
FIDO UAF Android Protected Confirmation Assertion Format
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-apccbor-v1.2-ps-20201020.html

Editor:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also
be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

This document defines the assertion format "APCV1CBOR" in order to use Android Protected Confirmation
for FIDO UAF Transaction Confirmation.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may
supersede this document. A list of current FIDO Alliance publications and the
latest revision of this
technical report can be found in the FIDO Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make
comments regarding this document, please Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any
other contributors to the Specification are not, and shall not be held, responsible in any manner
for

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-apccbor-v1.2-ps-20201020.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF
ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It
is a stable document and may be used as reference material or cited from another
document. FIDO
Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its
widespread deployment.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
3. Data Structures for APCV1CBOR

3.1 Registration Assertion
3.2 Authentication Assertion

4. Processing Rules
4.1 Registration Response Processing Rules for ASM
4.2 Registration Response Processing Rules for FIDO Server
4.3 Authentication Response Generation Rules for ASM
4.4 Authentication Response Processing Rules for FIDO Server

5. Example for FIDO Metadata Statement
A. References

A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”,
and “optional” in
this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the assertion format "APCV1CBOR" in order to use Android Protected Confirmation
for FIDO Transaction Confirmation.

3. Data Structures for APCV1CBOR

This section is normative.

3.1 Registration Assertion

The registration assertion for the assertion format "APCV1CBOR" contains an object as specified in section
5.2.1 in [UAFAuthnrCommands], with the following specifics:

1. Only Surrogate Basic Attestation is supported. The extension "fido.uaf.android.key_attestation"
[UAFRegistry] must be present.

2. The signature field (TAG_SIGNATURE) shall have zero bytes length, since the key cannot be used
to create a self-signature.

3.2 Authentication Assertion

The authentication assertion is a TLV structure containing a CBOR encoded to-be-signed object:
TLV

Structure Description

1 UINT16 Tag TAG_APCV1CBOR_AUTH_ASSERTION

1.1 UINT16
Length Length of the structure.

1.2 UINT16 Tag TAG_APCV1CBOR_SIGNED_DATA

1.2.1 UINT16
Length Length of the structure.

1.2.2 UINT8
tbsData The serialized Android Protected Confirmation CBOR object.

1.3 UINT16 Tag TAG_AAID

1.3.1 UINT16
Length Length of AAID

1.3.2 UINT8[] AAID Authenticator Attestation ID

1.4 UINT16 Tag TAG_KEYID

1.4.1 UINT16
Length Length of KeyID

1.4.2 UINT8[] (binary value of) KeyID

https://developer.android.com/training/articles/security-android-protected-confirmation

KeyID

1.5 UINT16 Tag TAG_SIGNATURE

1.5.1 UINT16
Length Length of Signature

1.5.2 UINT8[]
Signature

Signature calculated using UAuth.priv over
tbsData - not including any TAGs nor
the KeyID and AAID.

4. Processing Rules

This section is normative.

4.1 Registration Response Processing Rules for ASM

Refer to [UAFAuthnrCommands] document for more information about
the TAGs and structure mentioned
in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then fail with
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If a user is already enrolled with this authenticator (such as
biometric enrollment, PIN setup, etc. for
example) then the ASM must request that the
authenticator verifies the user.

If the user is locked out (e.g. too many failed attempts to get verified) and
the authenticator cannot
automatically trigger unblocking, return UAF_ASM_STATUS_USER_LOCKOUT.

If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

3. If the user is not enrolled with the authenticator then take the user
through the enrollment process.
If neither the ASM nor the Authenticator can trigger the enrollment process,
return
UAF_ASM_STATUS_USER_NOT_ENROLLED.
If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Hash the provided RegisterIn.finalChallenge using the authenticator-specific hash function
(FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm defined in the

NOTE

Only the data in tbsData is included in the signature computation. All other fields are essentially
unauthenticated and are treated as 'hints' only.

NOTE

If the authenticator supports UserVerificationToken (see [UAFAuthnrCommands]), then the
ASM
must obtain this token in order to later include it with the Register command.

AuthenticatorInfo.authenticationAlgorithm field.

5. Generate a key pair with apropriate protection settings and mark it for use with Android Protected
Confirmation,
see https://developer.android.com/training/articles/security-android-protected-
confirmation.

6. Create a TAG_AUTHENTICATOR_ASSERTION structure containing a TAG_UAFV1_REG_ASSERTION object with
the following specifics:

1. set signature of Surrogate Basic Attestation to 0 bytes length
2. add the Android Hardware Key Attestation extension

7. If the authenticator is a bound authenticator
1. Store CallerID (see [UAFASM]), AppID, TAG_KEYHANDLE, TAG_KEYID and CurrentTimestamp in the

ASM's database.

8. Create a RegisterOut object
1. Set RegisterOut.assertionScheme according to "APCV1CBOR"
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (i.e. TAG_UAFV1_REG_ASSERTION) in

base64url format and set as
RegisterOut.assertion as described in section "Data Structures for
APCV1CBOR".

3. Return RegisterOut object

4.2 Registration Response Processing Rules for FIDO Server

Instead of skipping the assertion as described in step 6.9, follow these rules:

1. if a.assertionScheme == "APCV1CBOR" AND a.assertion.TAG_UAFV1_REG_ASSERTION contains
TAG_UAFV1_KRD as first element:

1. Obtain Metadata(AAID).AttestationType for the AAID and make sure that
a.assertion.TAG_UAFV1_REG_ASSERTION contains the most preferred
attestation tag specified in
field MatchCriteria.attestationTypes in RegistrationRequest.policy (if this field is present).

If a.assertion.TAG_UAFV1_REG_ASSERTION doesn't contain the preferred attestation - it is
recommended to skip this
assertion and continue with next one

2. Make sure that a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.FinalChallengeHash ==
FCHash

If comparison fails - continue with next assertion

3. Obtain Metadata(AAID).AuthenticatorVersion for the AAID and make sure that it is lower or
equal to a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is
outdated), it is recommended to assume increased risk.
See sections "StatusReport

NOTE

What data an ASM will store at this stage depends on underlying authenticator's
architecture.
For example some authenticators might store AppID, KeyHandle, KeyID
inside their own secure storage. In this case ASM doesn't have to store these data in its
database.

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

dictionary" and "Metadata TOC object Processing Rules" in [FIDOMetadataService] for
more details on this.

4. Check whether a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is 0 since it is
not supported in this assertion scheme.

If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is non-zero, this
assertion might be skipped
and processing will continue with next one

5. Make sure a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type
ATTESTATION_BASIC_SURROGATE

1. There is no real attestation for the AAID, so we just assume the AAID is the real one.
2. If entry AttestationRootCertificates for the AAID in the
metadata is not empty - continue

with next assertion (as the AAID obviously is expecting a different attestation method).
3. Verify that extension "fido.uaf.android.key_attestation" is present and check whether it is

positively verified according to its server processing rules as specified [UAFRegistry].
If verification fails – continue with next assertion

4. Verify that the attestation statement included in that extension includes the flag
TRUSTED_CONFIRMATION_REQUIRED indicating that the key will be restricted to sign valid
transaction confirmation assertions (see
https://developer.android.com/training/articles/security-key-attestation
and
https://developer.android.com/training/articles/security-android-protected-confirmation).

If verification fails – continue with next assertion

5. Mark assertion as positively verified

6. Extract a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.PublicKey into PublicKey,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.KeyID into KeyID,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.SignCounter into SignCounter,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ASSERTION_INFO.authenticatorVersion

into AuthenticatorVersion, a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into
AAID.

4.3 Authentication Response Generation Rules for ASM

See [UAFASM] for details of the ASM API.

1. if this is a bound authenticator, verify callerid against the one stored at registration time
and return
UAF_ASM_STATUS_ACCESS_DENIED if it doesn't match.

2. The ASM must request the authenticator to verify the user.
3. Hash the provided AuthenticateIn.finalChallenge using the preferred authenticator-specific hash

function (FinalChallengeHash).

The authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

4. If AuthenticateIn.keyIDs is not empty,
1. If this is a bound authenticator, then look up ASM's database with
AuthenticateIn.appID and

AuthenticateIn.keyIDs and obtain
the KeyHandles associated with it.
Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the related key
disappeared
permanently from the authenticator.

UAF ASM STATUS ACCESS DENIED

https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-android-protected-confirmation

Return if no entry has been found.

2. If this is a roaming authenticator, then treat AuthenticateIn.keyIDs as KeyHandles

5. If AuthenticateIn.keyIDs is empty, lookup all KeyHandles matching this request.
6. If multiple KeyHandles exist that match this request, show the related distinct usernames and ask the

user to choose a single username. Remember the KeyHandle related to this key.
7. Call ConfirmationPrompt.Builder and pass the transactionText as parameter to method

setPromptText
see also https://developer.android.com/training/articles/security-android-protected-
confirmation.

8. Pass the FinalChallengeHash as parameter to method setExtraData,
see also
https://developer.android.com/training/articles/security-android-protected-confirmation

9. Call build method of the ConfirmationPrompt and then call method presentPrompt providing an
appropriate callback that will sign the dataThatWasConfirmed with the key identified by the KeyHandle
remembered earlier.

10. Create TAG_APCV1CBOR_AUTH_ASSERTION structure.
1. Copy the serialized dataThatWasConfirmed CBOR object into field tbsData.
2. Copy AAID and KeyID into the respective TLV fields.
3. Copy signature into the TAG_SIGNATURE field.

11. Create the AuthenticateOut object
1. Set AuthenticateOut.assertionScheme to "APCV1CBOR"
2. Encode the content of TAG_APCV1CBOR_AUTH_ASSERTION in base64url format and
set as

AuthenticateOut.assertion

3. Return the AuthenticateOut object

The authenticator metadata statement must truly indicate the
type of transaction confirmation display
implementation. Typically the "Transaction Confirmation Display" flag
will be set to
TRANSACTION_CONFIRMATION_DISPLAY_ANY (bitwise) or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

4.4 Authentication Response Processing Rules for FIDO Server

Instead of skipping the assertion according to step 6.6. in section 3.5.7.5 [UAFProtocol], follow these rules:

1. if a.assertionScheme == "APCV1CBOR" AND a.assertion startes with a valid CBOR structure as
defined in section 3.2 Authentication Assertion, then

1. set tbsData to the CBOR object contained in a.assertion.tbsData.
2. Verify the AAID against the AAID stored in the user's record at time of Registration.

If comparison fails – continue with next assertion

3. Locate UAuth.pub associated with (a.assertion.AAID, a.assertion.KeyID) in the user's record.

NOTE

The extraData in tbsData.dataThatWasConfirmed is the finalChallengeHash as computed by the
ASM.
The promptText in tbsData.dataThatWasConfirmed is the AuthenticateIn.Transaction.content
value. AuthenticateIn.Transaction.contentType is "text/plain".

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

If such record doesn't exist - continue with next assertion

4. Locate authenticator specific authentication algorithms from
authenticator metadata (field
AuthenticationAlgs)

5. If fcp is of type FinalChallengeParams, then hash
AuthenticationResponse.FinalChallengeParams using the hashing
algorithm suitable for this
authenticator type. Look up the
hash algorithm in authenticator Metadata, field
AuthenticationAlgs. It is the hash algorithm associated with
the first entry related to a constant
with prefix ALG_SIGN.

FCHash = hash(AuthenticationResponse.FinalChallengeParams)

6. If fcp is of type ClientData, then hash AuthenticationResponse.fcParams using hashing
algorithm
specified in fcp.hashAlg.

FCHash = hash(AuthenticationResponse.fcParams)

7. Make sure that tbsData.dataThatWasConfirmed.extraData
== FCHash
If comparison fails – continue with next assertion

8. Make sure there is a transaction cached on Relying Party side in the list cachedTransactions.
If not – continue with next assertion

9. Make sure that tbsData.dataThatWasConfirmed.promptText is included in the list
cachedTransactions

If it's not in the list – continue with next assertion

10. Use the UAuth.pub key found in step 1.2 and the appropriate authentication algorithm to
verify
the signature a.assertion.Signature of the to-be-signed object tbsData.

1. If signature verification fails – continue with next assertion

5. Example for FIDO Metadata Statement

This section is non-normative.

This example Authenticator has the following characteristics:

Authenticator implementing transaction confirmation display using TrustedUI (i.e. in TEE)
Leveraging TEE backed key store and user verification
Only fingerprint based user verification is implemented - no alternative password

NOTE

The promtpText included in this AuthenticationResponse must match the transaction
content specified in the related AuthenticationRequest.
As FIDO doesn’t mandate any
specific FIDO Server API, the transaction content could be cached by any relying party
software component, e.g. the FIDO Server or the relying party Web Application.

EXAMPLE 1: MetadataStatement for UAF Authenticator
{
 "description": "FIDO Alliance Sample UAF Authenticator supporting Android Protected
Confirmation",

 "aaid": "1234#5679",
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 2 }
],
 "assertionScheme": "APCV1CBOR",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15880],
 "userVerificationDetails": [
 [{
 "userVerification": 2,
 "baDesc": {
 "selfAttestedFAR": 0.00002,
 "maxRetries": 5,
 "blockSlowdown": 30,
 "maxTemplates": 5
 }
 }]
],
 "keyProtection": 6,
 "isKeyRestricted": true,
 "matcherProtection": 2,
 "cryptoStrength": 128,
 "operatingEnv": "TEEs based on ARM TrustZone HW",
 "attachmentHint": 1,
 "isSecondFactorOnly": false,
 "tcDisplay": 5,
 "tcDisplayContentType": "text/plain",
 "attestationRootCertificates": [],
 "supportedExtensions": [{
 "id": "fido.uaf.android.key_attestation",
 "data": "{ \"attestationRootCertificates\": [
 \"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ==\"] }",
 "fail_if_unknown": false
 }],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current
Practice. URL: https://tools.ietf.org/html/rfc2119

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific
Module API. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-
asm-api-v1.2-ps-20201020.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill; J. Hodges; K. Yang. FIDO UAF
Authenticator Commands. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-
20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF
Protocol Specification v1.2. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-
20201020/fido-uaf-protocol-v1.2-ps-20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft.
URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

A.2 Informative references

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html

FIDO UAF APDU
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-apdu-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-apdu-v1.2-id-20180220.html

Editor:
Naama Bak, Morpho

Contributors:
Virginie Galindo, Gemalto
Rolf Lindemann, Nok Nok Labs, Inc.
Ullrich Martini, Giesecke & Devrient
Chris Edwards, Intercede
Jeff Hodges, Paypal

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

This specification defines a mapping of FIDO UAF Authenticator
commands to Application Protocol Data Units (APDUs) thus facilitating
UAF
authenticators based on Secure Elements.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current
FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this document, please
Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the Specification are not, and shall not be held,
responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable document and may be
used as reference material or cited from another
document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-apdu-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-apdu-v1.2-id-20180220.html
mailto:naama.bak@morpho.com
https://www.morpho.com/
mailto:Virginie.Galindo@gemalto.com
https://www.gemalto.com/
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:Ullrich.Martini@gi-de.com
https://www.gi-de.com/
mailto:Chris.Edwards@intercede.com
https://www.intercede.com/
mailto:jeff.hodges@paypal.com
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

1. Notation
1.1 Key Words

2. Introduction
3. SE-based Authenticator Implementation Use Cases

3.1 Hybrid SE Authenticator
3.1.1 Architecture of the Hybrid SE Authenticator
3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

4. FIDO UAF Applet and APDU commands
4.1 UAF Applet in the Authenticator

4.1.1 Application Identifier
4.1.2 User Verification
4.1.3 Cryptographic operations

4.2 APDU Commands for FIDO UAF
4.2.1 Class byte coding
4.2.2 APDU command "UAF"

4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands
4.2.2.2 Response message and status conditions of an "UAF" APDU command

4.2.3 APDU Command "SELECT"
4.2.4 APDU Command "VERIFY"

4.2.4.1 Command structure
4.2.4.2 Response message and status conditions

4.3 Managing Long APDU Commands and Responses
4.3.1 ISO Variant
4.3.2 Proprietary Variant

5. Security considerations
A. References

A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation
operations.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data
encoded in base64url, "Base 64 Encoding with URL and Filename
Safe
Alphabet" [RFC4648] without padding.

UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

All TLV structures defined in this document must be encoded in little-endian format.

All APDU defined in this document must be encoded as defined in [ISOIEC-7816-4-2013].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are
to be interpreted as
described in [RFC2119].

2. Introduction

This section is non-normative.

This specification defines the interface between
the FIDO UAF Authenticator Specific Module (ASM) [UAFASM]
and authenticators based upon
"Secure Element" technology.
The applicable secure element form factors are UICC
(SIM card), embedded Secure Element (eSE), µSD, NFC
card, and USB token.
Their common characteristic is they
communicate using Application Programming Data Units
(APDU) in compliance with
[ISOIEC-7816-4-2013].

Implementation of this specification is optional in the UAF
framework, however, products claiming to implement the transport of
UAF messages
over APDUs should implement it.

This specification first describes the various fashions
in which Secure Elements can be incorporated into UAF
authenticator implementations —
known as SE-based authenticators or just SE authenticators
— and which components are
responsible for handling user verification as well as
cryptographic operations.
The specification then describes the
overall architecture of an SE-based authenticator stack from the ASM down to
the
secure element, the role of the "UAF Applet" running in
the secure element, and outlines the nominal communication
flow between the ASM and
the SE.
It then defines the mapping of UAF Authenticator commands
to APDUs, as well as the FIDO-specific variants of the VERIFY APDU
command.

3. SE-based Authenticator Implementation Use Cases

This section is non-normative.

Secure elements can be leveraged in different scenarios in
the UAF technology. It can support user gestures (used to
unlock access to FIDO
credentials) or it can be involved in the
actual cryptographic operations related to FIDO authentication.
In this specification, we will be
considering the following
SE-based authenticator implementation use cases:

1. The Secure Element (SE) is the (silent) Authenticator.
2. The SE is part of the Authenticator which is composed of a
Trusted Application (TEE) based User Verification component,
potentially a

TEE based transaction confirmation display and
the crypto kernel inside the SE (Hybrid SE Authenticator).
3. The authenticator (Hybrid SE Authenticator) consists of

the SE implementing the matcher and the crypto kernel
and a specific software module (e.g. running on the FIDO User Device)
to capture the user verification data (e.g. PIN, Face,
Fingerprint).

3.1 Hybrid SE Authenticator

In FIDO UAF, the access to
credentials for performing the actual authentication can be
protected by a user verification step. This user
verification
step can be based on a PIN, a biometric or other methods.
The authenticator functionality might be implemented in different
components, including
combinations such as TEE and SE, or fingerprint sensor and
SE. In that case the SE implements only a part of the
authenticator functionality.

Examples of Hybrid SE authenticators are:

1. User PIN code capture and verification are implemented entirely
in a TEE relying on Trusted User Interface and secure storage
capabilities
of the TEE and, once the PIN code is verified, the
FIDO UAF crypto operations are performed in the SE.

2. User fingerprint is captured via a fingerprint sensor, the
fingerprint match is performed in the TEE, relying on matching
algorithms. Once
the fingerprint has been positively checked,
the cryptographic operations are executed in the Secure
Element.

3. The user verification is implemented as match-on-chip in
separate hardware and FIDO UAF cryptographic operations are
implemented in
the SE.

In all those cases, the hybrid nature of the authenticator will
be managed by the software-based host, regardless of its nature (TEE, SW,
Biometric sensor..). There are a number of possible
interactions between the ASM and the SE actually
implementing the verification and the
cryptographic operations
to consider within those use cases.

NOTE

This specification does not define how an SE-based
authenticator stack may be implemented, e.g.,
its integration with TEE or
biometric
sensors.
However, SE-based authenticator vendors should reflect
such implementation characteristics in the authenticator
metadata such
that FIDO Relying Parties wishing to be
informed of said characteristics may
have access to it.

NOTE

The reason for using such hybrid configuration is that Secure
Elements do not have any user interface and hence cannot
directly
distinguish physical user interaction from
programmatic communication (e.g. by malware). The ability to
require a physical user interaction
that cannot be emulated by
malware is essential for protecting against scalable attacks
(see [FIDOSecRef]). On the other hand, TEEs (or
biometric
sensors implemented in separate hardware) which can provide a
trusted user interface typically do not offer the same level of
key protection as Secure Elements.

Strictly spoken, a Hybrid SE Authenticator (voluntarily) uses the Authenticator Command interface [UAFAuthnrCommands] inside the
authenticator, e.g. between the crypto kernel
and the user verification component.

1. PIN user verification where the user interaction for the PIN
entry is performed externally to the SE. The PIN may then be
passed within a
VERIFY command to the SE, followed by the
actual cryptographic operations (such as the Register and Sign UAF authenticator
commands).

2. Biometric user verification where the sample capture and
matching is performed externally to the SE (e.g. in TEE or in a
match-on-chip FP
sensor). This would then only need to send to
the SE the actual cryptographic operation needed in this
session (such as the Register and
Sign UAF authenticator commands).

3. User verification sample (Faceprint, Fingerprint..) capture is performed externally to the SE. The
sample is then sent to a match-on-card
applet in the SE that
behaves as a global PIN to enable access to the cryptographic
operation required within this session.

3.1.1 Architecture of the Hybrid SE Authenticator

In order to support an Hybrid SE Authenticator, a dedicated
software-based host must be created which knows how the SE
applet works. The
communication between the SE applet and the
host is defined based on [ISOIEC-7816-4-2013].
Whether a PC or mobile device the architecture
is still the
same, as defined below:

Application Layer : This component is responsible for acquiring
the user verification sample and mapping UAF commands to APDU
commands.
Communication layer : This is the [ISOIEC-7816-4-2013] APDUs
interface, which provides methods to list and select readers,
connect to a
Secure Element and interact with it.
SE Access OS APIs : OMA, PC/SC, NFC API, CCID…
Secure Element : UICC, micro SD, eSE, Dual Interface card…

Fig. 1 Architecture of Hybrid SE Authenticator

APDU command-response paire are handled as indicated in
[ISOIEC-7816-4-2013].

3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

The host is the entity communicating with the SE and which knows
how the SE and the applet running in the SE can be accessed. The host
could
be a Trusted Application (TA) which runs inside a TEE or simply an
application which runs in the normal world.

The following diagram illustrates how the Host of the Hybrid SE Authenticator may map the UAF commands to APDU commands. In this diagram,
the User Verification
Module is considered inside the SE applet.

Fig. 2 Communication flow between the ASM and the Hybrid SE Authenticator

4. FIDO UAF Applet and APDU commands

This section is normative.

4.1 UAF Applet in the Authenticator

4.1.1 Application Identifier

The FIDO UAF AID is defined in [UAFRegistry].

4.1.2 User Verification

The User verification is based on the submission of a
PIN/password (i.e., knowledge based) or a biometric template
(i.e., biometric based).

In this document, the envisaged user verification methods are PIN and biometric based.

NOTE

If the User Verification Module is inside the Host, for
example in the context of the TEE, the UserVerificationToken
shall be generated in
the Host and not in the SE. As a
result step 6 (Figure 2) should be executed in the Host instead of the SE.

4.1.3 Cryptographic operations

The SE applet must be able to perform a set of cryptographic
operations, such as key generation and signature computation. The
cryptographic
operations are defined in [UAFAuthnrCommands].
The SE applet must be able also to create data structures that
can be parsed by FIDO
Server.
The SE applet shall use the cryptographic algorithms indicated
in [UAFRegistry].

4.2 APDU Commands for FIDO UAF

4.2.1 Class byte coding

CLA indicates the class of the command.

