
Bio Enrollment

This command is used by the platform to provision/enumerate/delete bio enrollments in the authenticator.

It takes the following input parameters:

Parameter name
Data
type

Required? Definition

modality (0x01)
Unsigned

Integer
Optional

The user verification modality being requested

subCommand (0x02)
Unsigned

Integer
Optional

The authenticator user verification sub command currently
being requested

subCommandParams
(0x03)

CBOR
Map

Optional
Map of subCommands parameters.

pinProtocol (0x04)
Unsigned

Integer
Optional

PIN protocol version chosen by the client. For this version of
the spec, this SHALL be the number 1.

pinAuth (0x05)
Byte
Array

Optional
First 16 bytes of HMAC-SHA-256 of contents using
pinToken.

getModality (0x06) Boolean Optional
Get the user verification type modality. This MUST be set to
true.

The type of modalities supported are as under:

modality Name modality Number

fingerprint 0x01

The list of sub commands for fingerprint(0x01) modality is:

subCommand Name subCommand Number

enrollBegin 0x01

enrollCaptureNextSample 0x02

cancelCurrentEnrollment 0x03

enumerateEnrollments 0x04

setFriendlyName 0x05

authenticatorUserVerification



removeEnrollment 0x06

getFingerprintSensorInfo 0x07

subCommandParams Fields:

Field name Data type Required? Definition

templateId (0x01) Byte Array Optional Template Identifier.

templateFriendlyName (0x02) String Optional Template Friendly Name.

timeoutMilliseconds (0x03) Unsigned Integer Optional Timeout in milliSeconds.

On success, authenticator returns the following structure in its response:

Parameter name
Data
type

Required? Definition

modality (0x01)
Unsigned

Integer
Optional

The user verification modality.

fingerprintKind (0x02)
Unsigned

Integer
Optional

Indicates the type of fingerprint sensor. For
touch type sensor, its value is 1. For swipe
type sensor its value is 2.

maxCaptureSamplesRequiredForEnroll
(0x03)

Unsigned
Integer

Optional
Indicates the maximum good samples
required for enrollment.

templateId (0x04)
Byte
Array

Optional
Template Identifier.

lastEnrollSampleStatus (0x05)
Unsigned

Integer
Optional

Last enrollment sample status.

remainingSamples (0x06)
Unsigned

Integer
Optional

Number of more sample required for
enrollment to complete

templateInfos (0x07)
CBOR

ARRAY
Optional

Sequence of templateInfo’s

TemplateInfo definition:

Field name Data type Required? Definition

templateId (0x01) Byte Array Required Template Identifier.

templateFriendlyName (0x02) String Optional Template Friendly Name.

lastEnrollSampleStatus types:



lastEnrollSampleStatus Name
lastEnrollSampleStatus

Value
Definition

CTAP2_ENROLL_FEEDBACK_FP_GOOD 0x00
Good
fingerprint
capture.

CTAP2_ENROLL_FEEDBACK_FP_TOO_HIGH 0x01
Fingerprint
was too high.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LOW 0x02
Fingerprint
was too low.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LEFT 0x03
Fingerprint
was too left.

CTAP2_ENROLL_FEEDBACK_FP_TOO_RIGHT 0x04
Fingerprint
was too
right.

CTAP2_ENROLL_FEEDBACK_FP_TOO_FAST 0x05
Fingerprint
was too fast.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SLOW 0x06
Fingerprint
was too slow.

CTAP2_ENROLL_FEEDBACK_FP_POOR_QUALITY 0x07
Fingerprint
was of poor
quality.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SKEWED 0x08
Fingerprint
was too
skewed.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SHORT 0x09
Fingerprint
was too
short.

CTAP2_ENROLL_FEEDBACK_FP_MERGE_FAILURE 0x0A
Merge
failure of the
capture.

CTAP2_ENROLL_FEEDBACK_FP_EXISTS 0x0B
Fingerprint
already
exists.

CTAP2_ENROLL_FEEDBACK_FP_DATABASE_FULL 0x0C

Fingerprint
database
storage is
full.



CTAP2_ENROLL_FEEDBACK_NO_USER_ACTIVITY 0x0D User did not
touch/swipe
the
authenticator.

