This version:
https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.1.1-rd02-20260105

Issue Tracking:
GitHub

Editors:
Billy Jack (Microsoft)
Rolf Lindemann (Nok Nok Labs)

Former Editor:
Yuriy Ackermann (FIDO Alliance)

Copyright © 2026 FIDO Alliance. All Rights Reserved.

FIDO authenticators may have many different form factors, characteristics and capabilities. This document
defines a standard means to describe the relevant pieces of information about an authenticator in order to
interoperate with it, or to make risk-based policy decisions about transactions involving a particular authenticator.

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https.//fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft Specification. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of
reviewing the Specification. No rights are granted to prepare derivative works of this Specification. Entities
seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to
determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

1 Notation

1/34

https://fidoalliance.org/
https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.1.1-rd02-20260105
https://github.com/fido-alliance/mds-specs
mailto:billyj@microsoft.com
mailto:Inc. rolf@noknok.com
mailto:Inc. yuriy@fidoalliance.org
https://fidoalliance.org
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Type names, attribute names and element names are written ascode.

Overview
Scope
Audience
Architecture

Types

Authenticator Attestation GUID (AAGUID) typedef
CodeAccuracyDescriptor dictionary
BiometricAccuracyDescriptor dictionary
PatternAccuracyDescriptor dictionary
VerificationMethodDescriptor dictionary
VerificationMethodANDCombinations typedef
rgbPaletteEntry dictionary
DisplayPNGCharacteristicsDescriptor dictionary
EcdaaTrustAnchor dictionary
ExtensionDescriptor dictionary

FriendlyNames dictionary
AlternativeDescriptions dictionary
AuthenticatorGetinfo dictionary

Metadata Keys
SVG requirements

Metadata Statement Format
UAF Example

U2F Example

FIDO2 Example

Additional Considerations
Field updates and metadata

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

IDL Index

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenationoperations.

DOM APIs are described using the ECMAScript[ECMA-262] bindings for WebIDL [WebIDL-ED].
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members MUST NOT have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it MUST NOT be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it MUST NOT be an empty list.

2/34

All diagrams, examples, notes in this specification are non-normative.

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this document, as required. The keyword required
has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which
implements [WeblIDL], then you may remove the keywordrequired from your WebIDL and use other means
to ensure those fields are present.

DOM APIs are described using the ECMAScript[ECMA-262] bindings for WebIDL [WebIDL-ED].

This section is not normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety of
different devices in a competitive marketplace. Much of the complexity behind this variety is hidden from Relying
Party applications, but in order to accomplish the goals of FIDO, Relying Parties must have some means of
discovering and verifying various characteristics of authenticators. Relying Parties can learn a subset of verifiable
information for authenticators certified by the FIDO Alliance with an Authenticator Metadata statement. The
Metadata statement can be acquired from the Metadata BLOB that is hosted on the Metadata Service [FIDOMeta

dataService].

For definitions of terms, please refer to the FIDO Glossary[FIDOGlossary].

This document describes the format of and information contained inAuthenticator Metadata statements. For a
definitive list of possible values for the various types of information, refer to the FIDO Registry of Predefined

Values [FIDORegistry].

The description of the processes and methods by which authenticator metadata statements are distributed and
the methods how these statements can be verified are described in the Metadata Service Specification [FIDOMet

adataService].

The intended audience for this document includes:

« FIDO authenticator vendors who wish to produce metadata statements for their products.

« FIDO server implementers who need to consume metadata statements to verify characteristics of
authenticators and attestation statements, make proper algorithm choices for protocol messages, create
policy statements or tailor various other modes of operation to authenticator-specific characteristics.

o FIDO relying parties who wish to

o create custom policy statements about which authenticators they will accept
o risk score authenticators based on their characteristics

o verify attested authenticator IDs for cross-referencing with third party metadata

3/34

Authenticator

RP Server

Platform Metadata

FIDO Server Statement incl.
(OS, BI'OWSEI'} Attestation Trust

Anchor

FIDO
Authenticator

.
FIDO Metadata Other Metadata
Sources

FIDO
Service

Figure 1 The FIDO Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the information
contained in the authoritative statement is used in several other places. How a server obtains these metadata
statements is described in [FIDOMetadataService].

The workflow around an authenticator metadata statement is as follows:

1.

The authenticator vendor produces a metadata statement, that is UTF-8 encoded, describing the
characteristics of an authenticator.

The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification process. The
FIDO Alliance distributes the metadata as described in [FIDOMetadataService].

. A FIDO relying party configures its registration policy to allow authenticators matching certain characteristics

to be registered.
The FIDO server sends a registration challenge message. This message can contain such policy statement.

Depending on the FIDO protocol being used, either the relying party application or the FIDO UAF Client
receives the policy statement as part of the challenge message and processes it. It queries available
authenticators for their self-reported characteristics and (with the user’s input) selects an authenticator that
matches the policy, to be registered.

The client processes and sends a registration response message to the server. This message contains a
reference to the authenticator model and, optionally, a signature made with the private key corresponding to
the public key in the authenticator’s attestation certificate.

The FIDO Server looks up the metadata statement for the particular authenticator model. If the metadata
statement lists an attestation certificate(s), it verifies that an attestation signature is present, and made with
the private key corresponding to either (a) one of the certificates listed in this metadata statement or (b)

4/34

corrsponding to the public key in a certificate that chains to one of the issuer certificates listed in the
authenticator’'s metadata statement.

8. The FIDO Server next verifies that the authenticator meets the originally supplied registration policy based
on its authoritative metadata statement. This prevents the registration of unexpected authenticator models.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the
authenticator, based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested authenticator model with other metadata
databases published by third parties. Such third-party metadata might, for example, inform the FIDO Server
if an authenticator has achieved certifications relevant to certain markets or industry verticals, or whether it
meets application-specific regulatory requirements.

This section is normative.

typedef DOMString AAGUID;

string[36]

Some authenticators have an AAGUID, which is a 128-bit identifier that indicates the type (e.g. make and model)
of the authenticator. The AAGUID MUST be chosen by the manufacturer to be identical across all substantially
identical authenticators made by that manufacturer, and different (with probability 1-2128 or greater) from the
AAGUIDs of all other types of authenticators.

The AAGUID is represented as a string (e.g. "7a98c250-6808-11cf-b73b-00aa00b677a7") consisting of 5 hex
strings separated by a dash ("-"), see [REC4122].

The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user verification
methods.

One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral systembase (radix) and minLen, instead of the number of potential combinations
since there is sufficient evidence [iPhonePasscodes] [MoreTopWorstPasswords] that users don'’t select their
code evenly distributed at random. So software might take into account the various probability distributions for
different bases. This essentially means that in practice, passcodes are not as secure as they could be if
randomly chosen.

dictionary CodeAccuracyDescriptor {
required unsigned short base;
required unsigned short minLength;

unsigned short maxRetries;
unsigned short blockSlowdown;

}

base, of type unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

5/34

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short

minLength, of type unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4 digits.

maxRetries, of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0

means it will never block.

blockSlowdown, of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0
means this user verification method will be blocked, either permanently or until an alternative user
verification method method succeeded. All alternative user verification methods MUST be specified
appropriately in the Metadata in userVerificationDetails.

The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a biometric

user verification method, see [FIDOBiometricsRequirements].

At least one of the values MUST be set. If the vendor doesn’t want to specify such values, then
VerificationMethodDescriptor.baDesc MUST be omitted.

Note: Typical fingerprint sensor characteristics can be found in Andoid [AndroidCompatibilityDefinition] and
Apple iOS [ApplePlatformSecurity].

dictionary BiometricAccuracyDescriptor {

double selfAttestedFRR;
double selfAttestedFAR;
double iAPARThreshold;

unsigned short maxTemplates;
unsigned short maxRetries;
unsigned short blockSlowdown;

i

selfAttestedFRR, of type double
The false rejection rate [ISOIEC-19795-1] for a single template, i.e. the percentage of verification

transactions with truthful claims of identity that are incorrectly denied. For example a FRR of 10% would be
encoded as 0. 1.

This value is self attested and, if the authenticator passed biometric certification, the data is an
independently verified FRR as measured when meeting the FRR target specified in the biometric
certification requirements [FIDOBiometricsRequirements] for the indicated biometric certification level (see
certLevel in related biometricStatusReport as specified in [FIDOMetadataService]).

Note: The false rejection rate is relevant for user convenience. Lower false rejection rates mean better
convenience.

selfAttestedFAR, of type double
The false acceptance rate [ISOIEC-19795-1] for a single template, i.e. the percentage of verification

transactions with wrongful claims of identity that are incorrectly confirmed. For example a FAR of 0.002%
would be encoded as 0.00002.

This value is self attested and, if the authenticator passed biometric certification, the data is an
independently verified FAR specified in the biometric certification requirements [FIDOBiometricsRequiremen
ts] for the indicated biomeric certification level (see certLevel in related biometricStatusReport as specified in

FIDOMetadataService)).

6/34

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double

Note: The resulting FAR when all templates are used is approx. maxTemplates * FAR
The false acceptance rate is relevant for the security. Lower false acceptance rates mean better security.
Only the live captured subjects are covered by this value - not the presentation of artefacts.

iAPARThreshold, of type double
Impostor Attack Presentation Accept Rate (IAPAR) is the proportion of impostor attack presentations using

the same presentation attack instrument (PAI) species that result in accept [isoiec-30107-3]. For biometric
certification requirements [FIDOBiometricsRequirements], certification can be achieved for an IAPAR
threshold of less than 7% OR less than 15% for each of the PAI species tested.

If the authenticator did not pass biometric certification, vendor can submit any number, but this number has
not been validated for biometric performance requirements.

maxTemplates, of type unsigned short
Maximum number of alternative templates from different fingers allowed (for other modalities, multiple parts
of the body that can be used interchangeably), e.g. 3 if the user is allowed to enroll up to 3 different fingers
to a fingerprint based authenticator.

If the authenticator passed biometric certification this value defaults to 1. For maxTemplates greater than
one, it SHALL be independently verified to ensure FAR meets biometric performance requirements of
certLevel (of the related biometricStatusReport as specified in [FIDOMetadataService]).

