
Client To Authenticator Protocol

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-client-to-authenticator-protocol-v2.0-ps-20170927.html

Previous version:
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-client-to-authenticator-protocol-v2.0-rd-20161004.html

Editors:
Rolf Lindemann, Nok Nok Labs
Vijay Bharadwaj, Microsoft
Alexei Czeskis, Google
Michael B. Jones, Microsoft
Jeff Hodges, PayPal
Akshay Kumar, Microsoft
Christiaan Brand, Google
Johan Verrept, VASCO Data Security
Jakob Ehrensvärd, Yubico

Contributors:
Mirko J. Ploch, SurePassID
Matthieu Antoine, Gemalto

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

This specification describes an application layer protocol for communication between an external authenticator and another
client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical media. The
application layer protocol defines requirements for such transport protocols. Each transport binding defines the details of how such
transport layer connections should be set up, in a manner that meets the requirements of the application layer protocol.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document,
please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including
without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may
be used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention
to the specification and to promote its widespread deployment.

Table of Contents

1. Overview

2. Conformance

3. Protocol Structure

4. Protocol Overview

5. Authenticator API
5.1 authenticatorMakeCredential(0x01)

5.2 authenticatorGetAssertion(0x02)

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-client-to-authenticator-protocol-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-client-to-authenticator-protocol-v2.0-rd-20161004.html
mailto:rolf@noknok.com
https://www.noknok.com
mailto:vijaybh@microsoft.com
http://www.microsoft.com
mailto:aczeskis@google.com
https://www.google.com/
mailto:mbj@microsoft.com
http://www.microsoft.com
mailto:Jeff.Hodges@paypal.com
https://www.paypal.com/
mailto:akshayku@microsoft.com
http://www.microsoft.com
mailto:cbrand@google.com
http://www.google.com
mailto:johan.verrept@vasco.com
http://www.vasco.com
mailto:jakob@yubico.com
https://www.yubico.com/
mailto:mirko.ploch@surepassid.com
https://www.surepassid.com/
mailto:matthieu.antoine@gemalto.com
https://www.gemalto.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

5.3 authenticatorGetNextAssertion(0x08)

5.4 authenticatorCancel(0x03)

5.5 authenticatorGetInfo(0x04)

5.6 authenticatorClientPIN(0x06)
5.6.1 Client PIN support requirements

5.6.2 Authenticator Configuration Operations Upon Power Up

5.6.3 Getting sharedSecret from Authenticator

5.6.4 Setting a New PIN

5.6.5 Changing existing PIN

5.6.6 Getting pinToken from the Authenticator

5.6.7 Using pinToken
5.6.7.1 Using pinToken in authenticatorMakeCredential

5.6.7.2 Using pinToken in authenticatorGetAssertion

5.6.7.3 Without pinToken in authenticatorGetAssertion

5.7 authenticatorReset(0x07)

6. Message encoding
6.1 Commands

6.2 Responses

6.3 Error Responses

7. Interoperating with CTAP1/U2F authenticators
7.1 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators

7.2 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

8. Transport-specific Bindings
8.1 USB

8.1.1 Design rationale

8.1.2 Protocol structure and data framing

8.1.3 Concurrency and channels

8.1.4 Message and packet structure

8.1.5 Arbitration
8.1.5.1 Transaction atomicity, idle and busy states.

8.1.5.2 Transaction timeout

8.1.5.3 Transaction abort and re-synchronization

8.1.5.4 Packet sequencing

8.1.6 Channel locking

8.1.7 Protocol version and compatibility

8.1.8 HID device implementation
8.1.8.1 Interface and endpoint descriptors

8.1.8.2 HID report descriptor and device discovery

8.1.9 CTAPHID commands
8.1.9.1 Mandatory commands

8.1.9.1.1 CTAPHID_MSG (0x03)

8.1.9.1.2 CTAPHID_CBOR (0x10)

8.1.9.1.3 CTAPHID_INIT (0x06)

8.1.9.1.4 CTAPHID_PING (0x01)

8.1.9.1.5 CTAPHID_CANCEL (0x11)

8.1.9.1.6 CTAPHID_ERROR (0x3F)

8.1.9.1.7 CTAPHID_KEEPALIVE (0x3B)

8.1.9.2 Optional commands
8.1.9.2.1 CTAPHID_WINK (0x08)

8.1.9.2.2 CTAPHID_LOCK (0x04)

8.1.9.3 Vendor specific commands

8.2 ISO7816, ISO14443 and Near Field Communication (NFC)
8.2.1 Conformance

8.2.2 Protocol

8.2.3 Applet selection

8.2.4 Framing
8.2.4.1 Commands

8.2.4.2 Response

8.2.5 Fragmentation

8.2.6 Commands
8.2.6.1 NFCCTAP_MSG (0x10)

8.2.7 Bluetooth Smart / Bluetooth Low Energy Technology
8.2.7.1 Conformance

8.2.7.2 Pairing

8.2.7.3 Link Security

8.2.7.4 Framing
8.2.7.4.1 Request from Client to Authenticator

8.2.7.4.2 Response from Authenticator to Client

8.2.7.4.3 Command, Status, and Error constants

8.2.7.5 GATT Service Description
8.2.7.5.1 FIDO Service

8.2.7.5.2 Device Information Service

8.2.7.5.3 Generic Access Profile Service

8.2.7.6 Protocol Overview

8.2.7.7 Authenticator Advertising Format

8.2.7.8 Requests

8.2.7.9 Responses

8.2.7.10 Framing fragmentation

8.2.7.11 Notifications

8.2.7.12 Implementation Considerations
8.2.7.12.1 Bluetooth pairing: Client considerations

8.2.7.12.2 Bluetooth pairing: Authenticator considerations

8.2.7.13 Handling command completion

8.2.7.14 Data throughput

8.2.7.15 Advertising

8.2.7.16 Authenticator Address Type

A. References
A.1 Normative references

A.2 Informative references

1. Overview

This section is non-normative.

This protocol is intended to be used in scenarios where a user interacts with a relying party (a website or native app) on some platform
(e.g., a PC) which prompts the user to interact with an external authenticator (e.g., a smartphone).

In order to provide evidence of user interaction, an external authenticator implementing this protocol is expected to have a mechanism to
obtain a user gesture. Possible examples of user gestures include: as a consent button, password, a PIN, a biometric or a combination
of these.

Prior to executing this protocol, the client/platform (referred to as host hereafter) and external authenticator (referred to as authenticator
hereafter) must establish a confidential and mutually authenticated data transport channel. This specification does not specify the details
of how such a channel is established, nor how transport layer security must be achieved.

2. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-
normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be interpreted
as described in [RFC2119].

3. Protocol Structure

This section is non-normative.

This protocol is specified in three parts:

Authenticator API: At this level of abstraction, each authenticator operation is defined similarly to an API call - it accepts input
parameters and returns either an output or error code. Note that this API level is conceptual and does not represent actual APIs.
The actual APIs will be provided by each implementing platform.

Message Encoding: In order to invoke a method in the authenticator API, the host must construct and encode a request and send
it to the authenticator over the chosen transport protocol. The authenticator will then process the request and return an encoded
response.

Transport-specific Binding: Requests and responses are conveyed to external authenticators over specific transports (e.g., USB,
NFC, Bluetooth). For each transport technology, message bindings are specified for this protocol.

This document specifies all three of the above pieces for external FIDO2 authenticators.

4. Protocol Overview

This section is non-normative.

The general protocol between a platform and an authenticator is as follows:

1. Platform establishes the connection with the authenticator.

2. Platform gets information about the authenticator using authenticatorGetInfo command which helps it determine the capabilities of
the authenticator.

3. Platform sends a command for an operation if the authenticator is capable of supporting it.

4. Authenticator replies with response data or error.

5. Authenticator API

Each operation in the authenticator API can be performed independently of the others, and all operations are asynchronous. The
authenticator may enforce a limit on outstanding operations to limit resource usage - in this case, the authenticator is expected to return
a busy status and the host is expected to retry the operation later. Additionally, this protocol does not enforce in-order or reliable delivery
of requests and responses; if these properties are desired, they must be provided by the underlying transport protocol or implemented at
a higher layer by applications.

Note that this API level is conceptual and does not represent actual APIs. The actual APIs will be provided by each implementing
platform.

The authenticator API has the following methods and data structures.

5.1 authenticatorMakeCredential(0x01)

This method is invoked by the host to request generation of a new credential in the authenticator. It takes the following input parameters,
which explicitly correspond to those defined in The authenticatorMakeCredential operation section of the Web Authentication
specification:

Parameter name Data type Required? Definition

clientDataHash Byte Array Required
Hash of the ClientData contextual binding specified by host.
See [WebAuthN].

rp PublicKeyCredentialRpEntity Required

This PublicKeyCredentialRpEntity data structure describes a
Relying Party with which the new public key credential will be
associated. It contains the Relying party identifier, (optionally) a
human-friendly RP name, and (optionally) a serialized URL
pointing to a RP icon image. The RP name is to be used by the
authenticator when displaying the credential to the user for
selection and usage authorization.

user PublicKeyCredentialUserEntity Required

This PublicKeyCredentialUserEntity data structure describes
the user account to which the new public key credential will be
associated at the RP. It contains an RP-specific user account
identifier, (optionally) a user name, (optionally) a user display
name, and (optionally) a URL pointing to an image (of a user
avatar, for example). The authenticator associates the created
public key credential with the account identifier, and may also
associate any or all of the user name, user display name, and
image data (pointed to by the URL, if any).

pubKeyCredParams CBOR Array Required

A sequence of CBOR maps consisting of pairs of
PublicKeyCredentialType (a string) and cryptographic
algorithm (a positive or negative integer), where algorithm
identifiers are values that should be registered in the IANA
COSE Algorithms registry [IANA-COSE-ALGS-REG]. This
sequence is ordered from most preferred (by the RP) to least
preferred.

excludeList
Sequence of
PublicKeyCredentialDescriptors

Optional

A sequence of PublicKeyCredentialDescriptor structures, as
specified in [WebAuthN]. The authenticator returns an error if
the authenticator already contains one of the credentials
enumerated in this sequence. This allows RPs to limit the
creation of multiple credentials for the same account on a
single authenticator.

extensions
CBOR map of extension
identifier → authenticator
extension input values

Optional
Parameters to influence authenticator operation, as specified in
[WebAuthN]. These parameters might be authenticator specific.

options
Sequence of authenticator
options Optional

Parameters to influence authenticator operation, as specified in
in the table below.

pinAuth Byte Array Optional
First 16 bytes of HMAC-SHA-256 of clientDataHash using
pinToken which platform got from the authenticator: HMAC-SHA-
256(pinToken, clientDataHash).

pinProtocol Unsigned Integer Optional PIN protocol version chosen by the Client

The following values are defined for use in the options parameter. All options are booleans.

Key
Default
value

Definition

rk false resident key: Instructs the authenticator to store the key material on the device.

uv false
user verification: Instructs the authenticator to require a gesture that verifies the user to complete the request.
Examples of such gestures are fingerprint scan or a PIN.

When such a request is received, the authenticator performs the following procedure:

1. If the excludeList parameter is present and contains a credential ID that is present on this authenticator, terminate this procedure
and return error code CTAP2_ERR_CREDENTIAL_EXCLUDED.

2. If the pubKeyCredParams parameter does not contain a valid COSEAlgorithmIdentifier value that is supported by the authenticator,
terminate this procedure and return error code CTAP2_ERR_UNSUPPORTED_ALGORITHM.

3. If the options parameter is present, process all options and if any of the requested options can't be satisfied, terminate this
procedure and return the CTAP2_ERR_OPTION_NOT_SUPPORTED error.

4. Optionally, if the extensions parameter is present, process any extensions that this authenticator supports. Authenticator extension
outputs generated by the authenticator extension processing are returned in the authenticator data.

5. If pinAuth parameter is present and pinProtocol is 1, verify it by matching it against first 16 bytes of HMAC-SHA-256 of
clientDataHash parameter using pinToken: HMAC-SHA-256(pinToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.
If pinAuth parameter is not present and clientPin been set on the authenticator, return CTAP2_ERR_PIN_REQUIRED error.

https://www.w3.org/TR/webauthn/#op-make-cred
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#public-key-credential
https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input
https://www.w3.org/TR/webauthn/#authenticator-extension-output
https://www.w3.org/TR/webauthn/#sec-authenticator-data

6. If the authenticator has a display, show the items contained within the user and rp parameter structures to the user. Alternatively,
request user interaction in an authenticator-specific way (e.g., flash the LED light). Request permission to create a credential. If the
user declines permission, return the CTAP2_ERR_OPERATION_DENIED error.

7. Generate a new credential key pair for the algorithm specified.

8. If "rk" in options parameter is set to true:
If a credential for the same RP ID and account ID already exists on the authenticator, overwrite that credential.

Store the user parameter along the newly-created key pair.

If authenticator does not have enough internal storage to persist the new credential, return
CTAP2_ERR_KEY_STORE_FULL.

9. Generate an attestation statement for the newly-created key using clientDataHash.

On success, the authenticator returns an attestation object in its response as defined in [WebAuthN]:

Member
name

Data type Required? Definition

authData Sequence of bytes Required The authenticator data object.

fmt String Required The attestation statement format identifier.

attStmt
Sequence of bytes, the structure of which
depends on the attestation statement format
identifier

Required
The attestation statement, whose format is identified by
the "fmt" object member. The client treats it as an
opaque object.

5.2 authenticatorGetAssertion(0x02)

This method is used by a host to request cryptographic proof of user authentication as well as user consent to a given transaction, using
a previously generated credential that is bound to the authenticator and relying party identifier. It takes the following input parameters,
which explicitly correspond to those defined in The authenticatorGetAssertion operation section of the Web Authentication specification:

Parameter
name

Data type Required? Definition

rpId String Required Relying party identifier. See [WebAuthN].

clientDataHash Byte Array Required
Hash of the serialized client data collected by the host. See
[WebAuthN].

allowList
Sequence of
PublicKeyCredentialDescriptors

Optional

A sequence of PublicKeyCredentialDescriptor structures, each
denoting a credential, as specified in [WebAuthN]. The authenticator
is requested to only generate an assertion using one of the denoted
credentials.

extensions
CBOR map of extension
identifier → authenticator
extension input values

Optional
Parameters to influence authenticator operation. These parameters
might be authenticator specific.

options
Sequence of authenticator
options

Optional
Parameters to influence authenticator operation, as specified in the
table below.

pinAuth Byte Array Optional
First 16 bytes of HMAC-SHA-256 of clientDataHash using pinToken
which platform got from the authenticator: HMAC-SHA-256(pinToken,
clientDataHash).

pinProtocol Unsigned Integer Optional PIN protocol version selected by Client.

The following values are defined for use in the options parameter. All options are booleans.

Key
Default
value

Definition

up true user presence: Instructs the authenticator to require user consent to complete the operation.

uv false
user verification: Instructs the authenticator to require a gesture that verifies the user to complete the request.
Examples of such gestures are fingerprint scan or a PIN.

When such a request is received, the authenticator performs the following procedure:

1. Locate all credentials that are eligible for retrieval under the specified criteria:
If an allowList is present and is non-empty, locate all denoted credentials present on this authenticator and bound to the
specified rpId.

If an allowList is not present, locate all credentials that are present on this authenticator and bound to the specified rpId.

2. If pinAuth parameter is present and pinProtocol is 1, verify it by matching it against first 16 bytes of HMAC-SHA-256 of
clientDataHash parameter using pinToken: HMAC-SHA-256(pinToken, clientDataHash).

If the verification succeeds, set the "uv" bit to 1 in the response.

If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.
If pinAuth parameter is not present and clientPin has been set on the authenticator, set the "uv" bit to 0 in the response.

3. Optionally, if the extensions parameter is present, process any extensions that this authenticator supports. Authenticator extension
outputs generated by the authenticator extension processing are returned in the authenticator data.

4. Collect user consent if required. This step must happen before the following steps due to privacy reasons (i.e., authenticator
cannot disclose existence of a credential until the user interacted with the device):

If the "uv" option was specified and set to true:
If device doesn't support user-identifiable gestures, return the CTAP2_ERR_OPTION_NOT_SUPPORTED error.

Collect a user-identifiable gesture. If gesture validation fails, return the CTAP2_ERR_OPERATION_DENIED error.

If the "up" option was specified and set to true, collect the user's consent.
If no consent is obtained and a timeout occurs, return the CTAP2_ERR_OPERATION_DENIED error.

5. If no credentials were located in step 1, return CTAP2_ERR_NO_CREDENTIALS.

6. If only one credential was located in step 1, go to step 9.

https://www.w3.org/TR/webauthn/#credential-key-pair
http://www.w3.org/TR/webauthn/#attestation-objects
http://www.w3.org/TR/webauthn/#authenticator-data
http://www.w3.org/TR/webauthn/#attestation-statement-format
https://www.w3.org/TR/webauthn/#op-get-assertion
https://www.w3.org/TR/webauthn/#relying-party-identifier
https://www.w3.org/TR/webauthn/#collectedclientdata-hash-of-the-serialized-client-data
https://www.w3.org/TR/webauthn/#extension-identifier
https://www.w3.org/TR/webauthn/#authenticator-extension-input
https://www.w3.org/TR/webauthn/#authenticator-extension-output
https://www.w3.org/TR/webauthn/#sec-authenticator-data

7. Order the credentials by the time when they were created. The first credential is the most recent credential that was created.

8. If authenticator does not have a display:
Remember the authenticatorGetAssertion parameters.

Create a counter and set it to the total number of credentials.

Start a timer. This is used during authenticatorGetNextAssertion command.

Update the response to include the first credential's publicKeyCredentialUserEntity information and numberOfCredentials.

9. If authenticator has a display:
Display all these credentials to the user, using their friendly name along with other stored account information.

Also, display the rpId of the requester (specified in the request) and ask the user to select a credential.

If the user declines to select a credential or takes too long (as determined by the authenticator), terminate this procedure and
return the CTAP2_ERR_OPERATION_DENIED error.

10. Sign the clientDataHash along with authData with the selected credential, using the structure specified in [WebAuthN].

On success, the authenticator returns the following structure in its response:

Member name Data type Required? Definition

credential PublicKeyCredentialDescriptor Optional

PublicKeyCredentialDescriptor structure containing the
credential identifier whose private key was used to generate
the assertion. May be omitted if the allowList has exactly one
Credential.

authData Byte Array Required
The signed-over contextual bindings made by the
authenticator, as specified in [WebAuthN].

signature Byte Array Required
The assertion signature produced by the authenticator, as
specified in [WebAuthN].

user PublicKeyCredentialUserEntity Required

PublicKeyCredentialUserEntity structure containing the user
account information. For single account per RP case,
authenticator returns "id" field to the platform which will be
returned to the [WebAuthN] layer. For multiple accounts per
RP case, where the authenticator does not have a display,
authenticator returns "id" as well as other fields to the platform.
Platform will use this information to show the account selection
UX to the user and for the user selected account, it will ONLY
return "id" back to the [WebAuthN] layer and discard other user
details.

numberOfCredentials Integer Optional

Total number of account credentials for the RP. This member
is required when more than one account for the RP and the
authenticator does not have a display. Omitted when returned
for the authenticatorGetNextAssertion method.

5.3 authenticatorGetNextAssertion(0x08)

The client calls this method when the authenticatorGetAssertion response contains the numberOfCredentials member and the number of
credentials exceeds 1. This method is used to obtain the next per-credential signature for a given authenticatorGetAssertion request.

This method takes no arguments as it is always follows a call to authenticatorGetAssertion or authenticatorGetNextAssertion.

When such a request is received, the authenticator performs the following procedure:

1. If authenticator does not remember any authenticatorGetAssertion parameters, return CTAP2_ERR_NOT_ALLOWED.

2. If the credential counter is 0, return CTAP2_ERR_NOT_ALLOWED.

3. If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is greater than 30 seconds, discard the
current authenticatorGetAssertion state and return CTAP2_ERR_NOT_ALLOWED.

4. Sign the clientDataHash with the credential using credential counter as index (e.g., credentials[n] assuming 1-based array), using
the structure specified in [WebAuthN].

5. Reset the timer.

6. Decrement the credential counter.

On success, the authenticator returns the same structure as returned by the authenticatorGetAssertion method. The
numberOfCredentials member is omitted.

Client Logic

If client receives numberOfCredentials member value exceeding 1 in response to the authenticatorGetAssertion call:

1. Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.
Make sure ‘rp’ member matches the current request.

Remember the ‘response’ member.

Add credential user information to the ‘credentialInfo’ list.

2. Draw a UX that displays credentialInfo list.

3. Let user select which credential to use.

4. Return the value of the ‘response’ member associated with the user choice.

5. Discard all other responses.

5.4 authenticatorCancel(0x03)

Using this method, the host can request the authenticator to cancel all ongoing operations are return to a ready state. It takes no input
parameters and returns success or failure.

https://www.w3.org/TR/webauthn/#assertion-signature

5.5 authenticatorGetInfo(0x04)

Using this method, the host can request that the authenticator report a list of all supported protocol versions, supported extensions,
AAGUID of the device, and its capabilities. This method takes no inputs.

On success, the authenticator returns:

Member
name

Data type Required? Definition

versions
Sequence of
strings

Required List of supported versions.

extensions
Sequence of
strings

Optional List of supported extensions.

aaguid Byte String Required
The claimed AAGUID. 16 bytes in length and encoded the same as MakeCredential
AuthenticatorData, as specified in [WebAuthN].

options Map Optional List of supported options.

maxMsgSize Unsigned Integer Optional Maximum message size supported by the authenticator.

pinProtocols
Array of
Unsigned
Integers

Optional List of supported PIN Protocol versions.

All options are in the form key-value pairs with string IDs and boolean values. When an option is not present, the default is applied per
table below. The following is a list of supported options:

Option
ID

Definition Default

plat
platform device: Indicates that the device is attached to the client and therefore can't be removed and used
on another client.

false

rk
resident key: Indicates that the device is capable of storing keys on the device itself and therefore can satisfy
the authenticatorGetAssertion request with allowList parameter not specified or empty.

false

clientPin

Client PIN: If present and set to true, it indicates that the device is capable of accepting a PIN from the client
and PIN has been set. If present and set to false, it indicates that the device is capable of accepting a PIN
from the client and PIN has not been set yet. If absent, it indicates that the device is not capable of accepting
a PIN from the client.

Not
supported

up
user presence: Indicates that the device is capable of testing user presence as part of the
authenticatorGetAssertion request.

true

uv
user verification: Indicates that the device is capable of verifying the user as part of the
authenticatorGetAssertion request.

false

5.6 authenticatorClientPIN(0x06)

One of the design goals of this command is to have minimum burden on the authenticator and to not send actual encrypted PIN to the
authenticator in normal authenticator usage scenarios to have more security. Hence, below design only sends PIN in encrypted format
while setting or changing a PIN. On normal PIN usage scenarios, design uses randomized pinToken which gets generated every power
cycle.

This command is used by the platform to establish key agreement with Authenticator and getting sharedSecret, setting a new PIN on the
Authenticator, changing existing PIN on the Authenticator and getting "pinToken" from the Authenticator which can be used in
subsequent authenticatorMakeCredential and authenticatorGetAssertion operations.

It takes the following input parameters:

Parameter name Data type Required? Definition

pinProtocol Integer Required
PIN protocol version chosen by the Client. For this version of the spec, this shall be
the number 1.

subCommand Integer Required The authenticator client PIN sub command currently being requested

keyAgreement COSE_KEY Optional Public key of platformKeyAgreementKey.

pinAuth Byte Array Optional
First 16 bytes of HMAC-SHA-256 of encrypted contents using sharedSecret. See
Setting a new PIN, Changing existing PIN and Getting pinToken from the
authenticator for more details.

newPinEnc Byte Array Optional
Encrypted new PIN using sharedSecret. Encryption is done over UTF-8
representation of new PIN.

pinHashEnc Byte Array Optional Encrypted first 16 bytes of SHA-256 of PIN using sharedSecret.

getKeyAgreement Boolean Optional
Asks authenticator to return public key of its authenticatorKeyAgreementKey for
getting SharedSecret from the authenticator.

getRetries Boolean Optional Asks authenticator to return number of PIN attempts remaining before lockout.

The list of sub commands for PIN Protocol Version 1 is:

Subcommand Name
Subcommand
Number

Get Retries 1

Get Key Agreement 2

Set PIN 3

Change PIN 4

Get PIN token 5

On success, Authenticator returns the following structure in its response.

Parameter
name

Data type Required? Definition

KeyAgreement COSE_KEY Optional
Authenticator key agreement public key in COSE_KEY format. This will be used to
establish a sharedSecret between platform and the authenticator.

pinToken Byte Array Optional
Encrypted pinToken using sharedSecret to be used in subsequent
authenticatorMakeCredential and authenticatorGetAssertion operations.

retries
Unsigned
Integer

Optional
Number of PIN attempts remaining before lockout. This is optionally used to show in UI
when collecting the PIN in Setting a new PIN, Changing existing PIN and Getting
pinToken from the authenticator flows.

5.6.1 Client PIN support requirements

Platform has to fulfill following PIN support requirements while gathering input from the user:
Minimum PIN Length: 4 Unicode characters

Maximum PIN Length: UTF-8 representation must not exceed 255 bytes

Authenticator has to fulfill following PIN support requirements:
Minimum PIN Length: 4 bytes

Maximum PIN Length: 255 bytes

Maximum incorrect PIN retry count: 8
Each correct PIN entry resets retries counter.

Once the authenticator reaches the maximum incorrect PIN retry count, the authenticator has to be reset before any
further operations with requires PIN.

PIN storage on the device has to be of the same or better security assurances as of private keys on the device.

Note: Authenticators can implement minimum PIN lengths that are longer than 4 characters.

5.6.2 Authenticator Configuration Operations Upon Power Up

Authenticator generates following configuration at power up. This is to have less burden on the Authenticator as key agreement is an
expensive operation. This also ensures randomness across power cycles.

Following are the operations Authenticator performs on each powerup:

Generate "authenticatorKeyAgreementKey":
Generate a ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a, aG) where "a" denotes the private
key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Generate "pinToken":
Generate a random integer of length which is multiple of 16 bytes (AES block length).

"pinToken" is used so that there is minimum burden on the authenticator and platform does not have to not send actual
encrypted PIN to the authenticator in normal authenticator usage scenarios. This also provides more security as we are not
sending actual PIN even in encrypted form. "pinToken" will be given to the platform upon verification of the PIN to be used in
subsequent authenticatorMakeCredential and authenticatorGetAssertion operations.

5.6.3 Getting sharedSecret from Authenticator

Platform does the ECDH key agreement to arrive at sharedSecret to be used only during that transaction. Authenticator does not have
to keep a list of sharedSecrets for all active sessions. If there are subsequent authenticatorClientPIN transactions, a new sharedSecret is
generated every time.

Platform performs the following operations to arrive at the sharedSecret:

Platform sends authenticatorClientPIN command by setting getKeyAgreement parameter to true.
Platform optionally can set getRetries parameter to true to get the retries count. Retries count is the number of attempts
remaining before lockout so when device is near authenticator lockout stage, platform can optionally warn the user to be
careful while entering PIN.

Authenticator responds back with public key of authenticatorKeyAgreementKey, "aG".
Authenticator optionally also sends retires count if getRetries parameter is set to true.

Platform generates "platformKeyAgreementKey":
Platform generates ECDH P-256 key pair called "platformKeyAgreementKey" denoted by (b, bG) where "b" denotes the
private key and "bG" denotes the public key.

Platform generates "sharedSecret"
Platform generates "sharedSecret" using SHA-256 over ECDH key agreement protocol using private key of
platformKeyAgreementKey, "b" and public key of authenticatorKeyAgreementKey, "aG": SHA-256((baG).x).

SHA-256 is done over only "x" curve point of baG.

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol details and key
representation.

5.6.4 Setting a New PIN

Following operations are performed to set up a new PIN:

Platform gets sharedSecret from the authenticator.

Platform collects new PIN ("newPinUnicode") from the user in Unicode format.
Platform checks the Unicode character length of "newPinUnicode" against the minimum 4 Unicode character requirement
and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Let "newPin" be the UTF-8 representation of "newPinUnicode".

Platform checks the byte length of "newPin" against the max UTF-8 representation limit of 255 bytes and returns
CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends authenticatorClientPIN command with following parameters to the authenticator:
keyAgreement: public key of platformKeyAgreementKey, "bG".

newPinEnc: Encrypted newPin using sharedSecret: AES256-CBC(sharedSecret, IV=0, newPin) .
During encryption, newPin is padded with trailing 0x00 bytes and is of minimum 64 bytes length. This is to prevent leak
of PIN length while communicating to the authenticator. There is no PKCS #7 padding used in this scheme.

pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16).
The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator performs following operations upon receiving the request:
Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey, "a" and
public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol details and key
representation.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16) and matching against input
pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and checks newPin length against
minimum PIN length of 4 characters.

The decrypted padded newPin should be of at least 64 bytes length and authenticator determines actual PIN length by
looking for first 0x00 byte which terminates the PIN.

If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION error.

Authenticator may have additional constraints for PIN policy. The current spec only enforces minimum length of 4
characters.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device and returns CTAP2_OK.

5.6.5 Changing existing PIN

Following operations are performed to change an existing PIN:

Platform gets sharedSecret from the authenticator.

Platform collects current PIN ("curPinUnicode") and new PIN ("newPinUnicode") from the user.
Platform checks the Unicode character length of "newPinUnicode" against the minimum 4 Unicode character requirement
and returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Let "curPin" be the UTF-8 representation of "curPinUnicode" and "newPin" be the UTF-8 representation of "newPinUnicode"
Platform checks the byte length of "curPin" and "newPin" against the max UTF-8 representation limit of 255 bytes and
returns CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

Platform sends authenticatorClientPIN command with following parameters to the authenticator:
keyAgreement: public key of platformKeyAgreementKey, "bG".

pinHashEnc: Encrypted first 16 bytes of SHA-256 hash of curPin using sharedSecret: AES256-CBC(sharedSecret, IV=0,
LEFT(SHA-256(curPin),16)).

newPinEnc: Encrypted "newPin" using sharedSecret: AES256-CBC(sharedSecret, IV=0, newPin) .
During encryption, newPin is padded with trailing 0x00 bytes and is of minimum 64 bytes length. This is to prevent leak
of PIN length while communicating to the authenticator. There is no PKCS #7 padding used in this scheme.

pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc), 16) .
The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator performs following operations upon receiving the request:
Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey, "a" and
public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol details and key
representation.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc), 16) and
matching against input pinAuth parameter.

If pinAuth verification fails, authenticator returns CTAP2_ERR_PIN_AUTH_INVALID error.

Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin), 16).
If a mismatch is detected, authenticator generate new "authenticatorKeyAgreementKey" first and then returns
CTAP2_ERR_PIN_INVALID error.

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a, aG) where "a"
denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Authenticator decrypts newPinEnc using above "sharedSecret" producing newPin and checks newPin length against
minimum PIN length of 4 characters.

The decrypted padded newPin should be of at least 64 bytes length and authenticator determines actual PIN length by
looking for first 0x00 byte which terminates the PIN.

If minimum PIN length check fails, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION error.

Authenticator may have additional constraints for PIN policy. The current spec only enforces minimum length of 4
characters.

Authenticator stores LEFT(SHA-256(newPin), 16) on the device and returns CTAP2_OK.

5.6.6 Getting pinToken from the Authenticator

This step only has to be performed once for the lifetime of the authenticator/platform handle. Getting pinToken once provides allows high

file:///tmp/fido-2-specs/release/fido-v2.0-ps-20170927/authenticatorClientPIN
file:///tmp/fido-2-specs/release/fido-v2.0-ps-20170927/authenticatorClientPIN

security without any additional roundtrips every time (except for the first key-agreement phase) and its overhead is minimal.

Following operations are performed to get pinToken which will be used in subsequent authenticatorMakeCredential and
authenticatorGetAssertion operations:

Platform gets sharedSecret from the authenticator.

Platform collects PIN from the user.

Platform sends authenticatorClientPIN command with following parameters to the authenticator:
keyAgreement: public key of platformKeyAgreementKey, "bG".

pinHashEnc: AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(PIN),16)).

Authenticator performs following operations upon receiving the request:
Authenticator generates "sharedSecret": SHA-256((abG).x) using private key of authenticatorKeyAgreementKey, "a" and
public key of platformKeyAgreementKey, "bG".

SHA-256 is done over only "x" curve point of "abG"

See [RFC6090] Section 4.1 and appendix (C.2) of [SP800-56A] for more ECDH key agreement protocol details and key
representation.

Authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-256(curPin), 16).
If a mismatch is detected, authenticator generate new "authenticatorKeyAgreementKey" first and then returns
CTAP2_ERR_PIN_INVALID error.

Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by (a, aG) where "a"
denotes the private key and "aG" denotes the public key.

See [RFC6090] Section 4.1 and [SP800-56A] for more ECDH key agreement protocol details.

Authenticator returns encrypted pinToken using "sharedSecret": AES256-CBC(sharedSecret, IV=0, pinToken).
pinToken should be a multiple of 16 bytes (AES block length) without any padding or IV. There is no PKCS #7 padding
used in this scheme.

5.6.7 Using pinToken

Platform has the flexibility to manage the lifetime of pinToken based on the scenario however it should get rid of the pinToken as soon
as possible when not required. Authenticator also can expire pinToken based on certain conditions like changing a PIN, timeout
happening on authenticator, machine waking up from a suspend state etc. If pinToken has expired, authenticator will return
CTAP2_ERR_PIN_TOKEN_EXPIRED and platform can act on the error accordingly.

5.6.7.1 Using pinToken in authenticatorMakeCredential

Following operations are performed to use pinToken in authenticatorMakeCredential API:

Platform gets pinToken from the authenticator.

Platform sends authenticatorMakeCredential command with following additional optional parameter:
pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

The platform sends the first 16 bytes of the HMAC-SHA-256 result.

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16) and matching against input
pinAuth parameter.

Authenticator returns authenticatorMakeCredential response with "uv" bit set to 1.

If platform sends zero length pinAuth, authenticator needs to wait for user touch and then returns either CTAP2_ERR_PIN_NOT_SET if
pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for the case where multiple authenticators are attached to
the platform and the platform wants to enforce clientPin semantics, but the user has to select which authenticator to send the pinToken
to.

5.6.7.2 Using pinToken in authenticatorGetAssertion

Following operations are performed to use pinToken in authenticatorGetAssertion API:

Platform gets pinToken from the authenticator.

Platform sends authenticatorGetAssertion command with following additional optional parameter:
pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

Authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16) and matching against input
pinAuth parameter.

Authenticator returns authenticatorGetAssertion response with "uv" bit set to 1.

If platform sends zero length pinAuth, authenticator needs to wait for user touch and then returns either CTAP2_ERR_PIN_NOT_SET if
pin is not set or CTAP2_ERR_PIN_INVALID if pin has been set. This is done for the case where multiple authenticators are attached to
the platform and the platform wants to enforce clientPin semantics, but the user has to select which authenticator to send the pinToken
to.

5.6.7.3 Without pinToken in authenticatorGetAssertion

Following operations are performed without using pinToken in authenticatorGetAssertion API:

Platform sends authenticatorGetAssertion command without pinAuth optional parameter.

Authenticator returns authenticatorGetAssertion response with "uv" bit set to 0.

file:///tmp/fido-2-specs/release/fido-v2.0-ps-20170927/authenticatorClientPIN

Platform Authenticator

authenticatorClientPIN
pinProtocol = 1, subCommand = 2,

getKeyAgreement = true

authenticatorClientPIN
CTAP_OK

Generate ECDH authenticatorKeyAgreementKey (a, aG).
Let aG represents its public key.

Generate random "pinToken" (multiple of 16 bytes) at powerup.

Generate ECDH platformKeyAgreementKey (b, bG).
Let bG represents its public key.

Generate sharedSecret = SHA-256((baG).x)

authenticatorClientPIN
pinProtocol = 1, subCommand = 3,

 keyAgreement = bG, newPinEnc = AES256-CBC(sharedSecret, IV=0, newPin),
pinAuth = LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16)

Generate sharedSecret = SHA-256((abG).x),
Validate pinAuth, Decrypt newPinEnc, checks newPin length,

Store LEFT(SHA-256(newPin),16)

authenticatorClientPIN
keyAgreement = aG

authenticatorClientPIN
pinProtocol = 1, subCommand = 4,

 keyAgreement = bG, pinHashEnc = AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(curPin), 16)),
newPinEnc = AES256-CBC(sharedSecret, IV=0, newPin),

pinAuth = LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc), 16)

Generate sharedSecret = SHA-256((abG).x),
Validate pinAuth, Decrypt pinHashEnc and validate it,
Decrypt newPinEnc, Checks newPin minimum length,

Store LEFT(SHA-256(newPin),16)

authenticatorClientPIN
CTAP_OK

Set New Pin

Change Pin

Getting Shared

Secret K

authenticatorClientPIN
 pinProtocol = 1, subCommand = 5, keyAgreement = bG,

pinHashEnc = AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(PIN), 16))

Generate sharedSecret = SHA-256((abG).x),
Decrypts pinHashEnc and validate it

authenticatorClientPIN
pinTokenEnc = AES256_CBC(sharedSecret, IV=0, pinToken)

Getting Pin

Token

authenticatorMakeCredential
uv:true

authenticatorGetAssertion
 RPID = rpId, CLIENT_DATA_HASH = clientDataHash,

pinAuth = LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16), pinProtocol = 1

authenticatorGetAssertion
uv:true

authenticatorGetAssertion
 RPID = rpId, CLIENT_DATA_HASH = clientDataHash

authenticatorGetAssertion
uv:false

Using Pin Token

authenticatorMakeCredential
 RPID = rpId, CLIENT_DATA_HASH = clientDataHash,

pinAuth = LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16), pinProtocol = 1

authenticatorClientPIN
pinProtocol = 1, subCommand = 1,

getRetries = true

authenticatorClientPIN
retries = retriesCount

Getting Retries

Fig. 1 Client Pin

5.7 authenticatorReset(0x07)

This method is used by the client to reset an authenticator back to a factory default state, invalidating all generated credentials. In order
to prevent accidental trigger of this mechanism, some form of user approval may be performed on the authenticator itself, meaning that
the client will have to poll the device until the reset has been performed. The actual user-flow to perform the reset will vary depending on
the authenticator and it outside the scope of this specification.

6. Message encoding

Many transports (e.g., Bluetooth Smart) are bandwidth constrained, and serialization formats such as JSON are too heavy-weight for
such environments. For this reason, all encoding is done using the concise binary encoding CBOR [RFC7049].

To reduce the complexity of the messages and the resources required to parse and validate them, all messages must use Canonical
CBOR as specified below. All encoders must generate Canonical CBOR without duplicate map keys. All decoders should enforce
Canonical CBOR and should reject messages with duplicate map keys. Canonical CBOR for CTAP uses the following rules:

Integers must be encoded as small as possible.
0 to 23 and -1 to -24 must be expressed in the same byte as the major type;

24 to 255 and -25 to -256 must be expressed only with an additional uint8_t;

256 to 65535 and -257 to -65536 must be expressed only with an additional uint16_t;

65536 to 4294967295 and -65537 to -4294967296 must be expressed only with an additional uint32_t.

The expression of lengths in major types 2 through 5 must be as short as possible. The rules for these lengths follow the above
rule for integers.

Indefinite-length items must be made into definite-length items.

The keys in every map must be sorted lowest value to highest. Sorting is performed on the bytes of the representation of the key
data items without paying attention to the 3/5 bit splitting for major types. The sorting rules are:

If the major types are different, the one with the lower value in numerical order sorts earlier.

If two keys have different lengths, the shorter one sorts earlier;

If two keys have the same length, the one with the lower value in (byte-wise) lexical order sorts earlier.

Because some authenticators are memory constrained, the depth of nested CBOR structures used by all message encodings is limited
to at most four (4) levels of any combination of CBOR maps and/or CBOR arrays. Authenticators must support at least 4 levels of CBOR
nesting. Clients, platforms, and servers must not use more than 4 levels of CBOR nesting.

Likewise, because some authenticators are memory constrained, the maximum message size supported by an authenticator may be
limited. By default, authenticators must support messages of at least 1024 bytes. Authenticators may declare a different maximum
message size supported using the maxMsgSize authenticatorGetInfo result parameter. Clients, platforms, and servers must not send
messages larger than 1024 bytes unless the authenticator's maxMsgSize indicates support for the larger message size. Authenticators
may return the CTAP2_ERR_REQUEST_TOO_LARGE error if size or memory constraints are exceeded.

If map keys are present that an implementation does not understand, they must be ignored. Note that this enables additional fields to be
used as new features are added without breaking existing implementations.

Messages from the host to authenticator are called "commands" and messages from authenticator to host are called "replies". All values
are big endian encoded.

6.1 Commands

All commands are structured as:

Name Length Required? Definition

Command Value 1 byte Required The value of the command to execute

Command
Parameters

variable Optional
CBOR [RFC7049] encoded set of parameters. Some commands have parameters, while
others do not (see below)

The assigned values for commands and their descriptions are:

Command Name Command Value Has parameters?

authenticatorMakeCredential 0x01 yes

authenticatorGetAssertion 0x02 yes

authenticatorCancel 0x03 no

authenticatorGetInfo 0x04 no

authenticatorClientPIN 0x06 yes

authenticatorReset 0x07 no

authenticatorGetNextAssertion 0x08 no

authenticatorVendorFirst 0x40 NA

authenticatorVendorLast 0xBF NA

Command codes in the range between authenticatorVendorFirst and authenticatorVendorLast may be used for vendor-specific
implementations. For example, the vendor may choose to put in some testing commands. Note that the FIDO client will never generate
these commands. All other command codes are reserved for future use and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5). The CBOR map must be encoded using the definite
length variant.

Some commands have optional parameters. Therefore, the length of the parameter map for these commands may vary. For example,
authenticatorMakeCredential may have 4, 5, 6, or 7 parameters, while authenticatorGetAssertion may have 2, 3, 4, or 5 parameters.

All command parameters are CBOR encoded following the JSON to CBOR conversion procedures as per the CBOR specification
[RFC7049]. Specifically, parameters that are represented as DOM objects in the Authenticator API layers (formally defined in the Web
API [WebAuthN]) are converted first to JSON and subsequently to CBOR.

For each command that contains parameters, the parameter map keys and value types are specified below:

Command Parameter Name Key Value type

authenticatorMakeCredential clientDataHash 0x01 byte string (CBOR major type 2).

rp 0x02 CBOR definite length map (CBOR major type 5).

user 0x03 CBOR definite length map (CBOR major type 5).

EXAMPLE 1
A PublicKeyCredentialRpEntity DOM object defined as follows:

 var rp = {
 name: "Acme"
 };

would be CBOR encoded as follows:

 a1 # map(1)
 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"

EXAMPLE 2
A PublicKeyCredentialUserEntity DOM object defined as follows:

 var user = {
 id: Uint8Array.from(window.atob("MIIBkzCCATigAwIBAjCCAZMwggE4oAMCAQIwggGTMII="), c=>c.charCodeAt(0)),
 icon: "https://pics.acme.com/00/p/aBjjjpqPb.png",
 name: "johnpsmith@example.com",
 displayName: "John P. Smith"
 };

would be CBOR encoded as follows:

 a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 7828 # text(40)
 68747470733a2f2f706963732e61636d # "https://pics.acme.com/00/p/aBjjjpqPb.png"
 652e636f6d2f30302f702f61426a6a6a # ...
 707150622e706e67 # ...
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d70 # "johnpsmith@example.com"
 6c652e636f6d # ...
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"

EXAMPLE 3
A DOM object that is a sequence of PublicKeyCredentialParameters defined as follows:

 var pubKeyCredParams = [
 {
 type: "public-key",
 alg: -7 // "ES256" as registered in the IANA COSE Algorithms registry
 },
 {
 type: "public-key",
 alg: -257 // "RS256" as registered by WebAuthn
 }
];

would be CBOR encoded as:

 82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"

pubKeyCredParams 0x04
CBOR definite length array (CBOR major type 4) of CBOR definite
length maps (CBOR major type 5).

excludeList 0x05
CBOR definite length array (CBOR major type 4) of CBOR definite
length maps (CBOR major type 5).

extensions 0x06 CBOR definite length map (CBOR major type 5).

options 0x07 CBOR definite length map (CBOR major type 5).

pinAuth 0x08 byte string (CBOR major type 2).

pinProtocol 0x09
PIN protocol version chosen by the Client. For this version of the spec,
this shall be the number 1.

authenticatorGetAssertion rpId 0x01 UTF-8 encoded text string (CBOR major type 3).

clientDataHash 0x02 byte string (CBOR major type 2).

allowList 0x03
CBOR definite length array (CBOR major type 4) of CBOR definite
length maps (CBOR major type 5).

extensions 0x04 CBOR definite length map (CBOR major type 5).

options 0x05 CBOR definite length map (CBOR major type 5).

pinAuth 0x06 byte string (CBOR major type 2).

pinProtocol 0x07
PIN protocol version chosen by the Client. For this version of the spec,
this shall be the number 1.

authenticatorClientPIN pinProtocol 0x01 Unsigned Integer. (CBOR major type 0)

subCommand 0x02 Unsigned Integer. (CBOR major type 0)

keyAgreement 0x03 COSE_KEY

pinAuth 0x04 byte string (CBOR major type 2).

newPinEnc 0x05
byte string (CBOR major type 2). It is UTF-8 representation of
encrypted input PIN value.

pinHashEnc 0x06 byte string (CBOR major type 2).

getKeyAgreement 0x07
Boolean. (CBOR major type 7, additional simple value information
20(False)/21(True)).

getRetries 0x08
Boolean. (CBOR major type 7, additional simple value information
20(False)/21(True)).

