Version
0.34,. A. Pfitzmann and M. Hansen, August 2010. URL: �http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

[CTRMode]
H. Lipmea, P. Rogaway, D. Wagner, Comments to NIST concerning AES Modes of Operation: CTR-Mode Encryption. National Institute of
Standards and Technology, accessed March 11, 2014, URL: http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-
spec.pdf

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-2005.
American National Standards Institute, November 2005, URL: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf��

[FIPS198-1]
FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC). National Institute of Standards and Technology, July 2008, URL:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf���

[ISOBiometrics]
Project Editor, Harmonized Biometric Vocabulary. ISO/IEC JTC 1. 15 November 2007, URL: http://isotc.iso.org/livelink/...

[OWASP2013]
OWASP 2013. OWASP Top 10 - 2013. The Ten Most Critical Web Application Security Risks

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP�.
June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560

[RFC6125]
P. Saint-Andre, J. Hodges, Representation and Verification of Domain-Based Application Service Identity within Internet Public Key�
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125)�, IETF, March 2011, URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6287]
D. M'Raihi, J. Rydell, S. Bajaj, S. Machani, D. Naccache, OCRA: OATH Challenge-Response Algorithm (RFC 6287), IETF, June 2011, URL:
http://www.ietf.org/rfc/rfc6287.txt

[SHEFFER-TLS]
Y. Sheffer, R. Holz, P. Saint-Andre Recommendations for Secure Use of TLS and DTLS. Internet-Draft (Work in progress.) URL:
https://tools.ietf.org/html/draft-sheffer-tls-bcp

[SP800-38C]

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6287.txt
https://tools.ietf.org/html/draft-sheffer-tls-bcp
https://tools.ietf.org/html/draft-sheffer-tls-bcp


M. Dworkin, NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality�. National Institute of Standards and Technology, July 2007, URL: http://csrc.nist.gov/publications/nistpubs/800-
38C/SP800-38C_updated-July20_2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. November 2007 URL: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[SP800-63]
W. Burr, D. Dodson, E. Newton, R. Perlner, W.T. Polk, S. Gupta and E. Nabbus, NIST Special Publication 800-63-2: Electronic
Authentication Guideline. National Institute of Standards and Technology, August 2013, URL:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

[TLS]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol, Version 1.2. August 2008. RFC 5246. URL:
http://tools.ietf.org/html/rfc5246

[TR-03116-4]
Technische Richtlinie TR-03116-4: eCard-Projekte der Bundesregierung: Teil 4 – Vorgaben für Kommunikationsverfahren im eGovernment.
Bundesamt für Sicherheit in der Informationstechnik, 2013, URL:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf

[UAFMetadataService]
R. Lindemann FIDO UAF Metadata Service v1.0. FIDO Alliance Working Draft (Work in progress.) URL: TODO

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL: http://www.w3.org/TR/WebIDL/

http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/


FIDO UAF Application API and Transport Binding Specification v1.0�
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-client-api-transport-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-client-api-transport-v1.0-rd-20140209.pdf��
Editor:

Brad Hill, PayPal, Inc.
Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
Bill Blanke, Nok Nok Labs, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
Describes APIs and an interoperability profile for client �applications to utilize FIDO UAF. This includes methods of communicating with a FIDO UAF
Client for both Web platform and Android applications, transport requirements, and an HTTPS interoperability profile for sending FIDO UAF�
messages to a compatible server.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index� at
https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is hereby granted to use the Specification�
solely for the purpose of implementing the Specification. No rights �are granted to prepare derivative works of this Specification. Entities seeking�
permission to reproduce portions of this Specification for other uses must contact the �FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual �property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,�
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Audience
2.2 Scope
2.3 Architecture

2.3.1 Protocol Conversation
3. Common Definitions�

3.1 UAF Status Codes
4. Shared Definitions�

4.1 UAFMessage Dictionary
4.1.1 Dictionary UAFMessage Members

4.2 Version interface
4.2.1 Attributes

4.3 Authenticator interface
4.3.1 Attributes
4.3.2 Authenticator Interface Constants

4.4 DiscoveryData dictionary
4.4.1 Dictionary DiscoveryData Members

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-client-api-transport-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-client-api-transport-v1.0-rd-20140209.pdf
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


4.5 ErrorCode interface
4.5.1 Constants

5. DOM API
5.1 Feature Detection
5.2 uaf Interface

5.2.1 Methods
5.3 UAFResponseCallback

5.3.1 Callback UAFResponseCallback Parameters
5.4 DiscoveryCallback

5.4.1 Callback DiscoveryCallback Parameters
5.5 ErrorCallback

5.5.1 Callback ErrorCallback Parameters
5.6 Privacy Considerations for the DOM API
5.7 Security Considerations for the DOM API

5.7.1 Insecure Mixed Content
5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

5.8 Implementation Notes for Browser/Plugin Authors
6. Android Intent API

6.1 Android-specific Definitions��
6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT�
6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER�
6.1.3 channelBindings
6.1.4 UAFIntentType enumeration

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent�
6.2.1 UAFIntentType.DISCOVER
6.2.2 UAFIntentType.DISCOVER_RESULT
6.2.3 UAFIntentType.CHECK_POLICY
6.2.4 UAFIntentType.CHECK_POLICY_RESULT
6.2.5 UAFIntentType.UAF_OPERATION
6.2.6 UAFIntentType.UAF_OPERATION_RESULT
6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

6.3 Security Considerations for Android Implementations
7. iOS Custom URL API

7.1 iOS-specific Definitions��
7.1.1 X-Callback-URL Transport
7.1.2 Secret Key Generation
7.1.3 Origin
7.1.4 channelBindings
7.1.5 UAFxType

7.2 JSON Values
7.2.1 DISCOVER
7.2.2 DISCOVER_RESULT
7.2.3 CHECK_POLICY
7.2.4 CHECK_POLICY_RESULT
7.2.5 UAF_OPERATION
7.2.6 UAF_OPERATION_RESULT
7.2.7 UAF_OPERATION_COMPLETION_STATUS

7.3 Implementation Guidelines for iOS Implementations
7.4 Security Considerations for iOS Implementations

8. Transport Binding Profile�
8.1 Transport Security Requirements
8.2 TLS Security Requirements
8.3 HTTPS Transport Interoperability Profile�

8.3.1 Obtaining a UAF Request message
8.3.2 Operation enum
8.3.3 GetUAFRequest dictionary

8.3.3.1 Dictionary GetUAFRequest Members
8.3.4 ReturnUAFRequest dictionary

8.3.4.1 Dictionary ReturnUAFRequest Members
8.3.5 SendUAFResponse dictionary

8.3.5.1 Dictionary SendUAFResponse Members
8.3.6 Delivering a UAF Response
8.3.7 ServerResponse Interface

8.3.7.1 Attributes
8.3.8 Token interface

8.3.8.1 Attributes
8.3.9 TokenType enum
8.3.10 Security Considerations

A. References
A.1 Normative references
A.2 Informative references



1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, �it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, �it must not be an empty list.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

The FIDO UAF technology replaces traditional username and password-based authentication solutions for online services, with a stronger and
simpler alternative. The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server: Registration,
Authentication, Transaction Confirmation, and Deregistration. As specified in the core ��protocol, these messages do not have a defined network�
transport, or describe how application software that a user interfaces with can use UAF. This document describes the API surface that a client
application can use to communicate with FIDO UAF Client software, and transport patterns and security requirements for delivering UAF Protocol
messages to a remote server.

The reader should also be familiar with the FIDO Glossary of Terms [FIDOGlossary] and the UAF Protocol specification [�UAFProtocol].

2.1 Audience
This document is of interest to client-side application authors that wish to utilize FIDO UAF, as well as implementers of web browsers, browser
plugins and FIDO clients, in that it describes the API surface they need to expose to application authors.

2.2 Scope
This document describes:

The local ECMAScript [ECMA-262] API exposed by a FIDO UAF-enabled web browser to client-side web applications.
The mechanisms and APIs for Android [ANDROID] applications to discover and utilize a shared FIDO UAF Client service.
The general security requirements for applications initiating and transporting UAF protocol exchanges.
An interoperability profile for transporting FIDO UAF messages over �HTTPS [RFC2818].

The following are out of scope for this document:

The format and details of the underlying UAF Protocol messages
APIs for, and any details of interactions between FIDO Server software and the server-side application stack.

The goal of describing standard APIs and an interoperability profile for the transport of FIDO UAF messages here is to provide an �example of how
to develop a FIDO-enabled application and to promote the ease of integrating interoperable layers from different vendors to build a complete FIDO
UAF solution. For any given application instance, these particular patterns may not be ideal and are not mandatory. Applications may use alternate
transports, bundle UAF Protocol messages with other network data, or discover and utilize alternative APIs as they see fit.�

2.3 Architecture
The overall architecture of the UAF protocol and its various operations is described in the FIDO UAF Protocol Specification �[UAFProtocol]. The
following simplified architecture diagram �illustrates the interactions and actors this document is concerned with:

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as �required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-
progress. If you are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.�



Fig. 1 UAF Application API Architecture and Transport Layers

This document describes the shaded components in Fig 1.

2.3.1 Protocol Conversation

The core UAF protocol consists of five conceptual phases:�

Discovery allows the relying party server to determine the availability of FIDO capabilities at the client, including metadata about the
available authenticators.
Registration allows the client to generate and associate new key material with an account at the relying party server, subject to policy set by
the server and acceptable attestation that the authenticator and registration matches that policy.
Authentication allows a user to provide an account identifier, �proof-of-possession of previously registered key material associated with that
identifier, and potentially other attested �data, to the relying party server.
Transaction Confirmation� allows a server to request that a FIDO client and authenticator with the appropriate capabilities display some
information to the user, request that the user authenticate locally to their FIDO authenticator to confirm it, �and provide proof-of-possession of
previously registered key material and an attestation of the confirmation back to the �relying party server.
Deregistration allows a relying party server to tell an authenticator to forget selected locally managed key material associated with that
relying party in case such keys are no longer considered valid by the relying party.

Discovery does not involve a protocol exchange with the FIDO Server. However, the information available through the discovery APIs might be
communicated back to the server in an application-specific manner, such as by obtaining a UAF �protocol request message containing an
authenticator policy tailored to the specific capabilities of the FIDO user �device.

Although the UAF protocol abstractly defines the FIDO �server as the initiator of requests, UAF client applications working as described in this
document will always transport UAF protocol messages over a client-initiated request/response protocol such as HTTP.

The protocol flow from the point of view of the relying party �client application for registration, authentication, and transaction confirmation is as�
follows:



1. The client application either explicitly contacts the server to obtain a UAF Protocol Request Message, or this message is delivered along
with other client application content.

2. The client application invokes the appropriate API to pass the UAF protocol request message asynchronously to the FIDO UAF Client, and
receives a set of callbacks.

3. The FIDO UAF Client performs any necessary interactions with the user and authenticator(s) to complete the request and uses a callback to
either notify the client application of an error, or to return a UAF response message.

4. The client application delivers the UAF response message to the server over a transport protocol such as HTTP.
5. The server optionally returns an indication of the results of the operation and additional data such as authorization tokens or a redirect.
6. The client application optionally uses the appropriate API to inform the FIDO UAF Client of the results of the operation. This allows the FIDO

UAF Client to perform “housekeeping” tasks for a better user experience, e.g. by not attempting to use again later a key that the server
refused to register.

7. The client application optionally processes additional data returned to it in an application-specific manner, e.g. �processing new authorization
tokens, redirecting the user to a new resource or interpreting an error code to determine if and how it should retry a failed operation.

Deregister does not involve a UAF protocol round-trip. If the relying party server instructs the client application to perform a deregistration, the
client application simply delivers the UAF protocol Request message to the FIDO UAF Client using the appropriate API. The FIDO UAF Client
does not return the results of a deregister operation to the relying party client application or FIDO Server.

UAF protocol Messages are JSON [ECMA-404] structures, but client applications are discouraged from modifying them. These messages may
contain embedded cryptographic integrity protections and any modifications might invalidate the messages from the point of �view of the FIDO UAF
Client or Server.

3. Common Definitions�
This section is normative.

These elements are shared by several APIs and layers.

3.1 UAF Status Codes
This table lists UAF protocol status codes.

Code Meaning
1200 OK. Operation completed

1202 Accepted. Message accepted, but not completed at this time. The RP may need time to process the attestation, run risk scoring, etc. The
server should not send an authenticationToken with a 1202 response

1400 Bad Request. The server did not understand the message
1401 Unauthorized. The userid must be authenticated to perform this operation, or this KeyID is not associated with this UserID.
1403 Forbidden. The userid is not allowed to perform this operation. Client should not retry
1404 Not Found.
1408 Request Timeout.
1480 Unknown AAID. The server was unable to locate authoritative metadata for the AAID.

1481

Unknown KeyID. The server was unable to locate a registration for the given UserID and KeyID combination.

This error indicates that there is an invalid registration on the user's device. It is recommended that FIDO UAF Client deletes the key
from local device when this error is received.

1490 Channel Binding Refused. The server refused to service the request due to a missing or mismatched channel binding(s).

1491 Request Invalid. The server refused to service the request because the request message nonce was unknown, expired or the server has
previously serviced a message with the same nonce and user ID.

1492 Unacceptable Authenticator. The authenticator is not acceptable according to the server's policy, for example because the capability
registry used by the server reported different capabilities than client-side discovery.

1493 Revoked Authenticator. The authenticator is considered revoked by the server.
1494 Unacceptable Key. The key used is unacceptable. Perhaps it is on a list of known weak keys or uses insecure parameter choices.

1495 Unacceptable Algorithm. The server believes the authenticator to be capable of using a stronger mutually-agreeable algorithm than was
presented in the request.

1496 Unacceptable Attestation. The attestation(s) provided were not accepted by the server.

1497 Unacceptable Client Capabilities. The server was unable or unwilling to use required capabilities provided supplementally to the
authenticator by the client software.

1498 Unacceptable Content. There was a problem with the contents of the message and the server was unwilling or unable to process it.
1500 Internal Server Error

4. Shared Definitions�
This section is normative.

NOTE
These codes indicate the result of the UAF operation at the FIDO Server. They do not represent the HTTP [RFC7230] layer or other
transport layers. These codes are intended for consumption by both the client-side web app and FIDO UAF Client to inform application-
specific error �reporting, retry and housekeeping behavior.

NOTE

This section defines a number of JSON structures, specified ��with WebIDL [WebIDL-ED]. These structures are shared among APIs for
multiple target platforms.



4.1 UAFMessage Dictionary
The UAFMessage dictionary is a wrapper object that contains the raw UAF protocol Message and additional JSON data that may be used to carry
application-specific data for use by either the �client application or FIDO UAF Client.

WebIDL

dictionary UAFMessage {
    required DOMString uafProtocolMessage;
    Object             additionalData;
};

4.1.1 Dictionary UAFMessage Members

uafProtocolMessage of type required DOMString
This key contains the UAF protocol Message that will be processed by the FIDO UAF Client or Server. Modification by the �client
application may invalidate the message. A client application may examine the contents of a message, for example, to determine if a
message is still fresh. Details of the structure of the message can be found in the UAF protocol Specification [�UAFProtocol].

additionalData of type Object
This key allows the FIDO Server or client application to attach additional data for use by the FIDO UAF Client as a JSON object, or the
FIDO UAF Client or client application to attach additional data for use by the client application.

4.2 Version interface
Describes a version of the UAF protocol or FIDO UAF Client for compatibility checking.

WebIDL

interface Version {
    readonly    attribute unsigned short major;
    readonly    attribute unsigned short minor;
};

4.2.1 Attributes

major of type unsigned short, readonly
Major version number.

minor of type unsigned short, readonly
Minor version number.

4.3 Authenticator interface
Used by several phases of UAF, the Authenticator interface exposes a subset of both verified metadata [�UAFAuthnrMetadata] and transient
information about the state of an available authenticator.

WebIDL

interface Authenticator {
    readonly    attribute DOMString                             title;
    readonly    attribute AAID                                  aaid;
    readonly    attribute DOMString                             description;
    readonly    attribute Version[]                             supportedUAFVersions;
    readonly    attribute DOMString                             assertionScheme;
    readonly    attribute unsigned short                        authenticationAlgorithm;
    readonly    attribute unsigned short[]                      attestationTypes;
    readonly    attribute unsigned long                         userVerification;
    readonly    attribute unsigned short                        keyProtection;
    readonly    attribute unsigned short                        matcherProtection;
    readonly    attribute unsigned long                         attachmentHint;
    readonly    attribute boolean                               isSecondFactorOnly;
    readonly    attribute unsigned short                        tcDisplay;
    readonly    attribute DOMString                             tcDisplayContentType;
    readonly    attribute DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
    readonly    attribute DOMString                             icon;
    readonly    attribute DOMString[]                           supportedExtensionIDs;
};

4.3.1 Attributes

title of type DOMString, readonly
A short, user-friendly name for the authenticator.

aaid of type AAID, readonly
The Authenticator Attestation ID, which identifies the type and �batch of the authenticator. See [UAFProtocol] for the definition of the�
AAID structure.

description of type DOMString, readonly
A user-friendly description string for the authenticator.

NOTE

This text must be localized for current locale.

If the ASM doesn't return a title in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must generate a title based on
the other fields in �AuthenticatorInfo, because title must not be empty (see section 1. Notation).

NOTE



supportedUAFVersions of type array of Version, readonly
Indicates the UAF protocol Versions supported by the authenticator.

assertionScheme of type DOMString, readonly

The assertion scheme the authenticator uses for attested data and signatures.

Assertion scheme identifiers are defined in the UAF Registry of Predefined ���Values. [UAFRegistry]

authenticationAlgorithm of type unsigned short, readonly
Supported Authentication Algorithm. The value must be related to constants with prefix �UAF_ALG_SIGN.

attestationTypes of type array of unsigned short, readonly
A list of supported attestation types. The values are defined in [�UAFRegistry] by the constants with the prefix �TAG_ATTESTATION.

userVerification of type unsigned long, readonly
A set of bit flags indicating the user verification methods ��supported by the authenticator. The values are defined by the �constants with
the prefix �USER_VERIFY.

keyProtection of type unsigned short, readonly
A set of bit flags indicating the key protection used by the �authenticator. The values are defined by the constants with �the prefix�
KEY_PROTECTION.

matcherProtection of type unsigned short, readonly
A set of bit flags indicating the matcher protection used by the �authenticator. The values are defined by the constants with �the prefix�
MATCHER_PROTECTION.

attachmentHint of type unsigned long, readonly
A set of bit flags indicating how the authenticator is �currently connected to the FIDO User Device. The values are defined by the�
constants with the prefix �ATTACHMENT_HINT.

These values are not reflected in authenticator metadata and cannot be relied �upon by the relying party, although some models of
authenticator may provide attested measurements with similar semantics as part of UAF protocol messages.

isSecondFactorOnly of type boolean, readonly
Indicates whether the authenticator can only be used as a second-factor.

tcDisplay of type unsigned short, readonly
A set of bit flags indicating the availability and type of �transaction confirmation display. The values are defined by the constants with ��the
prefix �TRANSACTION_CONFIRMATION_DISPLAY.

This value must be 0 if transaction confirmation is not supported by the authenticator.�

tcDisplayContentType of type DOMString, readonly
The MIME content-type [RFC2045] supported by the transaction confirmation display, such as �text/plain or image/png.

This value must be non-empty if transaction confirmation is supported (�tcDisplay is non-zero).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor, readonly
The set of PNG characteristics currently supported by the transaction confirmation display (if any).�

This list must be non-empty if transaction confirmation is supported (�tcDisplay is non-zero).

icon of type DOMString, readonly
A PNG [PNG] icon for the authenticator, encoded as a data: url [RFC2397].

supportedExtensionIDs of type array of DOMString, readonly
A list of supported UAF protocol extension identifiers. These �may be vendor-specific.�

4.3.2 Authenticator Interface Constants

A number of constants are defined for use with the bit flag ��fields �userVerification, keyProtection, attachmentHint, and tcDisplay. To avoid

This text must be localized for current locale.

It is intended to be displayed to the user. It might deviate from the description specified in the authenticator's metadata statement�
[UAFAuthnrMetadata].

If the ASM doesn't return a description in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must generate a
meaningful description to the calling App based on the other fields in �AuthenticatorInfo, because description must not be empty
(see section 1. Notation).

NOTE

Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used in
applying server-supplied policy to guide the user experience. This can be used to, for example, prefer a device that is connected
and ready for authenticating or confirming a low-value �transaction, rather than one that is more secure but requires more user
effort.

NOTE

See [UAFAuthnrMetadata] for additional information on the format of this field and the definition of the��
DisplayPNGCharacteristicsDescriptor structure.

NOTE

If the ASM doesn't return an icon in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must set a default icon,
because icon must not be empty (see section 1. Notation).



duplication and inconsistencies, these are defined in the FIDO UAF �Registry of Predefined Values [�UAFRegistry].

4.4 DiscoveryData dictionary
WebIDL

dictionary DiscoveryData {
    required Version[]       supportedUAFVersions;
    required DOMString       clientVendor;
    required Version         clientVersion;
    required Authenticator[] availableAuthenticators;
};

4.4.1 Dictionary DiscoveryData Members

supportedUAFVersions of type array of required Version
A list of the FIDO UAF protocol versions supported by the client, most-preferred first.�

clientVendor of type required DOMString
The vendor of the FIDO UAF Client.

clientVersion of type required Version
The version of the FIDO UAF Client. This is a vendor-specific version for the client �software, not a UAF version.

availableAuthenticators of type array of required Authenticator
An array containing Authenticator dictionaries describing the available UAF authenticators. The order is not significant. The list �may be
empty.

4.5 ErrorCode interface
WebIDL

interface ErrorCode {
    const short NO_ERROR = 0x0;
    const short WAIT_USER_ACTION = 0x1;
    const short INSECURE_TRANSPORT = 0x2;
    const short USER_CANCELLED = 0x3;
    const short UNSUPPORTED_VERSION = 0x4;
    const short NO_SUITABLE_AUTHENTICATOR = 0x5;
    const short PROTOCOL_ERROR = 0x6;
    const short UNTRUSTED_FACET_ID = 0x7;
    const short UNKNOWN = 0xFF;
};

4.5.1 Constants

NO_ERROR of type short
The operation completed with no error condition encountered. Upon receipt of this code, an application should no longer expect an
associated UAFResponseCallback to fire.�

WAIT_USER_ACTION of type short
Waiting on user action to proceed. For example, selecting an authenticator in the FIDO client user interface, performing user verification,�
or completing an enrollment step with an authenticator.

INSECURE_TRANSPORT of type short
window.location.protocol is not "https" or the DOM contains insecure mixed content.

USER_CANCELLED of type short
The user declined any necessary part of the interaction to complete the registration.

UNSUPPORTED_VERSION of type short
The UAFMessage does not specify a protocol version supported by this FIDO UAF Client.

NO_SUITABLE_AUTHENTICATOR of type short
No authenticator matching the authenticator policy specified in �the UAFMessage is available to service the request, or the user declined to
consent to the use of a suitable authenticator.

PROTOCOL_ERROR of type short
A violation of the UAF protocol occurred. The interaction may have timed out; the origin associated with the message may not match the
origin of the calling DOM context, or the protocol message may be malformed or tampered with.

UNTRUSTED_FACET_ID of type short
The client declined to process the operation because the caller's calculated facet identifier was not found in the �trusted list for the
application identifier specified in the ��request message.

UNKNOWN of type short
An error condition not described by the above-listed codes.

5. DOM API
This section is normative.

This section describes the API details exposed by a web browser or browser plugin to a client-side web application executing in a Document [DOM]
context.

5.1 Feature Detection
FIDO's UAF DOM APIs are rooted in a new fido object, a property of window.navigator code; the existence and properties of which may be used
for feature detection.

Example 1: Feature Detection of UAF APIs

EXAMPLE 1



5.2 uaf Interface
The window.navigator.fido.uaf interface is the primary means of interacting with the FIDO UAF Client. All operations are asynchronous.

WebIDL

interface uaf {
    void discover (DiscoveryCallback completionCallback, ErrorCallback errorCallback);
    void checkPolicy (UAFMessage message, ErrorCallback cb);
    void processUAFOperation (UAFMessage message, UAFResponseCallback completionCallback, ErrorCallback errorCallback);
    void notifyUAFResult (int responseCode, UAFMessage uafResponse);
};

5.2.1 Methods

discover

Discover if the user's client software and devices support UAF and if authenticator capabilities are available that it may be willing to
accept for authentication.

ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription
completionCallback DiscoveryCallback ✘ ✘ The callback that receives DiscoveryData from the FIDO UAF Client.
errorCallback ErrorCallback ✘ ✘ A callback function to receive error and progress events.

Return type: void

checkPolicy

Ask the browser or browser plugin if it would be able to process the supplied request message without prompting the user.

Unlike other operations using an ErrorCallback, this operation must always trigger the callback and return NO_ERROR if it believes that the
message can be processed and a suitable authenticator matching the embedded policy is available, or the appropriateErrorCode value
otherwise.

ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription
message UAFMessage ✘ ✘ A UAFMessage containing the policy and operation to be tested.
cb ErrorCallback ✘ ✘ The callback function which receives the status of the operation.

Return type: void

processUAFOperation
Invokes the FIDO UAF Client, transferring control to prompt the user as necessary to complete the operation, and returns to the
callback a message in one of the supported protocol versions indicated by the UAFMessage.
ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription
message UAFMessage ✘ ✘ The UAFMessage to be used by the FIDO client software.
completionCallback UAFResponseCallback ✘ ✘ The callback that receives the client response UAFMessage from the

FIDO UAF Client, to be delivered to the relying party server.
errorCallback ErrorCallback ✘ ✘ A callback function to receive error and progress events from the

FIDO UAF Client.
Return type: void

notifyUAFResult

Used to indicate the status code resulting from a FIDO UAF message delivered to the remote server. Applications must make this call
when they receive a UAF status code from a server. This allows the FIDO UAF Client to perform housekeeping for a better user
experience, for example not attempting to use keys that a server refused to register.

ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription
responseCode int ✘ ✘ The uafResult field of a �ServerResponse.
uafResponse UAFMessage ✘ ✘ The UAFMessage to which this responseCode applies.

Return type: void

5.3 UAFResponseCallback
A UAFResponseCallback is used upon successful completion of an asynchronous operation by the FIDO UAF Client to return the protocol response
message to the client application for transport to the server.

WebIDL

<script>

if(!!window.navigator.fido.uaf) { var useUAF = true; }

</script>

NOTE

Because this call should not prompt the user, it should not incur a potentially disrupting context-switch even if the FIDO UAF
Client is implemented out-of-process.

NOTE

If, and how, a status code is delivered by the server, is application and transport specific. A non-normative example can �be found
below in the HTTPS Transport Interoperability Profile�.



callback UAFResponseCallback = void (UAFMessage uafResponse);

5.3.1 Callback UAFResponseCallback Parameters

uafResponse of type UAFMessage
The message and any additional data representing the FIDO UAF Client's response to the server's request message.

5.4 DiscoveryCallback
A DiscoveryCallback is used upon successful completion of an asynchronous discover operation by the FIDO UAF Client to return the
DiscoveryData to the client application.

WebIDL

callback DiscoveryCallback = void (DiscoveryData data);

5.4.1 Callback DiscoveryCallback Parameters

data of type DiscoveryData
Describes the current state of FIDO UAF client software and authenticators available to the application.

5.5 ErrorCallback
An ErrorCallback is used to return progress and error codes from asynchronous operations performed by the FIDO UAF Client.

WebIDL

callback ErrorCallback = void (ErrorCode code);

5.5.1 Callback ErrorCallback Parameters

code of type ErrorCode
A value from the ErrorCode interface indicating the result of the operation.

For certain operations, an ErrorCallback may be called multiple times, for example with the WAIT_USER_ACTION code.

5.6 Privacy Considerations for the DOM API
This section is non-normative.

Differences in the FIDO capabilities on a user device may (among many other characteristics) allow a server to "fingerprint" a �remote client and
attempt to persistently identify it, even in the absence of any explicit session state maintenance mechanism. Although it may contribute some
amount of signal to servers attempting to fingerprint clients, the attributes �exposed by the Discovery API are designed to have a large anonymity
set size and should present little or no qualitatively new privacy risk. Nonetheless, an unusual configuration of FIDO Authenticators may be�
sufficient to �uniquely identify a user.

It is recommended that user agents expose the Discovery API to all applications without requiring explicit user consent by default, but user agents
or FIDO Client implementers should provide users with the means to opt-out of discovery if they wish to do so for privacy reasons.

5.7 Security Considerations for the DOM API
This section is non-normative.

5.7.1 Insecure Mixed Content

When FIDO UAF APIs are called and operations are performed in a Document context in a web user agent, such a context must not contain
insecure mixed content. The exact definition insecure �mixed content is specific to each user agent, but generally �includes any script, plugins and
other "active" content, forming part of or with access to the DOM, that was not itself loaded over HTTPS.

The UAF APIs must immediately trigger the ErrorCallback with the INSECURE_TRANSPORT code and cease any further processing if any APIs defined�
in this document are invoked by a Document context that was not loaded over a secure transport and/or which contains insecure mixed content.

5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

When retrieving or transporting UAF protocol messages over HTTP, it is important to maintain consistency among the web origin of the document
context and the origin embedded in the UAF protocol message. Mismatches may cause the protocol to fail or enable attacks against the protocol.
Therefore:

FIDO UAF messages should not be transported using methods that opt-out of the Same Origin Policy [SOP], for example, using <script
src=”url”> to non-same-origin URLs or by setting the Access-Control-Allow-Origin header at the server.

When transporting FIDO UAF messages using XMLHttpRequest [XHR] the client should not follow redirects that are to URLs with a different origin
than the requesting document.

FIDO UAF messages should not be exposed in HTTP responses where the entire response body parses as valid ECMAScript. Resources
exposed in this manner may be subject to unauthorized interactions by hostile applications hosted at untrusted origins through cross-origin
embedding using <script src=”url”>.

Web applications should not share FIDO UAF messages across origins through channels such as postMessage() [webmessaging].

5.8 Implementation Notes for Browser/Plugin Authors
This section is non-normative.

Web applications utilizing UAF depend on services from the web browser as a trusted platform. The APIs for web applications do not provide a
means to assert an origin as an application identity for the purposes of FIDO operations as this will be provided to the FIDO UAF Client by the
browser based on its privileged understanding of the actual origin context.

The browser must enforce that the web origin communicated to the FIDO UAF Client as the application identity is accurate



The browser must also enforce that resource instances containing insecure mixed-content cannot utilize the UAF DOM APIs.

6. Android Intent API
This section is normative.

This section describes how an Android [ANDROID] client application can locate and communicate with a conforming FIDO Client installation
operating on the host device.

6.1 Android-specific Definitions��

6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT�

FIDO UAF Clients must declare the org.fidoalliance.uaf.permissions.FIDO_CLIENT permission.

LISTING 1: 

     <permission android:name=           "org.fidoalliance.uaf.permissions.FIDO_CLIENT"
            android:label=          "Act as a FIDO Client."
            android:description=    "This application acts as a FIDO Client. It may access authentication devices
            available on the system, create and delete FIDO registrations on behalf of
            other applications."
            android:protectionLevel="dangerous" />
   

6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER�

Android applications requesting services from the FIDO UAF Client can do so under their own identity, or they can act as the user's agent by
explicitly declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client
to determine the caller's identity as android:apk-key-hash:<hash-of-public-key>. The FIDO UAF Client will then compare this with the list of
authorized application facets for the target AppID and proceed if it is listed as trusted.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when
implementing a full web browser) it may set its origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The
application must satisfy the necessary conditions described inTransport Security Requirements for authenticating the remote server before setting
the origin.

Use of the origin parameter requires the application to declare the org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission, and the
FIDO UAF Client must verify that the calling application has this permission before processing the operation.

LISTING 2: 

     <permission android:name=           "org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER"
            android:label=          "Act as a browser for FIDO registrations."
            android:description=    "This application may act as a web browser,
            creating new and accessing existing FIDO 
     registrations for any domain."
            android:protectionLevel="dangerous" />
   

6.1.3 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
Android application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is:

Map<String,String>

with the keys as defined for the �ChannelBinding structure in the UAF Protocol Specification. [�UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same
channel the legitimate client is using and that messages have not been forwarded through a malicious party.

UAF defines support for the �tls-unique and tls-server-end-point bindings from [RFC5929], as well as server certificate and ChannelID�
[ChannelID] bindings. The client should supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.

6.1.4 UAFIntentType enumeration

This enumeration describes the type of operation for the intent implementing the Android API.

NOTE

As with web applications, a variety of integration patterns are possible on the Android platform. The API described here allows an app to
communicate with a shared FIDO UAF Client on the user device in a loosely-coupled fashion using Android Intents.

NOTE

See the UAF Protocol Specification [�UAFProtocol] for more information on application and facet identifiers.�

NOTE

UAF uses only a single intent to simplify behavior in the situation even where multiple FIDO clients may be installed. In such a case, the
user will be prompted which of the installed FIDO UAF clients should be used to handle an implicit intent.



If the user selected to make different FIDO UAF Clients the default for different intents representing different phases, it could produce inconsistent
results or fail to function at all.

If the application workflow requries �multiple calls to the client (and it usually does) the application should read the componentName from the intent
extras it receives from startActivityForResult() and pass it to setComponent() for subsequent intents to be sure they are explicitly resolved to the
same FIDO UAF Client.

WebIDL

enum UAFIntentType {
    "DISCOVER",
    "DISCOVER_RESULT",
    "CHECK_POLICY",
    "CHECK_POLICY_RESULT",
    "UAF_OPERATION",
    "UAF_OPERATION_RESULT",
    "UAF_OPERATION_COMPLETION_STATUS"
};

Enumeration description
DISCOVER Discovery
DISCOVER_RESULT Discovery results
CHECK_POLICY Perform a no-op check if a message could be processed.
CHECK_POLICY_RESULT Check Policy results.
UAF_OPERATION Process a Registration, Authentication, Transaction Confirmation �or Deregistration message.
UAF_OPERATION_RESULT UAF Operation results.

UAF_OPERATION_COMPLETION_STATUS Inform the FIDO UAF Client of the completion status of a Registration, Authentication, Transaction
Confirmation �or Deregistration message.

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent�
All interactions between a FIDO UAF Client and an application on Android takes place via a single Android intent:

org.fidoalliance.intent.FIDO_OPERATION

The specifics of the operation are carried by the MIME media type and various extra data included with the intent.�

The operations described in this document are of MIME media type application/fido.uaf_client+json and this must be set as the type attribute
of any intent.

Extra Type Description
UAFIntentType String One of the UAFIntentType enumeration values describing the intent.

discoveryData String DiscoveryData JSON dictionary.

componentName String The component name of the responding FIDO UAF Client. It must be serialized using
ComponentName.flattenString()�

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFIntentType.

origin String An RFC6454 Web Origin [RFC6454] string for the request, if the caller has the
org.fidoalliance.permissions.ACT_AS_WEB_BROWSER permission.

channelBindings String The JSON dictionary of channel bindings for the operation.

responseCode short The uafResult field of a �ServerResponse.

The following table shows what intent extras are expected, depending on the value of the UAFIntentType extra:

UAFIntentType value discoveryData componentName errorCode message origin channelBindings responseCode

"DISCOVER"

"DISCOVER_RESULT" optional required required

"CHECK_POLICY" required optional

"CHECK_POLICY_RESULT" required required

"UAF_OPERATION" required optional required

"UAF_OPERATION_RESULT" required required optional

"UAF_OPERATION_COMPLETION_STATUS" required required

6.2.1 UAFIntentType.DISCOVER

This Android intent invokes the FIDO UAF Client to discover the available authenticators and capabilties. The FIDO UAF Client generally will not
show a UI associated with the handling of this intent, but immediately return the JSON structure. The calling application cannot depend on this
however, as the FIDO UAF Client may show a UI for privacy purposes, allowing the user to choose whether and which authenticators to disclose

NOTE

Client applications can discover if a FIDO UAF Client (or several) is available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags) with this intent to see if any activities are available.

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)
http://developer.android.com/reference/android/content/ComponentName.html#flattenToString()


to the calling application.

This intent must be invoked with startActivityForResult().

6.2.2 UAFIntentType.DISCOVER_RESULT

An intent with this type is returned by the FIDO UAF Client as an argument to onActivityResult() in response to receiving an intent of type
DISCOVER.

If the resultCode passed to onActivityResult() is RESULT_OK, and the intent extra errorCode is NO_ERROR, this intent has an extra,
discoveryData, containing a String representation of a DiscoveryData JSON dictionary with the available authenticators and capabilities.

6.2.3 UAFIntentType.CHECK_POLICY

This intent invokes the FIDO UAF Client to discover if it would be able to process the supplied message without prompting the user. The action
handling this intent should not show a UI to the user.

This intent requires the following extras:

message, containing a String representation of a UAFMessage representing the request message to test.
origin, an optional extra that allows a caller with the org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply an
RFC6454 Origin [RFC6454] string to be used instead of the application's own identity.

This intent must be invoked with startActivityForResult().

6.2.4 UAFIntentType.CHECK_POLICY_RESULT

This Android intent is returned by the FIDO UAF Client as an argument to onActivityResult() in response to receiving a CHECK_POLICY intent.

In addition to the resultCode passed to onActivityResult(), this intent has an extra, errorCode, containing an ErrorCode value indicating the
specific error condition or �NO_ERROR if the FIDO UAF Client could process the message.

6.2.5 UAFIntentType.UAF_OPERATION

This Android intent invokes the FIDO UAF Client to process the supplied request message and return a response message ready for delivery to
the FIDO UAF Server.

The sender should assume that the FIDO UAF Client will display a user interface allowing the user to handle this intent, for example, prompting
the user to complete their verification �ceremony.

This intent requires the following extras:

message, containing a String representation of a UAFMessage representing the request message to process.
channelBindings, containing a String representation of a JSON dictionary as defined by the �ChannelBinding structure in the FIDO UAF
Protocol Specification [�UAFProtocol].
origin, an optional parameter that allows a caller with the org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply an
RFC6454 Origin [RFC6454] string to be used instead of the application's own identity.

This intent must be invoked with startActivityForResult().

6.2.6 UAFIntentType.UAF_OPERATION_RESULT

This intent is returned by the FIDO UAF Client as an argument to onActivityResult(), in response to receiving a UAF_OPERATION intent.

If the resultCode passed to onActivityResult() is RESULT_CANCELLED, this intent will have an extra, errorCode parameter, containing an ErrorCode
value indicating the specific error condition.�

If the resultCode passed to onActivityResult() is RESULT_OK, and the errorCode is NO_ERROR, this intent has a message, containing a String
representation of a UAFMessage, being the UAF protocol response message to be delivered to the FIDO Server.

6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

This intent must be delivered to the FIDO UAF Client to indicate the processing status of a FIDO UAF message delivered to the remote server.
This is especially important as a new registration may be considered by the client to be in a pending state until it is communicated that the server
accepted it.

6.3 Security Considerations for Android Implementations
This section is non-normative.

Android applications may choose to implement the user-interactive portion of FIDO in at least two ways:

by authoring an Android Activity using Android-native user interface components, or
with an HTML-based experience by loading an Android WebView and injecting the UAF DOM APIs with addJavaScriptInterface().

An application that chooses to inject the UAF interface into a WebView must follow all appropriate security considerations that apply to usage of
the DOM APIs, and those that apply to user agent implementers.

In particular, the content of a WebView into which an API will be injected must be loaded only from trusted local content or over a secure channel
as specified in �Transport Security Requirements and must not contain insecure mixed-content.

Applications should not declare the ACT_AS_WEB_BROWSER permission unless they need to act as the user's agent for an un-predetermined number
of third party applications. Where an Android application has an explicit relationship with a relying party application(s), the preferred method of
access control is for those applications to list the Android application's identity as a trusted facet. See the UAF Protocol Specification�
[UAFProtocol] for more information on application and facet identifiers.�

To protect against a malicious application registering itself as a FIDO UAF Client, relying party applications can obtain the identity of the
responding application, and utilize it in risk management decisions around the authentication or transaction events.

For example, a relying party might maintain a list of application identities known to belong to malware and refuse to accept operations completed
with such clients, or a list of application identities of known-good clients that receive preferred risk-scoring.



Relying party applications must make sure that a FIDO UAF Client has the org.fidoalliance.uaf.permissions.FIDO_CLIENT Android permission
declared.

7. iOS Custom URL API
This section is normative.

This section describes how an iOS relying party application can locate and communicate with a conforming FIDO UAF Client installed on the host
device.

7.1 iOS-specific Definitions��

7.1.1 X-Callback-URL Transport

When the relying party application communicates with the FIDO UAF Client, it sends a URL with the standard x-callback-url format (see x-
callback-url.com):

FidoUAFClient1 is the iOS custom URL scheme used by FIDO UAF Clients. As specified �in the x-callback-url standard, version information
for the transport layer is encoded in the URL scheme itself (in this case, FidoUAFClient1). This is so other applications can check for support
for the 1.0 version by using the canOpenURL call.
[UAFxRequestType] is the type that should be used for request operations, which are described later in this document.
[RelyingPartyURL] is the URL that the relying party app has registered in order to receive the response. According to the x-callback-url
standard, this is defined using the �x-success parameter.
[UAFxResponseType] is the type that should be used for response operations, which are described later in this document.
[SecretKey] is a base64url-encoded, without padding, random key generated for each request by the calling application.

The response from the FIDO UAF Client will be encrypted with this key in order to prevent rogue applications from obtaining information by
spoofing the return URL.�

[STATE] is data that can be used to match the request with the response.
Finally [Base64EncodedJSON] contains the message to be sent to the FIDO UAF Client.

Items are stored in JSON format and then base64url-encoded without padding.

For FIDO UAF Clients, the custom URL scheme handler entrypoint is the openURL() function:

Here, the URL above is received via the url parameter. For security considerations, the sourceApplication parameter contains the iOS bundle ID
of the relying party application. This bundle ID must be used to verify the application FacetID.

Conversely, when the FIDO UAF Client responds to the request, it sends the following URL back in standard x-callback-url format:

The parameters in the response are similar to those of the request, except that the [Base64EncodedEncryptedJSON] parameter is encrypted with
the public key before being base64url-encoded without padding. [STATE] is the same STATE as was sent in the request--it is echoed back to the
sender to verify the matched response.

