
Server Requirements (WebAuthn Level 2
and CTAP2.1)

http://fidoalliance.org/specs/fidoserver/fido-server-v1.0-rd-20240116.html

Github

David Waite (Ping Identity)
John Bradley (Yubico)
Matthew Miller (Duo Security Inc.)
Tim Cappalli (Microsoft)

Yuriy Ackermann (FIDO Alliance)
Adam Powers (FIDO Alliance)

Copyright © 2024 FIDO Alliance. All Rights Reserved.

FIDO2 provides secure authentication through the use of authenticators that implement the Client-to-
Authenticator Protocol (CTAP) and platforms or browsers that implement the W3C WebAuthn specifications.
These authenticators are expected to communicate to servers that will validate registration and authentication
requests. Many of the requirements for FIDO2 servers, such as assertion formats, attestation formats, optional
extensions, and so forth, are contained in the W3C WebAuthn specification. This Server Requirements
specification attempts to pull together all the requirements for servers in a single document that will be an aid to
implementing a FIDO2 server, while leaving behind the details of authenticators and web browsers that do not
pertain to servers.

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft Specification. This document is intended to
become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of
reviewing the Specification. No rights are granted to prepare derivative works of this Specification. Entities
seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to
determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

Review Draft, January 16, 2024

This version:

Issue Tracking:

Editors:

Former Editors:

Abstract

REVIEW
 DRAFT

REVIEW
 DRAFT

Status of This Document

1/9

https://fidoalliance.org/
http://fidoalliance.org/specs/fidoserver/fido-server-v1.0-rd-20240116.html
https://github.com/fido-alliance/fido-2-specs
mailto:dwaite@pingidentity.com
mailto:jbradley@yubico.com
mailto:mattmil3@cisco.com
mailto:tim.cappalli@microsoft.com
mailto:yuriy@fidoalliance.org
mailto:adam@fidoalliance.org
https://fidoalliance.org
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

This specification provides a set of requirements and guidance for server implementers that draws heavily from
the W3C [WebAuthn] specification. Servers are a critical piece of the FIDO ecosystem for making sure that
implementations work together. There are many optional features of the various specifications, including different
attestation formats (packed, Android, TPM, etc.), attestation modes (surrogate, full, ECDAA, etc.), cryptographic
suites (RSA, ECDSA, etc.) and so on. The authenticators that typically implement these various features are
typically consumer electronics devices that are memory and/or CPU-constrained, which limits their ability to
implement multiple versions of these features. Therefore, it falls to servers to implement as many of these
features as possible to ensure that servers are compatible with the broadest range of authenticators possible.

The WebAuthn specification is fairly simple in its concept: it provides a method for registering new authenticators
with a server (navigator.credentials.create()) and another method for authenticating with previously
registered authenticators (navigator.credentials.get()). During registration, an authenticator uses an
attestation private key that was embedded in the authenticator during its manufacturing to create an attestation
statement, thus providing a root of trust for the registration process. Registration creates a new key pair for each
account that is registered and the private key of the registration is used to sign an assertion that is sent to the
server to demonstrate valid authentication. The sections that follow describe the registration and attestation
requirements, and the authentication and assertion requirements.

It should be noted that there is no specific protocol (REST, SOAP, carrier pigeon, quantum teleportation, etc.)
required for the server (although there are requirements around having a secure communication channel). It is

1 Introduction

2 Registration and Attestations
2.1 Validating Attestations
2.2 Attestation Types
2.3 Attestation Formats
2.3.1 Packed Attestation
2.3.2 TPM Attestation
2.3.3 Android Key Attestation
2.3.4 Android SafetyNet Attestation
2.3.5 U2F Attestation

3 Authentication and Assertions

4 Communication Channel Requirements

5 Extensions

6 Other

Index
Terms defined by reference

References
Normative References
Informative References

1. Introduction

2/9



assumed that servers are receiving some form of the JavaScript objects that were created by the browser, the
platform, or the authenticator. Note that these objects are signed over, so protocols MUST NOT alter the signed
objects in ways that would cause the signature to be invalid, but otherwise, any form of transporting these objects
to the server is acceptable. The requirements and guidelines laid out below do not make any requirements on
how these objects are sent or received by the server.

In the case that this specification conflicts with the [WebAuthn] specification, the [WebAuthn] specification takes
precedence; however, there may be clarifications or additions in this specification that supersede the [WebAuthn]
specification and many of the descriptions of how to implement WebAuthn in a web browser are irrelevant to
server implementers.