If the authenticator did not pass biometric certification, vendor can submit any number, but this number has
not been validated for biometric performance requirements.

maxRetries, of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown, of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0
means that this user verification method will be blocked either permanently or until an alternative user
verification method succeeded. All alternative user verification methods MUST be specified appropriately in
the metadata in userVerificationDetails.

The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern is
used as the user verification method.

Note: One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern] screen
unlock. The minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN, the
minimum allowed for this mechanism.

dictionary PatternAccuracyDescriptor {
required unsigned long minComplexity;

unsigned short maxRetries;
unsigned short blockSlowdown;

iE

minComplexity, of type unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the right one,
i.e. 1/probability in the case of equal distribution.

maxRetries, of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this method (at
least temporarily). 0 means it will never block.

7134

https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-short

blockSlowdown, of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar mechanism).

0 means this user verification method will be blocked, either permanently or until an alternative user
verification method method succeeded. All alternative user verification methods MUST be specified
appropriately in the metadata under userVerificationDetails.

A descriptor for a specific base user verification methodas implemented by the authenticator.

A base user verification method must be chosen from the list of those described ifFIDORegistry].

Note: In reality, several of the methods described above might be combined. For example, a fingerprint based
user verification can be combined with an alternative password.

The specification of the related AccuracyDescriptor is optional, but recommended.

dictionary VerificationMethodDescriptor {

DOMString userVerificationMethod;
CodeAccuracyDescriptor caDesc;

BiometricAccuracyDescriptor baDesc;
PatternAccuracyDescriptor paDesc;

+

userVerificationMethod, of type DOMString
a single USER_VERIFY constant case-sensitive string name. See section "User Verification Methods" ifFIDO

Reqistry] (e.g. "presence_internal"). This value MUST NOT be empty.

The constant USER_VERIFY ALL MUST NOT be used here.

caDesc, of type CodeAccuracyDescriptor
May optionally be used in the case of methodUSER VERIFY PASSCODE INTERNAL or

USER VERIFY PASSCODE EXTERNAL

baDesc, of type BiometricAccuracyDescriptor
May optionally be used in the case of methodUSER VERIFY FINGERPRINT INTERNAL,

USER VERIFY VOICEPRINT INTERNAL,USER VERIFY FACEPRINT INTERNAL,
USER_VERIFY_EYEPRINT_INTERNAL, or USER_VERIFY_HANDPRINT_INTERNAL.

paDesc, of type PatternAccuracyDescriptor
May optionally be used in case of methodUSER VERIFY PATTERN INTERNAL or

USER VERIFY PATTERN EXTERNAL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations list describes a combination of the user verification methods that MUST
be passed by the user, in order to achieve successful user verification.

The list MUST NOT be empty.

Each entry in theVerificationMethodANDCombinations describes an individual user verification method, that
must be passed by the user, as well as some security properties of the user verification method such as pin
requirements, biometric properties, etc

8/34

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

The rgbPaletteEntry is an RGB three-sample tuple palette entry

dictionary rgbPaletteEntry {
required unsigned short r;
required unsigned short g;
required unsigned short b;
b

r, of type unsigned short
Red channel sample value

g, of type unsigned short
Green channel sample value

b, of type unsigned short
Blue channel sample value

The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG[PNG
spec for IHDR (image header) and PLTE (palette table)

dictionary DisplayPNGCharacteristicsDescriptor {
required unsigned long width;
required unsigned long height;

required octet bitDepth;
required octet colorType;
required octet compression;
required octet filter;
required octet interlace;
rgbPaletteEntry[] plte;

iE

width, of type unsigned long
image width

height, of type unsigned long
image height

bitDepth, of type octet
Bit depth - bits per sample or per palette index.

colorType, of type octet
Color type defines the PNG image type.

compression, of type octet
Compression method used to compress the image data.

filter, of type octet
Filter method is the preprocessing method applied to the image data before compression.

interlace, of type octet
Interlace method is the transmission order of the image data.

plte, of type rgbPaletteEntry[]
1 to 256 palette entries

In the case of ECDAA attestation, the ECDAA-Issuer’s trust anchor MUST be specified in this field.
9/34

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet

dictionary EcdaaTrustAnchor {
required DOMString X;
required DOMString Y;
required DOMString c;
required DOMString sx;
required DOMString sy;
required DOMString GlCurve;

}s

X, of type DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2 \(X = P_2"x\). SedFIDOEcdaaAlgorithm]

for the definition of ECPoint2ToB.

Y, of type DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2 \(Y = P_2"y\). SedFIDOEcdaaAlgorithm]

for the definition of ECPoint2ToB.

c, of type DOMString
base64url encoding of the result of BigNumberToB(\(c\)). See section "Issuer Specific ECDAA Parameters"
in [FIDOEcdaaAlgorithm] for an explanation of \(c\). See [FIDOEcdaaAlgorithm] for the definition of
BigNumberToB.

sXx, of type DOMString
base64url encoding of the result of BigNumberToB(\(sx\)). See section "lssuer Specific ECDAA Parameters"
in [FIDOEcdaaAlgorithm] for an explanation of \(sx\). See [FIDOEcdaaAlgorithm] for the definition of
BigNumberToB.

sy, of type DOMString
base64url encoding of the result of BigNumberToB(\(sy\)). See section "Issuer Specific ECDAA Parameters"

in [FIDOEcdaaAlgorithm] for an explanation of \(sy\). See [FIDOEcdaaAlgorithm] for the definition of
BigNumberToB.

G1lCurve, of type DOMString
Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256", and

"BN_ISOP512" are supported. See section "Supported Curves for ECDAA" in [FIDOEcdaaAlgorithm] for
details.

Note: Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly
generated by verifying \(s, sx, sy\). See [FIDOEcdaaAlgorithm] for details.

This descriptor contains an extension supported by the authenticator.

dictionary ExtensionDescriptor {
required DOMString id;

unsigned short tag;
DOMString data;

required boolean fail if unknown;

iE
id, of type DOMString
Identifies the extension.

tag, of type unsigned short
The TAG of the extension if this was assigned. TAGs are assigned to extensions if they could appear in an

assertion.

10/34

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short

Examples are TAG_USER _VERIFICATION STATE and TAG_USER VERIFICATION INDEX as defined in[UAFRegist
ryl.

data, of type DOMString
Contains arbitrary data further describing the extension and/or data needed to correctly process the
extension.

This field MAY be missing or it MAY be empty.

fail_if_unknown, of type boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (true) when the
extension is to be processed by the FIDO Server, FIDO Client, ASM, or FIDO Authenticator.

o A value of false indicates that unknown extensions MUST be ignored.

« A value of true indicates that unknown extensions MUST result in an error.

This descriptor contains friendly names (e.g., public trade name) of the authenticator in multiple languages.

dictionary FriendlyNames {
DOMString *IETFLanguageCodes-members...;
b

*IETFLanguageCodes-members...
IETF language codes ((REC5646]), defined by a primary language subtag, followed by a region subtag
based on a two-letter country code from [ISO3166] alpha-2 (usually written in upper case), e.g: Austrian-
German - "de-AT". In case of absence of the specific territorial language definition, vendor should fallback to
the more general language option, e.g: If "de" is given, but "de-AT" is missing, the use "de" entry instead.
Description values can contain any UTF-8 characters.

For example:
{

"en-US": "FIDO Sample Security Key"
}

Each entry SHOULD NOT exceed a maximum length of 63 characters to ensure proper display.

This descriptor contains description in alternative languages.

dictionary AlternativeDescriptions {
DOMString *IETFLanguageCodes-members...;
b

*IETFLanguageCodes-members...
IETF language codes ([REC5646]), defined by a primary language subtag, followed by a region subtag
based on a two-letter country code from [ISO3166] alpha-2 (usually written in upper case), e.g: Austrian-
German - "de-AT". In case of absence of the specific territorial language definition, vendor should fallback to
the more general language option, e.g: If "de" is given, but "de-AT" is missing, the use "de" entry instead.
Description values can contain any UTF-8 characters.

For example:

11/34

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean

"ru-RU": "Mpumep U2F ayTteHTudukatopa ot FIDO Alliance",
"fr-FR": "Exemple U2F authenticator de FIDO Alliance"
}

Each description SHALL NOT exceed a maximum length of 200 characters.

This dictionary describes supported versions, extensions, AAGUID of the device and its capabilities.

dictionary AuthenticatorGetInfo {
DOMString members...;
b

members...
The members are the fields of the structure reported by an authenticator when invoking the

'authenticatorGetinfo' method, see [FIDOCTAP]. All binary values are base64 encoded.

This section is normative.

dictionary MetadataStatement {

DOMString legalHeader;

AAID aaid;

AAGUID aaguid;

DOMString[] attestationCertificateKeyIdentifiers;
FriendlyNames friendlyNames;

required DOMString description;
AlternativeDescriptions alternativeDescriptions;
required unsigned long authenticatorVersion;
required DOMString protocolFamily;

required unsigned short schema;

required Version[] upv;

required DOMString[] authenticationAlgorithms;
required DOMString[] publicKeyAlgAndEncodings;
required DOMString[] attestationTypes;
VerificationMethodANDCombinations|[] userVerificationDetails;
required DOMString[] keyProtection;

boolean isKeyRestricted;

boolean isFreshUserVerificationRequired;
required DOMString[] matcherProtection;

unsigned short cryptoStrength;

DOMString[] attachmentHint;

required DOMString[] tcDisplay;

DOMString tcDisplayContentType;
DisplayPNGCharacteristicsDescriptor|[] tcDisplayPNGCharacteristics;
required DOMString[] attestationRootCertificates;
EcdaaTrustAnchor[] ecdaaTrustAnchors;

DOMString icon;

DOMString iconDark;

DOMString providerLogolight;

DOMString providerLogoDark;
ExtensionDescriptor([] supportedExtensions;
DOMString multiDeviceCredentialSupport;
AuthenticatorGetInfo authenticatorGetInfo;
DOMString cxConfigURL;

i

12/34

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

legalHeader, of type DOMString
The legalHeader, which must be in each Metadata Statement, is an indication of the acceptance of the

relevant legal agreement for using the MDS.
The example of a Metadata Statement legal header is:

"legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/".

aaid, of type AAID
The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure. This field MUST
be set if the authenticator implements FIDO UAF.