In the relying party application's openURL() handler, the url parameter will be the URL listed above and the sourceApplication parameter will be
the iOS bundle ID for the FIDO client application.

NOTE

Because of sandboxing and no true multitasking support, the iOS operating system offers very limited ways to do interprocess
communication (IPC).

Any IPC solution for a FIDO UAF Client must be able to:

1. Identify the calling app in order to provide FacetID approval.
2. Allow transition to another app without user intervention

Currently the only IPC method on iOS that satisfies both of these requirements is custom URL handlers.�

Custom URL handlers use the iOS operating system to handle URL requests from the sender, launch the receiving app, and then pass the
request to the receiving app for processing. By enabling custom URL handlers for two different applications, it is possible to achieve
bidirectional IPC between them--one custom URL handler to send data from app A to app B and another custom URL handler to send data
from app B to app A.

Because iOS has no true multitasking, there must be an app transition to process each request and response. Too many app transitions can
negatively affect the user experience, so relying party applications must carefully choose when it is necessary to query the FIDO UAF
Client.

       FidoUAFClient1://x-callback-url/[UAFxRequestType]?x-success=[RelyingPartyURL]://x-callback-url/
              [UAFxResponseType]&
              key=[SecretKey]&
              state=[STATE]&
              json=[Base64EncodedJSON]
            

    (BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(NSString *)sourceApplication annotation:(id)annotation
            

       [RelyingPartyURL]://x-callback-url/
                [UAFxResponseType]&
              state=[STATE]&
              json=[Base64EncodedJWE]
            

http://x-callback-url.com


7.1.2 Secret Key Generation

A new secret encryption key must be generated by the calling application every time it sends a request to FIDO UAF Client. The FIDO UAF Client
must then use this key to encrypt the response message before responding to the caller.

JSON Web Encryption (JWE), JSON Serialization (JWE Section 7.2) format must be used to represent the encrypted response message.

The encryption algorithm is that specified in �"A128CBC-HS256" where the JWE "Key Management Mode" employed is "Direct Encryption" and the
JWE "Content Encryption Key (CEK)" is the secret key generated by the calling application and passed to the FIDO UAF Client in the key
parameter of the request.

7.1.3 Origin

iOS applications requesting services from the FIDO Client can do so under their own identity, or they can act as the user's agent by explicitly
declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client
to determine the caller's identity as "ios:bundle-id". The FIDO UAF Client will then compare this with the list of authorized application facets for
the target AppID and proceed if it is listed as trusted.

See the UAF Protocol Specification [�UAFProtocol] for more information on application and facet identifiers.�

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when
implementing a full web browser) it may set origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The
application must satisfy the necessary conditions described in Transport Security Requirements for authenticating the remote server before setting
origin.

7.1.4 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
iOS application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is Map<String,String> with the keys as defined for the �ChannelBinding structure in the FIDO UAF Protocol
Specification. [�UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same
channel the legitimate client is using and that messages have not been forwarded through a malicious party. UAF defines support for the �tls-
unique and tls-server-end-point bindings from [RFC5929], as well as server certificate and �ChannelID [ChannelID] bindings. The client should
supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.

7.1.5 UAFxType

This value describes the type of operation for the x-callback-url operations implementing the iOS API.

WebIDL

enum UAFxType {
    "DISCOVER",
    "DISCOVER_RESULT",
    "CHECK_POLICY",
    "CHECK_POLICY_RESULT",
    "UAF_OPERATION",
    "UAF_OPERATION_RESULT",
    "UAF_OPERATION_COMPLETION_STATUS"
};

Enumeration description
DISCOVER Discovery
DISCOVER_RESULT Discovery results
CHECK_POLICY Perform a no-op check if a message could be processed.
CHECK_POLICY_RESULT Check Policy results.
UAF_OPERATION The UAF message operation type (for example Registration).
UAF_OPERATION_RESULT UAF Operation results.

UAF_OPERATION_COMPLETION_STATUS Inform the FIDO UAF Client of the completion status of a UAF operation (such as
Registration.

7.2 JSON Values
The specifics of the UAFxType operation are carried by various JSON values �encoded in the json x-callback-url parameter.

JSON value Type Description
discoveryData String DiscoveryData JSON dictionary.

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFxType.

       {
       "unprotected": {"alg": "dir", "enc": "A128CBC-HS256"},
       "iv": "...",
       "ciphertext": "...",
       "tag": "..."
       }
            

http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#section-7.2
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#appendix-B


origin String An RFC6454 Web Origin [RFC6454] string for the request.

channelBindings String The channel bindings JSON dictionary for the operation.

responseCode short The uafResult field of a �ServerResponse.

JSON value Type Description

The following table shows what JSON values are expected, depending on the value of the UAFxType x-callback-url operation:

UAFxType operation discoveryData errorCode message origin channelBindings responseCode
"DISCOVER"

"DISCOVER_RESULT" optional required

"CHECK_POLICY" required optional

"CHECK_POLICY_RESULT" required

"UAF_OPERATION" required optional required

"UAF_OPERATION_RESULT" required optional

"UAF_OPERATION_COMPLETION_STATUS" required required

7.2.1 DISCOVER

This operation invokes the FIDO UAF Client to discover the available authenticators and capabilities. The FIDO UAF Client generally will not show
a user interface associated with the handling of this operation, but will simply return the resulting JSON structure.

The calling application cannot depend on this however, as the client may show a user interface for privacy purposes, allowing the user to choose
whether and which authenticators to disclose to the calling application.

7.2.2 DISCOVER_RESULT

An operation with this type is returned by the FIDO UAF Client in response to receiving an x-callback-url operation of type DISCOVER.

If the resultCode is RESULT_OK, and the JSON value errorCode is NO_ERROR, then this operation has a JSON value, discoveryData, containing a
String representation of a DiscoveryData JSON dictionary listing the available authenticators and their capabilities.

7.2.3 CHECK_POLICY

This operation invokes the FIDO UAF Client to discover if the client would be able to process the supplied message, without prompting the user.

The related Action handling this operation should not show an interface to the user.

This x-callback-url operation requires the following JSON values:

message, containing a String representation of a UAFMessage representing the request message to test.
origin, an optional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.

7.2.4 CHECK_POLICY_RESULT

This operation is returned by the FIDO UAF Client in response to receiving a CHECK_POLICY x-callback-url operation.

In addition to the resultCode, this x-callback-url operation has a JSON value, errorCode, containing an ErrorCode value indicating the specific error�
condition or NO_ERROR if the FIDO Cliet could process the message.

7.2.5 UAF_OPERATION

This operation invokes the FIDO UAF Client to process the supplied request message and return a result message ready for delivery to the FIDO
UAF Server. The sender should assume that the FIDO UAF Client will display a UI to the user to handle this x-callback-url operation, e.g.
prompting the user to complete their verification ceremony.�

This x-callback-url operation requires the following JSON values:

message, containing a String representation of a UAFMessage representing the request message to process.
channelBindings, containing a String representation of a JSON dictionary as defined by the �ChannelBinding structure in the UAF Protocol
Specification [�UAFProtocol].
origin, an optional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.

7.2.6 UAF_OPERATION_RESULT

This x-callback-url operation is returned by the FIDO UAF Client in response to receiving a UAF_OPERATION x-callback-url operation.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no user interface is
displayed.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no UI is displayed.



If the resultCode is RESULT_CANCELLED, this x-callback-url operation has a JSON value, errorCode, containing an ErrorCode value indicating the
specific error condition.�

If the resultCode is RESULT_OK,, and the x-callback-url JSON value errorCode is NO_ERROR, this x-callback-url operation has a JSON value,
message, containing a String representation of a UAFMessage, being the UAF protocol response message to be delivered to the FIDO Server.

7.2.7 UAF_OPERATION_COMPLETION_STATUS

This x-callback-url operation must be delivered to the FIDO UAF Client to indicate the completion status of a FIDO UAF message delivered to the
remote server. This is especially important as, e.g. a new registration may be considered in a pending status until it is known the server accepted
it.

7.3 Implementation Guidelines for iOS Implementations
Each iOS Custom URL based request results in a human-noticeable context switch between the App and FIDO UAF Client and vice versa. This
will be most noticeable when invoking DISCOVER and CHECK_POLICY requests since typically these requests will be invoked automatically,
without user's involvement. Such a context switch impacts the User Experience and therefore it's recommended to avoid making these two
requests and integrate FIDO without using them.

7.4 Security Considerations for iOS Implementations
This section is non-normative.

A security concern with custom URLs under iOS is that any app can register any custom URL. If multiple applications register the same custom
URL, the behavior for handling the URL call in iOS is undefined.�

On the FIDO UAF Client side, this issue with custom URL scheme handlers is solved by using the sourceApplication parameter which provides
the bundle ID of the URL originator. This is effective as long as the device has not been jailbroken and as long as Apple has done due diligence
vetting submissions to the app store for malware with faked bundle IDs. The sourceApplication parameter can be matched with the FacetID list to
ensure that the calling app is approved to use the credentials for the relying party.

On the relying party app side, encryption is used to prevent a rogue app from spoofing �the relying party app's response URL. The relying party app
generates a random encryption key on every request and sends it to the FIDO client. The FIDO client then encrypts the response to this key. In
this manner, only the relying party app can decrypt the response. Even in the event that malware is able to spoof the relying party app's URL and
intercept the response, it would not be able to decode it.

To protect against potentially malicious applications registering themselves to handle the FIDO UAF Client custom URL scheme, relying party
Applications can obtain the bundle-id of the responding app and utilize it in risk management decisions around the authentication or transaction
events. For example, a relying party might maintain a list of bundle-ids known to belong to malware and refuse to accept operations completed
with such clients, or a list of bundle-ids of known-good clients that receive preferred risk-scoring.

8. Transport Binding Profile�
This section is normative.

This section describes general normative security requirements for how a client application transports FIDO UAF protocol messages, gives
specific requirements for Transport Layer �Security [TLS], and describes an interoperability profile for �using HTTP over TLS [RFC2818] with the
FIDO UAF protocol.

8.1 Transport Security Requirements
This section is non-normative.

The UAF protocol contains no inherent means of identifying a relying party server, or for end-to-end protection of UAF protocol messages. To
perform a secure UAF protocol exchange, the following abstract requirements apply:

1. The client application must securely authenticate the server endpoint as authorized, from that client's viewpoint, to represent the Web origin
[RFC6454] (scheme:host:port tuple) reported to the FIDO UAF Client by the client application. Most typically this will be done by using TLS
and verifying the server's certificate is valid, asserts the �correct DNS name, and chains up to a root trusted by the client platform. Clients
may also utilize other means to authenticate a server, such as via a pre-provisioned certificate or key that is distributed with an application, or�
alternative network authentication protocols such as Kerberos [RFC4120].

2. The transport mechanism for UAF protocol messages must provide confidentiality for the message, to prevent disclosure �of their contents to
unauthorized third parties. These protections should be cryptographically bound to proof of the server's identity as described above.

3. The transport mechanism for UAF protocol messages must protect the integrity of the message from tampering by unauthorized third parties.
These protections should be cryptographically bound to proof of the server's identity in as described above.

8.2 TLS Security Requirements
This section is non-normative.

If using HTTP over TLS ([RFC2246] [RFC4346], [RFC5246] or [TLS13draft02]) to transport an UAF protocol exchange, the following specific�
requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any other error level with the TLS connection, the HTTP client must terminate the
connection without prompting the user. For example, this includes any errors found in certificate validity �checking that HTTP clients employ,
such as via TLS server identity checking [RFC6125], Certificate Revocation Lists �(CRLs) [RFC5280], or via the Online Certificate Status�
Protocol (OCSP) [RFC2560].

2. Whenever comparisons are made between the presented TLS server identity (as presented during the TLS handshake, typically within the
server certificate) and the intended source TLS �server identity (e.g., as entered by a user, or embedded in a link), [RFC6125] server identity
checking must be employed. The client must terminate the connection without prompting the user upon any error condition.

3. The TLS server certificate must either be provisioned explicitly �out-of-band (e.g. packaged with an app as a "pinned certificate") or be trusted�
by chaining to a root included in the certificate store of the operating system or a major �browser by virtue of being currently in compliance
with their root store program requirements. The client must terminate the connection without user recourse if there are any error conditions
when building the chain of trust.

4. The "anon" and "null" crypto suites are not allowed and insecure cryptographic algorithms in TLS (e.g. MD4, RC4, SHA1) should be avoided
(see NIST SP800-131A [SP800-131A]).

5. The client and server should use the latest practicable TLS version.
6. The client should supply, and the server should verify whatever practicable channel binding information is available, including a ChannelID

[ChannelID] public key, the tls-unique and tls-server-end-point bindings [RFC5929], and TLS server certificate binding [�UAFProtocol].
This information provides protection against certain classes of network attackers and the forwarding of protocol messages, and a server may
reject a message that lacks or has channel binding data that does not verify correctly.



8.3 HTTPS Transport Interoperability Profile�
This section is normative.

Conforming applications may support this profile.�

Complex and highly-optimized applications utilizing UAF will often transport UAF protocol messages in-line with other application protocol
messages. The profile defined here for ��transporting UAF protocol messages over HTTPS is intended to:

Provide an interoperability profile to enable easier composition �of client-side application libraries and server-side implementations for FIDO
UAF-enabled products from different vendors.
Provide detailed illustration of specific necessary security �properties for the transport layer and HTTP interfaces, especially as they may
interact with a browser-hosted application.
This profile is also utilized in the examples that constitute �the appendices of this document. This profile is �optional to implement. RFC 2119
key words are used in this section to indicate necessary security and other properties for implementations that intend to use this profile to�
interoperate.

8.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request messages as part of a response body containing other application content, e.g in a
script block as such:

LISTING 3: 

     ...

     <script type=”application/json”>
     {
     “initialRequest”: {
     // initial request message here
     },

     “lifetimeMillis”: 60000; // hint: this initial request is valid for 60 seconds
     }
     </script>

     ...
   

However, request messages have a limited lifetime, and an installed application cannot be delivered with a request, so client applications generally
need the ability to retrieve a fresh request.

When sending a request message over HTTPS with XMLHttpRequest [XHR] or another HTTP API:

1. The URI of the server endpoint, and how it is communicated to the client, is application-specific.�
2. The client must set the HTTP method to POST. [RFC7231]
3. The client must set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-8”. [RFC7231]
4. The client should include “application/fido+uaf” as a media type in the HTTP “Accept” header. [RFC7231]
5. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific �manner,

their authorization to perform a request.
6. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the GetUAFRequest dictionary.
7. The server's response should set the HTTP “Content-Type” to “application/fido+uaf; charset=utf-8”
8. The client should decode the response byte string as UTF-8 with error handling. [HTML5]
9. The decoded body of the response must consist entirely of a JSON structure described by the ReturnUAFRequest interface.

8.3.2 Operation enum

Describes the operation type of a FIDO UAF message or request for a message.

WebIDL

enum Operation {
    "Reg",
    "Auth",
    "Dereg"
};

Enumeration description
Reg Registration

Auth Authentication or Transaction
Confirmation�

Dereg Deregistration

8.3.3 GetUAFRequest dictionary

WebIDL

dictionary GetUAFRequest {
    Operation op;
    DOMString previousRequest;
    DOMString context;
};

NOTE

Certain FIDO UAF operations, in particular, transaction confirmation, will always require �an application-specific implementation. This�
interoperability profile only provides a skeleton framework suitable for �replacing username/password authentication.



8.3.3.1 Dictionary GetUAFRequest Members

op of type Operation
The type of the UAF request message desired. Allowable string values are defined by the Operation enum. This field is ��optional but
must be set if the operation is not known to the server through other context, e.g. an operation-specific URL �endpoint.

previousRequest of type DOMString
If the application is requesting a new UAF request message because a previous one has expired, this optional key can include the
previous one to assist the server in locating any state that should be re-associated with a new request message, should one be issued.

context of type DOMString
Any additional contextual information that may be useful or necessary for the server to generate the correct request message. This key
is optional and the format and nature of this data is application-specific.�

8.3.4 ReturnUAFRequest dictionary

WebIDL

dictionary ReturnUAFRequest {
    required unsigned long statusCode;
    DOMString              uafRequest;
    Operation              op;
    long                   lifetimeMillis;
};

8.3.4.1 Dictionary ReturnUAFRequest Members

statusCode of type required unsigned long
The UAF Status Code for the operation (see section 3.1 UAF Status Codes).

uafRequest of type DOMString
The new UAF Request Message, optional, if the server decided to issue one

op of type Operation
An optional hint to the client of the operation type of the message, useful if the server might return a different type than was requested.
For example, a server might return a deregister message if an authentication request referred to a key it no longer considers valid.
Allowable string values are defined by the Operation enum.�

lifetimeMillis of type long
If the server returned a uafRequest, this is an optional hint informing the client application of the lifetime of the message in milliseconds.

8.3.5 SendUAFResponse dictionary

WebIDL

dictionary SendUAFResponse {
    required DOMString uafResponse;
    DOMString          context;
};

8.3.5.1 Dictionary SendUAFResponse Members

uafResponse of type required DOMString
The UAF Response Message. It must be set to UAFMessage.uafProtocolMessage returned by FIDO UAF Client.

context of type DOMString
Any additional contextual information that may be useful or necessary for the server to process the response message. This key is
optional and the format and nature of this data is application-specific.�

8.3.6 Delivering a UAF Response

Although it is not the only pattern possible, an asynchronous HTTP request is a useful way of delivering a UAF Response to the remote server for
either web applications or standalone applications.

When delivering a response message over HTTPS with XMLHttpRequest [XHR] or another API:

1. The URI of the server endpoint and how it is communicated to the client is application-specific.�
2. The client must set the HTTP method to POST. [RFC7231]
3. The client must set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-8” . [RFC7231]
4. The client should include “application/fido+uaf” as a media type in the HTTP “Accept” header. [RFC7231]
5. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific �manner,

their authorization to perform an operation.
6. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the SendUAFResponse.
7. The server's response should set the “Content-Type” to “application/fido+uaf; charset=utf-8”  and the body of the response must consist

entirely of a JSON structure described by the ServerResponse interface.

8.3.7 ServerResponse Interface

The ServerResponse interface represents the completion status and additional application-specific additional data that �results from successful
processing of a Register, Authenticate, or Transaction Confirmation operation. This message is not �formally part of the UAF protocol, but the
statusCode should be posted to the FIDO UAF Client, for housekeeping, using the notifyUAFResult() operation.

WebIDL

interface ServerResponse {
    readonly    attribute int       statusCode;
    [Optional]
    readonly    attribute DOMString description;



    [Optional]
    readonly    attribute Token[]   additionalTokens;
    [Optional]
    readonly    attribute DOMString location;
    [Optional]
    readonly    attribute DOMString postData;
    [Optional]
    readonly    attribute DOMString newUAFRequest;
};

8.3.7.1 Attributes

statusCode of type int, readonly
The FIDO UAF response status code. Note that this status code describes the result of processing the tunneled UAF operation, not the
status code for the outer HTTP transport.

description of type DOMString, readonly
A detailed message describing the status code or providing additional information to the user.

additionalTokens of type array of Token, readonly
This key contains new authentication or authorization token(s) for the client that are not natively handled by the HTTP transport. Tokens
should be processed prior to processing of location.

location of type DOMString, readonly
If present, indicates to the client web application that it should navigate the Document context to the URI contained on this field after�
processing any tokens.

postData of type DOMString, readonly
If present in combination with location, indicates that the client should POST the contents to the specified location after �processing any
tokens.

newUAFRequest of type DOMString, readonly
The server may use this to return a new UAF protocol message. This might be used to supply a fresh request to retry an operation in
response to a transient failure, to request additional confirmation for a transaction, or to send a �deregistration message in response to a
permanent failure.

8.3.8 Token interface

WebIDL

interface Token {
    readonly    attribute TokenType type;
    readonly    attribute DOMString value;
};

8.3.8.1 Attributes

type of type TokenType, readonly
The type of the additional authentication / authorization token.

value of type DOMString, readonly
The string value of the additional authentication / authorization token.

8.3.9 TokenType enum

WebIDL

enum TokenType {
    "HTTP_COOKIE",
    "OAUTH",
    "OAUTH2",
    "SAML1_1",
    "SAML2",
    "JWT",
    "OPENID_CONNECT"
};

Enumeration description

HTTP_COOKIE

If the user agent is a standard web browser or other HTTP native client with a cookie store, this TokenType should not be
used. Cookies should be set directly with the Set-Cookie HTTP header for processing by the user agent. For non-HTTP or
non-browser contexts this indicates a token intended to be set as an HTTP cookie. [RFC6265] For example, a native VPN
client that authenticates with UAF might use this TokenType to automatically add a cookie to the browser cookie jar.

OAUTH Indicates that the token is of type OAUTH. [RFC5849].
OAUTH2 Indicates that the token is of type OAUTH2. [RFC6749].
SAML1_1 Indicates that the token is of type SAML 1.1. [SAML11].
SAML2 Indicates that the token is of type SAML 2.0. [SAML2-CORE]
JWT Indicates that the token is of type JSON Web Token (JWT). [JWT]
OPENID_CONNECT Indicates that the token is an OpenID Connect “id_token”. [OpenIDConnect]

8.3.10 Security Considerations

NOTE

The UAF Server is not responsible for creating additional tokens returned as part of a UAF response. Such tokens exist to provide a means
for the relying party application to update the authentication/authorization state of the client in response to a successful UAF operation. For
example, these fields could be used to allow UAF to serve as �the initial authentication leg of a federation protocol, but the scope and details
of any such federation are outside of the scope of UAF.



This section is non-normative.

It is important that the client set, and the server require, the method be POST and the “Content-Type” HTTP header be the correct values.
Because the response body is valid ECMAScript, to protect against unauthorized cross-origin access, a server must not respond to the type of
request that can be generated by a script tag, e.g. <script src=”https://example.com/fido/uaf/getRequest”>. The request a user agent
generates with this kind of embedding cannot set custom headers.

Likewise, by requiring a custom “Content-Type” header, cross-origin requests cannot be made with an XMLHttpRequest [XHR] without triggering a
CORS preflight access check. [�CORS]

As FIDO UAF messages are only valid when used same-origin, servers should not supply an “Access-Control-Allow-Origin” [CORS] header with
responses that would allow them to be read by non-same-origin content.

To protect from some classes of cross-origin, browser-based, distributed denial-of-service attacks, request endpoints should ignore, without
performing additional processing, all requests with an “Access-Control-Request-Method” [CORS] HTTP header or an incorrect “Content-Type”
HTTP header.

If a server chooses to respond to requests made with the GET method and without the custom “Content-Type” header, it should apply a prefix�
string such as “while(1);” or “&&&BEGIN_UAF_RESPONSE&&&” to the body of all replies and so prevent their being read through cross-origin <script>
tag embedding. Legitimate same-origin callers will need to (and alone be able to) strip this prefix string before parsing the �JSON content.

A. References
A.1 Normative references
[ChannelID]

D. Balfanz Transport Layer Security (TLS) Channel IDs. (Work In Progress) URL: http://tools.ietf.org/html/draft-balfanz-tls-channelid
[DOM]

Anne van Kesteren; Aryeh Gregor; Ms2ger; Alex Russell; Robin Berjon. W3C DOM4. 10 July 2014. W3C Last Call Working Draft. URL:
http://www.w3.org/TR/dom/

[ECMA-262]
ECMAScript Language Specification, Edition 5.1�. June 2011. URL: http://www.ecma-international.org/publications/standards/Ecma-262.htm

[ECMA-404]
. The JSON Data Interchange Format. 1 October 2013. Standard. URL: http://www.ecma-international.org/publications/files/ECMA-�
ST/ECMA-404.pdf

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[HTML5]
Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer. HTML5. 28 October 2014. W3C
Recommendation. URL: http://www.w3.org/TR/html5/

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). 6 July 2012. Internet Draft. URL: http://tools.ietf.org/html/draft-ietf-oauth-json-
web-token-01

[OpenIDConnect]
OpenID Connect. OpenID Foundation (Work in Progress) URL: http://openid.net/connect/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition)�. 10 November 2003. W3C Recommendation. URL:
http://www.w3.org/TR/PNG

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[RFC2818]
E. Rescorla. HTTP Over TLS. May 2000. Informational. URL: https://tools.ietf.org/html/rfc2818

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5849]
E. Hammer-Lahav, The OAuth 1.0 Protocol (RFC 5849), IETF, April 2010, URL: http://www.ietf.org/rfc/rfc5849.txt

[RFC5929]
J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July 2010, URL: http://www.ietf.org/rfc/rfc5929.txt

[RFC6125]
P. Saint-Andre, J. Hodges, Representation and Verification of Domain-Based Application Service Identity within Internet Public Key�
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125)�, IETF, March 2011, URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6265]
A. Barth. HTTP State Management Mechanism. April 2011. Proposed Standard. URL: https://tools.ietf.org/html/rfc6265

[RFC6454]
A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL: https://tools.ietf.org/html/rfc6454

[RFC6749]
D. Hardt, Ed., The OAuth 2.0 Authorization Framework (RFC 6749), IETF, October 2012, URL: http://www.ietf.org/rfc/rfc6749.txt

[RFC7230]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. June 2014. Proposed Standard.
URL: https://tools.ietf.org/html/rfc7230

[RFC7231]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. June 2014. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7231

[SAML11]
E. Maler, P. Mishra and R. Philpott, The Security Assertion Markup Language (SAML) v1.1. OASIS, October 2003, URL: https://www.oasis-
open.org/standards#samlv1.1

[SAML2-CORE]
Scott Cantor; John Kemp; Rob Philpott; Eve Maler. Assertions and Protocols for SAML V2.0 15 March 2005. URL: http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values v1.0�. FIDO Alliance Review Draft (Work in progress.)
URL: http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.w3.org/TR/dom/
http://www.w3.org/TR/dom/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://openid.net/connect/
http://openid.net/connect/
http://www.w3.org/TR/PNG
http://www.w3.org/TR/PNG
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/


A.2 Informative references
[ANDROID]

The Android™ Operating System. Google, Inc., the Open Handset Alliance and the Android Open Source Project (Work in progress) URL:
http://developer.android.com/

[CORS]
Anne van Kesteren. Cross-Origin Resource Sharing. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/cors/

[RFC2045]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. November 1996. Draft
Standard. URL: https://tools.ietf.org/html/rfc2045

[RFC2246]
T. Dierks, E. Rescorla, The TLS Protocol Version 1.0, IETF, January 1999, URL: http://www.ietf.org/rfc/rfc2246.txt

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP�.
June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560

[RFC4120]
C. Neuman, T. Yu, S. Hartman, K. Raeburn, The Kerberos Network Authentication Protocol (V5) (RFC 4120), IETF, July 2005, URL:
http://www.ietf.org/rfc/rfc4120.txt

[RFC4346]
T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.1, IETF, April 2006, URL: http://www.ietf.org/rfc/rfc4346.txt

[RFC5246]
T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol, IETF, August 2008, URL: http://www.ietf.org/rfc/rfc5246.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk; Internet X.509 Public Key Infrastructure Certificate and Certificate��
Revocation List (CRL) Profile�, IETF, May 2008, URL: http://www.ietf.org/rfc/rfc5280.txt

[SOP]
Same Origin Policy for JavaScript. Mozilla Developer Network, January 2014 URL: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript

[SP800-131A]
E. Barker, A. Roginsky, NIST Special Publication 800-131A: Transitions: Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths. National Institute of Standards and Technology, January 2011, URL:
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

[TLS13draft02]
T. Dierks, E. Rescorla, The Transport Layer Security (TLD) Protocol Version 1.3 (draft 02), IETF, July, 2014, URL:
https://tools.ietf.org/html/draft-ietf-tls-tls13-02

[UAFASM]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator-Specific Module API v1.0�. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf��

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL: http://www.w3.org/TR/WebIDL/

[XHR]
Anne van Kesteren. XMLHttpRequest. Living Standard . URL: https://xhr.spec.whatwg.org/

[webmessaging]
Ian Hickson. HTML5 Web Messaging. 1 May 2012. W3C Candidate Recommendation. URL: http://www.w3.org/TR/webmessaging/

http://developer.android.com/
http://developer.android.com/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/webmessaging/


FIDO UAF Authenticator-Specific Module�
API
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-asm-api-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdf��
Editors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Roni Sasson, Discretix, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
UAF authenticators may be connected to a user device via various physical interfaces
(SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific �Module (ASM) is a software
interface on top of UAF authenticators which gives a standardized way for FIDO UAF
Clients to detect and access the functionality of UAF authenticators and hides internal
communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs, defines the UAF ASM API�
and explains how FIDO UAF Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO FIDO UAF Client
vendors.

Status of This Document

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-asm-api-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-asm-api-v1.0-rd-20140209.pdf
davit@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
rolf@noknok.com
https://www.noknok.com/
bhill@paypal.com
http://www.paypal.com/
Roni.Sasson@discretix.com
http://www.discretix.com/
https://www.fidoalliance.org/


This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of�
implementing the Specification. No rights �are granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce �portions of this Specification for�
other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third�
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not,�
and shall not be held, responsible in any manner for identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Code & Example format
3. ASM Requests and Responses

3.1 Request enum
3.2 StatusCode Interface

3.2.1 Constants
3.3 ASMRequest Dictionary

3.3.1 Dictionary ASMRequest Members
3.4 ASMResponse Dictionary

3.4.1 Dictionary ASMResponse Members
3.5 GetInfo Request

3.5.1 GetInfoOut Dictionary
3.5.1.1 Dictionary GetInfoOut Members

3.5.2 AuthenticatorInfo Dictionary
3.5.2.1 Dictionary AuthenticatorInfo Members

3.6 Register Request
3.6.1 RegisterIn Object

3.6.1.1 Dictionary RegisterIn Members
3.6.2 RegisterOut Object

3.6.2.1 Dictionary RegisterOut Members
3.6.3 Detailed Description for Processing the Register Request

https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


3.7 Authenticate Request
3.7.1 AuthenticateIn Object

3.7.1.1 Dictionary AuthenticateIn Members
3.7.2 Transaction Object

3.7.2.1 Dictionary Transaction Members
3.7.3 AuthenticateOut Object

3.7.3.1 Dictionary AuthenticateOut Members
3.7.4 Detailed Description for Processing the Authenticate Request

3.8 Deregister Request
3.8.1 DeregisterIn Object

3.8.1.1 Dictionary DeregisterIn Members
3.8.2 Detailed Description for Processing the Deregister Request

3.9 GetRegistrations Request
3.9.1 GetRegistrationsOut Object

3.9.1.1 Dictionary GetRegistrationsOut Members
3.9.2 AppRegistration Object

3.9.2.1 Dictionary AppRegistration Members
3.9.3 Detailed Description for Processing the GetRegistrations
Request

3.10 OpenSettings Request
4. Using ASM API
5. Using the ASM API on various platforms

5.1 Android ASM Intent API
5.1.1 Discovering ASMs

5.2 Windows ASM API
6. Security and Privacy Guidelines

6.1 KHAccessToken
6.2 Access Control for ASM APIs

A. References
A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL
[WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly
marked as required.



WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, �it must not be
empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, �it must not be an
empty list.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“recommended”, “may”, and “optional” in this document are to be interpreted as
described in [RFC2119].

2. Overview
This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces
(SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific module (ASM) is a software�
interface on top of UAF authenticators which gives a standardized way for FIDO UAF
Clients to detect and access the functionality of UAF authenticators, and hides internal
communication complexity from clients.

The ASM is a platform-specific �software component offering an API to FIDO UAF
Clients, enabling them to discover and communicate with one or more available
authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and FIDO UAF
Client vendors.

The FIDO UAF protocol and its various operations is described in the FIDO UAF

NOTE

Note: Certain dictionary members need to be present in order to comply with
FIDO requirements. Such members are marked in the WebIDL definitions found�
in this document, as required. The keyword required has been introduced by
[WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser
which implements [WebIDL], then you may remove the keyword required from
your WebIDL and use other means to ensure those fields are present.�

NOTE

Platform vendors might choose to not expose the ASM API defined in this�
document to applications. They might instead choose to expose ASM
functionality through some other API (such as, for example, the Android KeyStore
API, or iOS KeyChain API). In these cases it's important to make sure that the
underlying ASM communicates with the FIDO UAF authenticator in a manner
defined in this document.�



Protocol Specification [�UAFProtocol]. The following simplified architecture diagram�
illustrates the interactions and actors this document is concerned with:

Fig. 1 UAF ASM API Architecture

2.1 Code & Example format
ASM requests and responses are presented in WebIDL format.

3. ASM Requests and Responses
This section is normative.

The ASM API is defined in terms of JSON-formatted [�ECMA-404] request and reply
messages. In order to send a request to an ASM, a FIDO UAF Client creates an
appropriate object (e.g., in ECMAscript), "stringifies" it (also known �as serialization) into
a JSON-formated string, and sends it to the ASM. The ASM de-serializes the JSON-
formatted string, processes the request, constructs a response, stringifies it, returning it�
as a JSON-formatted string.

NOTE

The ASM request processing rules in this document explicitly assume that the
underlying authenticator implements the "UAFV1TLV" assertion scheme (e.g.
references to TLVs and tags) as described in [UAFProtocol]. If an authenticator
supports a different assertion scheme then the corresponding processing rules



Authenticator implementers may create custom authenticator command interfaces other
than the one defined in [�UAFAuthnrCommands]. Such implementations are not required
to implement the exact message-specific processing steps described in this section.�
However,

1. the command interfaces must present the ASM with external behavior equivalent
to that described below in order for the ASM to properly respond to the client
request messages (e.g. returning appropriate UAF status codes for specific�
conditions).

2. all authenticator implementations must support an assertion scheme as defined�
[UAFRegistry] and must return the related objects, i.e. TAG_UAFV1_REG_ASSERTION
and TAG_UAFV1_AUTH_ASSERTION.

3.1 Request enum
WebIDL

enum Request {
    "GetInfo",
    "Register",
    "Authenticate",
    "Deregister",
    "GetRegistrations",
    "OpenSettings"
};

Enumeration description
GetInfo GetInfo
Register Register
Authenticate Authenticate
Deregister Deregister
GetRegistrations GetRegistrations
OpenSettings OpenSettings

3.2 StatusCode Interface
WebIDL

interface StatusCode {
    const short UAF_ASM_STATUS_OK = 0x00;
    const short UAF_ASM_STATUS_ERROR = 0x01;
    const short UAF_ASM_STATUS_ACCESS_DENIED = 0x02;
    const short UAF_ASM_STATUS_USER_CANCELLED = 0x03;
};

3.2.1 Constants

UAF_ASM_STATUS_OK of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR of type short
An unknown error has been encountered during the processing.

must be replaced with appropriate assertion scheme-specific rules.�



UAF_ASM_STATUS_ACCESS_DENIED of type short
Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED of type short
Indicates that user explicitly canceled the request.

3.3 ASMRequest Dictionary
All ASM requests are represented as ASMRequest objects.

WebIDL

dictionary ASMRequest {
    required Request requestType;
    Version          asmVersion;
    unsigned short   authenticatorIndex;
    object           args;
    Extension[]      exts;
};

3.3.1 Dictionary ASMRequest Members

requestType of type required Request
Request type

asmVersion of type Version
ASM message version to be used with this request. For the definition of the�
Version dictionary see [UAFProtocol]. The ASM version must be 1.0 (i.e.
major version is 1 and minor version 0).

authenticatorIndex of type unsigned short
Refer to the GetInfo request for more details. Field authenticatorIndex must
not be set for GetInfo request.

args of type object
Request-specific arguments. If set, this attribute �may take one of the following
types:

RegisterIn
AuthenticateIn
DeregisterIn

exts of type array of Extension
List of UAF extensions. For the definition of the �Extension dictionary see
[UAFProtocol].

3.4 ASMResponse Dictionary
All ASM responses are represented as ASMResponse objects.

WebIDL

dictionary ASMResponse {
    required short statusCode;
    object         responseData;
    Extension[]    exts;
};



3.4.1 Dictionary ASMResponse Members

statusCode of type required short
must contain one of the values defined in the �StatusCode interface

responseData of type object
Request-specific response data. This attribute �must have one of the following
types:

GetInfoOut
RegisterOut
AuthenticateOut
GetRegistrationOut

exts of type array of Extension
List of UAF extensions. For the definition of the �Extension dictionary see
[UAFProtocol].

3.5 GetInfo Request
Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports
2. Collect information about all of them
3. Assign indices to them (authenticatorIndex)
4. Return the information to the caller

For a GetInfo request, the following ASMRequest member(s) must have the following
value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to GetInfo

For a GetInfo response, the following ASMResponse member(s) must have the following
value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR

ASMResponse.responseData must be an object of type GetInfoOut

3.5.1 GetInfoOut Dictionary

WebIDL

NOTE

Where possible, an authenticatorIndex should be a persistent identifier that�
uniquely identifies an �authenticator over time, even if it is repeatedly
disconnected and reconnected. This avoids possible confusion if the set of
available authenticators changes between a GetInfo request and subsequent
ASM requests, and allows a FIDO client to perform caching of information about
removable authenticators for a better user experience.



dictionary GetInfoOut {
    required AuthenticatorInfo[] Authenticators;
};

3.5.1.1 Dictionary GetInfoOut Members

Authenticators of type array of required AuthenticatorInfo
List of authenticators reported by the current ASM. may be empty an empty
list.

3.5.2 AuthenticatorInfo Dictionary

WebIDL

dictionary AuthenticatorInfo {
    required unsigned short               authenticatorIndex;
    required Version[]                    asmVersions;
    required boolean                      isUserEnrolled;
    required boolean                      hasSettings;
    required AAID                         aaid;
    required DOMString                    assertionScheme;
    required unsigned short               authenticationAlgorithm;
    required unsigned short[]             attestationTypes;
    required unsigned long                userVerification;
    required unsigned short               keyProtection;
    required unsigned short               matcherProtection;
    required unsigned long                attachmentHint;
    required boolean                      isSecondFactorOnly;
    required boolean                      isRoamingAuthenticator;
    required DOMString[]                  supportedExtensionIDs;
    required unsigned short               tcDisplay;
    DOMString                             tcDisplayContentType;
    DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
    DOMString                             title;
    DOMString                             description;
    DOMString                             icon;
};

3.5.2.1 Dictionary AuthenticatorInfo Members

authenticatorIndex of type required unsigned short
Authenticator index. Unique, within the scope of all authenticators reported by
the ASM, index referring to an authenticator. This index is used by the UAF
Client to refer to the appropriate authenticator in further requests.

asmVersions of type array of required Version
A list of ASM Versions that this authenticator can be used with. For the
definition of the �Version dictionary see [UAFProtocol].

isUserEnrolled of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators
which don't have user verification technology �must always return true. Bound
authenticators which support different profiles per operating system (OS) user�
must report enrollment status for the current OS user.

hasSettings of type required boolean
A boolean value indicating whether the authenticator has its own settings. If
so, then a FIDO UAF Client can launch these settings by sending a
OpenSettings request.



aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and �batch
of the authenticator. See [UAFProtocol] for the definition of the AAID�
structure.

assertionScheme of type required DOMString
The assertion scheme the authenticator uses for attested data and
signatures.

AssertionScheme identifiers are defined in the UAF Protocol ��specification�
[UAFProtocol].

authenticationAlgorithm of type required unsigned short
Indicates the authentication algorithm that the authenticator uses.
Authentication algorithm identifiers are defined in are defined ���in
[UAFRegistry] with UAF_ALG prefix.�

attestationTypes of type array of required unsigned short
Indicates attestation types supported by the authenticator. Attestation type
TAGs are defined in [�UAFRegistry] with TAG_ATTESTATION prefix�

userVerification of type required unsigned long
A set of bit flags indicating the user verification method(s) ��supported by the
authenticator. The values are defined by the �USER_VERIFY constants in
[UAFRegistry].

keyProtection of type required unsigned short
A set of bit flags indicating the key protections used by the �authenticator. The
values are defined by the �KEY_PROTECTION constants in [UAFRegistry].

matcherProtection of type required unsigned short
A set of bit flags indicating the matcher protections used by the �authenticator.
The values are defined by the �MATCHER_PROTECTION constants in
[UAFRegistry].

attachmentHint of type required unsigned long
A set of bit flags indicating how the authenticator is currently �connected to the
system hosting the FIDO UAF Client software. The values are defined by the�
ATTACHMENT_HINT constants defined in �[UAFRegistry].

isSecondFactorOnly of type required boolean
Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs of type array of required DOMString

NOTE

Because the connection state and topology of an authenticator may be
transient, these values are only hints that can be used by server-
supplied policy to guide the user experience, e.g. to prefer a device
that is connected and ready for authenticating or confirming a low-value�
transaction, rather than one that is more secure but requires more user
effort. These values are not reflected in authenticator metadata and�
cannot be relied on by the relying party, although some models of
authenticator may provide attested measurements with similar
semantics as part of UAF protocol messages.



List of supported UAF extension Ids. may be an empty list.

tcDisplay of type required unsigned short
A set of bit flags indicating the availability and type of �the authenticator's
transaction confirmation display. The values are �defined by the�
TRANSACTION_CONFIRMATION_DISPLAY constants in [UAFRegistry].

This value must be 0 if transaction confirmation is not �supported by the
authenticator.

tcDisplayContentType of type DOMString
Supported transaction content type [UAFAuthnrMetadata].

This value must be present if transaction confirmation is supported, �i.e.
tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of
DisplayPNGCharacteristicsDescriptor

Supported transaction Portable Network Graphic (PNG) type
[UAFAuthnrMetadata]. For the definition of the�
DisplayPNGCharacteristicsDescriptor structure see [UAFAuthnrMetadata].

This list must be present if transaction confirmation is supported, �i.e.
tcDisplay is non-zero.

title of type DOMString
A human-readable short title for the authenticator. It should be localized for
the current locale.

description of type DOMString
Human-readable longer description of what the authenticator represents.

icon of type DOMString
Portable Network Graphic (PNG) format image file representing the �icon
encoded as a data: url [RFC2397].

NOTE

If the ASM doesn't return a title, the FIDO UAF Client must provide a
title to the calling App. See section "Authenticator interface" in
[UAFAppAPIAndTransport].

NOTE

This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from
the description specified in the metadata statement for the�
authenticator [UAFAuthnrMetadata].

If the ASM doesn't return a description, the FIDO UAF Client will
provide a description to the calling application. See section
"Authenticator interface" in [UAFAppAPIAndTransport].