EXAMPLE 4
The following is a complete encoding example of the authenticatorMakeCredential command (using same account and crypto
parameters as above) and the corresponding authenticatorMakeCredential_Response response:

 01 # authenticatorMakeCredential command
 a5 # map(5)
 01 # unsigned(1) - clientDataHash
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 # h'687134968222ec17202e42505f8ed2b16ae22f16bb05b88c25db9e602645f141'
 6ae22f16bb05b88c25db9e602645f141 #
 02 # unsigned(2) - rp
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 68 # text(8)
 61636d652e636f6d # "acme.com"
 64 # text(4)
 6e616d65 # "name"
 64 # text(4)
 41636d65 # "Acme"
 03 # unsigned(3) - user
 a4 # map(4)
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 78 28 # text(40)
 68747470733a2f2f706963732e616 # "https://pics.acme.com/00/p/aBjjjpqPb.png"
 36d652e636f6d2f30302f702f6142 #
 6a6a6a707150622e706e67 #
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616 # "johnpsmith@example.com"
 d706c652e636f6d #
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 04 # unsigned(4) - pubKeyCredParams
 82 # array(2)
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 63 # text(3)
 616c67 # "alg"
 390100 # -257 (RS256)
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 07 # unsigned(7) - options
 a1 # map(1)

 70 # text(16)
 6b657953746f72616765446576696 # "keyStorageDevice"
 365 #
 f5 # primitive(21)

authenticatorMakeCredential_Response response:

 00 # status = success
 a3 # map(3)
 01 # unsigned(1)
 66 # text(6)
 7061636b6564 # "packed"
 02 # unsigned(2)
 58 9a # bytes(154)
 c289c5ca9b0460f9346ab4e42d842743 # authData
 404d31f4846825a6d065be597a87051d # ...
 410000000bf8a011f38c0a4d15800617 # ...
 111f9edc7d00108959cead5b5c48164e # ...
 8abcd6d9435c6fa363616c6765455332 # ...
 353661785820f7c4f4a6f1d79538dfa4 # ...
 c9ac50848df708bc1c99f5e60e51b42a # ...
 521b35d3b69a61795820de7b7d6ca564 # ...
 e70ea321a4d5d96ea00ef0e2db89dd61 # ...
 d4894c15ac585bd23684 # ...
 03 # unsigned(3)
 a3 # map(3)
 63 # text(3)
 616c67 # "alg"
 26 # -7 (ES256)
 63 # text(3)
 736967 # "sig"
 58 47 # bytes(71)
 3045022013f73c5d9d530e8cc15cc # signature...
 9bd96ad586d393664e462d5f05612 # ...
 35e6350f2b728902210090357ff91 # ...
 0ccb56ac5b596511948581c8fddb4 # ...
 a2b79959948078b09f4bdc6229 # ...
 63 # text(3)
 783563 # "x5c"
 81 # array(1)
 59 0197 # bytes(407)
 3082019330820138a003020102 # certificate...
 020900859b726cb24b4c29300a # ...
 06082a8648ce3d040302304731 # ...
 0b300906035504061302555331 # ...
 143012060355040a0c0b597562 # ...
 69636f20546573743122302006 # ...
 0355040b0c1941757468656e74 # ...
 696361746f7220417474657374 # ...
 6174696f6e301e170d31363132 # ...
 30343131353530305a170d3236 # ...
 313230323131353530305a3047 # ...
 310b3009060355040613025553 # ...
 31143012060355040a0c0b5975 # ...
 6269636f205465737431223020 # ...
 060355040b0c1941757468656e # ...
 74696361746f72204174746573 # ...
 746174696f6e3059301306072a # ...
 8648ce3d020106082a8648ce3d # ...
 03010703420004ad11eb0e8852 # ...
 e53ad5dfed86b41e6134a18ec4 # ...
 e1af8f221a3c7d6e636c80ea13 # ...
 c3d504ff2e76211bb44525b196 # ...
 c44cb4849979cf6f896ecd2bb8 # ...
 60de1bf4376ba30d300b300906 # ...
 03551d1304023000300a06082a # ...
 8648ce3d040302034900304602 # ...
 2100e9a39f1b03197525f7373e # ...
 10ce77e78021731b94d0c03f3f # ...
 da1fd22db3d030e7022100c4fa # ...
 ec3445a820cf43129cdb00aabe # ...
 fd9ae2d874f9c5d343cb2f113d # ...
 a23723f3 # ...

EXAMPLE 5
The following is a complete encoding example of the authenticatorGetAssertion command and the corresponding
authenticatorGetAssertion_Response response:

 02 # authenticatorGetAssertion command
 a4 # map(4)
 01 # unsigned(1)
 68 # text(8)
 61636d652e636f6d # "acme.com"
 02 # unsigned(2)
 58 20 # bytes(32)
 687134968222ec17202e42505f8ed2b1 # clientDataHash
 6ae22f16bb05b88c25db9e602645f141 # ...
 03 # unsigned(3)
 82 # array(2)
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f02 # credential ID
 4f2a5ece603d9c6d4b3df8be08 # ...
 ed01fc442646d034858ac75bed # ...
 3fd580bf9808d94fcbee82b9b2 # ...
 ef6677af0adcc35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 32 # bytes(50)
 03030303030303030303030303 # credential ID
 03030303030303030303030303 # ...

6.2 Responses

All responses are structured as:

Name Length Required? Definition

Status 1 byte Required
The status of the response. 0x00 means success; all other values are errors. See the table in
the next section for error values.

Response
Data

variable Optional CBOR encoded set of values.

Response data is encoded using a CBOR map (CBOR major type 5). The CBOR map must be encoded using the definite length
variant.

For each response message, the map keys and value types are specified below:

Response Message Member Name Key Value type

authenticatorMakeCredential_Response fmt 0x01 text string (CBOR major type 3).

authData 0x02 byte string (CBOR major type 2).

attStmt 0x03 definite length map (CBOR major type 5).

authenticatorGetAssertion_Response credential 0x01 definite length map (CBOR major type 5).

authData 0x02 byte string (CBOR major type 2).

signature 0x03 byte string (CBOR major type 2).

publicKeyCredentialUserEntity 0x04
definite length map (CBOR major type 5). must
not be present if UV bit is not set.

numberOfCredentials 0x05 unsigned integer(CBOR major type 0).

authenticatorGetNextAssertion_Response credential 0x01 definite length map (CBOR major type 5).

 03030303030303030303030303 # ...
 0303030303030303030303 # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 05 # unsigned(5)
 a1 # map(1)
 62 # text(2)
 747569 # "uv"
 f5 # true

authenticatorGetAssertion_Response response:

 00 # status = success
 a3 # map(5)
 01 # unsigned(1) - Credential
 a2 # map(2)
 62 # text(2)
 6964 # "id"
 58 40 # bytes(64)
 f22006de4f905af68a43942f024f2 # credentialId
 a5ece603d9c6d4b3df8be08ed01fc # ...
 442646d034858ac75bed3fd580bf9 # ...
 808d94fcbee82b9b2ef6677af0adc # ...
 c35852ea6b9e # ...
 64 # text(4)
 74797065 # "type"
 6a # text(10)
 7075626C69632D6B6579 # "public-key"
 02 # unsigned(2)
 58 25 # bytes(37)
 625ddadf743f5727e66bba8c2e387922 # authData
 d1af43c503d9114a8fba104d84d02bfa # ...
 0100000011 # ...
 03 # unsigned(3)
 58 47 # bytes(71)
 304502204a5a9dd39298149d904769b5 # signature
 1a451433006f182a34fbdf66de5fc717 # ...
 d75fb350022100a46b8ea3c3b933821c # ...
 6e7f5ef9daae94ab47f18db474c74790 # ...
 eaabb14411e7a0 # ...
 04 # unsigned(4) - publicKeyCredentialUserEntity
 a4 # map(4)
 6b # text(11)
 646973706c61794e616d65 # "displayName"
 6d # text(13)
 4a6f686e20502e20536d697468 # "John P. Smith"
 64 # text(4)
 6e616d65 # "name"
 76 # text(22)
 6a6f686e70736d697468406578616d # "johnpsmith@example.com"
 706c652e636f6d # ...
 62 # text(2)
 6964 # "id"
 58 20 # bytes(32)
 3082019330820138a003020102 # userid
 3082019330820138a003020102 # ...
 308201933082 # ...
 64 # text(4)
 69636f6e # "icon"
 7828 # text(40)
 68747470733a2f2f706963732e6163 # "https://pics.acme.com/00/p/aBjjjpqPb.png"
 6d652e636f6d2f30302f702f61426a # ...
 6a6a707150622e706e67 # ...
 05 # unsigned(5) - numberofCredentials
 01 # unsigned(1)

authData 0x02 byte string (CBOR major type 2).
signature 0x03 byte string (CBOR major type 2).

publicKeyCredentialUserEntity 0x04 definite length map (CBOR major type 5).

authenticatorGetInfo_Response versions 0x01
definite length array (CBOR major type 4) of
UTF-8 encoded strings (CBOR major type 3).

extensions 0x02
definite length array (CBOR major type 4) of
UTF-8 encoded strings (CBOR major type 3).

aaguid 0x03

byte string (CBOR major type 2). 16 bytes in
length and encoded the same as
MakeCredential AuthenticatorData, as
specified in [WebAuthN].

options 0x04

Definite length map (CBOR major type 5) of
key-value pairs where keys are UTF8 strings
(CBOR major type 3) and values are booleans
(CBOR simple value 21).

maxMsgSize 0x05

CBOR definite length array (CBOR major type
4) of CBOR unsigned integers (CBOR major
type 0) This is the maximum message size
supported by the authenticator.

pinProtocols 0x06
array of unsigned integers (CBOR major type).
This is the list of pinProtocols supported by the
Authenticator.

authenticatorClientPIN_Response keyAgreement 0x01 Authenticator public key in COSE_KEY format.

pinToken 0x02 byte string (CBOR major type 2).

retries 0x03
Unsigned integer (CBOR major type 0). This is
number of retries left before lockout.

6.3 Error Responses

The error response values range from 0x01 - 0xff. This range is split based on error type.

Error response values in the range between CTAP2_OK and CTAP2_ERR_SPEC_LAST are reserved for spec purposes.

Error response values in the range between CTAP2_ERR_VENDOR_FIRST and CTAP2_ERR_VENDOR_LAST may be used for
vendor-specific implementations. All other response values are reserved for future use and may not be used. These vendor specific error
codes are not interoperable and the platform should treat these errors as any other unknown error codes.

Error response values in the range between CTAP2_ERR_EXTENSION_FIRST and CTAP2_ERR_EXTENSION_LAST may be used
for extension-specific implementations. These errors need to be interoperable for vendors who decide to implement such optional
extension.

Code Name Description

0x00 CTAP1_ERR_SUCCESS Indicates successful response.

0x01 CTAP1_ERR_INVALID_COMMAND The command is not a valid CTAP command.

0x02 CTAP1_ERR_INVALID_PARAMETER The command included an invalid parameter.

0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.

0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.

0x05 CTAP1_ERR_TIMEOUT Message timed out.

0x06 CTAP1_ERR_CHANNEL_BUSY Channel busy.

0x0A CTAP1_ERR_LOCK_REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this cid.

0x10 CTAP2_ERR_CBOR_PARSING Error while parsing CBOR.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x13 CTAP2_ERR_INVALID_CBOR_TYPE Invalid or unexpected CBOR type.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION Unsupported extension.

0x17 CTAP2_ERR_TOO_MANY_ELEMENTS Limit for number of items exceeded.

0x18 CTAP2_ERR_EXTENSION_NOT_SUPPORTED Unsupported extension.

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the exludeList.

0x20 CTAP2_ERR_CREDENTIAL_NOT_VALID Credential not valid for authenticator.

0x21 CTAP2_ERR_PROCESSING Processing (Lengthy operation is in progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in progress.

0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM Authenticator does not support requested algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x29 CTAP2_ERR_NOT_BUSY Authenticator cannot cancel as it is not busy.

0x2A CTAP2_ERR_NO_OPERATION_PENDING No outstanding operations.

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Unsupported option.

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT Timeout waiting for user interaction.

0x30 CTAP2_ERR_NOT_ALLOWED
Continuation command, such as, authenticatorGetNextAssertion not
allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN Blocked.

0x32 CTAP2_ERR_PIN_BLOCKED PIN Blocked.

0x33 CTAP2_ERR_PIN_AUTH_INVALID PIN authentication,pinAuth, verification failed.

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED PIN authentication,pinAuth, blocked. Requires power recycle to reset.

0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.

0x36 CTAP2_ERR_PIN_REQUIRED PIN is required for the selected operation.

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION PIN policy violation. Currently only enforces minimum length.

0x38 CTAP2_ERR_PIN_TOKEN_EXPIRED pinToken expired on authenticator.

0x39 CTAP2_ERR_REQUEST_TOO_LARGE Authenticator cannot handle this request due to memory constraints.

0x7F CTAP1_ERR_OTHER Other unspecified error.

0xDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.

0xE0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.

0xEF CTAP2_ERR_EXTENSION_LAST Extension specific error.

0xF0 CTAP2_ERR_VENDOR_FIRST Vendor specific error.

0xFF CTAP2_ERR_VENDOR_LAST Vendor specific error.

7. Interoperating with CTAP1/U2F authenticators

This section defines how a platform maps CTAP2 requests to CTAP1/U2F requests and CTAP1/U2F responses to CTAP2 responses in
order to support CTAP1/U2F authenticators via CTAP2. CTAP2 requests can be mapped to CTAP1/U2F requests provided the CTAP2
request does not have parameters that only CTAP2 authenticators can fulfill. The processes for RPs to use to verify CTAP1/U2F based
authenticatorMakeCredential and authenticatorGetAssertion responses are also defined below. Platform may choose to skip this feature
and work only with CTAP devices.

7.1 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F Registration
Messages):

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as specified in CTAP2 protocol
overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any failure, platform may
fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorMakeCredential request to U2F_REGISTER request.
Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators cannot fulfill.

All of the below conditions must be true for the platform to proceed to next step. If any of the below conditions is not
true, platform errors out with CTAP2_ERR_OPTION_NOT_SUPPORTED.

pubKeyCredParams must use the ES256 algorithm (-7).

Options must not include "rk" set to true.

Options must not include "uv" set to true.

If excludeList is not empty:
If the excludeList is not empty, the platform must send signing request with check-only control byte to the
CTAP1/U2F authenticator using each of the credential ids (key handles) in the excludeList. If any of them does
not result in an error, that means that this is a known device. Afterwards, the platform must still send a dummy
registration request (with a dummy appid and invalid challenge) to CTAP1/U2F authenticators that it believes are
excluded. This makes it so the user still needs to touch the CTAP1/U2F authenticator before the RP gets told that
the token is already registered.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id parameter as CTAP1/U2F application
parameter (32 bytes).

3. Send the U2F_REGISTER request to the authenticator as specified in [U2FRawMsgs] spec.

4. Map the U2F registration response message (see the "Registration Response Message: Success" section of [U2FRawMsgs]) to a
CTAP2 authenticatorMakeCredential response message:

Generate authenticatorData from the U2F registration response message received from the authenticator:
Initialize attestationData:

Let credentialIdLength be a 2-byte unsigned big-endian integer representing length of the Credential ID initialized
with CTAP1/U2F response key handle length.

Let credentialID be a credentialIdLength byte array initialized with CTAP1/U2F response key handle bytes.

Let x9encodedUserPublicKeybe the user public key returned in the U2F registration response message
[U2FRawMsgs]. Let coseEncodedCredentialPublicKey be the result of converting x9encodedUserPublicKey's value
from ANS X9.62 / Sec-1 v2 uncompressed curve point representation [SEC1V2] to COSE_Key representation
([RFC8152] Section 7).

Let attestationData be a byte array with following structure:
Length (in bytes) Description Value

16
The AAGUID of the
authenticator.

Initialized with all zeros.

2 Byte length L of Credential ID Initialized with credentialIdLength bytes.

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#registration-request-message---u2f_register
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#registration-response-message-success

credentialIdLength Credential ID. Initialized with credentialID bytes.

77 The credential public key.
Initialized with coseEncodedCredentialPublicKey
bytes.

Initialize authenticatorData:
Let flags be a byte whose zeroth bit (bit 0, UP) is set, and whose sixth bit (bit 6, AT) is set, and all other bits are
zero (bit zero is the least significant bit). See also Authenticator Data section of [WebAuthN].

Let signCount be a 4-byte unsigned integer initialized to zero.

Let authenticatorData be a byte array with the following structure:
Length (in
bytes)

Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4
Signature counter
(signCount).

Initialized with signCount bytes.

Variable Length Attestation Data.
Initialized with attestationData's
value.

Let attestationStatement be a CBOR map (see "attStmtTemplate" in Generating an Attestation Object [WebAuthN]) with the
following keys whose values are as follows:

Set "x5c" as an array of the one attestation cert extracted from CTAP1/U2F response.

Set "sig"'s value to be the "signature" bytes from the U2F registration response message [U2FRawMsgs].

Let attestationObject be a CBOR map (see "attObj" in Attestation object [WebAuthN]) with the following keys whose values
are as follows:

Set "authData"'s value to authenticatorData.

Set "fmt"'s value to "fido-u2f".

Set "attStmt"'s value to attestationStatement.

5. Return attestationObject to the caller.

EXAMPLE 6
Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{1: h'687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 2: {"id": "acme.com",
 "name": "acme.com"},
 3: {"id": "1098237235409872",
 "name": "johnpsmith@example.com",
 "icon": "https://pics.acme.com/00/p/aBjjjpqPb.png",
 "displayName": "John P. Smith"},
 4: [{"type": "public-key", "alg": -7},
 {"type": "public-key", "alg": -257}]}

CTAP1/U2F Request from above CTAP2 authenticatorMakeCredential request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientdatahash
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash

Sample CTAP1/U2F Response from the device

05 # Reserved Byte (1 Byte)
04E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E # User Public Key (65 Bytes)
1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...
91 # ...
40 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B # X.509 Cert (Variable length Cert)
0500302E312C302A0603550403132359756269636F2055324620526F6F742043 # ...
412053657269616C203435373230303633313020170D31343038303130303030 # ...
30305A180F32303530303930343030303030305A302C312A302806035504030C # ...
2159756269636F205532462045452053657269616C2032343931383233323437 # ...
37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 # ...
2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 # ...
E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30 # ...
39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 # ...
322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...
4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B # ...
BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4 # ...
C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B # ...
8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 # ...
B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...
1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD # ...
810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 # ...
3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF # ...
1BB0F1FE5DB4EFF7A95F060733F5 # ...
30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85 # Signature (variable Length)
32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # ...
AA7D081DE341FA # ...

Authenticator Data from CTAP1/U2F Response

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash
41 # flags
00000000 # Sign Count
00000000000000000000000000000000 # AAGUID
0040 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...
A5010203262001215820E87625896EE4E46DC032766E8087962F36DF9DFE8B56 # Public Key
7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C # ...
B14C22F8C97045F4612FB20C91 # ...

https://www.w3.org/TR/webauthn/#rp-id
https://www.w3.org/TR/webauthn/#attestation-data
https://www.w3.org/TR/webauthn/#generating-an-attestation-object
https://www.w3.org/TR/webauthn/#generating-an-attestation-object

Mapped CTAP2 authenticatorMakeCredential response(CBOR)

{"fmt": "fido-u2f",
 "authData": h'1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE
 4100403EBD89BF77EC509755
 EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E
 78055BDD396B64F78DA2C5F96200CCD415CD08FE420038A50102032620012158
 20E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E
 1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461
 2FB20C91',
 "attStmt": {"sig": h'30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85
 32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1
 AA7D081DE341FA',
 "x5c": [h'3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B
 0500302E312C302A0603550403132359756269636F2055324620526F6F742043
 412053657269616C203435373230303633313020170D31343038303130303030
 30305A180F32303530303930343030303030305A302C312A302806035504030C
 2159756269636F205532462045452053657269616C2032343931383233323437
 37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9
 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1
 E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30
 39302206092B0601040182C40A020415312E332E362E312E342E312E34313438
 322E312E323013060B2B0601040182E51C020101040403020430300D06092A86
 4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B
 BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4
 C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B
 8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69
 B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F
 1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD
 810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3
 3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF
 1BB0F1FE5DB4EFF7A95F060733F5']}}

ATTESTATION OBJECT

RP ID Hash FLAGS

0 0 0 0

ATED UP

COUNTER = 0x00000000 ATTESTATION DATA

32 bytes 1 byte 4 bytes (big-endian uint32) variable length

7

“fmt”: “fido-u2f”“authData“: ... “attStmt“: ...

AUTHENTICATOR DATA

“x5c“: ...

AAGUID = 0x00..00 L Credential ID Credential Public Key (COSE_KEY)

(variable length)
16 bytes

0 110

0
UV

ATTESTATION STATEMENT
(in "Fido-u2f" attestsion statement format)

RPIDclientDataHash authenticatorMakeCredential Parameters

32 bytes 32 bytes

SHA-256 (RPID)

U2F Register Request

1 65 bytes

U
se

r p
ub

lic
 K

ey

Challenge Parameter Application Parameter

R
es

er
ve

d
by

te

(V
al
ue

: 0
x0

5)

1

Key
 h

an
dl
e

Le
ng

th
 (v

al
ue

: L
)

L bytes

Key
 h

an
dl
e

X.509 X

Atte
st
at

io
n

C
er

tif
ic
at

e

Sig
na

tu
re

65 bytesL bytes32 bytes32 bytes1

U
se

r p
ub

lic
 K

ey

Key
 h

an
dl
e

C
ha

lle
ng

e

Par
am

et
er

App
lic

at
io
n

Par
am

et
er

R
FU

(v
al
ue

: 0
x0

0)

U2F Register Response

authenticatorMakeCredential

Response (returns a single

Attestation Object)

“sig”:...

Performed by Platform

Performed by PlatformCredential Public Key (COSE_KEY)

Fig. 2 Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F Registration Messages.

7.2 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F Authentication
Messages) :

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo command as specified in CTAP2 protocol
overview.

CTAP1/U2F authenticator returns a command error or improperly formatted CBOR response. For any failure, platform may
fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:
Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F authenticators cannot fulfill:

All of the below conditions must be true for the platform to proceed to next step. If any of the below conditions is not
true, platform errors out with CTAP2_ERR_OPTION_NOT_SUPPORTED.

Options must not include "uv" set to true.

allowList must have at least one credential.

If allowList has more than one credential, platform has to loop over the list and send individual different
U2F_AUTHENTICATE commands to the authenticator. For each credential in credential list, map CTAP2

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate

authenticatorGetAssertion request to U2F_AUTHENTICATE as below:
Let controlByte be a byte initialized as follows:

For USB, set it to 0x07 (check-only). This should prevent call getting blocked on waiting for user input. If response
returns success, then call again setting the enforce-user-presence-and-sign.

For NFC, set it to 0x03 (enforce-user-presence-and-sign). The tap has already provided the presence and won’t
block.

Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter (32 bytes).

Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id parameter as CTAP1/U2F application
parameter (32 bytes).

Let credentialID is the byte array initialized with the id for this PublicKeyCredentialDescriptor.

Let keyHandleLength be a byte initialized with length of credentialID byte array.

Let u2fAuthenticateRequest be a byte array with the following structure:
Length (in
bytes)

Description Value

1 Control Byte Initialized with controlByte's value.

32 Challenge parameter
Initialized with clientDataHash parameter
bytes.

32 Application parameter Initialized with rpIdHash bytes.

1 Key handle length Initialized with keyHandleLength's value.

keyHandleLength Key handle Initialized with credentialID bytes.

3. Send u2fAuthenticateRequest to the authenticator.

4. Map the U2F authentication response message (see the "Authentication Response Message: Success" section of [U2FRawMsgs])
to a CTAP2 authenticatorGetAssertion response message:

Generate authenticatorData from the U2F authentication response message received from the authenticator:
Let flags be a byte whose zeroth bit (bit 0, UP) is set to 1 if CTAP1/U2F response user presence byte is set to 1, and
all other bits are zero (bit zero is the least significant bit). See also Authenticator Data section of [WebAuthN].

Let signCount be a 4-byte unsigned integer initialized with CTAP1/U2F response counter field.

Let authenticatorData is a byte array of following structure:
Length (in
bytes)

Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4
Signature counter
(signCount)

Initialized with signCount
bytes.

Let authenticatorGetAssertionResponse be a CBOR map with the following keys whose values are as follows:
Set 0x01 with the credential from allowList that whose response succeeded.

Set 0x02 with authenticatorData bytes.

Set 0x03 with signature field from CTAP1/U2F authentication response message.

EXAMPLE 7
Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{1: "acme.com",
 2: h'687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',
 3: [{"type": "public-key",
 "id": h'3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'}],
 5: {"up": true}}

CTAP1/U2F Request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientdatahash
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash
40 # Key Handle Length (1 Byte)
3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle Length Bytes)
54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

Sample CTAP1/U2F Response from the device

01 # User Presence (1 Byte)
0000003B # Sign Count (4 Bytes)
304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C # Signature (variable Length)
68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3 # ...
5AAD5373858E # ...

Authenticator Data from CTAP1/U2F Response

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash
01 # User Presence (1 Byte)
0000003B # Sign Count (4 Bytes)

Mapped CTAP2 authenticatorGetAssertion response(CBOR)

{1: {"type": "public-key",
 "id": h'3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6
 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'},
 2: h'1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE
 010000003B',
 3: h'304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C
 68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3
 5AAD5373858E'}

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html#authentication-request-message---u2f_authenticate
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html#authentication-response-message-success
https://www.w3.org/TR/webauthn/#rp-id

RP ID Hash Counter

AUTHENTICATOR DATA

RPID
authenticatorGetAssertion

parameters

SHA-256 (RPID)

U2F Authentication

Request
1 32 bytes

C
ha

lle
ng

e

Par
am

et
er

C
on

tro
l B

yt
e

(U
SB: 0

x0
7,

N
FC

: 0
x0

3)

1

Key
 h

an
dl
e

Le
ng

th
 (v

al
ue

: L
)

L bytes

Key
 h

an
dl
e

32 bytes32 bytes

C
ha

lle
ng

e

Par
am

et
er

C
ou

nt
er

U
se

r

Pre
se

nc
e

App
lic

at
io
n

Par
am

et
er

U2F Authentication

Response

authenticatorGetAssertion

Response (returns three

different objects as depicted

here)

32 bytes

App
lic

at
io
n

Par
am

et
er

L Credential IDClientDataHash

4 bytes

Signature4 bytes1

Sig
na

tu
re

C
ou

nt
er

U
se

r P
re

se
nc

e

1

Credential ID

Signature

4 bytes32 bytes 1

Flags

Performed by Platform

Fig. 3 Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F Authentication Messages.

8. Transport-specific Bindings

8.1 USB

8.1.1 Design rationale

CTAP messages are framed for USB transport using the HID (Human Interface Device) protocol. We henceforth refer to the protocol as
CTAPHID. The CTAPHID protocol is designed with the following design objectives in mind

Driver-less installation on all major host platforms

Multi-application support with concurrent application access without the need for serialization and centralized dispatching.

Fixed latency response and low protocol overhead

Scalable method for CTAPHID device discovery

Since HID data is sent as interrupt packets and multiple applications may access the HID stack at once, a non-trivial level of complexity
has to be added to handle this.

8.1.2 Protocol structure and data framing

The CTAP protocol is designed to be concurrent and state-less in such a way that each performed function is not dependent on previous
actions. However, there has to be some form of "atomicity" that varies between the characteristics of the underlying transport protocol,
which for the CTAPHID protocol introduces the following terminology:

Transaction

Message

Packet

A transaction is the highest level of aggregated functionality, which in turn consists of a request, followed by a response message. Once
a request has been initiated, the transaction has to be entirely completed before a second transaction can take place and a response is
never sent without a previous request. Transactions exist only at the highest CTAP protocol layer.

Request and response messages are in turn divided into individual fragments, known as packets. The packet is the smallest form of
protocol data unit, which in the case of CTAPHID are mapped into HID reports.

8.1.3 Concurrency and channels

Additional logic and overhead is required to allow a CTAPHID device to deal with multiple "clients", i.e. multiple applications accessing
the single resource through the HID stack. Each client communicates with a CTAPHID device through a logical channel, where each
application uses a unique 32-bit channel identifier for routing and arbitration purposes.

A channel identifier is allocated by the FIDO authenticator device to ensure its system-wide uniqueness. The actual algorithm for
generation of channel identifiers is vendor specific and not defined by this specification.

Channel ID 0 is reserved and 0xffffffff is reserved for broadcast commands, i.e. at the time of channel allocation.

8.1.4 Message and packet structure

Packets are one of two types, initialization packets and continuation packets. As the name suggests, the first packet sent in a
message is an initialization packet, which also becomes the start of a transaction. If the entire message does not fit into one packet
(including the CTAPHID protocol overhead), one or more continuation packets have to be sent in strict ascending order to complete the
message transfer.

A message sent from a host to a device is known as a request and a message sent from a device back to the host is known as a
response. A request always triggers a response and response messages are never sent ad-hoc, i.e. without a prior request message.
However, a keep-alive message can be sent between a request and a response message.

The request and response messages have an identical structure. A transaction is started with the initialization packet of the request
message and ends with the last packet of the response message.

Packets are always fixed size (defined by the endpoint and HID report descriptors) and although all bytes may not be needed in a
particular packet, the full size always has to be sent. Unused bytes should be set to zero.

An initialization packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s - 7) DATA
Payload data (s is equal to the fixed packet
size)

The command byte has always the highest bit set to distinguish it from a continuation packet, which is described below.

A continuation packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ
Packet sequence 0x00..0x7f (bit 7 always
cleared)

5 (s - 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s - 7) may be sent as one packet. A larger message is then divided into
one or more continuation packets, starting with sequence number 0, which then increments by one to a maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum message payload length is 64 - 7 + 128 * (64 -
5) = 7609 bytes.

8.1.5 Arbitration

In order to handle multiple channels and clients concurrency, the CTAPHID protocol has to maintain certain internal states, block
conflicting requests and maintain protocol integrity. The protocol relies on each client application (channel) behaves politely, i.e. does not
actively act to destroy for other channels. With this said, a malign or malfunctioning application can cause issues for other channels.
Expected errors and potentially stalling applications should however, be handled properly.

8.1.5.1 Transaction atomicity, idle and busy states.

A transaction always consists of three stages:

1. A message is sent from the host to the device

2. The device processes the message

3. A response is sent back from the device to the host

The protocol is built on the assumption that a plurality of concurrent applications may try ad-hoc to perform transactions at any time, with
each transaction being atomic, i.e. it cannot be interrupted by another application once started.

The application channel that manages to get through the first initialization packet when the device is in idle state will keep the device
locked for other channels until the last packet of the response message has been received. The device then returns to idle state, ready
to perform another transaction for the same or a different channel. Between two transactions, no state is maintained in the device and a
host application must assume that any other process may execute other transactions at any time.

If an application tries to access the device from a different channel while the device is busy with a transaction, that request will
immediately fail with a busy-error message sent to the requesting channel.

8.1.5.2 Transaction timeout

A transaction has to be completed within a specified period of time to prevent a stalling application to cause the device to be completely
locked out for access by other applications. If for example an application sends an initialization packet that signals that continuation
packets will follow and that application crashes, the device will back out that pending channel request and return to an idle state.

8.1.5.3 Transaction abort and re-synchronization

If an application for any reason "gets lost", gets an unexpected response or error, it may at any time issue an abort-and-resynchronize
command. If the device detects an INIT command during a transaction that has the same channel id as the active transaction, the
transaction is aborted (if possible) and all buffered data flushed (if any). The device then returns to idle state to become ready for a new
transaction.

8.1.5.4 Packet sequencing

The device keeps track of packets arriving in correct and ascending order and that no expected packets are missing. The device will
continue to assemble a message until all parts of it has been received or that the transaction times out. Spurious continuation packets
appearing without a prior initialization packet will be ignored.

8.1.6 Channel locking

In order to deal with aggregated transactions that may not be interrupted, such as tunneling of vendor-specific commands, a channel
lock command may be implemented. By sending a channel lock command, the device prevents other channels from communicating with
the device until the channel lock has timed out or been explicitly unlocked by the application.

This feature is optional and has not to be considered by general CTAP HID applications.

8.1.7 Protocol version and compatibility

The CTAPHID protocol is designed to be extensible, yet maintaining backwards compatibility to the extent it is applicable. This means
that a CTAPHID host shall support any version of a device with the command set available in that particular version.

8.1.8 HID device implementation

This description assumes knowledge of the USB and HID specifications and is intended to provide the basics for implementing a
CTAPHID device. There are several ways to implement USB devices and reviewing these different methods is beyond the scope of this
document. This specification targets the interface part, where a device is regarded as either a single or multiple interface (composite)
device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s). Although not excluded per se, USB low-
speed devices are not practical to use given the 8-byte report size limitation together with the protocol overhead.

8.1.8.1 Interface and endpoint descriptors

The device implements two endpoints (except the control endpoint 0), one for IN and one for OUT transfers. The packet size is vendor
defined, but the reference implementation assumes a full-speed device with two 64-byte endpoints.

Interface Descriptor

Mnemonic Value Description

bNumEndpoints 2
One IN and one OUT
endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x01 1, OUT

bMaxPacketSize 64 64-byte packet max

bInterval 5
Poll every 5
millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x81 1, IN

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5
millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be defined freely by the vendor and the host
application is responsible for querying these values and handle these accordingly. For the sake of clarity, the values listed above are
used in the following examples.

8.1.8.2 HID report descriptor and device discovery

A HID report descriptor is required for all HID devices, even though the reports and their interpretation (scope, range, etc.) makes very
little sense from an operating system perspective. The CTAPHID just provides two "raw" reports, which basically map directly to the IN
and OUT endpoints. However, the HID report descriptor has an important purpose in CTAPHID, as it is used for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

A unique Usage Page is defined (0xF1D0) for the FIDO alliance and under this realm, a CTAPHID Usage is defined as well (0x01).
During CTAPHID device discovery, all HID devices present in the system are examined and devices that match this usage pages and
usage are then considered to be CTAPHID devices.

The length values specified by the HID_INPUT_REPORT_BYTES and the HID_OUTPUT_REPORT_BYTES should typically match the respective
endpoint sizes defined in the endpoint descriptors.

8.1.9 CTAPHID commands

The CTAPHID protocol implements the following commands.

8.1.9.1 Mandatory commands

The following list describes the minimum set of commands required by an CTAPHID device. Optional and vendor-specific commands
may be implemented as described in respective sections of this document.

8.1.9.1.1 CTAPHID_MSG (0x03)

This command sends an encapsulated CTAP1/U2F message to the device. The semantics of the data message is defined in the U2F
Raw Message Format encoding specification. Please note that keep-alive messages may be sent from the device to the client before the
response message is returned.

Request

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA
U2F command
byte

DATA +
1

n bytes of data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F status code

DATA +
1

n bytes of data

8.1.9.1.2 CTAPHID_CBOR (0x10)

EXAMPLE 8

// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {
 HID_UsagePage (FIDO_USAGE_PAGE),
 HID_Usage (FIDO_USAGE_CTAPHID),
 HID_Collection (HID_Application),
 HID_Usage (FIDO_USAGE_DATA_IN),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_INPUT_REPORT_BYTES),
 HID_Input (HID_Data | HID_Absolute | HID_Variable),
 HID_Usage (FIDO_USAGE_DATA_OUT),
 HID_LogicalMin (0),
 HID_LogicalMaxS (0xff),
 HID_ReportSize (8),
 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),
 HID_Output (HID_Data | HID_Absolute | HID_Variable),
HID_EndCollection
};

This command sends an encapsulated CTAP CBOR encoded message. The semantics of the data message is defined in the CTAP
Message encoding specification.

Request

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP command byte

DATA +
1

n bytes of CBOR encoded
data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA CTAP status code

DATA +
1

n bytes of CBOR encoded
data

8.1.9.1.3 CTAPHID_INIT (0x06)

This command has two functions.

If sent on an allocated CID, it synchronizes a channel, discarding the current transaction, buffers and state as quickly as possible. It will
then be ready for a new transaction. The device then responds with the CID of the channel it received the INIT on, using that channel.

If sent on the broadcast CID, it requests the device to allocate a unique 32-bit channel identifier (CID) that can be used by the requesting
application during its lifetime. The requesting application generates a nonce that is used to match the response. When the response is
received, the application compares the sent nonce with the received one. After a positive match, the application stores the received
channel id and uses that for subsequent transactions.

To allocate a new channel, the requesting application shall use the broadcast channel CTAPHID_BROADCAST_CID (0xFFFFFFFF).
The device then responds with the newly allocated channel in the response, using the broadcast channel.

Request

CMD CTAPHID_INIT

BCNT 8

DATA 8-byte nonce

Response at success

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce

DATA+8 4-byte channel ID

DATA+12
CTAPHID protocol version
identifier

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented by the device. An CTAPHID host shall accept a response size that is
longer than the anticipated size to allow for future extensions of the protocol, yet maintaining backwards compatibility. Future versions
will maintain the response structure to this current version, but additional fields may be added.

The meaning and interpretation of the version number is vendor defined.

The following device capabilities flags are defined. Unused values are reserved for future use and must be set to zero by device
vendors.

CAPABILITY_WINK If set to 1, authenticator implements CTAPHID_WINK function

CAPABILITY_CBOR If set to 1, authenticator implements CTAPHID_CBOR function

CAPABILITY_NMSG
If set to 1, authenticator DOES NOT implement CTAPHID_MSG
function

8.1.9.1.4 CTAPHID_PING (0x01)

Sends a transaction to the device, which immediately echoes the same data back. This command is defined to be a uniform function for
debugging, latency and performance measurements.

Request

CMD CTAPHID_PING

BCNT 0..n

DATA n bytes

Response at success

CMD CTAPHID_PING

BCNT n

DATA N bytes

8.1.9.1.5 CTAPHID_CANCEL (0x11)

Cancel any outstanding requests on this CID.

Request

CMD CTAPHID_CANCEL

BCNT 0

Response at success

CMD CTAPHID_CANCEL

BCNT 0

8.1.9.1.6 CTAPHID_ERROR (0x3F)

This command code is used in response messages only.

CMD CTAPHID_ERROR

BCNT 1

DATA Error code

The following error codes are defined

ERR_INVALID_CMD The command in the request is invalid

ERR_INVALID_PAR The parameter(s) in the request is invalid

ERR_INVALID_LEN
The length field (BCNT) is invalid for the
request

ERR_INVALID_SEQ The sequence does not match expected value

ERR_MSG_TIMEOUT The message has timed out

ERR_CHANNEL_BUSY The device is busy for the requesting channel

8.1.9.1.7 CTAPHID_KEEPALIVE (0x3B)

This command code is sent while processing a CTAPHID_MSG. It should be sent at least every 100ms and whenever the status
changes.

CMD CTAPHID_KEEPALIVE

BCNT 1

DATA Status code

The following status codes are defined

STATUS_PROCESSING 1
The authenticator is still processing the current
request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

8.1.9.2 Optional commands

The following commands are defined by this specification but are optional and does not have to be implemented.

8.1.9.2.1 CTAPHID_WINK (0x08)

The wink command performs a vendor-defined action that provides some visual or audible identification a particular authenticator device.
A typical implementation will do a short burst of flashes with a LED or something similar. This is useful when more than one device is
attached to a computer and there is confusion which device is paired with which connection.

Request

CMD CTAPHID_WINK

BCNT 0

DATA N/A

Response at success

CMD CTAPHID_WINK

BCNT 0

DATA N/A

8.1.9.2.2 CTAPHID_LOCK (0x04)

The lock command places an exclusive lock for one channel to communicate with the device. As long as the lock is active, any other
channel trying to send a message will fail. In order to prevent a stalling or crashing application to lock the device indefinitely, a lock time
up to 10 seconds may be set. An application requiring a longer lock has to send repeating lock commands to maintain the lock.

Request

CMD CTAPHID_LOCK

BCNT 1

DATA
Lock time in seconds 0..10. A value of 0 immediately releases the
lock

Response at success

CMD CTAPHID_LOCK

BCNT 0

DATA N/A

8.1.9.3 Vendor specific commands

A CTAPHID may implement additional vendor specific commands that are not defined in this specification, yet being CTAPHID
compliant. Such commands, if implemented must have a command in the range between CTAPHID_VENDOR_FIRST (0x40) and
CTAPHID_VENDOR_LAST (0x7F).

8.2 ISO7816, ISO14443 and Near Field Communication (NFC)

8.2.1 Conformance

Please refer to [ISOIEC-7816-4-2013] for APDU definition.

8.2.2 Protocol

The general protocol between a FIDO2 client and an authenticator over ISO7816/ISO14443 is as follows:

1. Client sends an applet selection command

2. Authenticator replies with success if the applet is present

3. Client sends a command for an operation

4. Authenticator replies with response data or error

8.2.3 Applet selection

A successful Select allows the client to know that the applet is present and active. A client shall send a Select to the authenticator before
any other command.

The FIDO2 AID consists of the following fields:

Field Value

RID 0xA000000647

AC 0x2f

AX 0x0001

The command to select the FIDO applet is:

CLA INS P1 P2 Lc
Data
In

Le

0x00 0xA4 0x04 0x0C 0x08 AID
TBD (version string
length)

In response to the applet selection command, the FIDO authenticator replies with its version information string in the successful
response.

Given legacy support for CTAP1/U2F, the client must determine the capabilities of the device at the selection stage.

If the authenticator implements CTAP1/U2F, the version information shall be the string U2F_V2 to maintain backwards-
compatibility with CTAP1/U2F-only clients.

If the authenticator ONLY implements CTAP2, the device shall respond with data that is NOT U2F_V2.

If the authenticator implements both CTAP1/U2F and CTAP2, the version information shall be the string U2F_V2 to maintain
backwards-compatibility with CTAP1/U2F-only clients. CTAP2-aware clients may then issue a CTAP authenticatorGetInfo
command to determine if the device supports CTAP2 or not.

8.2.4 Framing

Conceptually, framing defines an encapsulation of FIDO2 commands. In NFC, this encapsulation is done in an APDU following [ISOIEC-
7816-4-2013]. Fragmentation, if needed, is discussed in the following paragraph.

8.2.4.1 Commands

Commands shall have the following format:

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00
CTAP Command Byte || CBOR Encoded
Data

Variable

8.2.4.2 Response

Response shall have the following format in case of success:

Case Data Status word

Success
Response
data

"9000" - Success

Status
update

Status
data

"9100" - OK
When receiving this, CTAP will immediately issue an NFCCTAP_GETREPONSE command unless a cancel
was issued. CTAP will provide the status data to the higher layers.

Errors See [ISOIEC-7816-4-2013]

8.2.5 Fragmentation

APDU command may hold up to 255 or 65535 bytes of data using short or extended length encoding respectively. APDU response may
hold up to 256 or 65536 bytes of data using short or extended length encoding respectively.

Some requests may not fit into a short APDU command, or the expected response may not fit in a short APDU response. For this
reason, FIDO2 client may encode APDU command in the following way:

The request may be encoded using extended length APDU encoding.

The request may be encoded using short APDU encoding. If the request does not fit a short APDU command, the client must use
ISO 7816-4 APDU chaining.

Some responses may not fit into a short APDU response. For this reason, FIDO2 authenticators must respond in the following way:

If the request was encoded using extended length APDU encoding, the authenticator must respond using the extended length
APDU response format.

If the request was encoded using short APDU encoding, the authenticator must respond using ISO 7816-4 APDU chaining.

8.2.6 Commands

8.2.6.1 NFCCTAP_MSG (0x10)

The NFCCTAP_MSG command send a CTAP message to the authenticator. This command shall return as soon as processing is done.
If the operation was not completed, it may return a 0x9100 result to trigger NFCCTAP_GETRESPONSE functionality if the client
indicated support by setting the relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

P1
Bits

Meaning

0x80
The client supports
NFCCTAP_GETRESPONSE

0x7F RFU, must be 0x00

Values for P2 are all RFU and must be set to 0.