Note: FIDO UAF Authenticators support AAID, but they don’t support AAGUID.
It is always expected that the UAF Authenticator (or at least the UAF ASM) knows and provides the
correct AAID.

aaguid, of type AAGUID
The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure.
This field MUST be set if the authenticator implements FIDO2.

Note: FIDO2 Authenticators support AAGUID, but they don’t support AAID.

For credentials that are backup eligible, restoring them to a different authenticator model/passkey
provider might be supported as well. The AAGUID might change over time as a result. Such credentials
either have the "Backup Eligibility" flag set or the authenticator metadata statement has

multiDeviceCredentialSupport set to "implicit".

attestationCertificateKeyIdentifiers, of type DOMString[]
A list of the attestation certificate public key identifiers encoded as hex string.

This value MUST be calculated according to method 1 for computing the keyldentifier as defined ifRFC528
0] section 4.2.1.2. The hex string MUST NOT contain any non-hex characters (e.g. spaces). All hex letters
MUST be lower case. This field MUST be set if neither aaid nor aaguid are set. Setting this field implies that
the attestation certificate(s) are dedicated to a single authenticator model.

AllattestationCertificateKeyIdentifier values should be unique within the scope of the
Metadata Service.

Note: FIDO U2F Authenticators typically do not support AAID nor AAGUID, but they use attestation
certificates dedicated to a single authenticator model.

friendlyNames, of type FriendlyNames
A human-readable friendly name of the authenticator / passkey provider in multiple languages. The name is

intended to be shown to end users. A name in English language ("en-US") is mandatory, localized names for
other languages are optional.

description, of type DOMString
A human-readable, short description of the authenticator, in English.

Note: This description should help an administrator configuring authenticator policies. This description
might deviate from the description returned by the ASM for that authenticator.

This description should contain the public authenticator trade name and the publicly known vendor
name.

This description MUST be in English, and only contain ASCII[ECMA-262] characters.

Thisdescription SHALL NOT exceed a maximum length of 200 characters.

alternativeDescriptions, of type AlternativeDescriptions
A list of human-readable short descriptions of the authenticator in different languages.
13/34

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

authenticatorVersion, of type unsigned long
Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this
metadata statement.

Adding new StatusReport entries with status UPDATE_AVAILABLE to the metadata BLOB object [FIDOMetadat
aService] MUST also change thisauthenticatorVersion if the update fixes severe security issues, e.g. the
ones reported by preceding StatusReport entries with status code

USER VERIFICATION BYPASS,ATTESTATION KEY COMPROMISE,USER KEY REMOTE COMPROMISE,USER KEY PHYSI
CAL_COMPROMISE,REVOKED.

It is RECOMMENDED to assume increased risk if this version is higher (newer) than the firmware version
present in an authenticator. For example, if a StatusReport entry with status USER VERIFICATION BYPASS or
USER KEY REMOTE COMPROMISE precedes the UPDATE AVAILABLE entry, than any firmware version lower
(older) than the one specified in the metadata statement is assumed to be vulnerable.

The specified version should equal the value of the firmwareVersion' member of the
authenticatorGetInfo response. If present, see [FIDOCTAP].

The firmware version of the authenticator providing the attestation can be found in the attestation
certificate in extension id-fido-gen-ce-fw-version (OID 1.3.6.1.4.1.45724.1.1.5).

protocolFamily, of type DOMString
The FIDO protocol family. The values "uaf", "u2f", and "fido2" are supported.

Metadata Statements for U2F authenticators MUST set the value ofprotocolFamily to "u2f". Metadata
statement for UAF authenticator MUST set the value of protocolFamily to "uaf", and

FIDO2/WebAuthentication Authenticator implementations MUST set the value of protocolFamily to
"fido2".

schema, of type unsigned short
The Metadata Schema version

Metadata schema version defines what schema of the metadata statement is currently present. The schema
version of this version of the specification is 3.

upv, of type Version[]
The FIDO unified protocol version(s) (related to the specific protocol family) supported by this authenticator.

See [UAFProtocol] for the formal definition of theVersion structure (containing major and minor version
numbers).

The unified protocol version is determined as follows:
« in the case of FIDO UAF, use the upv value as specified in the respective "OperationHeader" field, sed

UAFProtocol].

« in the case of U2F, use

o major version 1, minor version 0 for U2F v1.0
o major version 1, minor version 1 for U2F v1.1
o major version 1, minor version 2 for U2F v1.2 also known as CTAP1

« in the case of FIDO2/CTAP2, use

o major version 1, minor version 0 for CTAP 2.0
o major version 1, minor version 1 for CTAP 2.1
o major version 1, minor version 2 reserved, CTAP 2.2 was skipped
o major version 1, minor version 3 for CTAP 2.3

authenticationAlgorithms, of type DOMString[]

The list of authentication algorithms supported by the authenticator.
14/34

https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short

Must be set to the complete list of the supported ALG constant case-sensitive string names defined in the
FIDO Registry of Predefined Values [FIDOReqgistry] (section "Authentication Algorithms") if the authenticator
supports multiple algorithms. E.g. "secp256r1_ecdsa_sha256_raw", "secp256r1_ecdsa_sha256_der".

The list MUST NOT be empty.

FIDO UAF Authenticators
For verification purposes, the fieldSignatureAlgAndEncoding in the FIDO UAF authentication

assertion [UAFAuthnrCommands] should be used to determine the actual signature algorithm and
encoding.
FIDO U2F Authenticators
FIDO U2F only supports one signature algorithm and encoding:
ALG SIGN SECP256R1 ECDSA SHA256 RAW [FIDORegistry].

publicKeyAlgAndEncodings, of type DOMString[]
The list of public key formats supported by the authenticator during registration operations.

Must be set to the complete list of the supported ALG_KEY constant case-sensitive string names defined in
the FIDO Registry of Predefined Values [FIDOReqistry] if the authenticator model supports multiple
encodings. See section "Public Key Representation Formats", e.g. "ecc_x962_raw", "ecc_x962_der".

Because this information is not present in APIs related to authenticator discovery or policy, a FIDO server
MUST be prepared to accept and process any and all key representations defined for any public key
algorithm it supports. The list MUST NOT be empty. If there are multiple values they MUST be ordered by
preference.

FIDO UAF Authenticators
For verification purposes, the fieldPublicKeyAlgAndEncoding in the FIDO UAF registration

assertion [UAFAuthnrCommands] should be used to determine the actual encoding of the public
key.

FIDO U2F Authenticators
FIDO U2F only supports one public key encoding:ALG_KEY ECC_X962_ RAW [FIDORegistry].

attestationTypes, of type DOMString[]
Must be set to the complete list of the supported ATTESTATION constant case-sensitive string names. See

section "Authenticator Attestation Types" of FIDO Registry [FIDORegistry] for all available attestation
formats, e.g. "basic_full".

userVerificationDetails, of type VerificationMethodANDCombinations][]
A list of alternative VerificationMethodANDCombinations.

userVerificationDetails is a two dimensional array, that informs RP what
VerificationMethodANDCombinations user may be required to perform in order to pass user verification,
e.g User need to pass fingerprint, or faceprint, or password and palm print, etc.

If this entry is missing, any user verification method could be implemented - including "none",
"presence_internal" and other methods - including methods not formally defined in the FIDO Registry [FIDO
Reqistry]l. Depending on the "protocolFamily”, the authentication assertion might contain further details.

Consider this userVerificationDetails example:

15/34

{ "userVerificationMethod": "fingerprint internal" }
]I

// OR
[
{ "userVerificationMethod": "passcode internal" }
1,
// OR
[
{ "userVerificationMethod": "faceprint internal"},
// AND
{ "userVerificationMethod": "voiceprint internal"}

]

In this example we have user verification details that describe these potential scenarios: User has an
authenticator model that requires

1. Fingerprint, or

2. Passcode, or

3. Faceprint and Voiceprint - where Voiceprint and Faceprint must be provided in order to pass user

verification.

The RP verifying attestation or assertion, by checking UV flag in the response knows that one of the user
verification combinations been passed.

Note: FIDO2 "Security Keys" will typically support "none", or "presence_internal", or "passcode_external"

[FIDOCTAP], i.e.
[

{ "userVerificationMethod": "none" }

1,
[

{ "userVerificationMethod": "presence internal" }
1,
[

{ "userVerificationMethod": "passcode external" }
1,
[

{ "userVerificationMethod": "passcode external" },

{ "userVerificationMethod": "presence internal" }

The FIDO Client will typically prevent "none" (silent authentication) and "passcode_external” (without
"presence_internal") from being used in practice, see [WebAuthn].

keyProtection, of type DOMString[]
The list of key protection types supported by the authenticator. Must be set to thecomplete list of the

supported KEY_PROTECTION constant case-sensitive string names defined in the FIDO Registry of
Predefined Values [FIDORegistry] in section "Key Protection Types" e.g. "secure_element". Each value
MUST NOT be empty.

16/34

Note: The keyProtection specified here denotes the effective security of the attestation key and Uauth
private key and the effective trustworthiness of the attested attributes in the “sign assertion”. Effective
security means that key extraction or injecting malicious attested attributes is only possible if the
specified protection method is compromised. For example, if keyProtection=TEE is stated, it shall be
impossible to extract the attestation key or the Uauth private key or to inject any malicious attested
attributes without breaking the TEE.

isKeyRestricted, of type boolean
This entry is set to true, if the Uauth private key is restricted by the authenticator to only sign valid FIDO

signature assertions. This entry is set to false, if the authenticator doesn’t restrict the Uauth key to only sign
valid FIDO signature assertions. In this case, the calling application could potentially get any hash value
signed by the authenticator. If this field is missing, the assumed value is isKeyRestricted=true.