Table 1: Class byte coding

Commands CLA

SELECT, VERIFY (ISO Version), GET RESPONSE (ISO Version) 0x00

VERIFY, UAF, GET RESPONSE 0x80

4.2.2 APDU command "UAF"

4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

This section describes the mapping between FIDO UAF authenticator commands and
APDU commands.

The mapping consists of encapsulating the entire UAF Authenticator Command in
the payload of the APDU command, and the UAF
Authenticator Command response in the payload of the APDU Response.

The host shall set the INS byte to “0x36” for all UAF commands
The SE shall read the UAF command number and data from the payload in the
data part of the command.

The payload of the APDU command is encoded according to [UAFAuthnrCommands], the first 2
bytes of each command are the UAF command
number. Upon command
reception, the SE applet must parse the first TLV tag (2 bytes)
and figure out which UAF command is being issued. The
SE applet shall
parse the rest of the FIDO Authenticator Command payload according
to [UAFAuthnrCommands].

The mapping of UAF Authenticator Commands to APDU commands is defined in
the following table:

Table 2: UAF APDU command

CLA INS P1 P2 Lc Data In Le

Proprietary(See Table 1) 0x36 0x00 0x00 Variable UAF Authenticator Command structure None

The UAF Authenticator Command structures are defined in part
6.2 of [UAFAuthnrCommands].

4.2.2.2 Response message and status conditions of an "UAF" APDU command

The status word of an "UAF" APDU response is handled at the Host level;
the host must interpret and map the status word based on the
table
below.

If the status word is equals to “9000”, the host shall return
back to the ASM the entire data field of the APDU response. It
the status word is
“61xx”, the host shall issue GET RESPONSE
(see below) until no more data is available, concatenate these
response parts and then return the
entire response. Otherwise,
the host has to build an UAF TLV response with the mapped status
codes TAG_STATUS_CODE, using the following
table.

NOTE

If the payload of an APDU command is longer than 255 bytes,
command chaining as described in [ISOIEC-7816-4-2013] should be used,
even though CLA is proprietary.

NOTE

If the UserVerificationToken is
supported, The ASM must set the TAG_USERVERIFY_TOKEN flag in the
value of the UserVerificationToken,
received previously
contained in either a Register or Sign command. Please
refer to the FIG 1 in Use-Case section.

For example, if the status word returned by the Applet is
“6A88”, the host shall put UAF_CMD_STATUS_USER_NOT_ENROLLED
in the status codes of the
UAF TLV response.

Table 3: Mapping between APDU Status Codes and FIDO Status Codes [UAFAuthnrCommands]

APDU
STATUS
CODE

FIDO UAF
STATUS
CODE

NAME DESCRIPTION

9000 0x00 UAF_CMD_STATUS_OK Success.

61xx 0x00 UAF_CMD_STATUS_OK Success, xx bytes available for GET
RESPONSE.

6982 0x02 UAF_CMD_STATUS_ACCESS_DENIED Access to this operation is denied.

6A88 0x03 UAF_CMD_STATUS_USER_NOT_ENROLLED User is not enrolled with the
authenticator.

N/A 0x04 UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT Transaction content cannot be
rendered.

N/A 0x05 UAF_CMD_STATUS_USER_CANCELLED User has cancelled the operation.

6400 0x06 UAF_CMD_STATUS_CMD_NOT_SUPPORTED Command not supported.

6A81 0x07 UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED Required attestation not supported.

6A80 0x08 UAF_CMD_STATUS_PARAMS_INVALID The request was rejected due to an
incorrect data field.

6983 0x09 UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

The UAuth key which is relevant for
this command disappeared
from the
authenticator and cannot be
restored.

N/A 0x0a UAF_CMD_STATUS_TIMEOUT The operation in the authenticator
took longer than expected.

N/A 0x0e UAF_CMD_STATUS_USER_NOT_RESPONSIVE The user took too long to follow an
instruction.

6A84 0x0f UAF_CMD_STATUS_INSUFFICIENT_RESOURCES
Insufficient resources in the
authenticator to perform the
requested task.

63C0 0x10 UAF_CMD_STATUS_USER_LOCKOUT

The operation failed because the
user is locked out and the
authenticator
cannot automatically
trigger an action to change that.

All other
codes 0x01 UAF_CMD_STATUS_ERR_UNKNOWN An unknown error

The response message of an UAF APDU command is defined in the
following table :

Data field SW1 - SW2

not present

“6982” – The request was rejected due to user verification
being required.

“6A80” – The request was rejected due to an incorrect data
field.

“6A81” – Required attestation not supported

“6A88” – The user is not enrolled with the SE

“6400” – Execution error, undefined UAF command

“6983” – Authentication data not usable, Auth key disappeared

Table 4: Response message of an "UAF" APDU command

UAF Authenticator Command response [UAFAuthnrCommands]
“61xx” – Success, xx bytes available for GET RESPONSE.

“9000” – Success

4.2.3 APDU Command "SELECT"

A successful SELECT AID allows the host to know that the applet
is active in the SE, and to open a logical channel with this
end.

In Android smartphones apps are not allowed to use the basic
channel to the SIM because this channel is reserved for the
baseband processor
and the GSM/UMTS/LTE activities. In this
case the app must select the applet in a logical channel.

The host must send a SELECT APDU command to the SE applet before
any others commands.

As a result, the command for selecting the applet using the FIDO UAF AID is :

Table 5: SELECT AID command

CLA INS P1 P2 Lc Data In Le

0x00 0xA4 0x04 0x0C 0x08 0xA000000647AF0001
No response data is requested if the SELECT command's "Le" field is
absent.
Otherwise, if the "Le" field is present, vendor-proprietary
data is being
requested.

4.2.4 APDU Command "VERIFY"

This command is used to request access rights using a PIN or
Biometric sample. The SE applet shall verify the sample data
given by the Host
against the reference PIN or Biometric held
in the SE.

Please refer to [ISOIEC-7816-4-2013] and [ISOIEC-19794] for Personal verification
through biometric methods.

If the verification is successful and UserVerificationToken is
supported by the SE applet, a token shall be generated and
sent to the Host.
Without having this token, the Host cannot
invoke special UAF commands such as Register or Sign.

The support of UserVerificationToken can be checked by
examining the contents of the GetInfo response
in the AuthenticatorType TAG or the
response of SELECT APDU
command [UAFAuthnrCommands].

Refer to [FIDOGlossary] for more information about
UserVerificationToken.

4.2.4.1 Command structure

Table 6: VERIFY command encoding for PIN verification

CLA INS P1 P2 Lc Data In Le

ISO or Proprietary: see [ISOIEC-
7816-4-2013]

0x20 (for PIN) or 0x21 (for
biometry) 0x00 0x00 Variable Verification

data
None or expected Le for
UserVerificationToken

4.2.4.2 Response message and status conditions

Table 7: Response message and status conditions

Data Out SW1 - SW2

Absent (ISO-Variant) or UserVerificationToken (proprietary) See [ISOIEC-7816-4-2013]

4.3 Managing Long APDU Commands and Responses

If a Secure Element is able to send a complete response (e.g. extended length APDU, block chaining), GET RESPONSE APDU command shall be

NOTE

An SE applet that does not support UserVerificationToken,
may use the [ISOIEC-7816-4-2013] VERIFY command. In this case,
the
VERIFY command must be securely bound to Register and
Sign commands, so a secure bound method shall be implemented in
the SE
applet, such as Secure Messaging.

used, as defined in ISO Variant section.
Otherwise, the proprietary solution shall be used, as defined in
section Proprietary Variant.

4.3.1 ISO Variant

The [ISOIEC-7816-4-2013] GET RESPONSE command is used in order to
retrieve big data returned by APDU command "UAF".

4.3.2 Proprietary Variant

In order to avoid using Get Response APDU command which is not
supported by all devices and terminals, a propriatry method is defined for
managing the long data answers at application level.

When using the proprietary variant, the response to the UAF APDU command shall include the Tag "0x2813", that specifies the length of the
response.

Response Data Out description

Tag
0x2813

Length
variable (2 bytes)

Value
Expected data length (2 bytes)

In the case where the data does not fit into a single Data Out
message, the host shall repeat the "UAF" command with P2 = 1 value mentioning
this is a repetition of the
incoming APDU to get all the data. This process shall be
repeated until the entire data are collected by the host.

Here is an example of an APDU Response which contains more than 255 bytes in the payload.

Fig. 3 Long APDU management using the defined proprietary method

5. Security considerations

This section is non-normative.

Guaranteeing trust and
security in a fragmented architecture such as the one levering
on SE is a challenge that
the Host has to address
regardless of its nature (TEE or Software based), which results in different challenges from a
security and architecture perspective. One could
list the
following ones:

use of a trusted user interface to enter a PIN
on the device,
secure transmission of PIN or fingerprint minutiae,

NOTE

The host shall support both versions of Get Response APDU command, and figure out which command must be sent to the Applet by
parsing the response of the UAF APDU command. If the UAF APDU command response contains the Tag "0x2813", the host must send
a proprietary Get Response APDU command, otherwise the host must send the ISO variant of Get Response APDU command.

minutiae extraction format,
integrity of data transmitted between a Host and a SE.

Hence, we will only consider
here, security challenges affecting the interface between the Host
and the SE.

A possible way to maintain the integrity and confidentiality
when APDUs commands are exchanged is to enable a secure
channel between the
Host and the SE. While this is left to
implementation, there are several technologies allowing to
build a secure channel between a SE and a
devices,
that may be implemented.

Secure channel between a trusted application in a TEE and an
applet in a SE [GlobalPlatform-TEE-SE].
Secure channel between a device and an applet in a secure
element [GlobalPlatform-Card].
Secure channel between a device and a SE
[ETSI-Secure-Channel].

A. References

A.1 Normative references

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

A.2 Informative references

[ETSI-Secure-Channel]
. ETSI TS 102 484 Smart Cards; Secure channel between a UICC and an end-point terminal. URL:

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-
id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hill; D. Biggs. FIDO Security Reference. 27 February 2018. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html

[GlobalPlatform-Card]
. Secure Channel Protocol 03 – GlobalPlatform Card Specification v.2.2 – Amendment D. URL:

[GlobalPlatform-TEE-SE]
. TEE Secure Element API Specification v1.0 | GPD_SPE_024. URL:

[ISOIEC-19794]
. ISO 19794: Information technology - Biometric data interchange formats. URL:

[ISOIEC-7816-4-2013]
. ISO 7816-4: Identification cards – Integrated circuit cards; Part 4 : Organization, security and commands for interchange. URL:

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill; J. Hodges; K. Yang. FIDO UAF Authenticator Commands. Review Draft.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

FIDO UAF Authenticator-Specific Module API
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Roni Sasson, Discretix, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also be
available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

UAF authenticators may be connected to a user device
via various physical interfaces (SPI, USB, Bluetooth, etc).
The UAF Authenticator-Specific
Module (ASM) is a software interface on top of UAF
authenticators which gives a
standardized way for FIDO UAF
Clients to detect and access the functionality of UAF
authenticators and hides
internal communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs,
defines the UAF ASM API and explains how FIDO UAF
Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO
FIDO UAF Client vendors.

Status of This Document

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/

This section describes the status of this document at the time of its publication.
Other documents may supersede this
document. A list of current FIDO Alliance publications and the
latest revision of this technical report can be found in
the FIDO Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments
regarding this document, please Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property
rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors
to the Specification are not, and shall not be held, responsible in any manner
for identifying or failing to identify any or
all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable
document and may be used as reference material or cited from another
document. FIDO Alliance's role in making the
Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Code Example format

3. ASM Requests and Responses
3.1 Request enum
3.2 StatusCode Interface

3.2.1 Constants
3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

3.3 ASMRequest Dictionary
3.3.1 Dictionary ASMRequest Members

3.4 ASMResponse Dictionary
3.4.1 Dictionary ASMResponse Members

3.5 GetInfo Request
3.5.1 GetInfoOut Dictionary

3.5.1.1 Dictionary GetInfoOut Members

3.5.2 AuthenticatorInfo Dictionary
3.5.2.1 Dictionary AuthenticatorInfo Members

3.6 Register Request
3.6.1 RegisterIn Object

3.6.1.1 Dictionary RegisterIn Members

3.6.2 RegisterOut Object
3.6.2.1 Dictionary RegisterOut Members

3.6.3 Detailed Description for Processing the Register Request

3.7 Authenticate Request
3.7.1 AuthenticateIn Object

https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.7.1.1 Dictionary AuthenticateIn Members

3.7.2 Transaction Object
3.7.2.1 Dictionary Transaction Members

3.7.3 AuthenticateOut Object
3.7.3.1 Dictionary AuthenticateOut Members

3.7.4 Detailed Description for Processing the Authenticate Request

3.8 Deregister Request
3.8.1 DeregisterIn Object

3.8.1.1 Dictionary DeregisterIn Members

3.8.2 Detailed Description for Processing the Deregister Request

3.9 GetRegistrations Request
3.9.1 GetRegistrationsOut Object

3.9.1.1 Dictionary GetRegistrationsOut Members

3.9.2 AppRegistration Object
3.9.2.1 Dictionary AppRegistration Members

3.9.3 Detailed Description for Processing the GetRegistrations Request

3.10 OpenSettings Request

4. Using ASM API
5. ASM APIs for various platforms

5.1 Android ASM Intent API
5.1.1 Discovering ASMs
5.1.2 Alternate Android AIDL Service ASM Implementation

5.2 Java ASM API for Android
5.3 C++ ASM API for iOS
5.4 Windows ASM API

6. CTAP2 Interface
6.1 authenticatorMakeCredential

6.1.1 Processing rules for authenticatorMakeCredential

6.2 authenticatorGetAssertion
6.2.1 Processing rules for authenticatorGetAssertion

6.3 authenticatorGetNextAssertion
6.4 authenticatorCancel
6.5 authenticatorReset
6.6 authenticatorGetInfo

6.6.1 Processing rules for authenticatorGetInfo

7. Security and Privacy Guidelines
7.1 KHAccessToken
7.2 Access Control for ASM APIs

A. References
A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation
operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings
for WebIDL [WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename
Safe Alphabet" [RFC4648] without
padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are to be interpreted as
described in [RFC2119].

2. Overview

This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces
(SPI, USB, Bluetooth, etc.).
The UAF Authenticator-Specific module (ASM) is a software interface
on top of UAF authenticators which gives a
standardized way for FIDO UAF Clients to detect and
access the functionality of UAF authenticators, and hides
internal communication
complexity from clients.

The ASM is a platform-specific
software component offering an API to FIDO UAF Clients, enabling
them to discover
and communicate with one or more available
authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and
FIDO UAF Client vendors.

NOTE

Note: Certain dictionary members need to be present in order to
comply with FIDO requirements. Such
members are marked in the
WebIDL definitions found in this document, as
required. The keyword required
has been
introduced by [WebIDL-ED], which is a work-in-progress. If you
are using a WebIDL parser which
implements [WebIDL], then you
may remove the keyword required from your WebIDL and
use other means to
ensure those fields are present.

NOTE

Platform vendors might choose to not expose the ASM API defined in this document to applications.
They

The FIDO UAF protocol and its various operations is described in the
FIDO UAF Protocol Specification
[UAFProtocol]. The following
simplified architecture diagram illustrates the interactions
and actors this document is
concerned with:

Fig. 1 UAF ASM API Architecture

2.1 Code Example format

ASM requests and responses are presented in WebIDL format.

3. ASM Requests and Responses

This section is normative.

The ASM API is defined in terms of JSON-formatted [ECMA-404] request and reply messages. In order to send a
request to an ASM, a FIDO UAF Client creates an appropriate object (e.g., in ECMAscript), "stringifies" it (also known
as serialization) into a JSON-formated string, and sends it to the ASM. The ASM de-serializes the JSON-formatted
string, processes the request, constructs a response, stringifies it, returning it as a JSON-formatted string.

might instead choose to expose ASM functionality through some other API
(such as, for example, the Android
KeyStore API, or iOS KeyChain API).
In these cases it's important to make sure that the underlying ASM
communicates with the FIDO UAF authenticator in a
manner defined in this document.

NOTE

Authenticator implementers may create custom authenticator command interfaces other than the one defined in
[UAFAuthnrCommands]. Such implementations are not required to implement the exact message-specific processing
steps described in this section. However,

1. the command interfaces must present the ASM with external behavior equivalent to that described below in
order for the ASM to properly respond to the client request messages (e.g. returning appropriate UAF status
codes for specific conditions).

2. all authenticator implementations must support an assertion scheme as defined [UAFRegistry] and must return
the related objects, i.e. TAG_UAFV1_REG_ASSERTION and TAG_UAFV1_AUTH_ASSERTION as defined in
[UAFAuthnrCommands].

3.1 Request enum

WebIDL

enum Request {
 "GetInfo",
 "Register",
 "Authenticate",
 "Deregister",
 "GetRegistrations",
 "OpenSettings"
};

Enumeration description
GetInfo GetInfo
Register Register
Authenticate Authenticate
Deregister Deregister
GetRegistrations GetRegistrations
OpenSettings OpenSettings

3.2 StatusCode Interface

If the ASM needs to return an error received from the authenticator, it shall map the status code received from the
authenticator to the appropriate ASM status code as specified here.

If the ASM doesn't understand the authenticator's status code, it shall treat it as UAF_CMD_STATUS_ERR_UNKNOWN
and
map it to UAF_ASM_STATUS_ERROR if it cannot be handled otherwise.

If the caller of the ASM interface (i.e. the FIDO Client) doesn't understand a status code returned by the ASM, it shall

treat it as UAF_ASM_STATUS_ERROR. This might occur when new error codes are introduced.

WebIDL

interface StatusCode {
 const short UAF_ASM_STATUS_OK = 0x00;
 const short UAF_ASM_STATUS_ERROR = 0x01;
 const short UAF_ASM_STATUS_ACCESS_DENIED = 0x02;
 const short UAF_ASM_STATUS_USER_CANCELLED = 0x03;

The ASM request processing rules in this document
explicitly assume that the underlying authenticator
implements the "UAFV1TLV" assertion scheme
(e.g. references to TLVs and tags) as described in
[UAFProtocol]. If an authenticator supports a
different assertion scheme then the corresponding
processing
rules must be replaced with appropriate
assertion scheme-specific rules.

 const short UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT = 0x04;
 const short UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY = 0x09;
 const short UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED = 0x0b;
 const short UAF_ASM_STATUS_USER_NOT_RESPONSIVE = 0x0e;
 const short UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES = 0x0f;
 const short UAF_ASM_STATUS_USER_LOCKOUT = 0x10;
 const short UAF_ASM_STATUS_USER_NOT_ENROLLED = 0x11;
 const short UAF_ASM_STATUS_SYSTEM_INTERRUPTED = 0x12;
};

3.2.1 Constants

UAF_ASM_STATUS_OK of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR of type short
An unknown error has been encountered during the processing.

UAF_ASM_STATUS_ACCESS_DENIED of type short
Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED of type short
Indicates that user explicitly canceled the request.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY of type short
Indicates that the UAuth key disappeared from the authenticator and canot be restored.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED of type short
Indicates that the authenticator is no longer connected to the ASM.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES of type short
Insufficient resources in the authenticator to perform the requested task.

UAF_ASM_STATUS_USER_LOCKOUT of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an
action to change that.
Typically the user would have to enter an alternative password (formally: undergo
some other alternative user verification method) to re-enable the use
of the main user verification method.

UAF_ASM_STATUS_USER_NOT_ENROLLED of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot
automatically trigger user enrollment.

UAF_ASM_STATUS_SYSTEM_INTERRUPTED of type short
Indicates that the system interrupted the operation. Retry might make sense.

NOTE

Any method the user can use to (re-) enable the main user verification method is considered an
alternative user verification method and must be properly declared as such. For example, if the user
can enter an alternative
password to re-enable the use of fingerprints or to add additional fingers,
the authenticator
obviously supports fingerprint or password based user verification.

3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

Authenticators are returning a status code in their responses to the ASM. The ASM needs to act on those
responses
and also map the status code returned by the authenticator to an ASM status code.

The mapping of authenticator status codes to ASM status codes is specified here:

Authenticator Status Code ASM Status Code Comment

UAF_CMD_STATUS_OK UAF_ASM_STATUS_OK Pass-through success status.

UAF_CMD_STATUS_ERR_UNKNOWN UAF_ASM_STATUS_ERROR Pass-through unspecific error status.

UAF_CMD_STATUS_ACCESS_DENIED UAF_ASM_STATUS_ACCESS_DENIED Pass-through status code.

UAF_CMD_STATUS_USER

_NOT_ENROLLED

UAF_ASM_STATUS_USER

_NOT_ENROLLED (or

UAF_ASM_STATUS_ACCESS_DENIED

in some situations)

According to [UAFAuthnrCommands], this
might occur at the Sign command or at the
Register command if the authenticator cannot
automatically trigger user enrollment. The
mapping depends on the command as follows.

In the case of "Register" command, the error is
mapped to
UAF_ASM_STATUS_USER_NOT_ENROLLED
in order to tell the calling FIDO Client
the there
is an authenticator present but the user
enrollment needs to be triggered outside the
authenticator.

In the case of the "Sign" command, the Uauth
key needs to be protected by one of the
authenticator's user verification methods at all
times. So if this error occurs it is considered an
internal error and hence mapped to
UAF_ASM_STATUS_ACCESS_DENIED.

UAF_CMD_STATUS_CANNOT_RENDER

_TRANSACTION_CONTENT

UAF_ASM_STATUS_CANNOT_RENDER

_TRANSACTION_CONTENT

Pass-through status code as it indicates a
problem to be resolved by the entity providing
the
transaction text.

UAF_CMD_STATUS_USER_CANCELLED UAF_ASM_STATUS_USER_CANCELLED Map to UAF_ASM_STATUS_USER_CANCELLED.

UAF_CMD_STATUS_CMD

_NOT_SUPPORTED

UAF_ASM_STATUS_OK or
UAF_ASM_STATUS_ERROR

If the ASM is able to handle that command on
behalf of the authenticator (e.g. removing the
key handle in the case of Dereg command for a
bound authenticator),
the UAF_ASM_STATUS_OK
must be returned. Map the status code to
UAF_ASM_STATUS_ERROR
otherwise.

UAF_CMD_STATUS_ATTESTATION

_NOT_SUPPORTED
UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM has
obviously not requested one of the supported
attestation types
indicated in the authenticator's
response to the GetInfo command.

UAF_CMD_STATUS_PARAMS_INVALID UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM has
obviously not provided the correct parameters
to the authenticator when sending the

command.

UAF_CMD_STATUS_KEY_

DISAPPEARED_PERMANENTLY

UAF_ASM_STATUS_KEY_

DISAPPEARED_PERMANENTLY

Pass-through status code. It indicates that the
Uauth key disappeared permanently and the
RP App might want to trigger re-registration of
the authenticator.

UAF_STATUS_CMD_TIMEOUT UAF_ASM_STATUS_ERROR
Retry operation and map to
UAF_ASM_STATUS_ERROR if the problem persists.

UAF_CMD_STATUS_USER

_NOT_RESPONSIVE

UAF_ASM_STATUS_USER

_NOT_RESPONSIVE

Pass-through status code. The RP App might
want to retry the operation once the user
pays
attention to the application again.

UAF_CMD_STATUS_

INSUFFICIENT_RESOURCES

UAF_ASM_STATUS_INSUFFICIENT

_AUTHENTICATOR_RESOURCES
Pass-through status code.

UAF_CMD_STATUS_USER_LOCKOUT UAF_ASM_STATUS_USER_LOCKOUT Pass-through status code.

Any other status code UAF_ASM_STATUS_ERROR

Map any unknown error code to
UAF_ASM_STATUS_ERROR.
This might happen
when an ASM communicates with an
authenticator implementing a newer UAF
specification than the ASM.