NFCCTAP_GETRESPONSE (0x11)

The NFCCTAP_GETRESPONSE command is issued up to receiving 0x9100 unless a cancel was issued. This command shall return a
0x9100 result with a status indication if it has a status update, the reply to the request with a 0x9000 result code to indicate success or
an error value.

All values for P1 and P2 are RFU and must be set to 0x00.

8.2.7 Bluetooth Smart / Bluetooth Low Energy Technology

8.2.7.1 Conformance

Authenticator and Client devices using Bluetooth Low Energy Technology shall conform to Bluetooth Core Specification 4.0 or later
[BTCORE]

Bluetooth SIG specified UUID values shall be found on the Assigned Numbers website [BTASSNUM]

8.2.7.2 Pairing

Bluetooth Low Energy Technology is a long-range wireless protocol and thus has several implications for privacy, security, and overall
user-experience. Because it is wireless, Bluetooth Low Energy Technology may be subject to monitoring, injection, and other network-
level attacks.

For these reasons, Clients and Authenticators must create and use a long-term link key (LTK) and shall encrypt all communications.
Authenticator must never use short term keys.

Because Bluetooth Low Energy Technology has poor ranging (i.e., there is no good indication of proximity), it may not be clear to a FIDO
Client with which Bluetooth Low Energy Technology Authenticator it should communicate. Pairing is the only mechanism defined in this
protocol to ensure that FIDO Clients are interacting with the expected Bluetooth Low Energy Technology Authenticator. As a result,
Authenticator manufacturers should instruct users to avoid performing Bluetooth pairing in a public space such as a cafe, shop or train
station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most operating systems. That is, if an
Authenticator is paired to a FIDO Client which resides on an operating system where Bluetooth pairing is "system-wide", then any
application on that device might be able to interact with an Authenticator. This issue is discussed further in Implementation
Considerations.

8.2.7.3 Link Security

For Bluetooth Low Energy Technology connections, the Authenticator shall enforce Security Mode 1, Level 2 (unauthenticated pairing
with encryption) or Security Mode 1, Level 3 (authenticated pairing with encryption) before any FIDO messages are exchanged.

8.2.7.4 Framing

Conceptually, framing defines an encapsulation of FIDO raw messages responsible for correct transmission of a single request and its
response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of the requests and responses is given first as
complete frames. Fragmentation is discussed next for each type of transport layer.

8.2.7.4.1 Request from Client to Authenticator

Request frames must have the following format

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA
Data (s is equal to the
length)

Supported commands are PING, MSG and CANCEL. The constant values for them are described below.

The CANCEL command cancels any outstanding MSG commands.

The data format for the MSG command is defined in the Message Encoding section of this document.

8.2.7.4.2 Response from Authenticator to Client

Response frames must have the following format, which share a similar format to the request frames:

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA
Data (s is equal to the
length)

When the status byte in the response is the same as the command byte in the request, the response is a successful response. The
value ERROR indicates an error, and the response data contains an error code as a variable-length, big-endian integer. The constant value
for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g., indicating an incorrectly formatted request, or
possibly an error communicating with the Authenticator’s FIDO message processing layer. Errors reported by the FIDO message
processing layer itself are considered a success from the encapsulation layer’s point of view, and are reported as a complete MSG
response.

Data format is defined in the Message Encoding section of this document.

8.2.7.4.3 Command, Status, and Error constants

The COMMAND constants and values are:

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

CANCEL 0xbe

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

Status
Constant

Value

PROCESSING 0x01

UP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error Constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID_SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

NA 0x06 Value reserved (HID)

NA 0x0a Value reserved (HID)

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

8.2.7.5 GATT Service Description

This profile defines two roles: FIDO Authenticator and FIDO Client.

The FIDO Client shall be a GATT Client

The FIDO Authenticator shall be a GATT Server

The following figure illustrates the mandatory services and characteristics that shall be offered by a FIDO Authenticator as part of its
GATT server:

Fig. 4 Mandatory GATT services and characteristics that must be offered by a FIDO Authenticator. Note that the Generic

Access Service ([BTGAS] is not present as it is already mandatory for any Bluetooth Low Energy Technology compliant
device.

The table below summarizes additional GATT sub-procedure requirements for a FIDO Authenticator (GATT Server) beyond those
required by all GATT Servers.

GATT Sub-Procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements for a FIDO Client (GATT Client) beyond those required by all
GATT Clients.

GATT Sub-Procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service
UUID

(*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures.

(**): Mandatory to support at least one of these sub-procedures.

Other GATT sub-procedures may be used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values are big-endian coded, all strings are in UTF-8
encoding, and any characteristics not mentioned explicitly are optional.

8.2.7.5.1 FIDO Service

An Authenticator shall implement the FIDO Service described below. The UUID for the FIDO GATT service is 0xFFFD, it shall be declared
as a Primary Service. The service contains the following characteristics:

Characteristic Name Mnemonic Property Length UUID

FIDO Control Point fidoControlPoint Write
Defined by Vendor (20-
512 bytes)

F1D0FFF1-DEAA-ECEE-B42F-
C9BA7ED623BB

FIDO Status fidoStatus Notify N/A
F1D0FFF2-DEAA-ECEE-B42F-
C9BA7ED623BB

FIDO Control Point
Length

fidoControlPointLength Read 2 bytes
F1D0FFF3-DEAA-ECEE-B42F-
C9BA7ED623BB

FIDO Service Revision
Bitfield

fidoServiceRevisionBitfield Read/Write
Defined by Vendor (1+
bytes)

F1D0FFF4-DEAA-ECEE-B42F-
C9BA7ED623BB

FIDO Service Revision fidoServiceRevision Read
Defined by Vendor (20-
512 bytes)

0x2A28

fidoControlPoint is a write-only command buffer.

fidoStatus is a notify-only response attribute. The Authenticator will send a series of notifications on this attribute with a maximum length
of (ATT_MTU-3) using the response frames defined above. This mechanism is used because this results in a faster transfer speed
compared to a notify-read combination.

fidoControlPointLength defines the maximum size in bytes of a single write request to fidoControlPoint. This value shall be between
20 and 512.

fidoServiceRevision is a deprecated field that is only relevant to U2F 1.0 support. It defines the revision of the U2F Service. The value
is a UTF-8 string. For version 1.0 of the specification, the value fidoServiceRevision shall be 1.0 or in raw bytes: 0x312e30. This field
shall be omitted if protocol version 1.0 is not supported.

The fidoServiceRevision Characteristic may include a Characteristic Presentation Format descriptor with format value 0x19, UTF-8
String.

fidoServiceRevisionBitfield defines the revision of the FIDO Service. The value is a bit field which each bit representing a version. For
each version bit the value is 1 if the version is supported, 0 if it is not. The length of the bitfield is 1 or more bytes. All bytes that are 0 are
omitted if all the following bytes are 0 too. The byte order is big endian. The client shall write a value to this characteristic with exactly 1
bit set before sending any FIDO commands unless u2fServiceRevision is present and U2F 1.0 compatibility is desired. If only U2F
version 1.0 is supported, this characteristic shall be omitted.

Byte (left to right) Bit Version

0 7 U2F 1.1

0 6 U2F 1.2

0 5 FIDO 2.0

0 4-0 Reserved

For example, a device that only supports FIDO2 Rev 1 will only have a fidoServiceRevisionBitfield characteristic of length 1 with value
0x20.

8.2.7.5.2 Device Information Service

An Authenticator shall implement the Device Information Service [BTDIS] with the following characteristics:

Manufacturer Name String

Model Number String

Firmware Revision String

All values for the Device Information Service are left to the vendors. However, vendors should not create uniquely identifiable values so
that Authenticators do not become a method of tracking users.

8.2.7.5.3 Generic Access Profile Service

Every Authenticator shall implement the Generic Access Profile Service [BTGAS] with the following characteristics:

Device Name

Appearance

8.2.7.6 Protocol Overview

The general overview of the communication protocol follows:

1. Authenticator advertises the FIDO Service.

2. Client scans for Authenticator advertising the FIDO Service.

3. Client performs characteristic discovery on the Authenticator.

4. If not already paired, the Client and Authenticator shall perform BLE pairing and create a LTK. Authenticator shall only allow
connections from previously bonded Clients without user intervention.

5. Client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the client selects a supported version by writing a
value with a single bit set.

6. Client reads the fidoControlPointLength characteristic.

7. Client registers for notifications on the fidoStatus characteristic.

8. Client writes a request (e.g., an enroll request) into the fidoControlPoint characteristic.

9. Authenticator evaluates the request and responds by sending notifications over fidoStatus characteristic.

10. The protocol completes when either:
The Client unregisters for notifications on the fidoStatus characteristic, or:

The connection times out and is closed by the Authenticator.

8.2.7.7 Authenticator Advertising Format

When advertising, the Authenticator shall advertise the FIDO service UUID.

When advertising, the Authenticator may include the TxPower value in the advertisement (see [BTXPLAD]).

When advertising in pairing mode, the Authenticator shall either: (1) set the LE Limited Mode bit to zero and the LE General
Discoverable bit to one OR (2) set the LE Limited Mode bit to one and the LE General Discoverable bit to zero. When advertising in non-
pairing mode, the Authenticator shall set both the LE Limited Mode bit and the LE General Discoverable Mode bit to zero in the
Advertising Data Flags.

The advertisement may also carry a device name which is distinctive and user-identifiable. For example, "ACME Key" would be an
appropriate name, while "XJS4" would not be.

The Authenticator shall also implement the Generic Access Profile [BTGAP] and Device Information Service [BTDIS], both of which also
provide a user-friendly name for the device that could be used by the Client.

It is not specified when or how often an Authenticator should advertise, instead that flexibility is left to manufacturers.

8.2.7.8 Requests

Clients should make requests by connecting to the Authenticator and performing a write into the fidoControlPoint characteristic.

8.2.7.9 Responses

Authenticators should respond to Clients by sending notifications on the fidoStatus characteristic.

Some Authenticators might alert users or prompt them to complete the test of user presence (e.g., via sound, light, vibration) Upon
receiving any request, the Authenticators shall send KEEPALIVE commands every kKeepAliveMillis milliseconds until completing
processing the commands. While the Authenticator is processing the request the KEEPALIVE command will contain status PROCESSING. If

the Authenticator is waiting to complete the Test of User Presence, the KEEPALIVE command will contains status UP_NEEDED. While
waiting to complete the Test of User Presence, the Authenticator may alert the user (e.g., by flashing) in order to prompt the user to
complete the test of user presence. As soon the Authenticator has completed processing and confirmed user presence, it shall stop
sending KEEPALIVE commands and send the reply.

Upon receiving a KEEPALIVE command, the Client shall assume the Authenticator is still processing the command; the Client shall not
resend the command. The Authenticator shall continue sending KEEPALIVE messages at least every kKeepAliveMillis to indicate that it
is still handling the request. Until a client-defined timeout occurs, the Client shall not move on to other devices when it receives a
KEEPALIVE with UP_NEEDED status, as it knows this is a device that can satisfy its request.

8.2.7.10 Framing fragmentation

A single request/response sent over Bluetooth Low Energy Technology may be split over multiple writes and notifications, due to the
inherent limitations of Bluetooth Low Energy Technology which is not currently meant for large messages. Frames are fragmented in the
following way:

A frame is divided into an initialization fragment and one or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN
High part of data
length

2 1 LLEN Low part of data length

3
0 to (maxLen -
3)

DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, the start of an initialization fragment is indicated by setting the high bit in the first byte. The subsequent two bytes
indicate the total length of the frame, in big-endian order. The first maxLen - 3 bytes of data follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ
Packet sequence 0x00..0x7f (high bit always
cleared)

1
0 to (maxLen -
1)

DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0, implicitly with the high bit cleared. The sequence
number must wrap around to 0 after reaching the maximum sequence number of 0x7f.

Example for sending a PING command with 40 bytes of data with a maxLen of 20 bytes:

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512 bytes:

Frame Bytes

0 [810190] [400 bytes of data]

8.2.7.11 Notifications

A client needs to register for notifications before it can receive them. Bluetooth Core Specification 4.0 or later [BTCORE] forces a device
to remember the notification registration status over different connections [BTCCC]. Unless a client explicitly unregisters for notifications,
the registration will be automatically restored when reconnecting. A client may therefor check the notification status upon connection and
only register if notifications aren't already registered. Please note that some clients may disable notifications from a power management
point of view (see below) and the notification registration is remembered per bond, not per client. A client must not remember the
notification status in its own data storage.

8.2.7.12 Implementation Considerations

8.2.7.12.1 Bluetooth pairing: Client considerations

As noted in the Pairing section, a disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most operating
systems. That is, if an Authenticator is paired to a FIDO Client which resides on an operating system where Bluetooth pairing is "system-
wide", then any application on that device might be able to interact with an Authenticator. This poses both security and privacy risks to
users.

While Client operating system security is partly out of FIDO's scope, further revisions of this specification may propose mitigations for
this issue.

8.2.7.12.2 Bluetooth pairing: Authenticator considerations

The method to put the Authenticator into Pairing Mode should be such that it is not easy for the user to do accidentally especially if the
pairing method is Just Works. For example, the action could be pressing a physically recessed button or pressing multiple buttons. A
visible or audible cue that the Authenticator is in Pairing Mode should be considered. As a counter example, a silent, long press of a
single non-recessed button is not advised as some users naturally hold buttons down during regular operation.

Note that at times, Authenticators may legitimately receive communication from an unpaired device. For example, a user attempts to use
an Authenticator for the first time with a new Client: he turns it on, but forgets to put the Authenticator into pairing mode. In this situation,
after connecting to the Authenticator, the Client will notify the user that he needs to pair his Authenticator. The Authenticator should
make it easy for the user to do so, e.g., by not requiring the user to wait for a timeout before being able to enable pairing mode.

Some Client platforms (most notably iOS) do not expose the AD Flag LE Limited and General Discoverable Mode bits to applications.
For this reason, Authenticators are also strongly recommended to include the Service Data field [BTSD] in the Scan Response. The
Service Data field is 3 or more octets long. This allows the Flags field to be extended while using the minimum number of octets within
the data packet. All octets that are 0x00 are not transmitted as long as all other octets after that octet are also 0x00 and it is not the first
octet after the service UUID. The first 2 bytes contain the FIDO Service UUID, the following bytes are flag bytes.

To help Clients show the correct UX, Authenticators can use the Service Data field to specify whether or not Authenticators will require a
Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)

7 Device is in pairing mode.

6 Device requires Passkey Entry [BTPESTK].

8.2.7.13 Handling command completion

It is important for low-power devices to be able to conserve power by shutting down or switching to a lower-power state when they have
satisfied a Client's requests. However, the FIDO protocol makes this hard as it typically includes more than one command/response. This
is especially true if a user has more than one key handle associated with an account or identity, multiple key handles may need to be
tried before getting a successful outcome. Furthermore, Clients that fail to send follow-up commands in a timely fashion may cause the
Authenticator to drain its battery by staying powered up anticipating more commands.

A further consideration is to ensure that a user is not confused about which command she is confirming by completing the test of user
presence. That is, if a user performs the test of user presence, that action should perform exactly one operation.

We combine these considerations into the following series of recommendations:

Upon initial connection to an Authenticator, and upon receipt of a response from an Authenticator, if a Client has more commands
to issue, the Client must transmit the next command or fragment within kMaxCommandTransmitDelayMillis milliseconds.

Upon final response from an Authenticator, if the Client decides it has no more commands to send it should indicate this by
disabling notifications on the fidoStatus characteristic. When the notifications are disabled the Authenticator may enter a low
power state or disconnect and shut down.

Any time the Client wishes to send a FIDO message, it must have first enabled notifications on the fidoStatus characteristic and
wait for the ATT acknowledgement to be sure the Authenticator is ready to process messages.

Upon successful completion of a command which required a test of user presence, e.g. upon a successful authentication or
registration command, the Authenticator can assume the Client is satisfied, and may reset its state or power down.

Upon sending a command response that did not consume a test of user presence, the Authenticator must assume that the Client
may wish to initiate another command, and leave the connection open until the Client closes it or until a timeout of at least
kErrorWaitMillis elapses. Examples of command responses that do not consume user presence include failed authenticate or
register commands, as well as get version responses, whether successful or not. After kErrorWaitMillis milliseconds have
elapsed without further commands from a Client, an Authenticator may reset its state or power down.

Constant Value

kMaxCommandTransmitDelayMillis
1500
milliseconds

kErrorWaitMillis
2000
milliseconds

kKeepAliveMillis 500 milliseconds

8.2.7.14 Data throughput

Bluetooth Low Energy Technology does not have particularly high throughput, this can cause noticeable latency to the user if
request/responses are large. Some ways that implementers can reduce latency are:

Support the maximum MTU size allowable by hardware (up to the 512-byte max from the BLE specifications).

Make the attestation certificate as small as possible; do not include unnecessary extensions.

8.2.7.15 Advertising

Though the standard does not appear to mandate it (in any way that we’ve found thus far), advertising and device discovery seems to
work better when the Authenticators advertise on all 3 advertising channels and not just one.

8.2.7.16 Authenticator Address Type

In order to enhance the user's privacy and specifically to guard against tracking, it is recommended that Authenticators use Resolvable
Private Addresses (RPAs) instead of static addresses.

A. References

A.1 Normative references

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC7049]
C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). October 2013. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7049

[SEC1V2]
SEC1: Elliptic Curve Cryptography, Version 2.0. May 2009. URL: http://secg.org/download/aid-780/sec1-v2.pdf

[U2FRawMsgs]
D. Balfanz. FIDO U2F Raw Message Formats v1.0. Draft. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-
raw-message-formats-v1.2-ps-20170411.html

[WebAuthN]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael Jones; Akshay Kumar; Huakai Liao; Rolf Lindemann; Emil
Lundberg. Web Authentication: An API for accessing Public Key Credentials Level 1. 20 March 2018. W3C Candidate
Recommendation. URL: https://www.w3.org/TR/webauthn/

A.2 Informative references

[BTASSNUM]
Bluetooth Assigned Numbers. URL: https://www.bluetooth.org/en-us/specification/assigned-numbers

[BTCCC]
Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume 3, Part G, Section 3.3.3.3. URL:
https://www.bluetooth.com/specifications/adopted-specifications

[BTCORE]
Bluetooth Core Specification 4.0. URL: https://www.bluetooth.com/specifications/adopted-specifications

[BTDIS]
Device Information Service v1.1. URL: https://www.bluetooth.com/specifications/adopted-specifications

[BTGAP]
Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://www.bluetooth.com/specifications/adopted-specifications

[BTGAS]
Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 12. URL:
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml

[BTPESTK]
Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H, Section 2.3.5.3. URL:
https://www.bluetooth.com/specifications/adopted-specifications

[BTSD]
Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.com/specifications/adopted-specifications

[BTXPLAD]
Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume 3, Part C, Section 11. URL:
https://www.bluetooth.com/specifications/adopted-specifications

[IANA-COSE-ALGS-REG]
Jim Schaad; Göran Selander; Derek Atkins; Sean Turner. IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry.
URL: https://www.iana.org/assignments/cose/cose.xhtml#algorithms

[ISOIEC-7816-4-2013]
ISO 7816-4: Identification cards – Integrated circuit cards; Part 4 : Organization, security and commands for interchange. URL:

[RFC6090]
D. McGrew; K. Igoe; M. Salter. Fundamental Elliptic Curve Cryptography Algorithms. February 2011. Informational. URL:
https://tools.ietf.org/html/rfc6090

[RFC8152]
J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed Standard. URL: https://tools.ietf.org/html/rfc8152

[SP800-56A]
NIST Special Publication 800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography (Revised). March 2007 URL: https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-
2007.pdf

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

FIDO AppID and Facet Specification

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-appid-and-facets-v2.0-ps-20170927.html

Previous version:
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-appid-and-facets-v2.0-rd-20161004.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Brad Hill, PayPal, Inc.
Dirk Balfanz, Google, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

The FIDO family of protocols introduce a new security concept, Application Facets, to describe the scope of user credentials and how a trusted
computing base which supports application isolation may make access control decisions about which keys can be used by which applications
and web origins.

This document describes the motivations for and requirements for implementing the Application Facet concept and how it applies to the FIDO
protocols.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be
used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Motivation

2.2 Avoiding App-Phishing

2.3 Comparison to OAuth and OAuth2

2.4 Non-Goals

3. The AppID and FacetID Assertions
3.1 Processing Rules for AppID and FacetID Assertions

3.1.1 Determining the FacetID of a Calling Application

3.1.2 Determining if a Caller's FacetID is Authorized for an AppID

3.1.3 TrustedFacet List and Structure
3.1.3.1 Dictionary TrustedFacetList Members

3.1.3.2 Dictionary TrustedFacets Members

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-appid-and-facets-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-appid-and-facets-v2.0-rd-20161004.html
mailto://rolf@noknok.com
https://www.noknok.com/
mailto://hillbrad@gmail.com
https://www.paypal.com
https://www.google.com/
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact

3.1.4 AppID Example 1

3.1.5 AppID Example 2

3.1.6 Obtaining FacetID of Android Native App

3.1.7 Additional Security Considerations
3.1.7.1 Wildcards in TrustedFacet identifiers

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

This document applies to both the U2F protocol and the UAF protocol. UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

Modern networked applications typically present several ways that a user can interact with them. This document introduces the concept of an
Application Facet to describe the identities of a single logical application across various platforms. For example, the application MyBank may
have an Android app, an iOS app, and a Web app accessible from a browser. These are all facets of the MyBank application.

The FIDO architecture provides for simpler and stronger authentication than traditional username and password approaches while avoiding
many of the shortfalls of alternative authentication schemes. At the core of the FIDO protocols are challenge and response operations
performed with a public/private keypair that serves as a user's credential.

To minimize frequently-encountered issues around privacy, entanglements with concepts of "identity", and the necessity for trusted third
parties, keys in FIDO are tightly scoped and dynamically provisioned between the user and each Relying Party and only optionally associated
with a server-assigned username. This approach contrasts with, for example, traditional PKIX client certificates as used in TLS, which introduce
a trusted third party, mix in their implementation details identity assertions with holder-of-key cryptographic proofs, lack audience restrictions,
and may even be sent in the cleartext portion of a protocol handshake without the user's notification or consent.

While the FIDO approach is preferable for many reasons, it introduces several challenges.

What set of Web origins and native applications (facets) make up a single logical application and how can they be reliably identified?

How can we avoid making the user register a new key for each web browser or application on their device that accesses services
controlled by the same target entity?

How can access to registered keys be shared without violating the security guarantees around application isolation and protection from
malicious code that users expect on their devices?

How can a user roam credentials between multiple devices, each with a user-friendly Trusted Computing Base for FIDO?

This document describes how FIDO addresses these goals (where adequate platform mechanisms exist for enforcement) by allowing an
application to declare a credential scope that crosses all the various facets it presents to the user.

2.1 Motivation

FIDO conceptually sets a scope for registered keys to the tuple of (Username, Authenticator, Relying Party). But what constitutes a Relying
Party? It is quite common for a user to access the same set of services from a Relying Party, on the same device, in one or more web browsers
as well as one or more dedicated apps. As the Relying Party may require the user to perform a costly ceremony in order to prove her identity
and register a new FIDO key, it is undesirable that the user should have to repeat this ceremony multiple times on the same device, once for
each browser or app.

2.2 Avoiding App-Phishing

FIDO provides for user-friendly verification ceremonies to allow access to registered keys, such as entering a simple PIN code and touching a
device, or scanning a finger. It should not matter for security purposes if the user re-uses the same verification inputs across Relying Parties,
and in the case of a biometric, she may have no choice.

Modern operating systems that use an "app store" distribution model often make a promise to the user that it is "safe to try" any app. They do
this by providing strong isolation between applications, so that they may not read each others' data or mutually interfere, and by requiring
explicit user permission to access shared system resources.

If a user were to download a maliciously constructed game that instructs her to activate her FIDO authenticator in order to "save your progress"
but actually unlocks her banking credential and takes over her account, FIDO has failed, because the risk of phishing has only been moved
from the password to an app download. FIDO must not violate a platform's promise that any app is "safe to try" by keeping good custody of the
high-value shared state that a registered key represents.

2.3 Comparison to OAuth and OAuth2

The OAuth and OAuth2 of protocols were designed for a server-to-server security model with the assumption that each application instance can
be issued, and keep, an "application secret". This approach is ill-suited to the "app store" security model. Although it is common for services to
provision an OAuth-style application secret into their apps in an attempt to allow only authorized/official apps to connect, any such "secret" is in
fact shared among everyone with access to the app store and can be trivially recovered thorough basic reverse engineering.

In contrast, FIDO's facet concept is designed for the "app store" model from the start. It relies on client-side platform isolation features to make

sure that a key registered by a user with a member of a well-behaved "trusted club" stays within that trusted club, even if the user later installs a
malicious app, and does not require any secrets hard-coded into a shared package to do so. The user must, however, still make good
decisions about which apps and browsers they are willing to preform a registration ceremony with. App store policing can assist here by
removing applications which solicit users to register FIDO keys to for Relying Parties in order to make illegitmate or fraudulent use of them.

2.4 Non-Goals

The Application Facet concept does not attempt to strongly identify the calling application to a service across a network. Remote attestation of
an application identity is an explicit non-goal.

If an unauthorized app can convince a user to provide all the information to it required to register a new FIDO key, the Relying Party cannot use
FIDO protocols or the Facet concept to recognize as unauthorized, or deny such an application from performing FIDO operations, and an
application that a user has chosen to trust in such a manner can also share access to a key outside of the mechanisms described in this
document.

The facet mechanism provides a way for registered keys to maintain their proper scope when created and accessed from a Trusted Computing
Base (TCB) that provides isolation of malicious apps. A user can also roam their credentials between multiple devices with user-friendly TCBs
and credentials will retain their proper scope if this mechanism is correctly implemented by each. However, no guarantees can be made in
environments where the TCB is user-hostile, such as a device with malicious code operating with "root" level permissions. On environments
that do not provide application isolation but run all code with the privileges of the user, (e.g. traditional desktop operating systems) an intact
TCB, including web browsers, may successfully enforce scoping of credentials for web origins only, but cannot meaningfully enforce application
scoping.

3. The AppID and FacetID Assertions

When a user performs a Registration operation [UAFArchOverview] a new private key is created by their authenticator, and the public key is
sent to the Relying Party. As part of this process, each key is associated with an AppID. The AppID is a URL carried as part of the protocol
message sent by the server and indicates the target for this credential. By default, the audience of the credential is restricted to the Same
Origin of the AppID. In some circumstances, a Relying Party may desire to apply a larger scope to a key. If that AppID URL has the https
scheme, a FIDO client may be able to dereference and process it as a TrustedFacetList that designates a scope or audience restriction that
includes multiple facets, such as other web origins within the same DNS zone of control of the AppID's origin, or URLs indicating the identity of
other types of trusted facets such as mobile apps.

3.1 Processing Rules for AppID and FacetID Assertions

3.1.1 Determining the FacetID of a Calling Application

In the Web case, the FacetID must be the Web Origin [RFC6454] of the web page triggering the FIDO operation, written as a URI with an
empty path. Default ports are omitted and any path component is ignored.

An example FacetID is shown below:

https://login.mycorp.com/

In the Android [ANDROID] case, the FacetID must be a URI derived from the Base64 encoded SHA-256 (or SHA-1) hash of the APK signing
certificate [APK-Signing]:

android:apk-key-hash-sha256:<base64_encoded_sha256_hash-of-apk-signing-cert>

android:apk-key-hash:<base64_encoded_sha1_hash-of-apk-signing-cert>

The SHA-1 hash can be computed as follows:

The Base64 encoding is the the "Base 64 Encoding" from Section 4 in [RFC4648], with padding characters removed.

In the iOS [iOS] case, the FacetID must be the BundleID [BundleID] URI of the application:

NOTE

Users may also register multiple keys on a single authenticator for an AppID, such as for cases where they have multiple accounts. Such
registrations may have a Relying Party assigned username or local nicknames associated to allow them to be distinguished by the user,
or they may not (e.g. for 2nd factor use cases, the user account associated with a key may be communicated out-of-band to what is
specified by FIDO protocols). All registrations that share an AppID, also share these same audience restriction.

EXAMPLE 1: Computing an APK signing certificate SHA256 hash

Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
 -alias <alias-of-entry> \
 -keystore <path-to-apk-signing-keystore> &>2 /dev/null | \
 openssl sha256 -binary | \
 openssl base64 | \
 sed 's/=//g'

EXAMPLE 2: Computing an APK signing certificate SHA1 hash

Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
 -alias <alias-of-entry> \
 -keystore <path-to-apk-signing-keystore> &>2 /dev/null | \
 openssl sha1 -binary | \
 openssl base64 | \
 sed 's/=//g'

NOTE

If compatibility with older versions of FIDO Clients (i.e. the ones not yet supporting SHA-256 for FacetIDs) is required, both entries
should be specified.

ios:bundle-id:<ios-bundle-id-of-app>

3.1.2 Determining if a Caller's FacetID is Authorized for an AppID

1. If the AppID is not an HTTPS URL, and matches the FacetID of the caller, no additional processing is necessary and the operation may
proceed.

2. If the AppID is null or empty, the client must set the AppID to be the FacetID of the caller, and the operation may proceed without
additional processing.

3. If the caller's FacetID is an https:// Origin sharing the same host as the AppID, (e.g. if an application hosted at
https://fido.example.com/myApp set an AppID of https://fido.example.com/myAppId), no additional processing is necessary and the
operation may proceed. This algorithm may be continued asynchronously for purposes of caching the TrustedFacetList, if desired.

4. Begin to fetch the TrustedFacetList using the HTTP GET method. The location must be identified with an HTTPS URL.

5. The URL must be dereferenced with an anonymous fetch. That is, the HTTP GET must include no cookies, authentication, Origin or
Referer headers, and present no TLS certificates or other forms of credentials.

6. The response must set a MIME Content-Type of "application/fido.trusted-apps+json".

7. The caching related HTTP header fields in the HTTP response (e.g. “Expires”) should be respected when fetching a TrustedFacetList.

8. The server hosting the TrustedFacetList must respond uniformly to all clients. That is, it must not vary the contents of the response body
based on any credential material, including ambient authority such as originating IP address, supplied with the request.

9. If the server returns an HTTP redirect (status code 3xx) the server must also send the HTTP header FIDO-AppID-Redirect-Authorized:
true and the client must verify the presence of such a header before following the redirect. This protects against abuse of open
redirectors within the target domain by unauthorized parties. If this check has passed, restart this algorithm from step 4.

10. A TrustedFacetList may contain an unlimited number of entries, but clients may truncate or decline to process large responses.

11. From among the objects in the trustedFacet array, select the one with the version matching that of the protocol message version. With
"matching" we mean: the highest version that appears in the TrustedFacetList that is smaller or equal to the actual protocol version being
used.

12. The scheme of URLs in ids must identify either an application identity (e.g. using the apk:, ios: or similar scheme) or an https: Web
Origin [RFC6454].

13. Entries in ids using the https:// scheme must contain only scheme, host and port components, with an optional trailing /. Any path, query
string, username/password, or fragment information must be discarded.

14. All Web Origins listed must have host names under the scope of the same least-specific private label in the DNS, using the following
algorithm:

1. Obtain the list of public DNS suffixes from https://publicsuffix.org/list/effective_tld_names.dat (the client may cache such data), or
equivalent functionality as available on the platform.

2. Extract the host portion of the original AppID URL, before following any redirects.

3. The least-specific private label is the portion of the host portion of the AppID URL that matches a most-specific public suffix plus one
additional label to the left (also known as 'effective top-level domain'+1 or eTLD+1).

4. For each Web Origin in the TrustedFacetList, the calculation of the least-specific private label in the DNS must be a case-
insensitive match of that of the AppID URL itself. Entries that do not match must be discarded.

15. If the TrustedFacetList cannot be retrieved and successfully parsed according to these rules, the client must abort processing of the
requested FIDO operation.

16. After processing the trustedFacets entry of the correct version and removing any invalid entries, if the caller's FacetID matches one listed
in ids, the operation is allowed.

3.1.3 TrustedFacet List and Structure

The Trusted Facets JSON resource is a serialized TrustedFacetList hosted at the AppID URL. It consists of a dictionary containing a single
member, trustedFacets which is an array of TrustedFacets dictionaries.

WebIDL

dictionary TrustedFacetList {
 TrustedFacets[] trustedFacets;
};

3.1.3.1 Dictionary TrustedFacetList Members

trustedFacets of type array of TrustedFacets

An array of TrustedFacets.

WebIDL

dictionary TrustedFacets {
 Version version;
 DOMString[] ids;
};

3.1.3.2 Dictionary TrustedFacets Members

version of type Version
The protocol version to which this set of trusted facets applies. See [UAFProtocol] for the definition of the version structure.

ids of type array of DOMString
An array of URLs identifying authorized facets for this AppID.

3.1.4 AppID Example 1

".com" is a public suffix. "https://www.example.com/appID" is provided as an AppID. The body of the resource at this location contains:

EXAMPLE 3

{
 "trustedFacets" : [{
 "version": { "major": 1, "minor" : 0 },
 "ids": [

http://www.whatwg.org/specs/web-apps/current-work/multipage/fetching-resources.html#attr-crossorigin-anonymous
https://publicsuffix.org/list/effective_tld_names.dat

For this policy, "https://www.example.com" and "https://register.example.com" would have access to the keys registered for this AppID, and
"https://user1.example.com" would not.

3.1.5 AppID Example 2

"hosting.example.com" is a public suffix, operated under "example.com" and used to provide hosted cloud services for many companies.
"https://companyA.hosting.example.com/appID" is provided as an AppID. The body of the resource at this location contains:

For this policy, "https://fido.companyA.hosting.example.com" would have access to the keys registered for this AppID, and
"https://register.example.com" and "https://companyB.hosting.example.com" would not as a public-suffix exists between these DNS names and
the AppID's.

3.1.6 Obtaining FacetID of Android Native App

This section is non-normative.

The following code demonstrates how a FIDO Client can obtain and construct the FacetID of a calling Android native application.

 "https://register.example.com", // VALID, shares "example.com" label
 "https://fido.example.com", // VALID, shares "example.com" label
 "http://www.example.com", // DISCARD, scheme is not https:
 "http://www.example-test.com", // DISCARD, "example-test.com" does not match
 "https://www.example.com:444" // VALID, port is not significant
]
 }]
}

EXAMPLE 4

{
 "trustedFacets" : [{
 "version": { "major": 1, "minor" : 0 },
 "ids": [
 "https://register.example.com", // DISCARD, does not share "companyA.hosting.example.com" label
 "https://fido.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
 "https://xyz.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
 "https://companyB.hosting.example.com" // DISCARD, "companyB.hosting.example.com" does not match
]
 }]
}

EXAMPLE 5: AndroidFacetID SHA256

private String getFacetID(Context aContext, int callingUid) {

 String packageNames[] = aContext.getPackageManager().getPackagesForUid(callingUid);

 if (packageNames == null) {
 return null;
 }

 try {
 PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_SIGNATURES);

 byte[] cert = info.signatures[0].toByteArray();
 InputStream input = new ByteArrayInputStream(cert);

 CertificateFactory cf = CertificateFactory.getInstance("X509");
 X509Certificate c = (X509Certificate) cf.generateCertificate(input);

 MessageDigest md = MessageDigest.getInstance("SHA256");

 return "android:apk-key-hash-sha256:" +
 Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);
 }
 catch (PackageManager.NameNotFoundException e) {
 e.printStackTrace();
 }
 catch (CertificateException e) {
 e.printStackTrace();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (CertificateEncodingException e) {
 e.printStackTrace();
 }

 return null;
}

EXAMPLE 6: AndroidFacetID SHA1

private String getFacetID(Context aContext, int callingUid) {

 String packageNames[] = aContext.getPackageManager().getPackagesForUid(callingUid);

 if (packageNames == null) {
 return null;
 }

 try {
 PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_SIGNATURES);

 byte[] cert = info.signatures[0].toByteArray();
 InputStream input = new ByteArrayInputStream(cert);

 CertificateFactory cf = CertificateFactory.getInstance("X509");
 X509Certificate c = (X509Certificate) cf.generateCertificate(input);

 MessageDigest md = MessageDigest.getInstance("SHA1");

 return "android:apk-key-hash:" +
 Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);
 }

3.1.7 Additional Security Considerations

The UAF protocol supports passing FacetID to the FIDO Server and including the FacetID in the computation of the authentication response.

Trusting a web origin facet implicitly trusts all subdomains under the named entity because web user agents do not provide a security barrier
between such origins. So, in AppID Example 1, although not explicitly listed, "https://foobar.register.example.com" would still have effective
access to credentials registered for the AppID "https://www.example.com/appID" because it can effectively act as
"https://register.example.com".

The component implementing the controls described here must reliably identify callers to securely enforce the mechanisms. Platform inter-
process communication mechanisms which allow such identification should be used when available.

It is unlikely that the component implementing the controls described here can verify the integrity and intent of the entries on a
TrustedFacetList. If a trusted facet can be compromised or enlisted as a confused deputy [FIDOGlossary] by a malicious party, it may be
possible to trick a user into completing an authentication ceremony under the control of that malicious party.

3.1.7.1 Wildcards in TrustedFacet identifiers

This section is non-normative.

Wildcards are not supported in TrustedFacet identifiers. This follows the advice of RFC6125 [RFC6125], section 7.2.

FacetIDs are URIs that uniquely identify specific security principals that are trusted to interact with a given registered credential. Wildcards
introduce undesirable ambiguitiy in the defintion of the principal, as there is no consensus syntax for what wildcards mean, how they are
expanded and where they can occur across different applications and protocols in common use. For schemes indicating application identities, it
is not clear that wildcarding is appropriate in any fashion. For Web Origins, it broadly increases the scope of the credential to potentially include
rogue or buggy hosts.

Taken together, these ambiguities might introduce exploitable differences in identity checking behavior among client implementations and
would necessitate overly complex and inefficient identity checking algorithms.

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC6125]
P. Saint-Andre; J. Hodges. Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125). March 2011. URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

A.2 Informative references

[ANDROID]
The Android™ Operating System. URL: http://developer.android.com/

[APK-Signing]
Signing Your Applications. URL: http://developer.android.com/tools/publishing/app-signing.html

[BundleID]
Configuring your Xcode Project for Distribution. URL:
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html

[UAFArchOverview]
S. Machani; R. Philpott; S. Srinivas; J. Kemp; J. Hodges. FIDO UAF Architectural Overview. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html

[iOS]
iOS Dev Center. URL: https://developer.apple.com/devcenter/ios/index.action

 catch (PackageManager.NameNotFoundException e) {
 e.printStackTrace();
 }
 catch (CertificateException e) {
 e.printStackTrace();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (CertificateEncodingException e) {
 e.printStackTrace();
 }

 return null;
}

https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action

FIDO Metadata Statements

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-statement-v2.0-ps-20170927.html

Previous version:
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-metadata-statement-v2.0-rd-20161004.html

Editors:
Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

FIDO authenticators may have many different form factors, characteristics and capabilities. This document defines a
standard means to describe the relevant pieces of information about an authenticator in order to interoperate with it, or to
make risk-based policy decisions about transactions involving a particular authenticator.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this
document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable
document and may be used as reference material or cited from another document. FIDO Alliance's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Conformance

2. Overview
2.1 Scope

2.2 Audience

2.3 Architecture

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-statement-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-metadata-statement-v2.0-rd-20161004.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3. Types
3.1 Authenticator Attestation GUID (AAGUID) typedef

3.2 CodeAccuracyDescriptor dictionary
3.2.1 Dictionary CodeAccuracyDescriptor Members

3.3 BiometricAccuracyDescriptor dictionary
3.3.1 Dictionary BiometricAccuracyDescriptor Members

3.4 PatternAccuracyDescriptor dictionary
3.4.1 Dictionary PatternAccuracyDescriptor Members

3.5 VerificationMethodDescriptor dictionary
3.5.1 Dictionary VerificationMethodDescriptor Members

3.6 verificationMethodANDCombinations typedef

3.7 rgbPaletteEntry dictionary
3.7.1 Dictionary rgbPaletteEntry Members

3.8 DisplayPNGCharacteristicsDescriptor dictionary
3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

3.9 EcdaaTrustAnchor dictionary
3.9.1 Dictionary EcdaaTrustAnchor Members

3.10 ExtensionDescriptor dictionary
3.10.1 Dictionary ExtensionDescriptor Members

4. Metadata Keys
4.1 Dictionary MetadataStatement Members

5. Metadata Statement Format
5.1 UAF Example

5.2 U2F Example

6. Additional Considerations
6.1 Field updates and metadata

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

All diagrams, examples, notes in this specification are non-normative.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be
interpreted as described in [RFC2119].

2. Overview

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members
are marked in the WebIDL definitions found in this document, as required. The keyword required has been
introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which implements
[WebIDL], then you may remove the keyword required from your WebIDL and use other means to ensure those
fields are present.

This section is non-normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety of different
devices in a competitive marketplace. Much of the complexity behind this variety is hidden from Relying Party applications,
but in order to accomplish the goals of FIDO, Relying Parties must have some means of discovering and verifying various
characteristics of authenticators. Relying Parties can learn a subset of verifiable information for authenticators certified by
the FIDO Alliance with an Authenticator Metadata statement. The URL to access that Metadata statement is provided by
the Metadata TOC file accessible through the Metadata Service [FIDOMetadataService].

For definitions of terms, please refer to the FIDO Glossary [FIDOGlossary].

2.1 Scope

This document describes the format of and information contained in Authenticator Metadata statements. For a definitive list
of possible values for the various types of information, refer to the FIDO Registry of Predefined Values [FIDORegistry].

The description of the processes and methods by which authenticator metadata statements are distributed and the
methods how these statements can be verified are described in the Metadata Service Specification
[FIDOMetadataService].

2.2 Audience

The intended audience for this document includes:

FIDO authenticator vendors who wish to produce metadata statements for their products.

FIDO server implementers who need to consume metadata statements to verify characteristics of authenticators and
attestation statements, make proper algorithm choices for protocol messages, create policy statements or tailor
various other modes of operation to authenticator-specific characteristics.

FIDO relying parties who wish to
create custom policy statements about which authenticators they will accept

risk score authenticators based on their characteristics

verify attested authenticator IDs for cross-referencing with
third party metadata

2.3 Architecture

Fig. 1 The FIDO Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the information contained in
the authoritative statement is used in several other places. How a server obtains these metadata statements is described in
[FIDOMetadataService].

The workflow around an authenticator metadata statement is as follows:

1. The authenticator vendor produces a metadata statement describing the characteristics of an authenticator.

2. The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification process. The FIDO
Alliance distributes the metadata as described in [FIDOMetadataService].

3. A FIDO relying party configures its registration policy to allow authenticators matching certain characteristics to be
registered.

4. The FIDO server sends a registration challenge message. This message can contain such policy statement.

5. Depending on the FIDO protocol being used, either the relying party application or the FIDO UAF Client receives the
policy statement as part of the challenge message and processes it. It queries available authenticators for their self-
reported characteristics and (with the user's input) selects an authenticator that matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message contains a reference to
the authenticator model and, optionally, a signature made with the private key corresponding to the public key in the
authenticator's attestation certificate.

7. The FIDO Server looks up the metadata statement for the particular authenticator model. If the metadata statement
lists an attestation certificate(s), it verifies that an attestation signature is present, and made with the private key
corresponding to either (a) one of the certificates listed in this metadata statement or (b) corrsponding to the public
key in a certificate that chains to one of the issuer certificates listed in the authenticator's metadata statement.

8. The FIDO Server next verifies that the authenticator meets the originally supplied registration policy based on its
authoritative metadata statement. This prevents the registration of unexpected authenticator models.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the authenticator,
based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested authenticator model with other metadata databases
published by third parties. Such third-party metadata might, for example, inform the FIDO Server if an authenticator
has achieved certifications relevant to certain markets or industry verticals, or whether it meets application-specific
regulatory requirements.

3. Types

This section is normative.

3.1 Authenticator Attestation GUID (AAGUID) typedef

WebIDL

typedef DOMString AAGUID;

string[36]

Some authenticators have an AAGUID, which is a 128-bit identifier that indicates the type (e.g. make and model) of the
authenticator. The AAGUID must be chosen by the manufacturer to be identical across all substantially identical

authenticators made by that manufacturer, and different (with probability 1-2-128 or greater) from the AAGUIDs of all other
types of authenticators.

The AAGUID is represented as a string (e.g. "7a98c250-6808-11cf-b73b-00aa00b677a7") consisting of 5 hex strings
separated by a dash ("-"), see [RFC4122].