Note: Only in the case of isKeyRestricted=true, the FIDO server can trust a signature counter,
transaction text, or any other extension in the signature assertion to have been correctly
processed/controlled by the authenticator.

isFreshUserVerificationRequired, of type boolean
This entry is set to true, if Uauth key usage always requires a fresh user verification. If this field is missing,

the assumed value is isFreshUserVerificationRequired=true. This entry is set to false, if the Uauth key can
be used without requiring a fresh user verification, e.g. without any additional user interaction, if the user was
verified a (potentially configurable) caching time ago.

In the case of isFreshUserVerificationRequired=false, the FIDO server MUST verify the registration
response and/or authentication response and verify that the (maximum) caching time (sometimes also called
"authTimeout") is acceptable.

This entry solely refers to the user verification. In the case of transaction confirmation, the authenticator
MUST always ask the user to authorize the specific transaction.

Note that in the case of isFreshUserVerificationRequired=false, the calling App could trigger use of the
key without user involvement. In this case it is the responsibility of the App to ask for user consent.

matcherProtection, of type DOMString([]
The list of matcher protections supported by the authenticator. Must be set to thecomplete list of the

supported MATCHER PROTECTION constant case-sensitive string names defined in the FIDO Registry of
Predefined Values [FIDORegistry]. See section "Matcher Protection Types", e.g. "on_chip". This value
MUST NOT be empty.

If multiple user verification methods are supported, either (a) one entry per method or the minimum
security level over all methods could be specified.

If multiple alternative implementations exist, then each entry must reflect the weakest implementation of
all alternative implementations.

If a user verification method implementation is split across multiple components, then this value must
reflect the weakest implementation of all those components.

The matcherProtection specified here denotes the effective security of the FIDO authenticator’s user
verification. This means that a false positive user verification implies breach of the stated method. For
example, if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key
when bypassing the user verification without breaking the TEE.

cryptoStrength, of type unsigned short
The authenticator’'s overall claimed cryptographic strengthin bits (sometimes also called security

strength or security level). If this value is absent, the cryptographic strength is unknown. If the cryptographic
strength of one of the involved cryptographic methods is unknown the overall claimed cryptographic strength
is also unknown.

17/34

https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-unsigned-short

See [FIDOAuthenticatorSecurityRequirements], requirement 2.1.4, "Overall Claimed Cryptographic
Strength”

attachmentHint, of type DOMString][]
The list of supported attachment hints describing the method(s) by which the authenticator communicates

with the FIDO user device. Must be set to the complete list of the supported ATTACHMENT HINT constant
case-sensitive string names defined in the FIDO Registry of Predefined Values [FIDORegistry]. See section
"Authenticator Attachment Hints", e.g. "nfc".

This value MUST be present for all authenticators supporting CTAP 2.2 or newer. This value SHOULD be
present for all authenticators supporting CTAP 2.1. If the value is provided, the array MUST NOT be empty.

Note: The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set ATTACHMENT HINT EXTERNAL but not
ATTACHMENT HINT INTERNAL.

For FIDO2 the values of attachmentHint MUST correspond to theauthenticatorGetInfo.transports if
present.

See the fieldauthenticatorGetInfo for FIDO2 authenticators; which expose similar information in the
'transports' member when invoking the 'authenticatorGetinfo' method. See [FIDOCTAP]

tcDisplay, of type DOMString[]
The list of supported transaction confirmation display capabilities. Must be set to include a valid combination,

as specified in FIDO Registry of Predefined Values [FIDORegistry] section "Transaction Confirmation
Display Types", of the supported TRANSACTION_CONFIRMATION DISPLAY constant case-sensitive string
names e.g. "any", "hardware".

This value MUST be empty, if transaction confirmation is not supported by the authenticator.

The tcDisplay specified here denotes the effective security of the authenticator’s transaction confirmation
display. This means that only a breach of the stated method allows an attacker to inject transaction text
to be included in the signature assertion which hasn’t been displayed and confirmed by the user.

tcDisplayContentType, of type DOMString
Supported MIME content type [REC2049] for the transaction confirmation display, such astext/plain or

image/png.

This value MUST be present if transaction confirmation is supported, i.e.tcDisplay is non-zero.

tcDisplayPNGCharacteristics, of type DisplayPNGCharacteristicsDescriptor|]
A list of alternative DisplayPNGCharacteristicsDescriptor.

Each of these entries is one alternative of supported image characteristics for displaying a PNG image.

This list MUST be present if PNG-image based transaction confirmation is supported, i.e.tcDisplay is non-
zero and tcDisplayContentType is image/png.

attestationRootCertificates, of type DOMString[]
List of attestation trust anchors for the batch chain in the authenticator attestation. Each element of this

array represents a PKIX [REC5280] X.509 certificate that is a valid trust anchor for this authenticator model.
Multiple certificates might be used for different batches of the same model. The array does not represent a
certificate chain, but only the trust anchor of that chain. A trust anchor can be a root certificate, an
intermediate CA certificate or even the attestation certificate itself.

Each array element is a base64-encoded (section 4 of[REC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value. Each element MUST be dedicated for authenticator attestation.

18/34

https://webidl.spec.whatwg.org/#idl-DOMString

Note: A certificate listed here is a trust anchor. It might (1) be the actual certificate presented by the
authenticator, or it might (2) be an issuing authority certificate from the vendor that the attestation
certificate chains to. In the case of (1), a binary comparison is sufficient to determine if the attestation
trust anchor is the attestation certificate itself.

In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain are
included in the registration assertion (see [UAFAuthnrCommands]).

Either

1. the manufacturer attestation trust anchor or

2. the trust anchor dedicated to a specific authenticator model
MUST be specified.

In the case (1), the trust anchor certificate might cover multiple authenticator models. In this case, it must be
possible to uniquely derive the authenticator model from the Attestation Certificate. When using AAID or
AAGUID, this can be achieved by either specifying the AAID or AAGUID in the attestation certificate using
the extension id-fido-gen-ce-aaid { 1 36 14 145724 1 1 1} or id-fido-gen-ce-aaguid {136 14 14572411 4
} or - when neither AAID nor AAGUID are defined - by using the attestationCertificateKeyIdentifier
method.

In the case (2) this is not required as the trust anchor only covers a single authenticator model.

When supporting surrogate basic attestation only (see[UAFProtocol], section "Surrogate Basic Attestation"),
no attestation trust anchor is required/used. So this array MUST be empty in that case.

ecdaaTrustAnchors, of type EcdaaTrustAnchor]]
A list of trust anchors used for ECDAA attestation. This entry MUST be present if and only if attestationType

includes ATTESTATION_ECDAA. The entries in attestationRootCertificates have no relevance for
ECDAA attestation. Each ecdaaTrustAnchor MUST be dedicated to a single authenticator model (e.g as
identified by its AAID/AAGUID).

Note: This field only applies to UAF authenticators.

icon, of type DOMString
A data: url [REC2397] encoded [PNG] or [SVG11] (light mode) icon for the Authenticator (e.g., depicting the

security key). This icon is intended to be shown to users by RPs. Use of [SVG11] format is mandatory if any
of the iconDark, providerLogoLight and/or providerLogoDark is used in addition toicon. Use of [SVG11
is recommended if only icon is used. The icon is more specific than the provider logo and should be shown
if present.

iconDark, of type DOMString
A data: url [REC2397] encoded [SVG11] dark mode icon for the Authenticator (e.g., depicting the security

key). This icon is intended to be shown to users by RPs. The icon is more specific than the provider logo
and should be shown if present.

providerLogoLight, of type DOMString
A data: url [REC2397] encoded [SVG11] light mode icon for the provider (e.g., logomark of the passkey
provider). The SVG MUST meet all of the requirements defined in § 4.1 SVG requirements. This icon is
intended to be shown to users by RPs.

providerLogoDark, of type DOMString
A data: url [REC2397] encoded [SVG11] dark mode icon for the provider (e.g., logomark of the passkey

provider). The SVG MUST meet all of the requirements defined in § 4.1 SVG requirements. This icon is
intended to be shown to users by RPs.

supportedExtensions, of type ExtensionDescriptor|]
List of extensions supported by the FIDO UAF authenticator. This field only applies to UAF authenticators.

For FIDO2 authenticators see authenticatorGetInfo

multiDeviceCredentialSupport, of type DOMString
19/34

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

When set to "unsupported" it means that all private keys relating to thePublic Key Credential Source [WebA
uthn] are designed to stay within the authenticator boundary. Consequently, the security characteristics of
this Metadata Statement apply to all keys.

When set to "explicit" it means that the authenticator explicitly marks keys as either multi-device keys or
single-device keys via the "Backup Eligibility" flag [WebAuthn].

When set to "implicit" it means that all private keys relating to Public Key Credential Source [WebAuthn] may
be backed up.

The field authenticatorGetInfo /supportedExtensions will include the "supplementalPubKeys"
extension if the authenticator supports it in general.

If thismultiDeviceCredentialSupport field is missing the implicit value is "unsupported" (to provide
backwards compatibility).

authenticatorGetInfo, of type AuthenticatorGetinfo

Describes supported versions, extensions, AAGUID of the device and its capabilities.

The information is the same reported by an authenticator when invoking the 'authenticatorGetinfo' method,

see [FIDOCTAP].

Note: This field MUST be present for FIDO2 authenticators that natively support FIDO CTAP [FIDOCTAP
], i.e., when protoclFamily is "fido2".

Authenticators only implementing platform APIs shall not not provide the field authenticatorGetInfo.
FIDO UAF and FIDO U2F authenticators do not supportauthenticatorGetInfo.

The FIDO Alliance does not verify the certification status information in field certifications of the
authenticatorGetlnfo response [FIDOCTAP].

Authoritative information on the authenticator certification status is included in the StatusReport field of
the respective Metadata entry [FIDOMetadataService].

cxConfigURL, of type DOMString

Specifies the URL for retrieving the configuration details for credential exchange (CX).

When exchanging credentials, the passkey provider to export the credential might retrieve the credential
exchange configuration details for of the the importing provider in order to provide additional security. More
details can be found in Credential Exchange Protocol specification that can be found on the FIDO Credential

Exchange Specifications web page.

This section is normative.

All [SVG11] provider icons MUST adhere to the SVG Portable/Secure (SVG-P/S) profile defined in
https://datatracker.ietf.org/doc/draft-svg-tiny-ps-abrotman/09/.