CTAP2_ENROLL_FEEDBACK_NO_USER_PRESENCE_TRANSITION 0x0E

User did not
lift the finger
off the
sensor.

To detect whether authenticator supports this preview feature, following conditions MUST be met:

Following operations are performed to get user verification modality supported by the authenticator:

Following operations are performed to get fingerprint sensor information:

Feature detection

Authenticator MUST return "FIDO_2_1_PRE" in authenticatorGetInfo as one of version it supports in addition to
"FIDO_2_0".

Authenticator MUST return "userVerificationMgmtPreview" in options fields of authenticatorGetInfo.

Presence of this key indicates that the authenticator supports auehenticatorUserVerification commands.

True value indicates that authenticator has atleast one bio enrollment already provisioned.

False value indicates that authenticator has not been provisioned with any bio enrollment yet.

For this preview feature, authenticatorUserVerification command is choosen from vendor command space and its value
is MUST be 0x40.

Get user verification modality

Platform sends authenticatorUserVerification command with following parameters:

getModality (0x06): true.

Authenticator returns authenticatorUserVerification response with following parameters:

modality (0x01): It represents the type of modality authenticator supports. For fingerprint, its value is 1.

Get fingerprint sensor info

Platform sends authenticatorUserVerification command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): getFingerprintSensorInfo (0x07)

Authenticator returns authenticatorUserVerification response with following parameters:



Following operations are performed to enroll a fingerprint:

fingerprintKind (0x02):

For touch type fingerprints, its value is 1.

For swipe type fingerprints, its value is 2.

maxCaptureSamplesRequiredForEnroll (0x03): Indicates the maximum good samples required for enrollment.

Enrolling fingerprint

Platform gets pinToken from the authenticator.

Platform sends authenticatorUserVerification command with following parameters to begin the enrollment:

modality (0x01): fingerprint (0x01).

subCommand (0x02): enrollBegin (0x01).

subCommandParams (0x03): Map containing following parameters

timeoutMilliseconds (0x03) (optional): timeout in milliseconds

pinProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinAuth (0x05): LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) || enrollBegin (0x01) ||
subCommandParams), 16).

Authenticator on receiving such request performs following procedures.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) ||
enrollBegin (0x01) || subCommandParams), 16) and matching against input pinAuth parameter.

Authenticator does same semantics checks for pinAuth protection as done in authenticatorClientPin
command.

If there is no space available, authenticator returns CTAP2_ERR_KEY_STORE_FULL.

Authenticator cancels any unfinished ongoing enrollment if any.

Authenticator generates templateId for new enrollment.

Authenticator sends the command to the sensor to capture the sample.

Authenticator returns authenticatorUserVerification response with following parameters:

templateId (0x04): template identifier of the new template being enrolled.

lastEnrollSampleStatus (0x05) : Status of enrollment of last sample.

remainingSamples (0x06) : Number of sample remaining to complete the enrollment.

Platform sends authenticatorUserVerification command with following parameters to continue enrollment in a loop till
remainingSamples is zero or authenticator errors out with unrecoverable error or platform wants to cancel current
enrollment:

Platform sends authenticatorUserVerification command with following parameters

modality (0x01): fingerprint (0x01).



Following operations are performed to cancel current enrollment:

Following operations are performed to enumerate enrollments:

subCommand (0x02): enrollCaptureNextSample (0x02).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifer platform received from enrollBegin subCommand.

timeoutMilliseconds (0x03) (optional): timeout in milliseconds

pinProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinAuth (0x05): LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) || enrollCaptureNextSample
(0x02) || subCommandParams), 16).

Authenticator on receiving such request performs following procedures.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) ||
enrollBegin (0x01) || subCommandParams), 16) and matching against input pinAuth parameter.

Authenticator does same semantics checks for pinAuth protection as done in authenticatorClientPin
command.

If there is no space available, authenticator returns CTAP2_ERR_KEY_STORE_FULL.

If fingerprint is already present on the sensor, authenticator waits for user to lift finger from the sensor.

Authenticator sends the command to the sensor to capture the sample.