NOTE



3.6 Register Request
Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following ASMRequest member(s) must have the following
value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Register
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
ASMRequest.args must be set to an object of type RegisterIn

For a Register response, the following ASMResponse member(s) must have the following
value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR
UAF_ASM_STATUS_ACCESS_DENIED
UAF_ASM_STATUS_USER_CANCELLED

ASMResponse.responseData must be an object of type RegisterOut

3.6.1 RegisterIn Object

WebIDL

dictionary RegisterIn {
    required DOMString      appID;
    required DOMString      username;
    required DOMString      finalChallenge;
    required unsigned short attestationType;
};

3.6.1.1 Dictionary RegisterIn Members

appID of type required DOMString
The FIDO server Application Identity.

username of type required DOMString
Human-readable user account name

finalChallenge of type required DOMString
base64url-encoded challenge data [RFC4648]

attestationType of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

WebIDL

If the ASM doesn't return an icon, the FIDO UAF Client will provide a
default icon to the calling application. See section "Authenticator
interface" in [UAFAppAPIAndTransport].



WebIDL

dictionary RegisterOut {
    required DOMString assertion;
    required DOMString assertionScheme;
};

3.6.2.1 Dictionary RegisterOut Members

assertion of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionScheme of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol ��specification�
[UAFProtocol].

3.6.3 Detailed Description for Processing the Register Request

Refer to [UAFAuthnrCommands] document for more information about the TAGs and
structure mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be
located, then fail with UAF_ASM_STATUS_ERROR.

2. If a user is already enrolled with this authenticator (such as biometric enrollment,
PIN setup, etc. for example) then the ASM must request that the authenticator
verifies the user.�

If verification fails, return �UAF_ASM_STATUS_ACCESS_DENIED
3. If the user is not enrolled with the authenticator then take the user through the

enrollment process.
If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)
5. Hash the provided RegisterIn.finalChallenge using the authenticator-specific�

hash function (FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm
defined in the �AuthenticatorInfo.authenticationAlgorithm field.�

6. Create a TAG_UAFV1_REGISTER_CMD structure and pass it to the authenticator
1. Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username,

UserVerificationToken, RegisterIn.AppID, RegisterIn.AttestationType
1. Depending on AuthenticatorType some arguments may be optional.

Refer to [UAFAuthnrCommands] for more information on authenticator
types and their required arguments.

7. Invoke the command and receive the response

NOTE

If the authenticator supports UserVerificationToken (see
[UAFAuthnrCommands]), then the ASM must obtain this token in order to
later include it with the Register command.



8. Parse TAG_UAFV1_REGISTER_CMD_RESP
1. Parse the content of TAG_AUTHENTICATOR_ASSERTION (e.g.

TAG_UAFV1_REG_ASSERTION) and extract TAG_KEYID
9. If the authenticator is a bound authenticator

1. Store CallerID, AppID, TAG_KEYHANDLE, TAG_KEYID and CurrentTimestamp in the
ASM's database.

10. Create a RegisterOut object
1. Set RegisterOut.assertionScheme according to

AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g.

TAG_UAFV1_REG_ASSERTION) in base64url format and set as
RegisterOut.assertion.

3. Return RegisterOut object

3.7 Authenticate Request
Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following ASMRequest member(s) must have the
following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Authenticate.
ASMRequest.asmVersion must be set to the desired version.
ASMRequest.authenticatorIndex must be set to the target authenticator index.
ASMRequest.args must be set to an object of type AuthenticateIn

For an Authenticate response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR
UAF_ASM_STATUS_ACCESS_DENIED
UAF_ASM_STATUS_USER_CANCELLED

ASMResponse.responseData must be an object of type AuthenticateOut

3.7.1 AuthenticateIn Object

WebIDL

dictionary AuthenticateIn {
    required DOMString appID;
    DOMString[]        keyIDs;
    required DOMString finalChallenge;

NOTE

What data an ASM will store at this stage depends on underlying
authenticator's architecture. For example some authenticators might
store AppID, KeyHandle, KeyID inside their own secure storage. In
this case ASM doesn't have to store these data in its database.



    Transaction[]      transaction;
};

3.7.1.1 Dictionary AuthenticateIn Members

appID of type required DOMString
appID string

keyIDs of type array of DOMString
base64url [RFC4648] encoded keyIDs

finalChallenge of type required DOMString
base64url [RFC4648] encoded final challenge�

transaction of type array of Transaction
An array of transaction data to be confirmed by user. If multiple transactions�
are provided, then the ASM must select the one that best matches the current
display characteristics.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
    required DOMString                  contentType;
    required DOMString                  content;
    DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.7.2.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to
its metadata statement (see [UAFAuthnrMetadata])

content of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to
the contentType to be shown to the user.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the�
DisplayPNGCharacteristicsDescriptor structure See [UAFAuthnrMetadata].

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {
    required DOMString assertion;
    required DOMString assertionScheme;

NOTE

This may, for example, depend on whether user's device is positioned
horizontally or vertically at the moment of transaction.



};

3.7.3.1 Dictionary AuthenticateOut Members

assertion of type required DOMString
Authenticator UAF authentication assertion.

assertionScheme of type required DOMString
Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the TAGs
and structure mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex
2. If no user is enrolled with this authenticator (such as biometric enrollment, PIN

setup, etc.), return UAF_ASM_STATUS_ACCESS_DENIED
3. The ASM must request the authenticator to verify the user.

If verification fails, return �UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)
5. Hash the provided AuthenticateIn.finalChallenge using an authenticator-specific�

hash function (FinalChallengeHash).

The authenticator's preferred hash function information must meet the algorithm
defined in the �AuthenticatorInfo.authenticationAlgorithm field.�

6. If this is a Second Factor authenticator and AuthenticateIn.keyIDs is empty, then
return UAF_ASM_STATUS_ACCESS_DENIED

7. If AuthenticateIn.keyIDs is not empty,
1. If this is a bound authenticator, then look up ASM's database with

AuthenticateIn.appID and AuthenticateIn.keyIDs and obtain the
KeyHandles associated with it.

Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found
2. If this is a roaming authenticator, then treat AuthenticateIn.keyIDs as

KeyHandles
8. Create TAG_UAFV1_SIGN_CMD structure and pass it to the authenticator.

1. Copy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not
empty), FinalChallengeHash, KHAccessToken, UserVerificationToken,
KeyHandles

Depending on AuthenticatorType some arguments may be optional.
Refer to [UAFAuthnrCommands] for more information on authenticator
types and their required arguments.
If multiple transactions are provided, select the one that best matches

NOTE

If the authenticator supports UserVerificationToken (see
[UAFAuthnrCommands]), the ASM must obtain this token in order to
later pass to Sign command.



the current display characteristics.

Decode the base64url encoded AuthenticateIn.Transaction.content
before passing it to the authenticator

9. Invoke the command and receive the response
10. Parse TAG_UAFV1_SIGN_CMD_RESP

If it's a first-factor authenticator and the response includes�
TAG_USERNAME_AND_KEYHANDLE, then

1. Extract usernames from TAG_USERNAME_AND_KEYHANDLE fields�
2. If two equal usernames are found, then choose the one which has

registered most recently
3. Show remaining distinct usernames and ask the user to choose a

single username
4. Set TAG_UAFV1_SIGN_CMD.KeyHandles to the single KeyHandle

associated with the selected username.
5. Go to step #8 and send a new TAG_UAFV1_SIGN_CMD command

11. Create the AuthenticateOut object
1. Set AuthenticateOut.assertionScheme as

AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g.

TAG_UAFV1_AUTH_ASSERTION) in base64url format and set as
AuthenticateOut.assertion

3. Return the AuthenticateOut object

The authenticator metadata statement must truly indicate the type of transaction
confirmation display implementation. �Typically the "Transaction Confirmation Display"�
flag �will be set to TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

3.8 Deregister Request
Delete registered UAF record from the authenticator.

For a Deregister request, the following ASMRequest member(s) must have the following
value(s). The remaining ASMRequest members should be omitted:

NOTE

This may, for example, depend on whether user's device is
positioned horizontally or vertically at the moment of transaction.

NOTE

Some authenticators might support "Transaction Confirmation Display"�
functionality not inside the authenticator but within the boundaries of the ASM.
Typically these are software based Transaction Confirmation Displays. When�
processing the Sign command with a given transaction such ASM should show
transaction content in its own UI and after user confirms it -- pass the content to�
authenticator so that the authenticator includes it in the final assertion.�

See [UAFRegistry] for flags describing Transaction Confirmation Display type.��



ASMRequest.requestType must be set to Deregister
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
ASMRequest.args must be set to an object of type DeregisterIn

For a Deregister response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR
UAF_ASM_STATUS_ACCESS_DENIED

3.8.1 DeregisterIn Object

WebIDL

dictionary DeregisterIn {
    required DOMString appID;
    required DOMString keyID;
};

3.8.1.1 Dictionary DeregisterIn Members

appID of type required DOMString
FIDO Server Application Identity

keyID of type required DOMString
Base64url-encoded [RFC4648] key identifier of �the authenticator to be de-
registered.

3.8.2 Detailed Description for Processing the Deregister Request

Refer to [UAFAuthnrCommands] for more information about the TAGs and structures
mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex
2. Construct KHAccessToken (see section KHAccessToken for more details).
3. If this is a bound authenticator, then

Lookup the authenticator related data in the ASM database and delete the
record associated with DeregisterIn.appID and DeregisterIn.keyID

4. Create the TAG_UAFV1_DEREGISTER_CMD structure, copy KHAccessToken,
DeregisterIn.keyID and pass it to the authenticator.

5. Invoke the command and receive the response

3.9 GetRegistrations Request
Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the following ASMRequest member(s) must have the
following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to GetRegistrations



ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to corresponding ID

For a GetRegistrations response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK
UAF_ASM_STATUS_ERROR

The ASMResponse.responseData must be an object of type GetRegistrationsOut

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut {
    required AppRegistration[] appRegs;
};

3.9.1.1 Dictionary GetRegistrationsOut Members

appRegs of type array of required AppRegistration
List of registrations associated with an appID (see AppRegistration below).
may be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration {
    required DOMString   appID;
    required DOMString[] keyIDs;
};

3.9.2.1 Dictionary AppRegistration Members

appID of type required DOMString
FIDO Server Application Identity.

keyIDs of type array of required DOMString
List of key identifiers associated with the �appID

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator using authenticatorIndex
2. If this is bound authenticator, then

Lookup the registrations associated with CallerID and AppID in the ASM
database and construct a list of AppRegistration objects

NOTE

Some ASMs might not store this information inside their own



3. Create GetRegistrationsOut object and return

3.10 OpenSettings Request
Display the authenticator-specific settings interface. If the authenticator has its own�
built-in user interface, then the ASM must invoke TAG_UAFV1_OPEN_SETTINGS_CMD to
display it.

For an OpenSettings request, the following ASMRequest member(s) must have the
following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to OpenSettings
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index

For an OpenSettings response, the following ASMResponse member(s) must have the
following value(s). The remaining ASMResponse members should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

4. Using ASM API
This section is non-normative.

In a typical implementation, the FIDO UAF Client will call GetInfo during initialization
and obtain information about the authenticators. Once the information is obtained it will
typically be used during FIDO UAF message processing to find a match �for given FIDO
UAF policy. Once a match is found the FIDO UAF Client will send the appropriate
request (Register/Authenticate/Deregister...) to this ASM.

The FIDO UAF Client may use the information obtained from a GetInfo response to
display relevant information about an authenticator to the user.

5. Using the ASM API on various platforms
This section is normative.

5.1 Android ASM Intent API
On Android systems FIDO UAF ASMs may be implemented as a separate APK-
packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions
between the FIDO UAF Client and an ASM on Android takes place through the following
intent identifier:�

org.fidoalliance.intent.FIDO_OPERATION

To carry messages described in this document, an intent must also have its type
attribute set to application/fido.uaf_asm+json.

database. Instead it might have been stored inside the authenticator's
secure storage area. In this case the ASM must send a proprietary
command to obtain the necessary data.



ASMs must register that intent in their manifest file and implement a handler for it.�

FIDO UAF Clients must append an extra, message, containing a String representation of
a ASMRequest, before invoking the intent.

FIDO UAF Clients must invoke ASMs by calling startActivityForResult()

FIDO UAF Clients should assume that ASMs will display an interface to the user in
order to handle this intent, e.g. prompting the user to complete the verification�
ceremony. However, the ASM should not display any user interface when processing a
GetInfo request.

After processing is complete the ASM will return the response intent as an argument to
onActivityResult(). The response intent will have an extra, message, containing a
String representation of a ASMResponse.

5.1.1 Discovering ASMs

FIDO UAF Clients can discover the ASMs available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags) with the FIDO
Intent described above to see if any activities are available.

A typical FIDO UAF Client will enumerate all ASM applications using this function and
will invoke the GetInfo operation for each one discovered.

5.2 Windows ASM API
On Windows, an ASM is implemented in the form of a Dynamic Link Library (DLL). The
following is an example asmplugin.h header file defining a Windows ASM API:��

EXAMPLE 1
/*! @file asm.h
*/

#ifndef __ASMH_
#define __ASMH_
#ifdef _WIN32
#define ASM_API __declspec(dllexport)
#endif

#ifdef _WIN32
#pragma warning ( disable : 4251 )
#endif

#define ASM_FUNC extern "C" ASM_API
#define ASM_NULL 0

/*! \brief Error codes returned by ASM Plugin API.
*  Authenticator specific error codes are returned in JSON form.
*  See JSON schemas for more details.
*/

enum asmResult_t
{
  Success = 0, /**< Success */
  Failure /**< Generic failure */
};

/*! \brief Generic structure containing JSON string in UTF-8
*  format.
*  This structure is used throughout functions to pass and receives
*  JSON data.
*/

struct asmJSONData_t

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)


{
  int length; /**< JSON data length */
  char pData; /*< JSON data */
};

/*! \brief Enumeration event types for authenticators.
These events will be fired when an authenticator becomes
  available (plugged) or unavailable (unplugged).
*/

enum asmEnumerationType_t
{
  Plugged = 0, /**< Indicates that authenticator Plugged to system */
  Unplugged /**< Indicates that authenticator Unplugged from system */
};

namespace ASM
{
  /*! \brief Callback listener.
  FIDO UAF Client must pass an object implementating this interface to
  Authenticator::Process function. This interface is used to provide
  ASM JSON based response data.*/
  class ICallback
  {
    public
      virtual ~ICallback() {}
      /**
      This function is called when ASM's response is ready.
      *
      @param response JSON based event data
      @param exchangeData must be provided by ASM if it needs some
      data back right after calling the callback function.
      The lifecycle of this parameter must be managed by ASM. ASM must
      allocate enough memory for getting the data back.
      */

      virtual void Callback(const asmJSONData_t &response,
      asmJSONData_t &exchangeData) = 0;
  };

  /*! \brief Authenticator Enumerator.
  FIDO UAF Client must provide an object implementing this
  interface. It will be invoked when a new authenticator is plugged or
  when an authenticator has been unplugged. */

  class IEnumerator
  {
    public
      virtual ~IEnumerator() {}
      /**
        This function is called when an authenticator is plugged or
     unplugged.
      * @param eventType event type (plugged/unplugged)
        @param AuthenticatorInfo JSON based GetInfoResponse object
      */

      virtual void Notify(const asmEnumerationType_t eventType, const
      asmJSONData_t &AuthenticatorInfo) = 0;
  };
}

/**
Initializes ASM plugin. This is the first function to be
     called.
*
@param pEnumerationListener caller provided Enumerator
*/

ASM_FUNC asmResult_t asmInit(ASM::IEnumerator
   *pEnumerationListener);
/**
Process given JSON request and returns JSON response.
*



A Windows-based FIDO UAF Client must look for ASM DLLs in the following registry
paths:

HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The FIDO UAF Client iterates over all keys under this path and looks for "path" field:�

[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE_PATH_TO_ASM>.dll"

path must point to the absolute location of the ASM DLL.

6. Security and Privacy Guidelines
This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs
must follow these security guidelines:

ASMs must implement a mechanism for isolating UAF credentials registered by
two different FIDO UAF Clients from one another. One FIDO UAF Client must not
have access to FIDO UAF credentials that have been registered via a different
FIDO UAF Client. This prevents malware from exercising credentials associated
with a legitimate FIDO Client.

If the caller wants to execute a function defined in ASM JSON
     schema then this is the function that must be called.
*
@param pInData input JSON data
@param pListener event listener for receiving events from ASM
*/
ASM_FUNC asmResult_t asmProcess(const asmJSONData_t *pInData,
   ASM::ICallback *pListener);
/**
Unitializes ASM plugin.
*
*/
ASM_FUNC asmResult_t asmUninit();
#endif // __ASMPLUGINH_

NOTE

ASMs must properly protect their sensitive data against malware using
platform-provided isolation capabilities in order to follow the assumptions
made in [FIDOSecRef]. Malware with root access to the system or direct
physical attack on the device are out of scope for this requirement.

NOTE

The following are examples for achieving this:

If an ASM is bundled with a FIDO UAF Client, this isolation
mechanism is already built-in.



An ASM designed specifically for bound authenticators �must ensure that FIDO
UAF credentials registered with one ASM cannot be accessed by another ASM.
This is to prevent an application pretending to be an ASM from exercising
legitimate UAF credentials.

Using a KHAccessToken offers such a mechanism.

An ASMs must implement platform-provided security best practices for protecting
UAF related stored data.

ASMs must not store any sensitive FIDO UAF data in its local storage, except the
following:

CallerID, ASMToken, PersonaID, KeyID, KeyHandle, AppID

ASMs should ensure that applications cannot use silent authenticators for tracking
purposes. ASMs implementing support for a silent authenticator must show, during
every registration, a user interface which explains what a silent authenticator is,
asking for the users consent for the registration. Also, it is recommended that
ASMs designed to support roaming silent authenticators either

Run with a special permission/privilege on the system, or
Have a built-in binding with the authenticator which ensures that other
applications cannot directly communicate with the authenticator by
bypassing this ASM.

6.1 KHAccessToken
KHAccessToken is an access control mechanism for protecting an authenticator's FIDO
UAF credentials from unauthorized use. It is created by the ASM by mixing various
sources of information together. Typically, a KHAccessToken contains the following four
data items in it: AppID, PersonaID, ASMToken and CallerID.

AppID is provided by the FIDO Server and is contained in every FIDO UAF message.

PersonaID is obtained by the ASM from the operational environment. Typically a different

If the ASM and FIDO UAF Client are implemented by the same
vendor, the vendor may implement proprietary mechanisms to bind its
ASM exclusively to its own FIDO UAF Client.
On some platforms ASMs and the FIDO UAF Clients may be assigned
with a special privilege or permissions which regular applications don't
have. ASMs built for such platforms may avoid supporting isolation of
UAF credentials per FIDO UAF Clients since all FIDO UAF Clients will
be considered equally trusted.

NOTE

An ASM, for example, must never store a username provided by a FIDO
Server in its local storage in a form other than being decryptable exclusively
by the authenticator.



PersonaID is assigned to every operating system user account.

ASMToken is a randomly generated secret which is maintained and protected by the ASM.

CallerID is the ID the platform has assigned to the calling FIDO UAF Client (e.g.
"bundle ID" for iOS). On different platforms the caller ID can be obtained differently.

The ASM uses the KHAccessToken to establish a link between the ASM and the key
handle that is created by authenticator on behalf of this ASM.

The ASM provides the KHAccessToken to the authenticator with every command which
works with key handles.

NOTE

In a typical implementation an ASM will randomly generate an ASMToken when it
is launched the first time �and will maintain this secret until the ASM is uninstalled.

NOTE

For example on Android platform ASM can use the hash of the caller's apk-
signing-cert.

NOTE

The following example describes how the ASM constructs and uses
KHAccessToken.

During a Register request
Append AppID

KHAccessToken = AppID

If a bound authenticator, append ASMToken, PersonaID and CallerID
KHAccessToken |= ASMToken | PersonaID | CallerID

Hash KHAccessToken
Hash KHAccessToken using the authenticator's hashing algorithm.
The reason of using authenticator specific hash function is to�
make sure of interoperability between ASMs. If interoperability is
not required, an ASM can use any other secure hash function it
wants.
KHAccessToken=hash(KHAccessToken)

Provide KHAccessToken to the authenticator
The authenticator puts the KHAccessToken into RawKeyHandle (see
[UAFAuthnrCommands] for more details)

During other commands which require KHAccessToken as input argument
The ASM computes KHAccessToken the same way as during the
Register request and provides it to the authenticator along with other
arguments.
The authenticator unwraps the provided key handle(s) and proceeds
with the command only if RawKeyHandle.KHAccessToken is equal to the
provided KHAccessToken.



Bound authenticators must support a mechanism for binding generated key handles to
ASMs. The binding mechanism must have at least the same security characteristics as
mechanism for protcting KHAccessToken described above. As a consequence it is
recommended to securely derive KHAccessToken from AppID, ASMToken, PersonaID and the
CallerID.

6.2 Access Control for ASM APIs
The following table summarizes the access control requirements for each API call.

ASMs must implement the access control requirements defined below. ASM vendors�
may implement additional security mechanisms.

Terms used in the table:

NoAuth -- no access control
CallerID -- FIDO UAF Client's platform-assigned ID is verified�
UserVerify -- user must be explicitly verification�
KeyIDList -- must be known to the caller

Commands
First-factor

bound
authenticator

Second-
factor bound
authenticator

First-factor
roaming

authenticator

Second-factor
roaming

authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Authenticate
UserVerify 
AppID 
CallerID 
PersonaID

UserVerify 
AppID 
KeyIDList 
CallerID 
PersonaID

UserVerify 
AppID

UserVerify 
AppiD 
KeyIDList

GetRegistrations* CallerID 
PersonaID

CallerID 
PersonaID X X

Deregister
AppID 
KeyID 
PersonaID 
CallerID

AppID 
KeyID 
PersonaID 
CallerID

AppID 
KeyID

AppID 
KeyID

NOTE

It is recommended for roaming authenticators that the KHAccessToken contains
only the AppID since otherwise users won't be able to use them on different
machines (PersonaID, ASMToken and CallerID are platform specific). If the�
authenticator vendor decides to do that in order to address a specific use case,�
however, it is allowed.

Including PersonaID in the KHAccessToken is optional for all types of authenticators.
However an authenticator designed for multi-user systems will likely have to
support it.



A. References
A.1 Normative references
[ECMA-262]

ECMAScript Language Specification, Edition 5.1�. June 2011. URL:
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648),
IETF, October 2006, URL: http://www.ietf.org/rfc/rfc4648.txt

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
authnr-cmds-v1.0-rd-20140209.pdf

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values�
v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL:
http://heycam.github.io/webidl/

A.2 Informative references
[ECMA-404]

. The JSON Data Interchange Format. 1 October 2013. Standard. URL:
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf�

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
security-ref-v1.0-rd-20140209.pdf

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:
https://tools.ietf.org/html/rfc2397

[UAFAppAPIAndTransport]
B. Hill FIDO UAF Application API and Transport Binding Specification v1.0�. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
client-api-transport-v1.0-rd-20140209.pdf

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate
Recommendation. URL: http://www.w3.org/TR/WebIDL/

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/


FIDO UAF Authenticator Commands v1.0
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-rd-20140209.pdf��
Editors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Roni Sasson, Discretix
Brad Hill, PayPal, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
UAF Authenticators may take different forms. Implementations may range from a secure application running inside tamper-
resistant hardware to software-only solutions on consumer devices.

This document defines normative aspects of UAF Authenticators and offers security and implementation �guidelines for
authenticator implementors.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO
Alliance specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is hereby granted to use
the Specification solely for the purpose of implementing the Specification. No rights ��are granted to prepare derivative works
of this Specification. Entities seeking permission to reproduce �portions of this Specification for other uses must contact the�
FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual �property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner �for identifying or failing to identify any or all such third
party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview
3. Additional Notations
4. UAF Authenticator

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-authnr-cmds-v1.0-rd-20140209.pdf
davit@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
rlindemann@noknok.com
https://www.noknok.com/
Roni.Sasson@discretix.com
http://www.discretix.com/
bhill@paypal.com
http://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


4.1 Types of Authenticators
5. Tags

5.1 Command Tags
5.2 Tags used only in Authenticator Commands
5.3 Tags used in UAF Protocol
5.4 Status Codes

6. Structures
6.1 RawKeyHandle

6.1.1 Structures to be parsed by FIDO Server
6.1.1.1 TAG_UAFV1_REG_ASSERTION
6.1.1.2 TAG_UAFV1_AUTH_ASSERTION

6.1.2 UserVerificationToken�
6.2 Commands

6.2.1 GetInfo Command
6.2.1.1 Command Description
6.2.1.2 Command Structure
6.2.1.3 Command Response
6.2.1.4 Status Codes

6.2.2 Register Command
6.2.2.1 Command Structure
6.2.2.2 Command Response
6.2.2.3 Status Codes
6.2.2.4 Command Description

6.2.3 Sign Command
6.2.3.1 Command Structure
6.2.3.2 Command Response
6.2.3.3 Status Codes
6.2.3.4 Command Description

6.2.4 Deregister Command
6.2.4.1 Command Structure
6.2.4.2 Command Response
6.2.4.3 Status Codes
6.2.4.4 Command Description

6.2.5 OpenSettings Command
6.2.5.1 Command Structure
6.2.5.2 Command Response
6.2.5.3 Status Codes

7. KeyIDs and key handles
7.1 first-factor Bound Authenticator�
7.2 2ndF Bound Authenticator
7.3 first-factor Roaming Authenticator�
7.4 2ndF Roaming Authenticator

8. Access Control for Commands
9. Relationship to other standards

9.1 TEE
9.2 Secure Elements
9.3 TPM
9.4 Unreliable Transports

A. Security Guidelines
B. Table of Figures
C. References

C.1 Normative references
C.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].



All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words must, must not, required shall, shall not, should, should not, recommended, may, and optional in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

This document specifies low-level functionality which UAF �Authenticators should implement in order to support the UAF
protocol. It has the following goals:

Define normative aspects of UAF Authenticator implementations�
Define a set of commands �implementing UAF functionality that may be implemented by different types of authenticators
Define �UAFV1TLV assertion scheme-specific structures which will be parsed by a FIDO Server�

The overall architecture of the UAF protocol and its various operations is described in [UAFProtocol]. The following simplified�
architecture diagram illustrates the interactions and actors this document is concerned with:

Fig. 1 UAF Authenticator Commands

3. Additional Notations
This section is normative.

Unless otherwise specified all data described in this document �must be encoded in little-endian format.

All TLV structures can be parsed using a "recursive-descent" parsing approach, and tag order is not significant. In some�
cases multiple occurrences of a single tag may be allowed within a structure, in which case all values must be preserved.

All fields in TLV structures are �mandatory, unless explicitly mentioned as otherwise.

4. UAF Authenticator
This section is non-normative.

The UAF Authenticator is an authentication component that meets the UAF protocol requirements as described in
[UAFProtocol]. The main functions to be provided by UAF Authenticators are:

NOTE

The UAF Protocol supports various assertion schemes. Commands and structures defined in this document assume�
that an authenticator supports the UAFV1TLV assertion scheme. Authenticators implementing a different assertion
scheme do not have to follow requirements specified �in this document.



1. [Mandatory] Verifying the user with the verification �mechanism built into the authenticator. The verification �technology
can vary, from biometric verification to simply �verifying physical presence, or no user verification at all �(the so-called
Silent Authenticator).

2. [Mandatory] Performing the cryptographic operations defined in [�UAFProtocol]
3. [Mandatory] Creating data structures that can be parsed by FIDO Server.
4. [Mandatory] Attesting itself to the FIDO Server if there is a built-in support for attestation
5. [Optional] Displaying the transaction content to the user using the transaction confirmation display�

Fig. 2 FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

A fingerprint sensor built into a mobile device�
PIN authenticator implemented inside a secure element
A mobile phone acting as an authenticator to a different device
A USB token with built-in user presence verification�
A voice or face verification technology built into a �device

4.1 Types of Authenticators
There are four types of authenticators defined in this �document. These definitions are not normative (unless otherwise �stated)
and are provided merely for simplifying some of the descriptions.

NOTE

The following is the rationale for considering only these 4 types of authenticators:

Bound authenticators are typically embedded into a user's computing device and thus can utilize the host's
storage for their needs. It makes more sense from an economic perspective to utilize the host's storage rather
than have embedded storage. Trusted Execution Environments (TEE), Secure Elements and Trusted Platform
Modules (TPM) are typically designed in this manner.
First-factor roaming authenticators must have an internal storage for key handles.
Second-factor roaming authenticators can store their key handles on an associated server, in order to avoid the
need for internal storage.
Defining such constraints makes the specification ��simpler and clearer for defining the mainstream �use-cases.

Vendors, however, are not limited to these constraints. For example a bound authenticator which has internal storage
for storing key handles is possible. Vendors are free to design and implement such authenticators as long as their
design follows the normative requirements described in this document.



First-factor Bound Authenticator
These authenticators have an internal matcher. The matcher is able to verify an already enrolled user. If there is
more than one user enrolled - the matcher can also identify a user.
There is a logical binding between this authenticator and the device it is attached to (the binding is expressed
through a concept called KeyHandleAccessToken). This authenticator cannot be bound with more than one device.
These authenticators do not store key handles in their own internal storage. They always return the key handle to
the ASM and the latter stores it in its local database.
Authenticators of this type may also work as a second factor.
Examples

A fingerprint sensor built into a laptop, phone or �tablet
Embedded secure element in a mobile device
Voice verification built into a device�

Second-factor (2ndF) Bound Authenticator
This type of authenticator is similar to first-factor bound authenticators, except that it can �operate only as the
second-factor in a multi-factor authentication
Examples

USB dongle with a built-in capacitive touch device for verifying user presence
A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

First Factor (1stF) Roaming Authenticator
These authenticators are not bound to any device. User can use them with any number of devices.
It is assumed that these authenticators have an internal matcher. The matcher is able to verify an already enrolled
user. If there is more than one user enrolled - the matcher can also identify a user.
It is assumed that these authenticators are designed to store key handles in their own internal secure storage and
not expose externally.
These authenticators may also work as a second factor.
Examples

A Bluetooth LE based hardware token with built-in fingerprint sensor�
PIN protected USB hardware token
A first-factor bound authenticator acting as a �roaming authenticator for a different device on the user's behalf

Second-factor Roaming Authenticator
These authenticators are not bound to any device. A user may use them with any number of devices.
These authenticators may have an internal matcher. The matcher is able to verify an already enrolled user. If there
is more than one user enrolled then the matcher can also identify a particular specific user.�
It is assumed that these authenticators do not store key handles in their own internal storage. Instead they push
key handles to the FIDO Server and receive them back during the authentication operation.
These authenticators can only work as second factors.
Examples

USB dongle with a built-in capacitive touch device for verifying user presence
A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

Throughout the document there will be special conditions applying to these types of authenticators.

NORMATIVE

In some deployments, the combination of ASM and a bound authenticator can act as a roaming authenticator (for example
when an ASM with an embedded authenticator on a mobile device acts as a roaming authenticator for another device).
When this happens such an authenticator must follow the requirements applying to bound authenticators within the
boundary of the system the authenticator is bound to, and follow the requirements that apply to roaming authenticators in
any other system it connects to externally.

5. Tags
This section is normative.

In this document UAF Authenticators use "Tag-Length-Value" (TLV) format to communicate with the outside world. All
requests and response data must be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by �appending other TLV tags (custom or predefined).�

NOTE

As stated above, the bound authenticator does not store key handles and roaming authenticators to store them. In the
example above the ASM would store the key handles of the bound authenticator and hence meets this assumptions.



Refer to [UAFRegistry] for information about predefined �TLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g. a UINT32[4] will have length 16.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to �accommodate the
limitations of some hardware platforms.

Arrays are implicit. The description of some structures indicates where multiple values are permitted, and in these cases, if
same tag appears more than once, all values are signifanct and should be treated as an array.

For convenience in decoding TLV-formatted messages, all composite tags - those with values that must be parsed by
recursive descent - have the 13th bit (0x1000) set.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it
cannot process that tag.

Since UAF Authenticators may have extremely constrained processing environments, an ASM must follow a normative
ordering of structures when sending commands.

It is assumed that ASM and Server have sufficient resources to handle parsing �tags in any order so structures send from
authenticator may use tags in any order.

5.1 Command Tags

Name Value Description
TAG_UAFV1_GETINFO_CMD 0x3401 Tag for GetInfo command.

TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 Tag for GetInfo command response.

TAG_UAFV1_REGISTER_CMD 0x3402 Tag for Register command.

TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 Tag for Register command response.

TAG_UAFV1_SIGN_CMD 0x3403 Tag for Sign command.

TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 Tag for Sign command response.

TAG_UAFV1_DEREGISTER_CMD 0x3404 Tag for Deregister command.

TAG_UAFV1_DEREGISTER_CMD_RESPONSE 0x3604 Tag for Deregister command response.

TAG_UAFV1_OPEN_SETTINGS_CMD 0x3406 Tag for OpenSettings command.

TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE 0x3606 Tag for OpenSettings command response.

Table 4.1.1: UAF Authenticator Command TLV tags (0x3400 - 0x34FF, 0x3600-0x36FF)

5.2 Tags used only in Authenticator Commands

Name Value Description

TAG_KEYHANDLE 0x2801

Represents key handle.

Refer to [FIDOGlossary] for more information about key
handle.

TAG_USERNAME_AND_KEYHANDLE 0x3802

Represents an associated Username and key handle.

This is a composite tag that contains a TAG_USERNAME and
TAG_KEYHANDLE that identify a registration valid oin the
authenticator.

Refer to [FIDOGlossary] for more information about
username.

TAG_USERVERIFY_TOKEN 0x2803

Represents a User Verification Token.�

Refer to [FIDOGlossary] for more information about user
verification tokens.�



TAG_APPID 0x2804
A full AppID as a UINT8[] encoding of a UTF-8 string.

Refer to [FIDOGlossary] for more information about AppID.

TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 Represents a key handle Access Token.

TAG_USERNAME 0x2806 A Username as a UINT8[] encoding of a UTF-8 string.

TAG_ATTESTATION_TYPE 0x2807 Represents an Attestation Type.

TAG_STATUS_CODE 0x2808 Represents a Status Code.

TAG_AUTHENTICATOR_METADATA 0x2809 Represents a more detailed set of authenticator information.

TAG_ASSERTION_SCHEME 0x280A A UINT8[] containing the UTF8-encoded Assertion Scheme as
defined in �[UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS 0x280B

If an authenticator contains a PNG-capable transaction
confirmation display that �is not implemented by a higher-level
layer, this tag is describing this display. See
[UAFAuthnrMetadata] for additional information on the format
of this field.�

TAG_TC_DISPLAY_CONTENT_TYPE 0x280C
A UINT8[] containing the UTF-8-encoded transaction display
content type as defined in �[UAFAuthnrMetadata].
("image/png")

TAG_AUTHENTICATOR_INDEX 0x280D Authenticator Index

TAG_API_VERSION 0x280E API Version

TAG_AUTHENTICATOR_ASSERTION 0x280F
The content of this TLV tag is an assertion generated by the
authenticator. Since authenticators may generate assertions
in different formats - the content format may vary from
authenticator to authenticator.

TAG_TRANSACTION_CONTENT 0x2810 Represents transaction content sent to the authenticator.

TAG_AUTHENTICATOR_INFO 0x3811 Includes detailed information about authenticator's
capabilities.

TAG_SUPPORTED_EXTENSION_ID 0x2812 Represents extension ID supported by authenticator.

Name Value Description

Table 4.2.1: Non-Command Tags (0x2800 - 0x28FF, 0x3800 - 0x38FF)

5.3 Tags used in UAF Protocol

Name Value Description
TAG_UAFV1_REG_ASSERTION 0x3E01 Authenticator response to Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02 Authenticator response to Sign command.

TAG_UAFV1_KRD 0x3E03 Key Registration Data

TAG_UAFV1_SIGNED_DATA 0x3E04 Data signed by authenticator with the UAuth.priv key

TAG_ATTESTATION_CERT 0x2E05

Each entry contains a single X.509 DER-encoded [ITU-X690-
2008] certificate. �Multiple occurrences are allowed and form the
attestation certificate chain. �Multiple occurrences must be
ordered. The attestation certificate itself �must occur first. �Each
subsequent occurrence (if exists) must be the issuing certificate�
of the previous occurrence.

TAG_SIGNATURE 0x2E06 A cryptographic signature

TAG_ATTESTATION_BASIC_FULL 0x3E07 Full Basic Attestation as defined in [�UAFProtocol]

TAG_ATTESTATION_BASIC_SURROGATE 0x3E08 Surrogate Basic Attestation as defined in [�UAFProtocol]

TAG_KEYID 0x2E09 Represents a KeyID.

TAG_FINAL_CHALLENGE 0x2E0A

Represents a Final Challenge.

Refer to [UAFProtocol] for more information about the Final
Challenge.



TAG_AAID 0x2E0B
Represents an authenticator Attestation ID.

Refer to [UAFProtocol] for more information about the AAID.

TAG_PUB_KEY 0x2E0C Represents a Public Key.

TAG_COUNTERS 0x2E0D Represents a use counters for the authenticator.

TAG_ASSERTION_INFO 0x2E0E Represents assertion information necessary for message
processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10 Represents a hash of transaction content.

TAG_EXTENSION 0x3E11,
0x3E12

This is a composite tag indicating that the content is an extension.

If the tag is 0x3E11 - it's a critical extension and if the recipient
does not understand the contents of this tag, it must abort
processing of the entire message.

This tag has two embedded tags - TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more information about UAF
extensions refer to [UAFProtocol]

TAG_EXTENSION_ID 0x2E13 Represents extension ID. Content of this tag is a UINT8[]
encoding of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14 Represents extension data. Content of this tag is a UINT8[] byte
array.

Name Value Description

Table 4.3.1: Tags used in the UAF Protocol (0x2E00 - 0x2EFF, 0x3E00 - 0x3EFF). Normatively defined in [�UAFRegistry]

5.4 Status Codes

Name Value Description
UAF_CMD_STATUS_OK 0x00 Success

UAF_CMD_STATUS_ERR_UNKNOWN 0x01 An unknown error

UAF_CMD_STATUS_ACCESS_DENIED 0x02 Access to this operation is denied

UAF_CMD_STATUS_USER_NOT_ENROLLED 0x03 User is not enrolled with the
authenticator

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT 0x04 Transaction content cannot be rendered

UAF_CMD_STATUS_USER_CANCELLED 0x05 User has cancelled the operation

UAF_CMD_STATUS_CMD_NOT_SUPPORTED 0x06 Command not supported

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED 0x07 Required attestation not supported

Table 4.4.1: UAF Authenticator Status Codes (0x00 - 0xFF)

6. Structures
This section is normative.

6.1 RawKeyHandle
RawKeyHandle is a structure generated and parsed by the authenticator. Authenticators may define RawKeyHandle in�
different ways and the internal structure is relevant only to the specific authenticator implementation.�

RawKeyHandle for a typical first-factor bound authenticator� has the following structure.

NOTE

This tag can be appended to any command and response.

Using tag 0x3E11 (as opposed to tag 0x3E12) has the
same meaning as the flag �fail_if_unknown in
[UAFProtocol].



Depends on hashing 
algorithm (e.g. 32 bytes)

Depends on key type.
(e.g. 32 bytes)

Username Size
(1 byte) Max 128 bytes

KHAccessToken UAuth.priv Size Username

Table 5.1: RawKeyHandle Structure

First Factor authenticators must store Username inside RawKeyHandle and Second Factor authenticators must not store it.
The ability to support Username is a key difference between first-, and �second-factor authenticators.

RawKeyHandle must be cryptographically wrapped before leaving the authenticator boundary since it contains the user
authentication private key (UAuth.priv).

6.1.1 Structures to be parsed by FIDO Server

The structures defined in this section are created by UAF Authenticators �and parsed by FIDO Servers.

Authenticators must generate these structures if they implement "UAFV1TLV" assertion scheme.

The nesting structure must be preserved, but the order of tags within a composite tag is not normative. FIDO Servers must
be prepared to handle tags appearing in any order.

6.1.1.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the authenticator during processing of a Register command. It is then delivered to
FIDO Server intact, and parsed by the server. The structure embeds a TAG_UAFV1_KRD tag which among other data
contains the newly generated UAuth.pub.

If the authenticator wants to append custom data to TAG_UAFV1_KRD structure (and thus sign with Attestation Key) - this
data must be included as an additional tag inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as an
additional tag inside TAG_UAFV1_REG_ASSERTION and not inside TAG_UAFV1_KRD.

Currently this document only specifies �TAG_ATTESTATION_BASIC_FULL and TAG_ATTESTATION_BASIC_SURROGATE.
In case if the authenticator is required to perform "Some_Other_Attestation" on TAG_UAFV1_KRD - it must use the TLV tag
and content defined for �"Some_Other_Attestation" (defined in [�UAFRegistry]).

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_REG_ASSERTION

1.1 UINT16 Length Length of the structure

1.2 UINT16 Tag TAG_UAFV1_KRD

1.2.1 UINT16 Length Length of the structure

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2 UINT16
AuthenticatorVersion Vendor assigned authenticator version

1.2.3.3 UINT8
AuthenticationMode

For Registration this must be 0x01 indicating that the user has explicitly verified the�
action.

1.2.3.4 UINT16
SignatureAlgAndEncoding

Signature Algorithm and Encoding of the attestation signature.

Refer to [UAFRegistry] for information on supported algorithms and their values.

1.2.3.5 UINT16
PublicKeyAlgAndEncoding

Public Key algorithm and encoding of the newly generated UAuth.pub key.

Refer to [UAFRegistry] for information on supported algorithms and their values.

NOTE

"UAFV1TLV" assertion scheme assumes that the authenticator has exclusive control over all data included inside
TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.



1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE

1.2.4.1 UINT16 Length Final Challenge length

1.2.4.2 UINT8[] FinalChallenge (binary value of) Final Challenge provided in the Command

1.2.5 UINT16 Tag TAG_KEYID

1.2.5.1 UINT16 Length Length of KeyID

1.2.5.2 UINT8[] KeyID (binary value of) KeyID generated by Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 UINT16 Length Length of Counters

1.2.6.2 UINT32 SignCounter
Signature Counter.

Indicates how many times this authenticator has performed signatures in the past.

1.2.6.3 UINT32 RegCounter

Registration Counter.