3.3 ASMRequest Dictionary

All ASM requests are represented as ASMRequest objects.

WebIDL

dictionary ASMRequest {
 required Request requestType;
 Version asmVersion;
 unsigned short authenticatorIndex;
 object args;
 Extension[] exts;
};

3.3.1 Dictionary ASMRequest Members

requestType of type required Request
Request type

asmVersion of type Version
ASM message version to be used with this request.
For the definition of the Version dictionary see
[UAFProtocol].
The asmVersion must be 1.2 (i.e. major version is 1 and minor version is 2) for this version
of the specification.

authenticatorIndex of type unsigned short
Refer to the GetInfo request for more details. Field authenticatorIndex must not be set
for GetInfo
request.

args of type object
Request-specific arguments. If set, this attribute may take
one of the following types:

RegisterIn

AuthenticateIn

DeregisterIn

exts of type array of Extension
List of UAF extensions.
For the definition of the Extension dictionary see [UAFProtocol].

3.4 ASMResponse Dictionary

All ASM responses are represented as ASMResponse objects.

WebIDL

dictionary ASMResponse {
 required short statusCode;
 object responseData;
 Extension[] exts;
};

3.4.1 Dictionary ASMResponse Members

statusCode of type required short
must contain one of the values defined in the StatusCode interface

responseData of type object
Request-specific response data. This attribute must have one of
the following types:

GetInfoOut

RegisterOut

AuthenticateOut

GetRegistrationOut

exts of type array of Extension
List of UAF extensions.
For the definition of the Extension dictionary see [UAFProtocol].

3.5 GetInfo Request

Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports
2. Collect information about all of them
3. Assign indices to them (authenticatorIndex)
4. Return the information to the caller

NOTE

Where possible, an authenticatorIndex should be
a persistent identifier that uniquely identifies an
authenticator over time, even if it is repeatedly
disconnected and reconnected. This avoids possible
confusion
if the set of available authenticators changes
between a GetInfo request and subsequent ASM requests,
and
allows a FIDO client to perform caching of information about removable
authenticators for a better user
experience.

NOTE

For a GetInfo request, the following ASMRequest member(s) must
have the following value(s). The remaining
ASMRequest members
should be omitted:

ASMRequest.requestType must be set to GetInfo

For a GetInfo response, the following ASMResponse member(s) must
have the following value(s). The remaining
ASMResponse members
should be omitted:

ASMResponse.statusCode must have one of the following values
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

ASMResponse.responseData must be an object of type GetInfoOut.
In the case of an error the values of the fields
might be empty (e.g. array with no members).

See section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for details on the mapping of
authenticator status codes to ASM status codes.

3.5.1 GetInfoOut Dictionary

WebIDL

dictionary GetInfoOut {
 required AuthenticatorInfo[] Authenticators;
};

3.5.1.1 Dictionary GetInfoOut Members

Authenticators of type array of required AuthenticatorInfo
List of authenticators reported by the current ASM. may be empty an empty list.

3.5.2 AuthenticatorInfo Dictionary

WebIDL

dictionary AuthenticatorInfo {
 required unsigned short authenticatorIndex;
 required Version[] asmVersions;
 required boolean isUserEnrolled;
 required boolean hasSettings;
 required AAID aaid;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 required unsigned short[] attestationTypes;
 required unsigned long userVerification;
 required unsigned short keyProtection;
 required unsigned short matcherProtection;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required boolean isRoamingAuthenticator;
 required DOMString[] supportedExtensionIDs;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;

It is up to the ASM to decide whether authenticators which are disconnected temporarily will be reported or
not. However, if disconnected authenticators are reported, the FIDO Client
might trigger an operation via the
ASM on those. The ASM will have
to notify the user to connect the authenticator and report an appropriate
error if the authenticator isn't connected in time.

 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 DOMString title;
 DOMString description;
 DOMString icon;
};

3.5.2.1 Dictionary AuthenticatorInfo Members

authenticatorIndex of type required unsigned short
Authenticator index. Unique, within the scope of all
authenticators reported by the ASM, index
referring to
an authenticator. This index is used by the UAF
Client to refer to the appropriate authenticator in further
requests.

asmVersions of type array of required Version
A list of ASM Versions that this authenticator can be used with.
For the definition of the Version dictionary
see [UAFProtocol].

isUserEnrolled of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators which
don't have user
verification technology must always return true.
Bound authenticators which support different profiles per
operating system (OS) user must report enrollment status for the current OS user.

hasSettings of type required boolean
A boolean value indicating whether the authenticator has its own
settings. If so, then a FIDO UAF Client
can launch these settings by
sending a OpenSettings request.

aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and
batch of the authenticator. See
[UAFProtocol] for the definition of the AAID structure.

assertionScheme of type required DOMString
The assertion scheme the authenticator uses for attested data and
signatures.

AssertionScheme identifiers are defined in the UAF Protocol
specification [UAFProtocol].

authenticationAlgorithm of type required unsigned short
Indicates the authentication algorithm that the authenticator uses.
Authentication algorithm identifiers are
defined in are defined in [FIDORegistry] with ALG_ prefix.

attestationTypes of type array of required unsigned short
Indicates attestation types supported by the authenticator.
Attestation type TAGs are defined in
[UAFRegistry] with TAG_ATTESTATION prefix

userVerification of type required unsigned long
A set of bit flags indicating the user verification method(s)
supported by the authenticator. The algorithm for
combining the flags is defined in [UAFProtocol],
section 3.1.12.1. The values are defined by the
USER_VERIFY constants in [FIDORegistry].

keyProtection of type required unsigned short
A set of bit flags indicating the key protections used by the
authenticator. The values are defined by the
KEY_PROTECTION
constants in [FIDORegistry].

matcherProtection of type required unsigned short
A set of bit flags indicating the matcher protections used by the
authenticator. The values are defined by
the MATCHER_PROTECTION
constants in [FIDORegistry].

attachmentHint of type required unsigned long
A set of bit flags indicating how the authenticator is currently
connected to the system hosting the FIDO

UAF Client software. The
values are defined by the ATTACHMENT_HINT constants defined in
[FIDORegistry].

isSecondFactorOnly of type required boolean
Indicates whether the authenticator can be used only as a second
factor.

isRoamingAuthenticator of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs of type array of required DOMString
List of supported UAF extension IDs. may be an empty list.

tcDisplay of type required unsigned short
A set of bit flags indicating the availability and type of
the authenticator's transaction confirmation display.
The values are defined by the TRANSACTION_CONFIRMATION_DISPLAY
constants in [FIDORegistry].

This value must be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString
Supported transaction content type [FIDOMetadataStatement].

This value must be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction Portable Network Graphic (PNG) type [FIDOMetadataStatement].
For the definition
of the DisplayPNGCharacteristicsDescriptor structure see [FIDOMetadataStatement].

This list must be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-
zero and tcDisplayContentType is image/png.

title of type DOMString
A human-readable short title for the authenticator. It should be
localized for the current locale.

description of type DOMString
Human-readable longer description of what the authenticator
represents.

NOTE

Because the connection state and topology of an authenticator
may be transient, these values are
only hints that can be used
by server-supplied policy to guide the user experience, e.g. to
prefer a
device that is connected and ready for authenticating
or confirming a low-value transaction, rather
than one that is
more secure but requires more user effort. These values are not
reflected in
authenticator metadata and cannot be relied on by
the relying party, although some models of
authenticator may
provide attested measurements with similar semantics as part of
UAF protocol
messages.

NOTE

If the ASM doesn't return a title, the FIDO UAF Client must provide a title to the calling App.
See
section "Authenticator interface" in [UAFAppAPIAndTransport].

NOTE

This text should be localized for current locale.

icon of type DOMString
Portable Network Graphic (PNG) format image file representing the icon encoded as a data: url
[RFC2397].

3.6 Register Request

Verify the user and return an authenticator-generated UAF
registration assertion.

For a Register request, the following ASMRequest member(s) must
have the following value(s). The remaining
ASMRequest members
should be omitted:

ASMRequest.requestType must be set to Register
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
ASMRequest.args must be set to an object of type RegisterIn
ASMRequest.exts may include some extensions to be processed by the ASM or the by Authenticator.

For a Register response, the following ASMResponse member(s) must
have the following value(s). The remaining
ASMResponse members
should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

UAF_ASM_STATUS_USER_LOCKOUT

UAF_ASM_STATUS_USER_NOT_ENROLLED

ASMResponse.responseData must be an object of type RegisterOut.
In the case of an error the values of the fields
might be empty (e.g. empty strings).

3.6.1 RegisterIn Object

WebIDL

dictionary RegisterIn {

The text is intended to be displayed to the user. It might deviate from the description
specified in the
metadata statement for the authenticator [FIDOMetadataStatement].

If the ASM doesn't return a description, the FIDO UAF Client will provide a description to the calling
application.
See section "Authenticator interface" in [UAFAppAPIAndTransport].

NOTE

If the ASM doesn't return an icon, the FIDO UAF Client will provide a default icon to the calling
application.
See section "Authenticator interface" in [UAFAppAPIAndTransport].

 required DOMString appID;
 required DOMString username;
 required DOMString finalChallenge;
 required unsigned short attestationType;
};

3.6.1.1 Dictionary RegisterIn Members

appID of type required DOMString
The FIDO server Application Identity.

username of type required DOMString
Human-readable user account name

finalChallenge of type required DOMString
base64url-encoded challenge data [RFC4648]

attestationType of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

WebIDL

dictionary RegisterOut {
 required DOMString assertion;
 required DOMString assertionScheme;
};

3.6.2.1 Dictionary RegisterOut Members

assertion of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionScheme of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol
specification [UAFProtocol].

3.6.3 Detailed Description for Processing the Register Request

Refer to [UAFAuthnrCommands] document for more information about
the TAGs and structure mentioned in this
paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then fail with
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If a user is already enrolled with this authenticator (such as
biometric enrollment, PIN setup, etc. for example)
then the ASM must request that the
authenticator verifies the user.

NOTE

If the authenticator supports UserVerificationToken (see [UAFAuthnrCommands]), then the ASM
must
obtain this token in order to later include it with the Register command.

If the user is locked out (e.g. too many failed attempts to get verified) and
the authenticator cannot
automatically trigger unblocking, return UAF_ASM_STATUS_USER_LOCKOUT.

If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

3. If the user is not enrolled with the authenticator then take the user
through the enrollment process.
If neither the ASM nor the Authenticator can trigger the enrollment process,
return
UAF_ASM_STATUS_USER_NOT_ENROLLED.
If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Verify whether registerIn.appID and the appID included in the finalChallenge parameter are identical. The
registerIn.finalChallenge value needs to be (1) base64url decoded and (2) parsed into a JSON object first.

If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

5. Construct KHAccessToken (see section KHAccessToken for more
details)
6. Hash the provided RegisterIn.finalChallenge using the authenticator-specific hash function

(FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

7. Create a TAG_UAFV1_REGISTER_CMD structure and pass it to the authenticator
1. Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username,
UserVerificationToken,

RegisterIn.AppID, RegisterIn.AttestationType
1. Depending on AuthenticatorType some arguments may be optional. Refer to

[UAFAuthnrCommands]
for more information on authenticator types and their required arguments.

2. Add the extensions from the ASMRequest.exts dictionary appropriately to the TAG_UAFV1_REGISTER_CMD as
TAG_EXTENSION object.

8. Invoke the command and receive the response. If the authenticator returns an error, handle that error
appropriately. If the connection to the authenticator gets lost and cannot be restored, return
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the authenticator error code to
the the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status
Codes for details).

9. Parse TAG_UAFV1_REGISTER_CMD_RESP
1. Parse the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_REG_ASSERTION) and
extract TAG_KEYID

10. If the authenticator is a bound authenticator
1. Store CallerID, AppID, TAG_KEYHANDLE, TAG_KEYID and CurrentTimestamp in the ASM's database.

11. Create a RegisterOut object
1. Set RegisterOut.assertionScheme according to AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_REG_ASSERTION) in base64url format

and set as
RegisterOut.assertion.
3. Return RegisterOut object

3.7 Authenticate Request

NOTE

What data an ASM will store at this stage depends on underlying authenticator's architecture.
For
example some authenticators might store AppID, KeyHandle, KeyID inside their own secure
storage. In this case ASM doesn't have to store these data in its database.

Verify the user and return authenticator-generated UAF
authentication assertion.

For an Authenticate request, the following ASMRequest member(s) must
have the following value(s). The remaining
ASMRequest members
should be omitted:

ASMRequest.requestType must be set to Authenticate.
ASMRequest.asmVersion must be set to the desired version.
ASMRequest.authenticatorIndex must be set to the target authenticator index.
ASMRequest.args must be set to an object of type AuthenticateIn
ASMRequest.exts may include some extensions to be processed by the ASM or the by Authenticator.

For an Authenticate response, the following ASMResponse member(s) must
have the following value(s). The remaining
ASMResponse members
should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

UAF_ASM_STATUS_USER_LOCKOUT

UAF_ASM_STATUS_USER_NOT_ENROLLED

ASMResponse.responseData must be an object of type
AuthenticateOut.
In the case of an error the values of the
fields might be empty (e.g. empty strings).

3.7.1 AuthenticateIn Object

WebIDL

dictionary AuthenticateIn {
 required DOMString appID;
 DOMString[] keyIDs;
 required DOMString finalChallenge;
 Transaction[] transaction;
};

3.7.1.1 Dictionary AuthenticateIn Members

appID of type required DOMString
appID string

keyIDs of type array of DOMString
base64url [RFC4648] encoded keyIDs

finalChallenge of type required DOMString
base64url [RFC4648] encoded final challenge

transaction of type array of Transaction
An array of transaction data to be confirmed by user. If multiple transactions are provided, then
the ASM

must select the one that best matches the current display characteristics.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
 required DOMString contentType;
 required DOMString content;
 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.7.2.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to
its metadata statement (see
[FIDOMetadataStatement])

content of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to
the contentType to be shown
to the user.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor
structure See [FIDOMetadataStatement].

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {
 required DOMString assertion;
 required DOMString assertionScheme;
};

3.7.3.1 Dictionary AuthenticateOut Members

assertion of type required DOMString
Authenticator UAF authentication assertion.

assertionScheme of type required DOMString
Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the
TAGs and structure mentioned in this
paragraph.

1. Locate the authenticator using authenticatorIndex.
If the authenticator cannot be located, then fail with

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the
moment of transaction.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.
2. If no user is enrolled with this authenticator (such as
biometric enrollment, PIN setup, etc.), return

UAF_ASM_STATUS_ACCESS_DENIED

3. The ASM must request the authenticator to verify the user.
If the user is locked out (e.g. too many failed attempts to get verified) and
the authenticator cannot
automatically trigger unblocking, return UAF_ASM_STATUS_USER_LOCKOUT.
If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more
details)
5. Hash the provided AuthenticateIn.finalChallenge using an authenticator-specific hash function

(FinalChallengeHash).

The authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

6. If this is a Second Factor authenticator and
AuthenticateIn.keyIDs is empty, then return
UAF_ASM_STATUS_ACCESS_DENIED

7. If AuthenticateIn.keyIDs is not empty,
1. If this is a bound authenticator, then look up ASM's database with
AuthenticateIn.appID and

AuthenticateIn.keyIDs and obtain
the KeyHandles associated with it.
Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the related key
disappeared permanently
from the authenticator.
Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found.

2. If this is a roaming authenticator, then treat
AuthenticateIn.keyIDs as KeyHandles

8. Create TAG_UAFV1_SIGN_CMD structure and pass it to the authenticator.
1. Copy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not empty), FinalChallengeHash,

KHAccessToken, UserVerificationToken, KeyHandles
Depending on AuthenticatorType some arguments may be optional. Refer to
[UAFAuthnrCommands]
for more information on authenticator types and their required arguments.
If multiple transactions are provided, select the one that best matches the current display
characteristics.

Decode the base64url encoded AuthenticateIn.Transaction.content before passing it to the
authenticator

2. Add the extensions from the ASMRequest.exts dictionary appropriately to the TAG_UAFV1_REGISTER_CMD as
TAG_EXTENSION object.

9. Invoke the command and receive the response. If the authenticator returns an error, handle that error
appropriately. If the connection to the authenticator gets lost and cannot be restored, return

NOTE

If the authenticator supports UserVerificationToken (see [UAFAuthnrCommands]), the ASM
must
obtain this token in order to later pass to Sign command.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or
vertically at the
moment of transaction.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the authenticator error code to
the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes
for details).

10. Parse TAG_UAFV1_SIGN_CMD_RESP
If it's a first-factor authenticator and the response includes
TAG_USERNAME_AND_KEYHANDLE, then

1. Extract usernames from TAG_USERNAME_AND_KEYHANDLE fields
2. If two or more equal usernames are found, then choose the one which has registered most recently

3. Show remaining distinct usernames and ask the user to choose a single username
4. Set TAG_UAFV1_SIGN_CMD.KeyHandles to the single KeyHandle associated with the selected

username.
5. Go to step #8 and send a new TAG_UAFV1_SIGN_CMD command

11. Create the AuthenticateOut object
1. Set AuthenticateOut.assertionScheme as AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_AUTH_ASSERTION) in base64url format

and
set as AuthenticateOut.assertion
3. Return the AuthenticateOut object

The authenticator metadata statement must truly indicate the
type of transaction confirmation display implementation.
Typically the "Transaction Confirmation Display" flag
will be set to TRANSACTION_CONFIRMATION_DISPLAY_ANY (bitwise)
or TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

3.8 Deregister Request

Delete registered UAF record from the authenticator.

For a Deregister request, the following ASMRequest member(s) must
have the following value(s). The remaining
ASMRequest members
should be omitted:

ASMRequest.requestType must be set to Deregister
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index

NOTE

After this step, a first-factor bound authenticator which stores KeyHandles inside the ASM's
database may delete the redundant KeyHandles from the ASM's database. This avoids
having unusable (old) private key in the authenticator which (surprisingly) might become
active after deregistering the newly generated one.

NOTE

Some authenticators might support "Transaction Confirmation Display" functionality
not inside the
authenticator but within the boundaries of the
ASM. Typically these are software based Transaction
Confirmation Displays. When
processing the Sign command with a given transaction such ASM
should show
transaction content in its own UI and after user
confirms it -- pass the content to authenticator so that
the
authenticator includes it in the final assertion.

See [FIDORegistry] for flags describing Transaction Confirmation Display type.

ASMRequest.args must be set to an object of type DeregisterIn

For a Deregister response, the following ASMResponse member(s) must
have the following value(s). The remaining
ASMResponse members
should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

3.8.1 DeregisterIn Object

WebIDL

dictionary DeregisterIn {
 required DOMString appID;
 required DOMString keyID;
};

3.8.1.1 Dictionary DeregisterIn Members

appID of type required DOMString
FIDO Server Application Identity

keyID of type required DOMString
Base64url-encoded [RFC4648] key identifier of
the authenticator to be de-registered. The keyID can be an
empty string. In this case all keyIDs related to this appID must be deregistered.

3.8.2 Detailed Description for Processing the Deregister Request

Refer to [UAFAuthnrCommands] for more information about the TAGs and structures mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex
2. Construct KHAccessToken (see section KHAccessToken for more
details).
3. If this is a bound authenticator, then

If the value of DeregisterIn.keyID is an empty string, then lookup all pairs of this appID and any keyID
mapped to this authenticatorIndex and delete them. Go to step 4.
Otherwise, lookup the authenticator related data in the ASM database and delete the record associated
with DeregisterIn.appID and DeregisterIn.keyID. Go to step 4.

4. Create the TAG_UAFV1_DEREGISTER_CMD structure, copy KHAccessToken and DeregisterIn.keyID and pass it to the
authenticator.

5. Invoke the command and receive the response. If the authenticator returns an error, handle that error
appropriately. If the connection to the authenticator gets lost and cannot be restored, return
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the authenticator error code to

NOTE

In the case of roaming authenticators, the keyID passed to the authenticator might be an empty string.
The authenticator is supposed to deregister all keys related to this appID
in this case.

the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes
for details). Return proper ASMResponse.

3.9 GetRegistrations Request

Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the following ASMRequest member(s) must
have the following value(s). The remaining
ASMRequest members
should be omitted:

ASMRequest.requestType must be set to GetRegistrations
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to corresponding ID

For a GetRegistrations response, the following ASMResponse member(s) must
have the following value(s). The
remaining ASMResponse members
should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

The ASMResponse.responseData must be an object of type
GetRegistrationsOut.
In the case of an error the
values of the fields might be empty (e.g. empty strings).

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut {
 required AppRegistration[] appRegs;
};

3.9.1.1 Dictionary GetRegistrationsOut Members

appRegs of type array of required AppRegistration
List of registrations associated with an appID (see AppRegistration below).
may be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration {
 required DOMString appID;
 required DOMString[] keyIDs;
};

3.9.2.1 Dictionary AppRegistration Members

appID of type required DOMString
FIDO Server Application Identity.

keyIDs of type array of required DOMString
List of key identifiers associated with the appID

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator using authenticatorIndex
2. If this is bound authenticator, then

Lookup the registrations associated with CallerID and AppID in the ASM database and construct a list of
AppRegistration objects

3. If this is not a bound authenticator, then set the list to empty.
4. Create GetRegistrationsOut object and return

3.10 OpenSettings Request

Display the authenticator-specific settings interface. If the authenticator has its own built-in user interface,
then the
ASM must invoke TAG_UAFV1_OPEN_SETTINGS_CMD to display it.

For an OpenSettings request, the following ASMRequest member(s) must
have the following value(s). The remaining
ASMRequest members
should be omitted:

ASMRequest.requestType must be set to OpenSettings
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index

For an OpenSettings response, the following ASMResponse member(s) must
have the following value(s). The remaining
ASMResponse members
should be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

4. Using ASM API

This section is non-normative.

In a typical implementation, the FIDO UAF Client will call
GetInfo during initialization and obtain information about
the authenticators. Once the information is obtained it will
typically be used during FIDO UAF message processing to
find a match
for given FIDO UAF policy. Once a match is found the FIDO UAF Client will
send the appropriate
request (Register/Authenticate/Deregister...)
to this ASM.

The FIDO UAF Client may use the information obtained from
a GetInfo response to display relevant information
about an
authenticator to the user.

5. ASM APIs for various platforms

This section is normative.

NOTE

Some ASMs might not store this information inside their own database. Instead it might have
been
stored inside the authenticator's secure storage area. In this case the ASM must send a
proprietary
command to obtain the necessary data.

5.1 Android ASM Intent API

On Android systems FIDO UAF ASMs may be implemented as a separate APK-packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions between
the FIDO UAF Client and
an ASM on Android takes place through the following intent identifier:

org.fidoalliance.intent.FIDO_OPERATION

To carry messages described in this document, an intent must also have its type attribute set
to
application/fido.uaf_asm+json.

ASMs must register that intent in their manifest file and implement a handler for it.

FIDO UAF Clients must append an extra, message, containing a String
representation of a ASMRequest, before
invoking the intent.

FIDO UAF Clients must invoke ASMs by calling startActivityForResult()

FIDO UAF Clients should assume that ASMs will display an interface to the user in order to handle this intent, e.g.
prompting the user to complete the verification ceremony. However, the ASM should not display any user interface
when processing a GetInfo request.

After processing is complete the ASM will return the response intent as an argument to onActivityResult().
The
response intent will have an extra, message, containing a String
representation of a ASMResponse.

5.1.1 Discovering ASMs

FIDO UAF Clients can discover the ASMs available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags)
with the FIDO Intent described above to see if
any activities are available.

A typical FIDO UAF Client will enumerate all
ASM applications using this function and will invoke the GetInfo
operation for each one discovered.