3.2 CodeAccuracyDescriptor dictionary

The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user verification methods.

WebIDL

dictionary CodeAccuracyDescriptor {
 required unsigned short base;
 required unsigned short minLength;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

NOTE

One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral system base (radix) and minLen, instead of the number of potential combinations since
there is sufficient evidence [iPhonePasscodes] [MoreTopWorstPasswords] that users don't select their code evenly
distributed at random. So software might take into account the various probability distributions for different bases.
This essentially means that in practice, passcodes are not as secure as they could be if randomly chosen.

3.2.1 Dictionary CodeAccuracyDescriptor Members

base of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4 digits.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means this
user verification method will be blocked, either permanently or until an alternative user verification method
method succeeded. All alternative user verification methods must be specified appropriately in the Metadata in
userVerificationDetails.

3.3 BiometricAccuracyDescriptor dictionary

The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a biometric user
verification method.

At least one of the values must be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.baDesc must be omitted.

WebIDL

dictionary BiometricAccuracyDescriptor {
 double FAR;
 double FRR;
 double EER;
 double FAAR;
 unsigned short maxReferenceDataSets;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.3.1 Dictionary BiometricAccuracyDescriptor Members

FAR of type double
The false acceptance rate [ISO19795-1] for a single reference data set, i.e. the percentage of non-matching data
sets that are accepted as valid ones. For example a FAR of 0.002% would be encoded as 0.00002.

FRR of type double
The false rejection rate for a single reference data set, i.e. the percentage of presented valid data sets that lead
to a (false) non-acceptance. For example a FRR of 10% would be encoded as 0.1.

NOTE

The False Acceptance Rate (FAR) and False Rejection Rate (FRR) values typically are interdependent via the
Receiver Operator Characteristic (ROC) curve.

The False Artefact Acceptance Rate (FAAR) value reflects the capability of detecting presentation attacks, such as
the detection of rubber finger presentation.

The FAR, FRR, and FAAR values given here must reflect the actual configuration of the authenticators (as opposed
to being theoretical best case values).

NOTE

Typical fingerprint sensor characteristics can be found in Google Android 6.0 Compatibility Definition and Apple iOS
Security Guide.

NOTE

The resulting FAR when all reference data sets are used is maxReferenceDataSets * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

NOTE

https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://www.apple.com/business/docs/iOS_Security_Guide.pdf

EER of type double
The equal error rate for a single reference data set.

FAAR of type double
The false artefact acceptance rate [ISO30107-1], i.e. the percentage of artefacts that are incorrectly accepted by
the system. For example a FAAR of 0.1% would be encoded as 0.001.

maxReferenceDataSets of type unsigned short
Maximum number of alternative reference data sets, e.g. 3 if the user is allowed to enroll 3 different fingers to a
fingerprint based authenticator.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means that
this user verification method will be blocked either permanently or until an alternative user verification method
succeeded. All alternative user verification methods must be specified appropriately in the metadata in
userVerificationDetails.

3.4 PatternAccuracyDescriptor dictionary

The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern is used as the
user verification method.

WebIDL

dictionary PatternAccuracyDescriptor {
 required unsigned long minComplexity;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.4.1 Dictionary PatternAccuracyDescriptor Members

minComplexity of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the right one, i.e.
1/probability in the case of equal distribution.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this method (at least
temporarily). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar mechanism). 0
means this user verification method will be blocked, either permanently or until an alternative user verification
method method succeeded. All alternative user verification methods must be specified appropriately in the
metadata under userVerificationDetails.

3.5 VerificationMethodDescriptor dictionary

A descriptor for a specific base user verification method as implemented by the authenticator.

A base user verification method must be chosen from the list of those described in [FIDORegistry]

The false rejection rate is relevant for the convenience. Lower false acceptance rates mean better
convenience.

NOTE

The false artefact acceptance rate is relevant for the security of the system. Lower false artefact
acceptance rates imply better security.

NOTE

One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern] screen unlock. The
minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN, the minimum allowed for this
mechanism.

NOTE

In reality, several of the methods described above might be combined. For example, a fingerprint based user

The specification of the related AccuracyDescriptor is optional, but recommended.

WebIDL

dictionary VerificationMethodDescriptor {
 required unsigned long userVerification;
 CodeAccuracyDescriptor caDesc;
 BiometricAccuracyDescriptor baDesc;
 PatternAccuracyDescriptor paDesc;
};

3.5.1 Dictionary VerificationMethodDescriptor Members

userVerification of type required unsigned long
a single USER_VERIFY constant (see [FIDORegistry]), not a bit flag combination. This value must be non-zero.

caDesc of type CodeAccuracyDescriptor

May optionally be used in the case of method USER_VERIFY_PASSCODE.

baDesc of type BiometricAccuracyDescriptor

May optionally be used in the case of method USER_VERIFY_FINGERPRINT, USER_VERIFY_VOICEPRINT,
USER_VERIFY_FACEPRINT, USER_VERIFY_EYEPRINT, or USER_VERIFY_HANDPRINT.

paDesc of type PatternAccuracyDescriptor

May optionally be used in case of method USER_VERIFY_PATTERN.

3.6 verificationMethodANDCombinations typedef

WebIDL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations must be non-empty. It is a list containing the base user verification methods which
must be passed as part of a successful user verification.

This list will contain only a single entry if using a single user verification method is sufficient.

If this list contains multiple entries, then all of the listed user verification methods must be passed as part of the user
verification process.

3.7 rgbPaletteEntry dictionary

The rgbPaletteEntry is an RGB three-sample tuple palette entry

WebIDL

dictionary rgbPaletteEntry {
 required unsigned short r;
 required unsigned short g;
 required unsigned short b;
};

3.7.1 Dictionary rgbPaletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.8 DisplayPNGCharacteristicsDescriptor dictionary

The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG [PNG] spec for
IHDR (image header) and PLTE (palette table)

WebIDL

dictionary DisplayPNGCharacteristicsDescriptor {
 required unsigned long width;
 required unsigned long height;
 required octet bitDepth;
 required octet colorType;

verification can be combined with an alternative password.

 required octet compression;
 required octet filter;
 required octet interlace;
 rgbPaletteEntry[] plte;
};

3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

width of type required unsigned long
image width

height of type required unsigned long
image height

bitDepth of type required octet
Bit depth - bits per sample or per palette index.

colorType of type required octet
Color type defines the PNG image type.

compression of type required octet
Compression method used to compress the image data.

filter of type required octet
Filter method is the preprocessing method applied to the image data before compression.

interlace of type required octet
Interlace method is the transmission order of the image data.

plte of type array of rgbPaletteEntry

1 to 256 palette entries

3.9 EcdaaTrustAnchor dictionary

In the case of ECDAA attestation, the ECDAA-Issuer's trust anchor must be specified in this field.

WebIDL

dictionary EcdaaTrustAnchor {
 required DOMString X;
 required DOMString Y;
 required DOMString c;
 required DOMString sx;
 required DOMString sy;
 required DOMString G1Curve;
};

3.9.1 Dictionary EcdaaTrustAnchor Members

X of type required DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2 X = P_2^x. See [FIDOEcdaaAlgorithm] for the
definition of ECPoint2ToB.

Y of type required DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2 Y = P_2^y. See [FIDOEcdaaAlgorithm] for the
definition of ECPoint2ToB.

c of type required DOMString
base64url encoding of the result of BigNumberToB(c). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of c. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sx of type required DOMString
base64url encoding of the result of BigNumberToB(sx). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of sx. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sy of type required DOMString
base64url encoding of the result of BigNumberToB(sy). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of sy. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

G1Curve of type required DOMString
Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256", and "BN_ISOP512"
are supported. See section "Supported Curves for ECDAA" in [FIDOEcdaaAlgorithm] for details.

NOTE

Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly generated by
verifying s, sx, sy. See [FIDOEcdaaAlgorithm] for details.

3.10 ExtensionDescriptor dictionary

This descriptor contains an extension supported by the authenticator.

WebIDL

dictionary ExtensionDescriptor {
 required DOMString id;
 unsigned short tag;
 DOMString data;
 required boolean fail_if_unknown;
};

3.10.1 Dictionary ExtensionDescriptor Members

id of type required DOMString

Identifies the extension.

tag of type unsigned short

The TAG of the extension if this was assigned. TAGs are assigned to extensions if they could appear in an
assertion.

data of type DOMString
Contains arbitrary data further describing the extension and/or data needed to correctly process the extension.

This field may be missing or it may be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (true) when the
extension is to be processed by the FIDO Server, FIDO Client, ASM, or FIDO Authenticator.

A value of false indicates that unknown extensions must be ignored

A value of true indicates that unknown extensions must result in an error.

4. Metadata Keys

This section is normative.

WebIDL

dictionary MetadataStatement {
 DOMString legalHeader;
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 required DOMString description;
 required unsigned short authenticatorVersion;
 DOMString protocolFamily;
 required Version[] upv;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 unsigned short[] authenticationAlgorithms;
 required unsigned short publicKeyAlgAndEncoding;
 unsigned short[] publicKeyAlgAndEncodings;
 required unsigned short[] attestationTypes;
 required VerificationMethodANDCombinations[] userVerificationDetails;
 required unsigned short keyProtection;
 boolean isKeyRestricted;
 boolean isFreshUserVerificationRequired;
 required unsigned short matcherProtection;
 unsigned short cryptoStrength;
 DOMString operatingEnv;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 required DOMString[] attestationRootCertificates;
 EcdaaTrustAnchor[] ecdaaTrustAnchors;
 DOMString icon;
 ExtensionDescriptor supportedExtensions[];
};

4.1 Dictionary MetadataStatement Members

legalHeader of type DOMString
The legalHeader, if present, contains a legal guide for accessing and using metadata, which itself may contain
URL(s) pointing to further information, such as a full Terms and Conditions statement.

aaid of type AAID
The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure. This field must be
set if the authenticator implements FIDO UAF.

aaguid of type AAGUID

The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure. This
field must be set if the authenticator implements FIDO 2.

attestationCertificateKeyIdentifiers of type array of DOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value must be calculated
according to method 1 for computing the keyIdentifier as defined in [RFC5280] section 4.2.1.2. The hex string
must not contain any non-hex characters (e.g. spaces). All hex letters must be lower case. This field must be set
if neither aaid nor aaguid are set. Setting this field implies that the attestation certificate(s) are dedicated to a
single authenticator model.

All attestationCertificateKeyIdentifier values should be unique within the scope of the Metadata Service.

description of type required DOMString
A human-readable short description of the authenticator.

authenticatorVersion of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this metadata
statement.

Adding new StatusReport entries with status UPDATE_AVAILABLE to the metadata TOC object
[FIDOMetadataService] must also change this authenticatorVersion if the update fixes severe security issues,
e.g. the ones reported by preceding StatusReport entries with status code USER_VERIFICATION_BYPASS,
ATTESTATION_KEY_COMPROMISE, USER_KEY_REMOTE_COMPROMISE, USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

It is recommended to assume increased risk if this version is higher (newer) than the firmware version present in
an authenticator. For example, if a StatusReport entry with status USER_VERIFICATION_BYPASS or
USER_KEY_REMOTE_COMPROMISE precedes the UPDATE_AVAILABLE entry, than any firmware version lower (older) than
the one specified in the metadata statement is assumed to be vulnerable.

protocolFamily of type DOMString
The FIDO protocol family. The values "uaf", "u2f", and "fido2" are supported. If this field is missing, the assumed
protocol family is "uaf". Metadata Statements for U2F authenticators must set the value of protocolFamily to "u2f"
and FIDO 2.0 Authenticators implementations must set the value of protocolFamily to "fido2".

upv of type array of required Version
The FIDO unified protocol version(s) (related to the specific protocol family) supported by this authenticator. See
[UAFProtocol] for the definition of the Version structure.

assertionScheme of type required DOMString
The assertion scheme supported by the authenticator. Must be set to one of the enumerated strings defined in
the FIDO UAF Registry of Predefined Values [UAFRegistry] or to "FIDOV2" in the case of the FIDO 2 assertion
scheme.

authenticationAlgorithm of type required unsigned short
The preferred authentication algorithm supported by the authenticator. Must be set to one of the ALG_ constants
defined in the FIDO Registry of Predefined Values [FIDORegistry]. This value must be non-zero.

authenticationAlgorithms of type array of unsigned short

NOTE

FIDO UAF Authenticators support AAID, but they don't support AAGUID.

NOTE

FIDO 2 Authenticators support AAGUID, but they don't support AAID.

NOTE

FIDO U2F Authenticators typically do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

NOTE

This description should help an administrator configuring authenticator policies. This description might
deviate from the description returned by the ASM for that authenticator.

This description should contain the public authenticator trade name and the publicly known vendor name.

The list of authentication algorithms supported by the authenticator. Must be set to the complete list of the
supported ALG_ constants defined in the FIDO Registry of Predefined Values [FIDORegistry] if the authenticator
supports multiple algorithms. Each value must be non-zero.

publicKeyAlgAndEncoding of type required unsigned short
The preferred public key format used by the authenticator during registration operations. Must be set to one of
the ALG_KEY constants defined in the FIDO Registry of Predefined Values [FIDORegistry]. Because this
information is not present in APIs related to authenticator discovery or policy, a FIDO server must be prepared to
accept and process any and all key representations defined for any public key algorithm it supports. This value
must be non-zero.

publicKeyAlgAndEncodings of type array of unsigned short
The list of public key formats supported by the authenticator during registration operations. Must be set to the
complete list of the supported ALG_KEY constants defined in the FIDO Registry of Predefined Values
[FIDORegistry] if the authenticator model supports multiple encodings. Because this information is not present in
APIs related to authenticator discovery or policy, a FIDO server must be prepared to accept and process any and
all key representations defined for any public key algorithm it supports. Each value must be non-zero.

attestationTypes of type array of required unsigned short
The supported attestation type(s). (e.g. TAG_ATTESTATION_BASIC_FULL(0x3E07),
TAG_ATTESTATION_BASIC_SURROGATE(0x3E08)).
See section 4.1 of FIDO UAF Registry [UAFRegistry], section 5.2.1 of FIDO UAF Authenticator Commands
specification [UAFAuthnrCommands], and section 4.1.2 of FIDO UAF Protocol specification [[UAFProtocol] for
details.

userVerificationDetails of type array of required VerificationMethodANDCombinations
A list of alternative VerificationMethodANDCombinations. Each of these entries is one alternative user
verification method. Each of these alternative user verification methods might itself be an "AND" combination of
multiple modalities.

All effectively available alternative user verification methods must be properly specified here. A user verification
method is considered effectively available if this method can be used to either:

enroll new verification reference data to one of the user verification methods

or

unlock the UAuth key directly after successful user verification

keyProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the KEY_PROTECTION constants in the FIDO Registry of
Predefined Values [FIDORegistry].

This value must be non-zero.

NOTE

FIDO UAF Authenticators
For verification purposes, the field SignatureAlgAndEncoding in the FIDO UAF authentication
assertion [UAFAuthnrCommands] should be used to determine the actual signature algorithm and
encoding.

FIDO U2F Authenticators
FIDO U2F only supports one signature algorithm and encoding:
ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW [FIDORegistry].

NOTE

FIDO UAF Authenticators
For verification purposes, the field PublicKeyAlgAndEncoding in the FIDO UAF registration assertion
[UAFAuthnrCommands] should be used to determine the actual encoding of the public key.

FIDO U2F Authenticators
FIDO U2F only supports one public key encoding: ALG_KEY_ECC_X962_RAW [FIDORegistry].

NOTE

Even though these tags are defined in FIDO UAF protocol specifications, the attestation types apply to
authenticators of all protocol families (e.g. UAF, U2F, ...).

NOTE

The keyProtection specified here denotes the effective security of the attestation key and Uauth private
key and the effective trustworthiness of the attested attributes in the “sign assertion”. Effective security

isKeyRestricted of type boolean

This entry is set to true, if the Uauth private key is restricted by the authenticator to only sign valid FIDO
signature assertions.

This entry is set to false, if the authenticator doesn't restrict the Uauth key to only sign valid FIDO signature
assertions. In this case, the calling application could potentially get any hash value signed by the authenticator.

If this field is missing, the assumed value is isKeyRestricted=true

.

isFreshUserVerificationRequired of type boolean

This entry is set to true, if Uauth key usage always requires a fresh user verification.

If this field is missing, the assumed value is isFreshUserVerificationRequired=true.

This entry is set to false, if the Uauth key can be used without requiring a fresh user verification, e.g. without any
additional user interaction, if the user was verified a (potentially configurable) caching time ago.

In the case of isFreshUserVerificationRequired=false, the FIDO server must verify the registration response
and/or authentication response and verify that the (maximum) caching time (sometimes also called
"authTimeout") is acceptable.

This entry solely refers to the user verification. In the case of transaction confirmation, the authenticator must
always ask the user to authorize the specific transaction.

matcherProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the MATCHER_PROTECTION constants in the FIDO Registry of
Predefined Values [FIDORegistry].

This value must be non-zero.

cryptoStrength of type unsigned short
The authenticator's overall claimed cryptographic strength in bits (sometimes also called security strength or
security level). This is the minimum of the cryptographic strength of all involved cryptographic methods (e.g.
RNG, underlying hash, key wrapping algorithm, signing algorithm, attestation algorithm), e.g. see [FIPS180-4],
[FIPS186-4], [FIPS198-1], [SP800-38B], [SP800-38C], [SP800-38D], [SP800-38F], [SP800-90C], [SP800-90ar1],
[FIPS140-2] etc.

If this value is absent, the cryptographic strength is unknown. If the cryptographic strength of one of the involved
cryptographic methods is unknown the overall claimed cryptographic strength is also unknown.

operatingEnv of type DOMString
Description of the particular operating environment that is used for the Authenticator. These are specified in
[FIDORestrictedOperatingEnv].

attachmentHint of type required unsigned long

means that key extraction or injecting malicious attested attributes is only possible if the specified
protection method is compromised. For example, if keyProtection=TEE is stated, it shall be impossible to
extract the attestation key or the Uauth private key or to inject any malicious attested attributes without
breaking the TEE.

NOTE

Note that only in the case of isKeyRestricted=true, the FIDO server can trust a signature counter or
transaction text to have been correctly processed/controlled by the authenticator.

NOTE

Note that in the case of isFreshUserVerificationRequired=false, the calling App could trigger use of the
key without user involvement. In this case it is the responsibility of the App to ask for user consent.

NOTE

If multiple matchers are implemented, then this value must reflect the weakest implementation of all
matchers.

The matcherProtection specified here denotes the effective security of the FIDO authenticator’s user
verification. This means that a false positive user verification implies breach of the stated method. For
example, if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key
when bypassing the user verification without breaking the TEE.

A 32-bit number representing the bit fields defined by the ATTACHMENT_HINT constants in the FIDO Registry of
Predefined Values [FIDORegistry].

isSecondFactorOnly of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some other
authentication method as a first factor (e.g. username+password).

tcDisplay of type required unsigned short
A 16-bit number representing a combination of the bit flags defined by the TRANSACTION_CONFIRMATION_DISPLAY
constants in the FIDO Registry of Predefined Values [FIDORegistry].

This value must be 0, if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString
Supported MIME content type [RFC2049] for the transaction confirmation display, such as text/plain or
image/png.

This value must be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor

A list of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative of supported
image characteristics for displaying a PNG image.

This list must be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero
and tcDisplayContentType is image/png.

attestationRootCertificates of type array of required DOMString
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is a valid trust anchor for this
authenticator model. Multiple certificates might be used for different batches of the same model. The array does
not represent a certificate chain, but only the trust anchor of that chain. A trust anchor can be a root certificate,
an intermediate CA certificate or even the attestation certificate itself.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value. Each element must be dedicated for authenticator attestation.

Either

1. the manufacturer attestation trust anchor

or

2. the trust anchor dedicated to a specific authenticator model

must be specified.

In the case (1), the trust anchor certificate might cover multiple authenticator models. In this case, it must be
possible to uniquely derive the authenticator model from the Attestation Certificate. When using AAID or
AAGUID, this can be achieved by either specifying the AAID or AAGUID in the attestation certificate using the
extension id-fido-gen-ce-aaid { 1 3 6 1 4 1 45724 1 1 1 } or id-fido-gen-ce-aaguid { 1 3 6 1 4 1 45724 1 1 4 } or -
when neither AAID nor AAGUID are defined - by using the attestationCertificateKeyIdentifier method.

In the case (2) this is not required as the trust anchor only covers a single authenticator model.

NOTE

The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set ATTACHMENT_HINT_EXTERNAL but not
ATTACHMENT_HINT_INTERNAL.

NOTE

The tcDisplay specified here denotes the effective security of the authenticator’s transaction confirmation
display. This means that only a breach of the stated method allows an attacker to inject transaction text to
be included in the signature assertion which hasn't been displayed and confirmed by the user.

NOTE

A certificate listed here is a trust anchor. It might be the actual certificate presented by the authenticator,
or it might be an issuing authority certificate from the vendor that the actual certificate in the authenticator
chains to.

In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain are
included in the registration assertion (see [UAFAuthnrCommands]).

When supporting surrogate basic attestation only (see [UAFProtocol], section "Surrogate Basic Attestation"), no
attestation trust anchor is required/used. So this array must be empty in that case.

ecdaaTrustAnchors of type array of EcdaaTrustAnchor

A list of trust anchors used for ECDAA attestation. This entry must be present if and only if attestationType
includes TAG_ATTESTATION_ECDAA. The entries in attestationRootCertificates have no relevance for
ECDAA attestation. Each ecdaaTrustAnchor must be dedicated to a single authenticator model (e.g as identified
by its AAID/AAGUID).

icon of type DOMString
A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

supportedExtensions[] of type ExtensionDescriptor

List of extensions supported by the authenticator.

5. Metadata Statement Format

This section is non-normative.

NORMATIVE

A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary MetadataStatement.

5.1 UAF Example

Example of the metadata statement for an UAF authenticator with:

authenticatorVersion 2.

Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance rate of 0.002% and rate
limiting attempts for 30 seconds after 5 false trials.

Authenticator is embedded with the FIDO User device.

The authentication keys are protected by TEE and are restricted to sign valid FIDO sign assertions only.

The (fingerprint) matcher is implemented in TEE.

The Transaction Confirmation Display is implemented in a TEE.

The Transaction Confirmation Display supports display of "image/png" objects only.

Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color (=Color Type
2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) and no interlacing support
(interlace method=0).

The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.

It supports the "UAFV1TLV" assertion scheme.

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.

It uses the ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).

It only implements the TAG_ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).

It implements UAF protocol version (upv) 1.0 and 1.1.

EXAMPLE 1: MetadataStatement for UAF Authenticator

{
 "aaid": "1234#5678",
 "description": "FIDO Alliance Sample UAF Authenticator",
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 0 },
 { "major": 1, "minor": 1 }
],
 "assertionScheme": "UAFV1TLV",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15879],
 "userVerificationDetails": [
 [{
 "userVerification": 2,
 "baDesc": {
 "FAR": 0.00002,
 "maxRetries": 5,
 "blockSlowdown": 30,
 "maxReferenceDataSets": 5
 }
 }]
],
 "keyProtection": 6,
 "isKeyRestricted": true,
 "matcherProtection": 2,
 "cryptoStrength": 128,
 "operatingEnv": "TEEs based on ARM TrustZone HW",
 "attachmentHint": 1,
 "isSecondFactorOnly": "false",
 "tcDisplay": 5,
 "tcDisplayContentType": "image/png",
 "tcDisplayPNGCharacteristics": [{
 "width": 320,
 "height": 480,

Example of an User Verification Methods entry for an authenticator with:

Fingerprint based user verification method, with:

the ability for the user to enroll up to 5 fingers (reference data sets) with

a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01% (0.0001).

The fingerprint verification will be blocked after 5 unsuccessful attempts.

A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification method. Entering the
PIN will be required to re-activate fingerprint based user verification after it has been blocked.

5.2 U2F Example

Example of the metadata statement for an U2F authenticator with:

authenticatorVersion 2.

Touch based user presence check.

Authenticator is a USB pluggable hardware token.

The authentication keys are protected by a secure element.

The user presence check is implemented in the chip.

The Authentiator is a pure second factor authenticator.

It supports the "U2FV1BIN" assertion scheme.

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.

It uses the ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).

 "bitDepth": 16,
 "colorType": 2,
 "compression": 0,
 "filter": 0,
 "interlace": 0
 }],
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

EXAMPLE 2: User Verification Methods Entry

[
 [{ "userVerification": 2, "baDesc": { "FAR": 0.00002, "maxReferenceDataSets": 5,
 "maxRetries": 5, "blockSlowdown": 0} }],
 [{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } }]
]

It only implements the TAG_ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).

It implements U2F protocol version 1.0 only.

6. Additional Considerations

This section is non-normative.

6.1 Field updates and metadata

Metadata statements are intended to be stable once they have been published. When authenticators are updated in the
field, such updates are expected to improve the authenticator security (for example, improve FRR or FAR). The
authenticatorVersion must be updated if firmware updates fixing severe security issues (e.g. as reported previously) are
available.

EXAMPLE 3: MetadataStatement for U2F Authenticator

{
 "description": "FIDO Alliance Sample U2F Authenticator",
 "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
 "protocolFamily": "u2f",
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 0 }
],
 "assertionScheme": "U2FV1BIN",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15879],
 "userVerificationDetails": [
 [{ "userVerification": 1 }]
],
 "keyProtection": 10,
 "matcherProtection": 4,
 "cryptoStrength": 128,
 "operatingEnv": "Secure Element (SE)",
 "attachmentHint": 2,
 "isSecondFactorOnly": "true",
 "tcDisplay": 0,
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

NOTE

The metadata statement is assumed to relate to all authenticators having the same AAID.

NORMATIVE

Significant changes in authenticator functionality are not anticipated in firmware updates. For example, if an
authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a user verification
method, the vendor must assign a new AAID to this authenticator.

NORMATIVE

A single authenticator implementation could report itself as two "virtual" authenticators using different AAIDs. Such
implementations must properly (i.e. according to the security characteristics claimed in the metadata) protect UAuth keys
and other sensitive data from the other "virtual" authenticator - just as a normal authenticator would do.

A. References

A.1 Normative references

[FIDORestrictedOperatingEnv]
Laurence Lundblade; Meagan Karlsson. FIDO Authenticator Allowed Restricted Operating Environments List. August
2016. Draft. URL: https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-
allowed-restricted-operating-environments-list-v1.1-fd-20171108.html

[ISO19795-1]
ISO/IEC JTC 1/SC 37 Information Technology - Biometric peformance testing and reporting - Part 1: Principles and
framework. URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447

[ISO30107-1]
ISO/IEC JTC 1/SC 37 Information Technology - Biometrics - Presentation attack detection - Part 1: Framework. URL:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227

[RFC2049]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and
Examples (RFC 2049). November 1996. URL: http://www.ietf.org/rfc/rfc2049.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[RFC4122]
P. Leach. A Universally Unique IDentifier (UUID) URN Namespace. July 2005. URL: https://tools.ietf.org/html/rfc4122

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0.
Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-
20171128.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/'

A.2 Informative references

[AndroidUnlockPattern]
Android Unlock Pattern Security Analysis. Published. URL: http://www.sinustrom.info/2012/05/21/android-unlock-
pattern-security-analysis/

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-
20170927.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html

[FIDOKeyAttestation]
FIDO 2.0: Key attestation format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-
ps-20150904.html

[FIDOMetadataService]

NOTE

The FIDO Server is recommended to assume increased risk if the authenticatorVersion specified in the metadata
statement is newer (higher) than the one present in the authenticator.

NOTE

Authentication keys (UAuth.pub) registered for one AAID cannot be used by authenticators reporting a different AAID
- even when running on the same hardware (see section "Authentication Response Processing Rules for FIDO
Server" in [UAFProtocol]).

https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-allowed-restricted-operating-environments-list-v1.1-fd-20171108.html
https://fidoalliance.org/specs/fido-security-requirements-v1.1-fd-20171108/fido-authenticator-allowed-restricted-operating-environments-list-v1.1-fd-20171108.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
http://heycam.github.io/webidl/'
http://heycam.github.io/webidl/'
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html

R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-registry-v2.0-ps-20170927.html

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). March 2012. URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-
180-4.pdf

[FIPS186-4]
FIPS PUB 186-4: Digital Signature Standard (DSS). July 2013. URL:
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[FIPS198-1]
FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC). July 2008. URL:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
http://www.itu.int/rec/T-REC-X.690-200811-I/en

[MoreTopWorstPasswords]
Mark Burnett. 10000 Top Passwords. URL: https://xato.net/passwords/more-top-worst-passwords/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C
Recommendation. URL: https://www.w3.org/TR/PNG/

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[SP800-38B]
M. Dworkin. NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. May 2005. URL: http://dx.doi.org/10.6028/NIST.SP.800-38B

[SP800-38C]
M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. July 2007. URL: http://csrc.nist.gov/publications/nistpubs/800-
38C/SP800-38C_updated-July20_2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. November 2007 URL: https://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf

[SP800-38F]
M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-90C]
Elaine Barker; John Kelsey. NIST Special Publication 800-90C: Recommendation for Random Bit Generator (RBG)
Constructions. August 2012. URL: http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf

[SP800-90ar1]
Elaine Barker; John Kelsey. NIST Special Publication 800-90a: Recommendation for Random Number Generation
Using Deterministic Random Bit Generators. August 2012. URL: http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-
20171128.html

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

[iPhonePasscodes]
Daniel Amitay. Most Common iPhone Passcodes. URL: http://danielamitay.com/blog/2011/6/13/most-common-
iphone-passcodes

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-registry-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-registry-v2.0-ps-20170927.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

FIDO Metadata Service

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html

Previous version:
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-metadata-service-v2.0-rd-20161004.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be
available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

The FIDO Authenticator Metadata Specification defines so-called "Authenticator Metadata" statements. The
metadata statements contain the "Trust Anchor" required to validate the attestation object, and they also describe
several other important characteristics of the authenticator.

The metadata service described in this document defines a baseline method for relying parties to access the latest
metadata statements.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found
in the FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments
regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property
rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors
to the Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable
document and may be used as reference material or cited from another document. FIDO Alliance's role in making
the Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents

1. Notation

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-metadata-service-v2.0-rd-20161004.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

1.1 Key Words

2. Overview
2.1 Scope

2.2 Detailed Architecture

3. Metadata Service Details
3.1 Metadata TOC Format

3.1.1 Metadata TOC Payload Entry dictionary
3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

3.1.2 StatusReport dictionary
3.1.2.1 Dictionary StatusReport Members

3.1.3 AuthenticatorStatus enum

3.1.4 RogueListEntry dictionary
3.1.4.1 Dictionary RogueListEntry Members

3.1.5 Metadata TOC Payload dictionary
3.1.5.1 Dictionary MetadataTOCPayload Members

3.1.6 Metadata TOC
3.1.6.1 Examples

3.1.7 Metadata TOC object processing rules

4. Considerations

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with
URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

[FIDOMetadataStatement] defines authenticator metadata statements.

These metadata statements contain the trust anchor required to verify the attestation object (more specifically the

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this document, as required. The keyword required
has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which
implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means
to ensure those fields are present.

KeyRegistrationData object), and they also describe several other important characteristics of the authenticator,
including supported authentication and registration assertion schemes, and key protection flags.

These characteristics can be used when defining policies about which authenticators are acceptable for registration
or authentication.

The metadata service described in this document defines a baseline method for relying parties to access the latest
metadata statements.

Fig. 1 FIDO Metadata Service Architecture Overview

2.1 Scope

This document describes the FIDO Metadata Service architecture in detail and it defines the structure and interface
to access this service. It also defines the flow of the metadata related messages and presents the rationale behind
the design choices.

2.2 Detailed Architecture

The metadata "table-of-contents" (TOC) file contains a list of metadata statements related to the authenticators
known to the FIDO Alliance (FIDO Authenticators).

The FIDO Server downloads the metadata TOC file from a well-known FIDO URL and caches it locally.

The FIDO Server verifies the integrity and authenticity of this metadata TOC file using the digital signature. It then
iterates through the individual entries and loads the metadata statements related to authenticator AAIDs relevant to
the relying party.

Individual metadata statements will be downloaded from the URL specified in the entry of the metadata TOC file,
and may be cached by the FIDO Server as required.

The integrity of the metadata statements will be verified by the FIDO Server using the hash value included in the
related entry of the metadata TOC file.

Fig. 2 FIDO Metadata Service Architecture

3. Metadata Service Details

This section is normative.

The relying party could also obtain metadata directly from authenticator vendors or other trusted sources.

3.1 Metadata TOC Format

NOTE

The single arrow indicates the direction of the network connection, the double arrow indicates the direction of
the data flow.

NOTE

The metadata TOC file is accessible at a well-known URL published by the FIDO Alliance.

NOTE

The relying party decides how frequently the metadata service is accessed to check for metadata TOC
updates.

NOTE

The relying party can decide whether it wants to use the metadata service and whether or not it wants to
accept certain authenticators for registration or authentication.

NOTE

The metadata service makes the metadata TOC object (see Metadata TOC) accessible to FIDO Servers.

This object is a "table-of-contents" for metadata, as it includes the AAID, the download URL and the hash
value of the individual metadata statements. The TOC object contains one signature.

3.1.1 Metadata TOC Payload Entry dictionary

Represents the MetadataTOCPayloadEntry

WebIDL

dictionary MetadataTOCPayloadEntry {
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 DOMString hash;
 DOMString url;
 required StatusReport[] statusReports;
 required DOMString timeOfLastStatusChange;
 DOMString rogueListURL;
 DOMString rogueListHash;
};

3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

aaid of type AAID
The AAID of the authenticator this metadata TOC payload entry relates to. See [UAFProtocol] for the
definition of the AAID structure. This field must be set if the authenticator implements FIDO UAF.

aaguid of type AAGUID
The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure.
This field must be set if the authenticator implements FIDO 2.

attestationCertificateKeyIdentifiers of type array of DOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value must be
calculated according to method 1 for computing the keyIdentifier as defined in [RFC5280] section 4.2.1.2.
The hex string must not contain any non-hex characters (e.g. spaces). All hex letters must be lower case.
This field must be set if neither aaid nor aaguid are set. Setting this field implies that the attestation
certificate(s) are dedicated to a single authenticator model.

hash of type DOMString
base64url(string[1..512])

The hash value computed over the base64url encoding of the UTF-8 representation of the JSON encoded
metadata statement available at url and as defined in [FIDOMetadataStatement]. The hash algorithm
related to the signature algorithm specified in the JWTHeader (see Metadata TOC) must be used.

If this field is missing, the metadata statement has not been published.

url of type DOMString
Uniform resource locator (URL) of the encoded metadata statement for this authenticator model (identified
by its AAID, AAGUID or attestationCertificateKeyIdentifier). This URL must point to the base64url
encoding of the UTF-8 representation of the JSON encoded metadata statement as defined in
[FIDOMetadataStatement].

NOTE

FIDO UAF authenticators support AAID, but they don't support AAGUID.

NOTE

FIDO 2 authenticators support AAGUID, but they don't support AAID.

NOTE

FIDO U2F authenticators do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

NOTE

This method of base64url encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

If this field is missing, the metadata statement has not been published.

encodedMetadataStatement = base64url(utf8(JSONMetadataStatement))

statusReports of type array of required StatusReport
An array of status reports applicable to this authenticator.

timeOfLastStatusChange of type required DOMString
ISO-8601 formatted date since when the status report array was set to the current value.

rogueListURL of type DOMString
URL of a list of rogue (i.e. untrusted) individual authenticators.

rogueListHash of type DOMString
base64url(string[1..512])

The hash value computed over the Base64url encoding of the UTF-8 representation of the JSON encoded
rogueList available at rogueListURL (with type rogueListEntry[]). The hash algorithm related to the
signature algorithm specified in the JWTHeader (see Metadata TOC) must be used.

This hash value must be present and non-empty whenever rogueListURL is present.

3.1.2 StatusReport dictionary

NOTE

This method of the base64url encoding the UTF-8 representation is also used by JWT [JWT] to
avoid encoding ambiguities.

NOTE

This method of base64url-encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

EXAMPLE 1: UAF Metadata TOC Payload

{ "no": 1234, "nextUpdate": "2014-03-31",
 "entries": [
 { "aaid": "1234#5678",
 "hash": "90da8da6de23248abb34da0d4861f4b30a793e198a8d5baa7f98f260db71acd4",
 "url": "https://fidoalliance.org/metadata/1234%x23abcd",
 "rogueListHash": "b5079cf40fd7ed174c645cc04df1e72b7f1229590585d16df62dd20b9541c6b5",
 "rogueListURL": "https://fidoalliance.org/metadata/1234%x23abcd.rl",
 "statusReports": [
 { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-04"}
],
 "timeOfLastStatusChange": "2014-01-04"
 },
 { "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
 "hash": "785d16df640fd7b50ed174cb5645cc0f1e72b7f19cf22959052dd20b9541c64d",
 "url": "https://authnr-vendor-a.com/metadata/9876%x234321",
 "statusReports": [
 { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-07"},
 { status: "UPDATE_AVAILABLE", effectiveDate: "2014-02-19",
 url: "https://example.com/update1234" }
],
 "timeOfLastStatusChange": "2014-02-19"
 }
]
}

NOTE

The character # is a reserved character and not allowed in URLs [RFC3986]. As a consequence it has been
replaced by its hex value %x23.

The authenticator vendors can decide to let the metadata service publish its metadata statements or to
publish metadata statements themselves. Authenticator vendors can restrict access to the metadata
statements they publish themselves.

NOTE

Contains an AuthenticatorStatus and additional data associated with it, if any.

The latest StatusReport entry must reflect the "current" status. For example, if the latest entry has status
USER_VERIFICATION_BYPASS, then it is recommended assuming an increased risk associated with all authenticators of
this AAID; if the latest entry has status UPDATE_AVAILABLE, then the update is intended to address at least all previous
issues reported in this StatusReport dictionary.

WebIDL

dictionary StatusReport {
 required AuthenticatorStatus status;
 DOMString effectiveDate;
 DOMString certificate;
 DOMString url;
 DOMString certificationDescriptor;
 DOMString certificateNumber;
 DOMString certificationPolicyVersion;
 DOMString certificationRequirementsVersion;
};

3.1.2.1 Dictionary StatusReport Members

status of type required AuthenticatorStatus
Status of the authenticator. Additional fields may be set depending on this value.

effectiveDate of type DOMString
ISO-8601 formatted date since when the status code was set, if applicable. If no date is given, the status
is assumed to be effective while present.

certificate of type DOMString
Base64-encoded [RFC4648] (not base64url!) DER [ITU-X690-2008] PKIX certificate value related to the
current status, if applicable.

url of type DOMString
HTTPS URL where additional information may be found related to the current status, if applicable.

certificationDescriptor of type DOMString
Describes the externally visible aspects of the Authenticator Certification evaluation.

certificateNumber of type DOMString
The unique identifier for the issued Certification

certificationPolicyVersion of type DOMString
The version of the Authenticator Certification Policy the implementation is Certified to, e.g. "1.0.0".

certificationRequirementsVersion of type DOMString
The version of the Authenticator Security Requirements the implementation is Certified to, e.g. "1.0.0".

3.1.3 AuthenticatorStatus enum

This enumeration describes the status of an authenticator model as identified by its AAID and potentially some
additional information (such as a specific attestation key).

WebIDL

enum AuthenticatorStatus {
 "NOT_FIDO_CERTIFIED",
 "FIDO_CERTIFIED",
 "USER_VERIFICATION_BYPASS",

New StatusReport entries will be added to report known issues present in firmware updates.

NOTE

As an example, this could be an Attestation Root Certificate (see [FIDOMetadataStatement]) related
to a set of compromised authenticators (ATTESTATION_KEY_COMPROMISE).

NOTE

For example a link to a web page describing an available firmware update in the case of status
UPDATE_AVAILABLE, or a link to a description of an identified issue in the case of status
USER_VERIFICATION_BYPASS.

 "ATTESTATION_KEY_COMPROMISE",
 "USER_KEY_REMOTE_COMPROMISE",
 "USER_KEY_PHYSICAL_COMPROMISE",
 "UPDATE_AVAILABLE",
 "REVOKED",
 "SELF_ASSERTION_SUBMITTED",
 "FIDO_CERTIFIED_L1",
 "FIDO_CERTIFIED_L2",
 "FIDO_CERTIFIED_L3",
 "FIDO_CERTIFIED_L4",
 "FIDO_CERTIFIED_L5"
};

Enumeration description

NOT_FIDO_CERTIFIED This authenticator is not FIDO certified.

FIDO_CERTIFIED
This authenticator has passed FIDO functional certification. This certification
scheme is phased out and will be replaced by FIDO_CERTIFIED_L1.

USER_VERIFICATION_BYPASS
Indicates that malware is able to bypass the user verification. This means that
the authenticator could be used without the user's consent and potentially even
without the user's knowledge.

ATTESTATION_KEY_COMPROMISE
Indicates that an attestation key for this authenticator is known to be
compromised. Additional data should be supplied, including the key identifier
and the date of compromise, if known.

USER_KEY_REMOTE_COMPROMISE

This authenticator has identified weaknesses that allow registered keys to be
compromised and should not be trusted. This would include both, e.g. weak
entropy that causes predictable keys to be generated or side channels that
allow keys or signatures to be forged, guessed or extracted.

USER_KEY_PHYSICAL_COMPROMISE
This authenticator has known weaknesses in its key protection mechanism(s)
that allow user keys to be extracted by an adversary in physical possession of
the device.

UPDATE_AVAILABLE

A software or firmware update is available for the device. Additional data should
be supplied including a URL where users can obtain an update and the date the
update was published.

When this code is used, then the field authenticatorVersion in the metadata
Statement [FIDOMetadataStatement] must be updated, if the update fixes
severe security issues, e.g. the ones reported by preceding StatusReport
entries with status code USER_VERIFICATION_BYPASS,
ATTESTATION_KEY_COMPROMISE, USER_KEY_REMOTE_COMPROMISE,
USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

REVOKED
The FIDO Alliance has determined that this authenticator should not be trusted
for any reason, for example if it is known to be a fraudulent product or contain a
deliberate backdoor.

SELF_ASSERTION_SUBMITTED
The authenticator vendor has completed and submitted the self-certification
checklist to the FIDO Alliance. If this completed checklist is publicly available,
the URL will be specified in StatusReport.url.

FIDO_CERTIFIED_L1
The authenticator has passed FIDO Authenticator certification at level 1. This
level is the more strict successor of FIDO_CERTIFIED.

FIDO_CERTIFIED_L2
The authenticator has passed FIDO Authenticator certification at level 2. This
level is more strict than level 1.

FIDO_CERTIFIED_L3
The authenticator has passed FIDO Authenticator certification at level 3. This
level is more strict than level 2.

FIDO_CERTIFIED_L4
The authenticator has passed FIDO Authenticator certification at level 4. This
level is more strict than level 3.

FIDO_CERTIFIED_L5
The authenticator has passed FIDO Authenticator certification at level 5. This
level is more strict than level 4.

More values might be added in the future. FIDO Servers must silently ignore all unknown AuthenticatorStatus
values.

3.1.4 RogueListEntry dictionary

NOTE

Relying parties might want to inform users about available firmware
updates.

WebIDL

dictionary RogueListEntry {
 required DOMString sk;
 required DOMString date;
};

3.1.4.1 Dictionary RogueListEntry Members

sk of type required DOMString
Base64url encoding of the rogue authenticator's secret key (sk value, see [FIDOEcdaaAlgorithm], section
ECDAA Attestation).

date of type required DOMString
ISO-8601 formatted date since when this entry is effective.

3.1.5 Metadata TOC Payload dictionary

Represents the MetadataTOCPayload

WebIDL

dictionary MetadataTOCPayload {
 DOMString legalHeader;
 required Number no;
 required DOMString nextUpdate;
 required MetadataTOCPayloadEntry[] entries;
};

3.1.5.1 Dictionary MetadataTOCPayload Members

legalHeader of type DOMString
The legalHeader, if present, contains a legal guide for accessing and using metadata, which itself may
contain URL(s) pointing to further information, such as a full Terms and Conditions statement.

no of type required Number
The serial number of this UAF Metadata TOC Payload. Serial numbers must be consecutive and strictly
monotonic, i.e. the successor TOC will have a no value exactly incremented by one.

nextUpdate of type required DOMString
ISO-8601 formatted date when the next update will be provided at latest.

entries of type array of required MetadataTOCPayloadEntry
List of zero or more MetadataTOCPayloadEntry objects.

3.1.6 Metadata TOC

NOTE

Contains a list of individual authenticators known to be rogue.

New RogueListEntry entries will be added to report new individual authenticators known to be rogue.

Old RogueListEntry entries will be removed if the individual authenticator is known to not be rogue any longer.