Authenticator returns authenticatorUserVerification response with following parameters:

lastEnrollSampleStatus (0x05) : Status of enrollment of last sample.

remainingSamples (0x06) : Number of sample remaining to complete the enrollment.

Cancel current enrollment

Platform sends authenticatorUserVerification command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): cancelCurrentEnrollment (0x03).

Authenticator on receiving such command, cancels currnet ongoing enrollment, if any, and returns CTAP2_OK.

Enumerate enrollments

Platform gets pinToken from the authenticator.

Platform sends authenticatorUserVerification command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): enumerateEnrollments (0x04).

pinProtocol (0x04): Pin Protocol used. Currently this is 0x01.



Following operations are performed to remove a fingerprint:

Following operations are performed to remove a fingerprint:

pinAuth (0x05): LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) || enumerateEnrollments (0x04)),
16).

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, enumerateEnrollments (0x04)),
16) and matching against input pinAuth parameter.

Authenticator does same semantics checks for pinAuth protection as done in authenticatorClientPin command.

If there are no enrollments existing on authenticator, it returns CTAP2_ERR_INVALID_OPTION.

Authenticator returns authenticatorUserVerification response following parameters:

templateInfos (0x07) : Sequence of templateInfo’s for all the enrollments available on the authenticator.

Rename/Set FriendlyName

Platform gets pinToken from the authenticator.

Platform sends authenticatorUserVerification command with following parameters:

modality (0x01): fingerprint (0x01).

subCommand (0x02): setFriendlyName (0x05).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifer.

templateFriendlyName (0x02): Friendly name of the template

pinProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinAuth (0x05): LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) || setFriendlyName (0x05) ||
subCommandParams), 16).

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) ||
setFriendlyName (0x05) || subCommandParams), 16) and matching against input pinAuth parameter.

Authenticator does same semantics checks for pinAuth protection as done in authenticatorClientPin command.

If there are no enrollments existing on authenticator for the passed templateId, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an existing enrollment with that identifier, rename its friendly name and return CTAP2_OK.

Remove enrollment

Platform gets pinToken from the authenticator.

Platform sends authenticatorUserVerification command with following parameters:

modality (0x01): fingerprint (0x01).



subCommand (0x02): removeEnrollment (0x06).

subCommandParams (0x03): Map containing following parameters

templateId (0x01) : template identifer.

pinProtocol (0x04): Pin Protocol used. Currently this is 0x01.

pinAuth (0x05): LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) || removeEnrollment (0x05) ||
subCommandParams), 16).

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, fingerprint (0x01) ||
removeEnrollment (0x05) || subCommandParams), 16) and matching against input pinAuth parameter.

Authenticator does same semantics checks for pinAuth protection as done in authenticatorClientPin command.

If there are no enrollments existing on authenticator for passed templateId, it returns
CTAP2_ERR_INVALID_OPTION.

If there is an exiting enrollment with passed in templateInfo, delete that enrollment and return CTAP2_OK.





Figure 1 User Verification Modality - Fingerprint

For each command that contains parameters, the parameter map keys and value types are specified below:

Command Parameter Name Key Value type

authenticatorUserVerification modality 0x01 Unsigned Integer. (CBOR major type 0)

subCommand 0x02 Unsigned Integer. (CBOR major type 0)

subCommandParams 0x03
CBOR definite length map (CBOR major type
5).

pinProtocol 0x04 Unsigned Integer. (CBOR major type 0).

pinAuth 0x05 byte string (CBOR major type 2).

getModality 0x06 Boolean

For each response message, the map keys and value types are specified below:

Response Message Member Name Key Value type

authenticatorUserVerification_Response modality 0x01
Unsigned integer
(CBOR major type
0).

fingerprintKind 0x02 Unsigned integer

Commands

Responses



(CBOR major type
0).

maxCaptureSamplesRequiredForEnroll 0x03
Unsigned integer
(CBOR major type
0).

templateId 0x04
byte string (CBOR
major type 2).

lastEnrollSampleStatus 0x05
Unsigned integer
(CBOR major type
0).

remainingSamples 0x06
Unsigned integer
(CBOR major type
0).

templateInfos 0x07

CBOR definite
length map
(CBOR major type
5).