5.1.2 Alternate Android AIDL Service ASM Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism
to Android Intents. Please see Android Intent API section [UAFAppAPIAndTransport] for differences between the
Android AIDL service and Android Intent implementation.

This API should be used if the ASM itself doesn't implement any user interface.

5.2 Java ASM API for Android

NOTE

The advantage of this AIDL Server based API is that it doesn't cause a focus lose on the caller App.

NOTE

The Java ASM API is useful for ASMs for KeyStore based authenticators. In this case the platform
limits key
use-access to the application generating the key. The ASM runs in the process scope of the RP App.

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent,%20int)
http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent,%20int)

public interface IASM {
 enum Event {
 PLUGGED, /** Indicates that the authenticator was Plugged to system */
 UNPLUGGED /** Indicates that the authenticator was Unplugged from system */
 }

 public interface IEnumeratorListener {
 /**
 This function is called when an authenticator is plugged or
	 unplugged.
 @param eventType event type (plugged/unplugged)
 @param serialized AuthenticatorInfo JSON based GetInfoResponse object
 */
 void onNotify(Event eventType, String authenticatorInfo);
 }

 public interface IResponseReceiver {
 /**
	 This function is called when ASM's response is ready.
	
 @param response serialized response JSON based event data
 @param exchangeData for ASM if it needs some
 data back right after calling the callback function.
 onResponse will set the exchangeData to the data to
 be returned to the ASM.
 */
 void onResponse(String response, StringBuilder exchangeData);
 }

 /**
 Initializes the ASM. This is the first function to
 be called.	
 @param ctx the Android Application context of the calling application (or null)
 @param enumeratorListener caller provided Enumerator
 @return ASM StatusCode value
 */
 short init(Context ctx, IEnumeratorListener enumeratorListener);

 /**
 Process given JSON request and returns JSON response.
 If the caller wants to execute a function defined in ASM JSON
 schema then this is the function that must be called.
 @param act the calling Android Activity or null
 @param inData input JSON data
 @param ProcessListener event listener for receiving events from ASM
 @return ASM StatusCode value
 */
 short process(Activity act, String inData, IResponseReceiver responseReceiver);

 /**
 Uninitializes (shut's down) the ASM.
 @return ASM StatusCode value
 */
 short uninit();	
}

5.3 C++ ASM API for iOS

#include
namespace FIDO_UAF {

class IASM {
 public:

 typedef enum {
 PLUGGED, /** Indicates that the authenticator was Plugged to system */
 UNPLUGGED /** Indicates that the authenticator was Unplugged from system */
 } Event;

 class IEnumeratorListener {
 virtual ~IEnumeratorListener() {}
 /**
 This function is called when an authenticator is plugged or
 unplugged.
 @param eventType event type (plugged/unplugged)
 @param serialized AuthenticatorInfo JSON based GetInfoResponse object

NOTE

The C++ ASM API is useful for ASMs for KeyChain based authenticators. In this case the platform
limits key
use-access to the application generating the key. The ASM runs in the process scope of the RP App.

 */
 virtual void onNotify(Event eventType, const std::string& authenticatorInfo) {};
 };

 class IResponseReceiver {
 virtual ~IResponseReceiver() {}
 /**
 This function is called when ASM's response is ready.

 @param response serialized JSON based event data
 @param exchangeData for ASM if it needs some
 data back right after calling the callback function.
 */
 virtual void onResponse(const std::string& response, std::string &exchangeData) {};
 };

 /**
 Initializes the ASM. This is the first function to
 be called.
 @param unc the platform UINavigationController or one of the derived classes
 (e.g. UINavigationController) in order to allow smooth UI integration of the ASM.
 @param EnumerationListener caller provided Enumerator
 @return ASM StatusCode value
 */
 virtual short int init(UINavigationController unc, IEnumerator EnumerationListener)=0;

 /**
 Process given JSON request and returns JSON response.
 If the caller wants to execute a function defined in ASM JSON
 schema then this is the function that must be called.
 @param unc the platform UINavigationController or one of the derived classes
 (e.g. UINavigationController) in order to allow smooth UI integration of the ASM
 @param InData input JSON data
 @param ProcessListener event listener for receiving events from ASM
 @return ASM StatusCode value
 */
 virtual short int process(UINavigationController unc, const std::string& InData, ICallback
ProcessListener)=0;

 /**
 Uninitializes (shut's down) the ASM.
 @return ASM StatusCode value
 */
 virtual short int uninit()=0;	
};

}

5.4 Windows ASM API

On Windows, an ASM is implemented in the form of a Dynamic Link
Library (DLL). The following is an example
asmplugin.h header
file defining a Windows ASM API:

EXAMPLE 1
/*! @file asm.h
*/

#ifndef __ASMH_
#define __ASMH_
#ifdef _WIN32
#define ASM_API __declspec(dllexport)
#endif

#ifdef _WIN32
#pragma warning (disable : 4251)
#endif

#define ASM_FUNC extern "C" ASM_API
#define ASM_NULL 0

/*! \brief Error codes returned by ASM Plugin API.
* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.
*/

enum asmResult_t
{
 Success = 0, /**< Success */
 Failure /**< Generic failure */
};

/*! \brief Generic structure containing JSON string in UTF-8
* format.
* This structure is used throughout functions to pass and receives

* JSON data.
*/

struct asmJSONData_t
{
 int length; /**< JSON data length */
 char *pData; /**< JSON data */
};

/*! \brief Enumeration event types for authenticators.
These events will be fired when an authenticator becomes
 available (plugged) or unavailable (unplugged).
*/

enum asmEnumerationType_t
{
 Plugged = 0, /**< Indicates that authenticator Plugged to system */
 Unplugged /**< Indicates that authenticator Unplugged from system */
};

namespace ASM
{
 /*! \brief Callback listener.
 FIDO UAF Client must pass an object implementating this interface to
 Authenticator::Process function. This interface is used to provide
 ASM JSON based response data.*/
 class ICallback
 {
 public
 virtual ~ICallback() {}
 /**
 This function is called when ASM's response is ready.
 *
 @param response JSON based event data
 @param exchangeData must be provided by ASM if it needs some
 data back right after calling the callback function.
 The lifecycle of this parameter must be managed by ASM. ASM must
 allocate enough memory for getting the data back.
 */

 virtual void Callback(const asmJSONData_t &response,
 asmJSONData_t &exchangeData) = 0;
 };

 /*! \brief Authenticator Enumerator.
 FIDO UAF Client must provide an object implementing this
 interface. It will be invoked when a new authenticator is plugged or
 when an authenticator has been unplugged. */

 class IEnumerator
 {
 public
 virtual ~IEnumerator() {}
 /**
 This function is called when an authenticator is plugged or
	 unplugged.
 * @param eventType event type (plugged/unplugged)
 @param AuthenticatorInfo JSON based GetInfoResponse object
 */

 virtual void Notify(const asmEnumerationType_t eventType, const
 asmJSONData_t &AuthenticatorInfo) = 0;
 };
}

/**
Initializes ASM plugin. This is the first function to be
	 called.
*
@param pEnumerationListener caller provided Enumerator
*/

ASM_FUNC asmResult_t asmInit(ASM::IEnumerator
	 *pEnumerationListener);
/**
Process given JSON request and returns JSON response.
*
If the caller wants to execute a function defined in ASM JSON
	 schema then this is the function that must be called.
*
@param pInData input JSON data
@param pListener event listener for receiving events from ASM
*/
ASM_FUNC asmResult_t asmProcess(const asmJSONData_t *pInData,
	 ASM::ICallback *pListener);
/**
Uninitializes ASM plugin.
*
*/
ASM_FUNC asmResult_t asmUninit();

A Windows-based FIDO UAF Client must look for ASM DLLs in the following
registry paths:

HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The FIDO UAF Client iterates over all keys under this path and looks
for "path" field:

[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE_PATH_TO_ASM>.dll"

path must point to the absolute location of the ASM DLL.

6. CTAP2 Interface

This section is normative.

ASMs can (optionally) provide a FIDO CTAP 2 interface in order to allow the authenticator being used as external
authenticator from a FIDO2 or Web Authentication enabled platform supporting the CTAP 2 protocol [FIDOCTAP].

In this case the CTAP2 enabled ASM provides the CTAP2 interface upstream through one or more of the transport
protocols defined in [FIDOCTAP] (e.g. USB, NFC, BLE).
Note that the CTAP2 interface is the connection to the FIDO
Client / FIDO enabled platform.

In the following section we specify how the ASM needs to map the parameters received
via the FIDO CTAP2
interface to FIDO UAF Authenticator Commands [UAFAuthnrCommands].

6.1 authenticatorMakeCredential

This section is normative.

#endif // __ASMPLUGINH_

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

1. clientDataHash (required, byte array).
2. rp (required, PublicKeyCredentialEntity). Identity of the relying party.
3. user (required, PublicKeyCredentialUserEntity).
4. pubKeyCredParams (required, CBOR array).
5. excludeList (optional, sequence of PublicKeyCredentialDescriptors).
6. extensions (optional, CBOR map). Parameters to influence authenticator operation.
7. options (optional, sequence of authenticator options, i.e. "rk" and "uv"). Parameters to influence

authenticator operation.
8. pinAuth (optional, byte array).
9. pinProtocol (optional, unsigned integer).

The output parameters are (see [FIDOCTAP]):

1. authData (required, sequence of bytes). The authenticator data object.
2. fmt (required, String). The attestation statement format identifier.

6.1.1 Processing rules for authenticatorMakeCredential

This section is normative.

1. invoke Register command for UAF authenticator as described in [UAFAuthnrCommands] section 6.2.4 using
the following field mapping instructions:

authenticatorIndex set appropriately, e.g. 1.
If webauthn_appid is present, then

1. Verify that the effective domain of AppID is identical to the effective domain of rp.id.
2. Set AppID to the value of extension webauthn_appid (see [WebAuthn]).

If webauthn_appid is not present, then set AppID to rp.id (see [WebAuthn]).
FinalChallengeHash set to clientDataHash.
Username set to user.displayName
(see [WebAuthn]). This string will be displayed to the user in order to
select a specific account if the user has multiple
accounts at that relying party.
attestationType set to the attestation supported by that authenticator, e.g. ATTESTATION_BASIC_FULL or
ATTESTATION_ECDAA.
KHAccessToken set to some persistent identifier used for this authenticator.
If the authenticator is bound to
the platform this ASM is running on, it needs to be a secret identifier only known to this ASM instance. If
the authenticator is a "roaming authenticator",
i.e. external to the platform this ASM is running on, the
identifier can have value 0.
Add the fido.uaf.userid extension with value user.id to the Register command.
Use the pinAuth and pinProtocol parameters appropriately when communicating with the authenticator (if
supported).

2. If this is a bound authenticator and the Authenticator doesn't support the fido.uaf.userid, let the ASM
remember the user.id value related to the generated UAuth key pair.

3. If the command was successful, create the result object as follows
set authData to a freshly generated authenticator data object,
containing the corresponding values taken
from the assertion geenrated by the authenticator.
That means:

set authData.rpID to the SHA256 hash of AppID.
initialize authData with 0 and then set set flag authData.AT to 1 and set authData.UP to 1 if the
authenticator is not a silent authenticator. Set flag authData.uv
to 1 if the authenticator is not a silent
authenticator.
The flags authData.UP and authData.UV need to be 0 if it is a silent authenticator.
Set
authData.ED to 1 if the authenticator added extensions to the assertion. In
this case add the
individual extensions to the CBOR map appropriately.
set authData.signCount to the uafAssertion.signCounter.
set authData.attestationData.AAGUID to the AAID of this authenticator. Setting the remaining bytes
to 0.
set authData.attestationData.CredentialID to uafAssertion.keyHandle and set the length L of the
Credential ID to the size of the keyHandle.
set authData.attestationData.pubKey to uafAssertion.publicKey
with appropriate encoding
conversion

set fmt to the "fido-uaf".
set attStmt to the AUTHENTICATOR_ASSERTION element of the TAG_UAFV1_REGISTER_CMD_RESPONSE returned by
the authenticator.

4. Return authData, fmt and attStmt.

3. attStmt (required, sequence of bytes). The attestation statement.

https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain

6.2 authenticatorGetAssertion

This section is normative.

6.2.1 Processing rules for authenticatorGetAssertion

This section is normative.

1. invoke Sign command for UAF authenticator as described in [UAFAuthnrCommands] section 6.3.4 using the
following field mapping instructions

authenticatorIndex set appropriately, e.g. 1.
If webauthn_appid is present, then

1. Verify that the effective domain of AppID is identical to the effective domain of rpId.
2. Set AppID to the value of extension webauthn_appid (see [WebAuthn]).

If webauthn_appid is not present, then set AppID to rpId (see [WebAuthn]).
FinalChallengeHash set to clientDataHash.
TransactionContent set to value of extension webauthn_txAuthGeneric
or webauthn_txAuthsimple (see
[WebAuthn]) depending on which extension is present and supported by this authenticator. If the
authenticator doesn't natively support transactionConfirmation, the hash of the value included in either of
the webauthn_tx* extensions can be computed by the ASM
and passed to the authenticator in
TransactionContentHash. See [UAFAuthnrCommands] section 6.3.1 for details.
KHAccessToken set to the persistent identifier used for this authenticator (at authenticatorMakeCredential).
If allowList is present then add the .id field of each element as KeyHandle element to the command.
Use the pinAuth and pinProtocol parameters appropriately when communicating with the authenticator (if
supported).

2. If the command was successful (with potential ambiguities of RawKeyHandles resolved), create the result
object as follows

set credential.id to the keyHandle returned by the authenticator command. Set credential.type to
"public-key-uaf" and
set credential.transports to the transport currently being used by this authenticator
(e.g. "usb").

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

1. rpId (required, String). Identity of the relying party.
2. clientDataHash (required, byte array).
3. allowList (optional, sequence of PublicKeyCredentialDescriptors).
4. extensions (optional, CBOR map).
5. options (optional, sequence of authenticator options, i.e. "up" and "uv").

The output parameters are (see [FIDOCTAP]):

1. credential (optional, PublicKeyCredentialDescriptor).
2. authData (required, byte array).
3. signature (required, byte array).
4. user (required, PublicKeyCredentialUserEntity).
5. numberOfCredentials (optional, integer).

https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain

set authData to the UAFV1_SIGNED_DATA element included in the AUTHENTICATOR_ASSERTION element.
set signature to the SIGNATURE element included in the AUTHENTICATOR_ASSERTION element.
If the authenticator returned the fido.uaf.userid extension,
then set user.id to the value of the
fido.uaf.userid extension as returned by the authenticator.
If the authenticator did not return the fido.uaf.userid extension but the ASM remembered the user ID,
then set user.id to the value of the user ID remembered by the ASM.

3. Return credential, authData, signature, user.

6.3 authenticatorGetNextAssertion

This section is normative.

Not supported. This interface will always return a single assertion.

6.4 authenticatorCancel

This section is normative.

Cancel the existing authenticator command if it is still pending.

6.5 authenticatorReset

This section is normative.

Reset the authenticator back to factory default state. In order to prevent accidental trigger of this mechanism, some
form of user approval may be performed by the authenticator itself.

6.6 authenticatorGetInfo

This section is normative.

This interface has no input parameters.

6.6.1 Processing rules for authenticatorGetInfo

This section is normative.

This interface is expected to report a single authenticator only.

1. Invoke the GetInfo command [UAFAuthnrCommands] for the connected authenticator.

NOTE

Output parameters are (see [FIDOCTAP]):

1. versions (required, sequence of strings). List of FIDO protocol versions supported by the authenticator.
2. extensions (optional, sequence of strings). List of extensions supported by the authenticator.
3. aaguid (optional, string). The AAGUID claimed by the authenticator.
4. options (optional, map). Map of "plat", "rk", "clientPin", "up", "uv"
5. maxMsgSize (optional, unsignd integer). The maximum message size accepted by the authenticator.
6. pinProtocols (optional, array of unsigned integers).

authenticatorIndex set appropriately, e.g. 1.

2. If the command was successful, create the result object as follows
set versions to "FIDO_2_0" as this is the only version supported by CTAP2 at this time.
set extensions to the list of extensions returned by the authenticator (one entry per field
SupportedExtensionID).
set aaguid to the AAID returned by the authenticator, setting all remaining bytes to 0.
set options appropriately.
set maxMsgSize to the maximum message size supported by the authenticator - if known
set pinProtocols to the list of supported pin protocols (if any).

3. Return versions, extensions, aaguid, options, mxMsgSize (if known) and pinProtocols (if any).

7. Security and Privacy Guidelines

This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working
with. ASMs must follow these security
guidelines:

ASMs must implement a mechanism for isolating UAF credentials
registered by two different FIDO UAF Clients
from one another. One
FIDO UAF Client must not have access to FIDO UAF credentials that have
been
registered via a different FIDO UAF Client. This prevents malware from exercising credentials associated with a
legitimate FIDO
Client.

An ASM designed specifically for bound authenticators must
ensure that FIDO UAF credentials registered with
one ASM cannot be
accessed by another ASM. This is to prevent an application
pretending to be an ASM from
exercising legitimate UAF
credentials.

Using a KHAccessToken offers such a mechanism.

An ASM must implement platform-provided security best practices for
protecting UAF-related stored data.

NOTE

ASMs must properly protect their sensitive data against
malware using platform-provided isolation
capabilities in order to follow the assumptions made in [FIDOSecRef]. Malware with root access to the
system or direct physical attack on the
device are out of scope for this requirement.

NOTE

The following are examples for achieving this:

If an ASM is bundled with a FIDO UAF Client, this isolation
mechanism is already built-in.
If the ASM and FIDO UAF Client are implemented by the same vendor,
the vendor may implement
proprietary mechanisms to bind its ASM
exclusively to its own FIDO UAF Client.
On some platforms ASMs and the FIDO UAF Clients may be assigned
with a special privilege or
permissions which regular
applications don't have. ASMs built for such platforms may
avoid
supporting isolation of UAF credentials per FIDO UAF Clients
since all FIDO UAF Clients will be
considered equally trusted.

ASMs must not store any sensitive FIDO UAF data in its local storage, except the
following:

CallerID, ASMToken, PersonaID, KeyID, KeyHandle, AppID

ASMs should ensure that applications cannot use silent
authenticators for tracking purposes. ASMs
implementing support
for a silent authenticator must show, during every registration,
a user interface which
explains what a silent authenticator is,
asking for the users consent for the registration. Also, it is recommended

that ASMs
designed to support roaming silent authenticators either

Run with a special permission/privilege on the system, or
Have a built-in binding with the authenticator which ensures
that other applications cannot directly
communicate with the
authenticator by bypassing this ASM.

7.1 KHAccessToken

KHAccessToken is an access control mechanism for protecting an
authenticator's FIDO UAF credentials from
unauthorized use. It is
created by the ASM by mixing various sources of information
together. Typically, a
KHAccessToken contains the following four
data items in it: AppID, PersonaID, ASMToken and CallerID.

AppID is provided by the FIDO Server and is contained in every
FIDO UAF message.

PersonaID is obtained by the ASM from the operational environment.
Typically a different PersonaID is assigned to
every operating system user
account.

ASMToken is a randomly generated secret which is maintained
and protected by the ASM.

CallerID is the ID the platform has assigned to the calling FIDO UAF Client
(e.g. "bundle ID" for iOS). On different
platforms the CallerID
can be obtained differently.

The ASM uses the KHAccessToken to establish a link between the ASM and
the key handle that is created by
authenticator on behalf of
this ASM.

The ASM provides the KHAccessToken to the authenticator with every
command which works with key handles.

NOTE

An ASM, for example, must never store a username provided by a FIDO Server
in its local storage in a
form other than being decryptable exclusively by the authenticator.

NOTE

In a typical implementation an ASM will
randomly generate an ASMToken when it is launched the first time
and will maintain this secret until the ASM is uninstalled.

NOTE

For example on Android platform
ASM can use the hash of the caller's apk-signing-cert.

Bound authenticators must support a mechanism for binding
generated key handles to ASMs. The binding
mechanism must have at
least the same security characteristics as mechanism for protcting KHAccessToken
described
above. As a consequence it is recommended to securely derive
KHAccessToken from AppID, ASMToken, PersonaID and
the CallerID.

Alternative methods for binding key handles to ASMs can be used if their security level is equal or better.

From a security perspective, the KHAccessToken method relies on the OS/platform to:

1. allow the ASM keeping the ASMToken secret
2. and let the ASM determine the CalledID correctly
3. and let the FIDO Client verify the AppID/FacetID correctly

If an ASM for roaming authenticators doesn't use a KHAccessToken which is different for each AppID, the ASM must

NOTE

The following example describes how the ASM constructs and uses
KHAccessToken.

During a Register request
Set KHAccessToken to a secret value only known to the ASM. This value will always be the same for
this ASM.
Append AppID

KHAccessToken = AppID

If a bound authenticator, append ASMToken, PersonaID and CallerID
KHAccessToken |= ASMToken | PersonaID | CallerID

Hash KHAccessToken
Hash KHAccessToken using the authenticator's hashing algorithm.
The reason of using
authenticator specific hash function is to
make sure of interoperability between ASMs. If
interoperability
is not required, an ASM can use any other secure hash function it
wants.
KHAccessToken=hash(KHAccessToken)

Provide KHAccessToken to the authenticator
The authenticator puts the KHAccessToken into RawKeyHandle (see
[UAFAuthnrCommands] for more
details)

During other commands which require KHAccessToken as input
argument
The ASM computes KHAccessToken the same way as during the Register
request and provides it to
the authenticator along with other
arguments.
The authenticator unwraps the provided key handle(s) and proceeds with
the command only if
RawKeyHandle.KHAccessToken is equal to
the provided KHAccessToken.

NOTE

It is recommended for roaming authenticators that the
KHAccessToken contains only the AppID since otherwise
users won't
be able to use them on different machines (PersonaID, ASMToken
and CallerID are platform
specific). If the authenticator
vendor decides to do that in order to address a specific use case, however, it is
allowed.

Including PersonaID in the KHAccessToken is optional for all types
of authenticators. However an authenticator
designed for
multi-user systems will likely have to support it.

include the AppID
in the command for a deregister request containing an empty KeyID.

7.2 Access Control for ASM APIs

The following table summarizes the access control requirements
for each API call.

ASMs must implement the access control requirements defined below. ASM vendors may
implement additional
security mechanisms.

Terms used in the table:

NoAuth -- no access control
CallerID -- FIDO UAF Client's platform-assigned ID is verified
UserVerify -- user must be explicitly verified
KeyIDList -- must be known to the caller

Commands First-factor bound
authenticator

Second-factor
bound authenticator

First-factor
roaming

authenticator

Second-factor
roaming

authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Authenticate

UserVerify

AppID

CallerID

PersonaID

UserVerify

AppID

KeyIDList

CallerID

PersonaID

UserVerify

AppID

UserVerify

AppiD

KeyIDList

GetRegistrations* CallerID

PersonaID

CallerID

PersonaID X X

Deregister

AppID

KeyID

PersonaID

CallerID

AppID

KeyID

PersonaID

CallerID

AppID

KeyID

AppID

KeyID

A. References

A.1 Normative references

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.es/ecma262/

[FIDOCTAP]
C. Brand; A. Czeskis; J. Ehrensvärd; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. FIDO 2.0:
Client To Authenticator Protocol. 30 January 2019. URL: https://fidoalliance.org/specs/fido-v2.0-ps-
20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL:

https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
[FIDORegistry]

R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill; J. Hodges; K. Yang. FIDO UAF Authenticator
Commands. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-
v1.2-ps-20201020.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol
Specification v1.2. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-
protocol-v1.2-ps-20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/

A.2 Informative references

[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL: https://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hill; D. Biggs. FIDO Security Reference. 27 February 2018.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-
20180227.html

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-
20201020.html

[WebAuthn]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael B. Jones; Akshay Kumar; Angelo Liao; Rolf
Lindemann; Emil Lundberg. Web Authentication: An API for accessing Public Key Credentials Level 1. March
2019. TR. URL: https://www.w3.org/TR/webauthn/

[WebIDL]
Boris Zbarsky. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

FIDO UAF Authenticator Commands
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Roni Sasson, Discretix
Brad Hill, PayPal, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

UAF Authenticators may take different forms. Implementations
may range from a secure application running inside
tamper-
resistant hardware to software-only solutions on
consumer devices.