Additional requirements:

1.

2
3
4
5

Format: SVG Version: 1.2 with baseProfile as “tiny-ps"

. Elements: vector-based (cannot contain raster components)
. Dimensions: square aspect ratio
. The <title> element MUST be populated with the English version of the provider friendly name

. The SVG MUST not contain comments or extra text

20/34

https://webidl.spec.whatwg.org/#idl-DOMString
https://fidoalliance.org/specifications-credential-exchange-specifications/
https://datatracker.ietf.org/doc/draft-svg-tiny-ps-abrotman/09/

This section is not normative.
A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary
MetadataStatement.

Example of the metadata statement for an UAF authenticator with:

authenticatorVersion 2.

Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance rate of 0.002%
and rate limiting attempts for 30 seconds after 5 false trials.

Authenticator is embedded with the FIDO User device.

The authentication keys are protected by TEE and are restricted to sign valid FIDO sign assertions only.
The (fingerprint) matcher is implemented in TEE.

The Transaction Confirmation Display is implemented in a TEE.

The Transaction Confirmation Display supports display of "image/png" objects only.

Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color
(=Color Type 2). The zlib compression method (0). It doesn’t support filtering (i.e. filter type of=0) and no
interlacing support (interlace method=0).

It uses the ALG_SIGN SECP256R1 ECDSA SHA256 RAW authentication algorithm.
It uses the ALG_KEY_ECC_X962_ RAW public key format (0x100=256 decimal).
It only implements the ATTESTATION BASIC FULL method (0x3EQ07=15879 decimal).

It implements UAF protocol version (upv) 1.0 and 1.1.

EXAMPLE 1

{

"legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/",
"friendlyNames": {"en-US": "FIDO UAF Sample"},
"description": "FIDO Alliance Sample UAF Authenticator",
"aaid": "1234#5678",
"alternativeDescriptions": {
"ru-RU": "MNpumep UAF ayTeHTupmkaTopa ot FIDO Alliance",
"fr-FR": "Exemple UAF authenticator de FIDO Alliance"

Yo

"authenticatorVersion": 2,
"protocolFamily": "uaf",
"schema": 3,

"upv": [

{ "major": 1, "minor": 0 },
{ "major": 1, "minor": 1 }
g
"authenticationAlgorithms": ["secp256rl_ecdsa_sha256_ raw"],
"publicKeyAlgAndEncodings": ["ecc x962 raw"],
"attestationTypes": ["basic full"],
"userVerificationDetails": [
[{
"userVerificationMethod": "fingerprint internal",
"baDesc": {
"selfAttestedFAR": 0.00002,
"maxRetries": 5,
"blockSlowdown": 30,
"maxTemplates": 5

21/34

]I

1

"keyProtection": ["hardware", "tee"],
"isKeyRestricted": true,
"matcherProtection": ["tee"],
"cryptoStrength": 128,
"attachmentHint": ["internal"],
"tcDisplay": ["any", "tee"l,
"tcDisplayContentType": "image/png",
"tcDisplayPNGCharacteristics": [{

}

"width": 320,
"height": 480,
"bitDepth": 16,
"colorType": 2,
"compression": 0O,
"filter": 0,
"interlace": 0

’

"attestationRootCertificates": [

]I

"MIICPTCCAe0gAwIBAgIJAOuexvU30y2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1INhbXBsZSBBdHR1c3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNT
MREwDwYDVQQLDAhVQUYQVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAKGA1UEBhMCVVMwHhcNMTQwN j EAMTMzMzMyWh cNNDEXMTAzZMTMzMzMy
WjB7MSAwHgYDVQQDDBATYW1wbGUgQXROZXNOYXRpb24gUm9vdDEWMBQGAIUECgwN
RKLETyBBbGxpYW5j ZTERMASGA1UECwwIVUFGIFRXRywxEjAQBgNVBACMCVBhbG8g
QWx0bzELMAKGAIUECAWCQOExXxCzAJIBgNVBAYTATVTMFKwEWYHK0ZIZjOCAQYIKoZI
zjODAQcDQQAEH8hv2DOHXa59/BmpQ7RZehL/FMGzFd1QBg9vAUp0Z3ajnuQ94PR7
aMzH33nUSBr8fHYDrq0Bb58pxGqHIRyX/6NQME4wHQYDVROOBBYEFPOHA3CLhxFb
COIt7zE4w8hk5E]/MB8GA1UAIWQYMBaAFPOHA3CLhxFbCOIt7zE4w8hk5E]/MAWG
A1UdEwQFMAMBAT8wCQYIK0ZIzjOEAWIDSAAWRQINAJO6QSXt9ihIbEKYKI jsPkri
VdLIgtfsbDSu7Erdfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63 rruAxBZ9ps9z2XN
1Q=="

"icon": "data:image/png;baseb4,

1VBORwOKGgoAAAANSUhEUgAAAESAAAAVCAYAAACiw] fcAAAAAXNSROIArs4c6QAAAARNQU1IBAACX
jwv8YQUAAAAIJCEhZcwAADsSMAAA7DAcdvgGQAAAahSURBVYGhD7Zr5bxR1GMT9KzTB8AM/YEhE2W7p
QZcWKKBCc1SpHATLELARE7KkNECCA3FKWKOCKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
884zu9NdLnGTfZIP2n3n0++88933fveBBx+PqCzJIkTUvBbLmpUDWVBTImpcCSZvXLCAX9RO5Sk19
bb5atf599fG+/erA541947aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7aion7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3al8nFOfUlovZ+0CTzWpd2Vj+eOmlbEyy6Dx4i5pUMGWve0506q227
dtuWBIuffr6oWpVOFPNLhowl751Nm21LvPH3rVtWjfz66Lfql8tX7FR19YFSXsmSseb9ce0GbYK7
MNUcGPg8ZsbMe9rfQUaaV/IMX9sqdzDCSvpOKkZHMTZg9x7bLHCMNThb16eJ+mVfQq8yaUZQNG641i
XZ+0/kq6u0ZF00QtatdWKfXnRQ99Bj91R50IFnk54jNOmkUiql03XDW+M1+98mKB6tW7 rWwpZcPc+
0zg4tLrY1lUc86E6eGD]jIMubVpcusearfgIYGRk6brhzVr/JcHzoolL7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
nW/WLYjp8cwbMm682tPwqWlR4tj/2SH13IRIY14moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
8tQJ3bwFkwpFru0Q50s1r3levm8zZcql7+BBaw7K81EK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvgPrUjFQNTQ221fdUVVT6E8rT
JKF5DnSmUj gdqg4mSS9pms fDIR3G6ToHOiW9aV7LWLHYXKLLTDtOLTAtkYIaamp1QjVv++uyGUxV
dJODNVXSm+b1gRxp184ddfX1Lp1l0/d69tsodOvs5hGre9xu8o+fpLR1cGhNTD6Z57COKMWXefIdO
Z94bb90qd1RONS7qITTzHimMqivb03g0DdVyk3WQBhBztK35YKNdOnc803acS6fDZFgKaXLsEIp5
rdrliBqp89cJcs/m7Tvs0OrkjGfN4bOkPoZn3UJuIOrnZ22yP1fmvUx+059SqebVim+zSuYNVhq7T
WbDiLVv1ljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6ve1lK
9cwilc/STtf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
ZXHMmnC3jY00galo7UQfSCM3qQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0OB6d+7H4zKvudAH537FjqyzOHdInHEuzmXq/Wjx0bvNMbv7nhywsX2aVsWtC8+48alLeap
E7p5wKZi®A2AQRV5nVR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhVOrn/ALX2
32bqd4BFnDx7VilcWS2uffOIbB47gexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCadri
XGfwMPPtViavhU3YMOAAnuUb/RO7LOY0Se0adE88ApsXFGTf30ynh1JgM51CU6VNIEZzgnpvHBFUyY
iVraePiwJ53DF5ZTZnomENg85kNUd20J1i2Wpr40mmk fN4x4zHfiVFc8DvBNzuhNgq0idilGvA6DGuU
eZw078AAQn6CciEk6+rw5VcvjvgNDYPOoIUwaKShrxAuXL1kH4aYuGfMYDc1OWF5Ta31hPJ0fcUhr
U/JTINi6c6elRYdBpo6++YTfjx611GNfRm4MD5rI1j3FoGHNnjDSBNarYUgMLYyMszKpb7tXpoHfPs8
h2Wn11 7NFfNKRAXYCTwNGHMY 7XYefhA7 /cKHVmAFR¥AQVNGN7Y rR1 rlIMRiHFKkk77aFKYNA?hGOITT

D R 2 LU T N T O R R TR R T R I R N RV R I R RV

z+85NFWpXD rkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTFOD1EYWUs5nv+dgQqKaxzuCdEOL
sH102NQ8ahOmXr12La3m0fIwik9+wLNTMY/86MP0o8y1310fxmT6PWoqGI+DZukYna56mSZt5WHSy
5qVAlrwlyJgXAlnzkiai/gHSD7RKTyihogAAAABIRUSErkJggg=="

Example of an User Verification Methods entry for an authenticator with:
o Fingerprint based user verification method, with:
o the ability for the user to enroll up to 5 fingers (reference data sets) with

= afalse acceptance rate of 1in 50000 (0.002%) per finger. This results in a FAR of 0.01% (0.0001).
= The fingerprint verification will be blocked after 5 unsuccessful attempts.

¢ A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification method.
Entering the PIN into the authenticator will be required to re-activate fingerprint based user verification after
it has been blocked.

EXAMPLE 2
[
[
{
"userVerificationMethod": "fingerprint internal",
"baDesc": {

"selfAttestedFAR": 0.000002,
"maxTemplates": 5,
"maxRetries": 5,
"blockSlowdown": 0

}

}

I,
[

{
"userVerificationMethod": "passcode internal",
"caDesc": {

"base": 10,
"minLength": 4
}
}

Example of the metadata statement for an U2F authenticator with:

« authenticatorVersion 2.

o Touch based user presence check.

o Authenticator is a USB pluggable hardware token.

o The authentication keys are protected by a secure element.

o The user presence check is implemented in the chip. From the perspective of the authenticator, the
presence check is optional for U2F_AUTHENTICATE.