Indicates how many times this authenticator has performed registrations in the
past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 UINT16 Length Length of UAuth.pub

1.2.7.2 UINT8[] PublicKey User authentication public key (UAuth.pub) newly generated by authenticator

1.3
(choice
1)

UINT16 Tag TAG_ATTESTATION_BASIC_FULL

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with Basic Attestation Private Key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content, including the tag and it's length field, �must
be included during signature computation.

1.3.3 UINT16 Tag

TAG_ATTESTATION_CERT (multiple occurrences possible)

Multiple occurrences must be ordered. The attestation certificate �must occur first.�
Each subsequent occurrence (if exists) must be the issuing certificate of �the
previous occurrence. The last occurence must be chained to one of the certificates�
included in field �attestationRootCertificate in the related Metadata Statement
[UAFAuthnrMetadata].

1.3.3.1 UINT16 Length Length of Attestation Cert

1.3.3.2 UINT8[] Certificate� X.509 DER-encoded [ITU-X690-2008] Attestation Certificate (chain).�

1.3
(choice
2)

UINT16 Tag TAG_ATTESTATION_BASIC_SURROGATE

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with newly generated UAuth.priv key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content, including the tag and it's length field, �must
be included during signature computation.

 TLV Structure Description

6.1.1.2 TAG_UAFV1_AUTH_ASSERTION



The following TLV structure is generated by an authenticator during processing of a Sign command. It is then delivered to
FIDO Server intact and parsed by the server. The structure embeds a TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom data to TAG_UAFV1_SIGNED_DATA structure (and thus sign with Attestation
Key) - this data must be included as an additional tag inside TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as an
additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside TAG_UAFV1_SIGNED_DATA.

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION

1.1 UINT16 Length Length of the structure.

1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA

1.2.1 UINT16 Length Length of the structure.

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2 UINT16
AuthenticatorVersion Vendor assigned authenticator version.

1.2.3.3 UINT8
AuthenticationMode

Authentication Mode indicating whether user explicitly verified or not and indicating if�
there is a transaction content or not.

0x01 means that user has been explicitly verified�
0x02 means that transaction content has been shown on the display and user
confirmed it by �explicitly verifying with authenticator

1.2.3.4 UINT16
SignatureAlgAndEncoding

Signature algorithm and encoding format.

Refer to [UAFRegistry] for information on supported algorithms and their values.

1.2.4 UINT16 Tag TAG_AUTHENTICATOR_NONCE

1.2.4.1 UINT16 Length Length of authenticator Nonce - must be at least 8 bytes

1.2.4.2 UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by Authenticator

1.2.5 UINT16 Tag TAG_FINAL_CHALLENGE

1.2.5.1 UINT16 Length Length of Final Challenge

1.2.5.2 UINT8[] FinalChallenge (binary value of) Final Challenge provided in the Command

1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH

1.2.6.1 UINT16 Length Length of Transaction Content Hash. This length is 0 if AuthenticationMode == 0x01,
i.e. authentication, not transaction confirmation.�

1.2.6.2 UINT8[] TCHash (binary value of) Transaction Content Hash

1.2.7 UINT16 Tag TAG_KEYID

1.2.7.1 UINT16 Length Length of KeyID

1.2.7.2 UINT8[] KeyID (binary value of) KeyID

1.2.8 UINT16 Tag TAG_COUNTERS

1.2.8.1 UINT16 Length Length of Counters

1.2.8.2 UINT32 SignCounter
Signature Counter.

Indicates how many times this authenticator has performed signatures in the past.

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Length Length of Signature



1.3.2 UINT8[] Signature

Signature calculated using UAuth.priv over TAG_UAFV1_SIGNED_DATA structure.

The entire TAG_UAFV1_SIGNED_DATA content, including the tag and it's length
field, �must be included during signature computation.

 TLV Structure Description

6.1.2 UserVerificationToken�

This specification doesn't specify how exactly user verification must be performed ��inside the authenticator. Verification is�
considered to be an authenticator, and vendor, specific operation.�

This document provides an example on how the "vendor_specific_UserVerify" command (a command which �verifies the user�
using Authenticator's built-in technology) could be securely bound to UAF Register and Sign commands. This binding is done
through a concept called UserVerificationToken. Such a binding allows decoupling "vendor_specific_UserVerify" and "UAF�
Register/Sign" commands from each other.

Here is how it is defined:�

The ASM invokes the "vendor_specific_UserVerify" command. �The authenticator verifies the user and returns a�
UserVerificationToken back.
The ASM invokes UAF.Register/Sign command and passes UserVerificationToken to it. The authenticator verifies the�
validity of UserVerificationToken and performs the FIDO operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement this �binding in a very
different way. For example an authenticator vendor may decide to append a UAF Register request directly to their
"vendor_specific_UserVerify" command and process both as a single command.�

If UserVerificationToken binding is implemented, it should either meet one of the following criteria or implement a mechanism
providing similar, or better security:

UserVerificationToken must allow performing only a single UAF Register or UAF Sign operation.
UserVerificationToken must be time bound, and allow performing multiple UAF operations within the specified time.�

6.2 Commands
This section is non-normative.

NORMATIVE

UAF Authenticators which are designed to be interoperable with ASMs from different vendors must implement the
command interface defined in this section. Examples of such authenticators:�

Bound Authenticators in which the core authenticator functionality is developed by one vendor, and the ASM is
developed by another vendor
Roaming Authenticators

NORMATIVE

UAF Authenticators which are tightly integrated with a custom ASM (typically bound authenticators) may implement a
different command interface.

All UAF Authenticator commands and responses are semantically similar - they are all represented as TLV-encoded blobs.
The first 2 bytes of each command is the command code. �After receiving a command, the authenticator must parse the first�
TLV tag and figure out which command is being issued.�

6.2.1 GetInfo Command

6.2.1.1 Command Description

This command returns information about internal authenticators. It may return 0 or more authenticators. Each authenticator
has an assigned authenticatorIndex which is used in other commands as an authenticator reference.

6.2.1.2 Command Structure

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length - must be 0 for this command

6.2.1.3 Command Response



 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1 UINT16 Length Response length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status Code returned by Authenticator

1.3 UINT16 Tag TAG_API_VERSION

1.3.1 UINT16 Length Length of API Version (must be 0x0001)

1.3.2 UINT8 Version
Authenticator API Version (must be 0x01). This version indicates the types of
commands, and formatting associated with them, that are supported by the
authenticator.

1.4 UINT16 Tag TAG_AUTHENTICATOR_INFO (multiple occurrences possible)

1.4.1 UINT16 Length Length of Authenticator Info

1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.4.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.4.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.4.3 UINT16 Tag TAG_AAID

1.4.3.1 UINT16 Length Length of AAID

1.4.3.2 UINT8[] AAID Vendor assigned AAID

1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA

1.4.4.1 UINT16 Length Length of Authenticator Metadata

1.4.4.2 UINT16 AuthenticatorType

Indicates whether the authenticator is bound or roaming, and whether it is first-,�
or second-factor only. The ASM must use this information to understand how to
work with the authenticator.

Predefined values:�

0x0001 - Indicates second-factor authenticator (first-factor when the flag��
is not set)
0x0002 - Indicates roaming authenticator (bound authenticator when the
flag is not set)�
0x0004 - Key handles will be stored inside authenticator and won't be
returned to ASM
0x0008 - Authenticator has a built-in UI for enrollment and verification.�
ASM should not show its custom UI
0x0010 - Authenticator has a built-in UI for settings, and supports
OpenSettings command.
0x0020 - Authenticator expects TAG_APPID to be passed as an
argument to commands where it is defined as an optional argument�
0x0040 - At least one user is enrolled in the authenticator. Authenticators
which don't support the concept of user enrollment (e.g.
USER_VERIFY_NONE, USER_VERIFY_PRESENCE) must always have
this bit set.

1.4.4.3 UINT8 MaxKeyHandles
Indicates maximum number of key handles this authenticator can receive and
process in a single command. This information will be used by the ASM when
invoking SIGN command with multiple key handles.

1.4.4.4 UINT32 UserVerification� User Verification method (as defined in ��[UAFRegistry])

1.4.4.5 UINT16 KeyProtection Key Protection type (as defined in [�UAFRegistry]).

1.4.4.6 UINT16 MatcherProtection Matcher Protection type (as defined in [�UAFRegistry]).

1.4.4.7 UINT16
TransactionConfirmationDisplay�

Transaction Confirmation type (as defined in [��UAFRegistry]).

NOTE
If Authenticator doesn't support Transaction Confirmation - this value�
must be set to 0.



1.4.4.8 UINT16 AuthenticationAlg Authentication Algorithm (as defined in [�UAFRegistry]).

1.4.5 UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)

1.4.5.1 UINT16 Length Length of content type.

1.4.5.2 UINT8[] ContentType Transaction Confirmation Display Content Type. See [�UAFAuthnrMetadata] for
additional information on the format of this field.�

1.4.6 UINT16 Tag TAG_TC_DISPLAY_PNG_CHARACTERISTICS (optional,multiple occurrences
permitted)

1.4.6.1 UINT16 Length Length of display characteristics information.

1.4.6.2 UINT32 Width See [UAFAuthnrMetadata] for additional information.

1.4.6.3 UINT32 Height See [UAFAuthnrMetadata] for additional information.

1.4.6.4 UINT8 BitDepth See [UAFAuthnrMetadata] for additional information.

1.4.6.5 UINT8 ColorType See [UAFAuthnrMetadata] for additional information.

1.4.6.6 UINT8 Compression See [UAFAuthnrMetadata] for additional information.

1.4.6.7 UINT8 Filter See [UAFAuthnrMetadata] for additional information.

1.4.6.8 UINT8 Interlace See [UAFAuthnrMetadata] for additional information.

1.4.6.9 UINT8[] PLTE See [UAFAuthnrMetadata] for additional information.

1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME

1.4.7.1 UINT16 Length Length of Assertion Scheme

1.4.7.2 UINT8[] AssertionScheme Assertion Scheme (as defined in �[UAFRegistry])

1.4.8 UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)

1.4.8.1 UINT16 Length Length of AttestationType

1.4.8.2 UINT16 AttestationType Attestation Type (as defined in �[UAFRegistry])

1.4.9 UINT16 Tag TAG_SUPPORTED_EXTENSION_ID (optional, multiple occurrences possible)

1.4.9.1 UINT16 Length Length of SupportedExtensionID

1.4.9.2 UINT8[] SupportedExtensionID SupportedExtensionID as a UINT8[] encoding of a UTF-8 string

 TLV Structure Description

6.2.1.4 Status Codes

UAF_CMD_STATUS_OK
UAF_CMD_STATUS_ERR_UNKNOWN

6.2.2 Register Command

This command generates a UAF registration assertion. This assertion can be used to register the authenticator with a FIDO
Server.

6.2.2.1 Command Structure

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_REGISTER_CMD

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)



1.4 UINT16 Tag TAG_FINAL_CHALLENGE

1.4.1 UINT16 Length Final Challenge Length

1.4.2 UINT8[] FinalChallenge Final Challenge provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_USERNAME

1.5.1 UINT16 Length Length of Username

1.5.2 UINT8[] Username Username provided by ASM (max 128 bytes)

1.6 UINT16 Tag TAG_ATTESTATION_TYPE

1.6.1 UINT16 Length Length of AttestationType

1.6.2 UINT16 AttestationType Attestation Type to be used

1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.7.1 UINT16 Length Length of KHAccessToken

1.7.2 UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)

1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.8.1 UINT16 Length Length of VerificationToken�

1.8.2 UINT8[] VerificationToken� User verification token�

 TLV Structure Description

6.2.2.2 Command Response

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_REGISTER_CMD_RESPONSE

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status code returned by Authenticator

1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION

1.3.1 UINT16 Length Length of Assertion

1.3.2 UINT8[] Assertion Registration Assertion (see section TAG_UAFV1_REG_ASSERTION).

1.4 UINT16 Tag TAG_KEYHANDLE (optional)

1.4.1 UINT16 Length Length of key handle

1.4.2 UINT8[] Value (binary value of) key handle

6.2.2.3 Status Codes

UAF_CMD_STATUS_OK
UAF_CMD_STATUS_ACCESS_DENIED
UAF_CMD_STATUS_USER_CANCELLED
UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED
UAF_CMD_STATUS_ERR_UNKNOWN

6.2.2.4 Command Description

The authenticator must perform the following steps (see below table for command structure):

1. If this authenticator has a transaction confirmation display and is able to display AppID, then make �sure
Command.TAG_APPID is provided, and show its content on the display when verifying the user. Update
Command.KHAccessToken with TAG_APPID:

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function
is a cryptographic hash function.

For example: Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)
2. If the user is already enrolled with this authenticator (via biometric enrollment, PIN setup or similar mechanism) - verify



the user. If the verification has been already �done in a previous command - make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

1. If verification fails - return �UAF_CMD_STATUS_ACCESS_DENIED
3. If the user is not enrolled with the authenticator then take the user through the enrollment process.

1. If enrollment fails - return UAF_CMD_STATUS_ACCESS_DENIED
2. If user explicitly cancels the operation - return UAF_CMD_STATUS_USER_CANCELLED

4. Make sure that Command.TAG_ATTESTATION_TYPE is supported. If not - return
UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv)
6. Create a RawKeyHandle

1. Add UAuth.priv to RawKeyHandle
2. Add Command.KHAccessToken to RawKeyHandle
3. If a first-factor authenticator, then add �Command.Username to RawKeyHandle

7. Wrap RawKeyHandle with Wrap.sym key
8. Create TAG_UAFV1_KRD structure

1. If this is a second-factor roaming authenticator - place key handle inside TAG_KEYID. Otherwise generate a
random KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section �TAG_UAFV1_REG_ASSERTION)
9. Perform attestation on TAG_UAFV1_KRD based on provided Command.AttestationType.

10. Create TAG_AUTHENTICATOR_ASSERTION
1. Create TAG_UAFV1_REG_ASSERTION

1. Copy all the mandatory fields (see section �TAG_UAFV1_REG_ASSERTION)
2. If this is a first-factor roaming authenticator - add KeyID and key handle into internal �storage
3. If this is a bound authenticator - return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

11. Return TAG_UAFV1_REGISTER_CMD_RESPONSE
1. UAF_CMD_STATUS_OK as a status
2. Add TAG_AUTHENTICATOR_ASSERTION
3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

NORMATIVE

The authenticator must not process a Register command without verifying the user (or enrolling the user, if this is the first�
time the user has used the authenticator).

The authenticator must generate a unique UAuth key pair each time the Register command is called.

The authenticator should either store key handle in its internal secure storage or cryptographically wrap it and export it to
the ASM.

For silent authenticators, the key handle must never be stored on a FIDO Server, otherwise this would enable tracking of
users without providing the ability for users to clear key handles from the local device.

If KeyID is not the key handle itself (e.g. such as in case of a second-factor roaming authenticator) - it must be a unique
and unguessable byte array with a maximum length of 32 bytes. It must be unique within the scope of the AAID.

If the authenticator doesn't support SignCounter or RegCounter it must set these to 0 in TAG_UAFV1_KRD. The RegCounter
must be set to 0 when a factory reset for the authenticator is performed. The SignCounter must be set to 0 when a factory
reset for the authenticator is performed.

6.2.3 Sign Command

This command generates a UAF assertion. This assertion can be further verified by a FIDO Server which has a prior�
registration with this authenticator.

6.2.3.1 Command Structure

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_SIGN_CMD

1.1 UINT16 Length Length of Command

NOTE

If the KeyID is generated randomly (instead of, for example, being derived from a key handle) - it should be stored
inside RawKeyHandle so that it can be accessed by the authenticator while processing the Sign command.



1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE

1.4.1 UINT16 Length Length of Final Challenge

1.4.2 UINT8[] FinalChallenge (binary value of) Final Challenge provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)

1.5.1 UINT16 Length Length of Transaction Content

1.5.2 UINT8[] TransactionContent (binary value of) Transaction Content provided by ASM

1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.6.1 UINT16 Length Length of KHAccessToken

1.6.2 UINT8[] KHAccessToken (binary value of) KHAccessToken provided by ASM (max 32 bytes)

1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.7.1 UINT16 Length Length of the User Verification Token�

1.7.2 UINT8[] VerificationToken� User Verification Token�

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)

1.8.1 UINT16 Length Length of KeyHandle

1.8.2 UINT8[] KeyHandle (binary value of) key handle

 TLV Structure Description

6.2.3.2 Command Response

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_SIGN_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status code returned by authenticator

1.3 (choice
1) UINT16 Tag

TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)

This TLV tag contains multiple (>=1) {Username, Keyhandle} entries.

If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present

1.3.1 UINT16 Length Length of the structure

1.3.2 UINT16 Tag TAG_USERNAME

1.3.2.1 UINT16 Length Length of Username

1.3.2.2 UINT8[]
Username Username

1.3.3 UINT16 Tag TAG_KEYHANDLE

1.3.3.1 UINT16 Length Length of KeyHandle

1.3.3.2 UINT8[]
KeyHandle (binary value of) key handle



1.3 (choice
2) UINT16 Tag

TAG_AUTHENTICATOR_ASSERTION (optional)

If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present

1.3.1 UINT16 Length Assertion Length

1.3.2 UINT8[]
Assertion

Authentication assertion generated by the authenticator (see section
TAG_UAFV1_AUTH_ASSERTION).

 TLV Structure Description

6.2.3.3 Status Codes

UAF_CMD_STATUS_OK
UAF_CMD_STATUS_ACCESS_DENIED
UAF_CMD_STATUS_USER_NOT_ENROLLED
UAF_CMD_STATUS_USER_CANCELLED
UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT
UAF_CMD_STATUS_ERR_UNKNOWN

6.2.3.4 Command Description

Authenticators must take the following steps:

1. If this authenticator has a transaction confirmation �display, and is able to display the AppID - make sure
Command.TAG_APPID is provided, and show it on the display when verifying the user.

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such a mixing
function is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)
2. If the user is already enrolled with the authenticator (such as biometric enrollment, PIN setup, etc.) then verify the user.

If the verification has already been done in one of the �previous commands, make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

1. If verification fails - return �UAF_CMD_STATUS_ACCESS_DENIED
2. If the user explicitly cancels the operation - return UAF_CMD_STATUS_USER_CANCELLED

3. If the user is not enrolled then return UAF_CMD_STATUS_USER_NOT_ENROLLED
4. Unwrap all provided key handles from Command.TAG_KEYHANDLE values using Wrap.sym

1. If a first-factor roaming authenticator:�
If Command.TAG_KEYHANDLE are provided, then the items in this list are KeyIDs. Use these KeyIDs to
locate key handles stored in internal storage
If no Command.TAG_KEYHANDLE are provided - unwrap all key handles stored in internal storage

5. Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken ==
Command.KHAccessToken)

6. If the number of remaining RawKeyHandles is 0, then fail with UAF_CMD_STATUS_ACCESS_DENIED
7. If number of remaining RawKeyHandles is > 1

1. If this is a second-factor authenticator, then choose the first RawKeyHandle only and jump to step #8.�
2. Copy {Command.KeyHandle, RawKeyHandle.username} for all remaining RawKeyHandles into

TAG_USERNAME_AND_KEYHANDLE tag.
If this is a first-factor roaming authenticator, then the returned TAG_USERNAME_AND_KEYHANDLEs �must
be ordered by the key handle registration date (the latest-registered key handle must come the latest).

3. Copy TAG_USERNAME_AND_KEYHANDLE into TAG_UAFV1_SIGN_CMD_RESPONSE and return
8. If number of remaining RawKeyHandles is 1

1. Create TAG_UAFV1_SIGNED_DATA and set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01

NOTE

First-factor authenticators should implement this command in two stages.

1. The first stage will be executed only if �the authenticator finds out that there are multiple �key handles after filtering�
with the KHAccessToken. In this stage, the authenticator must return a list of usernames along with
corresponding key handles

2. In the second stage, after the user selects a username, this command will be called with a single key handle and
will return a UAF assertion based on this key handle

If a second-factor authenticator is presented with more than one valid key handles, it must exercise only the first one�
and ignore the rest.

The command is implemented in two stages to ensure that only one assertion can be generated for each command
invocation.



2. If TransactionContent is not empty
If this is a silent authenticator, then return UAF_CMD_STATUS_ACCESS_DENIED
If the authenticator doesn't support transaction confirmation (it has set �TransactionConfirmationDisplay to 0
in the response to a GetInfo Command), then return UAF_CMD_STATUS_ACCESS_DENIED
If the authenticator has a built-in transaction confirmation display, then �show Command.TransactionContent
and Command.TAG_APPID (optional) on display and wait for the user to confirm it:�

Return UAF_CMD_STATUS_USER_CANCELLED if user cancels the transaction
Return UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if provided transaction content cannot be
rendered

Compute hash of TransactionContent
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)
Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

3. Create TAG_UAFV1_AUTH_ASSERTION
Fill in the rest of TAG_UAFV1_SIGNED_DATA fields�

Increment SignCounter and put into TAG_UAFV1_SIGNED_DATA
Copy all the mandatory fields (see �section TAG_UAFV1_AUTH_ASSERTION)
If TAG_UAFV1_SIGNED_DATA.AuthenticationMode == 0x01 - set
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Length to 0

Sign TAG_UAFV1_SIGNED_DATA with UAuth.priv
4. Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of

TAG_AUTHENTICATOR_ASSERTION
5. Copy TAG_AUTHENTICATOR_ASSERTION into TAG_UAFV1_SIGN_CMD_RESPONSE and return

NORMATIVE

Authenticator must not process Sign command without verifying the user first.�

Authenticator must not reveal Username without verifying the user first.�

bound authenticators must not process Sign command without validating KHAccessToken first.�

UAuth.priv keys must never leave Authenticator's security boundary in plaintext form. UAuth.priv protection boundary is
specified in �Metadata.keyProtection field in Metadata �[UAFAuthnrMetadata]).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display - �it must display provided
transaction content in this display and include the hash of content inside TAG_UAFV1_SIGNED_DATA structure.

Silent Authenticators must not operate in first-factor mode in order to follow the �assumptions made in [FIDOSecRef].

If Authenticator doesn't support SignCounter, then it must set it to 0 in TAG_UAFV1_SIGNED_DATA. The SignCounter
must be set to 0 when a factory reset for the Authenticator is performed, in order to follow the assumptions made in
[FIDOSecRef].

Some Authenticators might support Transaction Confirmation display �functionality not inside the Authenticator but within
the boundaries of ASM. Typically these are software based Transaction Confirmation displays. When processing the Sign�
command with a given transaction such Authenticators should assume that they do have a builtin Transaction Confirmation�
display and should include the hash of transaction content in the final assertion �without displaying anything to the user.
Also, such Authenticator's Metadata file �must clearly indicate the type of Transaction Confirmation display. Typically the�
flag of Transaction Confirmation ��display will be TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE. See [UAFRegistry] for flags describing�
Transaction Confirmation �Display type.

6.2.4 Deregister Command

This command deletes a registered UAF credential from Authenticator.

6.2.4.1 Command Structure

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID



1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 UINT16 Length Length of KeyID

1.4.2 UINT8[] KeyID (binary value of) KeyID provided by ASM

1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.5.1 UINT16 Length Length of KeyHandle Access Token

1.5.2 UINT8[] KHAccessToken (binary value of) KeyHandle Access Token provided by ASM (max 32 bytes)

 TLV Structure Description

6.2.4.2 Command Response

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.2.4.3 Status Codes

UAF_CMD_STATUS_OK
UAF_CMD_STATUS_ACCESS_DENIED
UAF_CMD_STATUS_CMD_NOT_SUPPORTED
UAF_CMD_STATUS_ERR_UNKNOWN

6.2.4.4 Command Description

Authenticator must take the following steps:

1. If this authenticator has a Transaction Confirmation display and is able to display AppID, then make �sure
Command.TAG_APPID is provided

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function
is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)
2. If this Authenticator doesn't store key handles internally, then return UAF_CMD_STATUS_CMD_NOT_SUPPORTED
3. Find KeyHandle that matches Command.KeyID
4. Unwrap found key handles using Wrap.sym
5. Make sure that RawKeyHandle.KHAccessToken == Command.KHAccessToken

If not, then return UAF_CMD_STATUS_ACCESS_DENIED
6. Delete this KeyHandle from internal storage
7. Return UAF_CMD_STATUS_OK

NORMATIVE

bound authenticators must not process Deregister command without validating KHAccessToken first.�

Deregister command should not explicitly reveal whether the provided keyID was registered or not.

6.2.5 OpenSettings Command

This command instructs the Authenticator to open its built-in settings UI (e.g. change PIN, enroll new fingerprint, etc).�

Authenticator must return UAF_CMD_STATUS_CMD_NOT_SUPPORTED if it doesn't support such functionality.

6.2.5.1 Command Structure

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD



1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

 TLV Structure Description

6.2.5.2 Command Response

 TLV Structure Description
1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.2.5.3 Status Codes

UAF_CMD_STATUS_OK
UAF_CMD_STATUS_CMD_NOT_SUPPORTED
UAF_CMD_STATUS_ERR_UNKNOWN

7. KeyIDs and key handles
This section is non-normative.

There are 4 types of Authenticators defined in this document and due to their specifics they behave ��differently while
processing commands. One of the main differences between them is how they store and process key handles. This section
tries to clarify it by describing the behavior of every type of Authenticator during the processing of relevant command.

7.1 first-factor Bound Authenticator�

Register
Command

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
database.

KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle).

Sign
Command

When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID (since it
doesn't know which KeyIDs to provide). In this scenario ASM selects all key handles and passes to
Authenticator.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs. ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.

Deregister
Command

Since Authenticator doesn't store key handles, then there is nothing to delete inside Authenticator.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.�

7.2 2ndF Bound Authenticator

Register
Command

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
database.

KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle).

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
user session (no cookies, a clear machine).

During step-up authentication (when there is a user session) Server provides relevant KeyIDs. ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.



Deregister
Command

Since Authenticator doesn't store key handles, then there is nothing to delete inside it.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.�

7.3 first-factor Roaming Authenticator�

Register
Command

Authenticator stores key handles inside its internal storage. KeyHandle is never returned back to ASM.

KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle)

Sign
Command

When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID (since it
doesn't know which KeyIDs to provide). In this scenario Authenticator uses all key handles that correspond to
the provided AppID.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs. Authenticator
selects key handles that correspond to provided KeyIDs and uses them.

Deregister
Command Authenticator finds the right KeyHandle and deletes it from its storage.�

7.4 2ndF Roaming Authenticator

Register
Command

Neither Authenticator nor ASM store key handles. Instead KeyHandle is sent to the Server (in place of KeyID)
and stored in User's record. From Server's perspective it's a KeyID. In fact KeyID is the KeyHandle.

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
user session (no cookies, a clear machine).

During step-up authentication Server provides KeyIDs which are in fact key handles. Authenticator finds the�
right KeyHandle and uses it.

Deregister
Command Since Authenticator and ASM don't store key handles, then there is nothing to delete on client side.

8. Access Control for Commands
This section is normative.

FIDO Authenticators may implement various mechanisms to guard access to privileged commands.

The following table summarizes the access control requirements for each command.

All UAF Authenticators must satisfy the access control requirements defined below.�

Authenticator vendors may offer additional security mechanisms.

Terms used in the table:

NoAuth - no access control
UserVerify - explicit user verification�
KHAccessToken - must be known to the caller
KeyHandleList - must be known to the caller
KeyID - must be known to the caller

Command First-factor Bound
Authenticator

2ndF Bound
Authenticator

First-factor Roaming
Authenticator

2ndF Roaming
Authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Sign
UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken

UserVerify
KHAccessToken
KeyHandleList

Deregister KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID



Table 1: Access Control for Commands

9. Relationship to other standards
This section is non-normative.

The existing standard specifications most relevant to UAF �authenticator are [TPM], [TEE] and [SecureElement].

Hardware modules implementing these standards may be extended to incorporate UAF functionality through their
extensibility mechanisms such as by loading secure applications (trustlets, applets, etc) into them. Modules which do not
support such extensibility mechanisms cannot be fully leveraged within UAF framework.

9.1 TEE
In order to support UAF inside TEE a special Trustlet (trusted application running inside TEE) may be designed which
implements UAF Authenticator functionality specified in �this document and also implements some kind of user verification�
technology (biometric verification, PIN or �anything else).

An additional ASM must be created which knows how to work with the Trustlet.

9.2 Secure Elements
In order to support UAF inside Secure Element (SE) a special Applet (trusted application running inside SE) may be designed
which implements UAF Authenticator functionality specified in this �document and also implements some kind of user
verification �technology (biometric verification, PIN or similar �mechanisms).

An additional ASM must be created which knows how to work the Applet.

9.3 TPM
TPMs typically have a built-in attestation capability however the attestation model supported in TPMs is currently incompatible
with UAF's basic attestation model. The future enhancements of UAF may include compatible attestation schemes.

Typically TPMs also have a built-in PIN verification �functionality which may be leveraged for UAF. In order to support UAF with
an existing TPM module, the vendor should write an ASM which:

Translates UAF data to TPM data by calling TPM APIs
Creates assertions using TPMs API
Reports itself as a valid UAF authenticator to FIDO UAF Client

A special AssertionScheme, designed for TPMs, must be also created (see [UAFAuthnrMetadata]) and published by FIDO
Alliance. When FIDO Server receives an assertion with this AssertionScheme it will treat the received data as TPM-generated
data and will parse/validate it accordingly.

9.4 Unreliable Transports
The command structures described in this document assume a reliable transport and provide no support at the application-
layer to detect or correct for issues such as unreliable ordering, duplication, dropping or modification of messages. �If the
transport layer(s) between the ASM and Authenticator are not reliable, the non-normative private contract between the ASM
and Authenticator may need to provide a means to detect and correct such errors.

A. Security Guidelines
This section is non-normative.

Category Guidelines

AppIDs and
KeyIDs

Registered AppIDs and KeyIDs must not be returned by an authenticator in plaintext, without first�
performing user verification.�

If an attacker gets physical access to a roaming authenticator, then it should not be easy to read out
AppIDs and KeyIDs.



Attestation
Private Key

Authenticators must protect the attestation private key as a very sensitive asset. The overall security of
the authenticator depends on the protection level of this key.

It is highly recommended to store and operate this key inside a tamper-resistant hardware module, e.g.
[SecureElement].

It is assumed by registration assertion schemes, that the authenticator has exclusive control over the data
being signed with the attestation key.

FIDO Authenticators must ensure that the attestation private key:

1. is only used to attest authentication keys generated and protected by the authenticator, using the
FIDO-defined data structures, �KeyRegistrationData.

2. is never accessible outside the security boundary of the authenticator.

Attestation must be implemented in a way such that two different relying parties cannot link registrations,
authentications or other transactions (see [UAFProtocol]).

Certifications�
Vendors should strive to pass common security standard certifications with authenticators, such as�
[FIPS140-2], [CommonCriteria] and similar. Passing such certifications will positively impact the UAF�
implementation of the authenticator.

Cryptographic
(Crypto)
Kernel

The crypto kernel is a module of the authenticator implementing cryptographic functions (key generation,
signing, wrapping, etc) necessary for UAF, and having access to UAuth.priv, Attestation Private Key and
Wrap.sym.

For optimal security, this module should reside within the same security boundary as the UAuth.priv,
Att.priv and Wrap.sym keys. If it resides within a different security boundary, then the implementation
must guarantee the same level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted execution environment
[TEE].

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

Software-based authenticators must make sure to use state of the art code protection and obfuscation
techniques to protect this module, and whitebox encryption techniques to protect the associated keys.

Authenticators need good random number generators using a high quality entropy source, for:

1. generating authentication keys
2. generating signatures
3. computing authenticator-generated challenges

The authenticator's random number generator (RNG) should be such that it cannot be disabled or
controlled in a way that may cause it to generate predictable outputs.

If the authenticator doesn't have sufficient entropy �for generating strong random numbers, it should fail
safely.

See the section of this table regarding random numbers

KeyHandle It is highly recommended to use authenticated encryption while wrapping key handles with Wrap.sym.
Algorithms such as AES-GCM and AES-CCM are most suitable for this operation.

Liveness
Detection

The user verification method should include liveness detection [�NSTCBiometrics], i.e. a technique to
ensure that the sample submitted is actually from a (live) user.

In the case of PIN-based matching, this could be implemented using [TEESecureDisplay] in order to
ensure that malware can't emulate PIN entry.

Category Guidelines



Matcher

By definition, the matcher component is part of the �authenticator. This does not impose any restrictions
on the authenticator implementation, but implementers need to make sure that there is a proper security
boundary binding the matcher and the other parts of the authenticator together.

Tampering with the matcher module may have significant security consequences. It is highly�
recommended for this module to reside within the integrity boundaries of the authenticator, and be
capable of detecting tampering.

It is highly recommended to run this module inside a trusted execution environment [TEE] or inside a
secure element [SecureElement].

Authenticators which have separated matcher and CryptoKernel modules should implement mechanisms
which would allow the CryptoKernel to securely receive assertions from the matcher module indicating
the user's local verification status.�

Software based Authenticators (if not in trusted execution environment) must make sure to use state of
the art code protection and obfuscation techniques to protect this module.

When an Authenticator receives an invalid UserVerificationToken it should treat this as an attack, �and
invalidate the cached UserVerificationToken.�

A UserVerificationToken should have a lifetime not �exceeding 10 seconds.

Authenticators must implement anti-hammering protections for their matchers.

Biometrics based authenticators must protect the captured biometrics data (such as fingerprints) as �well
as the reference data (templates), and make sure that the biometric data never leaves the security
boundaries of authenticators.

Matchers must only accept verification reference data �enrolled by the user, i.e. they must not include any
default PINs or default biometric reference data.

Private Keys
(UAuth.priv
and Attestation
Private Key)

This document requires (a) the attestation key to be used for attestation purposes only and (b) the
authentication keys to be used for FIDO authentication purposes only. The related to-be-signed objects
(i.e. Key Registration Data and SignData) are designed to reduce the likelihood of such attacks:

1. They start with a tag marking them as specific �FIDO objects
2. They include an authenticator-generated random value. As a consequence all to-be-signed objects

are unique with a very high probability.
3. They have a structure allowing only very few fields containing uncontrolled values, i.e. values �which

are neither generated nor verified by the �authenticator

Random
Numbers

The FIDO Authenticator uses its random number generator to generate authentication key pairs, client
side challenges, and potentially for creating ECDSA signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the FIDO Authenticator to work with good random
numbers only.

The (pseudo-)random numbers used by authenticators should successfully pass the randomness test
specified �in [Coron99] and they should follow the guidelines given in [SP800-90b].

Additionally, authenticators may choose to incorporate entropy provided by the FIDO Server via the
ServerChallenge sent in requests (see [UAFProtocol]).

When mixing multiple entropy sources, a suitable mixing function should be used, such as those
described in [RFC4086].

RegCounter

The RegCounter provides an anti-fraud signal to the relying parties. Using the RegCounter, the relying party
can detect authenticators which have been excessively registered.

If the RegCounter is implemented: ensure that

1. it is increased by any registration operation and
2. it cannot be manipulated/modified otherwise (e.g. via API calls, �etc.)

A registration counter should be implemented as a global counter, i.e. one covering registrations to all
AppIDs. This global counter should be increased by 1 upon any registration operation.

Note: The RegCounter value should not be decreased by Deregistration operations.

Category Guidelines



SignCounter

When an attacker is able to extract a Uauth.priv key from a registered authenticator, this key can be used
independently from the original authenticator. This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent cloning authenticators. In
some situations the protection measures might not be sufficient.�

If the Authenticator maintains a signature counter SignCounter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If the SignCounter is implemented: ensure that

1. It is increased by any authentication / transaction confirmation operation and�
2. it cannot be manipulated/modified otherwise (e.g. �API calls, etc.)

Signature counters should be implemented that are dedicated for each private key in order to preserve
the user's privacy.

A per-key SignCounter should be increased by 1, whenever the corresponding UAuth.priv key signs an
assertion.

A per-key SignCounter should be deleted whenever the corresponding UAuth key is deleted.

If the authenticator is not able to handle many different signature counters, then a global signature
counter covering all private keys should be implemented. A global SignCounter should be increased by a
random positive integer value whenever any of the UAuth.priv keys is used to sign an assertion.

Transaction
Confirmation�
Display

A transaction confirmation display must ensure that the user is �presented with the provided transaction
content, e.g. not overlaid by other display elements and clearly recognizable. See [CLICKJACKING] for
some examples of threats and potential counter-measures

For more guidelines refer to [TEESecureDisplay].

UAuth.priv

An authenticator must protect all UAuth.priv keys as its most sensitive assets. The overall security of the
authenticator depends significantly� on the protection level of these keys.

It is highly recommended that this key is generated, stored and operated inside a trusted execution
environment.

In situations where physical attacks and side channel attacks are considered within the threat model, it is
highly recommended to use a tamper-resistant hardware module.

FIDO Authenticators must ensure that UAuth.priv keys:

1. are specific to the particular account at one �relying party (relying party is identified by an �AppID)
2. are generated based on good random numbers with sufficient entropy. The challenge provided by�

the FIDO Server during registration and authentication operations should be mixed into the entropy
pool in order to provide additional entropy.

3. are never directly revealed, i.e. always remain in exclusive control of the FIDO Authenticator
4. are only being used for the defined �authentication modes, i.e.

1. authenticating to the application (as identified by the AppID) they have been �generated for, or
2. confirming transactions to the application (as �identified by AppID) they have been generated�

for, or
3. are only being used to create the FIDO defined data structures, i.e. KRD, SignData.�

Username A username must not be returned in plaintext in any condition other than the conditions described for the
SIGN command. In all other conditions usernames must be stored within a KeyHandle.

Verification�
Reference
Data

The verification reference data, such as fingerprint ��templates or the reference value of a PIN, are by
definition part of the authenticator. �This does not impose any particular restrictions on the authenticator
implementation, but implementers need to make sure that there is a proper security boundary binding all
parts of the authenticator together..

Category Guidelines



Wrap.sym

If the authenticator has a wrapping key (Wrap.sym), then the authenticator must protect this key as its
most sensitive asset. The overall security of the authenticator depends on the protection of this key.

Wrap.sym key strength must be equal or higher than the strength of secrets stored in a RawKeyHandle.
Refer to [SP800-57] and [SP800-38F] publications for more information about choosing the right wrapping
algorithm and implementing it correctly.

It is highly recommended to generate, store and operate this key inside a trusted execution environment.

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

If the authenticator uses Wrap.sym, it must ensure that unwrapping corrupted KeyHandle and unwrapping
data which has invalid contents (e.g. KeyHandle from invalid origin) are indistinguishable to the caller.

Category Guidelines

B. Table of Figures
Fig. 1 UAF Authenticator Commands
Fig. 2 FIDO Authenticator Logical Sub-Components

C. References
C.1 Normative references
[Coron99]

J. Coron and D. Naccache An accurate evaluation of Maurer's universal test. LNCS 1556, February 1999, URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in
progress.) URL: http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical�
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). International
Telecommunications Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-200811-I/en

[SP800-90b]
Elaine Baker and John Kelsey, NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for
Random Bit Generation. National Institute of Standards and Technology, August 2012, URL:
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Review Draft (Work in
progress.) URL: http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�. FIDO Alliance Review Draft (Work in
progress.) URL: http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values v1.0�. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��

C.2 Informative references
[CLICKJACKING]

D. Lin-Shung Huang, C. Jackson, A. Moshchuk, H. Wang, S. Schlechter Clickjacking: Attacks and Defenses. USENIX,
July 2012, URL: https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf��

[CommonCriteria]
CommonCriteria Publications. CCRA Members, Work in progress, accessed March 2014. URL:
http://www.commoncriteriaportal.org/cc/

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO Alliance Review Draft (Work in progress.)
URL: http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf��

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. National Institute of Standards and Technology,
May 2001, URL: http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf���

[NSTCBiometrics]
NSTC Subcommittee on Biometrics, Biometrics Glossary. National Science and Technology Council. 14 September
2006, URL: http://biometrics.gov/Documents/Glossary.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC4086]
D. Eastlake 3rd, J. Schiller, S. Crocker Randomness Requirements for Security (RFC 4086), IETF, June 2005, URL:
http://www.ietf.org/rfc/rfc4086.txt

[SP800-38F]
M. Dworkin, NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. National Institute of Standards and Technology, December 2012, URL:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-57]
Recommendation for Key Management – Part 1: General (Revision 3). SP800-57. July 2012. U.S. Department of

http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf


Commerce/National Institute of Standards and Technology. URL: http://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57_part1_rev3_general.pdf

[SecureElement]
GlobalPlatform Card Specifications� GlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.asp�

[TEE]
GlobalPlatform Trusted Execution Environment Specifications� GlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.asp�

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications� GlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.asp�

[TPM]
TPM Main Specification� Trusted Computing Group. Accessed March 2014. URL:
http://www.trustedcomputinggroup.org/resources/tpm_main_specification�

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification


FIDO UAF Authenticator Metadata Statements
v1.0
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��
Editors:

Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
FIDO authenticators may have many different form factors, characteristics and capabilities. This document
defines a �standard means to describe the relevant pieces of information about an authenticator in order to
interoperate with it, or to make risk-based policy decisions about transactions involving a particular
authenticator.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current FIDO Alliance publications and the latest revision of this technical
report can be found in the FIDO Alliance specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document,
please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is
hereby granted to use the Specification solely for the purpose of implementing the Specification. No rights��
are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce�
portions of this Specification for other uses must contact the �FIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual�
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any
other contributors to the Specification are not, and shall not be held, responsible in any manner �for
identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://fidoalliance.org/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Scope
2.2 Audience
2.3 Architecture

3. Types
3.1 CodeAccuracyDescriptor dictionary

3.1.1 Dictionary CodeAccuracyDescriptor Members
3.2 BiometricAccuracyDescriptor dictionary

3.2.1 Dictionary BiometricAccuracyDescriptor Members
3.3 PatternAccuracyDescriptor dictionary

3.3.1 Dictionary PatternAccuracyDescriptor Members
3.4 VerificationMethodDescriptor dictionary�

3.4.1 Dictionary VerificationMethodDescriptor Members
3.5 verificationMethodANDCombinations typedef�
3.6 rgbPalletteEntry dictionary

3.6.1 Dictionary rgbPalletteEntry Members
3.7 DisplayPNGCharacteristicsDescriptor dictionary

3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members
4. Metadata Keys

4.1 Dictionary MetadataStatement Members
5. Metadata Statement Format
6. Additional Considerations

6.1 Field updates and metadata
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, �it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, �it must not be an empty list.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements.
Such members are marked in the WebIDL definitions found in this document, as �required. The
keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using
a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your
WebIDL and use other means to ensure those fields are present.�



1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”,
“may”, and “optional” in this document are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety
of different devices in a competitive marketplace. Much of the complexity behind this variety is hidden from
Relying Party applications, but in order to accomplish the goals of FIDO, Relying Parties must have some
means of discovering and verifying various characteristics of authenticators. Relying Parties can learn a
subset of verifiable information for authenticators certified ��by the FIDO Alliance with an Authenticator
Metadata statement. The URL to access that Metadata statement is provided by the Metadata TOC file�
accessible through the Metadata Service [UAFMetadataService].