This document defines normative aspects of UAF Authenticators and offers security and implementation
guidelines for
authenticator implementors.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this
document. A list of current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO
Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this
document, please Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
mailto:rlindemann@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

including without limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the
Specification are not, and shall not be held, responsible in any manner
for identifying or failing to identify any or all such third
party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable
document and may be used as reference material or cited from another
document. FIDO Alliance's role in making the
Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Conformance

2. Overview
3. UAF Authenticator

3.1 Types of Authenticators

4. Tags
4.1 Command Tags
4.2 Tags used only in Authenticator Commands
4.3 Tags used in UAF Protocol
4.4 Status Codes

5. Structures
5.1 RawKeyHandle
5.2 Structures to be parsed by FIDO Server

5.2.1 TAG_UAFV1_REG_ASSERTION
5.2.2 TAG_UAFV1_AUTH_ASSERTION

5.3 UserVerificationToken

6. Commands
6.1 GetInfo Command

6.1.1 Command Description
6.1.2 Command Structure
6.1.3 Command Response
6.1.4 Status Codes

6.2 Register Command
6.2.1 Command Structure
6.2.2 Command Response
6.2.3 Status Codes
6.2.4 Command Description

6.3 Sign Command
6.3.1 Command Structure
6.3.2 Command Response
6.3.3 Status Codes
6.3.4 Command Description

6.4 Deregister Command
6.4.1 Command Structure
6.4.2 Command Response

6.4.3 Status Codes
6.4.4 Command Description

6.5 OpenSettings Command
6.5.1 Command Structure
6.5.2 Command Response
6.5.3 Status Codes

7. KeyIDs and key handles
7.1 first-factor Bound Authenticator
7.2 2ndF Bound Authenticator
7.3 first-factor Roaming Authenticator
7.4 2ndF Roaming Authenticator

8. Access Control for Commands
9. Considerations

9.1 Algorithms and Key Sizes
9.2 Indicating the Authenticator Model

10. Relationship to other standards
10.1 TEE
10.2 Secure Elements
10.3 TPM
10.4 Unreliable Transports

A. Security Guidelines
B. Table of Figures
C. References

C.1 Normative references
C.2 Informative references

1. Notation

Type names, attribute names and element names are written as
code.

String literals are enclosed in "", e.g. "UAF-TLV".

In formulas we use "|" to denote byte wise concatenation
operations.

UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

Unless otherwise specified all data described in this document must be encoded in
little-endian format.

All TLV structures can be parsed using a "recursive-descent"
parsing approach. In some cases multiple occurrences of a
single tag may be allowed
within a structure, in which case all values must be
preserved.

All fields in TLV structures are mandatory, unless
explicitly mentioned as otherwise.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
and notes in this specification
are non-normative. Everything else in this specification is
normative.

The key words must, must not, required, should, should not, recommended, may,
and optional in this specification are to be
interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document specifies low-level functionality which UAF
Authenticators should implement in order to support the UAF
protocol. It has the following goals:

Define normative aspects of UAF Authenticator implementations
Define a set of commands
implementing UAF functionality that may be implemented by different types of authenticators
Define UAFV1TLV assertion scheme-specific structures which will be parsed by a FIDO Server

The overall architecture of the UAF protocol and its various
operations is described in [UAFProtocol]. The following
simplified
architecture diagram illustrates the interactions
and actors this document is concerned with:

Fig. 1 UAF Authenticator Commands

3. UAF Authenticator

This section is non-normative.

The UAF Authenticator is an authentication component that
meets the UAF protocol requirements as described in
[UAFProtocol]. The main functions to be provided by UAF
Authenticators are:

NOTE

The UAF Protocol supports various assertion schemes.
Commands and structures defined in this document assume
that an authenticator supports the UAFV1TLV assertion scheme.
Authenticators implementing a different assertion
scheme do not have to follow requirements specified
in this document.

1. [Mandatory] Verifying the user or the user's presence with the verification
mechanism built into the authenticator. The
verification
technology can vary, from biometric verification to simply
verifying physical presence, or no user verification
at all
(the so-called Silent Authenticator).

2. [Mandatory] Performing the cryptographic operations
defined in [UAFProtocol]
3. [Mandatory] Creating data structures that can be parsed by FIDO Server.
4. [Mandatory] Attesting itself to the FIDO Server if there
is a built-in support for attestation
5. [Optional] Displaying the transaction content to the user
using the transaction confirmation display

Fig. 2 FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

A fingerprint sensor built into a mobile device
PIN authenticator implemented inside a secure
element
A mobile phone acting as an authenticator to a different
device
A USB token with built-in user presence verification
A voice or face verification technology built into a
device

3.1 Types of Authenticators

There are four types of authenticators defined in this
document. These definitions are not normative (unless otherwise
stated)
and are provided merely for simplifying some of the
descriptions.

NOTE

First-factor Bound Authenticator
These authenticators have an
internal matcher. The matcher is able to verify an
already enrolled user. If there is
more than one user
enrolled - the matcher can also identify a user.
There is a logical binding between this authenticator and the device it is attached to (the binding
is expressed
through a concept called KeyHandleAccessToken). This authenticator cannot be bound with more
than one
device.
These authenticators do not store key handles
in their own internal storage.
They always return the key handle to
the ASM and the latter stores it in its local database.
Authenticators of this type may also work as a second factor.
Examples

A fingerprint sensor built into a laptop, phone or
tablet
Embedded secure element in a mobile device
Voice verification built into a device

Second-factor (2ndF) Bound Authenticator
This type of authenticator is similar to
first-factor bound authenticators, except that it can
operate only as the
second-factor in a multi-factor
authentication
Examples

USB dongle with a built-in capacitive touch
device for verifying user presence
A "Trustlet" application running on the trusted
execution environment of a mobile phone, and
leveraging a
secure keyboard to verify user
presence

First Factor (1stF) Roaming Authenticator
These authenticators are not bound to any device. User can use them with any number of devices.
It is assumed that these authenticators have an
internal matcher. The matcher is able to verify an
already enrolled
user. If there is more than one user
enrolled - the matcher can also identify a user.
It is assumed that these authenticators are
designed to store key handles in their own internal
secure storage and
not expose externally.
These authenticators may also work as a second
factor.
Examples

A Bluetooth LE based hardware token with
built-in fingerprint sensor
PIN protected USB hardware token
A first-factor bound authenticator acting as a
roaming authenticator for a different device on
the user's behalf

Second-factor Roaming Authenticator
These authenticators are not bound to any
device. A user may use them with any number of
devices.

The following is the rationale for considering only these 4 types of authenticators:

Bound authenticators are typically embedded into a
user's computing device and thus can utilize
the host's
storage for their needs. It makes more
sense from an economic perspective to utilize
the host's storage rather
than have embedded
storage. Trusted Execution Environments (TEE), Secure
Elements and Trusted Platform
Modules (TPM) are
typically designed in this manner.
First-factor roaming authenticators must have an internal storage for key handles.
Second-factor roaming authenticators can store
their key handles on an associated server, in
order to avoid the
need for internal storage.
Defining such constraints makes the specification
simpler and clearer for defining the mainstream
use-cases.

Vendors, however, are not limited to these
constraints. For example a bound authenticator which
has internal storage
for storing key handles is
possible. Vendors are free to design and implement
such authenticators as long as their
design follows
the normative requirements described in this document.

These authenticators may have an internal
matcher. The matcher is able to verify an
already enrolled user. If
there is more than one
user enrolled then the matcher can also identify
a particular specific user.
It is assumed that these authenticators do not
store key handles in their own internal storage.
Instead they push
key handles to the FIDO Server
and receive them back during the authentication
operation.
These authenticators can only work as second
factors.
Examples

USB dongle with a built-in capacitive touch
device for verifying user presence
A "Trustlet" application running on the trusted
execution environment of a mobile phone, and
leveraging a
secure keyboard to verify user
presence

Throughout the document there will be special conditions
applying to these types of authenticators.

NORMATIVE

In some deployments, the combination of ASM and a bound
authenticator can act as a roaming authenticator (for
example when an ASM with an embedded authenticator on a
mobile device acts as a roaming authenticator for
another
device). When this happens such an authenticator
must follow the requirements applying to bound
authenticators within
the boundary of the system the
authenticator is bound to, and follow the requirements
that apply to roaming authenticators
in any other system
it connects to externally.

Conforming authenticators must implement at least one
attestation type defined in [UAFRegistry], as well as one
authentication algorithm and one key format listed in [FIDORegistry].

4. Tags

This section is normative.

In this document UAF Authenticators use "Tag-Length-Value"
(TLV) format to communicate with the outside world. All
requests and response data must be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by
appending other TLV tags (custom or predefined).

Refer to [UAFRegistry] for information about predefined
TLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g. a UINT32[4] will have
length 16.

Although 2 bytes are allotted for the tag, only
the first 14 bits (values up to 0x3FFF) should be used to
accommodate the
limitations of some hardware platforms.

Arrays are implicit. The description of some structures
indicates where multiple values are permitted, and
in these cases, if
same tag appears more than once, all values are
signifanct and should be treated as an array.

For convenience in decoding TLV-formatted messages,
all composite tags - those with values that must be parsed by
recursive descent - have the 13th bit (0x1000) set.

NOTE

As stated above, the bound authenticator does not store key handles and roaming authenticators
do store them. In the
example above the ASM would store the key handles of the bound authenticator and hence meets these assumptions.

A tag that has the 14th bit (0x2000) set indicates that it is
critical and a receiver must abort processing
the entire message if it
cannot process that tag.

Since UAF Authenticators may have extremely constrained
processing environments, an ASM must follow
a normative
ordering of structures when sending
commands.

It is assumed that ASM and
Server have sufficient resources to handle parsing
tags in any order so structures send from
authenticator may use tags in any order.

4.1 Command Tags

Name Value Description

TAG_UAFV1_GETINFO_CMD 0x3401 Tag for GetInfo command.

TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 Tag for GetInfo command response.

TAG_UAFV1_REGISTER_CMD 0x3402 Tag for Register command.

TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 Tag for Register command response.

TAG_UAFV1_SIGN_CMD 0x3403 Tag for Sign command.

TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 Tag for Sign command response.

TAG_UAFV1_DEREGISTER_CMD 0x3404 Tag for Deregister command.

TAG_UAFV1_DEREGISTER_CMD_RESPONSE 0x3604 Tag for Deregister command response.

TAG_UAFV1_OPEN_SETTINGS_CMD 0x3406 Tag for OpenSettings command.

TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE 0x3606 Tag for OpenSettings command response.

Table 4.1.1: UAF Authenticator Command TLV tags (0x3400 -
0x34FF, 0x3600-0x36FF)

4.2 Tags used only in Authenticator Commands

Name Value Description

TAG_KEYHANDLE 0x2801

Represents key handle.

Refer to [FIDOGlossary] for more information about
key
handle.

TAG_USERNAME_AND_KEYHANDLE 0x3802

Represents an associated Username and key handle.

This is a composite tag that contains a TAG_USERNAME
and TAG_KEYHANDLE
that identify a registration valid oin
the authenticator.

Refer to [FIDOGlossary] for more information about
username.

TAG_USERVERIFY_TOKEN 0x2803

Represents a User Verification Token.

Refer to [FIDOGlossary] for more information about
user
verification tokens.

A full AppID as a UINT8[] encoding of a UTF-8 string.

TAG_APPID 0x2804 Refer to [FIDOGlossary] for more information about
AppID.

TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 Represents a key handle Access Token.

TAG_USERNAME 0x2806 A Username as a UINT8[] encoding of a UTF-8 string.

TAG_ATTESTATION_TYPE 0x2807 Represents an Attestation Type.

TAG_STATUS_CODE 0x2808 Represents a Status Code.

TAG_AUTHENTICATOR_METADATA 0x2809 Represents a more detailed set of authenticator information.

TAG_ASSERTION_SCHEME 0x280A A UINT8[] containing the UTF8-encoded Assertion Scheme
as defined in
[UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS 0x280B

If an authenticator contains a PNG-capable transaction
confirmation display that
is not implemented by a higher-level
layer, this tag is describing this display.
See
[FIDOMetadataStatement] for additional information on the
format of this field.

TAG_TC_DISPLAY_CONTENT_TYPE 0x280C
A UINT8[] containing the UTF-8-encoded transaction display
content type as defined in
[FIDOMetadataStatement].
("image/png")

TAG_AUTHENTICATOR_INDEX 0x280D Authenticator Index

TAG_API_VERSION 0x280E API Version

TAG_AUTHENTICATOR_ASSERTION 0x280F

The content of this TLV tag is an assertion generated by the
authenticator. Since authenticators
may generate assertions
in different formats - the content format may vary from
authenticator to
authenticator.

TAG_TRANSACTION_CONTENT 0x2810 Represents transaction content sent to the authenticator.

TAG_AUTHENTICATOR_INFO 0x3811 Includes detailed information about authenticator's
capabilities.

TAG_SUPPORTED_EXTENSION_ID 0x2812 Represents extension ID supported by authenticator.

TAG_TRANSACTIONCONFIRMATION_TOKEN 0x2813

Represents a token for transaction confirmation. It might be
returned by the authenticator to the ASM and given back to
the authenticator at a later stage.
The meaning of it is similar
to TAG_USERVERIFY_TOKEN, except that it is used for the
user's approval of a displayed transaction text.

Table 4.2.1: Non-Command Tags (0x2800 - 0x28FF, 0x3800 - 0x38FF)

4.3 Tags used in UAF Protocol

Name Value Description

TAG_UAFV1_REG_ASSERTION 0x3E01 Authenticator response to Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02 Authenticator response to Sign command.

TAG_UAFV1_KRD 0x3E03 Key Registration Data

TAG_UAFV1_SIGNED_DATA 0x3E04 Data signed by authenticator with the UAuth.priv key

TAG_ATTESTATION_CERT 0x2E05

Each entry contains a single X.509 DER-encoded [ITU-X690-2008]
certificate. Multiple occurrences are allowed and form the
attestation certificate chain.
Multiple occurrences must be ordered.
The attestation certificate itself must occur first.
Each subsequent
occurrence (if exists) must be the issuing certificate of the previous
occurrence.

TAG_SIGNATURE 0x2E06 A cryptographic signature

ATTESTATION_BASIC_FULL 0x3E07 Full Basic Attestation as defined in [UAFProtocol]

ATTESTATION_BASIC_SURROGATE 0x3E08 Surrogate Basic Attestation as defined in [UAFProtocol]

ATTESTATION_ECDAA 0x3E09
Elliptic curve based direct anonymous attestation as defined in
[UAFProtocol].
In this case the signature in TAG_SIGNATURE is a
ECDAA signature as specified in [FIDOEcdaaAlgorithm].

TAG_KEYID 0x2E09 Represents a KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A

Represents a Hash of the Final Challenge.

Refer to [UAFASM] for more information about the Final Challenge
Hash.

TAG_AAID 0x2E0B
Represents an authenticator Attestation ID.

Refer to [UAFProtocol] for more information about
the AAID.

TAG_PUB_KEY 0x2E0C Represents a Public Key.

TAG_COUNTERS 0x2E0D Represents a use counters for the authenticator.

TAG_ASSERTION_INFO 0x2E0E Represents assertion information necessary for message
processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F

Represents a nonce value generated by the authenticator.

The Authenticator Nonce allows the authenticator to enforce the to-
be-signed object being different each time it is generated - even
under attack scenarios in which the caller (e.g. ASM) sends similar
data. Side channels attacks are more difficult to perform if the data
to-be-signed is different each time.

TAG_TRANSACTION_CONTENT_HASH 0x2E10 Represents a hash of transaction content.

TAG_EXTENSION 0x3E11,
0x3E12

This is a composite tag indicating that the content is an extension.

If the tag is 0x3E11 - it's a critical extension and if the recipient
does not
understand the contents of this tag, it must abort
processing of the
entire message.

This tag has two embedded tags - TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more information
about UAF
extensions refer to [UAFProtocol]

NOTE

This tag can be appended to any command and response.

TAG_EXTENSION_ID 0x2E13 Represents extension ID. Content of this tag is a UINT8[] encoding
of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14 Represents extension data. Content of this tag is a UINT8[] byte
array.

Table 4.3.1: Tags used in the UAF Protocol (0x2E00 - 0x2EFF, 0x3E00 - 0x3EFF).
Normatively defined in [UAFRegistry]

4.4 Status Codes

Name Value Description

UAF_CMD_STATUS_OK 0x00 Success.

UAF_CMD_STATUS_ERR_UNKNOWN 0x01 An unknown error.

UAF_CMD_STATUS_ACCESS_DENIED 0x02 Access to this operation is denied.

UAF_CMD_STATUS_USER_NOT_ENROLLED 0x03
User is not enrolled with the
authenticator and the authenticator
cannot automatically trigger enrollment.

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT 0x04 Transaction content cannot be
rendered.

UAF_CMD_STATUS_USER_CANCELLED 0x05 User has cancelled the operation. No
retry should be performed.

UAF_CMD_STATUS_CMD_NOT_SUPPORTED 0x06 Command not supported.

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED 0x07 Required attestation not supported.

UAF_CMD_STATUS_PARAMS_INVALID 0x08
The parameters for the command
received by the authenticator are
malformed/invalid.

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY 0x09

The UAuth key which is relevant for
this command disappeared from the
authenticator and cannot be restored.
On some authenticators this error
occurs when the user verification
reference data set was modified (e.g.
new fingerprint template added).

UAF_CMD_STATUS_TIMEOUT 0x0a
The operation in the authenticator took
longer than expected (due to technical
issues) and it was finally aborted.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE 0x0e
The user took too long to follow an
instruction, e.g. didn't swipe the finger
within the accepted time.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES 0x0f
Insufficient resources in the
authenticator to perform the requested
task.

Using tag 0x3E11 (as opposed to tag 0x3E12) has the same
meaning as the flag fail_if_unknown in [UAFProtocol].

UAF_CMD_STATUS_USER_LOCKOUT 0x10

The operation failed because the user
is locked out and the authenticator
cannot automatically trigger an action
to change that.
Typically the user
would have to enter an alternative
password (formally: undergo some
other alternative user verification
method) to re-enable the use
of the
main user verification method.

UAF_CMD_STATUS_SYSTEM_INTERRUPTED 0x12 The system interrupted the operation.
Retry might make sense.

Table 4.4.1: UAF Authenticator Status Codes (0x00 - 0xFF)

5. Structures

This section is normative.

5.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the
authenticator. Authenticators may define RawKeyHandle in
different ways and the internal structure is relevant only to
the specific authenticator implementation.

RawKeyHandle for a typical first-factor bound authenticator has the following structure.

Depends on hashing
algorithm (e.g. 32 bytes)

Depends on key type.
(e.g. 32 bytes)

Username Size
(1 byte) Max 128 bytes

KHAccessToken UAuth.priv Size Username

Table 5.1: RawKeyHandle Structure

First Factor authenticators must store Usernames in the authenticator and they must link the Username to the related key.
This may be achieved by storing
the Username inside the RawKeyHandle.
Second Factor authenticators must not store the
Username.

The ability to support Usernames is a key difference between first-, and
second-factor authenticators.

The RawKeyHandle must be cryptographically wrapped before leaving the
authenticator boundary since it typically contains
sensitive information, e.g. the user authentication private key (UAuth.priv).

NOTE

Any method the user can use to
(re-) enable the main user
verification method is considered
an alternative user verification
method and must be properly
declared as such. For example,
if the user can enter an
alternative
password to re-
enable the use of fingerprints or
to add additional fingers, the
authenticator
obviously supports
fingerprint or password based
user verification.

5.2 Structures to be parsed by FIDO Server

The structures defined in this section are created by UAF Authenticators
and parsed by FIDO Servers.

Authenticators must generate these structures if they implement "UAFV1TLV" assertion scheme.

The nesting structure
must be preserved, but the order of tags within
a composite tag is not normative. FIDO Servers
must be
prepared to handle tags appearing in any
order.

5.2.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the
authenticator during processing of a Register command. It
is then delivered
to FIDO Server intact, and parsed by the
server. The structure embeds a TAG_UAFV1_KRD tag which
among other data
contains the newly generated UAuth.pub.

If the authenticator wants to append custom
data to TAG_UAFV1_KRD structure (and thus sign with
Attestation Key) - this
data must be included as TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to
FIDO Server without signing it - this data must be included
as
TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_REG_ASSERTION and not inside
TAG_UAFV1_KRD.

Currently this document only specifies
ATTESTATION_BASIC_FULL, ATTESTATION_BASIC_SURROGATE and
ATTESTATION_ECDAA. In case if the authenticator is required to perform "Some_Other_Attestation" on
TAG_UAFV1_KRD
- it must use the TLV tag and content defined for
"Some_Other_Attestation" (defined in [FIDORegistry]).

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REG_ASSERTION

1.1 UINT16 Length Length of the structure

1.2 UINT16 Tag TAG_UAFV1_KRD

1.2.1 UINT16 Length Length of the structure

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2 UINT16
AuthenticatorVersion Vendor assigned authenticator version

1.2.3.3 UINT8
AuthenticationMode

For Registration this must be 0x01 indicating
that the user has explicitly verified the
action.

1.2.3.4 UINT16
Signature Algorithm and Encoding of the attestation signature.

NOTE

"UAFV1TLV" assertion scheme assumes that the authenticator has
exclusive control over all data included inside
TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.

SignatureAlgAndEncoding Refer to [FIDORegistry] for information on
supported algorithms and their values.

1.2.3.5 UINT16
PublicKeyAlgAndEncoding

Public Key algorithm and encoding of the newly generated UAuth.pub key.

Refer to [FIDORegistry] for information on
supported algorithms and their values.

1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.4.1 UINT16 Length Final Challenge Hash length

1.2.4.2 UINT8[]
FinalChallengeHash (binary value of) Final Challenge Hash provided in the
Command

1.2.5 UINT16 Tag TAG_KEYID

1.2.5.1 UINT16 Length Length of KeyID

1.2.5.2 UINT8[] KeyID (binary value of) KeyID for the key generated by
the Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 UINT16 Length Length of Counters

1.2.6.2 UINT32 SignCounter
Signature Counter.

Indicates how many times this authenticator has
performed signatures in the past.

1.2.6.3 UINT32 RegCounter

Registration Counter.

Indicates how many times this authenticator has
performed registrations in the
past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 UINT16 Length Length of UAuth.pub

1.2.7.2 UINT8[] PublicKey User authentication public key (UAuth.pub) newly
generated by authenticator

1.3
(choice
1)

UINT16 Tag ATTESTATION_BASIC_FULL

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with Basic Attestation Private
Key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content,
including the tag and it's length field, must

be
included during signature computation.

1.3.3 UINT16 Tag

TAG_ATTESTATION_CERT (multiple occurrences possible)

Multiple occurrences must be ordered. The attestation certificate must occur first.
Each subsequent occurrence (if exists) must be the issuing certificate of the

previous occurrence.
The last occurence must be chained to one of the certificates
included in field attestationRootCertificate in the related Metadata Statement
[FIDOMetadataStatement].