Servers MUST support registration. A registration request will take the form of sending a challenge to an
authenticator and receiving a PublicKeyCredential object (or similar) in response. The response attribute of
the PublicKeyCredential will contain both a serialized clientDataJSON attribute and a serialized
attestationObject attribute. There is no requirement for the format of the serialization (e.g. - base64url
encoding) except that when deserialized the underlying byte structure will remain the same as what was signed
during attestation.

Servers MUST use random challenges for each registration request. While determining the randomness of a
challenge is beyond the scope of this specification (see [FIDOSecRef] for more details), using the same
challenge, monotonically increasing challenges, or other simple challenges is unacceptable and insecure and it is
expected that a cryptographically secure random number generator is used for generating challenges.

Servers MUST validate attestations. Web Authentication § 7.1 Registering a New Credential specifies how to
validate an attestation. Requirements for the Relying Party are normative for servers. Note that the fields in the
AttestationResponse MAY NOT match the field names or formats in the [WebAuthn] specification -- applications
and servers may negotiate their own field formats and names. The names and formats described in [WebAuthn]
are for convenience only.

Servers MUST validate attestation certificate chains.

Servers MUST support the validation of attestations through the FIDO Metadata Service [FIDOMetadataService].

Servers MAY have policies to allow, disallow, require additional authentication factors, or perform risk analysis for
authenticators based on their metadata attributes.

Web Authentication § 6.5.3 Attestation Types defines multiple Attestation Types.

The Web Authentication § 8 Defined Attestation Statement Formats defines multiple attestation formats, and the [
WebAuthn-Registries] registry may be updated from time to time to add additional attestation formats as the

2. Registration and Attestations

2.1. Validating Attestations

2.2. Attestation Types

Servers MUST support basic attestation

Servers MUST support self-attestation

Servers MAY support Privacy CA attestation

Servers MAY support Elliptic Curve Direct Anonymous Attestation (ECDAA)

2.3. Attestation Formats

3/9

https://w3c.github.io/webauthn/#publickeycredential
https://w3c.github.io/webauthn/#sctn-registering-a-new-credential
https://w3c.github.io/webauthn/#sctn-attestation-types
https://w3c.github.io/webauthn/#sctn-defined-attestation-formats


ecosystem evolves.

Servers MUST validate a Packed attestation using the "Validation Procedure" defined in Web Authentication
§ 8.2 Packed Attestation Statement Format

Servers MUST validate a TPM attestation using the "Validation Procedure" defined in Web Authentication § 8.3
TPM Attestation Statement Format

Servers MAY validate an Android Key attestation using the "Validation Procedure" defined in Web Authentication
§ 8.4 Android Key Attestation Statement Format. This comes in the form of a DER-encoded x.509 certificate.

Servers MUST validate an Android SafetyNet attestation using the "Validation Procedure" defined in Web
Authentication § 8.5 Android SafetyNet Attestation Statement Format

Servers MUST validate a U2F attestation using the "Validation Procedure" defined in Web Authentication § 8.6
FIDO U2F Attestation Statement Format

Servers MUST support authentication.

Servers MUST use random challenges for each authentication request. While determining the randomness of a
challenge is beyond the scope of this specification (see [FIDOSecRef] for more details), using the same
challenge, monotonically increasing challenges, or other simple challenges is unacceptable and insecure and it is
expected that a cryptographically secure random number generator is used for generating challenges.

Servers MUST validate assertion signatures.

Servers MUST support Packed Attestation: Web Authentication § 8.2 Packed Attestation Statement Format

Servers MUST support TPM Attestation: Web Authentication § 8.3 TPM Attestation Statement Format.

Servers MAY support Android Key Attestation: Web Authentication § 8.4 Android Key Attestation Statement
Format

Servers MUST support U2F Attestation: Web Authentication § 8.6 FIDO U2F Attestation Statement Format

Servers MUST support Android SafetyNet Attestation: Web Authentication § 8.5 Android SafetyNet
Attestation Statement Format

Servers MAY support other attestation formats as defined by [WebAuthn-Registries], which may be updated
from time to time. If authenticators or servers create new attestation formats, they SHOULD be registered
with the [WebAuthn-Registries] registry.

2.3.1. Packed Attestation

2.3.2. TPM Attestation

2.3.3. Android Key Attestation

2.3.4. Android SafetyNet Attestation

2.3.5. U2F Attestation

3. Authentication and Assertions

4/9

https://w3c.github.io/webauthn/#sctn-packed-attestation
https://w3c.github.io/webauthn/#sctn-tpm-attestation
https://w3c.github.io/webauthn/#sctn-android-key-attestation
https://w3c.github.io/webauthn/#sctn-fido-u2f-attestation
https://w3c.github.io/webauthn/#sctn-android-safetynet-attestation
https://w3c.github.io/webauthn/#sctn-packed-attestation
https://w3c.github.io/webauthn/#sctn-tpm-attestation
https://w3c.github.io/webauthn/#sctn-android-key-attestation
https://w3c.github.io/webauthn/#sctn-android-safetynet-attestation
https://w3c.github.io/webauthn/#sctn-fido-u2f-attestation


Upon receiving an assertion response, the server MUST validate the assertion response using the procedure
defined in Web Authentication § 7.2 Verifying an Authentication Assertion

Servers SHALL validate UP and/or UV flags.