For definitions of terms, please refer to the FIDO Glossary �[FIDOGlossary].

2.1 Scope
This document describes the format of and information contained in Authenticator Metadata statements. For
a definitive list �of possible values for the various types of information, refer to the FIDO Registry of
Predefined Values [�UAFRegistry].

The description of the processes and methods by which authenticator metadata statements are distributed
and the methods how these statements can be verified are described in �the UAF Metadata Service
Specification [�UAFMetadataService].

2.2 Audience
The intended audience for this document includes:

FIDO authenticator vendors who wish to produce metadata statements for their products.
FIDO server implementers who need to consume metadata statements to verify characteristics of
authenticators and attestation statements, make proper algorithm choices for protocol messages,
create policy statements or tailor various other modes of operation to authenticator-specific�
characteristics.
FIDO relying parties who wish to

create custom policy statements about which authenticators they will accept
risk score authenticators based on their characteristics
verify attested authenticator IDs for cross-referencing with
third party metadata

2.3 Architecture



Fig. 1 The UAF Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the
information contained in the authoritative statement is used in several other places. How a server obtains
these metadata statements is described in [UAFMetadataService].

The workflow around an authenticator metadata statement is as �follows:

1. The authenticator vendor produces a metadata statement describing the characteristics of an
authenticator.

2. The metadata statement is submitted to the FIDO Aliance as part of the FIDO certification process.�
The FIDO Alliance distributes the metadata as described in [UAFMetadataService].

3. A FIDO relying party configures its registration policy to allow �authenticators matching certain
characteristics to be registered.

4. The FIDO server sends a registration challenge message containing this policy statement.
5. The FIDO UAF Client receives the policy statement as part of the challenge message. It queries

available authenticators for their self-reported characteristics and (with the user's input) selects an
authenticator that matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message
contains the AAID for the authenticator and, optionally, a signature made with the private key
corresponding to the public key in the authenticator's attestation certificate.�

7. The FIDO Server looks up the metadata statement for the authenticator using the authenticator's
AAID. If the metadata statement lists an attestation certificate(s), it �verifies that an attestation�
signature is present, and made with the private key corresponding to either (a) one of the certificates�
listed in this metadata statement or (b) corrsponding to the public key in a certificate that �chains to one
of the issuer certificates listed in the authenticator's metadata statement.�

8. The FIDO Server next verifies that the authenticator meets the �originally supplied registration policy
based on its authoritative metadata statement. This prevents a faulty, modified, or compromised FIDO�
UAF Client from registering authenticators that are out of policy.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the
authenticator, based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested AAID of the authenticator with other
metadata databases published by third parties. Such third-party metadata might, for example, inform
the FIDO Server if an authenticator has achieved certifications relevant to certain markets or industry�
verticals, or whether it meets application-specific regulatory �requirements.

3. Types
This section is normative.

3.1 CodeAccuracyDescriptor dictionary



The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user
verification methods.�

WebIDL

dictionary CodeAccuracyDescriptor {
    required unsigned short base;
    required unsigned short minLength;
    unsigned short          maxRetries;
    unsigned short          blockSlowdown;
};

3.1.1 Dictionary CodeAccuracyDescriptor Members

base of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4
digits.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for
some time). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or
similar). 0 means this user verification �method will be blocked, either permanently or until an
alternative user verification method method succeeded. �All alternative user verification methods�
must be specified appropriately in the Metadata in �userVerificationDetails.

3.2 BiometricAccuracyDescriptor dictionary
The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a
biometric user verification method.�

At least one of the values must be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.baDesc must be omitted.

WebIDL

dictionary BiometricAccuracyDescriptor {
    double         FAR;
    double         FRR;
    double         EER;
    double         FAAR;
    unsigned short maxReferenceDataSets;

NOTE

One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral system base (radix) and minLen, instead of the number of potential
combinations since there is sufficient evidence [�iPhonePasscodes] [MoreTopWorstPasswords] that
users don't select their code evenly distributed at random. So software might take into account the
various probability distributions for different bases. This essentially means that in practice, passcodes
are not as secure as they could be if randomly chosen.

NOTE

The False Acceptance Rate (FAR) and False Rejection Rate (FRR) values typically are
interdependent via the Receiver Operator Characteristic (ROC) curve.

The False Artefact Acceptance Rate (FAAR) value reflects the capability of detecting presentation�
attacks, such as the detection of rubber finger presentation.�

The FAR, FRR, and FAAR values given here must reflect the actual configuration of the��
authenticators (as opposed to being theoretical best case values).



    unsigned short maxRetries;
    unsigned short blockSlowdown;
};

3.2.1 Dictionary BiometricAccuracyDescriptor Members

FAR of type double
The false acceptance rate [ISO19795-1] for a single reference data set, i.e. the percentage of
non-matching data sets that are accepted as valid ones. For example a FAR of 0.1% would be
encoded as 0.001.

FRR of type double
The false rejection rate for a single reference data set, i.e. the percentage of presented valid data
sets that lead to a (false) non-acceptance. For example a FRR of 0.1% would be encoded as
0.001.

EER of type double
The equal error rate for a single reference data set.

FAAR of type double
The false artefact acceptance rate [ISO30107-1], i.e. the percentage of artefacts that are
incorrectly accepted by the system. For example a FAAR of 0.1% would be encoded as 0.001.

maxReferenceDataSets of type unsigned short
Maximum number of alternative reference data sets, e.g. 3 if the user is allowed to enroll 3
different fingers to a fingerprint based authenticator.��

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for
some time). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or
similar). 0 means that this user verification �method will be blocked either permanently or until an
alternative user verification method succeeded. �All alternative user verification methods �must be
specified appropriately in the metadata in �userVerificationDetails.

3.3 PatternAccuracyDescriptor dictionary
The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern
is used as the user verification method.�

NOTE

The resulting FAR when all reference data sets are used is maxReferenceDataSets * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean
better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

NOTE

The false rejection rate is relevant for the convenience. Lower false acceptance rates mean
better convenience.

NOTE

The false artefact acceptance rate is relevant for the security of the system. Lower false
artefact acceptance rates imply better security.

NOTE

One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern]



WebIDL

dictionary PatternAccuracyDescriptor {
    required unsigned long minComplexity;
    unsigned short         maxRetries;
    unsigned short         blockSlowdown;
};

3.3.1 Dictionary PatternAccuracyDescriptor Members

minComplexity of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the
right one, i.e. 1/probability in the case of equal distribution.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this
method (at least temporarily). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar
mechanism). 0 means this user verification �method will be blocked, either permanently or until an
alternative user verification method method succeeded. �All alternative user verification methods�
must be specified appropriately in the metadata under �userVerificationDetails.

3.4 VerificationMethodDescriptor dictionary�
A descriptor for a specific �base user verification method� as implemented by the authenticator.

A base user verification method must be chosen from the list of those described in [�UAFRegistry]

The specification of the related AccuracyDescriptor is optional, but recommended.�

WebIDL

dictionary VerificationMethodDescriptor {
    required unsigned long      userVerification;
    CodeAccuracyDescriptor      caDesc;
    BiometricAccuracyDescriptor baDesc;
    PatternAccuracyDescriptor   paDesc;
};

3.4.1 Dictionary VerificationMethodDescriptor Members

userVerification of type required unsigned long
a single USER_VERIFY constant (see [UAFRegistry]), not a bit flag combination�. This value must
be non-zero.

caDesc of type CodeAccuracyDescriptor
May optionally be used in the case of method USER_VERIFY_PASSCODE.

baDesc of type BiometricAccuracyDescriptor
May optionally be used in the case of method USER_VERIFY_FINGERPRINT, USER_VERIFY_VOICEPRINT,
USER_VERIFY_FACEPRINT, USER_VERIFY_EYEPRINT, or USER_VERIFY_HANDPRINT.

paDesc of type PatternAccuracyDescriptor
may optionally be used in case of method USER_VERIFY_PATTERN.

3.5 verificationMethodANDCombinations typedef�
WebIDL

screen unlock. The minComplexity would be 1624 in that case, based on the user choosing a 4-digit
PIN, the minimum allowed for this mechanism.

NOTE

In reality, several of the methods described above might be combined. For example, a fingerprint�
based user verification can be combined with an alternative password.�



WebIDL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations must be non-empty. It is a list containing the list of base user
verification methods which must be passed as part �of a successful user verification.�

This list will contain only a single entry if using a single user verification method is sufficient.��

If this list contains multiple entries, then all of the listed user verification methods �must be passed as part of
the user verification process.�

3.6 rgbPalletteEntry dictionary
The rgbPalletteEntry is an RGB three-sample tuple pallete entry

WebIDL

dictionary rgbPalletteEntry {
    required unsigned short r;
    required unsigned short g;
    required unsigned short b;
};

3.6.1 Dictionary rgbPalletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.7 DisplayPNGCharacteristicsDescriptor dictionary
The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG�
[PNG] spec for IHDR (image header) and PLTE (palette table)

WebIDL

dictionary DisplayPNGCharacteristicsDescriptor {
    required unsigned long width;
    required unsigned long height;
    required octet         bitDepth;
    required octet         colorType;
    required octet         compression;
    required octet         filter;
    required octet         interlace;
    rgbPalletteEntry[]     plte;
};

3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

width of type required unsigned long
image width

height of type required unsigned long
image height

bitDepth of type required octet
Bit depth - bits per sample or per palette index.

colorType of type required octet
Color type defines the PNG image type.�

compression of type required octet
Compression method used to compress the image data.

filter of type required octet



Filter method is the preprocessing method applied to the image data before compression.

interlace of type required octet
Interlace method is the transmission order of the image data.

plte of type array of rgbPalletteEntry
1 to 256 palette entries

4. Metadata Keys
This section is normative.

WebIDL

dictionary MetadataStatement {
    required AAID                                aaid;
    required DOMString                           description;
    required unsigned short                      authenticatorVersion;
    required Version[]                           upv;
    required DOMString                           assertionScheme;
    required unsigned short                      authenticationAlgorithm;
    required unsigned short                      publicKeyAlgAndEncoding;
    required unsigned short[]                    attestationTypes;
    required VerificationMethodANDCombinations[] userVerificationDetails;
    required unsigned short                      keyProtection;
    required unsigned short                      matcherProtection;
    required unsigned long                       attachmentHint;
    required boolean                             isSecondFactorOnly;
    required unsigned short                      tcDisplay;
    DOMString                                    tcDisplayContentType;
    DisplayPNGCharacteristicsDescriptor[]        tcDisplayPNGCharacteristics;
    required DOMString[]                         attestationRootCertificates;
    required DOMString                           icon;
};

4.1 Dictionary MetadataStatement Members
aaid of type required AAID

The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure.�

description of type required DOMString
A human-readable short description of the authenticator.

authenticatorVersion of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this�
metadata statement.

Adding new StatusReport entries with status UPDATE_AVAILABLE to the metadata TOC object
[UAFMetadataService] must also change this authenticatorVersion if the update fixes severe�
security issues, e.g. the ones reported by preceding StatusReport entries with status code
USER_VERIFICATION_BYPASS, ATTESTATION_KEY_COMPROMISE, USER_KEY_REMOTE_COMPROMISE,
USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

It is recommended to assume increased risk if this version is higher (newer) than the firmware�
version present in an authenticator. For example, if a StatusReport entry with status
USER_VERIFICATION_BYPASS or USER_KEY_REMOTE_COMPROMISE precedes the UPDATE_AVAILABLE entry,
than any firmware version lower (older) than the one �specified in the metadata statement is�
assumed to be vulnerable.

upv of type array of required Version
The UAF protocol version(s) supported by this authenticator. See [UAFProtocol] for the definition�
of the Version structure.

assertionScheme of type required DOMString
The assertion scheme supported by the Authenticator. Must be set to one of the enumerated
Strings defined in the FIDO UAF �Registry of Predefined Values [�UAFRegistry].

NOTE

This description should help an administrator configuring authenticator policies. �This
description might deviate from the description returned by the ASM for that authenticator.



authenticationAlgorithm of type required unsigned short
The authentication algorithm supported by the authenticator. Must be set to one of the UAF_ALG
constants defined in the �FIDO UAF Registry of Predefined Values [�UAFRegistry]. This value must
be non-zero.

publicKeyAlgAndEncoding of type required unsigned short
The public key format used by the authenticator during registration operations. Must be set to one
of the UAF_ALG_KEY constants defined in the �FIDO UAF Registry of Predefined Values�
[UAFRegistry]. Because this information is not present in APIs related to authenticator discovery
or policy, a FIDO server must be prepared to accept and process any and all key representations
defined for any public key algorithm it supports. �This value must be non-zero.

attestationTypes of type array of required unsigned short
The supported attestation type(s). (e.g. TAG_ATTESTATION_BASIC_FULL) See UAF Registry for more
information [UAFRegistry].

userVerificationDetails of type array of required VerificationMethodANDCombinations�
A list alternative VerificationMethodANDCombinations. �Each of these entries is one alternative
user verification method. �Each of these alternative user verification methods might �itself be an
"AND" combination of multiple modalities.

All effectively available alternative user verification methods �must be properly specified here. �A
user verification method is considered effectively available if this method can be used �to either:

enroll new verification reference data to one of the user verification methods��

or

unlock the UAuth key directly after successful user verification�

keyProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the ��KEY_PROTECTION constants in the FIDO
Registry of Predefined �Values [UAFRegistry].

This value must be non-zero.

matcherProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the ��MATCHER_PROTECTION constants in the
FIDO Registry of Predefined �Values [UAFRegistry].

This value must be non-zero.

attachmentHint of type required unsigned long
A 32-bit number representing the bit fields defined by the ��ATTACHMENT_HINT constants in the FIDO
Registry of Predefined �Values [UAFRegistry].

isSecondFactorOnly of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some
other authentication method as a first factor (e.g. username+password).�

tcDisplay of type required unsigned short
A 16-bit number representing the bit fields defined by the ��TRANSACTION_CONFIRMATIOM_DISPLAY
constants in the FIDO Registry of Predefined �Values [UAFRegistry].

This value must be 0, if transaction confirmation is not supported by the authenticator.�

NOTE

If multiple matchers are implemented, then this value must reflect the �weakest
implementation of all matchers.

NOTE

The connection state and topology of an authenticator may be transient and cannot be
relied on as authoritative by a relying party, but the metadata field should �have all the bit
flags set for the topologies possible for the �authenticator. For example, an authenticator
instantiated as a single-purpose hardware token that can communicate over bluetooth
should set ATTACHMENT_HINT_EXTERNAL but not ATTACHMENT_HINT_INTERNAL.



tcDisplayContentType of type DOMString
Supported MIME content type [RFC2049] for the transaction confirmation �display, such as
text/plain or image/png.

This value must be present if transaction confirmation is supported, �i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
A list of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative
of supported image characteristics for displaying a PNG image.

This list must be present if transaction confirmation is supported, �i.e. tcDisplay is non-zero.

attestationRootCertificates of type array of required DOMString
Each element of this array represents a PKIX [RFC5280] trust root X.509 certificate that is valid�
for this AAID. Multiple certificates might be used for different batches without �distinct AAIDs. The
array does not represent a certificate �chain, but only the trust anchor of that chain.

Each array element is a Base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-
2008] PKIX certificate �value. Each element must be dedicated for authenticator attestation.

Either

the manufacturer attestation root certificate�

or

the root certificate related to a specific AAID��

must be specified included here.�

In the case (a), the root certificate might cover multiple �authenticator types (i.e. multiple AAIDs).
In this case, the AAID must be specified in the SubjectDN CommonName (oid 2.5.4.3) of the�
Attestation Certificate. In the case (b) it is not required to include the AAID in �the SubjectDN
CommonName of the attestation certificate, as the �root certificate only covers a single AAID.�

In the case of surrogate basic attestation (see [UAFProtocol], section "Surrogate Basic
Attestation"), no attestation root certificate is required/used. �So this array must be empty in that
case.

icon of type required DOMString
A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

5. Metadata Statement Format
This section is non-normative.

NORMATIVE

A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary
MetadataStatement.

Example of the metadata statement for an authenticator with:

authenticatorVersion 2.
Fingerprint based user verification with false acceptance rate of 0.001.�
Authenticator is embedded with the FIDO User device.
The authentication keys are protected by TEE.
The (fingerprint) matcher is implemented in TEE.�

NOTE

A certificate listed here is a trust root. It might be the �actual certificate presented by the�
authenticator, or it might be an issuing authority certificate from the vendor that the �actual
certificate in the authenticator chains to.�

The attestation certificate itself and the ordered certificate ��chain is included in the
registration assertion (see [UAFAuthnrCommands]).



The Transaction Confirmation Display is implemented in a TEE.�
The Transaction Confirmation Display supports display of "image/png" objects only.�
Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color
(=Color Type 2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) and��
no interlacing support (interlace method=0).
The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.�
It supports the "UAFV1TLV" assertion scheme.
It uses the UAF_ALG_SIGN_ECDSA_SHA256_RAW authentication algorithm.
It uses the UAF_ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).
It only implements the TAG_ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).
It implements UAF protocol version 1.0 only.

EXAMPLE 1: MetadataStatement
{ "aaid": "1234#5678",
  "description": "FIDO Alliance Sample UAF Authenticator",
  "authenticatorVersion": 2,
  "upv": [{ "major": 1, "minor": 0 }],
  "assertionScheme": "UAFV1TLV",
  "authenticationAlgorithm": 1,
  "publicKeyAlgAndEncoding": 256,
  "attestationTypes": [15879],
  "userVerificationDetails": [ [ { "userVerification": 2, "baDesc": { "FAR": 0.001 } } ] ],
  "keyProtection": 6,
  "matcherProtection": 2,
  "attachmentHint": 1,
  "isSecondFactorOnly": "false",
  "tcDisplay": 4,
  "tcDisplayContentType": ["image/png"],
  "tcDisplayPNGCharacteristics": [{"width": 320, "height": 480, "bitDepth": 16,
        "colorType": 2, "compression": 0, "filter": 0, "interlace": 0}],
  "attestationRootCertificates": [
"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
lQ=="],
  "icon": "data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}



Example of an User Verification Methods� entry for an authenticator with:

Fingerprint based user verification method, with:�
the ability for the user to enroll up to 5 fingers (reference data sets) with�

a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01%�
(0.0001).
The fingerprint verification will be blocked after 5 unsuccessful attempts.��

A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification�
method. Entering the PIN will be required to re-activate fingerprint based user verification after it has��
been blocked.

6. Additional Considerations
This section is non-normative.

6.1 Field updates and metadata
Metadata statements are intended to be stable once they have been published. When authenticators are
updated in the field, such updates are expected to improve the authenticator security �(for example, improve
FRR or FAR). The authenticatorVersion must be updated if firmware updates fixing severe security ��issues
(e.g. as reported previously) are available.

NORMATIVE

Significant changes in authenticator �functionality are not anticipated in firmware updates. �For example, if
an authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a
user verification method, the vendor would �must assign a new AAID to this authenticator.

NORMATIVE

A single authenticator implementation could report itself as two "virtual" authenticators using different
AAIDs. Such implementations must properly (i.e. according to the security characteristics claimed in the
metadata) protect UAuth keys and other sensitive data from the other "virtual" authenticator - just as a
normal authenticator would do.

A. References

EXAMPLE 2: User Verification Methods Entry�
[
  [ { "userVerification": 2, "baDesc": { "FAR": 0.00002, "maxReferenceDataSets": 5, 
                           "maxRetries": 5, "blockSlowdown": 0} }],
  [ { "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } } ]
]

NOTE

The metadata statement is assumed to relate to all authenticators having the same AAID.

NOTE

The FIDO Server is recommended to assume increased risk if the authenticatorVersion specified in�
the metadata statement is newer (higher) than the one present in the authenticator.

NOTE

Authentication keys (UAuth.pub) registered for one AAID cannot be used by authenticators reporting a
different AAID - even when running on the same hardware (see section "Authentication Response
Processing Rules for FIDO Server" in [UAFProtocol]).



A.1 Normative references
[ISO19795-1]

ISO/IEC JTC 1/SC 37, Information Technology - Biometric peformance testing and reporting - Part 1:
Principles and framework, URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447

[ISO30107-1]
ISO/IEC JTC 1/SC 37, Information Technology - Biometrics - Presentation attack detection - Part 1:
Framework, URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227

[RFC2049]
N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance
Criteria and Examples (RFC 2049), IETF, November 1996, URL: http://www.ietf.org/rfc/rfc2049.txt

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:
https://tools.ietf.org/html/rfc2397

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL:
http://heycam.github.io/webidl/

A.2 Informative references
[AndroidUnlockPattern]

Android Unlock Pattern Security Analysis. Sinustrom.info web site. URL:
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/'

[ECMA-262]
ECMAScript Language Specification, Edition 5.1�. June 2011. URL: http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance
Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-glossary-v1.0-rd-��
20140209.pdf

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),�
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811).
International Telecommunications Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-
200811-I/en

[MoreTopWorstPasswords]
10000 Top Passwords, Mark Burnett (Accessed July 11, 2014) URL: https://xato.net/passwords/more-
top-worst-passwords/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition)�. 10 November 2003.
W3C Recommendation. URL: http://www.w3.org/TR/PNG

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current
Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006,
URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk; Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile���, IETF, May 2008, URL:
http://www.ietf.org/rfc/rfc5280.txt

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf��

[UAFMetadataService]
R. Lindemann FIDO UAF Metadata Service v1.0. FIDO Alliance Working Draft (Work in progress.)
URL: TODO

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�. FIDO Alliance
Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-��
20140209.pdf

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values v1.0�. FIDO Alliance
Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL:
http://www.w3.org/TR/WebIDL/

[iPhonePasscodes]
Most Common iPhone Passcodes, Daniel Amitay (Accessed July 11, 2014) URL:
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
http://www.w3.org/TR/PNG
http://www.w3.org/TR/PNG
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes




FIDO UAF Authenticator Metadata Service v1.0
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.html��
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
The FIDO UAF Authenticator Metadata Specification defines ��so-called "Authenticator Metadata" statements. The
metadata statements contain the "Trust Anchor" required to validate the attestation object, and they also describe
several other important characteristics of the authenticator.

The metadata service described in this document defines a baseline method for relying parties to access the latest�
metadata statements.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found
in the FIDO Alliance specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become
a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All
comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is hereby
granted to use the Specification solely for the purpose of implementing the Specification. No rights ��are granted to
prepare derivative works of this Specification. Entities seeking permission to reproduce �portions of this Specification�
for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual �property
rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors
to the Specification are not, and shall not be held, responsible in any manner �for identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


2.1 Scope
2.2 Detailed Architecture

3. Metadata Service Details
3.1 Metadata TOC Format

3.1.1 Metadata TOC Payload Entry Dictionary
3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

3.1.2 StatusReport dictionary
3.1.2.1 Dictionary StatusReport Members

3.1.3 AuthenticatorStatus enum
3.1.4 Metadata TOC Payload Dictionary

3.1.4.1 Dictionary MetadataTOCPayload Members
3.1.5 Metadata TOC

3.1.5.1 Examples
3.1.6 Metadata TOC object Processing Rules

4. Considerations
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with
URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, �it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, �it MST NOT be an empty list.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

The FIDO UAF specification defines Authenticator Metadata ��statements [UAFAuthnrMetadata].

These metadata statements contain the "Trust Anchor" required to verify the attestation object (more specifically the�
KeyRegistrationData object), and they also describe several other important characteristics of the authenticator,
including its AAID, supported authentication and registration assertion schemes, and key protection flags.�

These characteristics can be used when defining policies [�UAFProtocol] about which authenticators are acceptable
for registration or authentication.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this document, as �required. The keyword required
has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which
implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means to
ensure those fields are present.�



The metadata service described in this document defines a baseline method for relying parties to access the latest�
metadata statements.

Fig. 1 UAF Metadata Service Architecture Overview

2.1 Scope
This document describes the FIDO Metadata Service architecture in detail and it defines the structure and interface�
to access this service. It also defines the flow of the metadata related messages ��and presents the rationale behind
the design choices.

2.2 Detailed Architecture
The metadata "table-of-contents" (TOC) file contains a list of metadata statements �related to the authenticators
known to the FIDO Alliance (FIDO Authenticators).

The FIDO Server downloads the metadata TOC (file) from a well-known FIDO URL and caches it locally.�

The FIDO Server verifies the integrity and authenticity of this �metadata TOC file using the digital signature. It then�
iterates through the individual entries and loads the metadata statements related to authenticator AAIDs relevant to
the relying party.

Individual metadata statements will be downloaded from the URL specified in the entry of the TOC file, and may be��
cached by the FIDO Server as required.

The integrity of the metadata statements will be verified by the �FIDO Server using the hash value included in the
related entry of the metadata TOC file.�



Fig. 2 UAF Metadata Service Architecture

3. Metadata Service Details
This section is normative.

The relying party could also obtain metadata directly from authenticator vendors or other trusted sources.

3.1 Metadata TOC Format

3.1.1 Metadata TOC Payload Entry Dictionary

NOTE

The single arrow indicates the direction of the network connection, the double arrow indicates the direction of
the data flow.�

NOTE

The Metadata TOC (file) is freely accessible at a well-known URL published by the �FIDO Alliance.

NOTE

The relying party decides how frequently the metadata rervice is accessed to check for metadata TOC
updates.

NOTE

The relying party can decide whether it wants to use the metadata service and whether or not it wants to
accept certain authenticators for registration or authentication.

NOTE

The metadata service makes the metadata TOC object (see Metadata TOC) accessible to FIDO Servers.

This object is a "table-of-contents" for metadata, as it includes the AAID, the download URL and the hash
value of the individual metadata Statements. The TOC object contains one signature.



Represents the MetadataTOCPayloadEntry

WebIDL

dictionary MetadataTOCPayloadEntry {
    required AAID           aaid;
    required DOMString      hash;
    required DOMString      url;
    required StatusReport[] statusReports;
    required DOMString      timeOfLastStatusChange;
};

3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

aaid of type required AAID
The AAID of the authenticator this metadata TOC payload entry relates to. See [UAFProtocol] for the
definition of the AAID structure.�

hash of type required DOMString
base64url(string[1..512])

The hash value computed over the Base64url encoding of the UTF-8 representation of the JSON encoded
metadata statement available at url and as defined in [�UAFAuthnrMetadata]. The hash algorithm related
to the signature algorithm specified in the JWTHeader (see �Metadata TOC) must be used.

url of type required DOMString
Uniform resource locator (URL) of the encoded metadata statement for this authenticator model (identified�
by its AAID). This URL must point to the base64url encoding of the UTF-8 representation of the JSON
encoded Metadata Statement as defined in [�UAFAuthnrMetadata].

encodedMetadataStatement = Base64url(utf8(JSONMetadataStatement))

statusReports of type array of required StatusReport
An array of status reports applicable to this authenticator.

timeOfLastStatusChange of type required DOMString
ISO-8601 formatted date since when the status report array was set to the current value.

NOTE

This method of base64url-encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

NOTE

This method of the base64url encoding the UTF-8 representation is also used by JWT [JWT] to
avoid encoding ambiguities.

EXAMPLE 1: UAF Metadata TOC Payload
{ "no": 1234, "next-update": "2014-03-31",
  "entries": [
   { "aaid": "1234#5678", 
     "hash": "90da8da6de23248abb34da0d4861f4b30a793e198a8d5baa7f98f260db71acd4", 
     "url": "https://fidoalliance.org/metadata/1234%x23abcd", 
     "statusReports": [
                        { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-04"}
                    ],
     "timeOfLastStatusChange": "2014-01-04"
     },
   { "aaid": "9876#4321", 
     "hash": "785d16df640fd7b50ed174cb5645cc0f1e72b7f19cf22959052dd20b9541c64d",
     "url": "https://authnr-vendor-a.com/metadata/9876%x234321",
     "statusReports": [ 
                        { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-07"},
                        { status: "UPDATE_AVAILABLE", effectiveDate: "2014-03-08", 
                          url: "https://example.com/update1234" }
                    ],
     "timeOfLastStatusChange": "2014-02-19"
     }
  ]
}

NOTE



3.1.2 StatusReport dictionary

The latest StatusReport entry must reflect the "current" status. For example, if the latest entry has status�
USER_VERIFICATION_BYPASS, then it is recommended assuming an increased risk associated with all authenticators of
this AAID; if the latest entry has status UPDATE_AVAILABLE, then the update is intended to address at least all previous
issues reported in this StatusReport dictionary.

WebIDL

dictionary StatusReport {
    required AuthenticatorStatus status;
    DOMString                    effectiveDate;
    DOMString                    certificate;
    DOMString                    url;
};

3.1.2.1 Dictionary StatusReport Members

status of type required AuthenticatorStatus
Status of the authenticator. Additional fields �may be set depending on this value.

effectiveDate of type DOMString
ISO-8601 formatted date since when the status code was set, if applicable. If no date is given, the status
is assumed to be effective while present.

certificate of type DOMString
Base64-encoded [RFC4648] (not base64url!) DER [ITU-X690-2008] PKIX certificate value �related to the
current status, if applicable.

url of type DOMString
HTTPS URL where additional information may be found related to the current status, if applicable.

3.1.3 AuthenticatorStatus enum

This enumeration describes the status of an authenticator model as identified by its �AAID and potentially some
additional information (such as a specific attestation key).�

WebIDL

enum AuthenticatorStatus {
    "FIDO_CERTIFIED",
    "NOT_FIDO_CERTIFIED",
    "USER_VERIFICATION_BYPASS",
    "ATTESTATION_KEY_COMPROMISE",

The character # is a reserved character and not allowed in URLs [RFC3986]. As a consequence it has been
replaced by its hex value %x23.

The authenticator vendors can decide to let the metadata service publish its metadata statements or to
publish metadata statements themselves. Authenticator vendors can restrict access to the metadata
statements they publish themselves.

NOTE

Contains an AuthenticatorStatus and additional data associated with it, if any.

New StatusReport entries will be added to report known issues present in firmware updates.�

NOTE

As an example, this could be an Attestation Root Certificate (see [�UAFAuthnrMetadata]) related to a
set of compromised authenticators (ATTESTATION_KEY_COMPROMISE).

NOTE

For example a link to a web page describing an available firmware update in the case of status�
UPDATE_AVAILABLE, or a link to a description of an identified issue in the case of �status
USER_VERIFICATION_BYPASS.



    "USER_KEY_REMOTE_COMPROMISE",
    "USER_KEY_PHYSICAL_COMPROMISE",
    "UPDATE_AVAILABLE",
    "REVOKED"
};

Enumeration description
FIDO_CERTIFIED This authenticator is FIDO certified.�
NOT_FIDO_CERTIFIED This authenticator is not FIDO certified.�

USER_VERIFICATION_BYPASS
Indicates that malware is able to bypass the user verification. �This means that
the authenticator could be used without user's consent and potentially even
without user's knowledge.

ATTESTATION_KEY_COMPROMISE
Indicates that an attestation key for this authenticator is known to be
compromised. Additional data should be supplied, including the key identifier�
and the date of compromise, if known.

USER_KEY_REMOTE_COMPROMISE

This authenticator has identified weaknesses that allow �registered keys to be
compromised and should not be trusted. This would include both, e.g. weak
entropy that causes predictable keys to be generated or side channels that
allow keys or signatures to be forged, guessed or extracted.

USER_KEY_PHYSICAL_COMPROMISE
This authenticator has known weaknesses in its key protection mechanism(s)
that allow user keys to be extracted by an adversary in physical possession of
the device.

UPDATE_AVAILABLE

A software or firmware update is available for the device. �Additional data should
be supplied including a URL where users can obtain an update and the date the
update was published.

When this code is used, then the field �authenticatorVersion in the metadata
Statement [UAFAuthnrMetadata] must be updated, if the update fixes severe�
security issues, e.g. the ones reported by preceding StatusReport entries with
status code USER_VERIFICATION_BYPASS, ATTESTATION_KEY_COMPROMISE,
USER_KEY_REMOTE_COMPROMISE, USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

REVOKED
The FIDO Alliance has determined that this authenticator should not be trusted
for any reason, for example if it is known to be a fraudulent product or contain a
deliberate backdoor.

3.1.4 Metadata TOC Payload Dictionary

Represents the MetadataTOCPayload

WebIDL

dictionary MetadataTOCPayload {
    required Number                    no;
    required DOMString                 nextUpdate;
    required MetadataTOCPayloadEntry[] entries;
};

3.1.4.1 Dictionary MetadataTOCPayload Members

no of type required Number
The serial number of this UAF Metadata TOC Payload. Serial numbers must be consecutive and stricly
monotonical, i.e. the successor TOC will have a no value exactly incremented by one.

nextUpdate of type required DOMString
ISO-8601 formatted date when the next update will be provided at latest.

entries of type array of required MetadataTOCPayloadEntry
List of zero or more MetadataTOCPayloadEntry objects.

3.1.5 Metadata TOC

The metadata table of contents (TOC) is a JSON Web Token (see [JWT] and [JWS]).

It consists of three elements:

NOTE

Relying parties might want to inform users about available firmware�
updates.



The base64url encoding, without padding, of the UTF-8 encoded JWT Header (see example below),
the base64url encoding, without padding, of the UTF-8 encoded UAF Metadata TOC Payload ( see example at
the beginning of section Metadata TOC Format),
and the base64url-encoded, also without padding, JWS Signature [JWS] computed over the to-be-signed
payload, i.e.

tbsPayload = EncodedJWTHeader | "." | EncodedMetadataTOCPayload

All three elements of the TOC are concatenated by a period ("."):

MetadataTOC = EncodedJWTHeader | "." | EncodedMetadataTOCPayload | "." | EncodedJWSSignature

The hash algorithm related to the signing algorithm specified in the JWT Header (e.g. SHA256 in the �case of
"ES256") must also be used to compute the hash of the metadata statements (see section Metadata TOC Payload
Entry Dictionary).

3.1.5.1 Examples

This section is non-normative.

EXAMPLE 2: Encoded Metadata Statement
eyAiQUFJRCI6ICIxMjM0IzU2NzgiLA0KICAiQXR0ZXN0YXRpb25Sb290Q2VydGlmaWNhdGUiOiAi
TUlJQ1BUQ0NBZU9nQXdJQkFnSUpBT3VleHZVM095MndNQW9HQ0NxR1NNNDlCQU1DTUhzeElEQWVC
Z05WQkFNTQ0KRjFOaGJYQnNaU0JCZEhSbGMzUmhkR2x2YmlCU2IyOTBNUll3RkFZRFZRUUtEQTFH
U1VSUElFRnNiR2xoYm1ObA0KTVJFd0R3WURWUVFMREFoVlFVWWdWRmRITERFU01CQUdBMVVFQnd3
SlVHRnNieUJCYkhSdk1Rc3dDUVlEVlFRSQ0KREFKRFFURUxNQWtHQTFVRUJoTUNWVk13SGhjTk1U
UXdOakU0TVRNek16TXlXaGNOTkRFeE1UQXpNVE16TXpNeQ0KV2pCN01TQXdIZ1lEVlFRRERCZFRZ
VzF3YkdVZ1FYUjBaWE4wWVhScGIyNGdVbTl2ZERFV01CUUdBMVVFQ2d3Tg0KUmtsRVR5QkJiR3hw
WVc1alpURVJNQThHQTFVRUN3d0lWVUZHSUZSWFJ5d3hFakFRQmdOVkJBY01DVkJoYkc4Zw0KUVd4
MGJ6RUxNQWtHQTFVRUNBd0NRMEV4Q3pBSkJnTlZCQVlUQWxWVE1Ga3dFd1lIS29aSXpqMENBUVlJ
S29aSQ0KemowREFRY0RRZ0FFSDhodjJEMEhYYTU5L0JtcFE3UlplaEwvRk1HekZkMVFCZzl2QVVw
T1ozYWpudVE5NFBSNw0KYU16SDMzblVTQnI4ZkhZRHJxT0JiNThweEdxSEpSeVgvNk5RTUU0d0hR
WURWUjBPQkJZRUZQb0hBM0NMaHhGYg0KQzBJdDd6RTR3OGhrNUVKL01COEdBMVVkSXdRWU1CYUFG
UG9IQTNDTGh4RmJDMEl0N3pFNHc4aGs1RUovTUF3Rw0KQTFVZEV3UUZNQU1CQWY4d0NnWUlLb1pJ
emowRUF3SURTQUF3UlFJaEFKMDZRU1h0OWloSWJFS1lLSWpzUGtyaQ0KVmRMSWd0ZnNiRFN1N0Vy
SmZ6cjRBaUJxb1lDWmYwK3pJNTVhUWVBSGpJekE5WG02M3JydUF4Qlo5cHM5ejJYTg0KbFE9PSIs
DQogICJEZXNjcmlwdGlvbiI6ICJGSURPIEFsbGlhbmNlIFNhbXBsZSBVQUYgQXV0aGVudGljYXRv
ciIsDQogICJVc2VyVmVyaWZpY2F0aW9uTWV0aG9kcyI6IDIsDQogICJWYWxpZEF0dGFjaG1lbnRU
eXBlcyI6IDEsDQogICJLZXlQcm90ZWN0aW9uIjogNiwNCiAgIk1hdGNoZXJQcm90ZWN0aW9uIjog
MiwNCiAgIlNlY3VyZURpc3BsYXkiOiA0LA0KICAiU2VjdXJlRGlzcGxheUNvbnRlbnRUeXBlcyI6
IFsiaW1hZ2UvcG5nIl0sDQogICJTZWN1cmVEaXNwbGF5UE5HQ2hhcmFjdGVyaXN0aWNzIjogW1sw
LDAsMSw2NCwwLDAsMSwyMjQsMTYsMiwwLDAsMF1dLA0KICAiaXNTZWNvbmRGYWN0b3JPbmx5Ijog
ImZhbHNlIiwNCiAgIkljb24iOiAiZGF0YTppbWFnZS9wbmc7YmFzZTY0LGlWQk9SdzBLR2dvQUFB
QU5TVWhFVWdBQUFFOEFBQUF2Q0FZQUFBQ2l3SmZjQUFBQUFYTlNSMElBcnM0YzZRQUFBQVJuUVUx
QkFBQ3gNCmp3djhZUVVBQUFBSmNFaFpjd0FBRHNNQUFBN0RBY2R2cUdRQUFBYWhTVVJCVkdoRDda
cjVieFJsR01mOUt6VEI4QU0vWUVoRTJXN3ANClFaY1dLS0JjbFNwSEFUbEVMQVJFN2tORUNDQTNG
a1dLMENLS1NDRklzS0JjZ1ZDRFdHTkVTZEFZaWR3Z2dnSkJpUmlNaEZjLzR3eTgNCjg4NHp1OU5k
bG5HVGZaSlAybjNuTysrODg5MzNmdmVCQngrUHFDekprVFV2QmJMbXBVRFd2QlRJbXBjQ1NadlhM
Q2RYOVIwNVNrMTkNCmJiNWF0ZjU5OWZHKy9lckE1NDFxNDdhUDFMTFZhOVNJeVZOVWk4SWk4ZDVr
R1RzaTMwTkZ2N2FpOW43UVpQTXdiZHlzMmVyVTJYTXENClVkeTgrWmNhTm1HaW1FOHlYTjNSVWQz
YTE4bkYwZlVsb3ZaKzBDVHpXcGQyVmorZU9tMWJFeXk2RHg0aTVwVU1HV3ZlbzUwNnEyMjcNCmR0
dVdCSXVmZnI2b1dwVjBGUE5MaG93MTc1MU5tMjFMdlBIM3JWdFdqZno2NkxmcWw4dFg3RlJsOVlG
U1hzbVNzZWI5Y2VPR2JZazcNCk1OVWNHUGc4WnNiTWU5cmZRVWFhVi9KTVg5c3FkekRDU3ZwMGta
SG1UWmc5eDdiTEhjTW5UaGIxNmVKK21WZlFxOHlhVVpRTkc2NGkNClhaKzAva3E2dU9aRk8wUXRh
dGRXS2ZYblJROTlCajkxUjVPSUZuazU0ak4wbWtVaXFsTzNYRFcrTWwrOThtS0I2dFc3cldwWmNQ
YysNCjB6ZzR0THJZbFVjODZFNmVHRGpJTXViVnBjdXNlYXJmZ0lZR1JrNmJyaFpWci9KY0h6b29M
NzU1MGplZExFeG9wV2NBcGkyWlVxaHUNCjdKTHZyVnNRVTgxemt6T1BlZW1NUll2VnVRc1g3UGJp
RFFZNUp2Wm9uZnRLKzFWWThIOXV0eDUzMGgwb2Iram1SWXFqNm91YVl2RWUNCm5XL1dsWWpwOGN3
Yk1tNjgydFB3cVcxUjR0ai8yU0gxM0lSSllsNG1vWnZYcGlTcURyN2RYdFFIeGEvUEszLytCV3NL
MWRUZ0h1NlYNCjh0UUozYndGa3dwRnJVT1E1MHMxcjNsZXZtOHpaY3ExNytCQmF3N0s4bEVLNXF6
a1llYXJrOUE4cDdQM0d6REsrbmQzRFFvdys2VUMNCjhTVk44Mml1djM4aW03TnRhWHRWMUNWcTZS
Z3c0cGtzbWJkaTNidTJEZTdZZmFCQnhjcWZ2cVByVWpGUU5UUTIybGZkVVZWVDY4clQNCkpLRjVE
blNtVWpnZHFnNG1TUzlwbXNmREpSM0c2VG9IMGlXOWFWN0xXTEhZWEtsbFREdDBMVEF0a1lJYWFt
cDFRalZ2Kyt1eUdVeFYNCmRKMEROVlhTbStiMXFSeHBsODRkZGZYMUxwMU8vZDY5dHNvZDB2czVo
R3JlOXh1OG8rZnBMUjFjR2hOVEQ2WjU3QzlLTVdYZWZKZE8NClo5NGJiOW9xZDFST25TN3FJVFR6
SGltTXFpdmJPM2cwRGRWeWszV1FCaEJ6dEszNVlLTmRPbmM4TzNhY1M2ZkRaRmdLYVhMc0VKcDUN
CnJkcmxpQnFwODljSmNzL203VHZzMHJrakdmTjRiMGtQb1puM1VKdUlPcm5aMjJ5UDFmbXZVeCtP
NWdTcWViVjFtK3pTdVlOVmhxN1QNCldiRGlMVnZsanBsTGxvcDZDTFhQKzJxdHZHTElMLzF2aW1J
U2RNQmd6U29GWnl1NlRxZCtqenhnc1BhVjlCQ3FlZS9OallrNnY2bEsNCjljd2lVYy9TVHRmMUhE
cE0zYjU5Mnk3aDNUaHg1b3pLNjlITHBZV3VBd2FxUzVjdjI2cTdjZWI4ZWZWWWFSZVAzaUZVOHpq
MWtuU3cNClpYSE1tbkNqWTBPZ2FsbzdVUWZTQ00zcVFRcjJIL1hGUDdzc1h4NDVZbDkxQnllQ2Vw
NG1vWm9IKzFmRzN4RDR0VDd4OGt3eWo4bncNCmI5ZXYyNlYwQjZkKzdINHpLdnVkQUg1MzdGanF5
ek9IZEpuSEV1em1YcS9XanhPYnZOTWJ2N25oeXdzWDJhVnNXdEM4KzQ4YUxlYXANCkU3cDV3S1pp
MEEyQVFSVjVudlI0RSt1SmMrYjYxa0FwcUlueEJnbWQvNFY1UVAvbXQxOEhEQzdzUkhmdG1ldTVs
bWhWMHJuL0FMWDINCjMyYnFkNEJGbkR4N1ZpMWNXUzJ1ZmYwSWJCNDdxZXh4bVVqOVF1dFlqdXBk
M3RZRDZhYldCQk1yaCthcE5iT0tyTkYxK3VnQ2E0cmkNClhHZndNUFB0VmlhdmhVM1lNT0FBbnVV
Yi9SMDdMMHlPU2VPYWRFODhBcHNYRkdmZjMweW5obEpnTTUxQ1U2dk45RXpnbnB2SEJGVXkNCmlW
cmFlUGl3SjUzREY1WlRabm9tRU5nODVrTlVkMm9KaTJXcHI0T21ta2ZONHg0ekhmaVZGYzhEdjhO
enVoTnFPaWRpbEd2QTZER3UNCmVad083OEFBUW42Y2lFazYrcnc1VmN2anZxTkRZUE9vSVV3YUtT
aHJ4QXVYTGxrSDRhWXVHZk1ZRGMxMFdGNVRhMzFoUEpPZmNVaHINClUvSmxJTmk2YzZlbFJZZEJw
bzYrK1lmang2MWxHTmZSbTRNRDVySjFqM0ZvR0huakRTQk5hcllVZ01MeU1zektwYjd0WHBvSGZQ
czgNCmgzV3AxTHpOZk5rNTRYeEMxd0RHVW1ZelhZZWZoNnovY0t0Vm00RUJ4YTlWUUdEellyM0xy
VU1SakhFS2trN3phRktZUUEyaEdRVTENCnorODVORldwWERya3ozdngxMEdxeFE2QnplTmJvQms1
bjhrNG5lYlJoK2sxaFdmeFRGMEQxRXlXVXM1bnYrZGdRcUtheHp1Q2RFMGkNCnNIbDAyTlE4YWgw
bVhyMTJMYTNtMGY5d2lrOSt3TE5UTVkvODZNUG84eWkzMU9meG1UNlBXb3FHOStEWnVrWW5hNTZt



In order to produce the tbsPayload, we first need the base64url-encoded (without padding) JWT Header:�

then we have to append a period (".") and the base64url encoding of the EncodedMetadataTOCPayload (taken from the
example in section Metadata TOC Format):

and finally we have to append another period (".") followed by the base64url-encoded signature.�

The signature in the example above was computed with the following ECDSA key

3.1.6 Metadata TOC object Processing Rules

The FIDO Server must follow these processing rules:

U1p0NVdXU3kNCjVxVkExcndVeUpxWEFsbnpraWFpL2dIU0Q3UmtUeWlob2dBQUFBQkpSVTVFcmtK
Z2dnPT0iLA0KICAiQXNzZXJ0aW9uU2NoZW1lIjogIlVBRlYxVExWIiwNCiAgIkF1dGhlbnRpY2F0
aW9uQWxnb3JpdGhtIjogMSwNCiAgIkF0dGVzdGF0aW9uVHlwZXMiOiBbMTYzOTFdLA0KICAiVVBW
IjogW1sxLDBdXQ0KfQ0K

EXAMPLE 3: JWT Header
{"typ":"JWT",
 "alg":"ES256"
 "x5t#S256":"7231962210d2933ec993a77b4a7203898ab74cdf974ff02d2de3f1ec7cb9de68"}

EXAMPLE 4: Encoded JWT Header
eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ

EXAMPLE 5: tbsPayload
eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo

EXAMPLE 6: JWT
eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo.
AP-qoJ3VPzj7L6lCE1UzHzJYQnszFQ8d2hJz51sPASgyABK5VXOFnAHzBTQRRkgwGqULy6PtTyUV
zKxM0HrvoyZq

NOTE

The line breaks are for display purposes only.