NOTE

In order to revoke an individual authenticator, its secret key (sk) must be known.

EXAMPLE 2: RogueListEntry[] example

[
 { "sk": "30efa86aa6de25249acb35da0d4861f4b30a793e198a8d5baa7e96f240da51f3",
 "date": "2016-06-07"},
 { "sk": "93de8da6de23248abb34da0d4861f4b30a793e153a8d5bb27f98f260db71acd4",
 "date": "2016-06-09"},
]

The metadata table of contents (TOC) is a JSON Web Token (see [JWT] and [JWS]).

It consists of three elements:

The base64url encoding, without padding, of the UTF-8 encoded JWT Header (see example below),

the base64url encoding, without padding, of the UTF-8 encoded UAF Metadata TOC Payload (see example at
the beginning of section Metadata TOC Format),

and the base64url-encoded, also without padding, JWS Signature [JWS] computed over the to-be-signed
payload using the Metadata TOC signing key, i.e.

tbsPayload = EncodedJWTHeader | "." | EncodedMetadataTOCPayload

All three elements of the TOC are concatenated by a period ("."):

MetadataTOC = EncodedJWTHeader | "." | EncodedMetadataTOCPayload | "." | EncodedJWSSignature

The hash algorithm related to the signing algorithm specified in the JWT Header (e.g. SHA256 in the case of
"ES256") must also be used to compute the hash of the metadata statements (see section Metadata TOC Payload
Entry Dictionary).

3.1.6.1 Examples

This section is non-normative.

EXAMPLE 3: Encoded Metadata Statement

eyAiQUFJRCI6ICIxMjM0IzU2NzgiLA0KICAiQXR0ZXN0YXRpb25Sb290Q2VydGlmaWNhdGUiOiAi
TUlJQ1BUQ0NBZU9nQXdJQkFnSUpBT3VleHZVM095MndNQW9HQ0NxR1NNNDlCQU1DTUhzeElEQWVC
Z05WQkFNTQ0KRjFOaGJYQnNaU0JCZEhSbGMzUmhkR2x2YmlCU2IyOTBNUll3RkFZRFZRUUtEQTFH
U1VSUElFRnNiR2xoYm1ObA0KTVJFd0R3WURWUVFMREFoVlFVWWdWRmRITERFU01CQUdBMVVFQnd3
SlVHRnNieUJCYkhSdk1Rc3dDUVlEVlFRSQ0KREFKRFFURUxNQWtHQTFVRUJoTUNWVk13SGhjTk1U
UXdOakU0TVRNek16TXlXaGNOTkRFeE1UQXpNVE16TXpNeQ0KV2pCN01TQXdIZ1lEVlFRRERCZFRZ
VzF3YkdVZ1FYUjBaWE4wWVhScGIyNGdVbTl2ZERFV01CUUdBMVVFQ2d3Tg0KUmtsRVR5QkJiR3hw
WVc1alpURVJNQThHQTFVRUN3d0lWVUZHSUZSWFJ5d3hFakFRQmdOVkJBY01DVkJoYkc4Zw0KUVd4
MGJ6RUxNQWtHQTFVRUNBd0NRMEV4Q3pBSkJnTlZCQVlUQWxWVE1Ga3dFd1lIS29aSXpqMENBUVlJ
S29aSQ0KemowREFRY0RRZ0FFSDhodjJEMEhYYTU5L0JtcFE3UlplaEwvRk1HekZkMVFCZzl2QVVw
T1ozYWpudVE5NFBSNw0KYU16SDMzblVTQnI4ZkhZRHJxT0JiNThweEdxSEpSeVgvNk5RTUU0d0hR
WURWUjBPQkJZRUZQb0hBM0NMaHhGYg0KQzBJdDd6RTR3OGhrNUVKL01COEdBMVVkSXdRWU1CYUFG
UG9IQTNDTGh4RmJDMEl0N3pFNHc4aGs1RUovTUF3Rw0KQTFVZEV3UUZNQU1CQWY4d0NnWUlLb1pJ
emowRUF3SURTQUF3UlFJaEFKMDZRU1h0OWloSWJFS1lLSWpzUGtyaQ0KVmRMSWd0ZnNiRFN1N0Vy
SmZ6cjRBaUJxb1lDWmYwK3pJNTVhUWVBSGpJekE5WG02M3JydUF4Qlo5cHM5ejJYTg0KbFE9PSIs
DQogICJEZXNjcmlwdGlvbiI6ICJGSURPIEFsbGlhbmNlIFNhbXBsZSBVQUYgQXV0aGVudGljYXRv
ciIsDQogICJVc2VyVmVyaWZpY2F0aW9uTWV0aG9kcyI6IDIsDQogICJWYWxpZEF0dGFjaG1lbnRU
eXBlcyI6IDEsDQogICJLZXlQcm90ZWN0aW9uIjogNiwNCiAgIk1hdGNoZXJQcm90ZWN0aW9uIjog
MiwNCiAgIlNlY3VyZURpc3BsYXkiOiA0LA0KICAiU2VjdXJlRGlzcGxheUNvbnRlbnRUeXBlcyI6
IFsiaW1hZ2UvcG5nIl0sDQogICJTZWN1cmVEaXNwbGF5UE5HQ2hhcmFjdGVyaXN0aWNzIjogW1sw
LDAsMSw2NCwwLDAsMSwyMjQsMTYsMiwwLDAsMF1dLA0KICAiaXNTZWNvbmRGYWN0b3JPbmx5Ijog
ImZhbHNlIiwNCiAgIkljb24iOiAiZGF0YTppbWFnZS9wbmc7YmFzZTY0LGlWQk9SdzBLR2dvQUFB
QU5TVWhFVWdBQUFFOEFBQUF2Q0FZQUFBQ2l3SmZjQUFBQUFYTlNSMElBcnM0YzZRQUFBQVJuUVUx
QkFBQ3gNCmp3djhZUVVBQUFBSmNFaFpjd0FBRHNNQUFBN0RBY2R2cUdRQUFBYWhTVVJCVkdoRDda
cjVieFJsR01mOUt6VEI4QU0vWUVoRTJXN3ANClFaY1dLS0JjbFNwSEFUbEVMQVJFN2tORUNDQTNG
a1dLMENLS1NDRklzS0JjZ1ZDRFdHTkVTZEFZaWR3Z2dnSkJpUmlNaEZjLzR3eTgNCjg4NHp1OU5k
bG5HVGZaSlAybjNuTysrODg5MzNmdmVCQngrUHFDekprVFV2QmJMbXBVRFd2QlRJbXBjQ1NadlhM
Q2RYOVIwNVNrMTkNCmJiNWF0ZjU5OWZHKy9lckE1NDFxNDdhUDFMTFZhOVNJeVZOVWk4SWk4ZDVr
R1RzaTMwTkZ2N2FpOW43UVpQTXdiZHlzMmVyVTJYTXENClVkeTgrWmNhTm1HaW1FOHlYTjNSVWQz
YTE4bkYwZlVsb3ZaKzBDVHpXcGQyVmorZU9tMWJFeXk2RHg0aTVwVU1HV3ZlbzUwNnEyMjcNCmR0
dVdCSXVmZnI2b1dwVjBGUE5MaG93MTc1MU5tMjFMdlBIM3JWdFdqZno2NkxmcWw4dFg3RlJsOVlG
U1hzbVNzZWI5Y2VPR2JZazcNCk1OVWNHUGc4WnNiTWU5cmZRVWFhVi9KTVg5c3FkekRDU3ZwMGta
SG1UWmc5eDdiTEhjTW5UaGIxNmVKK21WZlFxOHlhVVpRTkc2NGkNClhaKzAva3E2dU9aRk8wUXRh
dGRXS2ZYblJROTlCajkxUjVPSUZuazU0ak4wbWtVaXFsTzNYRFcrTWwrOThtS0I2dFc3cldwWmNQ
YysNCjB6ZzR0THJZbFVjODZFNmVHRGpJTXViVnBjdXNlYXJmZ0lZR1JrNmJyaFpWci9KY0h6b29M
NzU1MGplZExFeG9wV2NBcGkyWlVxaHUNCjdKTHZyVnNRVTgxemt6T1BlZW1NUll2VnVRc1g3UGJp
RFFZNUp2Wm9uZnRLKzFWWThIOXV0eDUzMGgwb2Iram1SWXFqNm91YVl2RWUNCm5XL1dsWWpwOGN3
Yk1tNjgydFB3cVcxUjR0ai8yU0gxM0lSSllsNG1vWnZYcGlTcURyN2RYdFFIeGEvUEszLytCV3NL
MWRUZ0h1NlYNCjh0UUozYndGa3dwRnJVT1E1MHMxcjNsZXZtOHpaY3ExNytCQmF3N0s4bEVLNXF6
a1llYXJrOUE4cDdQM0d6REsrbmQzRFFvdys2VUMNCjhTVk44Mml1djM4aW03TnRhWHRWMUNWcTZS
Z3c0cGtzbWJkaTNidTJEZTdZZmFCQnhjcWZ2cVByVWpGUU5UUTIybGZkVVZWVDY4clQNCkpLRjVE
blNtVWpnZHFnNG1TUzlwbXNmREpSM0c2VG9IMGlXOWFWN0xXTEhZWEtsbFREdDBMVEF0a1lJYWFt
cDFRalZ2Kyt1eUdVeFYNCmRKMEROVlhTbStiMXFSeHBsODRkZGZYMUxwMU8vZDY5dHNvZDB2czVo
R3JlOXh1OG8rZnBMUjFjR2hOVEQ2WjU3QzlLTVdYZWZKZE8NClo5NGJiOW9xZDFST25TN3FJVFR6
SGltTXFpdmJPM2cwRGRWeWszV1FCaEJ6dEszNVlLTmRPbmM4TzNhY1M2ZkRaRmdLYVhMc0VKcDUN
CnJkcmxpQnFwODljSmNzL203VHZzMHJrakdmTjRiMGtQb1puM1VKdUlPcm5aMjJ5UDFmbXZVeCtP
NWdTcWViVjFtK3pTdVlOVmhxN1QNCldiRGlMVnZsanBsTGxvcDZDTFhQKzJxdHZHTElMLzF2aW1J
U2RNQmd6U29GWnl1NlRxZCtqenhnc1BhVjlCQ3FlZS9OallrNnY2bEsNCjljd2lVYy9TVHRmMUhE
cE0zYjU5Mnk3aDNUaHg1b3pLNjlITHBZV3VBd2FxUzVjdjI2cTdjZWI4ZWZWWWFSZVAzaUZVOHpq
MWtuU3cNClpYSE1tbkNqWTBPZ2FsbzdVUWZTQ00zcVFRcjJIL1hGUDdzc1h4NDVZbDkxQnllQ2Vw
NG1vWm9IKzFmRzN4RDR0VDd4OGt3eWo4bncNCmI5ZXYyNlYwQjZkKzdINHpLdnVkQUg1MzdGanF5
ek9IZEpuSEV1em1YcS9XanhPYnZOTWJ2N25oeXdzWDJhVnNXdEM4KzQ4YUxlYXANCkU3cDV3S1pp
MEEyQVFSVjVudlI0RSt1SmMrYjYxa0FwcUlueEJnbWQvNFY1UVAvbXQxOEhEQzdzUkhmdG1ldTVs
bWhWMHJuL0FMWDINCjMyYnFkNEJGbkR4N1ZpMWNXUzJ1ZmYwSWJCNDdxZXh4bVVqOVF1dFlqdXBk
M3RZRDZhYldCQk1yaCthcE5iT0tyTkYxK3VnQ2E0cmkNClhHZndNUFB0VmlhdmhVM1lNT0FBbnVV
Yi9SMDdMMHlPU2VPYWRFODhBcHNYRkdmZjMweW5obEpnTTUxQ1U2dk45RXpnbnB2SEJGVXkNCmlW
cmFlUGl3SjUzREY1WlRabm9tRU5nODVrTlVkMm9KaTJXcHI0T21ta2ZONHg0ekhmaVZGYzhEdjhO
enVoTnFPaWRpbEd2QTZER3UNCmVad083OEFBUW42Y2lFazYrcnc1VmN2anZxTkRZUE9vSVV3YUtT
aHJ4QXVYTGxrSDRhWXVHZk1ZRGMxMFdGNVRhMzFoUEpPZmNVaHINClUvSmxJTmk2YzZlbFJZZEJw
bzYrK1lmang2MWxHTmZSbTRNRDVySjFqM0ZvR0huakRTQk5hcllVZ01MeU1zektwYjd0WHBvSGZQ
czgNCmgzV3AxTHpOZk5rNTRYeEMxd0RHVW1ZelhZZWZoNnovY0t0Vm00RUJ4YTlWUUdEellyM0xy

In order to produce the tbsPayload, we first need the base64url-encoded (without padding) JWT Header:

then we have to append a period (".") and the base64url encoding of the EncodedMetadataTOCPayload (taken from the
example in section Metadata TOC Format):

and finally we have to append another period (".") followed by the base64url-encoded signature.

The signature in the example above was computed with the following ECDSA key

3.1.7 Metadata TOC object processing rules

VU1SakhFS2trN3phRktZUUEyaEdRVTENCnorODVORldwWERya3ozdngxMEdxeFE2QnplTmJvQms1
bjhrNG5lYlJoK2sxaFdmeFRGMEQxRXlXVXM1bnYrZGdRcUtheHp1Q2RFMGkNCnNIbDAyTlE4YWgw
bVhyMTJMYTNtMGY5d2lrOSt3TE5UTVkvODZNUG84eWkzMU9meG1UNlBXb3FHOStEWnVrWW5hNTZt
U1p0NVdXU3kNCjVxVkExcndVeUpxWEFsbnpraWFpL2dIU0Q3UmtUeWlob2dBQUFBQkpSVTVFcmtK
Z2dnPT0iLA0KICAiQXNzZXJ0aW9uU2NoZW1lIjogIlVBRlYxVExWIiwNCiAgIkF1dGhlbnRpY2F0
aW9uQWxnb3JpdGhtIjogMSwNCiAgIkF0dGVzdGF0aW9uVHlwZXMiOiBbMTYzOTFdLA0KICAiVVBW
IjogW1sxLDBdXQ0KfQ0K

EXAMPLE 4: JWT Header

{"typ":"JWT",
 "alg":"ES256"
 "x5t#S256":"7231962210d2933ec993a77b4a7203898ab74cdf974ff02d2de3f1ec7cb9de68"}

EXAMPLE 5: Encoded JWT Header

eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ

EXAMPLE 6: tbsPayload

eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo

EXAMPLE 7: JWT

eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo.
AP-qoJ3VPzj7L6lCE1UzHzJYQnszFQ8d2hJz51sPASgyABK5VXOFnAHzBTQRRkgwGqULy6PtTyUV
zKxM0HrvoyZq

NOTE

The line breaks are for display purposes only.

EXAMPLE 8: ECDSA Key used for signature computation

x: d4166ba8843d1731813f46f1af32174b5c2f6013831fb16f12c9c0b18af3a9b4
y: 861bc2f803a2241f4939bd0d8ecd34e468e42f7fdccd424edb1c3ce7c4dd04e
d: 3744c426764f331f153e182d24f133190b6393cea480a8eec1c722fce161fe2d

The FIDO Server must follow these processing rules:

1. The FIDO Server must be able to download the latest metadata TOC object from the well-known URL, when
appropriate. The nextUpdate field of the Metadata TOC specifies a date when the download should occur at
latest.

2. If the x5u attribute is present in the JWT Header, then:

1. The FIDO Server must verify that the URL specified by the x5u attribute has the same web-origin as the
URL used to download the metadata TOC from. The FIDO Server should ignore the file if the web-origin
differs (in order to prevent loading objects from arbitrary sites).

2. The FIDO Server must download the certificate (chain) from the URL specified by the x5u attribute [JWS].
The certificate chain must be verified to properly chain to the metadata TOC signing trust anchor
according to [RFC5280]. All certificates in the chain must be checked for revocation according to
[RFC5280].

3. The FIDO Server should ignore the file if the chain cannot be verified or if one of the chain certificates is
revoked.

3. If the x5u attribute is missing, the chain should be retrieved from the x5c attribute. If that attribute is missing as
well, Metadata TOC signing trust anchor is considered the TOC signing certificate chain.

4. Verify the signature of the Metadata TOC object using the TOC signing certificate chain (as determined by the
steps above). The FIDO Server should ignore the file if the signature is invalid. It should also ignore the file if its
number (no) is less or equal to the number of the last Metadata TOC object cached locally.

5. Write the verified object to a local cache as required.

6. Iterate through the individual entries (of type MetadataTOCPayloadEntry). For each entry:

1. Ignore the entry if the AAID, AAGUID or attestationCertificateKeyIdentifiers is not relevant to the relying
party (e.g. not acceptable by any policy)

2. Download the metadata statement from the URL specified by the field url. Some authenticator vendors
might require authentication in order to provide access to the data. Conforming FIDO Servers should
support the HTTP Basic, and HTTP Digest authentication schemes, as defined in [RFC2617].

3. Check whether the status report of the authenticator model has changed compared to the cached entry
by looking at the fields timeOfLastStatusChange and statusReport. Update the status of the cached entry.
It is up to the relying party to specify behavior for authenticators with status reports that indicate a lack of
certification, or known security issues. However, the status REVOKED indicates significant security issues
related to such authenticators.

4. Compute the hash value of the (base64url encoding without padding of the UTF-8 encoded) metadata
statement downloaded from the URL and verify the hash value to the hash specified in the field hash of
the metadata TOC object. Ignore the downloaded metadata statement if the hash value doesn't match.

5. Update the cached metadata statement according to the dowloaded one.

4. Considerations

This section is non-normative.

This section describes the key considerations for designing this metadata service.

Need for Authenticator Metadata When defining policies for acceptable authenticators, it is often better to describe
the required authenticator characteristics in a generic way than to list individual authenticator AAIDs. The metadata
statements provide such information. Authenticator metadata also provides the trust anchor required to verify
attestation objects.

The metadata service provides a standardized method to access such metadata statements.

Integrity and Authenticity Metadata statements include information relevant for the security. Some business
verticals might even have the need to document authenticator policies and trust anchors used for verifying
attestation objects for auditing purposes.

It is important to have a strong method to verify and proof integrity and authenticity and the freshness of metadata
statements. We are using a single digital signature to protect the integrity and authenticity of the Metadata TOC
object and we protect the integrity and authenticity of the individual metadata statements by including their
cryptographic hash values into the Metadata TOC object. This allows for flexible distribution of the metadata
statements and the Metadata TOC object using standard content distribution networks.

Organizational Impact Authenticator vendors can delegate the publication of metadata statements to the metadata
service in its entirety. Even if authenticator vendors choose to publish metadata statements themselves, the effort is
very limited as the metadata statement can be published like a normal document on a website. The FIDO Alliance
has control over the FIDO certification process and receives the metadata as part of that process anyway. With this

NOTE

Authenticators with an unacceptable status should be marked accordingly. This information is
required for building registration and authentication policies included in the registration request and
the authentication request [UAFProtocol].

metadata service, the list of known authenticators needs to be updated, signed and published regularly. A single
signature needs to be generated in order to protect the integrity and authenticity of the metadata TOC object.

Performance Impact Metadata TOC objects and metadata statements can be cached by the FIDO Server.

The update policy can be specified by the relying party.

The metadata TOC object includes a date for the next scheduled update. As a result there is no additional impact to
the FIDO Server during FIDO Authentication or FIDO Registration operations.

Updating the Metadata TOC object and metadata statements can be performed asynchronously. This reduces the
availability requirements for the metadata service and the load for the FIDO Server.

The metadata TOC object itself is relatively small as it does not contain the individual metadata statements. So
downloading the metadata TOC object does not generate excessive data traffic.

Individual metadata statements are expected to change less frequently than the metadata TOC object. Only the
modified metadata statements need be downloaded by the FIDO Server.

Non-public Metadata Statements Some authenticator vendors might want to provide access to metadata
statements only to their subscribed customers.

They can publish the metadata statements on access protected URLs. The access URL and the cryptographic hash
of the metadata statement is included in the metadata TOC object.

High Security Environments Some high security environments might only trust internal policy authorities. FIDO
Servers in such environments could be restricted to use metadata TOC objects from a proprietary trusted source
only. The metadata service is the baseline for most relying parties.

Extended Authenticator Information Some relying parties might want additional information about authenticators
before accepting them. The policy configuration is under control of the relying party, so it is possible to only accept
authenticators for which additional data is available and meets the requirements.

A. References

A.1 Normative references

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-statement-v2.0-ps-20170927.html

[JWS]
M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS). May 2015. RFC. URL:
https://tools.ietf.org/html/rfc7515

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. RFC. URL:
https://tools.ietf.org/html/rfc7519

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/'

A.2 Informative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-
20170927.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html

[FIDOKeyAttestation]
FIDO 2.0: Key attestation format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-
attestation-v2.0-ps-20150904.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811).
November 2008. URL: http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

[RFC2617]
J. Franks; P. Hallam-Baker; J. Hostetler; S. Lawrence; P. Leach; A. Luotonen; L. Stewart. HTTP
Authentication: Basic and Digest Access Authentication. June 1999. Draft Standard. URL:

https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-statement-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-statement-v2.0-ps-20170927.html
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://heycam.github.io/webidl/'
http://heycam.github.io/webidl/'
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2617

https://tools.ietf.org/html/rfc2617
[RFC3986]

T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax. January 2005.
Internet Standard. URL: https://tools.ietf.org/html/rfc3986

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification
v1.0. Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-
rd-20171128.html

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

FIDO ECDAA Algorithm

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Jan Camenisch, IBM
Manu Drijvers, IBM
Alec Edgington, Trustonic
Anja Lehmann, IBM
Rainer Urian, Infineon

The English version of this specification is the only normative version. Non-normative translations may
also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

The FIDO Basic Attestation scheme uses attestation "group" keys shared across a set of authenticators
with identical characteristics in order to preserve privacy by avoiding the introduction of global correlation
handles. If such an attestation key is extracted from one single authenticator, it is possible to create a
"fake" authenticator using the same key and hence indistinguishable from the original authenticators by
the relying party. Removing trust for registering new authenticators with the related key would affect the
entire set of authenticators sharing the same "group" key. Depending on the number of authenticators,
this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as
opposed to targeted physical attacks.

An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA [TPMv1-
2-Part1]. Translated to FIDO, this approach would require one Privacy-CA interaction for each Uauth key.
This means relatively high load and high availability requirements for the Privacy-CA. Additionally the
Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This
might make the Privacy-CA an interesting attack target.

Another alternative is the Direct Anonymous Attestation [BriCamChe2004-DAA]. Direct Anonymous
Attestation is a cryptographic scheme combining privacy with security. It uses the authenticator specific
secret once to communicate with a single DAA Issuer and uses the resulting DAA credential in the DAA-
Sign protocol with each relying party. The DAA scheme has been adopted by the Trusted Computing
Group for TPM v1.2 [TPMv1-2-Part1].

In this document, we specify the use of an improved DAA scheme based on elliptic curves and bilinear
pairings largely compatible with [CheLi2013-ECDAA] called ECDAA. This scheme provides significantly
improved performance compared with the original DAA and basic building blocks for its implementation

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:jca@zurich.ibm.com
https://www.ibm.com/
mailto:mdr@zurich.ibm.com
https://www.ibm.com/
mailto:alec.edgington@trustonic.com
https://www.trustonic.com/
mailto:anj@zurich.ibm.com
https://www.ibm.com/
mailto:rainer.urian@infineon.com
https://www.infineon.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/

are part of the TPMv2 specification [TPMv2-Part1].

Our improvements over [CheLi2013-ECDAA] mainly consist of security fixes (see [ANZ-2013] and [XYZF-
2014]) when splitting the sign operation into two parts.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current FIDO Alliance publications and the latest revision of this
technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make
comments regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and
any other contributors to the Specification are not, and shall not be held, responsible in any manner for
identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF
ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It
is a stable document and may be used as reference material or cited from another document. FIDO
Alliance's role in making the Recommendation is to draw attention to the specification and to promote its
widespread deployment.

Table of Contents

1. Notation
1.1 Conformance

2. Overview
2.1 Scope

2.2 Architecture Overview

3. FIDO ECDAA Attestation
3.1 Object Encodings

3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)

3.1.2 Encoding ECPoint values as byte strings (ECPointToB)

3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

3.2 Global ECDAA System Parameters

3.3 Issuer Specific ECDAA Parameters

3.4 ECDAA-Join
3.4.1 ECDAA-Join Algorithm

3.4.2 ECDAA-Join Split between Authenticator and ASM

3.4.3 ECDAA-Join Split between TPM and ASM

3.5 ECDAA-Sign
3.5.1 ECDAA-Sign Algorithm

3.5.2 ECDAA-Sign Split between Authenticator and ASM

3.5.3 ECDAA-Sign Split between TPM and ASM

3.6 ECDAA-Verify Operation

4. FIDO ECDAA Object Formats and Algorithm Details
4.1 Supported Curves for ECDAA

4.2 ECDAA Algorithm Names

4.3 ecdaaSignature object

5. Considerations
5.1 Algorithms and Key Sizes

5.2 Indicating the Authenticator Model

5.3 Revocation

https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

5.4 Pairing Algorithm

5.5 Performance

5.6 Binary Concatentation

5.7 IANA Considerations

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “ED256”.

In formulas we use “|” to denote byte wise concatenation operations.

X = P denotes scalar multiplication (with scalar x) of a (elliptic) curve point P.

RAND(x) denotes generation of a random number between 0 and x-1.

RAND(G) denotes generation of a random number belonging to Group G.

Specific terminology used in this document is defined in [FIDOGlossary].

The type BigNumber denotes an arbitrary length integer value.

The type ECPoint denotes an elliptic curve point with its affine coordinates x and y.

The type ECPoint2 denotes a point on the sextic twist of a BN elliptic curve over F(q). The ECPoint2 has
two affine coordinates each having two components of type BigNumber

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in
this specification are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this
specification are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

FIDO uses the concept of attestation to provide a cryptographic proof of the authenticator
[FIDOGlossary] model to the relying party. When the authenticator is registered to the relying party (RP),
it generates a new authentication key pair and includes the public key in the attestation message (also
known as key registration data object, KRD). When using the ECDAA algorithm, the KRD object is signed
using 3.5 ECDAA-Sign.

For privacy reasons, the authentication key pair is dedicated to one RP (to an application identifier AppID
[FIDOGlossary] to be more specific). Consequently the attestation method needs to provide the same
level of unlinkability. This is the reason why the FIDO ECDAA Algorithm doesn't use a basename (bsn)
often found in other direct anonymous attestation algorithms, e.g. [BriCamChe2004-DAA] or [BFGSW-
2011].

The authenticator encapsulates all user verification operations and cryptographic functions. An
authenticator specific module (ASM) [FIDOGlossary] is used to provide a standardized communication
interface for authenticators. The authenticator might be implemented in separate hardware or trusted
execution environments. The ASM is assumed to run in the normal operating system (e.g. Android,
Windows, ...).

2.1 Scope

This document describes the FIDO ECDAA attestation algorithm in detail.

x

2

2.2 Architecture Overview

ECDAA attestation defines global system parameters and issuer specific parameters. Both parameter sets
need to be installed on the host, in the authenticator and in the FIDO Server. The ECDAA method
consists of two steps:

ECDAA-Join to be performed before the first FIDO Registration
n = GetNonceFromECDAAIssuer()

(Q, c1, s1) = EcdaaJoin1(X, Y, n)

(A, B, C, D, s2, c2) = EcdaaIssuerJoin(Q, c1, s1)

EcdaaJoin2(A, B, C, D, c2, s2) // store cre=(A, B, C, D)

and the pair of ECDAA-Sign performed by the authenticator and ECDAA-Verify performed by the
FIDO Server as part of the FIDO Registration.

Client: Attestation = (signature, KRD) = EcdaaSign(AppID)

Server: success=EcdaaVerify(signature, KRD, AppID)

The technical implementation details of the ECDAA-Join step are out-of-scope for FIDO. In this document
we normatively specify the general algorithm to the extent required for interoperability and we outline
examples of some possible implementations for this step.

The ECDAA-Sign and ECDAA-Verify steps and the encoding of the related ECDAA Signature are
normatively specified in this document. The generation and encoding of the KRD object is defined in other
FIDO specifications.

The algorithm and terminology are inspired by [BFGSW-2011]. The algorithm was modified in order to fix
security weaknesses (e.g. as mentioned by [ANZ-2013] and [XYZF-2014]). Our algorithm proposes an
improved task split for the sign operation while still being compatible to TPMv2 (without fixing the TPMv2
weaknesses in such case).

3. FIDO ECDAA Attestation

This section is normative.

3.1 Object Encodings

We need to convert BigNumber and ECPoint objects to byte strings using the following encoding functions:

3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)

We use the I2OSP algorithm as defined in [RFC3447] for converting big numbers to byte arrays. The
bytes from the big endian encoded (non-negative) number n will be copied right-aligned into the buffer
area b. The unused bytes will be set to 0. Negative values will not occur due to the construction of the
algorithms.

The algorithm implemented in Java looks like this:

EXAMPLE 1: Converting BigNumber n to byte string b

b0 b1 b2 b3 b4 b5 b6 b7
 0 0 n0 n1 n2 n3 n4 n5

EXAMPLE 2: Algorithm for converting BigNumber to byte strings

ByteArray BigNumberToB(
 BigNumber inVal, // IN: number to convert
 int size // IN: size of the output.
)
{
 ByteArray buffer = new ByteArray(size);
 int oversize = size - inVal.length;
 if (oversize < 0)
 return null;
 for (int i=overvize; i > 0; i--)
 buffer[i] = 0;
 ByteCopy(inVal.bytes, &buffer[oversize], inVal.length);
 return buffer;
}

3.1.2 Encoding ECPoint values as byte strings (ECPointToB)

We use the ANSI X9.62 Point-to-Octet-String [ECDSA-ANSI] conversion using the expanded format, i.e.
the format where the compression byte (i.e. 0x04 for expanded) is followed by the encoding of the affine x
coordinate, followed by the encoding of the affine y coordinate.

3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

The type ECPoint2 denotes a point on the sextic twist of a BN elliptic curve over F(q), see section 4.1

Supported Curves for ECDAA. Each ECPoint2 is represented by a pair (a, b) of elements of F(q).

The group zero element is always encoded (using the encoding rules as described below) as a an
element having all components set to zero (i.e. cx.a=0, cx.b=0, cy.a=0, cy.b=0).

We always assume normalized (non-zero) ECPoint2 values (i.e. cz = 1) before encoding them. Non-zero
values are encoded using the expanded format (i.e. 0x04 for expanded) followed by the cx followed by
the cy value. This leads to the concatenation of 0x04 followed by the first element (cx.a) and second
element (cx.b) of the pair of cx followed by the first element (cy.a) and second element (cy.b) of the pair
of cy. All individual numbers are padded to the same length (i.e. the maximum byte length of all relevant 4
numbers).

3.2 Global ECDAA System Parameters

1. Groups G , G and G , of sufficiently large prime order p

2. Two generators P and P , such that G = ⟨P ⟩ and G = ⟨P ⟩

3. A bilinear pairing e : G ×G → G . We propose the use of "ate" pairing (see [BarNae-2006]). For
example source code on this topic, see BNPairings.

4. Hash function H with H : {0, 1} → Z .

5. (G ,P ,p,H) are installed in all authenticators implementing FIDO ECDAA attestation.

Definition of G ,G ,G , Pairings and hash function H

See section 4.1 Supported Curves for ECDAA.

3.3 Issuer Specific ECDAA Parameters

Issuer Parameters parI

1. Randomly generated issuer private key isk = (x,y) with [x,y = RAND(p)].

2. ECDAA-Issuer public key (X,Y), with X = P and Y = P .

3. A proof that the issuer key was correctly computed

1. BigInteger r = RAND(p)

2. BigInteger r = RAND(p)

EXAMPLE 3: Converting ECPoint P to byte string

(x, y) = ECPointGetAffineCoordinates(P)
len = G1.byteLength
byte string = 0x04 | BigIntegerToB(x,len) | BigIntegerToB(y,len)

2

EXAMPLE 4: Converting ECPoint2 P2 to byte string

(cx, cy) = ECPointGetAffineCoordinates(P2)
len = G2.byteLength
byte string = 0x04 | BigIntegerToB(cx.a,len) | BigIntegerToB(cx.b,len)
 | BigIntegerToB(cy.a,len) | BigIntegerToB(cy.b,len)

1 2 T

1 2 1 1 2 2

1 2 T

∗
p

1 1

1 2 T

2
x

2
y

x

y

r

https://code.google.com/p/bnpairings/

3. ECPoint2 U = P

4. ECPoint2 U = P

5. BigInteger c = H(U ∣U ∣P ∣X∣Y)

6. BigInteger s = r + c ⋅ x (mod p)

7. BigInteger s = r + c ⋅ y (mod p)

4. ipk = X,Y , c, s , s

Whenever a party uses ipk for the first time, it must first verify that it was correctly generated:

H(P ⋅X ∣P ⋅ Y ∣P ∣X∣Y) c

The ECDAA-Issuer public key ipk must be dedicated to a single authenticator model.

We use the element c of ipk as an identifier for the ECDAA-Issuer public key (called ECDAA-Issuer
public key identifier).

3.4 ECDAA-Join

In order to use ECDAA, the authenticator must first receive ECDAA credentials from an ECDAA-Issuer.
This is done by the ECDAA-Join operation. This operation needs to be performed a single time (before
the first credential registration can take place). After the ECDAA-Join, the authenticator will use the
ECDAA-Sign operation as part of each FIDO Registration. The ECDAA-Issuer is not involved in this step.
ECDAA plays no role in FIDO Authentication / Transaction Confirmation operations.

In order to use ECDAA, (at least) one ECDAA-Issuer is needed. The approach specified in this document
easily scales to multiple ECDAA-Issuers, e.g. one per authenticator vendor. FIDO lets the authenticator
vendor choose any ECDAA-Issuer (similar to his current freedom for selecting any PKI
infrastructure/service provider to issuing attestation certificates required for FIDO Basic Attestation).

All ECDAA-Join operations (of the related authenticators) are performed with one of the ECDAA-
Issuer entities.

Each ECDAA-Issuer has a set of public parameters, i.e. ECDAA public key material. The related
Attestation Trust Anchor is contained in the metadata of each authenticator model identified by its
AAGUID.

There are two different implementation options relevant for the authenticator vendors (the authenticator
vendor can freely choose them):

1. In-Factory ECDAA-Join

2. Remote ECDAA-Join and

In the first case, physical proximity is used to locally establish the trust between the ECDAA-Issuer and
the authenticator (e.g. using a key provisioning station in a production line). There is no requirement for
the ECDAA-Issuer to operate an online web service.

x 2
rx

y 2
ry

x y 2

x x

y y

x y

2
sx −c

2
sy −c

2 =
?
​

NOTE

P ⋅X = P ⋅ P = P = U

P ⋅ Y = P ⋅ P = P = U

2
sx −c

2
r +cxx

2
−cx

2
rx

x

2
sy −c

2
r +cyy

2
−cy

2
ry

y

NOTE

One ECDAA-Join operation is required once in the lifetime of an authenticator prior to the first
registration of a credential.

In the second case, some credential is required to remotely establish the trust between the ECDAA-
Issuer and the authenticator. As this operation is performed once and only with a single ECDAA-Issuer,
privacy is preserved and an authenticator specific credential can and should be used.

Not all ECDAA authenticators might be able to add their authenticator model IDs (e.g. AAGUID) to the
registration assertion (e.g. TPMs). In all cases, the ECDAA-Issuer will be able to derive the exact the
authenticator model from either the credential or the physically proximiate authenticator. So the ECDAA-
Issuer root key must be dedicated to a single authenticator model.

3.4.1 ECDAA-Join Algorithm

This section is normative.

1. The authenticator asks the issuer for a nonce.

2. The issuer chooses a nonce BigInteger n = RAND(p) and sends n via the ASM to the
authenticator.

3. The authenticator chooses and stores the ECDAA private key BigInteger sk = RAND(p)

4. The authenticator computes its ECDAA public key ECPoint Q = P

5. The authenticator proves knowledge of sk as follows

1. BigInteger r = RAND(p)

2. ECPoint U = P

3. BigInteger c = H(U ∣P ∣Q∣n)

4. BigInteger s = r + c ⋅ sk

6. The authenticator sends Q, c , s via the ASM to the issuer

7. The issuer verifies that the authenticator is "authentic" and that Q was indeed generated by the
authenticator. In the case of an in-factory Join, this might be trivial; in the case of a remote Join this
typically requires the use of other cryptographic methods. Since ECDAA-Join is a one-time
operation, unlinkability is not a concern for that.

8. The issuer verifies that Q ∈ G and verifies H(P ⋅Q ∣P ∣Q∣n) c (check proof-of-
possession of private key).

9. The issuer creates credential (A,B,C,D) as follows

1. BigInteger l = RAND(p)

2. ECPoint A = P

3. ECPoint B = A

4. ECPoint C = A ⋅Q

5. ECPoint D = Q

10. The issuer proves that it computed this credential correctly:

NOTE

If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving
this value, the issuer must verify that this authenticator did not join before.

1
sk

1

1 1
r1

1 1 1

1 1 1

1 1

1 1
s1 −c1

1 =
?
​ 1

NOTE

P ⋅Q = P ⋅Q = P ⋅ P = P = U1
s1 −c1

1
r +c sk1 1 −c1

1
r +c sk1 1

1
−c sk1

1
r1

1

J

1
lJ

y

x xylJ

l yJ

1. BigInteger r = RAND(p)

2. ECPoint U = P

3. ECPoint V = Q

4. BigInteger c = H(U ∣V ∣P ∣B∣Q∣D)

5. BigInteger s = r + c ⋅ l ⋅ y

11. The issuer sends A,B,C,D, c , s to the authenticator.

12. The authenticator checks that A,B,C,D ∈ G and A ≠ 1

13. The authenticator checks H(P ⋅B ∣Q ⋅D ∣P ∣B∣Q∣D) c

14. The authenticator checks e(A,Y) e(B,P)

15. and the authenticator checks e(C,P) e(A ⋅D,X)

16. The authenticator stores credential A,B,C,D

3.4.2 ECDAA-Join Split between Authenticator and ASM

This section is non-normative.

1. The ASM asks the issuer for a nonce.

2. The issuer chooses a nonce BigInteger n = RAND(p) and sends n to the ASM.

3. The ASM forwards n to the authenticator

4. The authenticator chooses and stores the private key BigInteger sk = RAND(p)

5. The authenticator computes its ECDAA public key ECPoint Q = P

2

2 1
r2

2
r2

2 2 2 1

2 2 2 J

2 2

1 G1

1
s2 −c2 s2 −c2

1 =
?
​ 2

NOTE

P ⋅B = P ⋅ P ⋅B = U ⋅B ⋅B = U

Q ⋅D = Q ⋅Q ⋅D = V ⋅D ⋅D = V

1
s2 −c2

1
r2

1
c ⋅l ⋅y2 J −c2

2
c2 −c2

2

s2 −c2 r2 c ⋅l ⋅y2 J −c2
2

c2 −c2
2

=
?
​ 2

NOTE

e(A,Y) = e(P ,P); e(B,P) = e(A ,P) = e(P ,P)1
lJ

2
y

2
y

2 1
ylJ

2

2 =
?
​

NOTE

e(C,P) = e(A ⋅Q ,P); e(A ⋅D,X) = e(A ⋅Q ,P)2
x xylJ

2
ylJ

2
x

NOTE

If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving
this value, the issuer must verify that this authenticator did not join before.

1
sk

6. The authenticator proves knowledge of sk as follows

1. BigInteger r = RAND(p)

2. ECPoint U = P

3. BigInteger c = H(U ∣P ∣Q∣n)

4. BigInteger s = r + c ⋅ sk

7. The authenticator sends Q, c , s to the ASM, who forwards it to the issuer.

8. The issuer verifies that the authenticator is "authentic" and that Q was indeed generated by the
authenticator. In the case of an in-factory Join, this might be trivial; in the case of a remote Join this
typically requires the use of other cryptographic methods. Since ECDAA-Join is a one-time
operation, unlinkability is not a concern for that.

9. The issuer verifies that Q ∈ G and verifies H(P ⋅Q ∣P ∣Q∣n) c .

10. The issuer creates credential (A,B,C,D) as follows

1. BigInteger l = RAND(p)

2. ECPoint A = P

3. ECPoint B = A

4. ECPoint C = A ⋅Q

5. ECPoint D = Q

11. The issuer proves that it computed this credential correctly:

1. BigInteger r = RAND(p)

2. ECPoint U = P

3. ECPoint V = Q

4. BigInteger c = H(U ∣V ∣P ∣B∣Q∣D)

5. BigInteger s = r + c ⋅ l ⋅ y

12. The issuer sends A,B,C,D, c , s to the ASM. The issuer authenticates B,D, c , s such that the
authenticator can verify they were created by the issuer.

13. The ASM checks that A,B,C,D ∈ G and A ≠ 1

14. The ASM checks H(P ⋅B ∣Q ⋅D ∣P ∣B∣Q∣D) c

15. The ASM checks e(A,Y) e(B,P)

16. and the ASM checks that e(C,P) e(A ⋅D,X)

17. The ASM stores A,B,C,D and sends B,D, c , s to the authenticator

18. The authenticator checks B,D ∈ G and B ≠ 1 , and verifies that B,D, c , s were sent by the
issuer.

19. The authenticator checks H(P ⋅B ∣Q ⋅D ∣P ∣B∣Q∣D) c

20. The authenticator stores B,D and ignores further join requests.

1

1 1
r1

1 1 1

1 1 1

1 1

1 1
s1 −c1

1 =
?
​ 1

J

1
lJ

y

x xylJ

l yJ

2

2 1
r2

2
r2

2 2 2 1

2 2 2 J

2 2 2 2

1 G1

1
s2 −c2 s2 −c2

1 =
?
​ 2

=
?
​ 2

2 =
?
​

2 2

1 G1 2 2

1
s2 −c2 s2 −c2

1 =
?
​ 2

NOTE

These values belong to the ECDAA secret key sk. They should persist even in the case of a
factory reset.

3.4.3 ECDAA-Join Split between TPM and ASM

This section is non-normative.

This description is based on the principles described in [TPMv2-Part1] section 24 and [Arthur-Challener-
2015], page 109 ("Activating a Credential").

1. The ASM asks the ECDAA Issuer for a nonce.

2. The ECDAA Issue chooses a nonce BigInteger n = RAND(p) and sends n to the ASM.

3. The ASM
1. instructs the TPM to create a restricted key by calling TPM2_Create, giving the public key

template TPMT_PUBLIC [TPMv2-Part2] (including the public key Q in field unique) to the ASM.

2. retrieves TPM Endorsement Key Certificate (EK-C) from the TPM

3. calls TPM2_Commit(keyhandle, P1, s2, y2) where keyhandle is the handle of the restricted

key generated before (see above), P1 is set to P , and s2 and y2 are left empty. This call
returns K, L, E, and ctr; where K and L will be empty.

4. computes BigInteger c = H(E∣P ∣Q∣n)

5. call TPM2_Sign(c , ctr), returning s .

6. sends EK-C, TPMT_PUBLIC (including Q in field unique), c , s to the ECDAA Issuer.

4. The ECDAA Issuer
1. verifies EK-C and its certificate chain. As a result the ECDAA Issuer knows the TPM model

related to EK-C.

2. verifies that this EK-C was not used in a (successful) Join before

3. Verifies that the objectAttributes in TPMT_PUBLIC [TPMv2-Part2] matches the following flags:
fixedTPM = 1; fixedParent = 1; sensitiveDataOrigin = 1; encryptedDuplication = 0;
restricted = 1; decrypt = 0; sign = 1.

4. examines the public key Q, i.e. it verifies that Q ∈ G

5. checks H(P ⋅Q ∣P ∣Q∣n) c

6. generates the ECDAA credential (A,B,C,D) as follows

1. BigInteger l = RAND(p)

2. ECPoint A = P

3. ECPoint B = A

4. ECPoint C = A ⋅Q

5. ECPoint D = Q

7. proves that it computed this credential correctly:

1. BigInteger r = RAND(p)

2. ECPoint U = P

3. ECPoint V = Q

4. BigInteger c = H(U ∣V ∣P ∣B∣Q∣D)

NOTE

The Endorsement key credential (EK-C) and TPM2_ActivateCredentials are used for supporting
the remote Join.

1

1 1

1 1

1 1

1

1
s1 −c1

1 =
?
​ 1

J

1
lJ

y

x xylJ

l yJ

2

2 1
r2

2
r2

2 2 2 1

5. BigInteger s = r + c ⋅ l ⋅ y

8. generates a secret (derived from a seed) and wraps the credential A,B,C,D using that
secret.

9. encrypts the seed using the public key included in EK-C.