If servers are implementing TLS and Token Binding is available they SHOULD implement [TokenBindingProtocol
] using [TokenBindingOverHttp].

A server MUST have a mode of operation that allows it to perform registration and authentication without any
extensions present. Although there is no requirement that it needs to be configured that way when deployed in
production.

Servers MAY support extensions.

Servers SHOULD support Web Authentication § 10.1.1 FIDO AppID Extension (appid) for backward compatibility
with FIDO U2F. Note that browsers, platforms, and other clients may or may not support extensions.

If a server implements a new extension, it SHOULD be registered in the [WebAuthn-Registries] registry.

Servers MUST observe the security requirements in [WebAuthn] Section 5.3.5.

Servers MUST implement the algorithms below marked as Required and MAY implement those marked as
Recommended and Optional. Servers MAY also implement other algorithms.

Name: RS1

Name: RS256

Name: RS384

Name: RS512

4. Communication Channel Requirements

5. Extensions

6. Other

Value: -65535

Description: RSASSA-PKCS1-v1_5 w/ SHA-1

Reference: Section 2 of [RFC8812]

Status: Required

Value: -257

Description: RSASSA-PKCS1-v1_5 w/ SHA-256

Reference: Section 2 of [RFC8812]

Status: Required

Value: -258

Description: RSASSA-PKCS1-v1_5 w/ SHA-384

Reference: Section 2 of [RFC8812]

Status: Optional

5/9

https://w3c.github.io/webauthn/#sctn-verifying-assertion
https://w3c.github.io/webauthn/#sctn-appid-extension


Name: PS256

Name: PS384

Name: PS512

Name: ES256

Name: ES384

Name: ES512

Name: EdDSA

Value: -259

Description: RSASSA-PKCS1-v1_5 w/ SHA-512

Reference: Section 2 of [RFC8812]

Status: Optional

Value: -37

Description: RSASSA-PSS w/ SHA-256

Reference: [RFC8230]

Status: Optional

Value: -38

Description: RSASSA-PSS w/ SHA-384

Reference: [RFC8230]

Status: Optional

Value: -39

Description: RSASSA-PSS w/ SHA-512

Reference: [RFC8230]

Status: Optional

Value: -7

Description: ECDSA using P-256 and SHA-256

Reference: [RFC9053]

Status: Required

Value: -35

Description: ECDSA using P-384 and SHA-384

Reference: [RFC9053]

Status: Recommended

Value: -36

Description: ECDSA using P-521 and SHA-512

Reference: [RFC9053]

Status: Optional

Value: -8

Description: EdDSA signature algorithms

Reference: [RFC8037]
6/9



Name: ES256K

Servers MUST implement the curves below marked as Required and MAY implement those marked as
Recommended and Optional. Servers MAY also implement other curves.

Name: P-256

Name: P-384

Name: P-521

Name: Ed25519

Name: Ed448

Name: secp256k1

Status: Required

Value: -47

Description: ECDSA using secp256k1 curve and SHA-256

Reference: [RFC8812]

Status: Optional

Value: 1

Description: EC2 NIST P-256 also known as secp256r1

Reference: [RFC9053]

Status: Required

Value: 2

Description: EC2 NIST P-384 also known as secp384r1

Reference: [RFC9053]

Status: Recommended

Value: 3

Description: EC2 NIST P-521 also known as secp521r1

Reference: [RFC9053]

Status: Optional

Value: 6

Description: Edwards-curve Digital Signature Algorithm on curve 25519

Reference: [RFC8032]

Status: Required

Value: 7

Description: Edwards-curve Digital Signature Algorithm on curve 448

Reference: [RFC8032]

Status: Optional

Value: 8

Description: SECG secp256k1 curve

Reference: [RFC8812]

Status: Optional
7/9



Note that, by design, only algorithms and curves actually being used by authenticators as of the time of this
writing are included in the list of Required algorithms and curves. Servers wanting to be prepared in advance for
possible future cryptographic developments ought to consider implementing the Recommended algorithms and
curves in addition to the Required ones.

Servers MUST comply with the FIDO privacy principles [FIDOPrivacyPrinciples].