EXAMPLE 7: ECDSA Key used for signature computation
x: d4166ba8843d1731813f46f1af32174b5c2f6013831fb16f12c9c0b18af3a9b4
y: 861bc2f803a2241f4939bd0d8ecd34e468e42f7fdccd424edb1c3ce7c4dd04e
d: 3744c426764f331f153e182d24f133190b6393cea480a8eec1c722fce161fe2d



1. The FIDO Server must be able to download the latest metadata TOC object from the well-known URL, when
appropriate. The nextUpdate field �of the Metadata TOC specifies a date when the �download should occur at
latest.

2. If the x5u attribute is present in the JWT Header, then:
1. The FIDO Server must verify that the URL specified by the �x5u attribute has the same web-origin as the

URL used to download the metadata TOC from. The FIDO Server should ignore the file if the web-origin�
differs (in order to prevent loading objects from arbitrary sites).

2. The FIDO Server must download the certificate (chain) from the URL specified ��by the x5u attribute [JWS].
The certificate chain �must be verified to properly chain to the metadata TOC signing trust anchor�
according to [RFC5280]. All certificates in the chain �must be checked for revocation according to
[RFC5280].

3. The FIDO Server should ignore the file if the chain cannot be verified or if one ��of the chain certificates is�
revoked.

3. If the x5u attribute is missing, the Metadata TOC signing trust anchor is considered the TOC signing certificate�
chain.

4. Verify the signature of the Metadata TOC object using the TOC signing certificate �chain (as determined by the
steps above). The FIDO Server should ignore the file if the signature is invalid. �It should also ignore the file if its�
number (no) is less or equal to the number of the last Metadata TOC object cached locally.

5. Write the verified object to a local cache as required.�
6. Iterate through the individual entries (of type MetadataTOCPayloadEntry). For each entry:

1. Ignore the entry if the AAID is not relevant to the relying party (e.g. not acceptable by any policy)
2. Download the metadata statement from the URL specified by the �field �url. Some authenticator vendors

might require authentication in order to provide access to the data. Conforming FIDO Servers should
support the HTTP Basic, and HTTP Digest authentication schemes, as defined in [�RFC2617].

3. Check whether the status report of the authenticator model identified by the �AAID has changed
compared to the cached entry by looking at the fields �timeOfLastStatusChange and statusReport. Update
the status of the cached entry. It is up to the relying party to specify behavior for authenticators with
status reports that indicate a lack of certification, or known security issues. �However, the status REVOKED
indicates significant security issues �related to such authenticators.

4. Compute the hash value of the (Base64url encoding without padding of the UTF-8 encoded) metadata
statement downloaded from the URL and verify the hash value to the hash specified �in the field �hash of
the metadata TOC object. Ignore the downloaded metadata statement if the hash value doesn't match.

5. Update the cached metadata statement according to the dowloaded one.

4. Considerations
This section is non-normative.

This section describes the key considerations for designing this metadata service.

Need for Authenticator Metadata When defining policies for �acceptable authenticators, it is often better to describe
the required authenticator characteristics in a generic way than to list individual authenticator AAIDs. The metadata
statements provide such information. Authenticator Metadata also provides the trust anchor required to verify
attestation objects.

The metadata service provides a standardized method to access such metadata statements.

Integrity and Authenticity Metadata statements include information relevant for the security. Some business
verticals might even have the need to document authenticator policies and trust anchors used for verifying
attestation objects for auditing purposes.

It is important to have a strong method to verify and proof integrity and authenticity and the freshness of metadata
statements. We are using a single digital signature to protect the integrity and authenticity of the Metadata TOC
object and we protect the integrity and authenticity of the individual metadata statements by including cryptographic
their hash values into the Metadata TOC object. This allows for flexible distribution of the �metadata statements and
the Metadata TOC object using standard content distribution networks.

Organizational Impact Authenticator vendors can delegate the publication of metadata statements to the metadata
service in its entirety. Even if authenticator vendors choose to publish metadata statements themselves, the effort is
very limited as the metadata statement can be published like a normal document on a website. The FIDO Alliance
has control over the FIDO certification process and receives the Metadata as part of that �process anymway. With this
metadata service, the list of known Authenticators needs to be updated, signed and published regularly. A single
signature needs to be generated in order to protect the integrity and authenticity of the metadata TOC object.

NOTE

Authenticators with an unacceptable status should be marked accordingly. This information is
required for building registration and authentication policies included in the registration request and
the authentication request [UAFProtocol].



Performance Impact Metadata TOC objects and metadata statements can be cached by the FIDO Server.

The update policy can be specified by the �relying party.

The metadata TOC object includes a date for the next scheduled update. As a result there is no additional impact to
the FIDO Server during FIDO Authentication or FIDO Registration operations.

Updating the Metadata TOC object and metadata statements can be performed asynchronously. This reduces the
availability requirements for the metadata service and the load for the FIDO Server.

The metadata TOC object itself is relatively small as it does not contain the individual metadata statements. So
downloading the metadata TOC object does not generate excessive data traffic.�

Individual metadata statements are expected to change less frequently than the metadata TOC object. Only the
modified metadata statements need be downloaded by the FIDO Server.�

Non-public Metadata Statements Some authenticator vendors might want to provide access to metadata
statements only to their subscribed customers.

They can publish the metadata statements on access protected URLs. The access URL and the cryptographic hash
of the metadata statement is included in the metadata TOC object.

High Security Environments Some high security environments might only trust internal policy authorities. FIDO
Servers in such environments could be restricted to use metadata TOC objects from a proprietary trusted source
only. The metadata service is the baseline for most relying parties.

Extended Authenticator Information Some relying parties might want additional information about authenticators
before accepting them. The policy configuration is under control of the relying party, so it is possible to �only accept
authenticators for which additional data is available and meets the requirements.

A. References
A.1 Normative references
[JWS]

M. Jones JSON Web Signature (JWS). Internet-Draft (Work in progress.) URL: http://tools.ietf.org/html/draft-
ietf-jose-json-web-signature

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). 6 July 2012. Internet Draft. URL:
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk; Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile���, IETF, May 2008, URL:
http://www.ietf.org/rfc/rfc5280.txt

[UAFAuthnrMetadata]
D. Baghdasaryan, B. Hill FIDO UAF Authenticator Metadata Statements v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf��

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

A.2 Informative references
[FIDOGlossary]

R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),�
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811).
International Telecommunications Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

[RFC2617]
J. Franks; P. Hallam-Baker; J. Hostetler; S. Lawrence; P. Leach; A. Luotonen; L. Stewart. HTTP Authentication:
Basic and Digest Access Authentication. June 1999. Draft Standard. URL: https://tools.ietf.org/html/rfc2617

[RFC3986]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax�. January 2005.
Internet Standard. URL: https://tools.ietf.org/html/rfc3986

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�. FIDO Alliance Review Draft
(Work in progress.) URL: http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

[WebIDL]
Cameron McCormack. Web IDL. 19 April 2012. W3C Candidate Recommendation. URL:
http://www.w3.org/TR/WebIDL/

http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-authnr-metadata-v1.0-rd-20140209.pdf
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/




FIDO UAF Registry of Predefined Values�
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-reg-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf��
Editors:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
This document defines all the strings and constants reserved by UAF protocols. �The
values defined in this document are referenced by various UAF specifications.��

Status of This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of�
implementing the Specification. No rights �are granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce �portions of this Specification for�

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-reg-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-reg-v1.0-rd-20140209.pdf
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third�
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not,�
and shall not be held, responsible in any manner for identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview
3. Authenticator Characteristics

3.1 User Verification Methods�
3.2 Key Protection Types
3.3 Matcher Protection Types
3.4 Authenticator Attachment Hints
3.5 Transaction Confirmation Display Types�
3.6 Tags used for crypto algorithms and types

3.6.1 Authentication Algorithms
3.6.2 Public Key Representation Formats

3.7 Assertion Schemes
4. Predefined Tags�

4.1 Tags used in the protocol
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [��FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“recommended”, “may”, and “optional” in this document are to be interpreted as
described in [RFC2119].



2. Overview
This section is non-normative.

This document defines the registry of UAF-specific constants that are used and��
referenced in various UAF specifications. �It is expected that, over time, new constants
will be added to this registry. For example new authentication algorithms and new types
of authenticator characteristics will require new constants to be defined �for use within
the specifications.�

3. Authenticator Characteristics
This section is normative.

3.1 User Verification Methods�
The USER_VERIFY constants are flags in a bitfield represented ��as a 32 bit long integer.
They describe the methods and capabilities of an UAF authenticator for locally verifying
a user. The operational details of these methods are opaque to the server. These
constants are used in the authoritative metadata for an authenticator, reported and
queried through the UAF Discovery APIs, and used to form authenticator policies in
UAF protocol messages.

All user verification methods must be performed locally by the authenticator �in order to
meet FIDO privacy principles.

USER_VERIFY_PRESENCE 0x01
This flag �must be set if the authenticator is able to confirm user presence �in any
fashion. If this flag and no �other is set for user verification, the guarantee is only�
that the authenticator cannot be operated without some human intervention, not
necessarily that the presence verification provides any level �of authentication of
the human's identity. (e.g. a device that requires a touch to activate)

USER_VERIFY_FINGERPRINT 0x02
This flag �must be set if the authenticator uses any type of measurement of a
fingerprint for user verification.��

USER_VERIFY_PASSCODE 0x04
This flag �must be set if the authenticator uses a local-only passcode (i.e. a
passcode not known by the server) for user verification.�

USER_VERIFY_VOICEPRINT 0x08
This flag �must be set if the authenticator uses a voiceprint (also known as speaker
recognition) for user verification.�

USER_VERIFY_FACEPRINT 0x10
This flag �must be set if the authenticator uses any manner of face recognition to
verify the user.

USER_VERIFY_LOCATION 0x20
This flag �must be set if the authenticator uses any form of location sensor or
measurement for user verification.�

USER_VERIFY_EYEPRINT 0x40
This flag �must be set if the authenticator uses any form of eye biometrics for user
verification.�

USER_VERIFY_PATTERN 0x80
This flag �must be set if the authenticator uses a drawn pattern for user verification.�

USER_VERIFY_HANDPRINT 0x100
This flag �must be set if the authenticator uses any measurement of a full hand
(including palm-print, hand geometry or vein geometry) for user verification.�

USER_VERIFY_NONE 0x200
This flag �must be set if the authenticator will respond without any user interaction
(e.g. Silent Authenticator).

USER_VERIFY_ALL 0x400



If an authenticator sets multiple flags for user verification types, it ��may also set this
flag to indicate that all verification methods will be enforced ��(e.g. faceprint AND
voiceprint). If flags for multiple �user verification methods are set and this flag is not��
set, verification with �only one is necessary (e.g. fingerprint OR passcode).�

3.2 Key Protection Types
The KEY_PROTECTION constants are flags in a bit field ��represented as a 16 bit long
integer. They describe the method an authenticator uses to protect the private key
material for FIDO registrations. Refer to [UAFAuthnrCommands] for more details on the
relevance of keys and key protection. These constants are used in the authoritative
metadata for an authenticator, reported and queried through the UAF Discovery APIs,
and used to form authenticator policies in UAF protocol messages.

When used in metadata describing an authenticator, several of these flags are �exclusive
of others (i.e. can not be combined) - the certified metadata may have �at most one of
the mutually exclusive bits set to 1. When used in authenticator policy, any bit may be
set to 1, e.g. to indicate that a server is willing to accept authenticators using either
KEY_PROTECTION_SOFTWARE or KEY_PROTECTION_HARDWARE.

KEY_PROTECTION_SOFTWARE 0x01
This flag �must be set if the authenticator uses software-based key management.
Exclusive in authenticator metadata with KEY_PROTECTION_HARDWARE,
KEY_PROTECTION_TEE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_HARDWARE 0x02
This flag �should be set if the authenticator uses hardware-based key
management. Exclusive in authenticator metadata with KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_TEE 0x04
This flag �should be set if the authenticator uses the Trusted Execution
Environment [TEE] for key management. In authenticator metadata, this flag�
should be set in conjunction with KEY_PROTECTION_HARDWARE. Exclusive in
authenticator metadata with KEY_PROTECTION_SOFTWARE,
KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_SECURE_ELEMENT 0x08
This flag �should be set if the authenticator uses a Secure Element
[SecureElement] for key management. In authenticator metadata, this flag should�
be set in conjunction with KEY_PROTECTION_HARDWARE. Exclusive in authenticator
metadata with KEY_PROTECTION_TEE, KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_REMOTE_HANDLE 0x10
This flag �must be set if the authenticator does not store (wrapped) UAuth keys at
the client, but relies on a server-provided key handle. This flag �must be set in
conjunction with one of the other KEY_PROTECTION flags to indicate how the local�
key handle wrapping key and operations are protected. Servers may unset this
flag in authenticator policy if they are not prepared to store and return �key
handles, for example, if they have a requirement to respond indistinguishably to
authentication attempts against userIDs that do and do not exist. Refer to
[UAFProtocol] for more details.

3.3 Matcher Protection Types

NOTE

These flags must be set according to the �effective security of the keys, in order to
follow the assumptions made in [FIDOSecRef]. For example, if a key is stored in
a secure element but software running on the FIDO User Device could call a
function in the secure element to export the key either in the clear or using an
arbitrary wrapping key, then the effective security is KEY_PROTECTION_SOFTWARE
and not KEY_PROTECTION_SECURE_ELEMENT.



The MATCHER_PROTECTION constants are flags in a bit field ��represented as a 16 bit long
integer. They describe the method an authenticator uses to protect the matcher that
performs user verification. �These constants are used in the authoritative metadata for
an authenticator, reported and queried through the UAF Discovery APIs, and used to
form authenticator policies in UAF protocol messages. Refer to [UAFAuthnrCommands]
for more details on the matcher component.

MATCHER_PROTECTION_SOFTWARE 0x01
This flag �must be set if the authenticator's matcher is running in software.
Exclusive in authenticator metadata with MATCHER_PROTECTION_TEE,
MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_TEE 0x02
This flag �should be set if the authenticator's matcher is running inside the Trusted
Execution Environment [TEE]. Exclusive in authenticator metadata with
MATCHER_PROTECTION_SOFTWARE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_ON_CHIP 0x04
This flag �should be set if the authenticator's matcher is running on the chip.
Exclusive in authenticator metadata with MATCHER_PROTECTION_TEE,
MATCHER_PROTECTION_SOFTWARE

3.4 Authenticator Attachment Hints
The ATTACHMENT_HINT constants are flags in a bit field ��represented as a 32 bit long. They
describe the method an authenticator uses to communicate with the FIDO User Device.
These constants are reported and queried through the UAF Discovery APIs
[UAFAppAPIAndTransport], and used to form Authenticator policies in UAF protocol
messages. Because the connection state and topology of an authenticator may be
transient, these values are only hints that can be used by server-supplied policy to
guide the user experience, e.g. to prefer a device that is connected and ready for
authenticating or confirming a low-value transaction, �rather than one that is more secure
but requires more user effort.

ATTACHMENT_HINT_INTERNAL 0x01
This flag �may be set to indicate that the authenticator is permanently attached to
the FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able
to be used both locally and remotely. In such a case, the FIDO client must filter�
and exclusively report only the relevant bit during Discovery and when performing
policy matching.

This flag cannot be combined with any other �ATTACHMENT_HINT flags.�

NOTE

These flags must be set according to the �effective security of the matcher, in
order to follow the assumptions made in [FIDOSecRef]. For example, if a
passcode based matcher is implemented in a secure element, but the passcode
is expected to be provided as unauthenticated parameter, then the effective
security is MATCHER_PROTECTION_SOFTWARE and not MATCHER_PROTECTION_ON_CHIP.

NOTE

These flags are not a mandatory part of authenticator metadata and, �when
present, only indicate possible states that may be reported during authenticator
discovery.



ATTACHMENT_HINT_EXTERNAL 0x02
This flag �may be set to indicate, for a hardware-based authenticator, that it is
removable or remote from the FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able to
be used both locally and remotely. In such a case, the FIDO UAF Client must filter�
and exclusively report only the relevant bit during discovery and when performing
policy matching.

ATTACHMENT_HINT_WIRED 0x04
This flag �may be set to indicate that an external authenticator currently has an
exclusive wired connection, e.g. through USB, Firewire or similar, to the FIDO
User Device.

ATTACHMENT_HINT_WIRELESS 0x08
This flag �may be set to indicate that an external authenticator communicates with
the FIDO User Device through a personal area or otherwise non-routed wireless
protocol, such as Bluetooth or NFC.

ATTACHMENT_HINT_NFC 0x10
This flag �may be set to indicate that an external authenticator is able to
communicate by NFC to the FIDO User Device. As part of authenticator metadata,
or when reporting characteristics through discovery, if this flag is set, the�
ATTACHMENT_HINT_WIRELESS flag �should also be set as well.

ATTACHMENT_HINT_BLUETOOTH 0x20
This flag �may be set to indicate that an external authenticator is able to
communicate using Bluetooth with the FIDO User Device. As part of authenticator
metadata, or when reporting characteristics through discovery, if this flag is set,�
the ATTACHMENT_HINT_WIRELESS flag �should also be set.

ATTACHMENT_HINT_NETWORK 0x40
This flag �may be set to indicate that the authenticator is connected to the FIDO
User Device ver a non-exclusive network (e.g. over a TCP/IP LAN or WAN, as
opposed to a PAN or point-to-point connection).

ATTACHMENT_HINT_READY 0x80
Thif flag �may be set to indicate that an external authenticator is in a "ready" state.
This flag �is set by the ASM at its discretion.

ATTACHMENT_HINT_WIFI_DIRECT 0x100
This flag �may be set to indicate that an external authenticator is able to
communicate using WiFi Direct with the FIDO User Device. As part of
authenticator metadata and when reporting characteristics through discovery, if
this flag is set, the �ATTACHMENT_HINT_WIRELESS flag �should also be set.

3.5 Transaction Confirmation Display Types�
The TRANSACTION_CONFIRMATION_DISPLAY constants are flags �in a bit field represented as�
a 16 bit long integer. They describe the availability and implementation of a transaction
confirmation display capability required �for the transaction confirmation operation.�
These constants are used in the authoritative metadata for an authenticator, reported
and queried through the UAF Discovery APIs, and used to form authenticator policies in

NOTE

Generally this should indicate that the device is immediately available to
perform user verification without additional �actions such as connecting the
device or creating a new biometric profile enrollment, but the exact�
meaning may vary for different types of devices. For example, a USB
authenticator may only report itself as ready when it is plugged in, or a
Bluetooth authenticator when it is paired and connected, but an NFC-based
authenticator may always report itself as ready.



UAF protocol messages. Refer to [UAFAuthnrCommands] for more details on the
security aspects of TransactionConfirmation Display.�

TRANSACTION_CONFIRMATION_DISPLAY_ANY 0x01
This flag �must be set to indicate, that some form of transaction confirmation�
display is available on this authenticator.

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE 0x02
This flag �must be set to indicate, that a software-based transaction confirmation�
display operating in a privileged context is available on this authenticator.

A FIDO client that is capable of providing this capability may set this bit for all
authenticators of type ATTACHMENT_HINT_INTERNAL, even if the authoritative
metadata for the authenticator does not indicate this capability.

TRANSACTION_CONFIRMATION_DISPLAY_TEE 0x04
This flag �should be set to indicate that the authenticator implements a transaction
confirmation �display in a Trusted Execution Environment ([TEE],
[TEESecureDisplay]).

TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE 0x08
This flag �should be set to indicate that a transaction confirmation display based on�
hardware assisted capabilities is available on this authenticator.

TRANSACTION_CONFIRMATION_DISPLAY_REMOTE 0x10
This flag �should be set to indicate that the transaction confirmation display �is
provided on a distinct device from the FIDO User Device.

3.6 Tags used for crypto algorithms and types
These tags indicate the specific authentication algorithms, public key formats and other�
crypto relevant data.

3.6.1 Authentication Algorithms

The UAF_ALG_SIGN constants are 16 bit long integers indicating the specific �signature
algorithm and encoding.

UAF_ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW 0x01
An ECDSA signature on the NIST secp256r1 curve which must have raw R and S
buffers, encoded in big-endian order.

I.e. [R (32 bytes), S (32 bytes)]

UAF_ALG_SIGN_SECP256R1_ECDSA_SHA256_DER 0x02
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the NIST
secp256r1 curve.

NOTE

Software based transaction confirmation displays might be implemented�
within the boundaries of the ASM rather than by the authenticator itself
[UAFASM].

NOTE

FIDO UAF supports RAW and DER signature encodings in order to allow small
footprint authenticator implementations.



I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

UAF_ALG_SIGN_RSASSA_PSS_SHA256_RAW 0x03
RSASSA-PSS [RFC3447] signature must have raw S buffers, encoded in big-
endian order [RFC4055] [RFC4056]. The default parameters as specified in�
[RFC4055] must be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal�
value 0xBC.

I.e. [ S (256 bytes) ]

UAF_ALG_SIGN_RSASSA_PSS_SHA256_DER 0x04
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing
the RSASSA-PSS [RFC3447] signature [RFC4055] [RFC4056]. The default
parameters as specified in [�RFC4055] must be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal�
value 0xBC.

I.e. a DER encoded OCTET STRING (including its tag and length bytes).

UAF_ALG_SIGN_SECP256K1_ECDSA_SHA256_RAW 0x05
An ECDSA signature on the secp256k1 curve which must have raw R and S
buffers, encoded in big-endian order.

I.e.[R (32 bytes), S (32 bytes)]

UAF_ALG_SIGN_SECP256K1_ECDSA_SHA256_DER 0x06
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the secp256k1
curve.

I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

3.6.2 Public Key Representation Formats

The UAF_ALG_KEY constants are 16 bit long integers indicating the specific �Public Key
algorithm and encoding.

UAF_ALG_KEY_ECC_X962_RAW 0x100
Raw ANSI X9.62 formatted Elliptic Curve public key [SEC1].

I.e. [0x04, X (32 bytes), Y (32 bytes)] . Where the byte 0x04 denotes the
uncompressed point compression method.

UAF_ALG_KEY_ECC_X962_DER 0x101

NOTE

FIDO UAF supports RAW and DER encodings in order to allow small footprint
authenticator implementations. By definition, the authenticator must encode the�
public key as part of the registration assertion.



DER [ITU-X690-2008] encoded ANSI X.9.62 formatted SubjectPublicKeyInfo
[RFC5480] specifying an elliptic curve public key.

I.e. a DER encoded SubjectPublicKeyInfo as defined in [�RFC5480].

Authenticator implementations must generate namedCurve in the ECParameters
object which is included in the AlgorithmIdentifier. A FIDO UAF Server must
accept namedCurve in the ECParameters object which is included in the
AlgorithmIdentifier.

UAF_ALG_KEY_RSA_2048_PSS_RAW 0x102
Raw encoded RSASSA-PSS public key [RFC3447].

The default parameters according to [RFC4055] must be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with �hexadecimal
value 0xBC.

That is, [n (256 bytes), e (N-n bytes)] . Where N is the total length of the field.�

This total length should be taken from the object containing this key, e.g. the TLV
encoded field.�

UAF_ALG_KEY_RSA_2048_PSS_DER 0x103
ASN.1 DER [ITU-X690-2008] encoded RSASSA-PSS [RFC3447] public key
[RFC4055].

The default parameters according to [RFC4055] must be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256
Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.
Trailer Field value of 1, which represents the trailer field with hexadecimal�
value 0xBC.

That is, a DER encoded SEQUENCE { n INTEGER, e INTEGER } .

3.7 Assertion Schemes
Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange
an asymmetric authentication key generated by the authenticator. The
authenticator must generate a key pair (UAuth.pub/UAuth.priv) to be used with
algorithm suites listed in section Authentication Algorithms (with prefix �UAF_ALG).
This assertion scheme is using a compact Tag Length Value (TLV) encoding for
the KRD and SignData messages generated by the authenticators. This is the
default assertion scheme for the UAF protocol.

4. Predefined Tags�
This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV)
sequence. The tag is a 2-byte unique unsigned value describing the type of field �the
data represents, the length is a 2-byte unsigned value indicating the size of the value in



bytes, and the value is the variable-sized series of bytes which contain data for this item
in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits �(values up to 0x3FFF)
should be used to accommodate the limitations of some hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must
abort processing the entire message if it cannot process that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by
recursive descent.

4.1 Tags used in the protocol
The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1_REG_ASSERTION 0x3E01
The content of this tag is the authenticator response to a Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02
The content of this tag is the authenticator response to a Sign command.

TAG_UAFV1_KRD 0x3E03
Indicates Key Registration Data.

TAG_UAFV1_SIGNED_DATA 0x3E04
Indicates data signed by the authenticator using UAuth.priv key.

TAG_ATTESTATION_CERT 0x2E05
Indicates DER encoded attestation certificate.�

TAG_SIGNATURE 0x2E06
Indicates a cryptographic signature.

TAG_ATTESTATION_BASIC_FULL 0x3E07
Indicates full basic attestation as defined in [�UAFProtocol].

TAG_ATTESTATION_BASIC_SURROGATE 0x3E08
Indicates surrogate basic attestation as defined in [�UAFProtocol].

TAG_KEYID 0x2E09
Represents a generated KeyID.

TAG_FINAL_CHALLENGE 0x2E0A
Represents a generated final challenge as defined in [��UAFProtocol].

TAG_AAID 0x2E0B
Represents an Authenticator Attestation ID as defined in [�UAFProtocol].

TAG_PUB_KEY 0x2E0C
Represents a generated public key.

TAG_COUNTERS 0x2E0D
Represents the use counters for an authenticator.

TAG_ASSERTION_INFO 0x2E0E
Represents authenticator information necessary for message processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F
Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10
Represents a hash of the transaction content sent to the authenticator.

TAG_EXTENSION 0x3E11, 0x3E12
This is a composite tag indicating that the content is an extension.

TAG_EXTENSION_ID 0x2E13
Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8
string.

TAG_EXTENSION_DATA 0x2E14
Represents extension data. Content of this tag is a UINT8[] byte array.

A. References
A.1 Normative references



[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic�
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER), (T-REC-X.690-200811). International Telecommunications
Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1�. February 2003. Informational. URL:
https://tools.ietf.org/html/rfc3447

[RFC4055]
J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSA�
Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate�
and Certificate Revocation List (CRL) Profile��. June 2005. Proposed Standard.
URL: https://tools.ietf.org/html/rfc4055

[RFC4056]
J. Schaad. Use of the RSASSA-PSS Signature Algorithm in Cryptographic
Message Syntax (CMS). June 2005. Proposed Standard. URL:
https://tools.ietf.org/html/rfc4056

[RFC5480]
S. Turner; D. Brown; K. Yiu; R. Housley; T. Polk. Elliptic Curve Cryptography
Subject Public Key Information. March 2009. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5480

[SEC1]
Standards for Efficient Cryptography Group (SECG), �SEC1: Elliptic Curve
Cryptography, Version 2.0, September 2000.

A.2 Informative references
[FIDOSecRef]

R. Lindemann, D. Baghdasaryan, B. Hill FIDO Security Reference v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
security-ref-v1.0-rd-20140209.pdf

[SecureElement]
GlobalPlatform Card Specifications� GlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.asp�

[TEE]
GlobalPlatform Trusted Execution Environment Specifications� GlobalPlatform.
Accessed March 2014. URL: https://www.globalplatform.org/specifications.asp�

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications� GlobalPlatform.
Accessed March 2014. URL: https://www.globalplatform.org/specifications.asp�

[UAFASM]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator-Specific Module API v1.0�.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf��

[UAFAppAPIAndTransport]
B. Hill FIDO UAF Application API and Transport Binding Specification v1.0�. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
client-api-transport-v1.0-rd-20140209.pdf

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp FIDO UAF Authenticator Commands v1.0. FIDO
Alliance Review Draft (Work in progress.) URL: http://fidoalliance.org/specs/fido-��
authnr-cmds-v1.0-rd-20140209.pdf

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
http://secg.org/download/aid-780/sec1-v2.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-security-ref-v1.0-rd-20140209.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-asm-api-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-client-api-transport-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-authnr-cmds-v1.0-rd-20140209.pdf


[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf


FIDO AppID and Facet Specification v1.0�
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-appid-and-facets-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-appid-and-facets-v1.0-ID-20141009.html��
Editors:

Dirk Balfanz, Google, Inc.
Brad Hill, PayPal, Inc.

Contributors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
The FIDO family of protocols introduce a new security concept, Application Facets, to describe the scope of user credentials and how a trusted
computing base which supports application isolation may make access control decisions about which keys can be used by which applications
and web origins.

This document describes the motivations for and requirements for implementing the Application Facet concept and how it applies to the FIDO
protocols.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index� at
https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance
Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is hereby granted to use the Specification�
solely for the purpose of implementing the Specification. No rights �are granted to prepare derivative works of this Specification. Entities�
seeking permission to reproduce portions of this Specification for other uses must contact the �FIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual �property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,�
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Motivation
2.2 Avoiding App-Phishing
2.3 Comparison to OAuth and OAuth2
2.4 Non-Goals

3. The AppID and FacetID Assertions
3.1 Processing Rules for AppID and FacetID Assertions

3.1.1 Determining the FacetID of a Calling Application
3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
3.1.3 TrustedFacets structure

3.1.3.1 Dictionary TrustedFacets Members
3.1.4 AppID Example 1:

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-appid-and-facets-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-appid-and-facets-v1.0-ID-20141009.html
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com
https://www.noknok.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact


3.1.5 AppID Example 2:
3.1.6 Obtaining FacetID of Android Native App
3.1.7 Additional Security Considerations

3.1.7.1 Wildcards in TrustedFacet identifiers�

A. References
A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

This document applies to both the U2F protocol and the UAF protocol. UAF specific terminology used in this document is defined in��
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.�

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

Modern networked applications typically present several ways that a user can interact with them. This document introduces the concept of an
Application Facet to describe the identities of a single logical application across various platforms. For example, the application MyBank may
have an Android app, an iOS app, and a Web app accessible from a browser. These are all facets of the MyBank application.

The FIDO architecture provides for simpler and stronger authentication than traditional username and password approaches while avoiding
many of the shortfalls of alternative authentication schemes. At the core of the FIDO protocols are challenge and response operations
performed with a public/private keypair that serves as a user's credential.

To minimize frequently-encountered issues around privacy, entanglements with concepts of "identity", and the necessity for trusted third
parties, keys in FIDO are tightly scoped and dynamically provisioned between the user and each Relying Party and only optionally associated
with a server-assigned username. This approach contrasts with, for example, traditional PKIX client certificates �as used in TLS, which introduce
a trusted third party, mix in their implementation details identity assertions with holder-of-key cryptographic proofs, lack audience restrictions,
and may even be sent in the cleartext portion of a protocol handshake without the user's notification or consent.�

While the FIDO approach is preferable for many reasons, it introduces several challenges.

What set of Web origins and native applications (facets) make up a single logical application and how can they be reliably identified?�
How can we avoid making the user register a new key for each web browser or application on their device that accesses services
controlled by the same target entity?
How can access to registered keys be shared without violating the security guarantees around application isolation and protection from
malicious code that users expect on their devices?
How can a user roam credentials between multiple devices, each with a user-friendly Trusted Computing Base for FIDO?

This document describes how FIDO addresses these goals (where adequate platform mechanisms exist for enforcement) by allowing an
application to declare a credential scope that crosses all the various facets it presents to the user.

2.1 Motivation
FIDO conceptually sets a scope for registered keys to the tuple of (Username, Authenticator, Relying Party). But what constitutes a Relying
Party? It is quite common for a user to access the same set of services from a Relying Party, on the same device, in one or more web
browsers as well as one or more dedicated apps. As the Relying Party may require the user to perform a costly ceremony in order to prove her
identity and register a new FIDO key, it is undesirable that the user should have to repeat this ceremony multiple times on the same device,
once for each browser or app.

2.2 Avoiding App-Phishing
FIDO provides for user-friendly verification ceremonies to allow access to registered keys, �such as entering a simple PIN code and touching a
device, or scanning a finger. It should �not matter for security purposes if the user re-uses the same verification inputs across �Relying Parties,
and in the case of a biometric, she may have no choice.

Modern operating systems that use an "app store" distribution model often make a promise to the user that it is "safe to try" any app. They do
this by providing strong isolation between applications, so that they may not read each others' data or mutually interfere, and by requiring
explicit user permission to access shared system resources.

If a user were to download a maliciously constructed game that instructs her to activate her FIDO authenticator in order to "save your
progress" but actually unlocks her banking credential and takes over her account, FIDO has failed, because the risk of phishing has only been
moved from the password to an app download. FIDO must not violate a platform's promise that any app is "safe to try" by keeping good
custody of the high-value shared state that a registered key represents.

2.3 Comparison to OAuth and OAuth2
The OAuth and OAuth2 of protocols were designed for a server-to-server security model with the assumption that each application instance
can be issued, and keep, an "application secret". This approach is ill-suited to the "app store" security model. Although it is common for
services to provision an OAuth-style application secret into their apps in an attempt to allow only authorized/official apps to connect, any such�
"secret" is in fact shared among everyone with access to the app store and can be trivially recovered thorough basic reverse engineering.

In contrast, FIDO's facet concept is designed for the "app store" model from the start. It relies on client-side platform isolation features to make
sure that a key registered by a user with a member of a well-behaved "trusted club" stays within that trusted club, even if the user later installs



a malicious app, and does not require any secrets hard-coded into a shared package to do so. The user must, however, still make good
decisions about which apps and browsers they are willing to preform a registration ceremony with. App store policing can assist here by
removing applications which solicit users to register FIDO keys to for Relying Parties in order to make illegitmate or fraudulent use of them.

2.4 Non-Goals
The Application Facet concept does not attempt to strongly identify the calling application to a service across a network. Remote attestation of
an application identity is an explicit non-goal.

If an unauthorized app can convince a user to provide all the information to it required to register a new FIDO key, the Relying Party cannot
use FIDO protocols or the Facet concept to recognize as unauthorized, or deny such an application from performing FIDO operations, and an
application that a user has chosen to trust in such a manner can also share access to a key outside of the mechanisms described in this
document.

The facet mechanism provides a way for registered keys to maintain their proper scope when created and accessed from a Trusted Computing
Base (TCB) that provides isolation of malicious apps. A user can also roam their credentials between multiple devices with user-friendly TCBs
and credentials will retain their proper scope if this mechanism is correctly implemented by each. However, no guarantees can be made in
environments where the TCB is user-hostile, such as a device with malicious code operating with "root" level permissions. On environments
that do not provide application isolation but run all code with the privileges of the user, (e.g. traditional desktop operating systems) an intact
TCB, including web browsers, may successfully enforce scoping of credentials for web origins only, but cannot meaningfully enforce
application scoping.

3. The AppID and FacetID Assertions
When a user performs a Registration operation [UAFArchOverview] a new private key is created by their authenticator, and the public key is
sent to the Relying Party. As part of this process, each key is associated with an AppID. The AppID is a URL carried as part of the protocol
message sent by the server and indicates the target for this credential. By default, the audience of the credential is restricted to the Same
Origin of the AppID. In some circumstances, a Relying Party may desire to apply a larger scope to a key. If that AppID URL has the https
scheme, a FIDO client may be able to dereference and process it as a TrustedFacetList that designates a scope or audience restriction that
includes multiple facets, such as other web origins within the same DNS zone of control of the AppID's origin, or URLs indicating the identity of
other types of trusted facets such as mobile apps.

3.1 Processing Rules for AppID and FacetID Assertions

3.1.1 Determining the FacetID of a Calling Application

In the Web case, the FacetID must be the Web Origin [RFC6454] of the web page triggering the FIDO operation, written as a URI with an
empty path. Default ports are omitted and any path component is ignored.

An example FacetID is shown below:

https://login.mycorp.com/

In the Android [ANDROID] case, the FacetID must be a URI derived from the SHA-1 hash of the APK signing certificate [�APK-Signing], such
as:

android:apk-key-hash:<sha1_hash-of-apk-signing-cert>

The SHA-1 hash can be computed as follows:

In the iOS [iOS] case, the FacetID must be the BundleID [BundleID] URI of the application:

ios:bundle-id:<ios-bundle-id-of-app>

3.1.2 Determining if a Caller's FacetID is Authorized for an AppID

1. If the AppID is not an HTTPS URL, and matches the FacetID of the caller, no additional processing is necessary and the operation may
proceed.

2. If the AppID is null or empty, the client must set the AppID to be the FacetID of the caller, and the operation may proceed without
additional processing.

3. If the caller's FacetID is an https:// Origin sharing the same host as the AppID, (e.g. if an application hosted at
https://fido.example.com/myApp set an AppID of https://fido.example.com/myAppId), no additional processing is necessary and the
operation may proceed. This algorithm may be continued asynchronously for purposes of caching the Trusted Facet List, if desired.