10. uses seed and name in KDFa (see [TPMv2-Part2] section 24.4) to derive HMAC and
symmetric encryption key. Wrap the secret in symmetric encryption key and protect it with the
HMAC key.

11. sends the credential proof c , s and the wrapped object including the credential from previous
step to the ASM.

5. The ASM instructs the TPM (by calling TPM2_ActivateCredential) to
1. decrypt the seed using the TPM Endorsement key

2. compute the name (for the ECDAA attestation key)

3. use the seed in KDFa (with name) to derive the HMAC key and the symmetric encryption key.

4. use the symmetric encryption key to unwrap the secret.

6. The ASM

1. unwraps the credential A,B,C,D using the secret received from the TPM.

2. checks that A,B,C,D ∈ G and A ≠ 1

3. checks H(P ⋅B ∣Q ⋅D ∣P ∣B∣Q∣D) c

4. checks e(A,Y) e(B,P) and e(C,P) e(A ⋅D,X)

5. stores A,B,C,D

3.5 ECDAA-Sign

3.5.1 ECDAA-Sign Algorithm

This section is normative.

(signature, KRD) = EcdaaSign(String AppID)

Parameters

p: System parameter prime order of group G1 (global constant)

AppID: FIDO AppID (i.e. https-URL of TrustedFacets object)

Algorithm outline

1. KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here

2. BigNumber l = RAND(p)

3. ECPoint R = A ;

4. ECPoint S = B ;

2 2 2 J

NOTE

The parameter name in KDFa is derived from TPMT_PUBLIC, see [TPMv2-Part1], section
16.

2 2

1 G1

1
s2 −c2 s2 −c2

1 =
?
​ 2

=
?
​ 2 2 =

?
​

NOTE

One ECDAA-Sign operation is required for the client-side environment whenever a new credential
is being registered at a relying party.

l

l

5. ECPoint T = C ;

6. ECPoint W = D ;

7. BigInteger r = RAND(p)

8. ECPoint U = S

9. BigInteger c = H(U ∣S∣W ∣AppID∣H(KRD))

10. BigInteger s = r + c ⋅ sk (mod p)

11. signature = (c, s, R, S, T, W)

12. return (signature, KRD)

3.5.2 ECDAA-Sign Split between Authenticator and ASM

This section is non-normative.

Algorithm outline

1. The ASM randomizes the credential

1. BigNumber l = RAND(p)

2. ECPoint R = A ;

3. ECPoint S = B ;

4. ECPoint T = C ;

5. ECPoint W = D ;

2. The ASM sends l,AppID to the authenticator

3. The authenticator performs the following tasks
1. KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here

2. ECPoint S = B

3. ECPoint W = D

4. BigInteger r = RAND(p)

5. ECPoint U = S

6. BigInteger c = H(U ∣S ∣W ∣AppID∣H(KRD))

7. BigInteger s = r + c ⋅ sk (mod p)

8. Send c, s,KRD to the ASM

4. The ASM sets signature = (c, s, R, S, T, W) and outputs (signature, KRD)

3.5.3 ECDAA-Sign Split between TPM and ASM

This section is non-normative.

l

l

r

NOTE

This split requires both the authenticator and ASM to be honest to achieve anonymity. Only the
authenticator must be trusted for unforgeability. The communication between ASM and
authenticator must be secure.

l

l

l

l

′ l

′ l

r

′ ′

NOTE

This algorithm is for the special case of a TPMv2 as authenticator. This case requires both the TPM

Algorithm outline

1. The ASM randomizes the credential

1. BigNumber l = RAND(p)

2. ECPoint R = A ;

3. ECPoint S = B ;

4. ECPoint T = C ;

5. ECPoint W = D ;

2. The ASM calls TPM2_Commit() with P1 set to S and s2,y2 empty buffers. The ASM receives the

result values K,L,E = S and ctr. K and L are empty since s2,y2 are empty buffers.

3. The ASM calls TPM2_Create to generate the new authentication key pair.

4. The ASM calls TPM2_Certify() on the newly created key with ctr from the TPM2_Commit and

E,S,W ,AppID as qualifying data (E = S is returned by step 2). The ASM receives signature

c, s and attestation block KRD (i.e. TPMS_ATTEST structure in this case).

5. The ASM sets signature = (c, s, R, S, T, W) and outputs (signature, KRD)

3.6 ECDAA-Verify Operation

This section is normative.

boolean EcdaaVerify(signature, AppID, KRD, ModelName)

Parameters

p: System parameter prime order of group G (global constant)

P : System parameter generator of group G (global constant)

signature: (c, s,R,S,T ,W)

AppID: FIDO AppID

KRD: Attestation Data object as defined in other specifications.

ModelName: the claimed FIDO authenticator model (i.e. either AAID or AAGUID)

Algorithm outline

1. Based on the claimed ModelName, look up X,Y from trusted source

2. Check that R,S,T ,W ∈ G , R ≠ 1 , and S ≠ 1 .

3. H(S ⋅W ∣S∣W ∣AppID∣H(KRD)) c; fail if not equal

and ASM to be honest for anonymity and unforgeability (see [XYZF-2014]).

l

l

l

l

r

r

NOTE

One ECDAA-Verify operation is required for the FIDO Server as part of each FIDO Registration.

1

2 2

1 G1 G1

s −c =
?
​

NOTE

B = A = P

D = Q = P = B

y
1
ly

l yJ
1
skl yJ sk

l l

4. e(R,Y) e(S,P); fail if not equal

5. e(T ,P) e(R ⋅W ,X); fail if not equal

6. for (all sk' on RogueList) do if W S fail;

7. // perform all other processing steps for new credential registration

8. return true;

4. FIDO ECDAA Object Formats and Algorithm Details

This section is normative.

4.1 Supported Curves for ECDAA

Definition of G1

G1 is an elliptic curve group E : y = x + ax+ b over F(q) with a = 0.

Definition of G2

G2 is the p-torsion subgroup of E (F) where E' is a sextic twist of E. With E' : y = x + b .

An element of F(q) is represented by a pair (a,b) where a + bX is an element of

F(q)[X]/ < X + 1 >. We use angle brackets < Y > to signify the ideal generated by the enclosed
value.

S = B and W = D

U = S

S ⋅W = S ⋅W = U ⋅ S ⋅W

= U ⋅B ⋅D = U ⋅B ⋅B = U

l l

r

s −c r+csk −c csk −c

lcsk −lc lcsk −lcsk

=
?
​ 2

NOTE

e(R,Y) = e(A ,P); e(S,P) = e(B ,P) = e(A ,P)
l

2
y

2
l

2
ly

2

2 =
?
​

NOTE

e(T ,P) = e(C ,P) = e(A ⋅Q ,P); e(A ⋅D ,X) = e(A ⋅Q ,P)2
l

2
xl xlylJ

2
l l l lylJ

2
x

=
?
​

sk
′

NOTE
In the case of a TPMv2, i.e. KRD is a TPMS_ATTEST object. In this case the verifier must check
whether the TPMS_ATTEST object starts with TPM_GENERATED magic number and whether its field
objectAttributes contains the flag fixedTPM=1 (indicating that the key was generated by the
TPM).

2 3

′
q2 ′2 ′3 ′

2

2

NOTE

Definition of GT

GT is an order-p subgroup of F .

Pairings

We propose the use of Ate pairings as they are efficient (more efficient than Tate pairings) on Barreto-
Naehrig curves [DevScoDah2007].

Supported BN curves

We use pairing-friendly Barreto-Naehrig [BarNae-2006] [ISO15946-5] elliptic curves. The curves
TPM_ECC_BN_P256 and TPM_ECC_BN_P638 curves are defined in [TPMv2-Part4].

BN curves have a Modulus q = 36 ⋅ u + 36 ⋅ u + 24 ⋅ u + 6 ⋅ u+ 1 [ISO15946-5] and a related

order of the group p = 36 ⋅ u + 36 ⋅ u + 18 ⋅ u + 6 ⋅ u+ 1 [ISO15946-5].

TPM_ECC_BN_P256 is a curve of form E(F(q)), where q is the field modulus [TPMv2-Part4] [BarNae-
2006]. This curve is identical to the P256 curve defined in [ISO15946-5] section C.3.5.

The values have been generated using u=-7 530 851 732 716 300 289.

Modulus q = 115 792 089 237 314 936 872 688 561 244 471 742 058 375 878 355 761 205
198 700 409 522 629 664 518 163

Group order p = 115 792 089 237 314 936 872 688 561 244 471 742 058 035 595 988 840
268 584 488 757 999 429 535 617 037

p and q have length of 256 bit each.

b = 3

P _256 = (x=1, y=2)

b = (a=3, b=3)

P _256 = (x,y), with

P _256.x = (a=114 909 019 869 825 495 805 094 438 766 505 779 201 460 871 441
403 689 227 802 685 522 624 680 861 435, b=35 574 363 727 580 634 541 930 638
464 681 913 209 705 880 605 623 913 174 726 536 241 706 071 648 811)

P _256.y = (a=65 076 021 719 150 302 283 757 931 701 622 350 436 355 986 716 727
896 397 520 706 509 932 529 649 684, b=113 380 538 053 789 372 416 298 017 450
764 517 685 681 349 483 061 506 360 354 665 554 452 649 749 368)

TPM_ECC_BN_P638 [TPMv2-Part4] uses
The values have been generated using u=365 375 408 992 443 362 629 982 744 420 548 242
302 862 098 433

Modulus q = 641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356
871 360 716 989 515 584 497 239 494 051 781 991 794 253 619 096 481 315 470 262 367
432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740 457 083 469
793 717 125 223

The related order of the group is p = 641 593 209 463 000 238 284 923 228 689 168 801 117
629 789 043 238 356 871 360 716 989 515 584 497 239 494 051 781 991 794 252 818 101
344 337 098 690 003 906 272 221 387 599 391 201 666 378 807 960 583 525 233 832 645
565 592 955 122 034 352 630 792 289

p and q have length of 638 bit each.

b = 257

P _638 = (x=641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356
871 360 716 989 515 584 497 239 494 051 781 991 794 253 619 096 481 315 470 262 367
432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740 457 083 469
793 717 125 222, y=16)

b = (a=771, b=1542)

In the literature the pair (a,b) is sometimes also written as a complex number a+ b ∗ i.

q12

4 3 2

4 3 2

1

′

2

2

2

1

′

P _638 = (x, y), with

P _638.x = (a=192 492 098 325 059 629 927 844 609 092 536 807 849 769 208 589
403 233 289 748 474 758 010 838 876 457 636 072 173 883 771 602 089 605 233 264
992 910 618 494 201 909 695 576 234 119 413 319 303 931 909 848 663 554 062 144
113 485 982 076 866 968 711 247, b=166 614 418 891 499 184 781 285 132 766 747
495 170 152 701 259 472 324 679 873 541 478 330 301 406 623 174 002 502 345 930
325 474 988 134 317 071 869 554 535 111 092 924 719 466 650 228 182 095 841 246
668 361 451 788 368 418 036 777 197 454 618 413 255)

P _638.y = (a=622 964 952 935 200 827 531 506 751 874 167 806 262 407 152 244
280 323 674 626 687 789 202 660 794 092 633 841 098 984 322 671 973 226 667 873
503 889 270 602 870 064 426 165 592 237 410 681 318 519 893 784 898 821 343 051
339 820 566 224 981 344 169 470, b=514 285 963 827 225 043 076 463 721 426 569
583 576 029 220 880 138 564 906 219 230 942 887 639 456 599 654 554 743 732 087
558 187 149 207 036 952 474 092 411 405 629 612 957 921 369 286 372 038 525 830
610 755 207 588 843 864 366 759 521 090 861 911 494)

ECC_BN_DSD_P256 [DevScoDah2007] section 3 uses
The values have been generated using u=6 917 529 027 641 089 837

Modulus q =
82434016654300679721217353503190038836571781811386228921167322412819029493183

The related order of the group is p =
82434016654300679721217353503190038836284668564296686430114510052556401373769

p and q have length of 256 bit each.

b = 3

P _DSD_P256 = (1, 2)

b = (a=3, b=6)

P _DSD_P256 = (x, y), with

P _DSD_P256.x = (a=73 481 346 555 305 118 071 940 904 527 347 990 526 214 212
698 180 576 973 201 374 397 013 567 073 039, b=28 955 468 426 222 256 383 171
634 927 293 329 392 145 263 879 318 611 908 127 165 887 947 997 417 463)

P _DSD_P256.y = (a=3 632 491 054 685 712 358 616 318 558 909 408 435 559 591
759 282 597 787 781 393 534 962 445 630 353, b=60 960 585 579 560 783 681 258
978 162 498 088 639 544 584 959 644 221 094 447 372 720 880 177 666 763)

ECC_BN_ISOP512 [ISO15946-5] section C.3.7 uses
The values have been generated using u=138 919 694 570 470 098 040 331 481 282 401 523
727

Modulus q = 13 407 807 929 942 597 099 574 024 998 205 830 437 246 153 344 875 111 580
494 527 427 714 590 099 881 795 845 981 157 516 604 994 291 639 750 834 285 779 043
186 149 750 164 319 950 153 126 044 364 566 323

The related order of the group is p = 13 407 807 929 942 597 099 574 024 998 205 830 437
246 153 344 875 111 580 494 527 427 714 590 099 881 680 053 891 920 200 409 570 720
654 742 146 445 677 939 306 408 461 754 626 647 833 262 056 300 743 149

p and q have length of 512 bit each.

b = 3

P _ISO_P512 = (x=1,y=2)

b = (a=3, b=3)

P _ISO_P512 = (x, y), with

P _ISO_P512.x = (a=3 094 648 157 539 090 131 026 477 120 117 259 896 222 920
557 994 037 039 545 437 079 729 804 516 315 481 514 566 156 984 245 473 190 248
967 907 724 153 072 490 467 902 779 495 072 074 156 718 085 785 269, b=3 776 690
234 788 102 103 015 760 376 468 067 863 580 475 949 014 286 077 855 600 384 033
870 546 339 773 119 295 555 161 718 985 244 561 452 474 412 673 836 012 873 126
926 524 076 966 265 127 900 471 529)

P _ISO_P512.y = (a=7 593 872 605 334 070 150 001 723 245 210 278 735 800 573

2

2

2

1

′

2

2

2

1

′

2

2

2

263 881 411 015 285 406 372 548 542 328 752 430 917 597 485 450 360 707 892 769
159 214 115 916 255 816 324 924 295 339 525 686 777 569 132 644 242, b=9 131 995
053 349 122 285 871 305 684 665 648 028 094 505 015 281 268 488 257 987 110 193
875 868 585 868 792 041 571 666 587 093 146 239 570 057 934 816 183 220 992 460
187 617 700 670 514 736 173 834 408)

Hash Algorithms

Depending on the curve, we use H(x) = SHA256(x) mod p or H(x) = SHA512(x) mod p as hash algorithm

H:{0, 1} → Z .

The argument of the hash function must always be converted to a byte string using the appropriate
encoding function specific in section 3.1 Object Encodings, e.g. according to section 3.1.3 Encoding
ECPoint2 values as byte strings (ECPoint2ToB) in the case of ECPoint2 points.

4.2 ECDAA Algorithm Names

We define the following JWS-style algorithm names (see [RFC7515]):

ED256
TPM_ECC_BN_P256 curve, using SHA256 as hash algorithm H.

ED256-2
ECC_BN_DSD_P256 curve, using SHA256 as hash algorithm H.

ED512
ECC_BN_ISOP512 curve, using SHA512 as hash algorithm H.

ED638
TPM_ECC_BN_P638 curve, using SHA512 as hash algorithm H.

4.3 ecdaaSignature object

The fields c and s both have length N. The fields R, S, T, W have equal length (2*N+1 each).

In the case of BN_P256 curve (with key length N=32 bytes), the fields R, S, T, W have length 2*32+1=65
bytes. The fields c and s have length N=32 each.

The ecdaaSignature object is a binary object generated as the concatenation of the binary fields in the
order described below (total length of 324 bytes for 256bit curves):

Value
Length

(in
Bytes)

Description

UINT8[]
ECDAA_Signature_c

N

The c value, c=H(U | S | W | KRD | AppID) as returned by
AuthnrEcdaaSign encoded as byte string according to
BigNumberToB.

Where

U = S , with r = RAND(p) computed by the signer.

KRD is the the entire to-be-signed object (e.g.
TAG_UAFV1_KRD in the case of FIDO UAF).

S = B , with l = RAND(p) computed by the signer and

B = A computed in the ECDAA-Join

NOTE

Spaces are used inside numbers to improve readability.

∗
p

NOTE

We don't use IEEE P1363.3 section 6.1.1 IHF1-SHA with security parameter t (e.g. t=128 or 256)
as it is more complex and not supported by TPMv2.

r

l

y

http://grouper.ieee.org/groups/1363/IBC/material/P1363.3-D1-200805.pdf

UINT8[]
ECDAA_Signature_s

N

The s value, s=r + c * sk (mod p), as returned by AuthnrEcdaaSign
encoded as byte string according to BigNumberToB.

Where

r = RAND(p), computed by the signer at FIDO registration (see
3.5.2 ECDAA-Sign Split between Authenticator and ASM)

p is the group order of G1

sk: is the authenticator's attestation secret key, see above

UINT8[]
ECDAA_Signature_R

2*N+1

R = A ; computed by the ASM or the authenticator at FIDO
registration; encoded as byte string according to ECPointToB.
Where

l = RAND(p), i.e. random number 0≤l≤p. Computed by the
ASM or the authenticator at FIDO registration.

And where R = A denotes the scalar multiplication (of scalar
l) of a curve point A.

Where A has been provided by the ECDAA-Issuer as part of

ECDAA-Join: A = P , see 3.4.1 ECDAA-Join Algorithm.

Where P and p are system values, injected into the

authenticator and l is a random number computed by the
ECDAA-Issuer on Join.

UINT8[]
ECDAA_Signature_S

2*N+1

S = B ; computed by the ASM or the authenticator at FIDO
registration encoded as byte string according to ECPointToB.

Where B has been provided by the ECDAA-Issuer on Join: B = A ,
see 3.4.1 ECDAA-Join Algorithm.

UINT8[]
ECDAA_Signature_T

2*N+1

T = C ; computed by the ASM or the authenticator at FIDO
registration encoded as byte string according to ECPointToB. Where

C = A ⋅Q , provided by the ECDAA-Issuer on Join

l = RAND(p) computed by the ECDAA-Issuer at Join (see
3.4.1 ECDAA-Join Algorithm)

x and y are components of the ECDAA-Issuer private key,
iskk=(x,y).

Q is the authenticator public key

UINT8[]
ECDAA_Signature_W 2*N+1

W = D ; computed by the ASM or the authenticator at FIDO
registration encoded as byte string according to ECPointToB.

Where D = Q is computed by the ECDAA-Issuer at Join (see
3.4.1 ECDAA-Join Algorithm).

Value
Length

(in
Bytes)

Description

5. Considerations

This section is non-normative.

A detailed security analysis of this algorithm can be found in [FIDO-DAA-Security-Proof].

l

l

1
lJ

1

J

l

y

l

x xylJ

J

l

l yJ

5.1 Algorithms and Key Sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

5.2 Indicating the Authenticator Model

Some authenticators (e.g. TPMv2) do not have the ability to include their model (i.e. vendor ID and model
name) in attested messages (i.e. the to-be-signed part of the registration assertion). The TPM's
endorsement key certificate typically contains that information directly or at least it allows the model to be
derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator model.

We require the ECDAA-Issuers public key (ipk=(X,Y,c,sx,sy)) to be dedicated to one single authenticator
model (e.g. as identified by AAID or AAGUID).

5.3 Revocation

If the private ECDAA attestation key sk of an authenticator has been leaked, it can be revoked by adding
its value to a RogueList.

The ECDAA-Verifier (i.e. FIDO Server) check for such revocations. See section 3.6 ECDAA-Verify
Operation.

The ECDAA-Issuer is expected to check revocation by other means:

1. if ECDAA-Join is done in-factory, it is assumed that produced devices are known to be
uncompomised (at time of production).

2. if a remote ECDAA-Join is performed, the (remote) ECDAA-Issuer already must use a different
method to remotely authenticate the authenticator (e.g. using some endorsement key). We expect
the ECDAA-Issuer to perform a revocation check based on that information. This is even more

flexible as it does not require access to the authenticator ECDAA private key sk.

5.4 Pairing Algorithm

The pairing algorithm e needs to be used by the ASM as part of the Join process and by the verifier (i.e.
FIDO relying party) as part of the verification (i.e. FIDO registration) process.

The result of such a pairing operation is only compared to the result of another pairing operation
computed by the same entity. As a consequence, it doesn't matter whether the ASM and the verifier use
the exact same pairings or not (as long as they both use valid pairings).

5.5 Performance

For performance reasons the calculation of Sig2=(R,S,T ,W) may be performed by the ASM running on
the FIDO user device (as opposed to inside the authenticator). See section 3.5.2 ECDAA-Sign Split
between Authenticator and ASM.

The cryptographic computations to be performed inside the authenticator are limited to G1. The ECDAA-
Issuer has to perform two G2 point multiplications for computing the public key. The Verifier (i.e. FIDO
relying party) has to perform G1 operations and two pairing operations.

5.6 Binary Concatentation

We use a simple byte-wise concatenation function for the different parameters, i.e. H(a,b) = H(a | b).

This approach is as secure as the underlying hash algorithm since the authenticator controls the length of
the (fixed-length) values (e.g. U, S, W). The AppID is provided externally and has unverified structure and
length. However, it is only followed by a fixed length entry - the (system defined) hash of KRD. As a
consequence, no parts of the AppID would ever be confused with the fixed length value.

5.7 IANA Considerations

This specification registers the algorithm names "ED256", "ED512", and "ED638" defined in section 4.
FIDO ECDAA Object Formats and Algorithm Details with the IANA JSON Web Algorithms registry as
defined in section "Cryptographic Algorithms for Digital Signatures and MACs" in [RFC7518].

Algorithm Name "ED256"

Algorithm Description
FIDO ECDAA algorithm based on TPM_ECC_BN_P256 [TPMv2-Part4] curve
using SHA256 hash algorithm.

Algorithm Usage
Location(s)

"alg", i.e. used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller FIDO Alliance, Contact Us

Specification
Documents

Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats
and Algorithm Details of [FIDOEcdaaAlgorithm].

Algorithm Analysis
Document(s)

[FIDO-DAA-Security-Proof]

Algorithm Name "ED512"

Algorithm Description
ECDAA algorithm based on ECC_BN_ISOP512 [ISO15946-5] curve using
SHA512 algorithm.

Algorithm Usage
Location(s)

"alg", i.e. used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller FIDO Alliance, Contact Us

Specification
Documents

Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats
and Algorithm Details of [FIDOEcdaaAlgorithm].

Algorithm Analysis
Document(s)

[FIDO-DAA-Security-Proof]

Algorithm Name "ED638"

Algorithm Description
ECDAA algorithm based on TPM_ECC_BN_P638 [TPMv2-Part4] curve using
SHA512 algorithm.

Algorithm Usage
Location(s)

"alg", i.e. used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller FIDO Alliance, Contact Us

Specification
Documents

Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats
and Algorithm Details of [FIDOEcdaaAlgorithm].

Algorithm Analysis
Document(s)

[FIDO-DAA-Security-Proof]

A. References

A.1 Normative references

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA), ANSI X9.62-2005. November 2005. URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[RFC2119]

https://fidoalliance.org/contact/
https://fidoalliance.org/contact/
https://fidoalliance.org/contact/
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current
Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1. February 2003. Informational. URL: https://tools.ietf.org/html/rfc3447

[TPMv2-Part4]
Trusted Platform Module Library, Part 4: Supporting Routines. URL:
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-
D0DA8CE1B452CAB4/TPM%20Rev%202.0%20Part%204%20-
%20Supporting%20Routines%2001.16-code.pdf

A.2 Informative references

[ANZ-2013]
Tolga Acar; Lan Nguyen; Greg Zaverucha. A TPM Diffie-Hellman Oracle. October 18, 2013. URL:
http://eprint.iacr.org/2013/667.pdf

[Arthur-Challener-2015]
Will Arthur; David Challener; Kenneth Goldman. A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security. 2014. URL: http://www.apress.com/9781430265832

[BFGSW-2011]
D. Bernhard; G. Fuchsbauer; E. Ghadafi; N. P. Smart; B. Warinschi. Anonymous Attestation with
User-controlled Linkability. 2011. URL: http://eprint.iacr.org/2011/658.pdf

[BarNae-2006]
Paulo S. L. M. Barreto; Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. 2006. URL:
http://research.microsoft.com/pubs/118425/pfcpo.pdf

[BriCamChe2004-DAA]
Ernie Brickell; Jan Camenisch; Liqun Chen. Direct Anonymous Attestation. 2004. URL:
http://eprint.iacr.org/2004/205.pdf

[CheLi2013-ECDAA]
Liqun Chen; Jiangtao Li. Flexible and Scalable Digital Signatures in TPM 2.0. 2013. URL:
http://dx.doi.org/10.1145/2508859.2516729

[DevScoDah2007]
Augusto Jun Devegili; Michael Scott; Ricardo Dahab. Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. 2007. URL: https://eprint.iacr.org/2007/390.pdf

[FIDO-DAA-Security-Proof]
Jan Camenisch; Manu Drijvers; Anja Lehmann. Universally Composable Direct Anonymous
Attestation. 2015. URL: https://eprint.iacr.org/2015/1246

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA
Algorithm. Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-
ecdaa-algorithm-v2.0-ps-20170927.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-
20170927.html

[ISO15946-5]
ISO/IEC 15946-5 Information Technology - Security Techniques - Cryptographic techniques based
on elliptic curves - Part 5: Elliptic curve generation. URL: https://webstore.iec.ch/publication/10468

[RFC7515]
M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS) (RFC7515). May 2015. URL:
http://www.ietf.org/rfc/rfc7515.txt

[RFC7518]
M. Jones. JSON Web Algorithms (JWA). May 2015. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7518

[TPMv1-2-Part1]
TPM 1.2 Part 1: Design Principles. URL:
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-
D002BC0B8C062FF6/TPM%20Main-
Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf

[TPMv2-Part1]
Trusted Platform Module Library, Part 1: Architecture. URL:
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-
D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf

[TPMv2-Part2]
Trusted Platform Module Library, Part 2: Structures. URL:
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-
D0469592DB10A6CD/TPM%20Rev%202.0%20Part%202%20-%20Structures%2001.16.pdf

[XYZF-2014]
Li Xi; Kang Yang; Zhenfeng Zhang; Dengguo Feng. DAA-Related APIs in TPM 2.0 Revisited, in T.
Holz and S. Ioannidis (Eds.). 2014. URL:

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM Rev 2.0 Part 4 - Supporting Routines 01.16-code.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM Rev 2.0 Part 4 - Supporting Routines 01.16-code.pdf
http://eprint.iacr.org/2013/667.pdf
http://eprint.iacr.org/2013/667.pdf
http://www.apress.com/9781430265832
http://www.apress.com/9781430265832
http://eprint.iacr.org/2011/658.pdf
http://eprint.iacr.org/2011/658.pdf
http://research.microsoft.com/pubs/118425/pfcpo.pdf
http://research.microsoft.com/pubs/118425/pfcpo.pdf
http://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2004/205.pdf
http://dx.doi.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
https://eprint.iacr.org/2007/390.pdf
https://eprint.iacr.org/2007/390.pdf
https://eprint.iacr.org/2015/1246
https://eprint.iacr.org/2015/1246
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://webstore.iec.ch/publication/10468
https://webstore.iec.ch/publication/10468
http://www.ietf.org/rfc/rfc7515.txt
http://www.ietf.org/rfc/rfc7515.txt
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM Rev 2.0 Part 2 - Structures 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM Rev 2.0 Part 2 - Structures 01.16.pdf

FIDO Security Reference

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-security-ref-v2.0-ps-20170927.html

Previous version:
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-security-ref-v2.0-rd-20161004.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Dr. Joshua E. Hill, InfoGard Laboratories
Douglas Biggs, InfoGard Laboratories

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

This document analyzes the security properties of the FIDO UAF and U2F families of protocols.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document,
please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including
without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall
not be held, responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may
be used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to
the specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Key Words

2. Introduction
2.1 Intended Audience

3. Attack Classification

4. FIDO Security Goals
4.1 Assets to be Protected

5. FIDO Security Measures
5.1 Relation between Measures and Goals

6. FIDO Security Assumptions
6.1 Discussion

7. Threat Analysis
7.1 Threats to Client Side

7.1.1 Exploiting User’s pattern matching weaknesses

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-security-ref-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-security-ref-v2.0-rd-20161004.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
mailto:jhill@infogard.com
https://infogard.com/
mailto:dbiggs@infogard.com
https://infogard.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https:/fidoalliance.org/
https://fidoalliance.org/contact

7.1.3 Creating a Fake Client

7.1.4 Threats to FIDO Authenticator

7.1.5 Threats to Relying Party
7.1.5.1 Threats to FIDO Server Data

7.1.6 Threats to the Secure Channel between Client and Relying Party
7.1.6.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

7.1.7 Threats to the Infrastructure
7.1.7.1 Threats to FIDO Authenticator Manufacturers

7.1.7.2 Threats to FIDO Server Vendors

7.1.7.3 Threats to FIDO Metadata Service Operators

7.1.8 Threats Specific to Second Factor Authenicators (UAF / U2F)

7.2 Acknowledgements

A. References
A.1 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this
document are to be interpreted as described in [RFC2119].

2. Introduction

This document analyzes the security properties of the FIDO UAF and U2F families of protocols. Although a brief architectural summary is
provided below, readers should familiarize themselves with the the FIDO Glossary of Terms [FIDOGlossary] for definitions of terms used
throughout. For technical details of various aspects of the architecture, readers should refer to the FIDO Alliance specifications in the
Bibliography.

Fig. 1 FIDO Reference Architecture

Conceptually, FIDO involves a conversation between a computing environment controlled by a Relying Party and one controlled by the
user to be authenticated. The Relying Party's environment consists conceptually of at least a web server and the server-side portions of a
web application, plus a FIDO Server. The FIDO Server has a trust store, containing the (public) trust anchors for the attestation of FIDO
Authenticators. The users' environment, referred to as the FIDO user device, consists of one or more FIDO Authenticators, a piece of
software called the FIDO Client that is the endpoint for UAF and U2F conversations, and User Agent software. The User Agent software
may be a browser hosting a web application delivered by the Relying Party, or it may be a standalone application delivered by the Relying
Party. In either case, the FIDO Client, while a conceptually distinct entity, may actually be implemented in whole or part within the
boundaries of the User Agent.

2.1 Intended Audience

This document assumes a technical audience that is proficient with security analysis of computing systems and network protocols as well
as the specifics of the FIDO architecture and protocol families. It discusses the security goals, security measures, security assumptions

and a series of threats to FIDO systems, including the users' computing environment, the Relying Party's computing environment, and the
supply chain, including the vendors of FIDO components.

3. Attack Classification

The following attacks all result in user impersonation if successful. However, they have distinguishing characteristics which we use as the
basis for attack classification:

1. Automated attacks not focused on the users systems, which affect the user.

2. Automated attacks which are focused on the users' device and which are performed once and lead to the ability to impersonate the
user on an on-going basis without involving him or his device directly.

3. Automated attacks which involve the user or his device for each successful impersonation.

4. Automated attacks to sessions authenticated by the user.

5. Not automatable attacks to the user or his device which are performed once and lead to the ability to impersonate the user on an
on-going basis without involving him or his device directly.

6. Not automatable attacks to the user or his device which involve the user or his device for each successful impersonation.

Fig. 2 Attack Classes

The first four attack classes are considered scalable as they are nominally automatable. The attack classes 5 and 6 are not automatable;
they involve some kind of manual/physical interaction of the attacker with the user or his device. We will attribute the threats analyzed in
this document with the related attack class (AC1 – AC6).

Attack Classes

We define the term scalable attack as any attack where the marginal cost of adding an additional target is near zero and which leads to
violations of the FIDO security goals.

NOTE

1. FIDO uses asymmetric cryptography to protect against AC1. This gives control back to the user, i.e. when using good random
numbers, the user’s authenticator can make breaking the key as hard as the underlying factoring (in the case of RSA) or
discrete logarithm (in the case of DSA or ECDSA) problem.

2. Once counter-measures for this kind of attack are commonly in place, attackers will likely focus on another attack class.

3. The numbers at the attack classes do not imply a feasibility ranking of the related attacks, e.g. it is not necessarily more
difficult to perform (AC4) than it is to perform (AC3).

4. The user has almost no influence on the feasibility of attack class (AC1). This makes this attack class really bad.

5. The concept of physical security (i.e. “protect your Authenticator from being stolen”), related to attack classes (AC5) and
(AC6) is much better internalized by users than the concept of logical security, related to attack classes (AC2), (AC3) and
(AC4).

6. In order to protect against misuse of authenticated sessions (e.g. MITB attacks), the FIDO Authenticator must support the
concept of transaction confirmation and the relying party must use it.

7. For an attacker to succeed in impersonating the user, any attack class is sufficient.

AC1
Attacks not focused on the users' devices and which lead to violations of FIDO security goals. (e.g., compromise of a Relying Party
FIDO database and successful decryption of wrapped keys within the database, phishing, MITM attacks, etc.).

AC2
Scalable attacks involving the Authenticator which, once performed, lead to the ability to violate FIDO security goals on an ongoing
basis without later involving the users or their devices directly (e.g., a scalable attack on FIDO Authenticators that recovers the user
private keys, allowing the attacker to impersonate the users on an ongoing basis).

AC3
Scalable attacks which involve the user or his device for each instance where the FIDO security goals are violated (e.g., a scalable
attack that requires the Authenticator for each successful impersonation).

AC4
Scalable attacks on sessions authenticated by the user which violate FIDO security goals.

AC5
Non-scalable attacks involving the Authenticator which, once performed, lead to the ability to violate FIDO security goals on an
ongoing basis without later involving the users or their devices directly (e.g., a non-scalable attack on FIDO Authenticators that
recovers the user private keys, allowing the attacker to impersonate the users on an ongoing basis).

AC6
Non-scalable attacks which involve the user or his device for each instance where the FIDO security goals are violated (e.g., a non-
scalable attack that requires the Authenticator for each successful impersonation).

4. FIDO Security Goals

In this section the specific security goals of FIDO are described. The FIDO UAF protocol [UAFProtocol] and U2F protocol [U2FOverview]
support a variety of different FIDO Authenticators. Even though the security of those authenticators varies, the UAF protocol and the
FIDO Server should provide a very high level of security - at least on a conceptual level. In reality it might require a FIDO Authenticator
with a high security level in order to fully leverage the FIDO security strength.

The FIDO U2F protocol [U2FOverview] supports a more constrained set of Authenticator capabilities. It shares the same security goals
as UAF, with the exception of [SG-14] Transaction Non- Repudiation.

The FIDO protocols have the following security goals:

[SG-1]
Strong User Authentication: Authenticate (i.e. recognize) a user and/or a device to a relying party with high (cryptographic) strength.

[SG-2]
Credential Guessing Resilience: Provide robust protection against eavesdroppers, e.g. be resilient to physical observation, resilient
to targeted impersonation, resilient to throttled and unthrottled guessing.

[SG-3]
Credential Disclosure Resilience: Be resilient to phishing attacks and real-time phishing attack, including resilience to online attacks
by adversaries able to actively manipulate network traffic.

[SG-4]
Unlinkablity: Protect the protocol conversation such that any two relying parties cannot link the conversation to one user (i.e. be
unlinkable).

[SG-5]
Verifier Leak Resilience: Be resilient to leaks from other relying parties. I.e., nothing that a verifier could possibly leak can help an
attacker impersonate the user to another relying party.

[SG-6]
Authenticator Leak Resilience: Be resilient to leaks from other FIDO Authenticators. I.e., nothing that a particular FIDO
Authenticator could possibly leak can help an attacker to impersonate any other user to any relying party.

[SG-7]
User Consent: Notify the user before a relationship to a new relying party is being established (requiring explicit consent).

[SG-8]
Limited PII: Limit the amount of personal identifiable information (PII) exposed to the relying party to the absolute minimum.

[SG-9]
Attestable Properties: Relying Party must be able to verify FIDO Authenticator model/type (in order to calculate the associated risk).

[SG-10]
DoS Resistance: Be resilient to Denial of Service Attacks. I.e. prevent attackers from inserting invalid registration information for a
legitimate user for the next login phase. Afterward, the legitimate user will not be able to login successfully anymore.

[SG-11]
Forgery Resistance: Be resilient to Forgery Attacks (Impersonation Attacks). I.e. prevent attackers from attempting to modify
intercepted communications in order to masquerade as the legitimate user and login to the system.

[SG-12]
Parallel Session Resistance: Be resilient to Parallel Session Attacks. Without knowing a user’s authentication credential, an attacker
can masquerade as the legitimate user by creating a valid authentication message out of some eavesdropped communication
between the user and the server.

[SG-13]
Forwarding Resistance: Be resilient to Forwarding and Replay Attacks. Having intercepted previous communications, an attacker
can impersonate the legal user to authenticate to the system. The attacker can replay or forward the intercepted messages.

NOTE

The first four attack classes (AC1, AC2, AC3, and AC4) are considered scalable. The last two attack classes (AC5 and AC6) are
not scalable and are performed as one-off user/Relying Party style compromises. We will attribute the threats analyzed in this
document with the related attack class (AC1 – AC6).

NOTE

At this time we are not explicitly addressing classes of physical attacks on the authenticator that may lead to reduced security if the
legitimate user uses the authenticator after the attacker having physical access to it.

NOTE

In certain environments the overall security of the explicit authentication (as provided by FIDO) is less important, as it might be
supplemented with a high degree of implicit authentication or the application doesn’t even require a high level of authentication
strength.

[SG-14] (not covered by U2F)
Transaction Non-Repudiation: Provide strong cryptographic non-repudiation for secure transactions.

[SG-15]
Respect for Operating Environment Security Boundaries: Ensure that registrations and private key material as a shared system
resource is appropriately protected according to the operating environment privilege boundaries in place on the FIDO user device.

[SG-16]
Assessable Level of Security: Ensure that the design and implementation of the Authenticator allows for the testing laboratory /
FIDO Alliance to assess the level of security provided by the Authenticator.

4.1 Assets to be Protected

Independent of any particular implementation, the FIDO protocols assume some assets to be present and to be protected.

1. Cryptographic Authentication Private Key. Typically, private keys in FIDO are unique for each tuple of (relying party, user account,
authenticator).

2. Cryptographic Authentication Key Reference. This is the cryptographic material stored at the relying party and used to uniquely
verify the Cryptographic Authentication Key, typically the public key corresponding to the authentication private key.

3. Authenticator Attestation Key (as stored in each authenticator). This should only be usable to attest a Cryptographic Authentication
Key and the type/model and manufacturing batch of an Authenticator. Attestation keys are either ECDAA keys
[FIDOEcdaaAlgorithm] or the attestation keys and certificates are shared by a large number of authenticators in a device class from
a given vendor in order to prevent their becoming a linkable identifier across relying parties. Authenticator attestation certificates
may be self-signed, or signed by an authority key controlled by the vendor.

4. Authenticator Attestation Authority Key. An authenticator vendor may elect to sign authenticator attestation certificates with a per-
vendor certificate authority key.

5. Authenticator Attestation Authority Certificate. Contained in the initial/default trust store as part of the FIDO Server and contained in
the active trust store maintained by each relying party.

6. Active Trust Store. Contains all trusted attestation root certificates for a given FIDO server.

7. All data items suitable for uniquely identifying the authenticator across relying parties. An attack on those would break the non-
linkability security goal.

8. Private key of Relying Party TLS server certificate.

9. TLS root certificate trust store for the users' browser/app.

5. FIDO Security Measures

[SM-1] (U2F + UAF)
Key Protection: Authentication key is protected against misuse. Misuse means any use violating the FIDO specification or the
details given in the Metadata Statement. Before a key can be used, it requires the User to unlock it using the user verification
method specified in the Authenticator Metadata Statement (Silent Authenticators do not require any user verification method).

[SM-2] (U2F + UAF)
Unique Authentication Keys: Cryptographic authentication key is specific and unique to the tuple of (FIDO Authenticator, User,
Relying Party).

[SM-3] (U2F + UAF)
Authenticator Class Attestation: Hardware-based FIDO Authenticators support authenticator attestation using an attestation key
using one of the FIDO specified attestation types and algorithms. Each relying party receives regular updates of the trust store
(through the FIDO Metadata service).

[SM-4] (UAF)
Authenticator Status Checking: Relying Parties can download latest known status of authenticators included in the FIDO Metadata
Service. The FIDO Server should take this information into account. Authenticator manufacturers should notify the FIDO Alliance
about compromised authenticators. In the case of FIDO certified authenticators, such notification might even be mandatory.

[SM-5] (UAF)
User Consent: FIDO Client implements a user interface for getting user’s consent on any actions (except authentication with silent
authenticator) and displaying RP name (derived from server URL).

[SM-6] (U2F + UAF)
Cryptographically Secure Verifier Database: The relying party stores only the public portion of an asymmetric key pair, or an
encrypted key handle, as a cryptographic authentication key reference.

[SM-7] (U2F + UAF)
Secure Channel with Server Authentication: The TLS protocol with server authentication or a transport with equivalent properties is
used as transport protocol for UAF. The use of https is enforced by a browser or Relying Party application.

[SM-8] (UAF)
Protocol Nonces: Both server and client supplied nonces are used for UAF registration and authentication. U2F requires server
supplied nonces.

[SM-9] (U2F + UAF)
Authenticator Certification: The FIDO Metadata Service includes the Authenticator certification status.

[SM-10] (UAF)
Transaction Confirmation (WYSIWYS): Secure Display (WYSIWYS) (optionally) implemented by the FIDO Authenticators is used by
FIDO Client for displaying relying party name and transaction data to be confirmed by the user.

NOTE

For a definition of the phrases printed in italics, refer to [QuestToReplacePasswords] and to [PasswordAuthSchemesKeyIssues]

NOTE

Particular implementations of FIDO Clients, Authenticators, Servers and participating applications may not implement all of these
security measures (e.g. Secure Display, [SM-10] Transaction Confirmation) and they also might (and should) implement add itional
security measures.

NOTE

The U2F protocol lacks support for [SM-5] Secure Display, [SM-10] Transaction Confirmation, has only server-supplied [SM-8]
Protocol Nonces, and [SM-3] Authenticator Class Attestation is implicit as there is only a single class of device.

[SM-11] (U2F + UAF)
Round Trip Integrity: FIDO server verifies that the transaction data related to the server challenge received in the UAF message
from the FIDO client is identical to the transaction data and server challenge delivered as part of the UAF request message.

[SM-12] (U2F + UAF)
Channel Binding: Relying Party servers may verify the continuity of a secure channel with a client application.

[SM-13] (UAF)
Key Handle Access Token: Authenticators not intended to roam between untrusted systems are able to constrain the use of
registration keys within the privilege boundaries defined by the operating environment of the user device (per-user, or per
application, or per-user + per-application as appropriate).

[SM-14] (U2F + UAF)
AppID Separation: A Relying Party can declare the application identities allowed to access its registered keys, for operating
environments on user devices that support this concept.

[SM-15] (U2F + UAF)
Signature Counter: Authenticators send a monotonically increasing signature counter that a Relying Party can check to possibly
detect cloned authenticators.

[SM-16] (U2F + UAF)
Use of strong, modern Cryptographic Primitives: The FIDO specifications stipulate the use of strong, modern cryptographic
primitives helping to ensure the overall security of conformant FIDO implementations. The FIDO Authenticator certification program
defines the "Allowed Cryptography List" for allowed cryptographic primitives to be used in FIDO certified authenticators.

[SM-17] (U2F + UAF)
Resistance to Side Channel Attacks.

[SM-18] (U2F + UAF)
Resistance to Injected Faults in Cryptographic Functions. This security measure purely deals with the cryptographic functions, as
compared to the much more general [SM-28].

[SM-19] (UAF)
Bounded Probability of a Birthday Collision. For randomly generated nonces, the total number of nonces that can be generated is
limited to bound the probability of a birthday collision of generated values.

[SM-20] (U2F + UAF)
Individual authenticators are indistinguishable provided authenticators sharing attestation keys are manufactured in sufficiently large
(e.g. > 100000) per-model batches.

[SM-21] (U2F + UAF)
Authentication and replay-resistance (freshness assurance) of externally-stored protected information.

[SM-22] (U2F + UAF)
Certified FIDO Authenticators fully described by the vendor, and tested to verify that it functions as specified.

[SM-23] (U2F + UAF)
Key Handles containing a key are cryptographically linked with the Authenticator that produced the Key Handle and with the Relying
Party associated with the Key Handle.