1.3.3.1 UINT16 Length Length of Attestation Cert

1.3.3.2 UINT8[] Certificate Single X.509 DER-encoded [ITU-X690-2008] Attestation Certificate or a single
certificate from the attestation certificate chain (see description above).

1.3
(choice
2)

UINT16 Tag ATTESTATION_BASIC_SURROGATE

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with newly generated UAuth.priv key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content,
including the tag and it's length field, must

be
included during signature computation.

1.3
(choice
3)

UINT16 Tag ATTESTATION_ECDAA

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature The binary ECDAA signature as specified in [FIDOEcdaaAlgorithm].

5.2.2 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an
authenticator during processing of a Sign command. It is
then delivered to
FIDO Server intact and parsed by the
server. The structure embeds a TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom
data to TAG_UAFV1_SIGNED_DATA structure (and thus sign with
Attestation
Key) - this data must be included as an
additional tag inside TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to
FIDO Server without signing it - this data must be included
as an
additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside TAG_UAFV1_SIGNED_DATA.

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION

1.1 UINT16 Length Length of the structure.

1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA

1.2.1 UINT16 Length Length of the structure.

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2 UINT16
AuthenticatorVersion Vendor assigned authenticator version.

1.2.3.3 UINT8
AuthenticationMode

Authentication Mode indicating whether user
explicitly verified or not and indicating if
there
is a transaction content or not.

0x01 means that user has been explicitly
verified
0x02 means that transaction content has been
shown on the display and user
confirmed it by
explicitly verifying with authenticator

1.2.3.4 UINT16
SignatureAlgAndEncoding

Signature algorithm and encoding format.

Refer to [FIDORegistry] for information on
supported algorithms and their values.

1.2.4 UINT16 Tag TAG_AUTHENTICATOR_NONCE

1.2.4.1 UINT16 Length Length of authenticator Nonce - must be at least 8
bytes, and NOT longer than 64
bytes.

1.2.4.2 UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by
Authenticator

1.2.5 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.5.1 UINT16 Length Length of Final Challenge Hash

1.2.5.2 UINT8[]
FinalChallengeHash (binary value of) Final Challenge Hash provided in the
Command

1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH

1.2.6.1 UINT16 Length Length of Transaction Content Hash. This length is 0 if AuthenticationMode == 0x01,
i.e. authentication, not transaction confirmation.

1.2.6.2 UINT8[] TCHash (binary value of) Transaction Content Hash

1.2.7 UINT16 Tag TAG_KEYID

1.2.7.1 UINT16 Length Length of KeyID

1.2.7.2 UINT8[] KeyID (binary value of) KeyID

1.2.8 UINT16 Tag TAG_COUNTERS

1.2.8.1 UINT16 Length Length of Counters

1.2.8.2 UINT32 SignCounter
Signature Counter.

Indicates how many times this authenticator has
performed signatures in the past.

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Length Length of Signature

1.3.2 UINT8[] Signature

Signature calculated using UAuth.priv over
TAG_UAFV1_SIGNED_DATA structure.

The entire TAG_UAFV1_SIGNED_DATA content,
including the tag and it's length
field, must be
included during signature computation.

5.3 UserVerificationToken

This specification doesn't specify how exactly user verification must be performed inside the authenticator. Verification is
considered to be an authenticator, and vendor, specific operation.

This document provides an example on how the "vendor_specific_UserVerify" command (a command which
verifies the user
using Authenticator's built-in technology) could be securely bound to
UAF Register and Sign commands. This binding is done
through a concept called UserVerificationToken.
Such a binding allows decoupling "vendor_specific_UserVerify" and "UAF
Register/Sign" commands
from each other.

Here is how it is defined:

The ASM invokes the "vendor_specific_UserVerify" command.
The authenticator verifies the user and returns a
UserVerificationToken back.
The ASM invokes UAF.Register/Sign command and passes UserVerificationToken to it.
The authenticator verifies the
validity of UserVerificationToken and
performs the FIDO operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement this
binding in a very
different way.
For example an authenticator vendor may decide to append a UAF Register request directly to their
"vendor_specific_UserVerify" command and process both as a single command.

If UserVerificationToken binding is implemented, it should either meet one of the
following criteria or implement a
mechanism providing similar, or better security:

UserVerificationToken must allow performing only a single UAF Register or UAF Sign operation.
UserVerificationToken must be time bound, and allow performing multiple UAF operations
within the specified time.

6. Commands

This section is non-normative.

NORMATIVE

UAF Authenticators which are designed to be interoperable with ASMs from different vendors
must implement the
command interface defined in this section. Examples of such authenticators:

Bound Authenticators in which the core authenticator functionality is
developed by one vendor, and the ASM is
developed by another vendor
Roaming Authenticators

NORMATIVE

UAF Authenticators which are tightly integrated with a custom ASM (typically bound authenticators) may
implement a
different command interface.

NOTE

Examples of such different command interface include native key store or key chain APIs. It is important to declare
whether the Uauth keys are restricted to sign valid FIDO UAF assertions only. See [FIDOMetadataStatement] entry

All UAF Authenticator commands and responses are
semantically similar - they are all represented as TLV-encoded
blobs.
The first 2 bytes of each command is the command code.
After receiving a command, the authenticator must parse the
first
TLV tag and figure out which command is being issued.

6.1 GetInfo Command

6.1.1 Command Description

This command returns information about the connected authenticators. It may return 0 or more authenticators. Each
authenticator has an assigned authenticatorIndex which is used in other commands as an
authenticator reference.

6.1.2 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length - must be 0 for this command

6.1.3 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1 UINT16 Length Response length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status Code returned by Authenticator

1.3 UINT16 Tag TAG_API_VERSION

1.3.1 UINT16 Length Length of API Version (must be 0x0001)

1.3.2 UINT8 Version
Authenticator API Version (must be 0x01). This version indicates the types of
commands,
and formatting associated with them, that are supported by the
authenticator.

1.4 UINT16 Tag TAG_AUTHENTICATOR_INFO (multiple occurrences possible)

1.4.1 UINT16 Length Length of Authenticator Info

1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.4.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.4.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.4.3 UINT16 Tag TAG_AAID

1.4.3.1 UINT16 Length Length of AAID

1.4.3.2 UINT8[] AAID Vendor assigned AAID

1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA

"isKeyRestricted".

1.4.4.1 UINT16 Length Length of Authenticator Metadata

1.4.4.2 UINT16 AuthenticatorType

Indicates whether the authenticator is bound or roaming, and whether it is first-
, or second-factor only.
The ASM must use this information to understand how
to work with the authenticator.

Predefined values:

0x0001 - Indicates second-factor authenticator (first-factor when the flag
is not set)
0x0002 - Indicates roaming authenticator (bound authenticator when the
flag is not set)
0x0004 - Key handles will be stored inside authenticator and won't be
returned to ASM
0x0008 - Authenticator has a built-in UI for enrollment and verification.
ASM should not show its custom UI
0x0010 - Authenticator has a built-in UI for settings, and supports
OpenSettings command.
0x0020 - Authenticator expects TAG_APPID to be passed as an
argument to commands where it
is defined as an optional argument
0x0040 - At least one user is enrolled in the authenticator.
Authenticators
which don't support the concept of user enrollment
(e.g.
USER_VERIFY_NONE, USER_VERIFY_PRESENCE) must always
have this bit set.
0x0080 - Authenticator supports user verification tokens (UVTs) as
described in this document. See section 5.3 UserVerificationToken.
0x0100 - Authenticator only accepts TAG_TRANSACTION_TEXT_HASH
in Sign command. This
flag may ONLY be set if
TransactionConfirmationDisplay is set to 0x0003 (see section 6.3 Sign
Command).

1.4.4.3 UINT8 MaxKeyHandles
Indicates maximum number of key handles this authenticator can receive and
process in a single command.
This information will be used by the ASM when
invoking SIGN command with multiple key handles.

1.4.4.4 UINT32 UserVerification User Verification method (as defined in
[FIDORegistry])

1.4.4.5 UINT16 KeyProtection Key Protection type (as defined in [FIDORegistry]).

1.4.4.6 UINT16 MatcherProtection Matcher Protection type (as defined in [FIDORegistry]).

1.4.4.7 UINT16
TransactionConfirmationDisplay

Transaction Confirmation type (as defined in [FIDORegistry]).

1.4.4.8 UINT16 AuthenticationAlg Authentication Algorithm (as defined in [FIDORegistry]).

1.4.5 UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)

1.4.5.1 UINT16 Length Length of content type.

1.4.5.2 UINT8[] ContentType Transaction Confirmation Display Content Type. See
[FIDOMetadataStatement] for additional information on the format of this field.

NOTE
If Authenticator doesn't support Transaction Confirmation - this value
must be set to 0.

1.4.6 UINT16 Tag TAG_TC_DISPLAY_PNG_CHARACTERISTICS (optional,multiple
occurrences permitted)

1.4.6.1 UINT16 Length Length of display characteristics information.

1.4.6.2 UINT32 Width See [FIDOMetadataStatement] for additional information.

1.4.6.3 UINT32 Height See [FIDOMetadataStatement] for additional information.

1.4.6.4 UINT8 BitDepth See [FIDOMetadataStatement] for additional information.

1.4.6.5 UINT8 ColorType See [FIDOMetadataStatement] for additional information.

1.4.6.6 UINT8 Compression See [FIDOMetadataStatement] for additional information.

1.4.6.7 UINT8 Filter See [FIDOMetadataStatement] for additional information.

1.4.6.8 UINT8 Interlace See [FIDOMetadataStatement] for additional information.

1.4.6.9 UINT8[] PLTE

A PLTE packet descriptor, defined by 3 byte word.

Offset Length Mnemonic Description

0 1 R Red channel value

1 1 G Green channel value

2 1 B Blue channel value

See [FIDOMetadataStatement] for additional information.

1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME

1.4.7.1 UINT16 Length Length of Assertion Scheme

1.4.7.2 UINT8[] AssertionScheme Assertion Scheme (as defined in
[UAFRegistry])

1.4.8 UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)

1.4.8.1 UINT16 Length Length of AttestationType

1.4.8.2 UINT16 AttestationType Attestation Type values are defined in [UAFRegistry] by the
constants with the
prefix TAG_ATTESTATION.

1.4.9 UINT16 Tag TAG_SUPPORTED_EXTENSION_ID (optional, multiple occurrences possible)

1.4.9.1 UINT16 Length Length of SupportedExtensionID

1.4.9.2 UINT8[] SupportedExtensionID SupportedExtensionID as a UINT8[] encoding of a UTF-8 string

6.1.4 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_PARAMS_INVALID

6.2 Register Command

This command generates a UAF registration assertion.
This assertion can be used to register the authenticator
with a FIDO
Server.

6.2.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.4.1 UINT16 Length Final Challenge Hash Length

1.4.2 UINT8[] FinalChallengeHash Final Challenge Hash provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_USERNAME

1.5.1 UINT16 Length Length of Username

1.5.2 UINT8[] Username Username provided by ASM (max 128 bytes)

1.6 UINT16 Tag TAG_ATTESTATION_TYPE

1.6.1 UINT16 Length Length of AttestationType

1.6.2 UINT16 AttestationType Attestation Type to be used

1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.7.1 UINT16 Length Length of KHAccessToken

1.7.2 UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)

1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.8.1 UINT16 Length Length of VerificationToken

1.8.2 UINT8[] VerificationToken User verification token

6.2.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD_RESPONSE

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status code returned by Authenticator

1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION

1.3.1 UINT16 Length Length of Assertion

1.3.2 UINT8[] Assertion Registration Assertion
(see section TAG_UAFV1_REG_ASSERTION).

1.4 UINT16 Tag TAG_KEYHANDLE (optional)

1.4.1 UINT16 Length Length of key handle

1.4.2 UINT8[] Value (binary value of) key handle

6.2.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_USER_NOT_ENROLLED

UAF_CMD_STATUS_USER_CANCELLED

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

UAF_CMD_STATUS_TIMEOUT

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES

UAF_CMD_STATUS_USER_LOCKOUT

6.2.4 Command Description

The authenticator must perform the following steps (see below table for command structure):

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation display and is able to display AppID, then make
sure
Command.TAG_APPID is provided, and show its
content on the display when verifying the user. Return
UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID
is not provided in such case. Update Command.KHAccessToken with
TAG_APPID:

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing
function
is a cryptographic hash function.

For example: Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If the user is already enrolled with this authenticator (via
biometric enrollment, PIN setup or similar mechanism) -
verify
the user. If the verification has been already
done in a previous command - make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and
the authenticator cannot automatically trigger
unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

1. If the user doesn't respond to the request to get verified - return
UAF_CMD_STATUS_USER_NOT_RESPONSIVE

NOTE

This method allows us to avoid storing the AppID separately in the RawKeyHandle.

2. If verification fails - return
UAF_CMD_STATUS_ACCESS_DENIED
3. If user explicitly cancels the operation - return
UAF_CMD_STATUS_USER_CANCELLED

3. If the user is not enrolled with the authenticator then take the
user through the enrollment process. If the enrollment
process cannot be triggered by the authenticator, return UAF_CMD_STATUS_USER_NOT_ENROLLED.

1. If the authenticator can trigger enrollment, but the user doesn't respond to the request to enroll - return
UAF_CMD_STATUS_USER_NOT_RESPONSIVE

2. If the authenticator can trigger enrollment, but enrollment fails - return
UAF_CMD_STATUS_ACCESS_DENIED
3. If the authenticator can trigger enrollment, but the user explicitly cancels the enrollment operation - return

UAF_CMD_STATUS_USER_CANCELLED

4. Make sure that Command.TAG_ATTESTATION_TYPE is supported. If not - return
UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv)
If the process takes longer than accepted - return
UAF_CMD_STATUS_TIMEOUT

6. Create a RawKeyHandle, for example as follows
1. Add UAuth.priv to RawKeyHandle
2. Add Command.KHAccessToken to RawKeyHandle
3. If a first-factor authenticator, then add
Command.Username to RawKeyHandle

If there are not enough resources in the authenticator to perform this task - return
UAF_CMD_STATUS_INSUFFICIENT_RESOURCES.

7. Wrap RawKeyHandle with Wrap.sym key
8. Create TAG_UAFV1_KRD structure

1. If this is a second-factor roaming authenticator - place key handle inside TAG_KEYID.
Otherwise generate a
KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section
TAG_UAFV1_REG_ASSERTION)

9. Perform attestation on TAG_UAFV1_KRD based on
provided Command.AttestationType.
10. Create TAG_AUTHENTICATOR_ASSERTION

1. Create TAG_UAFV1_REG_ASSERTION
1. Copy all the mandatory fields (see section
TAG_UAFV1_REG_ASSERTION)
2. If this is a first-factor roaming authenticator - add KeyID and key handle into internal
storage
3. If this is a bound authenticator - return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

11. Return TAG_UAFV1_REGISTER_CMD_RESPONSE
1. Use UAF_CMD_STATUS_OK as status code
2. Add TAG_AUTHENTICATOR_ASSERTION
3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

NORMATIVE

The authenticator must not process a Register command without verifying the user
(or enrolling the user, if this is the first
time the user has used the authenticator).

The authenticator must generate a unique UAuth key pair each time the Register command is called.

The authenticator should either store key handle in its internal secure storage or cryptographically
wrap it and export it to
the ASM.

For silent authenticators, the key handle must never be
stored on a FIDO Server, otherwise this would enable
tracking of
users without providing the ability for users
to clear key handles from the local device.

If KeyID is not the key handle itself (e.g. such as in case of a second-factor roaming authenticator) - it must be
a unique
and unguessable byte array with a maximum length of 32 bytes.
It must be unique within the scope of the AAID.

In the case of bound authenticators implementing a different command interface, the ASM
could generate a temporary
KeyID and provide it as input to the authenticator in a Register command
and change it to the final KeyID (e.g. derived
from the public key) when the authenticator has completed the Register command execution.

If the authenticator doesn't support SignCounter or RegCounter
it must set these to 0 in TAG_UAFV1_KRD. The RegCounter
must be set to 0 when a factory reset
for the authenticator is performed. The SignCounter must be set to 0 when a factory
reset
for the authenticator is performed.

6.3 Sign Command

This command generates a UAF assertion. This assertion
can be further verified by a FIDO Server which has a prior
registration with this authenticator.

6.3.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_SIGN_CMD

1.1 UINT16 Length Length of Command

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8
AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.4.1 UINT16 Length Length of Final Challenge Hash

1.4.2 UINT8[]
FinalChallengeHash (binary value of) Final Challenge Hash provided by ASM
(max 32 bytes)

1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)

1.5.1 UINT16 Length Length of Transaction Content

1.5.2 UINT8[]
TransactionContent (binary value of) Transaction Content provided by the ASM

1.5 UINT16 Tag

TAG_TRANSACTION_CONTENT_HASH (optional and mutually exclusive with
TAG_TRANSACTION_CONTENT).
This TAG is only allowed for authenticators not able
to display the transaction text, i.e. authenticator with tcDisplay=0x0003 (i.e. flags
TRANSACTION_CONFIRMATION_DISPLAY_ANY and
TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE are set).

NOTE

If the KeyID is generated randomly (instead of, for example, being derived from a key handle or the public key) - it
should be
stored inside RawKeyHandle so that it can be accessed by the authenticator while processing the Sign
command.

1.5.1 UINT16 Length Length of Transaction Content Hash

1.5.2 UINT8[]
TransactionContentHash (binary value of) Transaction Content Hash provided by the ASM

1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.6.1 UINT16 Length Length of KHAccessToken

1.6.2 UINT8[]
KHAccessToken (binary value of) KHAccessToken provided by ASM
(max 32 bytes)

1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.7.1 UINT16 Length Length of the User Verification Token

1.7.2 UINT8[]
VerificationToken User Verification Token

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)

1.8.1 UINT16 Length Length of KeyHandle

1.8.2 UINT8[] KeyHandle (binary value of) key handle

6.3.2 Command Response

TLV
Structure Description

1 UINT16
Tag TAG_UAFV1_SIGN_CMD_RESPONSE

1.1 UINT16
Length Entire Length of Command Response

1.2 UINT16
Tag TAG_STATUS_CODE

1.2.1 UINT16
Length Status Code Length

1.2.2 UINT16
Value Status code returned by authenticator

1.3
(choice
1)

UINT16
Tag

TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)

This TLV tag can be used to convey multiple (>=1) {Username,
Keyhandle} entries. Each
occurance of TAG_USERNAME_AND_KEYHANDLE contains one pair.

If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present

1.3.1 UINT16
Length Length of the structure

1.3.2 UINT16
Tag TAG_USERNAME

1.3.2.1 UINT16
Length Length of Username

1.3.2.2 UINT8[]
Username Username

1.3.3 UINT16
Tag TAG_KEYHANDLE

1.3.3.1 UINT16
Length Length of KeyHandle

1.3.3.2 UINT8[]
KeyHandle (binary value of) key handle

1.3
(choice
2)

UINT16
Tag

TAG_AUTHENTICATOR_ASSERTION (optional)

If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present

1.3.1 UINT16
Length Assertion Length

1.3.2 UINT8[]
Assertion

Authentication assertion generated by the authenticator (see section
TAG_UAFV1_AUTH_ASSERTION).

6.3.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_USER_NOT_ENROLLED

UAF_CMD_STATUS_USER_CANCELLED

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

UAF_CMD_STATUS_PARAMS_INVALID

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

UAF_CMD_STATUS_TIMEOUT

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

UAF_CMD_STATUS_USER_LOCKOUT

6.3.4 Command Description

NOTE

First-factor authenticators should implement this command in two
stages.

1. The first stage will be executed only if
the authenticator finds out that there are multiple
key handles after filtering
with the KHAccessToken. In this
stage, the authenticator must return a list of usernames
along with
corresponding key handles

2. In the second stage, after the user selects a username,
this command will be called with a single key handle and
will return a UAF assertion based on this
key handle

If a second-factor authenticator is presented with
more than one valid key handles, it must exercise only
the first one
and ignore the rest.

The command is implemented in two stages to ensure
that only one assertion can be generated for each command
invocation.

Authenticators must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation
display, and is able to display the AppID - make sure
Command.TAG_APPID is provided, and show it on the
display when verifying the user. Return
UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID
is not provided in such case.

Update Command.KHAccessToken by mixing it with
Command.TAG_APPID. An example of such a mixing
function is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If TransactionContent is not empty
If this is a silent authenticator, then return
UAF_CMD_STATUS_ACCESS_DENIED
If the authenticator doesn't support transaction confirmation (it has set
TransactionConfirmationDisplay to 0 in the
response to a GetInfo Command), then return UAF_CMD_STATUS_ACCESS_DENIED
If the authenticator has a built-in transaction confirmation display and the Authenticator implements displaying
transaction text before user verification, then
show Command.TransactionContent and
Command.TAG_APPID (optional)
on display and wait
for the user to confirm it by passing user verification (see step below):

Return UAF_CMD_STATUS_USER_NOT_RESPONSIVE if the user doesn't respond.
Return UAF_CMD_STATUS_USER_CANCELLED if the user
cancels the transaction.
Return UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if the provided transaction content cannot be
rendered.
Compute hash of TransactionContent

TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)
Set
TAG_UAFV1_SIGNED_DATA.AuthenticationMode to
0x02

3. If the user is already enrolled with the authenticator (such
as biometric enrollment, PIN setup, etc.) then verify the
user.
If the verification has already been done in one of the
previous commands, make sure that
Command.TAG_USERVERIFY_TOKEN is a valid
token.

If the user is locked out (e.g. too many failed attempts to get verified) and
the authenticator cannot automatically trigger
unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

1. If the user doesn't respond to the request to get verified - return
UAF_CMD_STATUS_USER_NOT_RESPONSIVE
2. If verification fails - return
UAF_CMD_STATUS_ACCESS_DENIED
3. If the user explicitly cancels the operation - return
UAF_CMD_STATUS_USER_CANCELLED

4. If the user is not enrolled then return
UAF_CMD_STATUS_USER_NOT_ENROLLED

5. Unwrap all provided key handles from
Command.TAG_KEYHANDLE values using Wrap.sym
1. If this is a first-factor roaming authenticator:

If Command.TAG_KEYHANDLE are provided, then
the items in this list are KeyIDs. Use these
KeyIDs to
locate key handles stored in internal
storage
If no Command.TAG_KEYHANDLE are provided -
unwrap all key handles stored in internal
storage

If no RawKeyHandles are found - return UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.

NOTE

This should not occur as the Uauth key must be protected by the authenticator's user verification method. If the
authenticator supports alternative user verification methods (e.g. alternative password and finger print verification
and the alternative password must be provided before enrolling a finger and only the finger print is verified as part
of the Register or Sign operation,
then the authenticator should automatically and implicitly ask the user to enroll
the modality required
in the operation (instead of just returning an error).

6. Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken ==
Command.KHAccessToken)

7. If the number of remaining RawKeyHandles is 0, then fail with
UAF_CMD_STATUS_ACCESS_DENIED
8. If number of remaining RawKeyHandles is > 1

1. If this authenticator has a user interface and wants to use it for this purpose:
Ask the user which of the usernames
he wants to use for this operation. Select the related RawKeyHandle and jump to step #8.

2. If this is a second-factor authenticator, then choose the first RawKeyHandle only and jump to step #8.
3. Copy
{Command.KeyHandle, RawKeyHandle.username} for
all remaining RawKeyHandles into

TAG_USERNAME_AND_KEYHANDLE tag.
If this is a first-factor roaming authenticator, then the returned TAG_USERNAME_AND_KEYHANDLEs
must
be ordered by the key handle registration date (the latest-registered key handle must come the latest).