4. Begin to fetch the Trusted Facet List using the HTTP GET method. The location must be identified with an HTTPS URL.�
5. The URL must be dereferenced with an anonymous fetch. That is, the HTTP GET must include no cookies, authentication, Origin or

Referer headers, and present no TLS certificates or other forms of credentials.�
6. The response must set a MIME Content-Type of "application/fido.trusted-apps+json".�
7. The caching related HTTP header fields in the HTTP response (e.g. “Expires”) �should be respected when fetching a Trusted Facets List.
8. The server hosting the Trusted Facets List must respond uniformly to all clients. That is, it must not vary the contents of the response

body based on any credential material, including ambient authority such as originating IP address, supplied with the request.
9. If the server returns an HTTP redirect (status code 3xx) the server must also send the HTTP header FIDO-AppID-Redirect-Authorized:

true and the client must verify the presence of such a header before following the redirect. This protects against abuse of open

NOTE

Users may also register multiple keys on a single authenticator for an AppID, such as for cases where they have multiple accounts. Such
registrations may have a Relying Party assigned username or local nicknames associated to allow them to be distinguished by the user,
or they may not (e.g. for 2nd factor use cases, the user account associated with a key may be communicated out-of-band to what is
specified by FIDO protocols). �All registrations that share an AppID, also share these same audience restriction.

EXAMPLE 1: Computing an APK signing certificate hash�
# Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert -alias androiddebugkey -keystore \
 <path-to-apk-signing-keystore> &>2 /dev/null | openssl sha1 \
 -binary | openssl base64 | sed 's/=//g'

http://www.whatwg.org/specs/web-apps/current-work/multipage/fetching-resources.html#attr-crossorigin-anonymous


redirectors within the target domain by unauthorized parties. If this check has passed, restart this algorithm from step 4.
10. A Trusted Facet List may contain an unlimited number of entries, but clients may truncate or decline to process large responses.
11. From among the objects in the trustedFacet array, select the one with the version matching that of the protocol message version.
12. The scheme of URLs in ids must identify either an application identity (e.g. using the apk:, ios: or similar scheme) or an https: Web

Origin [RFC6454].
13. Entries in ids using the https:// scheme must contain only scheme, host and port components, with an optional trailing /. Any path,

query string, username/password, or fragment information must be discarded.
14. All Web Origins listed must have host names under the scope of the same least-specific �private label in the DNS, using the following

algorithm:
1. Obtain the list of public DNS suffixes �from https://publicsuffix.org/list/effective_tld_names.dat� (the client may cache such data), or

equivalent functionality as available on the platform.
2. Extract the host portion of the original AppID URL, before following any redirects.
3. The least-specific private label is the portion of the host portion of the AppID URL that �matches a public suffix plus one additional�

label to the left.
4. For each Web Origin in the TrustedFacets list, the calculation of the least-specific �private label in the DNS must be a case-

insensitive match of that of the AppID URL itself. Entries that do not match must be discarded.
15. If the TrustedFacets list cannot be retrieved and successfully parsed according to these rules, the client must abort processing of the

requested FIDO operation.
16. After processing the trustedFacets entry of the correct version and removing any invalid entries, if the caller's FacetID matches one

listed in ids, the operation is allowed.

3.1.3 TrustedFacets structure

The JSON resource hosted at the AppID URL consists of a dictionary containing a single member, trustedFacets which is an array of
TrustedFacets dictionaries.

WebIDL

dictionary TrustedFacets {
    Version     version;
    DOMString[] ids;
};

3.1.3.1 Dictionary TrustedFacets Members

version of type Version
The protocol version to which this set of trusted facets applies. See [UAFProtocol] for the definition of the �version structure.

ids of type array of DOMString
An array of URLs identifying authorized facets for this AppID.

3.1.4 AppID Example 1:

".com" is a public suffix. "https://www.example.com/appID" is provided as an AppID. �The body of the resource at this location contains:

For this policy, "https://www.example.com" and "https://register.example.com" would have access to the keys registered for this AppID, and
"https://user1.example.com" would not.

3.1.5 AppID Example 2:

"hosting.example.com" is a public suffix, operated under "example.com" and �used to provide hosted cloud services for many companies.
"https://companyA.hosting.example.com/appID" is provided as an AppID. The body of the resource at this location contains:

For this policy, "https://fido.companyA.hosting.example.com" would have �access to the keys registered for this AppID, and
"https://register.example.com" and "https://companyB.hosting.example.com" would not as a public-suffix exists between these DNS names and�
the AppID's.

3.1.6 Obtaining FacetID of Android Native App

EXAMPLE 2
{
  "trustedFacets" : [{
    "version": { "major": 1, "minor" : 0 },
    "ids": [
    "https://register.example.com", // VALID, shares "example.com" label
    "https://fido.example.com",     // VALID, shares "example.com" label
    "http://www.example.com",       // DISCARD, scheme is not https:
    "http://www.example-test.com",  // DISCARD, "example-test.com" does not match
    "https://www.example.com:444"   // VALID, port is not significant
    ]
  }]
}

EXAMPLE 3
{
  "trustedFacets" : [{
    "version": { "major": 1, "minor" : 0 },
    "ids": [
        "https://register.example.com",              // DISCARD, does not share  "companyA.hosting.example.com" label
        "https://fido.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
        "https://xyz.companyA.hosting.example.com",  // VALID, shares "companyA.hosting.example.com" label
        "https://companyB.hosting.example.com"       // DISCARD, "companyB.hosting.example.com" does not match 
     ]
  }]
}

https://publicsuffix.org/list/effective_tld_names.dat


This section is non-normative.

The following code demonstrates how a FIDO Client can obtain and construct the FacetID of a calling Android native application.
                

            

3.1.7 Additional Security Considerations

The UAF protocol supports passing FacetID to the FIDO Server and including the FacetID in the computation of the authentication response.

Trusting a web origin facet implicitly trusts all subdomains under the named entity because web user agents do not provide a security barrier
between such origins. So, in AppID Example 1, although not explicitly listed, "https://foobar.register.example.com" would still have effective
access to credentials registered for the AppID "https://www.example.com/appID" because it can effectively act as
"https://register.example.com".

The component implementing the controls described here must reliably identify callers to securely enforce the mechanisms. Platform inter-
process communication mechanisms which allow such identification �should be used when available.

It is unlikely that the component implementing the controls described here can verify the integrity and intent of the entries on a
TrustedFacetList. If a trusted facet can be compromised or enlisted as a confused deputy [FIDOGlossary] by a malicious party, it may be
possible to trick a user into completing an authentication ceremony under the control of that malicious party.

3.1.7.1 Wildcards in TrustedFacet identifiers�

This section is non-normative.

Wildcards are not supported in TrustedFacet identifiers. �This follows the advice of RFC6125 [RFC6125], section 7.2.

FacetIDs are URIs that uniquely identify specific �security principals that are trusted to interact with a given registered credential. Wildcards
introduce undesirable ambiguitiy in the defintion of the principal, �as there is no consensus syntax for what wildcards mean, how they are
expanded and where they can occur across different applications and protocols in common use. For schemes indicating application identities,
it is not clear that wildcarding is appropriate in any fashion. For Web Origins, it broadly increases the scope of the credential to potentially
include rogue or buggy hosts.

Taken together, these ambiguities might introduce exploitable differences in identity checking behavior among client implementations and
would necessitate overly complex and inefficient identity checking algorithms.�

A. References
A.1 Normative references
[FIDOGlossary]

R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC6125]
P. Saint-Andre, J. Hodges, Representation and Verification of Domain-Based Application Service Identity within Internet Public Key�
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125)�, IETF, March 2011, URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6454]
A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL: https://tools.ietf.org/html/rfc6454

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

private String getFacetID(Context aContext, int callingUid) {

    String packageNames[] = aContext.getPackageManager().getPackagesForUid(callingUid);

    if (packageNames == null) {
        return null;
    }

    try {
        PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_SIGNATURES);

        byte[] cert = info.signatures[0].toByteArray();
        InputStream input = new ByteArrayInputStream(cert);

        CertificateFactory cf = CertificateFactory.getInstance("X509");
        X509Certificate c = (X509Certificate) cf.generateCertificate(input);

        MessageDigest md = MessageDigest.getInstance("SHA1");

        return "android:apk-key-hash:" +
                  Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);
    }
    catch (PackageManager.NameNotFoundException e) {
        e.printStackTrace();
    }
    catch (CertificateException e) {
        e.printStackTrace();
    }
    catch (NoSuchAlgorithmException e) {
        e.printStackTrace();
    }
    catch (CertificateEncodingException e) {
        e.printStackTrace();
    }

    return null;
}
              

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf


A.2 Informative references
[ANDROID]

The Android™ Operating System. Google, Inc., the Open Handset Alliance and the Android Open Source Project (Work in progress)
URL: http://developer.android.com/

[APK-Signing]
Signing Your Applications.The Android™ Operating System. Google, Inc., the Open Handset Alliance and the Android Open Source
Project (Accessed 11-March-2014) URL: http://developer.android.com/tools/publishing/app-signing.html

[BundleID]
"Configuring your Xcode Project for Distribution", section "About Bundle IDs",�. Apple, Inc. Accessed March 11, 2014. URL:
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html��

[UAFArchOverview]
R. Philpott, S. Srinivas, J. Kemp FIDO UAF Architectural Overview v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf��

[iOS]
iOS Dev Center Apple, Inc. (Accessed March 11, 2014) URL: https://developer.apple.com/devcenter/ios/index.action

http://developer.android.com/
http://developer.android.com/
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
http://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-overview-v1.0-rd-20140209.pdf
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action


FIDO Security Reference
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-ID-20141009.html��
Editors:

Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
This document analyzes the FIDO security. The analysis is performed on the basis of the FIDO Universal Authentication Framework (UAF)
specification and FIDO Universal 2nd Factor (U2F) specifications as of the date of this publication.��

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index� at
https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc. Permission is hereby granted to use the Specification�
solely for the purpose of implementing the Specification. No rights �are granted to prepare derivative works of this Specification. Entities seeking�
permission to reproduce portions of this Specification for other uses must contact the �FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual �property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,�
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Introduction

2.1 Intended Audience
3. Attack Classification�
4. UAF Security Goals

4.1 Assets to be Protected
5. FIDO Security Measures

5.1 Relation between Measures and Goals
6. UAF Security Assumptions

6.1 Discussion
7. Threat Analysis

7.1 Threats to Client Side
7.1.1 Exploiting User’s pattern matching weaknesses
7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
7.1.3 Creating a Fake Client
7.1.4 Threats to FIDO Authenticator

7.2 Threats to Relying Party
7.2.1 Threats to FIDO Server Data

7.3 Threats to the Secure Channel between Client and Relying Party

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-uaf-authnr-metadata-service-v1.0-ID-20141009.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https:/fidoalliance.org/
https://fidoalliance.org/contact


7.3.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages
7.4 Threats to the Infrastructure

7.4.1 Threats to FIDO Authenticator Manufacturers
7.4.2 Threats to FIDO Server Vendors
7.4.3 Threats to FIDO Metadata Service Operators

7.5 Threats Specific to UAF with a second factor / U2F�
8. Acknowledgements
A. References

A.1 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [��FIDOGlossary].

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Introduction
This document analyzes the security properties of the FIDO UAF and U2F families of protocols. Although a brief architectural summary is
provided below, readers should familiarize themselves with the the FIDO Glossary of Terms [FIDOGlossary] for definitions �of terms used
throughout. For technical details of various aspects of the architecture, readers should refer to the FIDO Alliance specifications in the Bibliography.�

Fig. 1 FIDO Reference Architecture

Conceptually, FIDO involves a conversation between a computing environment controlled by a Relying Party and one controlled by the user to be
authenticated. The Relying Party's environment consists conceptually of at least a web server and the server-side portions of a web application,
plus a FIDO Server. The FIDO Server has a trust store, containing the (public) trust anchors for the attestation of FIDO Authenticators. The user's
environment, referred to as the FIDO user device, consists of one or more FIDO Authenticators, a piece of software called the FIDO Client that is
the endpoint for UAF and U2F conversations, and User Agent software. The User Agent software may be a browser hosting a web application
delivered by the Relying Party, or it may be a standalone application delivered by the Relying Party. In either case, the FIDO Client, while a
conceptually distinct entity, may actually be implemented in whole or part within the boundaries of the User Agent.

2.1 Intended Audience
This document assumes a technical audience that is proficient with security analysis of �computing systems and network protocols as well as the
specifics of the FIDO architecture �and protocol families. It discusses the security goals, security measures, security assumptions and a series of
threats to FIDO systems, including the user's computing environment, the Relying Party's computing environment, and the supply chain, including
the vendors of FIDO components.

3. Attack Classification�
We want to distinguish the following threat classes (all leading to the impersonation of the user):

1. Automated attacks focused on relying parties, which affect the user but cannot be prevented by the user
2. Automated attacks which are performed once and lead to the ability to impersonate the user on an on-going basis without involving him or

his device directly.
3. Automated attacks which involve the user or his device for each successful impersonation.
4. Automated attacks to sessions authenticated by the user.
5. Not automatable attacks to the user or his device which are performed once and lead to the ability to impersonate the user on an on-going



basis without involving him or his device directly.
6. Not automatable attacks to the user or his device which involve the user or his device for each successful impersonation.

Fig. 2 Attack Classes

The first four attack classes are considered scalable as they are automated (or at least can be automated). �The attack classes 5 and 6 are not
automatable; they involve some kind of manual/physical interaction of the attacker with the user or his device. We will attribute the threats
analyzed in this document with the related attack class (AC1 – AC6).

4. UAF Security Goals
In this section the specific security goals of UAF are described. �The FIDO UAF protocol [UAFProtocol] supports a variety of different FIDO
Authenticators. Even though the security of those authenticators varies, the UAF protocol and the FIDO Server should provide a very high level of
security - at least on a conceptual level. In reality it might require a FIDO Authenticator with a high security level in order to fully leverage the UAF
security strength.

The FIDO U2F protocol [U2FOverview] supports a more constrained set of Authenticator capabilities. It shares the same security goals as UAF,
with the exception of [SG-14] Transaction Non- Repudiation. The UAF protocol has the following security goals:

[SG-1]
Strong User Authentication: Authenticate (i.e. recognize) a user and/or a device to a relying party with high (cryptographic) strength.

NOTE

1. FIDO UAF uses asymmetric cryptography to protect against this class of attacks. This gives control back to the user, i.e. when using
good random numbers, the user’s authenticator can make breaking the key as hard as the underlying factoring (in the case of RSA)
or discrete logarithm (in the case of DSA or ECDSA) problem.

2. Once counter-measures for this kind of attack are commonly in place, attackers will likely focus on another attack class.
3. The numbers at the attack classes do not imply a feasibility ranking of the related attacks, e.g. it is not necessarily more difficult to�

perform (4) than it is to perform (3).
4. Feasibility of attack class (1) cannot be influenced by the user at all. �This makes this attack class really bad.
5. The concept of physical security (i.e. “protect your Authenticator from being stolen”), related to attack classes (5) and (6) is much

better internalized by users than the concept of logical security, related to attack classes (2), (3) and (4).
6. In order to protect against misuse of authenticated sessions (e.g. MITB attacks), the FIDO Authenticator must support the concept of

transaction confirmation and the relying party must use it.�
7. For an attacker to succeed, any attack class is sufficient.�

NOTE

In certain environments the overall security of the explicit authentication (as provided by FIDO) is less important, as it might be
supplemented with a high degree of implicit authentication or the application doesn’t even require a high level of authentication strength.



[SG-2]
Credential Guessing Resilience: Provide robust protection against eavesdroppers, e.g. be resilient to physical observation, resilient to
targeted impersonation, resilient to throttled and unthrottled guessing.

[SG-3]
Credential Disclosure Resilience: Be resilient to phishing attacks and real-time phishing attack, including resilience to online attacks by
adversaries able to actively manipulate network traffic.�

[SG-4]
Unlinkablity: Protect the protocol conversation such that any two relying parties cannot link the conversation to one user (i.e. be unlinkable).

[SG-5]
Verifier Leak Resilience: Be �resilient to leaks from other relying parties. I.e., nothing that a verifier could possibly leak can help an attacker�
impersonate the user to another relying party.

[SG-6]
Authenticator Leak Resilience: Be resilient to leaks from other FIDO Authenticators. I.e., nothing that a particular FIDO Authenticator could
possibly leak can help an attacker to impersonate any other user to any relying party.

[SG-7]
User Consent: Notify the user before a relationship to a new relying party is being established (requiring explicit consent).

[SG-8]
Limited PII: Limit the amount of personal identifiable information (PII) exposed �to the relying party to the absolute minimum.

[SG-9]
Attestable Properties: Relying Party must be able to verify FIDO Authenticator model/type (in order to calculate the associated risk).

[SG-10]
DoS Resistance: Be resilient to Denial of Service Attacks. I.e. prevent attackers from inserting invalid registration information for a legitimate
user for the next login phase. Afterward, the legitimate user will not be able to login successfully anymore.

[SG-11]
Forgery Resistance: Be resilient to Forgery Attacks (Impersonation Attacks). I.e. prevent attackers from attempting to modify intercepted
communications in order to masquerade as the legitimate user and login to the system.

[SG-12]
Parallel Session Resistance: Be resilient to Parallel Session Attacks. Without knowing a user’s authentication credential, an attacker can
masquerade as the legitimate user by creating a valid authentication message out of some eavesdropped communication between the user
and the server.

[SG-13]
Forwarding Resistance: Be resilient to Forwarding and Replay Attacks. Having intercepted previous communications, an attacker can
impersonate the legal user to authenticate to the system. The attacker can replay or forward the intercepted messages.

[SG-14]
Transaction Non-Repudiation: Provide strong cryptographic non-repudiation for secure transactions.

[SG-15]
Respect for Operating Environment Security Boundaries: Ensure that registrations and key material as a shared system resource is
appropriately protected according to the operating environment privilege boundaries in place on the FIDO user device.

4.1 Assets to be Protected
Independent of any particular implementation, the UAF protocol assumes some assets to be present and to be protected.

1. Cryptographic Authentication Key. Typically keys in FIDO are unique for each tuple of (relying party, user account, authenticator).
2. Cryptographic Authentication Key Reference. This is the cryptographic material stored at the relying party and used to uniquely verify the

Cryptographic Authentication Key, typically the public portion of an asymmetric key pair.
3. Authenticator Attestation Key(as stored in each authenticator). This should only be usable to attest a Cryptographic Authentication Key and

the type and manufacturing batch of an Authenticator. Attestation keys and certificates are shared �by a large number of authenticators in a
device class from a given vendor in order to prevent their becoming a linkable identifier across relying parties. Authenticator �attestation
certificates may be self-signed, or signed by an authority key �controlled by the vendor.

4. Authenticator Attestation Authority Key. An authenticator vendor may elect to sign authenticator attestation certificates with a per-vendor�
certificate authority �key.

5. Authenticator Attestation Authority Certificate. Contained in the initial/default trust �store as part of the FIDO Server and contained in the
active trust store maintained by each relying party.

6. Active Trust Store. Contains all trusted attestation master certificates for a given �FIDO server.
7. All data items suitable for uniquely identifying the authenticator across relying parties. An attack on those would break the non-linkability

security goal.
8. Private key of Relying Party TLS server certificate.�
9. TLS root certificate trust store for the user's browser/app.�

5. FIDO Security Measures

[SM-1] (U2F + UAF)
Key Protection: Authentication key is protected against misuse. User unlocks cryptographic authentication key stored in FIDO Authenticator
(Except silent authenticators).

[SM-2] (U2F + UAF)
Unique Authentication Keys: Cryptographic authentication key is specific and �unique to the tuple of (FIDO Authenticator, User, Relying
Party).

[SM-3] (U2F + UAF)
Authenticator Class Attestation: Hardware-based FIDO Authenticators support authenticator attestation using a shared attestation certificate.�

NOTE

For a definition of the phrases printed in �italics, refer to [QuestToReplacePasswords] and to [PasswordAuthSchemesKeyIssues]

NOTE

Particular implementations of FIDO Clients, Authenticators, Servers and participating applications may not implement all of these security
measures (e.g. Secure Display, [SM-10] Transaction Confirmation) and they also might (and should) implement �add itional security
measures.

NOTE

The U2F protocol lacks support for [SM-5] Secure Display, [SM-10] Transaction Confirmation, �has only server-supplied [SM-8] Protocol
Nonces, and [SM-3] Authenticator Class Attestation is implicit as there is only a single class of device.



Each relying party receives regular updates of the trust store (through attestation service).
[SM-4] (UAF)

Authenticator Status Checking: Relying Parties will be notified of compromised �authenticators or authenticator attestation keys. The FIDO
Server must take this information into account. Authenticator manufacturers have to inform FIDO alliance about compromised authenticators.

[SM-5] (UAF)
User Consent: FIDO Client implements a user interface for getting user’s consent on any actions (except authentication with silent
authenticator) and displaying RP name (derived from server URL).

[SM-6] (U2F + UAF)
Cryptographically Secure Verifier Database: The relying party stores only the �public portion of an asymmetric key pair, or an encrypted key
handle, as a cryptographic authentication key reference.

[SM-7] (U2F + UAF)
Secure Channel with Server Authentication: The TLS protocol with server authentication or a transport with equivalent properties is used as
transport protocol for UAF. The use of https is enforced by a browser or Relying Party application.

[SM-8] (UAF)
Protocol Nonces: Both server and client supplied nonces are used for UAF registration and authentication. U2F requires server supplied
nonces.

[SM-9] (U2F + UAF)
Authenticator Certification: Only Authenticators meeting certification requirements ��defined by the �FIDO Alliance and accurately describing
their relevant characteristics will have have their related attestation keys included in the default Trust Store.

[SM-10] (UAF)
Transaction Confirmation (WYSIWYS): Secure Display (WYSIWYS) (optionally) �implemented by the FIDO Authenticators is used by FIDO
Client for displaying relying party name and transaction data to be confirmed by the user.�

[SM-11] (U2F + UAF)
Round Trip Integrity: FIDO server verifies that the transaction data related to �the server challenge received in the UAF message from the
FIDO client is identical to the transaction data and server challenge delivered as part of the UAF request message.

[SM-12] (U2F + UAF)
Channel Binding: Relying Party servers may verify the continuity of a secure channel with a client application.

[SM-13] (UAF)
Key Handle Access Token: Authenticators not intended to roam between untrusted systems are able to constrain the use of registration keys
within the privilege boundaries defined by the operating environment of the user device. (per-user, or perapplication, �or per-user + per-
application as appropriate)

[SM-14] (U2F + UAF)
Trusted Facet List: A Relying Party can declare the application identities allowed to access its registered keys, for operating environments on
user devices that support this concept.

[SM-15] (U2F + UAF)
Signature Counter: Authenticators send a monotonically increasing signature counter that a Relying Party can check to possibly detect
cloned authenticators.

5.1 Relation between Measures and Goals

Security Goal Supporting Security Measures

[SG-1] Strong User Authentication

[SM-1] Key Protection

[SM-12] Channel Binding

[SM-14] Trusted Facet List

[SM-15] Signature Counter

[SG-2] Credential Guessing Resilience
[SM-1] Key Protection

[SM-6] Cryptographically Secure Verifier Database�

[SG-3] Credential Disclosure Resilience

[SM-1] Key Protection

[SM-9] Authenticator Certification�

[SM-15] Signature Counter

[SG-4] Unlinkability
[SM-2] Unique Authentication Keys

[SM-3] Authenticator Class Attestation

[SG-5] Verifier Leak Resilience�
[SM-2] Unique Authentication Keys

[SM-6] Cryptographically Secure Verifier Database�

[SG-6] Authenticator Leak Resilience
[SM-9] Authenticator Certification�

[SM-15] Signature Counter

[SG-7] User Consent

[SM-1] Key Protection

[SM-5] User Consent

[SM-7] Secure Channel with Server Authentication

[SM-10] Transaction Confirmation (WYSIWYS)�



[SG-8] Limited PII [SM-2] Unique Authentication Keys

[SG-9] Attestable Properties

[SM-3] Authenticator Class Attestation

[SM-4] Authenticator Status Checking

[SM-9] Authenticator Certification�

[SG-10] DoS Resistance [SM-8] Protocol Nonces

[SG-11] Forgery Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-12] Parallel Session Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-13] Forwarding Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-14] Transaction Non-Repudiation

[SM-1] Key Protection

[SM-2] Unique Authentication Keys

[SM-8] Protocol Nonces

[SM-9] Authenticator Certification�

[SM-10] Transaction Confirmation (WYSIWYS)�

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-15] Respect for Operating Environment Security Boundaries
[SM-13] Key Handle Access Token

[SM-14] Trusted Facet List

Security Goal Supporting Security Measures

6. UAF Security Assumptions
Today’s computer systems and cryptographic algorithms are not provably secure. In this section we list the security assumptions, i.e. assumptions
on security provided by other components. A violation of any of these assumptions will prevent reliable achievement of the Security Goals.

[SA-1]
The cryptographic algorithms and parameters (key size, mode, output length, etc.) in use are not subject to unknown weaknesses that make
them unfit for their purpose �in encrypting, digitally signing, and authenticating messages.

[SA-2]
Operating system privilege separation mechanisms relied up on by the software modules involved in a FIDO operation on the user device
perform as advertised. E.g. boundaries between user and kernel mode, between user accounts, and between applications (where
applicable) are securely enforced and security principals can be mutually, securely identifiable.�

[SA-3]
Applications on the user device are able to establish secure channels that provide trustworthy server authentication, and confidentiality and�
integrity for messages (e.g., through TLS).

[SA-4]
The secure display implementation is protected against spoofing and tampering.�

[SA-5]
The computing environment on the FIDO user device and the and applications involved in a FIDO operation act as trustworthy agents of the
user.

[SA-6]
The inherent value of a cryptographic key resides in the confidence it imparts, �and this commodity decays with the passage of time,
irrespective of any compromise event. As a result the effective assurance level of authenticators will be reduced over time.

[SA-7]
The computing resources at the Relying Party involved in processing a FIDO operation act as trustworthy agents of the Relying Party.

6.1 Discussion



With regard to [SA-5] and malicious computation on the FIDO user's device, only very limited guarantees can be made within the scope of these
assumptions. Malicious code privileged at the level of the trusted computing base can always violate [SA-2] and [SA- 3]. Malicious code privileged
at the level of the user's account in traditional multi-user environments will also likely be able to violate [SA-3].

FIDO can also provide only limited protections when a user chooses to deliberately violate [SA-5], e.g. by roaming a USB authenticator to an
untrusted system like a kiosk, or by granting permissions to access all authentication keys to a malicious app in a mobile environment. Transaction
Confirmation can be used as a method to protect against compromised �FIDO user devices.

In to components such as the FIDO Client, Server, Authenticators and the mix of software and hardware modules they are comprised of, the end-
to-end security goals also depend on correct implementation and adherence to FIDO security guidance by other participating components,
including web browsers and relying party applications. Some configurations and uses may not be able to meet all security goals. For example,�
authenticators may lack a secure display, they may be composed only of unattestable software components, they may be deliberately designed to
roam between untrusted operating environments, and some operating environments may not provide all necessary security primitives (e.g., secure
IPC, application isolation, modern TLS implementations, etc.)

7. Threat Analysis
7.1 Threats to Client Side

7.1.1 Exploiting User’s pattern matching weaknesses

T-
1.1.1 Homograph Mis-Registration Violates

AC3

The user registers a FIDO authentication key with a fraudulent web site instead of the genuine Relying Party.

Consequences: The fraudulent site may convince the user to disclose a set of non-FIDO credentials sufficient to allow the�
attacker to register a FIDO Authenticator under its own control, at the genuine Relying Party, on the user's behalf, violating
[SG-1] Strong User Authentication.

Mitigations: Disclosure of non-FIDO credentials is outside of the scope of the FIDO security measures, but Relying Parties
should be aware that the initial strength of an authentication key is no better than the identity-proofing applied as part of the�
registration process.

SG-1

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications

T-
1.2.1 FIDO Client Corrpution Violates

AC3

Attacker gains ability to execute code in the security context of the FIDO Client.

Consequences: Violation of [SA-5].

Mitigations: When the operating environment on the FIDO user device allows, the FIDO Client should operate in a
privileged and isolated context under [SA-2] to protect itself from malicious modification by anything outside of the Trusted�
Computing Base.

SA-5

T-
1.2.2 Logical/Physical User Device Attack Violates

AC3
/
AC5

Attacker gains physical access to the FIDO user device but not the FIDO Authenticator.

Consequences: Possible violation of [SA-5] by installing malicious software or otherwise tampering with the FIDO user
device.

Mitigations: [SM-1] Key Protection prevents the disclosure of authentication keys or other assets during a transient
compromise of the FIDO user device.

A persistent compromise of the FIDO user device can lead to a violation of [SA-5] unless additional protection measures
outside the scope of FIDO are applied to the FIDO user device. (e,g. whole disk encryption and boot-chain integrity)

SA-5

T-
1.2.3 User Device Account Access Violates

AC3
/
AC4

Attacker gains access to a user's login credentials on the FIDO user device.

Consequences: Authenticators might be remotely abused, or weakly-verifying authenticators might be locally abused,
violating [SG-1] Strong User Authentication and [SG-13] Transaction Non-Repudiation.

Possible violation of [SA-5] by the installation of malicious software.

Mitigations: Relying Parties can use [SM-9] Authenticator Certification �and [SM-3] Authenticator Class Attestation to
determine the nature of authenticators and not rely on weak, or weakly-verifying authenticators for high value operations.

SG-1,
SG-13;
SA-5

T-
1.2.4 App Server Verification Error� Violates



AC3

A client application fails to properly validate the remote sever identity, accepts forged or stolen credentials for a remote
server, or allows weak or missing cryptographic protections for the secure channel.

Consequences: An active network adversary can modify the Relying Party's authenticator policy and downgrade the client's
choice of authenticator to make it easier to attack.

An active network adversary can intercept or view FIDO messages intended for the Relying Party. It may be able to use this
ability to violate [SG-12] Parallel Session Resistance, [SG-11] Forgery Resistance or [SG-13] Forwarding Resistance,

Mitigations: The server can verify [SM-8] Protocol Nonces to detect replayed messages and protect from an adversary that
can read but not modify traffic in a secure channel.�

The server can mandate a channel with strong cryptographic protections to prevent message forgery and can verify a [SM-
12] Channel Binding to detect forwarded messages.

SG-11,
SG-12,
SG-13

T-
1.2.4 App Server Verification Error� Violates

T-
1.2.5 RP Web App Corruption Violates

An attacker is able to obtain malicious execution in the security context of the Relying Party application (e.g. via Cross-Site
Scripting) or abuse the secure channel or session identifier after the user has successfully authenticated.�

Consequences: The attacker is able to control the user's session, violating [SG-14] Transaction Non-Repudiation.

Mitigations: The server can employ [SM-10] Transaction Confirmation to gain �additional assurance for high value
operations.

SG-14

T-
1.2.6 Fingerprinting Authenticators Violates

A remote adversary is able to uniquely identify a FIDO user device using the fingerprint �of discoverable configuration of its�
FIDO Authenticators.

Consequences: The exposed information violates [SG-8] Limited PII, allowing an adversary to violate [SG-7] User Consent
by strongly authenticating the user without their knowledge and [SG-4] Unlinkablity by sharing that fingerprint.�

Mitigations: [SM-3] Authenticator Class Attestation ensures that the fingerprint of an Authenticator will not be unique.�

For web browsing situations where this threat is most prominent, user agents may provide additional user controls around the
discoverability of FIDO Authenticators.

SG-4,
SG7,
SG-8

1.2.7 App to FIDO Client full MITM attack Violates

AC3

Malicious software on the FIDO user device is able to read, tamper with, or spoof the endpoint of inter-process
communication channels between the FIDO Client and browser or Relying Party application.

Consequences: Adversary is able to subvert [SA-2].

Mitigations: On platforms where [SA-2] is not strong the security of the system may depend on preventing malicious
applications from arriving on the FIDO user device. Such protections, e.g. app store policing, are outside the scope of FIDO.

When using [SM-10] Transaction Confirmation, the user would see the �relevant AppID and transaction text and decide
whether or not to accept an action.

SA-2

T-
1.2.8 Authenticator to App Read-Only MITM attack Violates

AC3

An adversary is able to obtain an authenticator's signed protocol response message.

Consequences: The attacker attempts to replay the message to authenticate as the user, violating [SG-1] Strong User
Authentication, [SG-13] Forwarding Resistance and [SG-12] Parallel Session Resistance.

Mitigations: The server can use [SM-8] Protocol Nonces to detect replay of messages and verify [SM-11] Round Trip
Integrity to detect modified messages.�

SG-1,
SG-12,
SG-13

T-
1.2.9 Malicious App Violates

AC3

A user installs an application that represents itself as being associated with to one Relying Party application but actually
initiates a protocol conversation with a different Relying Party and attempts to abuse previously registered authentication keys
at that Relying Party.

Consequences: Adversary is able to violate [SG-7] User Consent by misrepresenting the target of authentication.

Other consequences equivalent to [T-1.2.5]

Mitigations: If a [SM-5] Transaction Confirmation Display is present, the user �may be able to verify the true target of an
operation.

If the malicious application attempts to communicate directly with an Authenticator that uses [SM-13]
KeyHandleAccessToken, it should not be able to access keys registered by other FIDO Clients.

If the operating environment on the FIDO user device supports it, the FIDO client may be able to determine the application's
identity and verify if it is authorized to target that Relying Party using a [SM-14] Trusted Facet List.

SG-7



T-
1.2.10 Phishing Attack Violates

A Phisher convinces the user to enter his PIN used for user verification into an application / �web site disclosing the PIN to
the Phisher. In the traditional username/password world this enables the attacker to successfully impersonate the user (to
the relying party).

Consequences: None as the phisher additionally would need access to the Authenticator in order to pass user verification�
[SM-1]. In FIDO, the user verification PIN (if user �verification is done via PIN) is not known to the �relying party and hence
isn't sufficient for user impersonation. �If user verification is done using an alternative user verification method, this applies��
accordingly.

Mitigations: In FIDO, the Uauth.priv key is used to sign a relying party supplied challenge. without (use) access to that key,
no impersonation is possible.

7.1.3 Creating a Fake Client

T-
1.3.1 Malicious FIDO Client Violates

AC3

Attacker convinces users to install and use a malicious FIDO Client.

Consequences: Violation of [SA-5]

Mitigations: Mitigating malicious software installation is outside the scope of FIDO.

If an authenticator implements [SM-1] Key Protection, the user may be able to recover full control of their registered
authentication keys by removing the malicious software from their user device.

When using [SM-10] Transaction Confirmation, the user sees the real AppIDs �and transaction text and can decide to accept
or reject the action.

SA-5

7.1.4 Threats to FIDO Authenticator

T-
1.4.1 Malicious Authenticator Violates

AC2

Attacker convinces users to use a maliciously implemented authenticator.

Consequences: The fake authenticator does not implement any appropriate security measures and is able to violate all
security goals of FIDO.

Mitigations: A user may be unable to distinguish a malicious authenticator, but a Relying Party can use [SM-3] Authenticator
Class Attestation to identify and only allow registration of reliable authenticators that have passed [SM-9] Authenticator
Certification�

A Relying Party can additionally rely on [SM-4] Authenticator Status Checking to check if an attestation presented by a
malicious authenticator has been marked as compromised.

SG-1

T-
1.4.2 Uauth.priv Key Compromise Violates

AC2

Attacker succeeds in extracting a user's cryptographic authentication key for use in a different context.

Consequences: The attacker could impersonate the user with a cloned authenticator that does not do trustworthy user
verification, violating [SG-1].�

Mitigations: [SM-1] Key Protection measures are intended to prevent this.

Relying Parties can check [SM-9] Authenticator Certification attributes to determine �the type of key protection in use by a
given authenticator class.

Relying Parties can additionally verify the [SM-15] Signature Counter and detect that an authenticator has been cloned if it
ever fails to advance relative to the prior operation.

SG-1

T-
1.4.3 User Verification By-Pass� Violates

AC3

Attacker could use the cryptographic authentication key (inside the authenticator) either with or without being noticed by the
legitimate user.

Consequences: Attacker could impersonate user, violating [SG-1].

Mitigations: A user can only register and a Relying Party only allow authenticators that perform [SM-1] Key Protection with
an appropriately secure user verification process.�

Does not apply to Silent Authenticators.

SG-1

T-
1.4.4 Physical Authenticator Attack Violates



AC5
/
AC6

Attacker could get physical access to FIDO Authenticator (e.g. by stealing it).

Consequences: Attacker could launch offline attack in order to use �the authentication key. If this offline attack succeeds, the�
attacker could successfully impersonate the user, violating [SG-1] Strong User Authentication.

Attacker can introduce a low entropy situation to recover an ECDSA signature key (or optherwise extract the Uauth.priv key),
violating [SG-9] Attestable Properties if the attestation key is targeted or [SG-1] Strong User Authentication if a user key is
targeted.

Mitigations: [SM-1] Key Protection includes requirements to implement strong protections for key material, including
resistance to offline attacks and low entropy situations.�

Relying Parties should use [SM-3] Authenticator Class Attestation to only accept Authenticators implementing a sufficiently�
strong user verification method.�

SG-1

T-
1.4.4 Physical Authenticator Attack Violates

T-
1.4.6 Fake Authenticator Violates

Attacker is able to extract the authenticator attestation key from an authenticator, e.g. by neutralizing physical
countermeasures in a laboratory setting.

Consequences: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or software device that
represents itself as a legitimate one.

Mitigations: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-compromised keys.
Identification of such compromise is outside the strict �scope of the FIDO protocols.

SG-9

T-
1.4.7 Transaction Confirmation Display Overlay Attack� Violates

Attacker is able to subvert [SM-5] Secure Display functionality (WYSIWYS), perhaps by overlaying the display with false
information.

Consequences: Violation of [SG-14] Transaction Non-Repudiation.

Mitigations: Implementations must take care to protect [SA-4] in their implementation of a secure display, e.g. by
implementing a distinct hardware display or employing appropriate privileges in the operating environment of the user device
to protect against spoofing and tampering.�

[SM-9] Authenticator Certification will provide Relying Parties with metadata �about the nature of a transaction confirmation�
display information that can be used to assess whether it matches the assurance level and risk tolerance of the Relying Party
for that particular transaction.

SG-14

T-
1.4.8 Signature Algorithm Attack Violates

AC2

A cryptographic attack is discovered against the public key cryptography system used to sign data by the FIDO authenticator.

Consequences: Attacker is able to use messages generated by the client to violate [SG-2] Credential Guessing Resistance

Mitigations: [SM-8] Protocol Nonces, including client-generated entropy, limit the amount of control any adversary has over
the internal structure of an authenticator.

[SM-1] Key Protection for non-silent authenticators requires user interaction to authorize any operation performed with the
authentication key, severely limiting the rate at which an adversary can perform adaptive cryptographic attacks.

SG-2

T-
1.4.9 Abuse Functionality Violates

It might be possible for an attacker to abuse the Authenticator functionality by sending commands with invalid parameters or
invalid commands to the Authenticator.

Consequences: This might lead to e.g. user verification by-pass or potential key extraction, v�

Mitigations: Proper robustness (e.g. due to testing) of the Authenticator firmware.�

SG-1

T-
1.4.10 Random Number prediction Violates

It might be possible for an attacker to get access to information allowing the prediction of RNG data.

Consequences: This might lead to key compromise situation (T-1.4.2) when using ECDSA (if the k value is used multiple
times or if it is predictable).

Mitigations: Proper robustness of the Authenticator's RNG and verification of the relevant �operating environment
parameters (e.g. temperature, ...).

SG-1

T-
1.4.11 Firmware Rollback Violates



Attacker might be able to install a previous and potentially buggy version of the firmware.�

Consequences: This might lead to successful attacks, e.g. T-1.4.9.

Mitigations: Proper robustness firmware verification method.��
SG-1

T-
1.4.11 Firmware Rollback Violates

T-
1.4.12 User Verification Data Injection� Violates

AC3,
AC6

Attacker might be able to inject pre-captured user verification data into the �Authenticator. For example, if a password is used
as user verification method, the attacker �could capture the password entered by the user and then send the correct
password to the Authenticator (by-passing the expected keyboard/PIN pad). Passwords could be captured ahead of the
attack e.g. by convincing the user to enter the password into a malicious app (“phishing”) or by spying directly or indirectly
the password data.

In another example, some malware could play an audio stream which would be recorded by the microphone and used by a
Speaker-Recognition based Authenticator.

Consequences: This might lead to successful user impersonation (if the attacker has access to valid user verification data).�

Mitigations: Use a physically secured user verification input method, �e.g. Fingerprint Sensor or Trusted-User-Interface for
PIN entry which cannot be by-passed by malware.

SG-1

T-
1.4.13 Verification Reference Data Modification�� Violates

AC3,
AC6

The Attacker gained physical access to the Authenticator and modifies �Verification Reference Data (e.g. hashed PIN value)�
stored in the Authenticator and adds reference data known or reproducible by the attacker.

Consequences: The attacker would be recognized as the legitimate User and could impersonate the user.

Mitigations: Proper protection of the the verification reference data �in the Authenticator.

SG-1

7.2 Threats to Relying Party

7.2.1 Threats to FIDO Server Data

T-
2.1.1 FIDO Server DB Read Attack Violates

Attacker could obtains read-access to FIDO Server registration database.

Consequences:Attacker can access all cryptographic key handles and authenticator characteristics associated with a
username. If an authenticator or combination of authenticators is unique, they might use this to try to violate [SG-2]
Unlinkability

Attacker attempts to perform factorization of public keys by virtue of having access to a large corpus of data, violating [SG-5]
Verifier Leak Resiliance and �[SG-2] Credential Guessing Resilience

Mitigations: [SM-2] Unique Authentication Keys help prevent disclosed key material from being useful against any other
Relying Party, even if successfully attacked.

The use of an [SM-6] Cryptographically Secure Verifier Database helps assure �that it is infeasible to attack any leaked verifier�
keys.

[SM-9] Authenticator Certification should help prevent authenticators with poor �entropy from entering the market, reducing the
likelihood that even a large corpus of key material will be useful in mounting attacks.

SG-2,
SG-5

T-
2.1.2 FIDO Server DB Modification Attack� Violates

Attacker gains write-access to the FIDO Server registration database.