» The Authenticator is a pure second factor authenticator.
o ltusesthe ALG SIGN SECP256R1 ECDSA SHA256 RAW authentication algorithm.

o ltusesthe ALG_ KEY ECC X962 RAW public key format.

23/34

« It only implements the ATTESTATION BASIC FULL method.

o It implements U2F protocol versions 1.2, 1.1 and 1.0

EXAMPLE 3
{
"legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/",
"friendlyNames": {"en-US": "FIDO U2F Sample"},
"description": "FIDO Alliance Sample U2F Authenticator",
"alternativeDescriptions": {
"ru-RU": "Mpumep U2F ayTeHTupukatopa ot FIDO Alliance",
"fr-FR": "Exemple U2F authenticator de FIDO Alliance",
"zh-CN": "OOFIDO AllianceJOu2FO00O0O"
}
"attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
"protocolFamily": "u2f",
"schema": 3,
"authenticatorVersion": 2,
"upv": [
{ "major": 1, "minor": 0 },
{ "major": 1, "minor": 1 },
{ "major": 1, "minor": 2 }
P
"authenticationAlgorithms": ["secp256rl ecdsa sha256 raw"],
"publicKeyAlgAndEncodings": ["ecc x962 raw"],
"attestationTypes": ["basic_ full"],
"userVerificationDetails": [

[

{"userVerificationMethod": "none"}
1,
[
{"userVerificationMethod": "presence internal"}
]
I
"keyProtection": ["hardware", "secure element"],

"matcherProtection": ["on chip"],

"cryptoStrength": 128,

"attachmentHint": ["external", "wired", "nfc"],

"tcDisplay": [1,

"attestationRootCertificates": [
"MIICPTCCAe0gAwIBAgIJAOQuexvU30y2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1INhbXBsZSBBdHR1c3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNT
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAKGA1UEBhMCVVMwHhcNMTQwN j EAMTMzMzMyWh cNNDEXMTAzMTMzMzMy
W3jB7MSAwHgYDVQQDDBATYW1wbGUgQXROZXNOYXRpb24gUm9vdDEWMBQGALUECgwN
RK1ETyBBbGxpYW5 j ZTERMA8GALUECwwIVUFGIFRXRywxE jAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOExCzAJBgNVBAYTATVTMFkwEwYHK0ZIZzj0CAQYIKoZI
zjODAQcDQgAEH8hv2D0OHXa59/BmpQ7RZehL/FMGzFd1QBg9vAUp0Z3ajnuQ94PR7
aMzH33nUSBr8fHYDrq0Bb58pxGgqHIRyX/6NQME4wHQYDVROOBBYEFPOHA3CLhxFb
COIt7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbCOIt7zE4w8hk5E]/MAWG
A1UdEwQFMAMBAf8wCgYIKoZIzjOEAWIDSAAWRQIhAJO6QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAH]jIzA9Xm63rruAxBZ9ps9z2XN
10=="

g

"icon": "data:image/png;base64,
1VBORwOKGgoAAAANSUhEUgAAAESAAAAVCAYAAACiw] fcAAAAAXNSROIArs4c6QAAAARNQU1IBAACX
jwv8YQUAAAAIJCEhZcwAADsSMAAA7DAcdvgGQAAAahSURBYGhD7Zr5bxR1GMf9KzTB8AM/YEhE2W7p
QZcWKKBc1SpHATLELARE7KNECCA3FKWKOCKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
884zu9Nd1nGTfZIP2n3n0++88933fveBBx+PqCzJIkTUvBbLmpUDWVBTImpcCSZvXLCAX9RO5Sk19
bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7aion7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3al8nFOfUlovZ+0CTzWpd2Vj+eOmlbEyy6Dx41i5pUMGWve0506q227
dtuWBIuffr6oWpVOFPNLhowl751Nm21LvPH3rVtWjfz66Lfql8tX7FR19YFSXsmSseb9ce0GbYk7
MNUcGPg8ZsbMe9rfQUaaV/IMX9sqdzDCSvpOKkZHMTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i

24/34

XZ+0/kq6u0ZF00QtatdWKfXnRQ99Bj91R50IFnk54jNOmkUiqlO3XDW+M1+98mKB6tW7 ripZcPc+
0zg4tLrY1lUc86E6eGD]jIMubVpcusearfgIYGRk6brhzVr/JcHzoolL7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkz0PeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8HOutx530h0ob+jmRYqj6ouaYvEe
nW/WLlYjp8cwbMm682tPwgW1lR4tj/2SH13IRIY14moZvXpiSgDr7dXtQHxa/PK3/+BWsK1dTgHu6V
8tQJI3bwFkwpFru0Q50s1r3levm8zZcql7+BBaw7K81EK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ221fdUVVTE8rT
JKF5DnSmUjgdqg4mSS9pms fDIR3G6ToHOiW9aV7LWLHYXKLLTDtOLTAtkYIaamp1lQjVv++uyGUxV
dJODNVXSm+b1gRxp184ddfX1Lp10/d69tsodOvs5hGre9xu8o+fpLR1cGhNTD6Z57COKMWXefIdO
Z94bb90qd1RONS7qITTzHimMqivb03g0DdVyk3WQBhBztK35YKNdOnc803acS6fDZFgKaXLsEIp5
rdrliBgp89cJcs/m7Tvs0OrkjGfN4bOkPoZn3UJuIOrnZ22yP1fmvUx+059SqebV1im+zSuYNVhq7T
WbDiLVv1ljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v61lK
9cwilc/STtf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
ZXHMmnCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537Fjqyz0OHdInHEuzmXq/Wjx0bvNMbv7nhywsX2aVsWtC8+48aleap
E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApgInxBgmd/4V5QP/mt18HDC7 sRHftmeu5ImhVOrn/ALX2
32bqd4BFnDx7VilcWS2uffOIbB47gexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCadri
XGfwMPPtViavhU3YMOAAnuUb/RO7LOYy0Se0adE88ApsXFGTf30ynh1IgM51CU6VNIEZzgnpvHBFUy
iVraePiw]53DF5ZTZnomENg85kNUd20J1i2Wpr40mmk fN4x4zHfiVFc8DvBNzuhNgq0idilGvA6DGuU
eZw078AAQN6CciEk6+rw5VcvjvgNDYPOoIUwaKShrxAuXL1kH4aYuGfMYDc1OWF5Ta31hPJOfcUhr
U/JLINi6c6elRYdBpo6++Yfjx611GNTfRm4MD5rI1j3FoGHNjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3Wp1LzNfNk54XxC1lwDGUmYzXYefh6z/cKtVm4EBxa9VQGDzY r3LrUMRjHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GgxQ6BzeNboBk5n8k4nebRh+k1hWfxTFOD1EyWUs5nv+dgQqKaxzuCdEQL
SH102NQ8ahOmXr12La3mOf9wik9+wLNTMY/86MP0o8yi310fxmT6PWoqG9+DZukYna56mSZt5WWSy
5qVAlrwUyJgXAlnzkiai/gHSD7RkTyihogAAAABJRU5SErkJggg=="

Example of the metadata statement for an FIDO2 authenticator with:

o AAGUID is set to 0132d110-bf4e-4208-a403-ab4f5f12efe5.

« authenticatorVersion is set to 2.

« Touch based user presence check, and external pin(ClientPin Protocol) support.
o Authenticator is a USB pluggable hardware token with support for NFC.

o The authentication keys are protected by a secure element.

» The user presence check is implemented in the chip. From the perspective of the authenticator, the
presence check is optional for getAssertion.

o ltuses the ALG SIGN SECP256R1 ECDSA SHA256 RAW and ALG SIGN RSASSA PKCSV15 SHA256 RAW
authentication algorithms.

o It uses the ALG_KEY COSE public key format.
o It only implements the ATTESTATION BASIC FULL method.

« Itimplements FIDO2 protocol version 1.0.

EXAMPLE 4
{
"legalHeader": "https://fidoalliance.org/metadata/metadata-statement-legal-header/",
"friendlyNames": {"en-US": "FIDO Sample Security Key"},
"description": "FIDO Alliance Sample FID02 Authenticator",
"aaguid": "0132d110-bf4e-4208-a403-ab4f5f12efe5",
"alternativeDescriptions": {
"ru-RU": "Mpumep FIDO2 ayTeHTudpukatopa ot FIDO Alliance",
"fr-FR": "Exemple FIDO2 authenticator de FIDO Alliance",
"zh-CN": "[OOFIDO Alliance[JOFIDO200000"
}
"protocolFamily": "fido2",
"schema": 3,
- 25/34

"authenticatorVersion": 5,
"upv": [
{ "major": 1, "minor": 0 }
P
"authenticationAlgorithms": ["secp256rl ecdsa sha256 raw", "rsassa pkcsvl5 sha256 raw"],
"publicKeyAlgAndEncodings": ["cose"],
"attestationTypes": ["basic_ full"],
"userVerificationDetails": [

[

{"userVerificationMethod": "none"}
P
[
{"userVerificationMethod": "presence internal"}
P
[{
"userVerificationMethod": "passcode external",
"caDesc": {
"base": 10,
"minLength": 4
}
H,
[{
"userVerificationMethod": "passcode external",
"caDesc": {
"base": 10,
"minLength": 4
I3
{"userVerificationMethod": "presence internal"}
]
P
"keyProtection": ["hardware", "secure element"],