[SM-24] (U2F + UAF)
Design, implementation and manufacture of certified FIDO Authenticators supports Authenticator security.

[SM-25] (U2F + UAF)
Depending on the certification level, certified authenticators are required to implement a Trusted Path for all user / Authenticator
direct interactions.

[SM-26] (U2F + UAF)
Input Data Validation: Malformed or maliciously crafted input data does not result in unexpected Authenticator behavior.

[SM-27] (U2F + UAF)
Protection of user verification reference data and biometric data.

[SM-28] (U2F + UAF)
Resistance to Fault Injection Attacks.

[SM-29] (U2F + UAF)
Resistance to Remote Timing Attacks: No leakage of secret information to remote entities via variation of operation execution time.

5.1 Relation between Measures and Goals

Security Goal Supporting Security Measures

[SG-1] Strong User Authentication

[SM-1] Key Protection

[SM-12] Channel Binding

[SM-14] AppID Separation

[SM-15] Signature Counter

[SM-16] Allowed Crypto Primitives

[SM-17] Resistance to Side Channel Attacks

[SM-21] Authentication and replay-resistance

[SM-23] Key Handles cryptographically linked with the Authenticator

[SM-25] Trusted path for all user interactions

[SM-29] Resistance to Remote Timing Attacks

[SG-2] Credential Guessing Resilience

[SM-1] Key Protection

[SM-6] Cryptographically Secure Verifier Database

[SM-16] Allowed Crypto Primitives

[SG-3] Credential Disclosure Resilience

[SM-1] Key Protection

[SM-9] Authenticator Certification

[SM-15] Signature Counter

[SM-17] Resistance to Side Channel Attacks

[SM-29] Resistance to Remote Timing Attacks

[SG-4] Unlinkability

[SM-2] Unique Authentication Keys

[SM-3] Authenticator Class Attestation

[SM-20] No Identifying Information

[SG-5] Verifier Leak Resilience

[SM-2] Unique Authentication Keys

[SM-6] Cryptographically Secure Verifier Database

[SM-16] Allowed Crypto Primitives

[SG-6] Authenticator Leak Resilience

[SM-9] Authenticator Certification

[SM-15] Signature Counter

[SM-16] Allowed Crypto Primitives

[SG-7] User Consent

[SM-1] Key Protection

[SM-5] User Consent

[SM-7] Secure Channel with Server Authentication

[SM-10] Transaction Confirmation (WYSIWYS)

[SM-25] Trusted path for all user interactions

[SG-8] Limited PII
[SM-2] Unique Authentication Keys

[SM-20] No Identifying Information

[SG-9] Attestable Properties

[SM-3] Authenticator Class Attestation

[SM-4] Authenticator Status Checking

[SM-9] Authenticator Certification

[SG-10] DoS Resistance [SM-8] Protocol Nonces

[SG-11] Forgery Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-17] Resistance to Side Channel Attacks

[SM-23] Key Handles cryptographically linked with the Authenticator

[SM-29] Resistance to Remote Timing Attacks

[SG-12] Parallel Session Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-13] Forwarding Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

Security Goal Supporting Security Measures

[SM-12] Channel Binding

[SG-14] Transaction Non-Repudiation

[SM-1] Key Protection

[SM-2] Unique Authentication Keys

[SM-8] Protocol Nonces

[SM-9] Authenticator Certification

[SM-10] Transaction Confirmation (WYSIWYS)

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-25] Trusted path for all user interactions

[SG-15] Respect for Operating Environment Security Boundaries
[SM-13] Key Handle Access Token

[SM-14] AppID Separation

Security Goal Supporting Security Measures

6. FIDO Security Assumptions

In this section, we enumerate the assumptions we are making regarding the security characteristics of the operating environment
components on which a FIDO implementation depends.

[SA-1]
The Authenticator and its cryptographic algorithms and parameters (key size, mode, output length, etc.) in use are not subject to
unknown weaknesses that make them unfit for their purpose in encrypting, digitally signing, and authenticating messages.

[SA-2]
Operating system privilege separation mechanisms relied up on by the software modules involved in a FIDO operation on the user
device perform as advertised. E.g. boundaries between user and kernel mode, between user accounts, and between applications
(where applicable) are securely enforced and security principals can be mutually, securely identifiable.

[SA-3]
Applications on the user device are able to establish secure channels that provide trustworthy server authentication, and
confidentiality and integrity for messages (e.g., through TLS).

[SA-4]
The computing environment on the FIDO user device and the and applications involved in a FIDO operation act as trustworthy
agents of the user.

[SA-5]
The inherent value of a cryptographic key resides in the confidence it imparts, and this commodity decays with the passage of time,
irrespective of any compromise event. As a result the effective assurance level of authenticators will be reduced over time.

[SA-6]
The computing resources at the Relying Party involved in processing a FIDO operation act as trustworthy agents of the Relying
Party.

6.1 Discussion

With regard to [SA-4] and malicious computation on the FIDO user device, only very limited guarantees can be made within the scope of
these assumptions. Malicious code privileged at the level of the trusted computing base can always violate [SA-2] and [SA- 3]. Malicious
code privileged at the level of the users' account in traditional multi-user environments will also likely be able to violate [SA-3].

FIDO can also provide only limited protections when a user chooses to deliberately violate [SA-4], e.g. by roaming a USB authenticator to
an untrusted system like a kiosk, or by granting permissions to access all authentication keys to a malicious app in a mobile environment.
Transaction Confirmation can be used as a method to protect against compromised FIDO user devices.

In to components such as the FIDO Client, Server, Authenticators and the mix of software and hardware modules they are comprised of,
the end-to-end security goals also depend on correct implementation and adherence to FIDO security guidance by other participating
components, including web browsers and relying party applications. Some configurations and uses may not be able to meet all security
goals. For example, authenticators may lack a secure display, they may be composed only of unattestable software components, they
may be deliberately designed to roam between untrusted operating environments, and some operating environments may not provide all
necessary security primitives (e.g., secure IPC, application isolation, modern TLS implementations, etc.)

7. Threat Analysis

In the following tables describing threats, we mention the relevant attack class(es) in the left column if the threat might lead to user
impersonation.

7.1 Threats to Client Side

7.1.1 Exploiting User’s pattern matching weaknesses

T-
1.1.1

Homograph Mis-Registration Violates

AC3

The user registers a FIDO authentication key with a fraudulent web site instead of the genuine Relying Party.

Consequences: The fraudulent site may convince the user to disclose a set of non-FIDO credentials sufficient to
allow the attacker to register a FIDO Authenticator under its own control, at the genuine Relying Party, on the users'
behalf, violating [SG-1] Strong User Authentication.

Mitigations: Disclosure of non-FIDO credentials is outside of the scope of the FIDO security measures, but Relying
Parties should be aware that the initial strength of an authentication key is no better than the identity-proofing applied
as part of the registration process.

SG-1

T-
1.1.1

Homograph Mis-Registration Violates

T-
1.1.2

Homograph Mis-Authentication Violates

AC3

The user accidentally browses to a fraudulent web site. The attacker tries to act as man-in-the-middle (MITM) and
requests the user to authenticate. In the case of username/password based authentication this is a typical phishing
attack.

Consequences: The FIDO subsystem will determine that either (a) no FIDO authenticator has been registered with
the fraudulent site or (b) it will use the FIDO Uauth key registered to the fraudulent site - which is different from the
Uauth key for the relying party's site.

Mitigations: FIDO inherently ties keys to the relying party (formally identified by the AppID, and authenticated by
TLS and the CA infrastructure).

SG-1,
SG-4

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications

T-
1.2.1

FIDO Client Corrpution Violates

AC3

Attacker gains ability to execute code in the security context of the FIDO Client.

Consequences: Violation of [SA-4].

Mitigations: When the operating environment on the FIDO user device allows, the FIDO Client should operate in a
privileged and isolated context under [SA-2] to protect itself from malicious modification by anything outside of the
Trusted Computing Base.

SA-4

T-
1.2.2

Logical/Physical User Device Attack Violates

AC3
/
AC5

Attacker gains physical access to the FIDO user device but not the FIDO Authenticator.

Consequences: Possible violation of [SA-4] by installing malicious software or otherwise tampering with the FIDO
user device.

Mitigations: [SM-1] Key Protection prevents the disclosure of authentication keys or other assets during a transient
compromise of the FIDO user device.

A persistent compromise of the FIDO user device can lead to a violation of [SA-4] unless additional protection
measures outside the scope of FIDO are applied to the FIDO user device. (e.g. whole disk encryption and boot-chain
integrity).

SA-4

T-
1.2.3

User Device Account Access Violates

AC3
/
AC4

Attacker gains access to a user's login credentials on the FIDO user device.

Consequences: Authenticators might be remotely abused, or weakly-verifying authenticators might be locally
abused, violating [SG-1] Strong User Authentication and [SG-13] Transaction Non-Repudiation.

Possible violation of [SA-4] by the installation of malicious software.

Mitigations: Relying Parties can use [SM-9] Authenticator Certification and [SM-3] Authenticator Class Attestation to
determine the nature of authenticators and not rely on weak, or weakly-verifying authenticators for high value
operations.

SG-1,
SG-13;
SA-4

T-
1.2.4

App Server Verification Error Violates

AC3

A client application fails to properly validate the remote sever identity, accepts forged or stolen credentials for a
remote server, or allows weak or missing cryptographic protections for the secure channel.

Consequences: An active network adversary can modify the Relying Party's authenticator policy and downgrade
the client's choice of authenticator to make it easier to attack.

An active network adversary can intercept or view FIDO messages intended for the Relying Party. It may be able to
use this ability to violate [SG-12] Parallel Session Resistance, [SG-11] Forgery Resistance or [SG-13] Forwarding
Resistance.

Mitigations: The server can verify [SM-8] Protocol Nonces to detect replayed messages and protect from an
adversary that can read but not modify traffic in a secure channel.

The server can mandate a channel with strong cryptographic protections to prevent message forgery and can verify
a [SM-12] Channel Binding to detect forwarded messages.

SG-11,
SG-12,
SG-13

T-
1.2.5

RP App Corruption Violates

An attacker is able to obtain malicious execution in the security context of the Relying Party client application (e.g.
via Cross-Site Scripting (XSS)) or abuse the secure channel or session identifier after the user has successfully
authenticated. This is a client side attack.

Consequences: The attacker is able to control the users' session, violating [SG-14] Transaction Non-Repudiation.
SG-14

Mitigations: The server can employ [SM-10] Transaction Confirmation to gain additional assurance for high value
operations.

T-
1.2.5

RP App Corruption Violates

T-
1.2.6

Fingerprinting Authenticators Violates

A remote adversary is able to uniquely identify a FIDO user device using the fingerprint of discoverable configuration
of its FIDO Authenticators.

Consequences: The exposed information violates [SG-8] Limited PII, allowing an adversary to violate [SG-7] User
Consent by strongly identfying the user without their knowledge and [SG-4] Unlinkablity by sharing that fingerprint.

Mitigations: [SM-3] Authenticator Class Attestation ensures that the fingerprint of an Authenticator will not be
unique.

For web browsing situations where this threat is most prominent, user agents may provide additional user controls
around the discoverability of FIDO Authenticators.

SG-4,
SG7,
SG-8

T-
1.2.7

App to FIDO Client full MITM attack Violates

AC3

Malicious software on the FIDO user device is able to read, tamper with, or spoof the endpoint of inter-process
communication channels between the FIDO Client and browser or Relying Party application.

Consequences: Adversary is able to subvert [SA-2].

Mitigations: On platforms where [SA-2] is not strong the security of the system may depend on preventing malicious
applications from being loaded onto the FIDO user device. Such protections, e.g. app store policing, are outside the
scope of FIDO.

When using [SM-10] Transaction Confirmation, the user will be presented with the relevant AppID and transaction
text and will be able to evaluate whether or not to consent to the transaction.

SA-2

T-
1.2.8

Authenticator to App Read-Only MITM attack Violates

AC3

An adversary is able to obtain an authenticator's signed protocol response message.

Consequences: The attacker attempts to replay the message to authenticate as the user, violating [SG-1] Strong
User Authentication, [SG-13] Forwarding Resistance and [SG-12] Parallel Session Resistance.

Mitigations: The server can use [SM-8] Protocol Nonces to detect replay of messages and verify [SM-11] Round
Trip Integrity to detect modified messages.

SG-1,
SG-12,
SG-13

T-
1.2.9

Malicious App Violates

AC3

A user installs an application that represents itself as being associated with to one Relying Party application but
actually initiates a protocol conversation with a different Relying Party and attempts to abuse previously registered
authentication keys at that Relying Party.

Consequences: Adversary is able to violate [SG-7] User Consent by misrepresenting the target of authentication.

Other consequences equivalent to [T-1.2.5]

Mitigations: If a [SM-5] Transaction Confirmation Display is present, the user may be able to verify the true target of
an operation.

If the malicious application attempts to communicate directly with an Authenticator that uses [SM-13]
KeyHandleAccessToken, it should not be able to access keys registered by other FIDO Clients.

If the operating environment on the FIDO user device supports it, the FIDO client may be able to determine the
application's identity and verify if it is authorized to target that Relying Party using a [SM-14] AppID Separation.

SG-7

T-
1.2.10

Phishing Attack Violates

AC2

A Phisher convinces the user to enter his PIN used for user verification into an application / web site disclosing the
PIN to the Phisher. In the traditional username/password world this enables the attacker to successfully
impersonate the user (to the relying party).

Consequences: None as the phisher additionally would need access to the Authenticator in order to pass user
verification [SM-1]. In FIDO, the user verification PIN (if user verification is done via PIN) is not known to the relying
party and hence isn't sufficient for user impersonation. If user verification is done using an alternative user
verification method, this applies accordingly.

Mitigations: In FIDO, the Uauth.priv key is used to sign a relying party supplied challenge. without (use) access to
that key, no impersonation is possible.

SG-1

7.1.3 Creating a Fake Client

T-
1.3.1

Malicious FIDO Client Violates

AC3

Attacker convinces users to install and use a malicious FIDO Client.

Consequences: Violation of [SA-4]

Mitigations: Mitigating malicious software installation is outside the scope of FIDO.

If an authenticator implements [SM-1] Key Protection, the user may be able to recover full control of their registered
authentication keys by removing the malicious software from their user device.

When using [SM-10] Transaction Confirmation, the user sees the real AppIDs and transaction text and can decide to
accept or reject the action.

SA-4

T-
1.3.1

Malicious FIDO Client Violates

7.1.4 Threats to FIDO Authenticator

T-
1.4.1

Malicious Authenticator Violates

AC2,
AC3

Attacker convinces users to use a maliciously implemented authenticator.

Consequences: The fake authenticator does not implement any appropriate security measures and is able to
violate all security goals of FIDO.

Mitigations: A user may be unable to distinguish a malicious authenticator, but a Relying Party can use [SM-3]
Authenticator Class Attestation to identify and only allow registration of reliable authenticators that have passed [SM-
9] Authenticator Certification.

A Relying Party can additionally rely on [SM-4] Authenticator Status Checking to check if an attestation presented by
a malicious authenticator has been marked as compromised.

SG-1

T-
1.4.2

Uauth.priv Key Compromise Violates

AC2

Attacker succeeds in extracting a user's cryptographic authentication private key for use in a different context.

Consequences: The attacker could impersonate the user with a cloned authenticator that does not do trustworthy
user verification, violating [SG-1].

Mitigations: [SM-1] Key Protection measures are intended to prevent this.

Each authentication private key is only used for one relying party.

Relying Parties can check [SM-9] Authenticator Certification attributes to determine the type of key protection in use
by a given authenticator class.

Relying Parties can additionally verify the [SM-15] Signature Counter and detect that an authenticator has been
cloned if it ever fails to advance relative to the prior operation.

SG-1

T-
1.4.3

User Verification By-Pass Violates

AC3,
AC5

Attacker could use the cryptographic authentication key (inside the authenticator) either with or without being noticed
by the legitimate user.

Consequences: Attacker could impersonate user, violating [SG-1].

Mitigations: A user can only register and a Relying Party only allow authenticators that perform [SM-1] Key
Protection with an appropriately secure user verification process.

Does not apply to Silent Authenticators (see [FIDOGlossary]).

SG-1

T-
1.4.4

Physical Authenticator Attack Violates

AC2,
AC5,
AC6

Attacker could get physical access to FIDO Authenticator (e.g. by stealing it).

Consequences: Attacker could bring the authenticator in a lab in order to use the authentication key (e.g. by-
passing user verification and knowing the RP related to this key). If this physical attack succeeds, the attacker could
successfully impersonate the user, violating [SG-1] Strong User Authentication.

Attacker can introduce a low entropy situation to recover an ECDSA signature key (or optherwise extract the
Uauth.priv key), violating [SG-9] Attestable Properties if the attestation key is targeted or [SG-1] Strong User
Authentication if a user key is targeted.

Mitigations: [SM-1] Key Protection includes requirements to implement strong protections for key material, including
resiliance to offline attacks and low entropy situations.

Relying Parties should use [SM-3] Authenticator Class Attestation to only accept Authenticators implementing a
sufficiently strong user verification method.

SG-1

T-
1.4.6

Fake Authenticator Violates

Attacker is able to extract the authenticator attestation key from an authenticator, e.g. by neutralizing physical
countermeasures in a laboratory setting.

Consequences: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or software

AC2 device that represents itself as a legitimate one.

Mitigations: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-compromised keys.
Identification of such compromise is outside the strict scope of the FIDO protocols.

SG-9T-
1.4.6

Fake Authenticator Violates

T-
1.4.7

Transaction Confirmation Display Overlay Attack Violates

AC6

Attacker is able to subvert [SM-5] Secure Display functionality (WYSIWYS), perhaps by overlaying the display with
false information.

Consequences: Violation of [SG-14] Transaction Non-Repudiation.

Mitigations: Authenticator implementations must take care to protect in their implementation of a secure display,
e.g. by implementing a distinct hardware display or employing appropriate privileges in the operating environment of
the user device to protect against spoofing and tampering.

[SM-9] Authenticator Certification will provide Relying Parties with metadata about the nature of a transaction
confirmation display information that can be used to assess whether it matches the assurance level and risk
tolerance of the Relying Party for that particular transaction.

SG-14

T-
1.4.8

Signature Algorithm Attack Violates

AC1,
AC2,
AC3,
AC5

A cryptographic attack is discovered against the public key cryptography system used to sign data by the FIDO
authenticator. See also T-1.4.10.

Consequences: Attacker is able to use messages generated by the client to violate [SG-2] Credential Guessing
Resistance.

Mitigations: [SM-8] Protocol Nonces, including client-generated entropy, limit the amount of control any adversary
has over the internal structure of an authenticator.

[SM-1] Key Protection for non-silent authenticators requires user interaction to authorize any operation performed
with the authentication key, severely limiting the rate at which an adversary can perform adaptive cryptographic
attacks.

SG-2

T-
1.4.9

Abuse Functionality Violates

AC2,
AC3,
AC5,
AC6

It might be possible for an attacker to abuse the Authenticator functionality by sending commands with invalid
parameters or invalid commands to the Authenticator.

Consequences: This might lead to e.g., user verification by-pass or potential key extraction.

Mitigations: Proper robustness (e.g. due to testing) of the Authenticator firmware.

SG-1

T-
1.4.10

Random Number prediction Violates

AC2,
AC3,
AC5,
AC6

It might be possible for an attacker to get access to information allowing the prediction of RNG data.

Consequences: This might lead to key compromise situation [T-1.4.2] when using ECDSA (if the k value is used
multiple times or if it is predictable).

Mitigations: Proper robustness of the Authenticator's RNG and verification of the relevant operating environment
parameters (e.g. temperature, ...).

SG-1

T-
1.4.11

Firmware Rollback Violates

Attacker might be able to install a previous and potentially buggy version of the firmware.

Consequences: This might lead to successful attacks, e.g. T-1.4.9.

Mitigations: Proper robustness firmware update and verification method.

SG-1

T-
1.4.12

User Verification Data Injection Violates

AC3,
AC6

Attacker might be able to inject pre-captured user verification data into the Authenticator. For example, if a
password is used as user verification method, the attacker could capture the password entered by the user and
then send the correct password to the Authenticator (by-passing the expected keyboard/PIN pad). Passwords could
be captured ahead of the attack e.g. by convincing the user to enter the password into a malicious app (“phishing”)
or by spying directly or indirectly the password data.

In another example, some malware could play an audio stream which would be recorded by the microphone and
used by a Speaker-Recognition based Authenticator.

Consequences: This might lead to successful user impersonation (if the attacker has access to valid user
verification data).

Mitigations: Use a physically secured user verification input method, e.g. Fingerprint Sensor or Trusted-User-
Interface for PIN entry which cannot be by-passed by malware.

SG-1

T-
1.4.12

User Verification Data Injection Violates
T-

1.4.13
Verification Reference Data Modification Violates

AC3,
AC6

An attacker gains logical or physical access to the Authenticator and modifies Verification Reference Data (e.g.
hashed PIN value, fingerprint templates) stored in the Authenticator and adds reference data known to or
reproducible by the attacker.

Consequences: The attacker would be recognized as the legitimate User and could impersonate the user.

Mitigations: [SM-27] Proper protection of the the verification reference data and biometric data in the
Authenticator.

SG-1

T-
1.4.14

Read access to captured user verification data Violates

AC3,
AC6

The Attacker gained read access to the captured user verification data (e.g. PIN, fingerprint image, ...).

Consequences: The attacker gets access to PII and could disclose it violating [SG-8].

Mitigations: Limiting access to the user verification data to the Authenticator exclusively.

SG-8

T-
1.4.15

Compromised the internal PRNG state and the entropy source Violates

AC1,
AC2,
AC5

In this threat, an attacker compromises the entropy source prior to the Authenticator initially seeding the PRNG
during initialization or otherwise compromises the internal PRNG state, and the attacker is able to know or specify
all future entropy inputs to the PRNG. No PRNG is able to recover to a secure status under this threat, but it serves
as a useful point for comparison.

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14].

Mitigations: This constitutes a complete compromise of the RNG, with no ability to recover, so mitigation for this
threat involves reducing the impact of a compromised RNG. This is partially mitigated by using an allowed random
number generator that allows secure integration of additional input [SM-16] and introduction of data derived from
the RP challenge additional input to the PRNG, which can help so long as the attacker has not additionally
compromised the TLS session or the ASM / Authenticator link. Using the deterministic signature generation
methods (e.g., RFC 6979) can reduce the risk of compromise of existing keys during the signature process, as can
using the private key and hash of the signed message as additional input to the PRNG during signature generation.
Prevention of non-scalable versions of this style of attack is at least partially addressed by [SM-17] and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.16

Compromised entropy source after successful seeding during initialization Violates

AC1,
AC2,
AC5

In this threat, an attacker gains the ability to influence the Authenticator’s entropy source, but only after the initial
seeding has been conducted (e.g., if initial seeding occurred prior to the attack and / or as per-Authenticator factory
injection of entropy).

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by using an allowed PRNG which retains PRNG state between power cycles; i.e.,
which conserves PRNG state even when being reseeded [SM-16]. Prevention of non-scalable versions of this style
of attack is at least partially addressed by [SM-17] and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.17

Compromised the internal PRNG state, but not the entropy source Violates

AC1,
AC2,
AC5

In this threat, an attacker compromises the entropy source prior to seeding the PRNG or otherwise compromises
the internal PRNG state, but then at some point, the attacker no longer can access / control the entropy source.

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14]

Mitigations: This can be mitigated by Authenticators reseeding periodically from an internal entropy source [SM-
16]. As a note, this imposes a total number of random number generator requests prior to a required reseed event;
in the event that the Authenticator does not have an entropy source internally, this may act as a hard limit on the
number of registrations / authentications that such an Authenticator can perform. Prevention of non-scalable
versions of this style of attack is at least partially addressed by [SM-17] and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.18

Bad Key Generation Violates

AC1,
AC2,
AC5

In this threat, random chance or active attack causes the key generated to be cryptographically flawed; e.g., an
RSA key that can be factored using the Pollard p-1 algorithm more quickly than with the General Number Field
Sieve. See also T-1.4.21.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14]

Mitigations: This is mitigated by requiring use of an allowed random number generator (in the case of certified
authenticators), requiring that keys be generated in the way required in the relevant standard specified in the
Allowed Cryptography List [SM-16], and making the key generation process resistant to tampering by the attacker
[SM-18].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

T-1.4.19 Local external side channel attacks Violates

In this threat, an attacker with possession of the Authenticator may be able to extract keys using timing,

AC2
(associated
with shared
keys), AC5

power, RF, or near-field analysis. The impact depends on the key or secret recovered.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by the side channel resistance security measure [SM-17].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

T-1.4.19 Local external side channel attacks Violates

T-1.4.20 Internal side channel attacks Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker controlling a process running on the same hardware environment as the
Authenticator may be able to recover keys by using information leaked by hardware or operating system
characteristics (e.g., how often the attacker’s process is scheduled, the state of the L1, L2 caches, etc.).

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by the side channel resistance security measure [SM-17].

SG-1,
SG-4,
SG-11,
SG-14

T-1.4.21 Error injection during key or signature generation Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker is able to inject an error in the key or signature generation process that leaks part or
all of the private key.

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by [SM-18] and [SM-28].

SG-1,
SG-4,
SG-11,
SG-14

T-
1.4.22

Birthday Paradox Collision Violates

AC3,
AC6

In this threat, a set of randomly generated parameters collide. The probability of this occurrence can be bounded
using analysis similar to that associated with the classical Birthday Paradox.

Consequences: May undermine [SG-1], [SG-11], [SG-14].

Mitigations: Establishing a bounded number of allowable outputs based on the size of the randomly generated
value [SM-19].

SG-1,
SG-11,
SG-14

T-
1.4.23

Privacy Reduction Violates

AC1

In this threat, a small number of Authenticators share an attestation key which leaks information about the user
across Relying Parties.

Consequences: May undermine [SG-4].

Mitigations: This is mitigated by [SM-20].

SG-4

T-
1.4.24

Covert Channel Violates

AC1

In this threat, an Authenticator is malicious (either by design, or after having been independently compromised) and
it is configured to leak secret or identifying data within apparently normal exchanges, or to other processes on the
same hardware platform as the Authenticator.

Consequences: May undermine [SG-1], [SG-4], [SG-5], [SG-6], [SG-8], [SG-11], [SG-14].

Mitigations: Note: This is an interesting thought experiment; use of random nonces and other non-deterministic
elements make protection against this threat problematic.

SG-1,
SG-4,
SG-5,
SG-6,
SG-8,
SG-11,
SG-14

T-
1.4.25

Subsitution of Protected Information Violates

AC1,
AC3,
AC5,
AC6

In this threat, an attacker substitutes protected information, either by modifying it piecemeal, or by completely
substituting it with another value. (Some encryption modes allow an attacker to target bit-level changes to the
plaintext. Authenticated data may also have been replaced with data that had previously been authenticated in the
same way.)

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Mitigations: This threat is mitigated by [SM-1], [SM-16], [SM-21].

SG-1,
SG-4,
SG-11,
SG-14

T-
1.4.26

Compromise of Protected Information Violates

AC1,
AC2,
AC5,
AC6

In this threat, an attacker recovers data that should be protected by the Authenticator.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-5], [SG-7], [SG-8], [SG-11], [SG-14].

Mitigations: This threat is mitigated by using allowed cryptographic primitives [SM-1], [SM-16].

SG-1,
SG-2,
SG-4,
SG-5,
SG-7,
SG-8,
SG-11,
SG-14

T-
1.4.27

Signature or registration counter non-monotonicity Violates

AC1

In this threat, an attacker may be able to cause these counters to be reset, to roll over, or otherwise to decrease in
value.

Consequences: May undermine [SG-1], [SG-12], [SG-14].

Mitigations: This threat is mitigated by [SM-15].

SG-1,
SG-12,
SG-14

T-
1.4.28

Hostile ASM / Client Violates

AC3,
AC5,
AC6

In this threat, the Authenticator support infrastructure is hostile, and can feed arbitrary data to the Authenticator.

Consequences: May undermine [SG-4], [SG-5], [SG-7], [SG-8].

Mitigations: This threat is mitigated by [SM-10], [SM-13].

SG-4,
SG-5,
SG-7,
SG-8

T-1.4.29 Debug Interface Violates

AC2
(associated
with shared
keys), AC3
(associated
with shared
keys), AC5,
AC6

In this threat, the Authenticator has a hardware or software debugging interface that is not completely disabled
prior to distribution of the Authenticator (e.g., pads for a JTAG port).

Consequences: May undermine [SG-1], [SG-4], [SG-5], [SG-6], [SG-8], [SG-11], [SG-14].

Mitigations: This threat is mitigated by [SM-18], [SM-22], and [SM-28].

SG-1,
SG-4,
SG-5,
SG-6,
SG-8,
SG-11,
SG-14

T-
1.4.30

Fault induced by malformed input Violates

AC2,
AC3,
AC5,
AC6

In this threat, the Authenticator behaves in an unexpected fashion due to an error in processing malformed input.
The result of this style of attack is poorly controllable, absent strong internal segmentation of the Authenticator.

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-6], [SG-7], [SG-8], [SG-11], [SG-14], [SG-16].

Mitigations: This threat is mitigated by [SM-1], [SM-2], [SM-4], [SM-5], [SM-10], [SM-5], [SM-23], [SM-13], [SM-26].

SG-1,
SG-2,
SG-3,
SG-4,
SG-6,
SG-7,
SG-8,
SG-11,
SG-14,
SG-16

T-1.4.31 Fault Injection Attack Violates

AC2
(associated
with shared
keys), AC5,
AC6

In this threat, an attacker subjects the Authenticator to conditions that induce hardware faults (e.g., exposure
to photons or charged particles, inducing variations in supply voltage or external clock, altering the
temperature, etc.) in an attempt to subvert some logical or physical protection. The result of this style of attack
is poorly controllable, absent active detection and response functionality within the Authenticator. This is
related to T-1.4.21, but applies more broadly.

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-6], [SG-7], [SG-8], [SG-11], [SG-14],
[SG-16].

Mitigations: Mitigated by [SM-1], [SM-2], [SM-4], [SM-5], [SM-10], [SM-5], [SM-18], [SM-23], [SM-13], [SM-
26], [SM-28].

SG-1,
SG-2,
SG-3,
SG-4,
SG-6,
SG-7,
SG-8,
SG-11,
SG-14,
SG-16

T-
1.4.32

Remote Timing Attacks Violates

AC2,
AC5

In this threat, an attacker may be able to extract keys using a timing attack from a remote location. The impact
depends on the key or secret recovered.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14].

Mitigations: This threat is mitigated by the remote timing attack resistance security measure [SM-29].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

7.1.5 Threats to Relying Party

7.1.5.1 Threats to FIDO Server Data

T-
2.1.1

FIDO Server DB Read Attack Violates

Attacker could obtains read-access to FIDO Server registration database.

Consequences:Attacker can access all cryptographic key handles and authenticator characteristics associated with
a username. If an authenticator or combination of authenticators is unique, they might use this to try to violate [SG-2]
Unlinkability.

Attacker attempts to perform factorization of public keys by virtue of having access to a large corpus of data,
violating [SG-5] Verifier Leak Resiliance and [SG-2] Credential Guessing Resilience.

Mitigations: [SM-2] Unique Authentication Keys help prevent disclosed key material from being useful against any SG-2,

other Relying Party, even if successfully attacked.

The use of an [SM-6] Cryptographically Secure Verifier Database helps assure that it is infeasible to attack any
leaked verifier keys.

[SM-9] Authenticator Certification along with [SM-16] should help prevent authenticators with poor entropy from
entering the market, reducing the likelihood that even a large corpus of key material will be useful in mounting
attacks.

SG-5T-
2.1.1

FIDO Server DB Read Attack Violates

T-
2.1.2

FIDO Server DB Modification Attack Violates

AC1

Attacker gains write-access to the FIDO Server registration database.

Consequences: Violation of [SA-6]

The attacker may inject a key registration under its control, violating [SG-1] Strong User Authentication.

Mitigations: Mitigating such attacks is outside the scope of the FIDO specifications. The Relying Party must
maintain the integrity of any information it relies up on to identify a user as part of [SA-6].

SA-6

T-
2.2.1

Web App Malware Violates

Attacker gains ability to execute code in the security context of the Relying Party web application or FIDO Server.

Consequences: Attacker is able to violate [SG-1], [SG-10], [SG-9] and any other Relying Party controls.

Mitigations: The consequences of such an incident are limited to the relationship between the user and that
particular Relying Party by [SM-1], [SM-2], and [SM-5].

Even within the Relying Party to user relationship, a user can be protected by [SM-10] Transaction Confirmation if
the compromise does not include the users' computing environment.

SG-1,
SG-9,
SG-10

T-
2.2.2

Linking through compromised Relying Party database Violates

AC1

In this threat, a Relying Party is able to access another Relying Party’s database (either because the Relying Parties
are collaborating or because of the compromise of another Relying Party’s database). The malicious party then
sends Key Handles (which may contain a wrapped private key) from the other Relying Party’s database in an
attempt to link the two separate accounts to the same Authenticator (thus user).

Consequences: May undermine [SG-1], [SG-4].

Mitigations: This threat is mitigated by [SM-1], [SM-2], [SM-5], [SM-23].

SG-1,
SG-4

7.1.6 Threats to the Secure Channel between Client and Relying Party

7.1.6.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

FIDO takes as a base assumption that [SA-3] applications on the user device are able to establish secure channels that provide
trustworthy server authentication, and confidentiality and integrity for messages. e.g. through TLS. [T-1.2.4] Discusses some
consequences of violations of this assumption due to implementation errors in a browser or client application, but other threats exist in
different layers.

T-
3.1.1

TLS Proxy Violates

AC3

The FIDO user device is administratively configured to connect through a proxy that terminates TLS connections.
The client trusts this device, but the connection between the user and FIDO server is no longer end-to-end secure.

Consequences: Any such proxies introduce a new party into the protocol. If this party is untrustworthy,
consequences may be as for [T-1.2.4].

Mitigations: Mitigations for [T-1.2.4] apply, except that the proxy is considered trusted by the client, so certain
methods of [SM-12] Channel Binding may indicate a compromised channel even in the absence of an attack.
Servers should use multiple methods and adjust their risk scoring appropriately. A trustworthy client that reports a
server certificate that is unknown to the server and does not chain to a public root may indicate a client behind such
a proxy. A client reporting a server certificate that is unknown to the server but validates for the server's identity
according to commonly used public trust roots is more likely to indicate [T-3.1.2].

SG-11,
SG-12,
SG-13

T-
3.1.2

Fraudulent TLS Server Certificate Violates

AC3

An attacker is able to obtain control of a certificate credential for a Relying Party, perhaps from a compromised
Certification Authority or poor protection practices by the Relying Party.

Consequences:As for [T-1.2.4].

Mitigations:As for [T-1.2.4].

SG-11,
SG-12,
SG-13

T-
3.1.3

Protocol level real-time MITM attack Violates

AC3

An adversary can intercept and manipulate network packets sent from the relying party to the client. The adversary
uses this capability to (a) terminate the underlying TLS session from the client at the adversary and to (b)
simultaneously use another TLS session from the adversary to the relying party. In the traditional
username/password world, this allows the adversary to intercept the username and the password and then
successfully impersonate the user at the relying party.

Consequences: None if FIDO channelBinding [SM-12] or transaction confirmation [SM-10] are used.

Mitigations: In the case of channelBinding [SM-12], the FIDO server will detect the MITM in the TLS channel by
comparing the channel binding information provided by the client and the channel binding information retrieved
locally by the server.

In the case of transaction confirmation [SM-10], the user verifies and approves a particular transaction. The
adversary could modify the transaction before approval. This would lead to rejection by the user. Alternatively, the
adversary could modify the transaction after approval. This will break the signature in the transaction confirmation
response. The FIDO Server will not accept it as a consequence.

HTTP Public Key Pinning (RFC7469) can also be used to mitigate this attack (outside the FIDO stack).

SG-11,
SG-12,
SG-13

T-
3.1.3

Protocol level real-time MITM attack Violates

7.1.7 Threats to the Infrastructure

7.1.7.1 Threats to FIDO Authenticator Manufacturers

T-
4.1.1

Manufacturer Level Attestation Key Compromise Violates

AC2

Attacker obtains control of an attestation key or attestation key issuing key.

Consequences: Same as [T-1.4.6]: Attacker can violate [SG-9] Attestable Properties by creating a malicious
hardware or software device that represents itself as a legitimate one.

Mitigations: Same as [T-1.4.6]: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-
compromised keys. Identification of such compromise is outside the strict scope of the FIDO protocols.

SG-9

T-
4.1.2

Malicious Authenticator HW Violates

AC1,
AC2,
AC3,
AC5,
AC6

FIDO Authenticator manufacturer relies on hardware or software components that generate weak cryptographic
authentication key material or contain backdoors.

Consequences: Effective violation of [SA-1] in the context of such an Authenticator.

Mitigations: The process of [SM-9] Authenticator Certification may reveal a subset of such threats, but it is not
possible that all such can be revealed with black box testing and white box examination may be is economically
infeasible. Users and Relying Parties with special concerns about this class of threat must exercise their own
necessary caution about the trustworthiness and verifiability of their vendors and supply chain. [SM-24] builds
confidence that an Authenticator is not malicious or poorly implemented.

SA-1

7.1.7.2 Threats to FIDO Server Vendors

T-
4.2.1

Vendor Level Trust Anchor Injection Attack Violates

Attacker adds malicious trust anchors to the trust list shipped by a FIDO Server vendor.

Consequences: Attacker can deploy fake Authenticators which Relying Parties cannot detect as such, which do not
implement any appropriate security measures, and is able to violate all security goals of FIDO.

Mitigations: This type of supply chain threat is outside the strict scope of the FIDO protocols and violates [SA-6].
Relying Parties can verify their trust list against the data published by the FIDO Alliance Metadata Service
[FIDOMetadataService] (see https://fidoalliance.org/mds).

SA-6

7.1.7.3 Threats to FIDO Metadata Service Operators

T-
4.3.1

Metadata Service Signing Key Compromise Violates

The attacker gets access to the private Metadata TOC signing key.

Consequences: The attacker could sign invalid Metadata. The attacker could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).

make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)

inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust
anchor and the cross-signed original attestation root certificate. This malicious trust anchors could be used to
sign attestation certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy
authenticators but not protecting their keys as stated in the metadata.

Mitigations: The Metadata Service operator should protect the Metadata signing key appropriately, e.g. using a
hardware protected key storage.

Relying parties could use out-of-band methods to cross-check Metadata Statements with the respective vendors and

SG-9

cross-check the revocation state of the Metadata signing key with the provider of the Metadata Service.T-
4.3.1

Metadata Service Signing Key Compromise Violates

T-
4.3.2

Metadata Statement Data Injection Violates

An attacker injects malicious Authenticator data into the Metadata Statement.

Consequences: The attacker could make the Metadata Service operator sign invalid Metadata Statements. The
attacker could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).

make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)

inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust
anchor and the cross-signed original attestation root certificate. This malicious trust anchors could be used to
sign attestation certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy
authenticators but not protecting their keys as stated in the metadata.

Mitigations: The Metadata Service operator could carefully review the delta between the old and the new Metadata
Statements. Authenticator vendors could verify the published Metadata Statements related to their Authenticators.

SG-9

7.1.8 Threats Specific to Second Factor Authenicators (UAF / U2F)

T-
5.1.1

Error Status Side Channel Violates

Relying parties issues an authentication challenge to an authenticator and can infer from error status if it is already
registered.

Consequences: UAF Silent authenticators / U2F authenticators not requiring user interaction for generating a
signed response may be used to track users without their consent by issuing a pre-authentication challenge to them,
revealing the identity of an otherwise anonymous user. Users would be identifiable by relying parties without their
knowledge, violating [SG-7].

Mitigations: The U2F specification recommends that browsers prompt users whether to allow this operation using
mechanisms similar to those defined for other privacy sensitive operations like Geolocation.

SG-7

T-
5.1.2

Malicious RP Violates

AC1

Malicious relying party mounts a cryptographic attack on a key handle it is storing.

Consequences: If the Relying Party is able to recover the contents of the key handle, it might forge logs of protocol
exchanges to associate the user with actions he or she did not perform.

If the Relying Party is able to recover the key used to wrap a key handle, that key is likely used for all key handles,
and hence might be used to decrypt key handles stored with other Relying Parties and violate [SG-1] Strong User
Authentication.

Mitigations: None. U2F depends on [SA-1] to hold for key wrapping operations.

SG-1

T-
5.1.3

Physical Attack on a User Presence Authenticator Violates

AC5

Attacker gains physical access to U2F authenticator or a UAF authenticator with only user presence check (e.g., by
stealing it).

Consequences: Same as for [T-1.4.4].

Such authenticators have weak local user verification. If the attacker can guess the username and password/PIN,
they can impersonate the user, violating [SG-1] Strong User Authentication.

Mitigations: Relying Parties can use strong additional factors.

Relying Parties should provide users a means to revoke keys associated with a lost device.

SG-1

T-5.1.4 Physical Attack Violates

AC2
(associated
with shared
keys), AC5

In this threat, keys or other sensitive information is read out by directly accessing it from the authenticator that
the attacker has physically compromised.

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Authenticator with user presence check have weak local user verification. If the attacker can guess the
username and password/PIN, they can impersonate the user, violating [SG-1] Strong User Authentication.

Mitigations: Mitigated by resistance to injected faults [SM-18] and [SM-28].

SG-1,
SG-4,
SG-11,
SG-14

7.2 Acknowledgements

We thank iSECpartners for their review of, and contributions to, this document.

A. References

https://www.isecpartners.com

A.1 Informative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Implementation Draft.
URL: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html

[PasswordAuthSchemesKeyIssues]
Chwei-Shyong Tsai; Cheng-Chi Lee; Min-Shiang Hwang. Password Authentication Schemes: Current Status and Key Issues.
September 2006. URL: http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf

[QuestToReplacePasswords]
Joseph Bonneau; Cormac Herley; Paul C. van Oorschot; Frank Stajano. The Quest to Replace Passwords: A Framework for
Comparative Evaluation of Web Authentication Schemes. March 2012. URL:
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[U2FOverview]
S. Srinivas; D. Balfanz; E. Tiffany. FIDO U2F Overview v1.0. Draft. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-
20170411/fido-u2f-overview-v1.2-ps-20170411.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed
Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-metadata-service-v2.0-ps-20170927.html
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

FIDO Registry of Predefined Values

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-registry-v2.0-ps-
20170927.html

Previous version:
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-registry-v2.0-rd-
20161004.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by FIDO protocols. The values
defined in this document are referenced by various FIDO specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications and
the latest revision of this technical report can be found in the FIDO Alliance specifications
index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third
party intellectual property rights, including without limitation, patent rights. The FIDO

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-registry-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-registry-v2.0-rd-20161004.html
mailto://rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all
such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a
Proposed Standard. It is a stable document and may be used as reference material or cited
from another document. FIDO Alliance's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Conformance

2. Overview

3. Authenticator Characteristics
3.1 User Verification Methods

3.2 Key Protection Types

3.3 Matcher Protection Types

3.4 Authenticator Attachment Hints

3.5 Transaction Confirmation Display Types

3.6 Tags used for crypto algorithms and types
3.6.1 Authentication Algorithms

3.6.2 Public Key Representation Formats

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

FIDO specific terminology used in this document is defined in [FIDOGlossary].

Some entries are marked as "(optional)" in this spec. The meaning of this is defined in
other FIDO specifications referring to this document.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
and notes in this specification are non-normative. Everything else in this specification is
normative.

The key words must, must not, required, should, should not, recommended, may, and
optional in this specification are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of FIDO-specific constants common to multiple FIDO
protocol families. It is expected that, over time, new constants will be added to this registry.
For example new authentication algorithms and new types of authenticator characteristics
will require new constants to be defined for use within the specifications.

3. Authenticator Characteristics

This section is normative.

3.1 User Verification Methods

The USER_VERIFY constants are flags in a bitfield represented as a 32 bit long integer. They
describe the methods and capabilities of an UAF authenticator for locally verifying a user.
The operational details of these methods are opaque to the server. These constants are
used in the authoritative metadata for an authenticator, reported and queried through the
UAF Discovery APIs, and used to form authenticator policies in UAF protocol messages.

All user verification methods must be performed locally by the authenticator in order to meet
FIDO privacy principles.

USER_VERIFY_PRESENCE 0x00000001
This flag must be set if the authenticator is able to confirm user presence in any
fashion. If this flag and no other is set for user verification, the guarantee is only that
the authenticator cannot be operated without some human intervention, not
necessarily that the sensing of "presence" provides any level of user verification (e.g.
a device that requires a button press to activate).

USER_VERIFY_FINGERPRINT 0x00000002
This flag must be set if the authenticator uses any type of measurement of a
fingerprint for user verification.