4. Copy TAG_USERNAME_AND_KEYHANDLE into TAG_UAFV1_SIGN_CMD_RESPONSE
and return

9. If number of remaining RawKeyHandles is 1
1. If the Uauth key related to the RawKeyHandle cannot be used or disappeared and cannot be restored
- return

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.
2. Create TAG_UAFV1_SIGNED_DATA and set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01
3. If TransactionContent is not empty

If the authenticator has a built-in transaction confirmation display and the authenticator implements
displaying transaction text after user verification, then
show Command.TransactionContent and
Command.TAG_APPID (optional) on display and wait
for the user to confirm it:

Return UAF_CMD_STATUS_USER_NOT_RESPONSIVE if the user doesn't respond.
Return UAF_CMD_STATUS_USER_CANCELLED if the user
cancels the transaction.
Return UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if the provided transaction content cannot
be rendered.
Compute hash of TransactionContent

TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)
Set
TAG_UAFV1_SIGNED_DATA.AuthenticationMode to
0x02

4. If TransactionContent is not set, but TransactionContentHash is not empty
If this is a silent authenticator, then return
UAF_CMD_STATUS_ACCESS_DENIED
If the conditions for receiving TransactionContentHash are not satisfied (if the authenticator's
TransactionConfirmationDisplay is NOT set to 0x0003 in the response to a GetInfo Command), then return
UAF_CMD_STATUS_PARAMS_INVALID

Perform the following steps
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
Command.TransactionContentHash
Set
TAG_UAFV1_SIGNED_DATA.AuthenticationMode to
0x02

5. Create TAG_UAFV1_AUTH_ASSERTION
Fill in the rest of TAG_UAFV1_SIGNED_DATA fields
Perform the following steps

Increment SignCounter and put into
TAG_UAFV1_SIGNED_DATA
Copy all the mandatory fields (see
section TAG_UAFV1_AUTH_ASSERTION)

NOTE

If two or more key handles with the same username are found, a first-factor roaming authenticator
may only keep the one that is registered most recently and delete the rest. This avoids having
unusable (old) private key in the authenticator which (surprisingly) might become active after
deregistering the newly generated one.

If TAG_UAFV1_SIGNED_DATA.AuthenticationMode == 0x01 -
set
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Length to 0

Sign TAG_UAFV1_SIGNED_DATA with
UAuth.priv
If these steps take longer than expected by the authenticator - return UAF_CMD_STATUS_TIMEOUT.

6. Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

7. Copy TAG_AUTHENTICATOR_ASSERTION into
TAG_UAFV1_SIGN_CMD_RESPONSE and return

NORMATIVE

Authenticator must not process Sign command without verifying the user first.

Authenticator must not reveal Username without verifying the user first.

Bound authenticators must not process Sign command without validating KHAccessToken
first.

Bound authenticators implementing a different command interface, may implement
a different method for binding keys to a
specific AppID, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App).	See [UAFASM] section "KHAccessToken" for more details.

UAuth.priv keys must never leave Authenticator's security boundary in plaintext form.
UAuth.priv protection boundary is
specified in Metadata.keyProtection field in Metadata
[FIDOMetadataStatement]).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display -
it must display provided
transaction content in this display and include the hash of content
inside TAG_UAFV1_SIGNED_DATA structure.

Authenticators supporting Transaction Confirmation Display shall either display the transaction text before user
verification (see step #2) or after it (see step 9.3).
Displaying the transaction text before user verification is preferred.

Silent Authenticators must not operate in first-factor mode in order to follow the
assumptions made in [FIDOSecRef].
However, a native App or web page could "cache" the keyHandle
or a Cookie and hence would be considered a first-
factor that could be combined with
a Silent Authenticator (when doing do).

If Authenticator doesn't support SignCounter, then it must
set it to 0 in TAG_UAFV1_SIGNED_DATA.
The SignCounter
must be set to 0 when a factory reset
for the Authenticator is performed, in order to follow the assumptions made in
[FIDOSecRef].

Some Authenticators might support Transaction Confirmation display
functionality not inside the Authenticator but within
the
boundaries of ASM. Typically these are software based
Transaction Confirmation displays. When processing the Sign
command with a
given transaction such Authenticators should assume that
they do have a builtin Transaction
Confirmation display and should include
the hash of transaction content in the final assertion
without displaying anything
to the user. Also, such
Authenticator's Metadata file must clearly indicate the
type of Transaction Confirmation display.
Typically the flag of Transaction Confirmation
display will be TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.
See [FIDORegistry] for flags describing
Transaction Confirmation
Display type.

6.4 Deregister Command

This command deletes a registered UAF credential from
Authenticator.

6.4.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 UINT16 Length Length of KeyID

1.4.2 UINT8[] KeyID (binary value of) KeyID provided by ASM

1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.5.1 UINT16 Length Length of KeyHandle Access Token

1.5.2 UINT8[] KHAccessToken (binary value of) KeyHandle Access Token provided by ASM
(max 32 bytes)

6.4.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.4.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

6.4.4 Command Description

Authenticator must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a Transaction Confirmation display and is able to display AppID, then make
sure
Command.TAG_APPID is provided. Return UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID
is not provided in
such case.

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing
function
is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If this Authenticator doesn't store key handles internally, then return UAF_CMD_STATUS_CMD_NOT_SUPPORTED

3. If the length of TAG_KEYID is zero (i.e., 0000 Hex), then
if TAG_APPID is provided, then

for each KeyHandle that maps to TAG_APPID do
1. if RawKeyHandle.KHAccessToken == Command.KHAccessToken, then delete KeyHandle from

internal storage, otherwise, note an error occured

if an error occured, then return UAF_CMD_STATUS_ACCESS_DENIED

if TAG_APPID is not provided, then delete all KeyHandles from internal storage where
RawKeyHandle.KHAccessToken == Command.KHAccessToken
Go to step 5

4. If the length of TAG_KEYID is NOT zero, then
Find KeyHandle that matches Command.KeyID
Ensure that RawKeyHandle.KHAccessToken == Command.KHAccessToken

If not, then return UAF_CMD_STATUS_ACCESS_DENIED

Delete this KeyHandle from internal storage

5. Return UAF_CMD_STATUS_OK

NORMATIVE

Bound authenticators must not process Deregister command without validating KHAccessToken
first.

Bound authenticators implementing a different command interface, may implement
a different method for binding keys to a
specific AppID, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App).	See [UAFASM] section "KHAccessToken" for more details.

Deregister command should not explicitly reveal whether the provided keyID was registered or not.

6.5 OpenSettings Command

This command instructs the Authenticator to open its built-in settings UI (e.g. change PIN, enroll new fingerprint, etc).

The Authenticator must return UAF_CMD_STATUS_CMD_NOT_SUPPORTED if
it doesn't support such functionality.

If the command structure is invalid (e.g. cannot be parsed correctly), the authenticator must return
UAF_CMD_STATUS_PARAMS_INVALID.

6.5.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

NOTE

The authenticator must unwrap the relevant KeyHandles using Wrap.sym as needed.

NOTE
This command never returns UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY as this could reveal the keyID registration
status.

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

6.5.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.5.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

7. KeyIDs and key handles

This section is non-normative.

There are 4 types of Authenticators defined in this document and due to their specifics they behave
differently while
processing commands. One of the main differences between them is
how they store and process key handles. This section
tries to clarify it by describing the behavior of
every type of Authenticator during the processing of relevant command.

7.1 first-factor Bound Authenticator

Register
Command

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored
in ASM
database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).

Sign
Command

When there is no user session (no cookies, a clear machine) the Server doesn't provide any KeyID
(since it
doesn't know which KeyIDs to provide). In this scenario the ASM selects all key handles
and passes them to
Authenticator.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs.
ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.

Deregister
Command

Since Authenticator doesn't store key handles, then there is nothing to delete inside Authenticator.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.2 2ndF Bound Authenticator

Register
Command

Authenticator might not store key handles. Instead the KeyHandle might be returned to the ASM and stored
in
the ASM database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used
when there is no
user session (no cookies, a clear machine); unless, for example,
the user identifies their account and the
server is then able to provide a KeyID.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs.
ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.

Deregister
Command

If the Authenticator doesn't store key handles, then there is nothing to delete inside it.

The ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.3 first-factor Roaming Authenticator

Register
Command

Authenticator stores key handles inside its internal storage. KeyHandle is never returned back to ASM.

KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle)

Sign
Command

When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID
(since it
doesn't know which KeyIDs to provide). In this scenario Authenticator uses all
key handles that correspond to
the provided AppID.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs.
Authenticator
selects key handles that correspond to provided KeyIDs and uses them.

Deregister
Command Authenticator finds the right KeyHandle and deletes it from its storage.

7.4 2ndF Roaming Authenticator

Register
Command

Typically neither the Authenticator nor the ASM store key handles. Instead the KeyHandle is sent to the
Server (in place of
KeyID) and stored in User's record. From Server's perspective it's a KeyID.
In fact the
KeyID is identical to the KeyHandle.

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used
when there is no
user session (no cookies, a clear machine).

During step-up authentication Server provides KeyIDs which are in fact key handles.
Authenticator finds the
right KeyHandle and uses it.

Deregister
Command Since Authenticator and ASM don't store key handles, then there is nothing to delete on client side.

8. Access Control for Commands

This section is normative.

FIDO Authenticators may implement various mechanisms to
guard access to privileged commands.

The following table summarizes the access control
requirements for each command.

All UAF Authenticators must satisfy the access control
requirements defined below.

Authenticator vendors may offer additional security
mechanisms.

Terms used in the table:

NoAuth - no access control
UserVerify - explicit user verification
KHAccessToken - must be known to the caller (or alternative method with similar security level must be used)
KeyHandleList - must be known to the caller
KeyID - must be known to the caller

Command First-factor Bound
Authenticator

2ndF Bound
Authenticator

First-factor Roaming
Authenticator

2ndF Roaming
Authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Sign
UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken

UserVerify
KHAccessToken
KeyHandleList

Deregister KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

Table 1: Access Control for Commands

9. Considerations

This section is non-normative.

9.1 Algorithms and Key Sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

9.2 Indicating the Authenticator Model

Some authenticators (e.g. TPMv2) do not have the ability to include their model identifier (i.e. vendor ID and model name) in
attested messages (i.e. the to-be-signed part
of the registration assertion). The TPM's endorsement key certificate typically
contains that information directly or at least it allows the model to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator
model (i.e. AAID).

If the authenticator cannot securely include its model (i.e. AAID) in the registration assertion (i.e. in the KRD object), we
require the ECDAA-Issuers public key (ipkk)
to be dedicated to one single authenticator model (identified by its AAID).

Using this method, the issuer public key is uniquely related to one entry in the Metadata Statement and can be used by the
FIDO server to get a cryptographic proof of the Authenticator model.

10. Relationship to other standards

This section is non-normative.

The existing standard specifications most relevant to UAF
authenticator are [TPM], [TEE] and [SecureElement].

Hardware modules implementing these standards may be
extended to incorporate UAF functionality through their
extensibility mechanisms such as by loading secure applications
(trustlets, applets, etc) into them. Modules which do not
support such extensibility mechanisms cannot be fully leveraged
within UAF framework.

10.1 TEE

In order to support UAF inside TEE a special Trustlet
(trusted application running inside TEE) may be designed
which
implements UAF Authenticator functionality specified in
this document and also implements some kind of user
verification
technology (biometric verification, PIN or
anything else).

An additional ASM must be created which knows how to work
with the Trustlet.

10.2 Secure Elements

In order to support UAF inside Secure Element (SE) a special Applet
(trusted application running inside SE) may be designed
which
implements UAF Authenticator functionality specified in this
document and also implements some kind of user
verification
technology (biometric verification, PIN or similar
mechanisms).

An additional ASM must be created which knows how to work
the Applet.

10.3 TPM

TPMs typically have a built-in attestation capability
however the attestation model supported in TPMs is currently
incompatible with UAF's basic attestation model. The future
enhancements of UAF may include compatible attestation
schemes.

Typically TPMs also have a built-in PIN verification
functionality which may be leveraged for UAF. In order to
support UAF
with an existing TPM module, the vendor should
write an ASM which:

Translates UAF data to TPM data by
calling TPM APIs
Creates assertions using TPMs API
Reports itself as a valid UAF authenticator to FIDO UAF Client

A special
AssertionScheme, designed for TPMs, must be also created (see
[FIDOMetadataStatement]) and published by
FIDO Alliance. When
FIDO Server receives an assertion with this AssertionScheme
it will treat the received data as TPM-
generated data and
will parse/validate it accordingly.

10.4 Unreliable Transports

The command structures described in this document assume
a reliable transport and provide no support at the application-
layer
to detect or correct for issues such as unreliable ordering, duplication, dropping or modification of messages. If the
transport
layer(s) between the ASM and Authenticator are not reliable, the
non-normative private contract between the ASM
and Authenticator may need
to provide a means to detect and correct such errors.

A. Security Guidelines

This section is non-normative.

Category Guidelines

AppIDs and
KeyIDs

Registered AppIDs and KeyIDs must not be returned by
an authenticator in plaintext, without first
performing user verification.

If an attacker gets physical access to a roaming
authenticator, then it should not be easy to read out
AppIDs and KeyIDs.

Attestation
Private Key

Authenticators must protect the attestation private key
as a very sensitive asset. The overall security of
the
authenticator depends on the protection level of this
key.

It is highly recommended to store and operate this
key inside a tamper-resistant hardware module, e.g.
[SecureElement].

It is assumed by registration assertion schemes, that the authenticator has exclusive control over the
data being signed with the attestation key.

FIDO Authenticators must ensure that the attestation
private key:

1. is only used to attest authentication keys
generated and protected by the authenticator,
using the
FIDO-defined data structures,
KeyRegistrationData.

2. is never accessible outside the security boundary of the
authenticator.

Attestation must be implemented in a way such that two
different relying parties cannot link registrations,
authentications or other transactions (see [UAFProtocol]).

Certifications
Vendors should strive to pass common security standard
certifications with authenticators, such as
[FIPS140-2], [CommonCriteria] and similar. Passing
such certifications will positively impact the UAF
implementation of the authenticator.

Cryptographic
(Crypto)
Kernel

The crypto kernel is a module of the authenticator
implementing cryptographic functions (key generation,
signing,
wrapping, etc) necessary for UAF, and having access to
UAuth.priv, Attestation Private Key and
Wrap.sym.

For optimal security, this module should reside
within the same security boundary as the UAuth.priv,
Att.priv and Wrap.sym keys. If it resides within a
different security boundary, then the implementation
must guarantee the same level of security as if they
would reside within the same module.

It is highly recommended to generate, store and
operate this key inside a trusted execution
environment
[TEE].

In situations where physical attacks and side
channel attacks are considered in the threat model, it
is
highly recommended to use a tamper-resistant
hardware module.

Software-based authenticators must make sure to use
state of the art code protection and obfuscation
techniques to protect this module, and whitebox
encryption techniques to protect the associated
keys.

Authenticators need good random number generators
using a high quality entropy source, for:

1. generating authentication keys
2. generating signatures
3. computing authenticator-generated challenges

The authenticator's random number generator (RNG)
should be such that it cannot be disabled or
controlled in a way that may cause it to generate
predictable outputs.

If the authenticator doesn't have sufficient entropy for generating strong random numbers, it should fail
safely.

See the section of this table regarding random numbers

It is highly recommended to use authenticated
encryption while wrapping key handles with Wrap.sym.

KeyHandle Algorithms such as AES-GCM and AES-CCM are most
suitable for this operation.

Liveness
Detection /
Presentation
Attack
Detection

The user verification method should include liveness detection [NSTCBiometrics],
i.e. a technique to
ensure that the sample submitted is actually from a (live) user.

In the case of PIN-based matching, this could be implemented using [TEESecureDisplay] in order to
ensure that malware can't emulate PIN entry.

Matcher

By definition, the matcher component is part of the
authenticator. This does not impose any restrictions
on the authenticator implementation, but implementers
need to make sure that there is a proper security
boundary binding the matcher and the other parts of
the authenticator together.

Tampering with the matcher module may have
significant security consequences. It is highly
recommended for this module to reside within the
integrity boundaries of the authenticator, and be
capable of detecting tampering.

It is highly recommended to run this module inside a
trusted execution environment [TEE] or inside a
secure element [SecureElement].

Authenticators which have separated matcher and
CryptoKernel modules should implement mechanisms
which
would allow the CryptoKernel to securely receive assertions
from the matcher module indicating
the user's local
verification status.

Software based Authenticators (if not in trusted
execution environment) must make sure to use state of
the art code protection and obfuscation techniques to
protect this module.

When an Authenticator receives an invalid
UserVerificationToken it should treat this as an attack,
and
invalidate the cached UserVerificationToken.

A UserVerificationToken should have a lifetime not
exceeding 10 seconds.

Authenticators must implement anti-hammering protections for
their matchers.

Biometrics based authenticators must protect the
captured biometrics data (such as fingerprints) as
well
as the reference data (templates), and make sure
that the biometric data never leaves the security
boundaries of authenticators.

Matchers must only accept verification reference data
enrolled by the user, i.e. they must not include any
default PINs or default biometric reference data.

Private Keys
(UAuth.priv
and
Attestation
Private
Key)

This document requires (a) the attestation key to be
used for attestation purposes only and (b) the
authentication keys to be used for FIDO authentication
purposes only. The related to-be-signed objects
(i.e.
Key Registration Data and SignData) are designed to
reduce the likelihood of such attacks:

1. They start with a tag marking them as specific
FIDO objects
2. They include an authenticator-generated random
value. As a consequence all to-be-signed objects

are
unique with a very high probability.
3. They have a structure allowing only very few
fields containing uncontrolled values, i.e. values
which

are neither generated nor verified by the
authenticator

The FIDO Authenticator uses its random number
generator to generate authentication key pairs, client
side challenges, and potentially for creating ECDSA
signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the
FIDO Authenticator to work with good random
numbers
only.

Random
Numbers

The (pseudo-)random numbers used by authenticators
should successfully pass the randomness test
specified
in [Coron99] and they should follow the guidelines
given in [SP800-90b].

Additionally, authenticators may choose to
incorporate entropy provided by the FIDO Server via
the
ServerChallenge sent in requests (see
[UAFProtocol]).

When mixing multiple entropy sources, a suitable mixing
function should be used, such as those
described in
[RFC4086].

RegCounter

The RegCounter provides an anti-fraud signal to the relying parties. Using the RegCounter,
the relying party
can detect authenticators which have been excessively registered.

If the RegCounter is implemented: ensure that

1. it is increased by any registration
operation and
2. it cannot be manipulated/modified otherwise (e.g. via API calls,
etc.)

A registration counter should be implemented as a global counter, i.e. one covering registrations to all
AppIDs.
This global counter should be increased by 1 upon any registration operation.

Note: The RegCounter value should not be decreased by Deregistration operations.

SignCounter

When an attacker is able to extract a Uauth.priv key from a registered authenticator, this key can be used
independently
from the original authenticator. This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent cloning authenticators. In
some situations the protection measures might not be
sufficient.

If the Authenticator maintains a signature counter
SignCounter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If the SignCounter is implemented: ensure that

1. It is increased by any authentication /
transaction confirmation operation and
2. it cannot be manipulated/modified otherwise (e.g.
API calls, etc.)

Signature counters should be implemented that are dedicated
for each private key in order to preserve
the user's
privacy.

A per-key SignCounter should be increased by 1, whenever the
corresponding UAuth.priv key signs an
assertion.

A per-key SignCounter should be deleted whenever the
corresponding UAuth key is deleted.

If the authenticator is not able to handle
many different signature counters, then a global
signature
counter covering all private keys should be
implemented. A global SignCounter should be
increased by a
random positive integer value whenever any of the UAuth.priv keys is used to sign an assertion.

A transaction confirmation display must ensure that the user is
presented with the provided transaction

NOTE

There are multiple reasons why the SignCounter value could be 0 in a registration response. A
SignCounter value of 0 in an authentication response
indicates that the authenticator doesn't
support the SignCounter concept.

Transaction
Confirmation
Display

content, e.g.
not overlaid by other display elements and clearly
recognizable. See [CLICKJACKING] for
some examples of
threats and potential counter-measures

For more guidelines refer to
[TEESecureDisplay].

UAuth.priv

An authenticator must protect all UAuth.priv keys as
its most sensitive assets. The overall
security of the
authenticator
depends significantly on the protection
level of these keys.

It is highly recommended that this key is generated,
stored and operated inside a trusted execution
environment.

In situations where physical attacks and side
channel attacks are considered within the threat model, it
is
highly recommended to use a tamper-resistant
hardware module.

FIDO Authenticators must ensure that UAuth.priv
keys:

1. are specific to the particular account at one
relying party (relying party is identified by an
AppID)
2. are generated based on good random numbers with
sufficient entropy. The challenge provided by

the
FIDO Server during registration and authentication
operations should be mixed into the entropy
pool in
order to provide additional entropy.

3. are never directly revealed, i.e. always remain
in exclusive control of the FIDO Authenticator
4. are only being used for the defined
authentication modes, i.e.

1. authenticating to the application (as
identified by the AppID) they have been
generated for, or
2. confirming transactions to the application (as
identified by AppID) they have been generated

for, or
3. are only being used to create the FIDO
defined data structures, i.e. KRD, SignData.

Username A username must not be returned in plaintext in any
condition other than the conditions described for the
SIGN command. In all other conditions usernames must
be stored within a KeyHandle.

Verification
Reference
Data

The verification reference data, such as fingerprint
templates or the reference value of a PIN, are by
definition part of the authenticator. This does not
impose any particular restrictions on the
authenticator
implementation, but implementers need to
make sure that there is a proper security boundary
binding all
parts of the authenticator together.

Wrap.sym

If the authenticator has a wrapping key (Wrap.sym),
then the authenticator must protect this key as its
most sensitive asset. The overall security of
the authenticator depends on the protection of this
key.

Wrap.sym key strength must be equal or higher than the
strength of secrets stored in a RawKeyHandle.
Refer to
[SP800-57] and [SP800-38F] publications for more
information about choosing the right
wrapping algorithm
and implementing it correctly.

It is highly recommended to generate, store and
operate this key inside a trusted execution
environment.

In situations where physical attacks and side
channel attacks are considered in the threat model, it
is
highly recommended to use a tamper-resistant
hardware module.

If the authenticator uses Wrap.sym, it must ensure
that unwrapping corrupted KeyHandle and
unwrapping data
which has invalid contents (e.g. KeyHandle from invalid
origin) are indistinguishable to
the caller.