"matcherProtection": ["on chip"],

"cryptoStrength": 128,

"attachmentHint": ["external", "wired", "wireless", "nfc"],

"tcDisplay": [1,

"attestationRootCertificates": [
"MIICPTCCAeOgAwIBAgIJAOuexvU30y2wMAoGCCqGSM49BAMCMHSs xIDAeBgNVBAMM
F1NhbXBsZSBBdHR1c3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmN1
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAKGA1UEBhMCVVMwHhcNMTQwN j EAMTMzMzMyWh cNNDEXMTAzZMTMzMzMy
WjB7MSAwHgYDVQQDDBATYW1wbGUgQXROZXNOYXRpb24gUm9vdDEWMBQGALUECgwWN
RK1ETyBBbGxpYW5 j ZTERMA8GALUECwwIVUFGIFRXRywxEjAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOExCzAJBgNVBAYTATVTMFkwEWYHK0ZIZzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2DOHXa59/BmpQ7RZehL/FMGzFd1QBg9vAUp0Z3ajnuQ94PR7
aMzH33nUSBr8fHYDrq0Bb58pxGqHIRyX/6NQME4wHQYDVROOBBYEFPoHA3CLhxFb
COIt7zE4w8hk5E]/MB8GA1UdIwQYMBaAFPoHA3CLhxFbCOIt7zE4w8hk5E]/MAWG
A1UdEwQFMAMBAf8wCgYIKoZIzjOEAWIDSAAWRQINAJO6QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
1Q=="

I,

"icon": "data:image/png;base64,
1VBORwOKGgoAAAANSUhEUgAAAESAAAAVCAYAAACiw] fcAAAAAXNSROIArs4c6QAAAARNQU1IBAACX
jwv8YQUAAAAIJCEhZcwAADsSMAAA7DAcdvgGQAAAahSURBVYGhD7Zr5bxR1GMT9KzTB8AM/YEhE2W7p
QZcWKKBcLSpHATLELARE7KNECCA3FKWKOCKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
884zu9Nd1lnGTfZIP2n3n0++88933fveBBx+PqCzIkTUvBbLmpUDWVBTIMpcCSZvXLCAX9RO5SK19
bb5atf599fG+/erA541947aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7aion7QZPMwbdys2erU2XMq
Udy8+ZcaNmGimE8yXN3RUd3al8nFOfUlovZ+0CTzWpd2Vj+eOmlbEyy6Dx4i5pUMGWve0506q227
dtuWBIuffr6oWpVOFPNLhowl751Nm21LVvPH3rVtWjfz66Lfql8tX7FR19YFSXsmSseb9ce0GbYKk7
MNUcGPg8ZsbMe9rfQUaaV/IMX9sqdzDCSvpOkZHMTZg9x7bLHCMNThb16eJ+mVfQq8yaUZQNG641i
XZ+0/kq6u0ZF00QtatdWKfXnRQ99Bj91R50IFnk54jNOmkUiqLO3XDW+M1+98mKB6tW7 rWpZcPc+
0zg4tLrY1lUc86E6eGD]jIMubVpcusearfgIYGRk6brhzVr/JcHzoolL7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkz0OPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
nW/WLYjp8cwbMm682tPwqWlR4tj/2SH13IRIY14moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V

26/34

8tQJ3bwFkwpFru0Q50s1r3levm8zZcql7+BBaw7K81EK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVg6Rgw4pksmbdi3bu2De7YfaBBxcqfvgPrUjFQNTQ221fdUVVT6E8rT
JKF5DnSmUjgdqg4mSS9pms fDIR3G6ToHOiW9aV7LWLHYXKLLTDtOLTAtkYIaamp1lQjVv++uyGUxV
dJODNVXSm+b1qRxp184ddfX1Lpl0/d69tsodOvs5hGre9xu8o+fpLR1cGhNTD6Z57COKMWXefIdO
Z94bb90qd1RONS7qITTzHimMqivb03g0DdVyk3WQBhBztK35YKNdOnc803acS6fDZFgKaXLsEIp5
rdrliBqp89cJcs/m7Tvs0OrkjGfN4bOkPoZn3UJuIOrnZ22yP1fmvUx+059SqebVim+zSuYNVhq7T
WbDiLVv1ljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6 1K
9cwilc/STtf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj 1knSw
ZXHMmnCjY00galo7UQfSCM3qQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537Fjqyz0OHdInHEuzmXq/Wjx0bvNMbv7nhywsX2aVsWtC8+48aleap
E7p5wKZi0A2AQRV5nVvR4E+uJc+b61kApgqInxBgmd/4V5QP/mt18HDC7sRHftmeu5tmhVOrn/ALX2
32bqd4BFnDx7VilcWS2uffOIbB47gexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCadri
XGfwMPPtViavhU3YMOAAnuUb/RO7LOYy0Se0adEB8ApsXFGTf30ynh1JgM51CU6VNIEZzgnpvHBFUy
iVraePiw]53DF5ZTZnomENg85kNUd20J1i2Wpr40mmk fN4x4zHfiVFc8DvBNzuhNg0idilGvA6DGuU
eZw078AAQn6CciEk6+rw5VcvjvgNDYPOoIUwaKShrxAuXL1kH4aYuGfMYDc10WF5Ta31hPJ0fcUhr
U/JTINi6c6elRYdBpo6++YTjx611GNfRm4MD5r]1j3FoGHNnjDSBNarYUgMLYyMszKpb7tXpoHfPs8
h3Wp1LzNfNk54XxC1lwDGUmYzXYefh6z/cKtVm4EBxa9VQGDzY r3LrUMRjHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTFOD1EyWUs5nv+dgQqKaxzuCdEOL
sH102NQ8ahOmXrl12La3mOf9wik9+wLNTMY/86MP0o8yi310fxmT6PWoqG9+DZukYna56mSZt5WWSy
5qVAlrwUyJgXAlnzkiai/gHSD7RkTyihogAAAABJRU5SErkJggg==",
"authenticatorGetInfo": {
"versions": ["U2F V2", "FIDO 2 0"],
"extensions": ["credProtect", "hmac-secret" 1,
"aaguid": "0132d110bf4e4208a403ab4f5f12efe5",
"options": {
"plat": false,
"rk": true,
"clientPin": true,
"up": true,
"uv": true,
"uvToken": false,
"config": false
1
"maxMsgSize": 1200,
"pinUvAuthProtocols": [11],
"maxCredentialCountInlList": 16,
"maxCredentialldLength": 128,
"transports": ["usb", "nfc"],
"algorithms": [{
"type": "public-key",

"alg": -7

)

{
"type": "public-key",
"alg": -257

}

]l

"maxAuthenticatorConfigLength": 1024,
"defaultCredProtect": 2,
"firmwareVersion": 5

Metadata statements are intended to be stable once they have been published. When authenticators are
updated in the field, such updates are expected to improve the authenticator security (for example, improve FRR

27/34

or FAR). The authenticatorVersion must be updated if firmware updates fixing severe security issues (e.g. as
reported previously) are available.

Note: The metadata statement is assumed to relate to all authenticators having the same authenticator model
identifier (AAID/AAGUID/attestationCertificateKeyldentifiers).

Note: The FIDO Server is recommended to assume increased risk if theauthenticatorVersion specified in
the metadata statement is newer (higher) than the one present in the authenticator.

Significant changes in authenticator functionality are not anticipated in firmware updates. For example, if an
authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a user
verification method, the vendor MUST assign a new authenticator model identifier
(AAID/AAGUID/attestationCertificateKeyldentifiers) to this authenticator.

A single authenticator implementation could report itself as two "virtual" authenticators using different
authenticator model identifiers (AAIDs/AAGUIDs/attestationCertificateKeyldentifiers). Such implementations
MUST properly (i.e. according to the security characteristics claimed in the metadata) protect UAuth keys and
other sensitive data from the other "virtual" authenticator - just as a normal authenticator would do.

Note: Authentication keys (UAuth. pub) registered for one authenticator model (e.g. as identified by
AAID/AAGUID/attestationCertificateKeyldentifiers) cannot be used by authenticators reporting a different
authenticator model identifier (AAID/AAGUID/attestationCertificateKeyldentifiers) - even when running on the
same hardware (see section "Authentication Response Processing Rules for FIDO Server" in [UAFProtocol]).

Note: To remain compatible with future versions the FIDO Server SHOULD ignore unrecognized fields when
processing any element of an entry. The addition, subtraction or change in interpretation of any fields in an
entry of this specification which substantively changes the processing logic of a consumer will only occur
alongside an update to the major version number of the specification.

AAGUID

aaguid

aaid
alternativeDescriptions

attachmentHint

attestationCertificateKeyldentifiers
attestationRootCertificates
attestationTypes
authenticationAlgorithms

authenticatorGetlnfo

authenticatorVersion

BiometricAccuracyDescriptor

28/34

bitDepth

blockSlowdown
dict-member for BiometricAccuracyDescriptor
dict-member for CodeAccuracyDescriptor
dict-member for PatternAccuracyDescriptor

(e}

caDesc

CodeAccuracyDescriptor

colorType

compression

cryptoStrength

cxConfigURL

data

description
DisplayPNGCharacteristicsDescriptor

EcdaaTrustAnchor
ecdaaTrustAnchors
ExtensionDescriptor
fail_if_unknown

filter

friendlyNames

g

G1Curve

height
iAPARThreshold
icon

iconDark

id

interlace
isFreshUserVerificationRequired
isKeyRestricted
keyProtection

legalHeader
matcherProtection

maxRetries
dict-member for BiometricAccuracyDescriptor
dict-member for CodeAccuracyDescriptor
dict-member for PatternAccuracyDescriptor

maxTemplates
MetadataStatement
minComplexity
minLength

multiDeviceCredentialSupport
29/34

overall claimed cryptographic strength
aDesc

PatternAccuracyDescriptor

plte

protocolFamily

providerLogoDark

providerLogoLight

publicKeyAlgAndEncodings

r

rgbPaletteEntry
schema
selfAttestedFAR
selfAttestedFRR

supportedExtensions

Bl i

tcDisplay

tcDisplayContentType
tcDisplayPNGCharacteristics

upv

userVerificationDetails
userVerificationMethod
VerificationMethodANDCombinations
VerificationMethodDescriptor

width

X

Y

Terms defined by reference§

[WebIDL] defines the following terms:
DOMString
boolean
double
octet
unsigned long

unsigned short

References}

Normative Referencess

[ECMA-262]

30/34

ECMAScript Language Specification. URL: https://tc39.es/ecma262/multipage/
[FIDOAuthenticatorSecurityRequirements]
Rolf Lindemann; Dr. Joshua E. Hill; Douglas Biggs. FIDO Authenticator Security Requirements. November