Consequences: Violation of [SA-7]

The attacker may inject a key registration under its control, violating [SG-1] Strong User Authentication

Mitigations: Mitigating such attacks is outside the scope of the FIDO specifications. �The Relying Party must maintain the
integrity of any information it relies up on to identify a user as part of [SA-7].

SA-7

T-
2.2.1 WebApp Malware Violates

Attacker gains ability to execute code in the security context of the Relying Party web application or FIDO Server.

Consequences: Attacker is able to violate [SG-1], [SG-10], [SG-9] and any other Relying Party controls.

Mitigations: The consequences of such an incident are limited to the relationship between the user and that particular
Relying Party by [SM-1], [SM-2], and [SM-5].

Even within the Relying Party to user relationship, a user can be protected by [SM-10] Transaction Confirmation if the�
compromise does not include to the user's computing environment

SG-1,
SG-9,
SG-10

7.3 Threats to the Secure Channel between Client and Relying Party



7.3.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

FIDO takes as a base assumption that [SA-3] applications on the user device are able to establish secure channels that provide trustworthy server
authentication, and confidentiality �and integrity for messages. e.g. through TLS. [T-1.2.4] Discusses some consequences of violations of this
assumption due to implementation errors in a browser or client application, but other threats exist in different layers.

T-
3.1.1 TLS Proxy Violates

The FIDO user device is administratively configured to connect through a proxy that terminates �TLS connections. The client
trusts this device, but the connection between the user and FIDO server is no longer end-to-end secure.

Consequences: Any such proxies introduce a new party into the protocol. If this party is untrustworthy, consequences may
be as for [T-1.2.4]

Mitigations: Mitigations for [T-1.2.4] apply, except that the proxy is considered trusted by the client, so certain methods of
[SM-12] Channel Binding may indicate a compromised channel even in the absence of an attack. Servers should use
multiple methods and adjust their risk scoring appropriately. A trustworthy client that reports a server certificate that is�
unknown to the server and does not chain to a public root may indicate a client behind such a proxy. A client reporting a
server certificate that is unknown to the server but validates for the server's identity according �to commonly used public trust
roots is more likely to indicate [T-3.1.2]

SG-11,
SG-12,
SG-13

T-
3.1.2 Fraudulent TLS Server Certificate� Violates

An attacker is able to obtain control of a certificate credential for a Relying Party, �perhaps from a compromised Certification�
Authority or poor protection practices by the Relying Party.

Consequences:As for [T-1.2.4].

Mitigations:As for [T-1.2.4].

T-
3.1.3 Protocol level real-time MITM attack Violates

An adversary can intercept and manipulate network packages sent from the relying party to the client. The adversary uses
this capability to (a) terminate the underlying TLS session from the client at the adversary and to (b) simultaneously use
another TLS session from the adversary to the relying party. In the traditional username/password world, this allows the
adversary to intercept the username and the password and then successfully impersonate the user at the relying party.

Consequences: None if FIDO channelBinding [SM-12] or transaction confirmation [SM-10] �are used.

Mitigations: In the case of channelBinding [SM-12], the FIDO server will detect the MITM in the TLS channel by comparing
the channel binding information provided by the client and the channel binding information retrieved locally by the server.

In the case of transaction confirmation [SM-10], the user verifies and approves ��a particular transaction. The adversary could
modify the transaction before approval. This would lead to rejection by the user. Alternatively, the adversary could modify the
transaction after approval. This will break the signature in the transaction confirmation response. �The FIDO Server will not
accept it as a consequence.

7.4 Threats to the Infrastructure

7.4.1 Threats to FIDO Authenticator Manufacturers

T-
4.1.1 Manufacturer Level Attestation Key Compromise Violates

Attacker obtains control of an attestation key or attestation key issuing key.

Consequences: Same as [T-1.4.6]: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or
software device that represents itself as a legitimate one.

Mitigations: Same as [T-1.4.6]: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-
compromised keys. Identification of such compromise is outside the strict scope of the FIDO protocols.�

SG-9

T-
4.1.2 Malicious Authenticator HW Violates

FIDO Authenticator manufacturer relies on hardware or software components that generate weak cryptographic
authentication key material or contain backdoors.

Consequences: Effective violation of [SA-1] in the context of such an Authenticator.

Mitigations: The process of [SM-9] Authenticator Certification may reveal a subset of such �threats, but it is not possible that
all such can be revealed with black box testing and white box examination may be is economically infeasible. Users and
Relying Parties with special concerns about this class of threat must exercise their own necessary caution about the
trustworthiness and verifiability of their vendors and �supply chain.

SA-1

7.4.2 Threats to FIDO Server Vendors

T-
4.2.1 Vendor Level Trust Anchor Injection Attack Violates



Attacker adds malicious trust anchors to the trust list shipped by a FIDO Server vendor.

Consequences: Attacker can deploy fake Authenticators which Relying Parties cannot detect as such, which do not
implement any appropriate security measures, and is able to violate all security goals of FIDO.

Mitigations: This type of supply chain threat is outside the strict scope of the FIDO protocols and violates [SA-7]. Relying
Parties can their trust list against definitive �data published by the FIDO Alliance.

SA-7

T-
4.2.1 Vendor Level Trust Anchor Injection Attack Violates

7.4.3 Threats to FIDO Metadata Service Operators

T-
4.3.1 Metadata Service Signing Key Compromise Violates

The attacker gets access to the private Metadata signing key.

Consequences: The attacker could sign invalid Metadata. The attacker could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).
make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)
inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchor�
and the cross signed original attestation root certificate. �This malicious trust anchors could be used to sign attestation
certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but not�
protecting their keys as stated in the metadata.

Mitigations: The Metadata Service operator should protect the Metadata signing key appropriately, e.g. using a hardware
protected key storage.

Relying parties could use out-of-band methods to cross-check Metadata Statements with the respective vendors and cross-
check the revocation state of the Metadata signing key with the provider of the Metadata Service.

SG-9

T-
4.3.2 Metadata Service Data Injection Violates

The attacker injects malicious Authenticator data into the Metadata source.

Consequences: The attacker could make the Metadata Service operator sign invalid Metadata. The attacker could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).
make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)
inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchor�
and the cross signed original attestation root certificate. �This malicious trust anchors could be used to sign attestation
certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but not�
protecting their keys as stated in the metadata.

Mitigations: The Metadata Service operator could carefully review the delta between the old and the new Metadata.
Authenticator vendors could verify the published Metadata related to their Authenticators.

SG-9

7.5 Threats Specific to UAF with a second factor / U2F�

T-
5.1.1 Error Status Side Channel Violates

Relying parties issues an authentication challenge to an authenticator and can infer from error status if it is already enrolled.

Consequences: U2F authenticators not requiring user interaction may be used to track users without their consent by
issuing a pre-authentication challenge to a U2F token, revealing the identity of an otherwise anonymous user. Users would
be identifiable �by relying parties without their knowledge, violating [SG-7]

Mitigations: The U2F specification recommends that browsers prompt users whether to allow �this operation using
mechanisms similar to those defined for other privacy sensitive �operations like Geolocation.

SG-7

T-
5.1.2 Malicious RP Violates

Malicious relying party mounts a cryptographic attack on a key handle it is storing.

Consequences: U2F does not have a protocol-level notion of [SG-14] Transaction Non-Repudiation but If the Relying Party
is able to recover the contents of the key handle it might forge logs of protocol exchanges to associate the user with actions
he or she did not perform.

If the Relying Party is able to recover the key used to wrap a key handle, that key is likely shared, and might be used to
decrypt key handles stored with other Relying Parties and violate [SG-1] Strong User Authentication.

Mitigations: None. U2F depends on [SA-1] to hold for key wrapping operations.

T-
5.1.3 Physical U2F Authenticator Attack Violates



Attacker gains physical access to U2F Authenticator (e.g., by stealing it).

Consequences: Same as for T-1.4.4

A U2F authenticator has weak local user verification. If the attacker can guess �the username and password/PIN, they can
impersonate the user, violating [SG-1] Strong User Authentication

Mitigations: Relying Parties can use strong additional factors.

Relying Parties should provide users a means to revoke keys associated with a lost device.

SG-1

T-
5.1.3 Physical U2F Authenticator Attack Violates

8. Acknowledgements
We thank iSECpartners for their review of, and contributions to, this document.

A. References
A.1 Informative references
[FIDOGlossary]

R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[PasswordAuthSchemesKeyIssues]
Chwei-Shyong Tsai, Cheng-Chi Lee, and Min-Shiang Hwang, Password Authentication Schemes: Current Status and Key Issues,
International Journal of Network Security, Vol.3, No.2, PP.101–115, Sept. 2006, URL: http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-
v3-n2-p101-115.pdf

[QuestToReplacePasswords]
Joseph Bonneau, Cormac Herley, Paul C. van Oorschot and Frank Stajano, The Quest to Replace Passwords: A Framework for
Comparative Evaluation of Web Authentication Schemes, Microsoft Research, Carleton University and University of Cambridge, March
2012, URL: http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[U2FOverview]
S. Srinivas, D. Balfanz, E. Tiffany, FIDO U2F Overview v1.0. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf��

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany FIDO UAF Protocol Specification v1.0�. FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf��

https://www.isecpartners.com
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-uaf-protocol-v1.0-rd-20140209.pdf


FIDO Technical Glossary
FIDO Alliance Implementation Draft 22 November 2014
This version:

https://fidoalliance.org/specs/fido-glossary-v1.0-id-20141122.html��
Previous version:

https://fidoalliance.org/specs/fido-glossary-v1.0-ID-20141009.html��
Editors:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

Contributor:
Jeff Hodges, PayPal

Copyright © 2013-2014 FIDO Alliance All Rights Reserved.

Abstract
This document defines all the strings and constants reserved by UAF protocols. The�
values defined in this document are referenced by various UAF specifications.��

Status of This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications
and the latest revision of this technical report can be found in the FIDO Alliance
specifications index� at https://www.fidoalliance.org/specifications/.��

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by �FIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of�

IMPLEMENTATION DRAFT

IMPLEMENTATION DRAFT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-glossary-v1.0-id-20141122.html
https://fidoalliance.org/specs/fido-glossary-v1.0-ID-20141009.html
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


implementing the Specification. No rights �are granted to prepare derivative works of this
Specification. Entities seeking permission to reproduce �portions of this Specification for�
other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third�
party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not,�
and shall not be held, responsible in any manner for identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents
1. Notation

1.1 Key Words
2. Introduction
3. Definitions�
A. References

A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in ��[FIDOGlossary].

1.1 Key Words
The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“recommended”, “may”, and “optional” in this document are to be interpreted as
described in [RFC2119].

2. Introduction
This document is the FIDO Alliance glossary of normative technical terms.

This document is not an exhaustive compendium of all FIDO technical terminology
because the FIDO terminology is built upon existing terminology. Thus many terms that
are commonly used within this context are not listed. They may be found in the
glossaries/documents/specifications �referenced in the bibliography. Terms defined here�
that are not attributed to other glossaries/documents/specifications are being defined��
here.

This glossary is expected to evolve along with the FIDO Alliance specifications and�
documents.



3. Definitions�
AAID

Authenticator Attestation ID. See Attestation ID.

Application

A set of functionality provided by a common entity (the application owner, aka the
Relying Party), and perceived by the user as belonging together.

Application Facet

An (application) facet is how an application is implemented on various platforms.
For example, the application MyBank may have an Android app, an iOS app, and
a Web app. These are all facets of the MyBank application.

Application Facet ID

A platform-specific identifier (URI) for an application facet.��

For Web applications, the facet id is the RFC6454 origin [RFC6454].
For Android applications, the facet id is the URI android:apk-key-
hash:<hash-of-apk-signing-cert>
For iOS, the facet id is the URI ios:bundle-id:<ios-bundle-id-of-app>

AppID

The AppID is an identifier for a set of different Facets of a relying party's�
application. The AppID is a URL pointing to the TrustedFacets, i.e. list of FacetIDs
related to this AppID.

Attestation

In the FIDO context, attestation is how Authenticators make claims to a Relying
Party that the keys they generate, and/or certain measurements they report,
originate from genuine devices with certified characteristics.�

Attestation Certificate�

A public key certificate related to an Attestation Key.�

Authenticator Attestation ID / AAID

A unique identifier assigned to a model, class or batch of FIDO Authenticators �that
all share the same characteristics, and which a Relying Party can use to look up
an Attestation Public Key and Authenticator Metadata for the device.

Attestation [Public / Private] Key

A key used for FIDO Authenticator attestation.

Attestation Root Certificate�

A root certificate explicitly trusted by the �FIDO Alliance, to which Attestation
Certificates chain to.�

Authentication

Authentication is the process in which user employs their FIDO Authenticator to



prove possession of a registered key to a relying party.

Authentication Algorithm

The combination of signature and hash algorithms used for authenticator-to-
relying party authentication.

Authentication Scheme

The combination of an Authentication Algorithm with a message syntax or framing
that is used by an Authenticator when constructing a response.

Authenticator, Authnr

See FIDO Authenticator.

Authenticator, 1stF / First Factor

A FIDO Authenticator that transactionally provides a username and at least two
authentication factors: cryptographic key material (something you have) plus user
verification (something you know / something you are) and so can be used by�
itself to complete an authentication.

It is assumed that these authenticators have an internal matcher. The matcher is
able to verify an already enrolled user. If there is more than one user enrolled –
the matcher is also able to identify the right user.

Examples of such authenticator is a biometric sensor or a PIN based verification.�
Authenticators which only verify presence, such as a physical button, or perform
no verification at all, cannot act as a first-factor authenticator.��

Authenticator, 2ndF / Second Factor

A FIDO Authenticator which acts only as a second factor. Second-factor
authenticators always require a single key handle to be provided before
responding to a Sign command. They might or might not have a user verification�
method. It is assumed that these authenticators may or may not have an internal
matcher.

Authenticator Attestation

The process of communicating a cryptographic assertion to a relying party that a
key presented during authenticator registration was created and protected by a
genuine authenticator with verified characteristics.�

Authenticator Metadata

Verified information about the characteristics of a certified authenticator,��
associated with an AAID and available from the FIDO Alliance. FIDO Servers are
expected to have access to up-to-date metadata to be able to interact with a given
authenticator.

Authenticator Policy

A JSON data structure that allows a relying party to communicate to a FIDO
Client the capabilities or specific authenticators that are allowed or disallowed for�
use in a given operation.

ASM / Authenticator Specific Module�

Software associated with a FIDO Authenticator that provides a uniform interface
between the hardware and FIDO Client software.



AV

ASM Version

Bound Authenticator

A FIDO Authenticator or combination of authenticator and ASM, which uses an
access control mechanism to restrict the use of registered keys to trusted FIDO
Clients and/or trusted FIDO User Devices. Compare to a Roaming Authenticator.

Certificate�

An X.509v3 certificate defined by the profile specified in [����RFC5280] and its
successors.

Channel Binding

See: [RFC5056], [RFC5929] and [ChannelID]. A channel binding allows
applications to establish that the two end-points of a secure channel at one
network layer are the same as at a higher layer by binding authentication to the
higher layer to the channel at the lower layer.

Client

This term is used “in context”, and may refer to a FIDO UAF Client or some other
type of client, e.g. a TLS client. See FIDO Client.

Confused Deputy Problem

A confused deputy is a computer program that is innocently fooled by some other
party into misusing its authority. It is a specific type of privilege escalation.�

Correlation Handle

Any piece of information that may allow, in the context of FIDO protocols, implicit
or explicit association and or attribution of multiple actions, believed by the user to
be distinct and unrelated, back to a single unique entity. An example of a
correlation handle outside of the FIDO context is a client certificate used in�
traditional TLS mutual authentication: because it sends the same data to multiple
Relying Parties, they can therefore collude to uniquely identify and track the user
across unrelated activities. [AnonTerminology]

Deregistration

A phase of a FIDO protocol in which a Relying Party tells a FIDO Authenticator to
forget a specified piece of (or all) locally managed key material associated with a�
specific Relying Party account, in case such keys are no longer considered valid�
by the Relying Party.

Discovery

A phase of a FIDO protocol in which a Relying Party is able to determine the
availability of FIDO capabilities at the client’s device, including metadata about the
available authenticators.

E(K,D)

Denotes the Encryption of data D with key K

ECDSA

Elliptic Curve Digital Signature Algorithm, as defined by ANSI X9.62 [�ECDSA-



ANSI].

Enrollment

The process of making a user known to an authenticator. This might be a
biometric enrollment as defined in [�NSTCBiometrics] or involve processes such as
taking ownership of, and setting a PIN or password for, a non-biometric
cryptographic storage device. Enrollment may happen as part of a FIDO protocol
ceremony, or it may happen outside of the FIDO context for multi-purpose
authenticators.

Facet

See Application Facet

Facet ID

See Application Facet ID

FIDO Authenticator

An authentication entity that meets the FIDO Alliance’s requirements and which
has related metadata.

A FIDO Authenticator is responsible for user verification, and maintaining �the
cryptographic material required for the relying party authentication.

It is important to note that a FIDO Authenticator is only considered such for, and in
relation to, its participation in FIDO Alliance protocols. Because the FIDO Alliance
aims to utilize a diversity of existing and future hardware, many devices used for
FIDO may have other primary or secondary uses. To the extent that a device is
used for non-FIDO purposes such as local operating system login or network login
with non-FIDO protocols, it is not considered a FIDO Authenticator and its
operation in such modes is not subject to FIDO Alliance guidelines or restrictions,
including those related to security and privacy.

A FIDO Authenticator may be referred to as simply an authenticator or
abbreviated as “authnr”. Important distinctions in an authenticator’s capabilities
and user experience may be experienced depending on whether it is a roaming or
bound authenticator, and whether it is a first-factor, �or second-factor authenticator.

It is assumed by registration assertion schemes that the authenticator has
exclusive control over the data being signed by the attestation key.

Some authentication assertion schemes (e.g. TAG_UAFV1_AUTH_ASSERTION)
assume the authenticator to have exclusive control over the data being signed by
the Uauth key.

FIDO Client

This is the software entity processing the UAF or U2F protocol messages on the
FIDO User Device. FIDO Clients may take one of two forms:

A software component implemented in a user agent (either web browser or
native application).
A standalone piece of software shared by several user agents. (web
browsers or native applications).

FIDO Data / FIDO Information

Any information gathered or created as part of completing a FIDO transaction.



This includes but is not limited to, biometric measurements of or reference data
for the user and FIDO transaction history.

FIDO Server

Server software typically deployed in the relying party’s infrastructure that meets
UAF protocol server requirements.

FIDO UAF Client

See FIDO Client.

FIDO User Device

The computing device where the FIDO Client operates, and from which the user
initiates an action that utilizes FIDO.

Key Identifier (KeyID)�

The KeyID is an opaque identifier for a key �registered by an authenticator with a
FIDO Server, for first-factor authenticators. It is used in concert �with an AAID to
identify a particular authenticator that holds the necessary key. Thus key
identifiers �must be unique within the scope of an AAID.

One possible implementation is that the KeyID is the SHA256 hash of the
KeyHandle managed by the ASM.

KeyHandle

A key container created by a FIDO Authenticator, containing a private key and
(optionally) other data (such as Username). A key handle may be wrapped
(encrypted with a key known only to the authenticator) or unwrapped. In the
unwrapped form it is referred to as a raw key handle. Second-factor authenticators
must retrieve their key handles from the relying party to function. First-factor
authenticators manage the storage of their own key handles, either internally (for
roaming authenticators) or via the associated ASM (for bound authenticators).

Key Registration

The process of securely establishing a key between FIDO Server and FIDO
Authenticator.

KeyRegistrationData (KRD)

A KeyRegistrationData object is created and returned by an authenticator as the
result of the authenticator's Register command. The KRD object contains items
such as the authenticator's AAID, the newly generated UAuth.pub key, as well as
other authenticator-specific information such as algorithms used by the�
authenticator for performing cryptographic operations, and counter values. The
KRD object is signed using the authenticator's attestation private key.

KHAccessToken

A secret value that acts as a guard for authenticator commands. KHAccessTokens
are generated and provided by an ASM.

Matcher

A component of a FIDO Authenticator which is able to perform (local) user
verification, e.g. biometric comparison [�ISOBiometrics], PIN verification, etc.�

Matcher Protections



The security mechanisms that an authenticator may use to protect the matcher
component.

Persona

All relevant data stored in an authenticator (e.g. cryptographic keys) are related to
a single "persona" (e.g. “business” or “personal” persona). Some administrative
interface (not standardized by FIDO) provided by the authenticator may allow
maintenance and switching of personas.

The user can switch to the “Personal” Persona and register new accounts. After
switching back to the “Business” Persona, these accounts will not be recognized
by the authenticator (until the User switches back to “Personal” Persona again).

This mechanism may be used to provide an additional measure of privacy to the
user, where the user wishes to use the same authenticator in multiple contexts,
without allowing correlation via the authenticator across those contexts.

PersonaID

An identifier provided by an ASM, PersonaID is used to associate �different
registrations. It can be used to create virtual identities on a single authenticator, for
example to differentiate “personal” and “business” accounts. PersonaIDs can be
used to manage privacy settings on the authenticator.

Reference Data

A (biometric) reference data (also called template) is a digital reference of distinct
characteristics that have been extracted from a biometric sample. Biometric
reference data is used during the biometric user verification �process
[ISOBiometrics]. Non-biometric reference data is used in conjunction with PIN-
based user verification.�

Registration

A FIDO protocol operation in which a user generates and associates new key
material with an account at the Relying Party, subject to policy set by the server,
and acceptable attestation that the authenticator and registration matches that
policy.

Registration Scheme

The registration scheme defines how the authentication key is being �exchanged
between the FIDO Server and the FIDO Authenticator.

Relying Party

A web site or other entity that uses a FIDO protocol to directly authenticate users
(i.e., performs peer-entity authentication). Note that if FIDO is composed with
federated identity management protocols (e.g., SAML, OpenID Connect, etc.), the
identity provider will also be playing the role of a FIDO Relying Party.

Roaming Authenticator

A FIDO Authenticator configured to move between different �FIDO Clients and
FIDO User Devices lacking an established trust relationship by:

1. Using only its own internal storage for registrations
2. Allowing registered keys to be employed without access control mechanisms

at the API layer. (Roaming authenticators still may perform user verification.)�

Compare to Bound Authenticator.



S(K, D)

Signing of data D with key K

Server Challenge

A random value provided by the FIDO Server in the UAF protocol requests.

Sign Counter

A monotonically increasing counter maintained by the Authenticator. It is
increased on every use of the UAuth.priv key. This value can be used by the FIDO
Server to detect cloned authenticators.

SignedData

A SignedData object is created and returned by an authenticator as the result of
the authenticator's Sign command. The to-be-signed data input to the signature
operation is represented in the returned SignedData object as intact values or as
hashed values. The SignedData object also contains general information about
the authenticator and its mode, a nonce, information about authenticator-specific�
cryptographic algorithms, and a use counter. The SignedData object is signed
using a relying party-specific UAuth.priv key.�

Silent Authenticator

FIDO Authenticator that does not prompt the user or perform any user verification.�

Step-up Authentication

An authentication which is performed on top of an already authenticated session.

Example: The user authenticates the session initially using a username and
password, and the web site later requests a FIDO authentication on top of this
authenticated session.

One reason for requesting step-up authenication could be a request for a high
value resource.

FIDO U2F is always used as a step-up authentication. FIDO UAF could be used
as step-up authentication, but it could also be used as an initial authentication
mechanism.

Note: In general, there is no implication that the step-up authentication method
itself is "stronger" than the initial authentication. Since the step-up authentication
is performed on top of an existing authentication, the resulting combined
authentication strength will increase most likely, but it will never decrease.

Template

See reference data.

TLS

Transport Layer Security

Token

In FIDO U2F, the term Token is often used to mean what is called an authenticator
in UAF. Also, note that other uses of “token”, e.g. KHAccessToken, User
Verification Token, etc., are separately distinct. If they are not explicitly �defined,�
their meaning needs to be determined from context.



Transaction Confirmation�

An operation in the FIDO protocol that allows a relying party to request that a
FIDO Client, and authenticator with the appropriate capabilities, display some
information to the user, request that the user authenticate locally to their FIDO
Authenticator to confirm the information, and provide proof-of-possession of�
previously registered key material and an attestation of the confirmation back to�
the relying party.

Transaction Confirmation Display�

This is a feature of FIDO Authenticators able to show content of a message to a
user, and protect the integrity of this message. It could be implemented using the
GlobalPlatform specified TrustedUI [�TEESecureDisplay].

TrustedFacets

The data structure holding a list of trusted FacetIDs. The AppID is used to retrieve
this data structure.

TTEXT

Transaction Text, i.e. text to be confirmed in the case of transaction confirmation.��

Type-length-value/tag-length-value (TLV)

A mechanism for encoding data such that the type, length and value of the data
are given. Typically, the type and length data fields are of a fixed size. This ��format
offers some advantages over other data encoding mechanisms, that make it
suitable for some of the FIDO UAF protocols.

Universal Second Factor (U2F)

The FIDO protocol and family of authenticators which enable a cloud service to
offer its users the options of using an easy–to–use, strongly–secure open
standards–based second-factor device for authentication. The protocol relies on
the server to know the (expected) user before triggering the authentication.

Universal Authentication Framework (UAF)

. The FIDO Protocol and family of authenticators which enable a service to offer its
users flexible and �interoperable authentication. This protocol allows triggering the
authentication before the server knows the user.

UAF Client

See FIDO Client.

UAuth.pub / UAuth.priv / UAuth.key

User authentication keys generated by FIDO Authenticator. UAuth.pub is the
public part of key pair. UAuth.priv is the private part of the key. UAuth.key is the
more generic notation to refer to UAuth.priv.

UINT8

An 8 bit (1 byte) unsigned integer.

UINT16

A 16 bit (2 bytes) unsigned integer.



UINT32

A 32 bit (4 bytes) unsigned integer.

UPV

UAF Protocol Version

User

Relying party’s user, and owner of the FIDO Authenticator.

User Agent

The user agent is a client application that is acting on behalf of a user in a client-
server system. Examples of user agents include web browsers and mobile apps.

User Verification�

The process by which a FIDO Authenticator locally authorizes use of key material,
for example through a touch, pin code, fingerprint match or other biometric.�

User Verification Token�

The user verification token is generated by �Authenticator and handed to the ASM
after successful user verification. Without having this token, the ASM �cannot
invoke special commands such as Register or Sign.

The lifecycle of the user verification token is �managed by the authenticator. The
concrete techniques for generating such a token and managing its lifecycle are
vendor-specific and non-normative.�

Username

A human-readable string identifying a user’s account at a relying party.

Verification Factor�

The specific means by which local user verification is accomplished. ��e.g.
fingerprint, voiceprint, or PIN.�

This is also known as modality.

Web Application, Client-Side

The portion of a relying party application built on the "Open Web Platform" which
executes in the context of the user agent. When the term “Web Application”
appears unqualified or without specific context in FIDO ��documents, it generally
refers to either the client-side portion or the combination of both client-side and
server-side pieces of such an application.

Web Application, Server-Side

The portion of a relying party application that executes on the web server, and
responds to HTTP requests. When the term “Web Application” appears unqualified�
or without specific context in FIDO �documents, it generally refers to either the
client-side portion or the combination of both client-side and server-side pieces of
such an application.

A. References



A.1 Normative references
[FIDOGlossary]

R. Lindemann, D. Baghdasaryan, B. Hill, J. Kemp FIDO Technical Glossary v1.0.
FIDO Alliance Review Draft (Work in progress.) URL:
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf��

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

A.2 Informative references
[AnonTerminology]

"Anonymity, Unlinkability, Unobservability, Pseudonymity, and Identity
Management - A Consolidated Proposal for Terminology", Version 0.34,. A.
Pfitzmann and M. Hansen, August 2010. URL: �http://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf

[ChannelID]
D. Balfanz Transport Layer Security (TLS) Channel IDs. (Work In Progress) URL:
http://tools.ietf.org/html/draft-balfanz-tls-channelid

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA), ANSI X9.62-2005. American National
Standards Institute, November 2005, URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[ISOBiometrics]
Project Editor, Harmonized Biometric Vocabulary. ISO/IEC JTC 1. 15 November
2007, URL: http://isotc.iso.org/livelink/...

[NSTCBiometrics]
NSTC Subcommittee on Biometrics, Biometrics Glossary. National Science and
Technology Council. 14 September 2006, URL:
http://biometrics.gov/Documents/Glossary.pdf

[RFC5056]
N. Williams, On the Use of Channel Bindings to Secure Channels (RFC 5056),
IETF, November 2007, URL: http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk; Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile���,
IETF, May 2008, URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5929]
J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July
2010, URL: http://www.ietf.org/rfc/rfc5929.txt

[RFC6454]
A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL:
https://tools.ietf.org/html/rfc6454

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications� GlobalPlatform.
Accessed March 2014. URL: https://www.globalplatform.org/specifications.asp�

http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-glossary-v1.0-rd-20140209.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp

	Table of Contents
	UAF Architectural Overview
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	1.1 Background
	1.2 FIDO UAF Documentation
	1.3 FIDO UAF Goals

	2. FIDO UAF High-Level Architecture
	2.1 FIDO UAF Client
	2.2 FIDO UAF Server
	2.3 FIDO UAF Protocols
	2.4 FIDO UAF Authenticator Abstraction Layer
	2.5 FIDO UAF Authenticator
	2.6 FIDO UAF Authenticator Metadata Validation

	3. FIDO UAF Usage Scenarios and Protocol Message Flows
	3.1 FIDO UAF Authenticator Acquisition and User Enrollment
	3.2 Authenticator Registration
	3.3 Authentication
	3.4 Step-up Authentication
	3.5 Transaction Confirmation
	3.6 Authenticator Deregistration
	3.7 Adoption of New Types of FIDO UAF Authenticators

	4. Privacy Considerations
	5. Relationship to Other Technologies
	OpenID, SAML, and OAuth
	6. OATH, TCG, PKCS#11, and ISO 24727
	7. Table of Figures

	FIDO UAF Protocol Specification v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Architecture
	2.3 Protocol Conversation
	2.3.1 Registration
	2.3.2 Authentication
	2.3.3 Transaction Confirmation
	2.3.4 Deregistration


	3. Protocol Details
	3.1 Shared Structures and Types
	3.1.1 Version Interface
	3.1.2 Operation enumeration
	3.1.3 OperationHeader dictionary
	3.1.4 Authenticator Attestation ID (AAID) typedef
	3.1.5 KeyID typedef
	3.1.6 ServerChallenge typedef
	3.1.7 FinalChallengeParams dictionary
	3.1.8 TLS ChannelBinding dictionary
	3.1.9 JwkKey dictionary
	3.1.10 Extension dictionary
	3.1.11 MatchCriteria dictionary
	3.1.12 Policy dictionary

	3.2 Processing Rules for the Server Policy
	3.2.1 Examples

	3.3 Version Negotiation
	3.4 Registration Operation
	3.4.1 Registration Request Message
	3.4.2 RegistrationRequest dictionary
	3.4.3 AuthenticatorRegistrationAssertion dictionary
	3.4.4 Registration Response Message
	3.4.5 RegistrationResponse dictionary
	3.4.6 Registration Processing Rules

	3.5 Authentication Operation
	3.5.1 Transaction dictionary
	3.5.2 Authentication Request Message
	3.5.3 AuthenticationRequest dictionary
	3.5.4 AuthenticatorSignAssertion dictionary
	3.5.5 AuthenticationResponse dictionary
	3.5.6 Authentication Response Message
	3.5.7 Authentication Processing Rules

	3.6 Deregistration Operation
	3.6.1 Deregistration Request Message
	3.6.2 DeregisterAuthenticator dictionary
	3.6.3 DeregistrationRequest dictionary
	3.6.4 Deregistration Processing Rules


	4. Considerations
	4.1 Protocol Core Design Considerations
	4.1.1 Authenticator Metadata
	4.1.2 Authenticator Attestation
	4.1.3 Error Handling
	4.1.4 Assertion Schemes
	4.1.5 Username in Authenticator
	4.1.6 TLS Protected Communication

	4.2 Implementation Considerations
	4.2.1 Server Challenge and Random Numbers

	4.3 Security Considerations
	4.3.1 FIDO Authenticator Security
	4.3.2 Cryptographic Algorithms
	4.3.3 Application Isolation
	4.3.4 TLS Binding
	4.3.5 Session Management
	4.3.6 Personas
	4.3.7 ServerData and KeyHandle
	4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata
	4.3.9 Policy Verification
	4.3.10 Replay Attack Protection
	4.3.11 Protection against Cloned Authenticators
	4.3.12 Anti-Fraud Signals

	4.4 Interoperability Considerations

	5. UAF Supported Assertion Schemes
	5.1 Assertion Scheme "UAFV1TLV"
	5.1.1 KeyRegistrationData
	5.1.2 SignedData


	6. Definitions
	7. Table of Figures
	A. References
	A.1 Normative references
	A.2 Informative references


	FIDO UAF Application API and Transport Binding Specification v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Audience
	2.2 Scope
	2.3 Architecture
	2.3.1 Protocol Conversation


	3. Common Definitions
	3.1 UAF Status Codes

	4. Shared Definitions
	4.1 UAFMessage Dictionary
	4.1.1 Dictionary UAFMessage Members

	4.2 Version interface
	4.2.1 Attributes

	4.3 Authenticator interface
	4.3.1 Attributes
	4.3.2 Authenticator Interface Constants

	4.4 DiscoveryData dictionary
	4.4.1 Dictionary DiscoveryData Members

	4.5 ErrorCode interface
	4.5.1 Constants


	5. DOM API
	5.1 Feature Detection
	5.2 uaf Interface
	5.2.1 Methods

	5.3 UAFResponseCallback
	5.3.1 Callback UAFResponseCallback Parameters

	5.4 DiscoveryCallback
	5.4.1 Callback DiscoveryCallback Parameters

	5.5 ErrorCallback
	5.5.1 Callback ErrorCallback Parameters

	5.6 Privacy Considerations for the DOM API
	5.7 Security Considerations for the DOM API
	5.7.1 Insecure Mixed Content
	5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

	5.8 Implementation Notes for Browser/Plugin Authors

	6. Android Intent API
	6.1 Android-specific Definitions
	6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT
	6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
	6.1.3 channelBindings
	6.1.4 UAFIntentType enumeration

	6.2 org.fidoalliance.intent.FIDO_OPERATION Intent
	6.2.1 UAFIntentType.DISCOVER
	6.2.2 UAFIntentType.DISCOVER_RESULT
	6.2.3 UAFIntentType.CHECK_POLICY
	6.2.4 UAFIntentType.CHECK_POLICY_RESULT
	6.2.5 UAFIntentType.UAF_OPERATION
	6.2.6 UAFIntentType.UAF_OPERATION_RESULT
	6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

	6.3 Security Considerations for Android Implementations

	7. iOS Custom URL API
	7.1 iOS-specific Definitions
	7.1.1 X-Callback-URL Transport
	7.1.2 Secret Key Generation
	7.1.3 Origin
	7.1.4 channelBindings
	7.1.5 UAFxType

	7.2 JSON Values
	7.2.1 DISCOVER
	7.2.2 DISCOVER_RESULT
	7.2.3 CHECK_POLICY
	7.2.4 CHECK_POLICY_RESULT
	7.2.5 UAF_OPERATION
	7.2.6 UAF_OPERATION_RESULT
	7.2.7 UAF_OPERATION_COMPLETION_STATUS

	7.3 Implementation Guidelines for iOS Implementations
	7.4 Security Considerations for iOS Implementations

	8. Transport Binding Profile
	8.1 Transport Security Requirements
	8.2 TLS Security Requirements
	8.3 HTTPS Transport Interoperability Profile
	8.3.1 Obtaining a UAF Request message
	8.3.2 Operation enum
	8.3.3 GetUAFRequest dictionary
	8.3.4 ReturnUAFRequest dictionary
	8.3.5 SendUAFResponse dictionary
	8.3.6 Delivering a UAF Response
	8.3.7 ServerResponse Interface
	8.3.8 Token interface
	8.3.9 TokenType enum
	8.3.10 Security Considerations


	A. References
	A.1 Normative references
	A.2 Informative references


	FIDO UAF Authenticator-Specific Module API
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Code & Example format

	3. ASM Requests and Responses
	3.1 Request enum
	3.2 StatusCode Interface
	3.2.1 Constants

	3.3 ASMRequest Dictionary
	3.3.1 Dictionary ASMRequest Members

	3.4 ASMResponse Dictionary
	3.4.1 Dictionary ASMResponse Members

	3.5 GetInfo Request
	3.5.1 GetInfoOut Dictionary
	3.5.2 AuthenticatorInfo Dictionary

	3.6 Register Request
	3.6.1 RegisterIn Object
	3.6.2 RegisterOut Object
	3.6.3 Detailed Description for Processing the Register Request

	3.7 Authenticate Request
	3.7.1 AuthenticateIn Object
	3.7.2 Transaction Object
	3.7.3 AuthenticateOut Object
	3.7.4 Detailed Description for Processing the Authenticate Request

	3.8 Deregister Request
	3.8.1 DeregisterIn Object
	3.8.2 Detailed Description for Processing the Deregister Request

	3.9 GetRegistrations Request
	3.9.1 GetRegistrationsOut Object
	3.9.2 AppRegistration Object
	3.9.3 Detailed Description for Processing the GetRegistrations Request

	3.10 OpenSettings Request

	4. Using ASM API
	5. Using the ASM API on various platforms
	5.1 Android ASM Intent API
	5.1.1 Discovering ASMs

	5.2 Windows ASM API

	6. Security and Privacy Guidelines
	6.1 KHAccessToken
	6.2 Access Control for ASM APIs

	A. References
	A.1 Normative references
	A.2 Informative references


	FIDO UAF Authenticator Commands v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	3. Additional Notations
	4. UAF Authenticator
	4.1 Types of Authenticators

	5. Tags
	5.1 Command Tags
	5.2 Tags used only in Authenticator Commands
	5.3 Tags used in UAF Protocol
	5.4 Status Codes

	6. Structures
	6.1 RawKeyHandle
	6.1.1 Structures to be parsed by FIDO Server
	6.1.2 UserVerificationToken

	6.2 Commands
	6.2.1 GetInfo Command
	6.2.2 Register Command
	6.2.3 Sign Command
	6.2.4 Deregister Command
	6.2.5 OpenSettings Command


	7. KeyIDs and key handles
	7.1 first-factor Bound Authenticator
	7.2 2ndF Bound Authenticator
	7.3 first-factor Roaming Authenticator
	7.4 2ndF Roaming Authenticator

	8. Access Control for Commands
	9. Relationship to other standards
	9.1 TEE
	9.2 Secure Elements
	9.3 TPM
	9.4 Unreliable Transports

	A. Security Guidelines
	B. Table of Figures
	C. References
	C.1 Normative references
	C.2 Informative references


	FIDO UAF Authenticator Metadata Statements v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 CodeAccuracyDescriptor dictionary
	3.1.1 Dictionary CodeAccuracyDescriptor Members

	3.2 BiometricAccuracyDescriptor dictionary
	3.2.1 Dictionary BiometricAccuracyDescriptor Members

	3.3 PatternAccuracyDescriptor dictionary
	3.3.1 Dictionary PatternAccuracyDescriptor Members

	3.4 VerificationMethodDescriptor dictionary
	3.4.1 Dictionary VerificationMethodDescriptor Members

	3.5 verificationMethodANDCombinations typedef
	3.6 rgbPalletteEntry dictionary
	3.6.1 Dictionary rgbPalletteEntry Members

	3.7 DisplayPNGCharacteristicsDescriptor dictionary
	3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members


	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references


	FIDO UAF Authenticator Metadata Service v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Detailed Architecture

	3. Metadata Service Details
	3.1 Metadata TOC Format
	3.1.1 Metadata TOC Payload Entry Dictionary
	3.1.2 StatusReport dictionary
	3.1.3 AuthenticatorStatus enum
	3.1.4 Metadata TOC Payload Dictionary
	3.1.5 Metadata TOC
	3.1.6 Metadata TOC object Processing Rules


	4. Considerations
	A. References
	A.1 Normative references
	A.2 Informative references


	FIDO UAF Registry of Predefined Values
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	3. Authenticator Characteristics
	3.1 User Verification Methods
	3.2 Key Protection Types
	3.3 Matcher Protection Types
	3.4 Authenticator Attachment Hints
	3.5 Transaction Confirmation Display Types
	3.6 Tags used for crypto algorithms and types
	3.6.1 Authentication Algorithms
	3.6.2 Public Key Representation Formats

	3.7 Assertion Schemes

	4. Predefined Tags
	4.1 Tags used in the protocol

	A. References
	A.1 Normative references
	A.2 Informative references


	FIDO AppID and Facet Specification v1.0
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Motivation
	2.2 Avoiding App-Phishing
	2.3 Comparison to OAuth and OAuth2
	2.4 Non-Goals

	3. The AppID and FacetID Assertions
	3.1 Processing Rules for AppID and FacetID Assertions
	3.1.1 Determining the FacetID of a Calling Application
	3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
	3.1.3 TrustedFacets structure
	3.1.4 AppID Example 1:
	3.1.5 AppID Example 2:
	3.1.6 Obtaining FacetID of Android Native App
	3.1.7 Additional Security Considerations


	A. References
	A.1 Normative references
	A.2 Informative references


	FIDO Security Reference
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	2.1 Intended Audience

	3. Attack Classification
	4. UAF Security Goals
	4.1 Assets to be Protected

	5. FIDO Security Measures
	5.1 Relation between Measures and Goals

	6. UAF Security Assumptions
	6.1 Discussion

	7. Threat Analysis
	7.1 Threats to Client Side
	7.1.1 Exploiting User’s pattern matching weaknesses
	7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
	7.1.3 Creating a Fake Client
	7.1.4 Threats to FIDO Authenticator

	7.2 Threats to Relying Party
	7.2.1 Threats to FIDO Server Data

	7.3 Threats to the Secure Channel between Client and Relying Party
	7.3.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

	7.4 Threats to the Infrastructure
	7.4.1 Threats to FIDO Authenticator Manufacturers
	7.4.2 Threats to FIDO Server Vendors
	7.4.3 Threats to FIDO Metadata Service Operators

	7.5 Threats Specific to UAF with a second factor / U2F

	8. Acknowledgements
	A. References
	A.1 Informative references


	FIDO Technical Glossary
	FIDO Alliance Implementation Draft 22 November 2014
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	3. Definitions
	A. References
	A.1 Normative references
	A.2 Informative references