B. Jack; R. Lindemann; Y. Ackermann. FIDO Metadata Service. 18 May 2021. Proposed Standard. URL:
https://fidoalliance.org/specs/mds/fido-metadata-service-v3.0-ps-20210518.html

FIDO: Privacy Principles. Feb 2021. URL: https://media.fidoalliance.org/wp-content/uploads/2021/02/FIDO-
Privacy-Principles.pdf

S. Josefsson; I. Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). January 2017.
Informational. URL: https://www.rfc-editor.org/rfc/rfc8032

I. Liusvaara. CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object Signing and
Encryption (JOSE). January 2017. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8037

M. Jones. Using RSA Algorithms with CBOR Object Signing and Encryption (COSE) Messages. September
2017. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8230

Michael B. Jones. CBOR Object Signing and Encryption (COSE) and JSON Object Signing and Encryption
(JOSE) Registrations for Web Authentication (WebAuthn) Algorithms. August 2020. IETF Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc8812

J. Schaad. CBOR Object Signing and Encryption (COSE): Initial Algorithms. August 2022. RFC. URL:
https://www.rfc-editor.org/rfc/rfc9053.html

A. Popov; et al. Token Binding over HTTP. December 7, 2018. URL: https://tools.ietf.org/html/draft-ietf-
tokbind-https-17

A. Popov; et al. The Token Binding Protocol Version 1.0. May 23, 2018. URL: https://tools.ietf.org/html/draft-
ietf-tokbind-protocol-19

Dirk Balfanz (Google); et al. Web Authentication: An API for accessing Public Key Credentials Level 2. 8
April 2021. TR. URL: https://www.w3.org/TR/webauthn-2/

Michael Jones; Akshay Kumar; Emil Lundberg. Web Authentication: An API for accessing Public Key
Credentials - Level 3. URL: https://w3c.github.io/webauthn/

Index

Terms defined by reference

[WEBAUTHN-3] defines the following terms:
PublicKeyCredential

References

Normative References

[FIDOMetadataService]

[FIDOPrivacyPrinciples]

[RFC8032]

[RFC8037]

[RFC8230]

[RFC8812]

[RFC9053]

[TokenBindingOverHttp]

[TokenBindingProtocol]

[WebAuthn]

[WEBAUTHN-3]

[WebAuthn-Registries] 8/9

https://fidoalliance.org/specs/mds/fido-metadata-service-v3.0-ps-20210518.html
https://fidoalliance.org/specs/mds/fido-metadata-service-v3.0-ps-20210518.html
https://media.fidoalliance.org/wp-content/uploads/2021/02/FIDO-Privacy-Principles.pdf
https://media.fidoalliance.org/wp-content/uploads/2021/02/FIDO-Privacy-Principles.pdf
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8037
https://www.rfc-editor.org/rfc/rfc8037
https://www.rfc-editor.org/rfc/rfc8230
https://www.rfc-editor.org/rfc/rfc8230
https://www.rfc-editor.org/rfc/rfc8812
https://www.rfc-editor.org/rfc/rfc8812
https://www.rfc-editor.org/rfc/rfc9053.html
https://www.rfc-editor.org/rfc/rfc9053.html
https://tools.ietf.org/html/draft-ietf-tokbind-https-17
https://tools.ietf.org/html/draft-ietf-tokbind-https-17
https://tools.ietf.org/html/draft-ietf-tokbind-protocol-19
https://tools.ietf.org/html/draft-ietf-tokbind-protocol-19
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://w3c.github.io/webauthn/
https://w3c.github.io/webauthn/


Jeff Hodges; G. Mandyam; Michael B. Jones. Registries for Web Authentication (WebAuthn). March 24,
2017. Draft. URL: https://tools.ietf.org/html/draft-hodges-webauthn-registries

R. Lindemann; et al. FIDO Security Reference. 23 May 2022. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html

[WebAuthn-Registries]

Informative References

[FIDOSecRef]

↑
→

9/9

https://tools.ietf.org/html/draft-hodges-webauthn-registries
https://tools.ietf.org/html/draft-hodges-webauthn-registries
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html

	Server Requirements (WebAuthn Level 2 and CTAP2.1)
	Review Draft, January 16, 2024
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	2. Registration and Attestations
	2.1. Validating Attestations
	2.2. Attestation Types
	2.3. Attestation Formats
	2.3.1. Packed Attestation
	2.3.2. TPM Attestation
	2.3.3. Android Key Attestation
	2.3.4. Android SafetyNet Attestation
	2.3.5. U2F Attestation


	3. Authentication and Assertions
	4. Communication Channel Requirements
	5. Extensions
	6. Other
	Index
	Terms defined by reference

	References
	Normative References
	Informative References