2020. Final Draft. URL: https:/fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-
requirements-v1.4-fd-20201102.html

[FIDOBiometricsRequirements]
Stephanie Schuckers; et al. FIDO Biometrics Requirements. October 2020. URL.:

https://fidoalliance.org/specs/biometric/requirements/Biometrics-Requirements-v2.0-fd-20201006.html

[FIDOCTAP]
C. Brand; et al. FIDO 2.0: Client To Authenticator Protocol. 30 January 2019. URL:

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-

20190130.html

[FIDOMetadataService]
B. Jack; R. Lindemann; Y. Ackermann. FIDO Metadata Service. 21 May 2025. Proposed Standard. URL:

https://fidoalliance.org/specs/mds/fido-metadata-service-v3.1-ps-20250521.html

[FIDORegistry]
R. Lindemann; et al. FIDO Registry of Predefined Values 23 May 2022. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html

[ISOIEC-19795-1]
ISO/IEC 19795-1:2021 Information technology — Biometric performance testing and reporting — Part 1:
Principles and framework. 2021. URL: https://www.iso.org/standard/73515.html

[ISOIEC-30107-3]
ISO/IEC 30107-3:2017 Information technology — Biometric presentation attack detection — Part 3: Testing
and reporting. 2017. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en

[PNG]
Chris Lilley; et al. Portable Network Graphics (PNG) Specification (Third Edition). URL:
https://w3c.qithub.io/png/

[RFC2049]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and
Examples (RFC 2049). November 1996. November 1996. URL: https://tools.ietf.org/html/rfc2049

[RFC2397]
L. Masinter. The "data” URL scheme. August 1998. Proposed Standard. URL:https://www.rfc-

editor.org/rfc/rfc2397

[RFC4122]
P. Leach. A Universally Unique IDentifier (UUID) URN Namespace. July 2005. URL:
https://tools.ietf.org/html/rfc4122

[SVG11]

Erik Dahlstrém; et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition) 16 August 2011. REC. URL:
https://www.w3.org/TR/SVG11/

[UAFProtocol]
R. Lindemann; et al. FIDO UAF Protocol Specification v1.2. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-vi.2-ps-20201020.html

[WebAuthn]

Dirk Balfanz (Google); et al. Web Authentication: An API for accessing Public Key Credentials Level 2 8
April 2021. TR. URL: https://www.w3.0rg/TR/webauthn-2/

[WebIDL]
Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://webidl.spec.whatwg.org/
[WebIDL-ED]

Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL:http://heycam.qithub.io/webidl/

31/34

https://tc39.es/ecma262/multipage/
https://tc39.es/ecma262/multipage/
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.4-fd-20201102.html
https://fidoalliance.org/specs/biometric/requirements/Biometrics-Requirements-v2.0-fd-20201006.html
https://fidoalliance.org/specs/biometric/requirements/Biometrics-Requirements-v2.0-fd-20201006.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/mds/fido-metadata-service-v3.1-ps-20250521.html
https://fidoalliance.org/specs/mds/fido-metadata-service-v3.1-ps-20250521.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-ps-20220523.html
https://www.iso.org/standard/73515.html
https://www.iso.org/standard/73515.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en
https://w3c.github.io/png/
https://w3c.github.io/png/
https://tools.ietf.org/html/rfc2049
https://tools.ietf.org/html/rfc2049
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc2397
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/

[AndroidCompatibilityDefinition]
Android 14 Compatibility Definition. URL: https://source.android.com/docs/compatibility/14/android-14-cdd

[AndroidUnlockPattern]
Android Unlock Pattern Security Analysis. Published. URL: http://www.sinustrom.info/2012/05/21/android-

unlock-pattern-security-analysis/

[ApplePlatformSecurity]
Apple Platform Security. URL: https://support.apple.com/qguide/security/welcome/web

[FIDOEcdaaAlgorithm]
R. Lindemann; et al. FIDO ECDAA Algorithm. 23 May 2022. Proposed Standard. URL:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

[FIDOGlossary]
R. Lindemann; et al. FIDO Technical Glossary. 23 May 2022. Proposed Standard. URL:

https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-ps-20220523.html

[FIDOKeyAttestation]
FIDO 2.0: Key attestation format. URL.: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-
attestation-v2.0-ps-20150904.html

[iPhonePasscodes]
Daniel Amitay. Most Common iPhone Passcodes. URL: http://danielamitay.com/blog/2011/6/13/most-

common-iphone-passcodes

[1SO3166]
Codes for the representation of names of countries and their subdivisions — Part 1: Country codeAugust

2020. Published. URL: https://www.iso.org/standard/72482.html
[ITU-X690- 2008]

Canon/ca/ Encoding Rules (CER) and D/st/ngwshed Encod/ng Rules (DER), (T-REC-X.690-200811).
November 2008. URL: https://www.itu.int/rec/T-REC-X.690-200811-S

[MoreTopWorstPasswords]
Mark Burnett. 10000 Top Passwords. URL: https://xato.net/passwords/more-top-worst-passwords/
[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt
[RFC5280]
D. Cooper; et al. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280

[RFC5646]
A. Phillips, Ed.; M. Davis, Ed.. Tags for Identifying Languages. September 2009. Best Current Practice.

URL: https://www.rfc-editor.org/rfc/rfc5646

[UAFAuthnrCommands]
D. Baghdasaryan; et al. FIDO UAF Authenticator Commands. Proposed Standard. URL:

https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values Proposed Standard.

URL: https:/fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-vi.2-ps-20201020.html

typedef DOMString AAGUID;

dictionary CodeAccuracyDescriptor {

required unsigned short base;
required unsigned short minLength;

unsigned short maxRetries;
unsigned short blockSlowdown;

32/34

https://source.android.com/docs/compatibility/14/android-14-cdd
https://source.android.com/docs/compatibility/14/android-14-cdd
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-ps-20220523.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
https://www.iso.org/standard/72482.html
https://www.iso.org/standard/72482.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://www.rfc-editor.org/rfc/rfc5646
https://www.rfc-editor.org/rfc/rfc5646
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short

};

dictionary BiometricAccuracyDescriptor {

double selfAttestedFRR;
double selfAttestedFAR;
double iAPARThreshold;

unsigned short maxTemplates;
unsigned short maxRetries;
unsigned short blockSlowdown;

}

dictionary PatternAccuracyDescriptor {
required unsigned long minComplexity;

unsigned short maxRetries;
unsigned short blockSlowdown;
I3
dictionary VerificationMethodDescriptor {
DOMString userVerificationMethod;
CodeAccuracyDescriptor caDesc;

BiometricAccuracyDescriptor baDesc;
PatternAccuracyDescriptor paDesc;
+

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

dictionary rgbPaletteEntry {
required unsigned short r;
required unsigned short g;
required unsigned short b;
I3

dictionary DisplayPNGCharacteristicsDescriptor {
required unsigned long width;
required unsigned long height;

required octet bitDepth;
required octet colorType;
required octet compression;
required octet filter;
required octet interlace;
rgbPaletteEntry[] plte;

};

dictionary EcdaaTrustAnchor {
required DOMString X;
required DOMString Y;
required DOMString c;
required DOMString sx;
required DOMString sy;
required DOMString G1Curve;

};

dictionary ExtensionDescriptor {
required DOMString id;

unsigned short tag;
DOMString data;
required boolean fail if unknown;
}i
dictionary MetadataStatement {
DOMString legalHeader;
AAID aaid;
AAGUID aaquid;

33/34

https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-octet
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString

1

};

DOMString[]
FriendlyNames

required DOMString
AlternativeDescriptions
required unsigned long
required DOMString
required unsigned short
required Version[]
required DOMString[]
required DOMString[]
required DOMString[]
VerificationMethodANDCombinations|[]
required DOMString[]
boolean
boolean
required DOMString[]
unsigned short
DOMString[]

required DOMString[]
DOMString
DisplayPNGCharacteristicsDescriptor([]
required DOMString[]
EcdaaTrustAnchor[]
DOMString

DOMString

DOMString

DOMString
ExtensionDescriptor([]
DOMString
AuthenticatorGetInfo

DOMString

34/34

attestationCertificateKeyIdentifiers;
friendlyNames;

description;

alternativeDescriptions;
authenticatorVersion;

protocolFamily;

schema;

upv;
authenticationAlgorithms;
publicKeyAlgAndEncodings;
attestationTypes;
userVerificationDetails;
keyProtection;
isKeyRestricted;
isFreshUserVerificationRequired;
matcherProtection;
cryptoStrength;
attachmentHint;
tcDisplay;

tcDisplayContentType;
tcDisplayPNGCharacteristics;

attestationRootCertificates;
ecdaaTrustAnchors;

icon;

iconDark;

providerLogolight;
providerLogoDark;
supportedExtensions;
multiDeviceCredentialSupport;
authenticatorGetInfo;

cxConfigURL;

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

	FIDO Metadata Statement
	Review Draft, January 05, 2026
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	2. Overview
	2.1. Scope
	2.2. Audience
	2.3. Architecture

	3. Types
	3.1. Authenticator Attestation GUID (AAGUID) typedef
	3.2. CodeAccuracyDescriptor dictionary
	3.3. BiometricAccuracyDescriptor dictionary
	3.4. PatternAccuracyDescriptor dictionary
	3.5. VerificationMethodDescriptor dictionary
	3.6. VerificationMethodANDCombinations typedef
	3.7. rgbPaletteEntry dictionary
	3.8. DisplayPNGCharacteristicsDescriptor dictionary
	3.9. EcdaaTrustAnchor dictionary
	3.10. ExtensionDescriptor dictionary
	3.11. FriendlyNames dictionary
	3.12. AlternativeDescriptions dictionary
	3.13. AuthenticatorGetInfo dictionary

	4. Metadata Keys
	4.1. SVG requirements

	5. Metadata Statement Format
	5.1. UAF Example
	5.2. U2F Example
	5.3. FIDO2 Example

	6. Additional Considerations
	6.1. Field updates and metadata

	Index
	Terms defined by this specification
	Terms defined by reference

	References
	Normative References
	Informative References

	IDL Index