USER_VERIFY_PASSCODE 0x00000004
This flag must be set if the authenticator uses a local-only passcode (i.e. a passcode
not known by the server) for user verification.

USER_VERIFY_VOICEPRINT 0x00000008
This flag must be set if the authenticator uses a voiceprint (also known as speaker
recognition) for user verification.

USER_VERIFY_FACEPRINT 0x00000010
This flag must be set if the authenticator uses any manner of face recognition to verify
the user.

USER_VERIFY_LOCATION 0x00000020
This flag must be set if the authenticator uses any form of location sensor or
measurement for user verification.

USER_VERIFY_EYEPRINT 0x00000040
This flag must be set if the authenticator uses any form of eye biometrics for user
verification.

USER_VERIFY_PATTERN 0x00000080
This flag must be set if the authenticator uses a drawn pattern for user verification.

USER_VERIFY_HANDPRINT 0x00000100
This flag must be set if the authenticator uses any measurement of a full hand
(including palm-print, hand geometry or vein geometry) for user verification.

USER_VERIFY_NONE 0x00000200
This flag must be set if the authenticator will respond without any user interaction (e.g.
Silent Authenticator).

USER_VERIFY_ALL 0x00000400
If an authenticator sets multiple flags for user verification types, it may also set this flag
to indicate that all verification methods will be enforced (e.g. faceprint AND voiceprint).
If flags for multiple user verification methods are set and this flag is not set, verification
with only one is necessary (e.g. fingerprint OR passcode).

3.2 Key Protection Types

The KEY_PROTECTION constants are flags in a bit field represented as a 16 bit long integer.
They describe the method an authenticator uses to protect the private key material for FIDO
registrations. Refer to [UAFAuthnrCommands] for more details on the relevance of keys and
key protection. These constants are used in the authoritative metadata for an authenticator,
reported and queried through the UAF Discovery APIs, and used to form authenticator
policies in UAF protocol messages.

When used in metadata describing an authenticator, several of these flags are exclusive of
others (i.e. can not be combined) - the certified metadata may have at most one of the
mutually exclusive bits set to 1. When used in authenticator policy, any bit may be set to 1,
e.g. to indicate that a server is willing to accept authenticators using either
KEY_PROTECTION_SOFTWARE or KEY_PROTECTION_HARDWARE.

KEY_PROTECTION_SOFTWARE 0x0001
This flag must be set if the authenticator uses software-based key management.
Exclusive in authenticator metadata with KEY_PROTECTION_HARDWARE,
KEY_PROTECTION_TEE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_HARDWARE 0x0002
This flag should be set if the authenticator uses hardware-based key management.
Exclusive in authenticator metadata with KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_TEE 0x0004
This flag should be set if the authenticator uses the Trusted Execution Environment
[TEE] for key management. In authenticator metadata, this flag should be set in
conjunction with KEY_PROTECTION_HARDWARE. Mutually exclusive in authenticator
metadata with KEY_PROTECTION_SOFTWARE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_SECURE_ELEMENT 0x0008
This flag should be set if the authenticator uses a Secure Element [SecureElement] for
key management. In authenticator metadata, this flag should be set in conjunction with
KEY_PROTECTION_HARDWARE. Mutually exclusive in authenticator metadata with
KEY_PROTECTION_TEE, KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_REMOTE_HANDLE 0x0010
This flag must be set if the authenticator does not store (wrapped) UAuth keys at the
client, but relies on a server-provided key handle. This flag must be set in conjunction
with one of the other KEY_PROTECTION flags to indicate how the local key handle
wrapping key and operations are protected. Servers may unset this flag in
authenticator policy if they are not prepared to store and return key handles, for
example, if they have a requirement to respond indistinguishably to authentication
attempts against userIDs that do and do not exist. Refer to [UAFProtocol] for more
details.

3.3 Matcher Protection Types

The MATCHER_PROTECTION constants are flags in a bit field represented as a 16 bit long
integer. They describe the method an authenticator uses to protect the matcher that
performs user verification. These constants are used in the authoritative metadata for an
authenticator, reported and queried through the UAF Discovery APIs, and used to form
authenticator policies in UAF protocol messages. Refer to [UAFAuthnrCommands] for more
details on the matcher component.

NOTE

These flags must be set according to the effective security of the keys, in order to
follow the assumptions made in [FIDOSecRef]. For example, if a key is stored in a
secure element but software running on the FIDO User Device could call a function in
the secure element to export the key either in the clear or using an arbitrary wrapping
key, then the effective security is KEY_PROTECTION_SOFTWARE and not
KEY_PROTECTION_SECURE_ELEMENT.

NOTE

MATCHER_PROTECTION_SOFTWARE 0x0001
This flag must be set if the authenticator's matcher is running in software. Exclusive in
authenticator metadata with MATCHER_PROTECTION_TEE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_TEE 0x0002
This flag should be set if the authenticator's matcher is running inside the Trusted
Execution Environment [TEE]. Mutually exclusive in authenticator metadata with
MATCHER_PROTECTION_SOFTWARE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_ON_CHIP 0x0004
This flag should be set if the authenticator's matcher is running on the chip. Mutually
exclusive in authenticator metadata with MATCHER_PROTECTION_TEE,
MATCHER_PROTECTION_SOFTWARE

3.4 Authenticator Attachment Hints

The ATTACHMENT_HINT constants are flags in a bit field represented as a 32 bit long. They
describe the method an authenticator uses to communicate with the FIDO User Device.
These constants are reported and queried through the UAF Discovery APIs
[UAFAppAPIAndTransport], and used to form Authenticator policies in UAF protocol
messages. Because the connection state and topology of an authenticator may be transient,
these values are only hints that can be used by server-supplied policy to guide the user
experience, e.g. to prefer a device that is connected and ready for authenticating or
confirming a low-value transaction, rather than one that is more secure but requires more
user effort.

ATTACHMENT_HINT_INTERNAL 0x0001
This flag may be set to indicate that the authenticator is permanently attached to the
FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able to be
used both locally and remotely. In such a case, the FIDO client must filter and
exclusively report only the relevant bit during Discovery and when performing policy
matching.

This flag cannot be combined with any other ATTACHMENT_HINT flags.

ATTACHMENT_HINT_EXTERNAL 0x0002
This flag may be set to indicate, for a hardware-based authenticator, that it is
removable or remote from the FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able to be
used both locally and remotely. In such a case, the FIDO UAF Client must filter and
exclusively report only the relevant bit during discovery and when performing policy
matching.
This flag must be combined with one or more other ATTACHMENT_HINT flag(s).

ATTACHMENT_HINT_WIRED 0x0004
This flag may be set to indicate that an external authenticator currently has an
exclusive wired connection, e.g. through USB, Firewire or similar, to the FIDO User

These flags must be set according to the effective security of the matcher, in order to
follow the assumptions made in [FIDOSecRef]. For example, if a passcode based
matcher is implemented in a secure element, but the passcode is expected to be
provided as unauthenticated parameter, then the effective security is
MATCHER_PROTECTION_SOFTWARE and not MATCHER_PROTECTION_ON_CHIP.

NOTE

These flags are not a mandatory part of authenticator metadata and, when present,
only indicate possible states that may be reported during authenticator discovery.

Device.
ATTACHMENT_HINT_WIRELESS 0x0008

This flag may be set to indicate that an external authenticator communicates with the
FIDO User Device through a personal area or otherwise non-routed wireless protocol,
such as Bluetooth or NFC.

ATTACHMENT_HINT_NFC 0x0010
This flag may be set to indicate that an external authenticator is able to communicate
by NFC to the FIDO User Device. As part of authenticator metadata, or when reporting
characteristics through discovery, if this flag is set, the ATTACHMENT_HINT_WIRELESS flag
should also be set as well.

ATTACHMENT_HINT_BLUETOOTH 0x0020
This flag may be set to indicate that an external authenticator is able to communicate
using Bluetooth with the FIDO User Device. As part of authenticator metadata, or
when reporting characteristics through discovery, if this flag is set, the
ATTACHMENT_HINT_WIRELESS flag should also be set.

ATTACHMENT_HINT_NETWORK 0x0040
This flag may be set to indicate that the authenticator is connected to the FIDO User
Device over a non-exclusive network (e.g. over a TCP/IP LAN or WAN, as opposed to
a PAN or point-to-point connection).

ATTACHMENT_HINT_READY 0x0080
This flag may be set to indicate that an external authenticator is in a "ready" state. This
flag is set by the ASM at its discretion.

ATTACHMENT_HINT_WIFI_DIRECT 0x0100
This flag may be set to indicate that an external authenticator is able to communicate
using WiFi Direct with the FIDO User Device. As part of authenticator metadata and
when reporting characteristics through discovery, if this flag is set, the
ATTACHMENT_HINT_WIRELESS flag should also be set.

3.5 Transaction Confirmation Display Types

The TRANSACTION_CONFIRMATION_DISPLAY constants are flags in a bit field represented as a 16
bit long integer. They describe the availability and implementation of a transaction
confirmation display capability required for the transaction confirmation operation. These
constants are used in the authoritative metadata for an authenticator, reported and queried
through the UAF Discovery APIs, and used to form authenticator policies in UAF protocol
messages. Refer to [UAFAuthnrCommands] for more details on the security aspects of
TransactionConfirmation Display.

TRANSACTION_CONFIRMATION_DISPLAY_ANY 0x0001
This flag must be set to indicate that a transaction confirmation display, of any type, is
available on this authenticator. Other TRANSACTION_CONFIRMATION_DISPLAY flags may
also be set if this flag is set. If the authenticator does not support a transaction
confirmation display, then the value of TRANSACTION_CONFIRMATION_DISPLAY must be set
to 0.

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE 0x0002
This flag must be set to indicate, that a software-based transaction confirmation
display operating in a privileged context is available on this authenticator.

A FIDO client that is capable of providing this capability may set this bit (in conjunction

NOTE

Generally this should indicate that the device is immediately available to
perform user verification without additional actions such as connecting the
device or creating a new biometric profile enrollment, but the exact meaning
may vary for different types of devices. For example, a USB authenticator may
only report itself as ready when it is plugged in, or a Bluetooth authenticator
when it is paired and connected, but an NFC-based authenticator may always
report itself as ready.

with TRANSACTION_CONFIRMATION_DISPLAY_ANY) for all authenticators of type
ATTACHMENT_HINT_INTERNAL, even if the authoritative metadata for the authenticator
does not indicate this capability.

This flag is mutually exclusive with TRANSACTION_CONFIRMATION_DISPLAY_TEE and
TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_TEE 0x0004
This flag should be set to indicate that the authenticator implements a transaction
confirmation display in a Trusted Execution Environment ([TEE], [TEESecureDisplay]).
This flag is mutually exclusive with
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and
TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE 0x0008
This flag should be set to indicate that a transaction confirmation display based on
hardware assisted capabilities is available on this authenticator. This flag is mutually
exclusive with TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and
TRANSACTION_CONFIRMATION_DISPLAY_TEE.

TRANSACTION_CONFIRMATION_DISPLAY_REMOTE 0x0010
This flag should be set to indicate that the transaction confirmation display is provided
on a distinct device from the FIDO User Device. This flag can be combined with any
other flag.

3.6 Tags used for crypto algorithms and types

These tags indicate the specific authentication algorithms, public key formats and other
crypto relevant data.

3.6.1 Authentication Algorithms

The ALG_SIGN constants are 16 bit long integers indicating the specific signature algorithm
and encoding.

ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW 0x0001
An ECDSA signature on the NIST secp256r1 curve which must have raw R and S
buffers, encoded in big-endian order. This is the signature encoding as specified in
[ECDSA-ANSI].

I.e. [R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_SECP256R1_ECDSA_SHA256_DER 0x0002

NOTE

Software based transaction confirmation displays might be implemented within
the boundaries of the ASM rather than by the authenticator itself [UAFASM].

NOTE

FIDO UAF supports RAW and DER signature encodings in order to allow small
footprint authenticator implementations.

DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the NIST secp256r1
curve.

I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_RSASSA_PSS_SHA256_RAW 0x0003
RSASSA-PSS [RFC3447] signature must have raw S buffers, encoded in big-endian
order [RFC4055] [RFC4056]. The default parameters as specified in [RFC4055] must
be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256

Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

Trailer Field value of 1, which represents the trailer field with hexadecimal value
0xBC.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

ALG_SIGN_RSASSA_PSS_SHA256_DER 0x0004
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the
RSASSA-PSS [RFC3447] signature [RFC4055] [RFC4056]. The default parameters as
specified in [RFC4055] must be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256

Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

Trailer Field value of 1, which represents the trailer field with hexadecimal value
0xBC.

I.e. a DER encoded OCTET STRING (including its tag and length bytes).

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

ALG_SIGN_SECP256K1_ECDSA_SHA256_RAW 0x0005
An ECDSA signature on the secp256k1 curve which must have raw R and S buffers,
encoded in big-endian order.

I.e.[R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_SECP256K1_ECDSA_SHA256_DER 0x0006
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the secp256k1
curve.

I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_SM2_SM3_RAW 0x0007 (optional)
Chinese SM2 elliptic curve based signature algorithm combined with SM3 hash
algorithm [OSCCA-SM2][OSCCA-SM3]. We use the 256bit curve [OSCCA-SM2-curve-
param].

This algorithm is suitable for authenticators using the following key representation
format: ALG_KEY_ECC_X962_RAW.

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_RAW 0x0008
This is the EMSA-PKCS1-v1_5 signature as defined in [RFC3447]. This means that
the encoded message EM will be the input to the cryptographic signing algorithm
RSASP1 as defined in [RFC3447]. The result s of RSASP1 is then encoded using
function I2OSP to produce the raw signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T

with the padding string PS with length=emLen - tLen - 3 octets having the value
0xff for each octet, e.g. (0x) ff ff ff ff ff ff ff ff

with the DER [ITU-X690-2008] encoded DigestInfo value T: (0x)30 31 30 0d 06
09 60 86 48 01 65 03 04 02 01 05 00 04 20 | H, where H denotes the bytes of
the SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_DER 0x0009
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the
EMSA-PKCS1-v1_5 signature as defined in [RFC3447]. This means that the encoded
message EM will be the input to the cryptographic signing algorithm RSASP1 as
defined in [RFC3447]. The result s of RSASP1 is then encoded using function I2OSP
to produce the raw signature. The raw signature is DER [ITU-X690-2008] encoded as
an OCTET STRING to produce the final signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T

with the padding string PS with length=emLen - tLen - 3 octets having the value
0xff for each octet, e.g. (0x) ff ff ff ff ff ff ff ff

with the DER encoded DigestInfo value T: (0x)30 31 30 0d 06 09 60 86 48 01

NOTE

Implementers should verify that their implementation of the PKCS#1 V1.5
signature follows the recommendations in [RFC3218] to protect against
adaptive chosen-ciphertext attacks such as Bleichenbacher.

65 03 04 02 01 05 00 04 20 | H, where H denotes the bytes of the SHA256
hash value.

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

3.6.2 Public Key Representation Formats

The ALG_KEY constants are 16 bit long integers indicating the specific Public Key algorithm
and encoding.

ALG_KEY_ECC_X962_RAW 0x0100
Raw ANSI X9.62 formatted Elliptic Curve public key [SEC1].

I.e. [0x04, X (32 bytes), Y (32 bytes)] . Where the byte 0x04 denotes the
uncompressed point compression method.

ALG_KEY_ECC_X962_DER 0x0101
DER [ITU-X690-2008] encoded ANSI X.9.62 formatted SubjectPublicKeyInfo
[RFC5480] specifying an elliptic curve public key.

I.e. a DER encoded SubjectPublicKeyInfo as defined in [RFC5480].

Authenticator implementations must generate namedCurve in the ECParameters object
which is included in the AlgorithmIdentifier. A FIDO UAF Server must accept
namedCurve in the ECParameters object which is included in the AlgorithmIdentifier.

ALG_KEY_RSA_2048_RAW 0x0102
Raw encoded 2048-bit RSA public key [RFC3447].

That is, [n (256 bytes), e (N-256 bytes)] . Where N is the total length of the field.

This total length should be taken from the object containing this key, e.g. the TLV
encoded field.

ALG_KEY_RSA_2048_DER 0x0103
ASN.1 DER [ITU-X690-2008] encoded 2048-bit RSA [RFC3447] public key
[RFC4055].

That is a DER encoded SEQUENCE { n INTEGER, e INTEGER } .

ALG_KEY_COSE 0x0104

NOTE

Implementers should verify that their implementation of the PKCS#1 V1.5
signature follows the recommendations in [RFC3218] to protect against
adaptive chosen-ciphertext attacks such as Bleichenbacher.

NOTE

FIDO UAF supports RAW and DER encodings in order to allow small footprint
authenticator implementations. By definition, the authenticator must encode the public
key as part of the registration assertion.

COSE_Key format, as defined in Section 7 of [RFC8152]. This encoding includes its
own field for indicating the public key algorithm.

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-
glossary-v2.0-ps-20170927.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER), (T-REC-X.690-200811). November 2008. URL: http://www.itu.int/rec/T-
REC-X.690-200811-I/en

[OSCCA-SM2]
SM2: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves: Part 1:
General. December 2010. URL:
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

[OSCCA-SM2-curve-param]
SM2: Elliptic Curve Public-Key Cryptography Algorithm: Recommended Curve
Parameters. December 2010. URL:
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf

[OSCCA-SM3]
SM3 Cryptographic Hash Algorithm. December 2010. URL:
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. February 2003. Informational. URL:
https://tools.ietf.org/html/rfc3447

[RFC4055]
J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSA
Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. June 2005. Proposed Standard. URL:
https://tools.ietf.org/html/rfc4055

[RFC4056]
J. Schaad. Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message
Syntax (CMS). June 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc4056

[RFC5480]
S. Turner; D. Brown; K. Yiu; R. Housley; T. Polk. Elliptic Curve Cryptography Subject
Public Key Information. March 2009. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5480

[RFC8152]
J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed
Standard. URL: https://tools.ietf.org/html/rfc8152

[SEC1]
SEC1: Elliptic Curve Cryptography, Version 2.0. September 2000. URL:
http://secg.org/download/aid-780/sec1-v2.pdf

A.2 Informative references

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA), ANSI X9.62-2005. November 2005. URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-security-ref-v2.0-

https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-security-ref-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-security-ref-v2.0-ps-20170927.html

ps-20170927.html
[RFC3218]

E. Rescorla. Preventing the Million Message Attack on Cryptographic Message
Syntax. January 2002. Informational. URL: https://tools.ietf.org/html/rfc3218

[SecureElement]
GlobalPlatform Card Specifications. URL:
https://www.globalplatform.org/specifications.asp

[TEE]
GlobalPlatform Trusted Execution Environment Specifications. URL:
https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications. URL:
https://www.globalplatform.org/specifications.asp

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF
Authenticator-Specific Module API. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-
20171128.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding
Specification. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-
rd-20171128/fido-uaf-client-api-transport-v1.2-rd-20171128.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF
Authenticator Commands v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-
20171128.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF
Protocol Specification v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-
20171128.html

https://tools.ietf.org/html/rfc3218
https://tools.ietf.org/html/rfc3218
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-client-api-transport-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-client-api-transport-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

FIDO Technical Glossary

FIDO Alliance Proposed Standard 27 September 2017

This version:
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-
20170927.html

Previous version:
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-glossary-v2.0-rd-
20161004.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal
Jeff Hodges, PayPal

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values
defined in this document are referenced by various UAF specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications and
the latest revision of this technical report can be found in the FIDO Alliance specifications
index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-glossary-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-rd-20161004/fido-glossary-v2.0-rd-20161004.html
mailto://rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
mailto://jeff.hodges@kingsmountain.com
https://www.paypal.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

party intellectual property rights, including without limitation, patent rights. The FIDO
Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all
such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a
Proposed Standard. It is a stable document and may be used as reference material or cited
from another document. FIDO Alliance's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Key Words

2. Introduction

3. Definitions

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“recommended”, “may”, and “optional” in this document are to be interpreted as described in
[RFC2119].

2. Introduction

This document is the FIDO Alliance glossary of normative technical terms.

This document is not an exhaustive compendium of all FIDO technical terminology because
the FIDO terminology is built upon existing terminology. Thus many terms that are
commonly used within this context are not listed. They may be found in the
glossaries/documents/specifications referenced in the bibliography. Terms defined here that
are not attributed to other glossaries/documents/specifications are being defined here.

This glossary is expected to evolve along with the FIDO Alliance specifications and
documents.

3. Definitions

AAID

Authenticator Attestation ID. See Attestation ID.

Application

A set of functionality provided by a common entity (the application owner, aka the
Relying Party), and perceived by the user as belonging together.

Application Facet

An (application) facet is how an application is implemented on various platforms. For
example, the application MyBank may have an Android app, an iOS app, and a Web
app. These are all facets of the MyBank application.

Application Facet ID

A platform-specific identifier (URI) for an application facet.

For Web applications, the facet id is the RFC6454 origin [RFC6454].

For Android applications, the facet id is the URI android:apk-key-hash:<hash-of-
apk-signing-cert>

For iOS, the facet id is the URI ios:bundle-id:<ios-bundle-id-of-app>

AppID

The AppID is an identifier for a set of different Facets of a relying party's application.
The AppID is a URL pointing to the TrustedFacets, i.e. list of FacetIDs related to this
AppID.

Attestation

In the FIDO context, attestation is how Authenticators make claims to a Relying Party
that the keys they generate, and/or certain measurements they report, originate from
genuine devices with certified characteristics.

Attestation Certificate

A public key certificate related to an Attestation Key.

Authenticator Attestation ID / AAID

A unique identifier assigned to a model, class or batch of FIDO Authenticators that all
share the same characteristics, and which a Relying Party can use to look up an
Attestation Public Key and Authenticator Metadata for the device.

Attestation [Public / Private] Key

A key used for FIDO Authenticator attestation.

Attestation Root Certificate

A root certificate explicitly trusted by the FIDO Alliance, to which Attestation
Certificates chain to.

Authentication

Authentication is the process in which user employs their FIDO Authenticator to prove
possession of a registered key to a relying party.

Authentication Algorithm

The combination of signature and hash algorithms used for authenticator-to-relying
party authentication.

Authentication Scheme

The combination of an Authentication Algorithm with a message syntax or framing that
is used by an Authenticator when constructing a response.

Authenticator, Authnr

See FIDO Authenticator.

Authenticator, 1stF / First Factor

A FIDO Authenticator that transactionally provides a username and at least two
authentication factors: cryptographic key material (something you have) plus user
verification (something you know / something you are) and so can be used by itself to
complete an authentication.

It is assumed that these authenticators have an internal matcher. The matcher is able
to verify an already enrolled user. If there is more than one user enrolled – the
matcher is also able to identify the right user.

Examples of such authenticator is a biometric sensor or a PIN based verification.
Authenticators which only verify presence, such as a physical button, or perform no
verification at all, cannot act as a first-factor authenticator.

Authenticator, 2ndF / Second Factor
A FIDO Authenticator which acts only as a second factor. Second-factor
authenticators always require a single key handle to be provided before responding to
a Sign command. They might or might not have a user verification method. It is
assumed that these authenticators may or may not have an internal matcher.

Authenticator Attestation
The process of communicating a cryptographic assertion to a relying party that a key
presented during authenticator registration was created and protected by a genuine
authenticator with verified characteristics.

Authenticator Metadata

Verified information about the characteristics of a certified authenticator, associated
with an AAID and available from the FIDO Alliance. FIDO Servers are expected to
have access to up-to-date metadata to be able to interact with a given authenticator.

Authenticator Policy

A JSON data structure that allows a relying party to communicate to a FIDO Client the
capabilities or specific authenticators that are allowed or disallowed for use in a given
operation.

ASM / Authenticator Specific Module

Software associated with a FIDO Authenticator that provides a uniform interface
between the hardware and FIDO Client software.

AV

ASM Version

Bound Authenticator

A FIDO Authenticator or combination of authenticator and ASM, which uses an access
control mechanism to restrict the use of registered keys to trusted FIDO Clients and/or
trusted FIDO User Devices. Compare to a Roaming Authenticator.

Certificate

An X.509v3 certificate defined by the profile specified in [RFC5280] and its
successors.

Channel Binding

See: [RFC5056], [RFC5929] and [ChannelID]. A channel binding allows applications to
establish that the two end-points of a secure channel at one network layer are the
same as at a higher layer by binding authentication to the higher layer to the channel
at the lower layer.

Client

This term is used “in context”, and may refer to a FIDO UAF Client or some other type
of client, e.g. a TLS client. See FIDO Client.

Confused Deputy Problem

A confused deputy is a computer program that is innocently fooled by some other
party into misusing its authority. It is a specific type of privilege escalation.

Correlation Handle

Any piece of information that may allow, in the context of FIDO protocols, implicit or
explicit association and or attribution of multiple actions, believed by the user to be
distinct and unrelated, back to a single unique entity. An example of a correlation
handle outside of the FIDO context is a client certificate used in traditional TLS mutual
authentication: because it sends the same data to multiple Relying Parties, they can
therefore collude to uniquely identify and track the user across unrelated activities.
[AnonTerminology]

Deregistration

A phase of a FIDO protocol in which a Relying Party tells a FIDO Authenticator to
forget a specified piece of (or all) locally managed key material associated with a
specific Relying Party account, in case such keys are no longer considered valid by
the Relying Party.

Discovery

A phase of a FIDO protocol in which a Relying Party is able to determine the
availability of FIDO capabilities at the client’s device, including metadata about the
available authenticators.

E(K,D)

Denotes the Encryption of data D with key K

ECDAA

Elliptic Curve based Direct Anonymous Attestation. ECDAA is an attestation scheme
alternative to FIDO Basic Attestation. It is an improved Direct Anonymous Attestation
scheme based on elliptic curves and bilinear pairings. Direct Anonymous Attestation
schemes use individual private keys in the Authenticator while avoiding global
correlation handles. ECDAA provides significantly improved performance compared
with the original DAA scheme. FIDO ECDAA [FIDOEcdaaAlgorithm] defines object
encodings, pairing friendly curves etc. in order to lead to interoperable ECDAA
implementations across different FIDO Servers and FIDO Authenticators.

ECDSA

Elliptic Curve Digital Signature Algorithm, as defined by ANSI X9.62 [ECDSA-ANSI].

Enrollment

The process of making a user known to an authenticator. This might be a biometric
enrollment as defined in [NSTCBiometrics] or involve processes such as taking

ownership of, and setting a PIN or password for, a non-biometric cryptographic
storage device. Enrollment may happen as part of a FIDO protocol ceremony, or it
may happen outside of the FIDO context for multi-purpose authenticators.

Facet

See Application Facet

Facet ID

See Application Facet ID

FIDO Authenticator

An authentication entity that meets the FIDO Alliance’s requirements and which has
related metadata.

A FIDO Authenticator is responsible for user verification, and maintaining the
cryptographic material required for the relying party authentication.

It is important to note that a FIDO Authenticator is only considered such for, and in
relation to, its participation in FIDO Alliance protocols. Because the FIDO Alliance aims
to utilize a diversity of existing and future hardware, many devices used for FIDO may
have other primary or secondary uses. To the extent that a device is used for non-
FIDO purposes such as local operating system login or network login with non-FIDO
protocols, it is not considered a FIDO Authenticator and its operation in such modes is
not subject to FIDO Alliance guidelines or restrictions, including those related to
security and privacy.

A FIDO Authenticator may be referred to as simply an authenticator or abbreviated as
“authnr”. Important distinctions in an authenticator’s capabilities and user experience
may be experienced depending on whether it is a roaming or bound authenticator, and
whether it is a first-factor, or second-factor authenticator.

It is assumed by registration assertion schemes that the authenticator has exclusive
control over the data being signed by the attestation key.

Authenticators specify in the Metadata Statement whether they have exclusive control
over the data being signed by the Uauth key.

FIDO Client

This is the software entity processing the UAF or U2F protocol messages on the FIDO
User Device. FIDO Clients may take one of two forms:

A software component implemented in a user agent (either web browser or
native application).

A standalone piece of software shared by several user agents. (web browsers or
native applications).

FIDO Data / FIDO Information

Any information gathered or created as part of completing a FIDO transaction. This
includes but is not limited to, biometric measurements of or reference data for the user
and FIDO transaction history.

FIDO Server

Server software typically deployed in the relying party’s infrastructure that meets UAF
protocol server requirements.

FIDO UAF Client

See FIDO Client.

See FIDO Client.

FIDO User Device

The computing device where the FIDO Client operates, and from which the user
initiates an action that utilizes FIDO.

Key Identifier (KeyID)

The KeyID is an opaque identifier for a key registered by an authenticator with a FIDO
Server, for first-factor authenticators. It is used in concert with an AAID to identify a
particular authenticator that holds the necessary key. Thus key identifiers must be
unique within the scope of an AAID.

One possible implementation is that the KeyID is the SHA256 hash of the KeyHandle
managed by the ASM.

KeyHandle

A key container created by a FIDO Authenticator, containing a private key and
(optionally) other data (such as Username). A key handle may be wrapped (encrypted
with a key known only to the authenticator) or unwrapped. In the unwrapped form it is
referred to as a raw key handle. Second-factor authenticators must retrieve their key
handles from the relying party to function. First-factor authenticators manage the
storage of their own key handles, either internally (for roaming authenticators) or via
the associated ASM (for bound authenticators).

Key Registration

The process of securely establishing a key between FIDO Server and FIDO
Authenticator.

KeyRegistrationData (KRD)

A KeyRegistrationData object is created and returned by an authenticator as the result
of the authenticator's Register command. The KRD object contains items such as the
authenticator's AAID, the newly generated UAuth.pub key, as well as other
authenticator-specific information such as algorithms used by the authenticator for
performing cryptographic operations, and counter values. The KRD object is signed
using the authenticator's attestation private key.

KHAccessToken

A secret value that acts as a guard for authenticator commands. KHAccessTokens are
generated and provided by an ASM.

Matcher

A component of a FIDO Authenticator which is able to perform (local) user verification,
e.g. biometric comparison [ISOBiometrics], PIN verification, etc.

Matcher Protections
The security mechanisms that an authenticator may use to protect the matcher
component.

Persona

All relevant data stored in an authenticator (e.g. cryptographic keys) are related to a
single "persona" (e.g. “business” or “personal” persona). Some administrative interface
(not standardized by FIDO) provided by the authenticator may allow maintenance and
switching of personas.

The user can switch to the “Personal” Persona and register new accounts. After
switching back to the “Business” Persona, these accounts will not be recognized by
the authenticator (until the User switches back to “Personal” Persona again).

This mechanism may be used to provide an additional measure of privacy to the user,
where the user wishes to use the same authenticator in multiple contexts, without
allowing correlation via the authenticator across those contexts.

PersonaID

An identifier provided by an ASM, PersonaID is used to associate different
registrations. It can be used to create virtual identities on a single authenticator, for
example to differentiate “personal” and “business” accounts. PersonaIDs can be used
to manage privacy settings on the authenticator.

Reference Data

A (biometric) reference data (also called template) is a digital reference of distinct
characteristics that have been extracted from a biometric sample. Biometric reference
data is used during the biometric user verification process [ISOBiometrics]. Non-
biometric reference data is used in conjunction with PIN-based user verification.

Registration

A FIDO protocol operation in which a user generates and associates new key material
with an account at the Relying Party, subject to policy set by the server, and
acceptable attestation that the authenticator and registration matches that policy.

Registration Scheme

The registration scheme defines how the authentication key is being exchanged
between the FIDO Server and the FIDO Authenticator.

Relying Party

A web site or other entity that uses a FIDO protocol to directly authenticate users (i.e.,
performs peer-entity authentication). Note that if FIDO is composed with federated
identity management protocols (e.g., SAML, OpenID Connect, etc.), the identity
provider will also be playing the role of a FIDO Relying Party.

Roaming Authenticator

A FIDO Authenticator configured to move between different FIDO Clients and FIDO
User Devices lacking an established trust relationship by:

1. Using only its own internal storage for registrations

2. Allowing registered keys to be employed without access control mechanisms at
the API layer. (Roaming authenticators still may perform user verification.)

Compare to Bound Authenticator.

S(K, D)

Signing of data D with key K

Server Challenge

A random value provided by the FIDO Server in the UAF protocol requests.

Sign Counter

A monotonically increasing counter maintained by the Authenticator. It is increased on
every use of the UAuth.priv key. This value can be used by the FIDO Server to detect
cloned authenticators.

SignedData

A SignedData object is created and returned by an authenticator as the result of the

A SignedData object is created and returned by an authenticator as the result of the
authenticator's Sign command. The to-be-signed data input to the signature operation
is represented in the returned SignedData object as intact values or as hashed values.
The SignedData object also contains general information about the authenticator and
its mode, a nonce, information about authenticator-specific cryptographic algorithms,
and a use counter. The SignedData object is signed using a relying party-specific
UAuth.priv key.

Silent Authenticator

FIDO Authenticator that does not prompt the user or perform any user verification.

Step-up Authentication

An authentication which is performed on top of an already authenticated session.

Example: The user authenticates the session initially using a username and password,
and the web site later requests a FIDO authentication on top of this authenticated
session.

One reason for requesting step-up authenication could be a request for a high value
resource.

FIDO U2F is always used as a step-up authentication. FIDO UAF could be used as
step-up authentication, but it could also be used as an initial authentication
mechanism.

Note: In general, there is no implication that the step-up authentication method itself is
"stronger" than the initial authentication. Since the step-up authentication is performed
on top of an existing authentication, the resulting combined authentication strength will
increase most likely, but it will never decrease.

Template

See reference data.

Test of User Presence

See User Presence Check

TLS

Transport Layer Security

Token

In FIDO U2F, the term Token is often used to mean what is called an authenticator in
UAF. Also, note that other uses of “token”, e.g. KHAccessToken, User Verification
Token, etc., are separately distinct. If they are not explicitly defined, their meaning
needs to be determined from context.

Transaction Confirmation

An operation in the FIDO protocol that allows a relying party to request that a FIDO
Client, and authenticator with the appropriate capabilities, display some information to
the user, request that the user authenticate locally to their FIDO Authenticator to
confirm the information, and provide proof-of-possession of previously registered key
material and an attestation of the confirmation back to the relying party.

Transaction Confirmation Display

This is a feature of FIDO Authenticators able to show content of a message to a user,
and protect the integrity of this message. It could be implemented using the
GlobalPlatform specified TrustedUI [TEESecureDisplay].

TrustedFacets

The data structure holding a list of trusted FacetIDs. The AppID is used to retrieve this
data structure.

TTEXT

Transaction Text, i.e. text to be confirmed in the case of transaction confirmation.

Type-length-value/tag-length-value (TLV)

A mechanism for encoding data such that the type, length and value of the data are
given. Typically, the type and length data fields are of a fixed size. This format offers
some advantages over other data encoding mechanisms, that make it suitable for
some of the FIDO UAF protocols.

Universal Second Factor (U2F)

The FIDO protocol and family of authenticators which enable a cloud service to offer
its users the options of using an easy–to–use, strongly–secure open standards–based
second-factor device for authentication. The protocol relies on the server to know the
(expected) user before triggering the authentication.

Universal Authentication Framework (UAF)

. The FIDO Protocol and family of authenticators which enable a service to offer its
users flexible and interoperable authentication. This protocol allows triggering the
authentication before the server knows the user.

UAF Client

See FIDO Client.

UAuth.pub / UAuth.priv / UAuth.key

User authentication keys generated by FIDO Authenticator. UAuth.pub is the public
part of key pair. UAuth.priv is the private part of the key. UAuth.key is the more
generic notation to refer to UAuth.priv.

UINT8

An 8 bit (1 byte) unsigned integer.

UINT16

A 16 bit (2 bytes) unsigned integer.

UINT32

A 32 bit (4 bytes) unsigned integer.

UPV

UAF Protocol Version

User

Relying party’s user, and owner of the FIDO Authenticator.

User Agent

The user agent is a client application that is acting on behalf of a user in a client-server
system. Examples of user agents include web browsers and mobile apps.

User Presence Check

The User Presence check in the authenticator verifies that some user is present at the
authenticator and agrees with a generic authentication operation.

User Verification

The process by which a FIDO Authenticator locally authorizes use of key material, for
example through a touch, pin code, fingerprint match or other biometric.

User Verification Token

The user verification token is generated by Authenticator and handed to the ASM after
successful user verification. Without having this token, the ASM cannot invoke special
commands such as Register or Sign.

The lifecycle of the user verification token is managed by the authenticator. The
concrete techniques for generating such a token and managing its lifecycle are
vendor-specific and non-normative.

Username

A human-readable string identifying a user’s account at a relying party.

Verification Factor

The specific means by which local user verification is accomplished. e.g. fingerprint,
voiceprint, or PIN.

This is also known as modality.

Web Application, Client-Side

The portion of a relying party application built on the "Open Web Platform" which
executes in the context of the user agent. When the term “Web Application” appears
unqualified or without specific context in FIDO documents, it generally refers to either
the client-side portion or the combination of both client-side and server-side pieces of
such an application.

Web Application, Server-Side

The portion of a relying party application that executes on the web server, and
responds to HTTP requests. When the term “Web Application” appears unqualified or
without specific context in FIDO documents, it generally refers to either the client-side
portion or the combination of both client-side and server-side pieces of such an
application.

A. References

A.1 Normative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO
ECDAA Algorithm. Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-
ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

A.2 Informative references

[AnonTerminology]

https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-ecdaa-algorithm-v2.0-ps-20170927.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

A. Pfitzmann; M. Hansen. Anonymity, Unlinkability, Unobservability, Pseudonymity,
and Identity Management - A Consolidated Proposal for Terminology, Version 0.34.
August 2010. URL: http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

[ChannelID]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL:
http://tools.ietf.org/html/draft-balfanz-tls-channelid

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA), ANSI X9.62-2005. November 2005. URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[ISOBiometrics]
ISO/IEC 2382-37 Harmonized Biometric Vocabulary. 15 December 2012. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-
37_2012.zip

[NSTCBiometrics]
Biometrics Glossary. 14 September 2006. URL:
http://biometrics.gov/Documents/Glossary.pdf

[RFC5056]
N. Williams. On the Use of Channel Bindings to Secure Channels (RFC 5056).
November 2007. URL: http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. May
2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5929]
J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL:
http://www.ietf.org/rfc/rfc5929.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL:
http://www.ietf.org/rfc/rfc6454.txt

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications. URL:
https://www.globalplatform.org/specifications.asp

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp

	Client To Authenticator Protocol
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Overview
	2. Conformance
	3. Protocol Structure
	4. Protocol Overview
	5. Authenticator API
	5.1 authenticatorMakeCredential(0x01)
	5.2 authenticatorGetAssertion(0x02)
	5.3 authenticatorGetNextAssertion(0x08)
	Client Logic
	5.4 authenticatorCancel(0x03)
	5.5 authenticatorGetInfo(0x04)
	5.6 authenticatorClientPIN(0x06)
	5.6.1 Client PIN support requirements
	5.6.2 Authenticator Configuration Operations Upon Power Up
	5.6.3 Getting sharedSecret from Authenticator
	5.6.4 Setting a New PIN
	5.6.5 Changing existing PIN
	5.6.6 Getting pinToken from the Authenticator
	5.6.7 Using pinToken

	5.7 authenticatorReset(0x07)

	6. Message encoding
	6.1 Commands
	6.2 Responses
	6.3 Error Responses

	7. Interoperating with CTAP1/U2F authenticators
	7.1 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
	7.2 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators

	8. Transport-specific Bindings
	8.1 USB
	8.1.1 Design rationale
	8.1.2 Protocol structure and data framing
	8.1.3 Concurrency and channels
	8.1.4 Message and packet structure
	8.1.5 Arbitration
	8.1.6 Channel locking
	8.1.7 Protocol version and compatibility
	8.1.8 HID device implementation
	8.1.9 CTAPHID commands

	8.2 ISO7816, ISO14443 and Near Field Communication (NFC)
	8.2.1 Conformance
	8.2.2 Protocol
	8.2.3 Applet selection
	8.2.4 Framing
	8.2.5 Fragmentation
	8.2.6 Commands
	8.2.7 Bluetooth Smart / Bluetooth Low Energy Technology

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO AppID and Facet Specification
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Motivation
	2.2 Avoiding App-Phishing
	2.3 Comparison to OAuth and OAuth2
	2.4 Non-Goals

	3. The AppID and FacetID Assertions
	3.1 Processing Rules for AppID and FacetID Assertions
	3.1.1 Determining the FacetID of a Calling Application
	3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
	3.1.3 TrustedFacet List and Structure
	3.1.4 AppID Example 1
	3.1.5 AppID Example 2
	3.1.6 Obtaining FacetID of Android Native App
	3.1.7 Additional Security Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Metadata Statements
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 Authenticator Attestation GUID (AAGUID) typedef
	3.2 CodeAccuracyDescriptor dictionary
	3.2.1 Dictionary CodeAccuracyDescriptor Members

	3.3 BiometricAccuracyDescriptor dictionary
	3.3.1 Dictionary BiometricAccuracyDescriptor Members

	3.4 PatternAccuracyDescriptor dictionary
	3.4.1 Dictionary PatternAccuracyDescriptor Members

	3.5 VerificationMethodDescriptor dictionary
	3.5.1 Dictionary VerificationMethodDescriptor Members

	3.6 verificationMethodANDCombinations typedef
	3.7 rgbPaletteEntry dictionary
	3.7.1 Dictionary rgbPaletteEntry Members

	3.8 DisplayPNGCharacteristicsDescriptor dictionary
	3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

	3.9 EcdaaTrustAnchor dictionary
	3.9.1 Dictionary EcdaaTrustAnchor Members

	3.10 ExtensionDescriptor dictionary
	3.10.1 Dictionary ExtensionDescriptor Members

	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	5.1 UAF Example
	5.2 U2F Example

	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Metadata Service
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Detailed Architecture

	3. Metadata Service Details
	3.1 Metadata TOC Format
	3.1.1 Metadata TOC Payload Entry dictionary
	3.1.2 StatusReport dictionary
	3.1.3 AuthenticatorStatus enum
	3.1.4 RogueListEntry dictionary
	3.1.5 Metadata TOC Payload dictionary
	3.1.6 Metadata TOC
	3.1.7 Metadata TOC object processing rules

	4. Considerations
	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO ECDAA Algorithm
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Architecture Overview

	3. FIDO ECDAA Attestation
	3.1 Object Encodings
	3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)
	3.1.2 Encoding ECPoint values as byte strings (ECPointToB)
	3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

	3.2 Global ECDAA System Parameters
	3.3 Issuer Specific ECDAA Parameters
	3.4 ECDAA-Join
	3.4.1 ECDAA-Join Algorithm
	3.4.2 ECDAA-Join Split between Authenticator and ASM
	3.4.3 ECDAA-Join Split between TPM and ASM

	3.5 ECDAA-Sign
	3.5.1 ECDAA-Sign Algorithm
	3.5.2 ECDAA-Sign Split between Authenticator and ASM
	3.5.3 ECDAA-Sign Split between TPM and ASM

	3.6 ECDAA-Verify Operation

	4. FIDO ECDAA Object Formats and Algorithm Details
	4.1 Supported Curves for ECDAA
	4.2 ECDAA Algorithm Names
	4.3 ecdaaSignature object

	5. Considerations
	5.1 Algorithms and Key Sizes
	5.2 Indicating the Authenticator Model
	5.3 Revocation
	5.4 Pairing Algorithm
	5.5 Performance
	5.6 Binary Concatentation
	5.7 IANA Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Security Reference
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	2.1 Intended Audience

	3. Attack Classification
	Attack Classes
	4. FIDO Security Goals
	4.1 Assets to be Protected

	5. FIDO Security Measures
	5.1 Relation between Measures and Goals

	6. FIDO Security Assumptions
	6.1 Discussion

	7. Threat Analysis
	7.1 Threats to Client Side
	7.1.1 Exploiting User’s pattern matching weaknesses
	7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
	7.1.3 Creating a Fake Client
	7.1.4 Threats to FIDO Authenticator
	7.1.5 Threats to Relying Party
	7.1.6 Threats to the Secure Channel between Client and Relying Party
	7.1.7 Threats to the Infrastructure
	7.1.8 Threats Specific to Second Factor Authenicators (UAF / U2F)

	7.2 Acknowledgements

	A. References
	A.1 Informative references

	FIDO Registry of Predefined Values
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	3. Authenticator Characteristics
	3.1 User Verification Methods
	3.2 Key Protection Types
	3.3 Matcher Protection Types
	3.4 Authenticator Attachment Hints
	3.5 Transaction Confirmation Display Types
	3.6 Tags used for crypto algorithms and types
	3.6.1 Authentication Algorithms
	3.6.2 Public Key Representation Formats

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Technical Glossary
	FIDO Alliance Proposed Standard 27 September 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	3. Definitions
	A. References
	A.1 Normative references
	A.2 Informative references