B. Table of Figures

Fig. 1 UAF Authenticator Commands
Fig. 2 FIDO Authenticator Logical Sub-Components

C. References

C.1 Normative references

[Coron99]
J. Coron; D. Naccache. An accurate evaluation of Maurer's universal test. February 1999. URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. 28 November
2017. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-
20180227.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[ITU-X690-2008]
. X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
https://www.itu.int/rec/T-REC-X.690-200811-S

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[SP800-90b]
Meltem Sönmez Turan; Elaine Barker; John Kelsey; Kerry McKay; Mary Baish; Michael Boyle. NIST Special Publication
800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation. January 2018. URL:
https://csrc.nist.gov/publications/detail/sp/800-90b/final

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol Specification
v1.2. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-
20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

C.2 Informative references

[CLICKJACKING]
D. Lin-Shung Huang; C. Jackson; A. Moshchuk; H. Wang, S. Schlechter. Clickjacking: Attacks and Defenses. July
2012. URL: https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf

[CommonCriteria]
CCRA Members. Common Criteria Publications. Work in Progress. URL: http://www.commoncriteriaportal.org/cc/

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hill; D. Biggs. FIDO Security Reference. 27 February 2018. Implementation
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html

[FIPS140-2]
. FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[NSTCBiometrics]

http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

. Biometrics Glossary. 14 September 2006. URL: http://biometrics.gov/Documents/Glossary.pdf
[RFC4086]

D. Eastlake 3rd; J. Schiller; S. Crocker. Randomness Requirements for Security (RFC 4086). June 2005. URL:
http://www.ietf.org/rfc/rfc4086.txt

[SP800-38F]
M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-57]
Recommendation for Key Management – Part 1: General (Revision 3). SP800-57. July 2012. U.S. Department of
Commerce/National Institute of Standards and Technology. URL: https://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57_part1_rev3_general.pdf

[SecureElement]
. GlobalPlatform Card Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEE]
. GlobalPlatform Trusted Execution Environment Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
. GlobalPlatform Trusted User Interface API Specifications. URL: https://www.globalplatform.org/specifications.asp

[TPM]
. TPM Main Specification. URL: http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

FIDO UAF Application API and Transport Binding Specification
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html

Editor:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Bill Blanke, Nok Nok Labs, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

Describes APIs and an interoperability profile for client
applications to utilize FIDO UAF. This includes methods of
communicating with a FIDO
UAF Client for both Web platform and
Android applications, transport requirements, and an HTTPS
interoperability profile for sending FIDO
UAF messages to a
compatible server.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current
FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this document, please
Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the Specification are not, and shall not be held,
responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable document and may be
used as reference material or cited from another
document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
mailto:bblanke@noknok.com
https://www.noknok.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Audience
2.2 Scope
2.3 Architecture

2.3.1 Protocol Conversation

3. Common Definitions
3.1 UAF Status Codes

4. Shared Definitions
4.1 UAFMessage Dictionary

4.1.1 Dictionary UAFMessage Members

4.2 Version interface
4.2.1 Attributes

4.3 Authenticator interface
4.3.1 Attributes
4.3.2 Authenticator Interface Constants

4.4 DiscoveryData dictionary
4.4.1 Dictionary DiscoveryData Members

4.5 ErrorCode interface
4.5.1 Constants

5. DOM API
5.1 Feature Detection
5.2 uaf Interface

5.2.1 Methods

5.3 UAFResponseCallback
5.3.1 Callback UAFResponseCallback Parameters

5.4 DiscoveryCallback
5.4.1 Callback DiscoveryCallback Parameters

5.5 ErrorCallback
5.5.1 Callback ErrorCallback Parameters

5.6 Privacy Considerations for the DOM API
5.7 Security Considerations for the DOM API

5.7.1 Insecure Mixed Content
5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

5.8 Implementation Notes for Browser/Plugin Authors

6. Android Intent API
6.1 Android-specific Definitions

6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT
6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
6.1.3 channelBindings
6.1.4 UAFIntentType enumeration

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent
6.2.1 UAFIntentType.DISCOVER
6.2.2 UAFIntentType.DISCOVER_RESULT
6.2.3 UAFIntentType.CHECK_POLICY
6.2.4 UAFIntentType.CHECK_POLICY_RESULT
6.2.5 UAFIntentType.UAF_OPERATION
6.2.6 UAFIntentType.UAF_OPERATION_RESULT
6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

6.3 Alternate Android AIDL Service UAF Client Implementation

6.4 Security Considerations for Android Implementations

7. iOS Custom URL API
7.1 iOS-specific Definitions

7.1.1 X-Callback-URL Transport
7.1.2 Secret Key Generation
7.1.3 Origin
7.1.4 channelBindings
7.1.5 UAFxType

7.2 JSON Values
7.2.1 DISCOVER
7.2.2 DISCOVER_RESULT
7.2.3 CHECK_POLICY
7.2.4 CHECK_POLICY_RESULT
7.2.5 UAF_OPERATION
7.2.6 UAF_OPERATION_RESULT
7.2.7 UAF_OPERATION_COMPLETION_STATUS

7.3 Implementation Guidelines for iOS Implementations
7.4 Security Considerations for iOS Implementations

8. Transport Binding Profile
8.1 Transport Security Requirements
8.2 TLS Security Requirements
8.3 HTTPS Transport Interoperability Profile

8.3.1 Obtaining a UAF Request message
8.3.2 Operation enum
8.3.3 GetUAFRequest dictionary

8.3.3.1 Dictionary GetUAFRequest Members

8.3.4 ReturnUAFRequest dictionary
8.3.4.1 Dictionary ReturnUAFRequest Members

8.3.5 SendUAFResponse dictionary
8.3.5.1 Dictionary SendUAFResponse Members

8.3.6 Delivering a UAF Response
8.3.7 ServerResponse Interface

8.3.7.1 Attributes

8.3.8 Token interface
8.3.8.1 Attributes

8.3.9 TokenType enum
8.3.10 Security Considerations

A. References
A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation
operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename
Safe Alphabet" [RFC4648] without padding.

DOM APIs are described using the ECMAScript [ECMA-262] bindings
for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are
to be interpreted as
described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO UAF technology replaces traditional username and
password-based authentication solutions for online services,
with a stronger and
simpler alternative. The core UAF protocol
consists of four conceptual conversations between a FIDO UAF Client
and FIDO Server:
Registration, Authentication, Transaction
Confirmation, and Deregistration. As specified in the core
protocol, these messages do not have a
defined network
transport, or describe how application software that a user
interfaces with can use UAF. This document describes the
API
surface that a client application can use to communicate
with FIDO UAF Client software, and transport patterns and security
requirements for
delivering UAF Protocol messages to a
remote server.

The reader should also be familiar with the FIDO Glossary of
Terms [FIDOGlossary] and the UAF Protocol specification [UAFProtocol].

2.1 Audience

This document is of interest to client-side application authors
that wish to utilize FIDO UAF, as well as implementers of web
browsers, browser
plugins and FIDO clients, in that it
describes the API surface they need to expose to application
authors.

2.2 Scope

This document describes:

The local ECMAScript [ECMA-262] API exposed by a FIDO
UAF-enabled web browser to client-side web applications.
The mechanisms and APIs for Android [ANDROID] applications to
discover and utilize a shared FIDO UAF Client service.
The general security requirements for applications initiating
and transporting UAF protocol exchanges.
An interoperability profile for transporting FIDO UAF messages over
HTTPS [RFC2818].

The following are out of scope for this document:

The format and details of the underlying UAF Protocol messages
APIs for, and any details of interactions between FIDO Server
software and the server-side application stack.

2.3 Architecture

The overall architecture of the UAF protocol and its various
operations is described in the FIDO UAF Protocol Specification
[UAFProtocol]. The

NOTE

Note: Certain dictionary members need to be present in order to
comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as
required. The keyword required has been
introduced by [WebIDL-ED], which is a work-in-
progress. If you
are using a WebIDL parser which implements [WebIDL], then you
may remove the keyword required from your WebIDL
and
use other means to ensure those fields are present.

NOTE

The goal of describing standard APIs and an interoperability
profile for the transport of FIDO UAF messages here is to provide an
example of how to develop a FIDO-enabled application and to
promote the ease of integrating interoperable layers from
different vendors
to build a complete FIDO UAF solution. For
any given application instance, these particular patterns may
not be ideal and are not
mandatory. Applications may use
alternate transports, bundle UAF Protocol messages with other
network data, or discover and utilize
alternative APIs as they
see fit.

following simplified architecture diagram
illustrates the interactions and actors this document is
concerned with:

Fig. 1 UAF Application API Architecture and Transport Layers

This document describes the shaded components in Fig 1.

2.3.1 Protocol Conversation

The core UAF protocol consists of five conceptual phases:

Discovery allows the relying party server to determine the
availability of FIDO capabilities at the client, including
metadata about the
available authenticators.

Registration allows the client to generate and associate new key
material with an account at the relying party server, subject to
policy set
by the server and acceptable attestation that the
authenticator and registration matches that policy.
Authentication allows a user to provide an account identifier,
proof-of-possession of previously registered key material
associated with
that identifier, and potentially other attested
data, to the relying party server.
Transaction Confirmation allows a server to request that a FIDO
client and authenticator with the appropriate capabilities
display some
information to the user, request that the user
authenticate locally to their FIDO authenticator to confirm it,
and provide proof-of-possession
of previously registered key
material and an attestation of the confirmation back to the
relying party server.
Deregistration allows a relying party
server to tell an authenticator to forget selected
locally managed key material associated with that
relying party in case such keys are no longer considered
valid by the relying party.

Discovery does not involve a protocol exchange with the
FIDO Server. However, the information available through the
discovery APIs might be
communicated back to the server in
an application-specific manner, such as by obtaining a UAF
protocol request message containing an
authenticator policy
tailored to the specific capabilities of the FIDO user
device.

Although the UAF protocol abstractly defines the FIDO
server as the initiator of requests, UAF client applications
working as described in this
document will always transport
UAF protocol messages over a client-initiated
request/response protocol such as HTTP.

The protocol flow from the point of view of the relying party
client application for registration, authentication, and
transaction confirmation is as
follows:

1. The client application either explicitly contacts the server to
obtain a UAF Protocol Request Message, or this message is
delivered along
with other client application content.

2. The client application invokes the appropriate API to pass the
UAF protocol request message asynchronously to the FIDO UAF Client,
and receives a set of callbacks.

3. The FIDO UAF Client performs any necessary interactions with the
user and authenticator(s) to complete the request and uses a
callback
to either notify the client application of an error, or to
return a UAF response message.

4. The client application delivers the UAF response message to
the server over a transport protocol such as HTTP.
5. The server optionally returns an indication of the results of
the operation and additional data such as authorization tokens
or a redirect.
6. The client application optionally uses the appropriate API to
inform the FIDO UAF Client of the results of the operation. This
allows the

FIDO UAF Client to perform “housekeeping” tasks for a
better user experience, e.g. by not attempting to use again
later a key that the
server refused to register.

7. The client application optionally processes additional data
returned to it in an application-specific manner, e.g.
processing new
authorization tokens, redirecting the user to a
new resource or interpreting an error code to determine if and
how it should retry a failed
operation.

Deregister does not involve a UAF protocol round-trip. If the
relying party server instructs the client application to
perform a deregistration, the
client application simply
delivers the UAF protocol Request message to the FIDO UAF Client
using the appropriate API. The FIDO UAF Client
does not return the
results of a deregister operation to the relying party client
application or FIDO Server.

UAF protocol Messages are JSON [ECMA-404] structures, but client
applications are discouraged from modifying them. These messages
may
contain embedded cryptographic integrity protections and any
modifications might invalidate the messages from the point of
view of the FIDO
UAF Client or Server.

3. Common Definitions

This section is normative.

These elements are shared by several APIs and layers.

3.1 UAF Status Codes

This table lists UAF protocol status codes.

Code Meaning

1200 OK. Operation completed

1202 Accepted. Message accepted, but not completed at this time. The
RP may need time to process the attestation, run risk scoring,
etc.
The server should not send an authenticationToken with a
1202 response

1400 Bad Request. The server did not understand the message

NOTE
These codes indicate the
result of the UAF operation at the FIDO Server. They do not
represent the HTTP [RFC7230] layer or other
transport layers. These
codes are intended for consumption by both the client-side web
app and FIDO UAF Client to inform application-
specific error
reporting, retry and housekeeping behavior.

1401 Unauthorized. The userid must be authenticated to perform this
operation, or this KeyID is not associated with this UserID.

1403 Forbidden. The userid is not allowed to perform this operation.
Client should not retry

1404 Not Found.

1408 Request Timeout.

1480 Unknown AAID. The server was unable to locate authoritative
metadata for the AAID.

1481

Unknown KeyID. The server was unable to locate a registration
for the given UserID and KeyID combination.

This error indicates that there is an invalid registration on the user's device. It is recommended
that FIDO UAF Client deletes the key
from local device when this error is received.

1490 Channel Binding Refused. The server refused to service the
request due to a missing or mismatched channel binding(s).

1491 Request Invalid. The server refused to service the request
because the request message nonce was unknown, expired or the
server
has previously serviced a message with the same nonce
and user ID.

1492 Unacceptable Authenticator. The authenticator is not acceptable
according to the server's policy, for example because the
capability
registry used by the server reported different
capabilities than client-side discovery.

1493 Revoked Authenticator. The authenticator is considered revoked
by the server.

1494 Unacceptable Key. The key used is unacceptable. Perhaps it is on
a list of known weak keys or uses insecure parameter choices.

1495 Unacceptable Algorithm. The server believes the authenticator to
be capable of using a stronger mutually-agreeable algorithm than
was presented in the request.

1496 Unacceptable Attestation. The attestation(s) provided were not
accepted by the server.

1497 Unacceptable Client Capabilities. The server was unable or
unwilling to use required capabilities provided supplementally
to the
authenticator by the client software.

1498 Unacceptable Content. There was a problem with the contents of
the message and the server was unwilling or unable to process
it.

1500 Internal Server Error

4. Shared Definitions

This section is normative.

4.1 UAFMessage Dictionary

The UAFMessage dictionary is a wrapper object that contains the
raw UAF protocol Message and additional JSON data that may be
used to
carry application-specific data for use by either the
client application or FIDO UAF Client.

WebIDL

dictionary UAFMessage {
 required DOMString uafProtocolMessage;
 Object additionalData;
};

4.1.1 Dictionary UAFMessage Members

uafProtocolMessage of type required DOMString
This key contains the UAF protocol Message that will be
processed by the FIDO UAF Client or Server. Modification by the
client
application may invalidate the message. A client
application may examine the contents of a message, for example,
to determine if a
message is still fresh. Details of the
structure of the message can be found in the UAF protocol
Specification [UAFProtocol].

additionalData of type Object
This key allows the FIDO Server or client application to attach
additional data for use by the FIDO UAF Client as a JSON object, or
the FIDO UAF Client or client application to attach additional data
for use by the client application.

NOTE

This section defines a number of JSON structures, specified with WebIDL [WebIDL-ED]. These structures are shared among APIs for
multiple target platforms.

4.2 Version interface

Describes a version of the UAF protocol or FIDO UAF Client for
compatibility checking.

WebIDL

interface Version {
 readonly attribute unsigned short major;
 readonly attribute unsigned short minor;
};

4.2.1 Attributes

major of type unsigned short, readonly
Major version number.

minor of type unsigned short, readonly
Minor version number.

4.3 Authenticator interface

Used by several phases of UAF, the Authenticator interface
exposes a subset of both verified metadata [FIDOMetadataStatement] and
transient information about the state of an available
authenticator.

WebIDL

interface Authenticator {
 readonly attribute DOMString title;
 readonly attribute AAID aaid;
 readonly attribute DOMString description;
 readonly attribute Version[] supportedUAFVersions;
 readonly attribute DOMString assertionScheme;
 readonly attribute unsigned short authenticationAlgorithm;
 readonly attribute unsigned short[] attestationTypes;
 readonly attribute unsigned long userVerification;
 readonly attribute unsigned short keyProtection;
 readonly attribute unsigned short matcherProtection;
 readonly attribute unsigned long attachmentHint;
 readonly attribute boolean isSecondFactorOnly;
 readonly attribute unsigned short tcDisplay;
 readonly attribute DOMString tcDisplayContentType;
 readonly attribute DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 readonly attribute DOMString icon;
 readonly attribute DOMString[] supportedExtensionIDs;
};

4.3.1 Attributes

title of type DOMString, readonly
A short, user-friendly name for the authenticator.

aaid of type AAID, readonly
The Authenticator Attestation ID, which identifies the type and
batch of the authenticator. See [UAFProtocol] for the definition of the
AAID structure.

description of type DOMString, readonly
A user-friendly description string for the authenticator.

NOTE

This text must be localized for current locale.

If the ASM doesn't return a title in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must generate a title based
on the other fields in AuthenticatorInfo, because title must not be empty (see section 1. Notation).

NOTE

This text must be localized for current locale.

It is intended to be displayed to the user. It might deviate from the description specified in the authenticator's metadata

supportedUAFVersions of type array of Version, readonly
Indicates the UAF protocol Versions supported by the
authenticator.

assertionScheme of type DOMString, readonly

The assertion scheme the authenticator uses for attested data and
signatures.

Assertion scheme identifiers are defined in the UAF Registry of Predefined
Values. [UAFRegistry]

authenticationAlgorithm of type unsigned short, readonly
Supported Authentication Algorithm. The value must be related to
constants with prefix ALG_SIGN.

attestationTypes of type array of unsigned short, readonly
A list of supported attestation types. The values are defined in [UAFRegistry] by the
constants with the prefix TAG_ATTESTATION.

userVerification of type unsigned long, readonly
A set of bit flags indicating the user verification methods
supported by the authenticator. The algorithm for combining the flags is
defined in [UAFProtocol], section 3.1.12.1. The values are defined by the
constants with the prefix USER_VERIFY.

keyProtection of type unsigned short, readonly
A set of bit flags indicating the key protection used by the
authenticator. The values are defined by the constants with
the prefix
KEY_PROTECTION.

matcherProtection of type unsigned short, readonly
A set of bit flags indicating the matcher protection used by the
authenticator. The values are defined by the constants with
the prefix
MATCHER_PROTECTION.

attachmentHint of type unsigned long, readonly
A set of bit flags indicating how the authenticator is currently
connected to the FIDO User Device. The values are defined by the
constants with the prefix ATTACHMENT_HINT.

These values are not
reflected in authenticator metadata and cannot be relied
upon by the relying party, although some models of
authenticator may provide attested measurements with
similar semantics as part of UAF protocol messages.

isSecondFactorOnly of type boolean, readonly
Indicates whether the authenticator can only be used as a second-factor.

tcDisplay of type unsigned short, readonly
A set of bit flags indicating the availability and type of
transaction confirmation display. The values are defined by the constants with
the prefix TRANSACTION_CONFIRMATION_DISPLAY.

This value must be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString, readonly
The MIME content-type [RFC2045] supported by the transaction confirmation display, such as
text/plain or image/png.

This value must be non-empty if transaction confirmation is supported (tcDisplay is non-zero).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor, readonly
The set of PNG characteristics currently supported by the transaction confirmation display (if any).

statement [FIDOMetadataStatement].

If the ASM doesn't return a description in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must generate a
meaningful description to the calling App based on the other fields in AuthenticatorInfo, because description must not be
empty (see section 1. Notation).

NOTE

Because the connection state and topology of an
authenticator may be transient, these values are only
hints that can be used
in applying server-supplied
policy to guide the user experience. This can be used
to, for example, prefer a device that is
connected and
ready for authenticating or confirming a low-value
transaction, rather than one that is more secure but
requires
more user effort.

NOTE

See [FIDOMetadataStatement] for additional information on the format of
this field and the definition of the
DisplayPNGCharacteristicsDescriptor structure.

This list must be non-empty if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero and
tcDisplayContentType is image/png.

icon of type DOMString, readonly
A PNG [PNG] icon for the authenticator, encoded as a data: url
[RFC2397].

supportedExtensionIDs of type array of DOMString, readonly
A list of supported UAF protocol extension identifiers. These may be vendor-specific.

4.3.2 Authenticator Interface Constants

A number of constants are defined for use with the bit flag
fields userVerification, keyProtection,
attachmentHint, and tcDisplay. To avoid
duplication and inconsistencies, these are defined in the FIDO Registry of Predefined Values [FIDORegistry].

4.4 DiscoveryData dictionary

WebIDL

dictionary DiscoveryData {
 required Version[] supportedUAFVersions;
 required DOMString clientVendor;
 required Version clientVersion;
 required Authenticator[] availableAuthenticators;
};

4.4.1 Dictionary DiscoveryData Members

supportedUAFVersions of type array of required Version
A list of the FIDO UAF protocol versions supported by the client, most-preferred first.

clientVendor of type required DOMString
The vendor of the FIDO UAF Client.

clientVersion of type required Version
The version of the FIDO UAF Client. This is a vendor-specific version for the client
software, not a UAF version.

availableAuthenticators of type array of required Authenticator
An array containing Authenticator dictionaries describing the available UAF authenticators.
The order is not significant. The list may be
empty.

4.5 ErrorCode interface

WebIDL

interface ErrorCode {
 const short NO_ERROR = 0x0;
 const short WAIT_USER_ACTION = 0x01;
 const short INSECURE_TRANSPORT = 0x02;
 const short USER_CANCELLED = 0x03;
 const short UNSUPPORTED_VERSION = 0x04;
 const short NO_SUITABLE_AUTHENTICATOR = 0x05;
 const short PROTOCOL_ERROR = 0x06;
 const short UNTRUSTED_FACET_ID = 0x07;
 const short KEY_DISAPPEARED_PERMANENTLY = 0x09;
 const short AUTHENTICATOR_ACCESS_DENIED = 0x0c;
 const short INVALID_TRANSACTION_CONTENT = 0x0d;
 const short USER_NOT_RESPONSIVE = 0x0e;
 const short INSUFFICIENT_AUTHENTICATOR_RESOURCES = 0x0f;
 const short USER_LOCKOUT = 0x10;
 const short USER_NOT_ENROLLED = 0x11;
 const short SYSTEM_INTERRUPTED = 0x12;
 const short UNKNOWN = 0xFF;
};

NOTE

If the ASM doesn't return an icon in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must set a default icon,
because icon must not be empty (see section 1. Notation).

4.5.1 Constants

NO_ERROR of type short
The operation completed with no error condition encountered.
Upon receipt of this code, an application should no longer
expect an
associated UAFResponseCallback to fire.

WAIT_USER_ACTION of type short
Waiting on user action to proceed. For example, selecting an
authenticator in the FIDO client user interface, performing
user
verification, or completing an enrollment step with an
authenticator.

INSECURE_TRANSPORT of type short
window.location.protocol is not "https" or the DOM contains
insecure mixed content.

USER_CANCELLED of type short
The user declined any necessary part of the interaction to
complete the registration.

UNSUPPORTED_VERSION of type short
The UAFMessage does not specify a protocol version supported by
this FIDO UAF Client.

NO_SUITABLE_AUTHENTICATOR of type short
No authenticator matching the authenticator policy specified in
the UAFMessage is available to
service the request, or the user declined
to consent to the
use of a suitable authenticator.

PROTOCOL_ERROR of type short
A violation of the UAF protocol occurred. The interaction may have
timed out; the origin associated with the message may not match
the origin of the calling DOM context, or the protocol message
may be malformed or tampered with.

UNTRUSTED_FACET_ID of type short
The client declined to process the operation because the
caller's calculated facet identifier was not found in the
trusted list for the
application identifier specified in the
request message.

KEY_DISAPPEARED_PERMANENTLY of type short
The UAuth key disappeared from the authenticator and cannot be restored.

AUTHENTICATOR_ACCESS_DENIED of type short
The authenticator denied access to the resulting request.

INVALID_TRANSACTION_CONTENT of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

USER_NOT_RESPONSIVE of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

INSUFFICIENT_AUTHENTICATOR_RESOURCES of type short
Insufficient resources in the authenticator to perform the requested task.

USER_LOCKOUT of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an action to change that.
For
example, an authenticator could allow the user to enter an alternative password
to re-enable the use of fingerprints after too many
failed finger verification attempts.
This error will be reported if such method either doesn't exist or the ASM / authenticator
cannot
automatically trigger it.

USER_NOT_ENROLLED of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot automatically trigger user
enrollment.

SYSTEM_INTERRUPTED of type short
The system interrupted the operation. Retry might make sense.

UNKNOWN of type short

NOTE

The RP App might want to re-register the authenticator in this case.

NOTE

The transaction content format requirements are specified in the authenticator's
metadata statement.

An error condition not described by the above-listed codes.

5. DOM API

This section is normative.

This section describes the API details exposed by a web browser
or browser plugin to a client-side web application executing in
a Document
[DOM] context.

5.1 Feature Detection

FIDO's UAF DOM APIs are rooted in a new fido object, a property
of window.navigator code; the existence and properties of which
may be
used for feature detection.

5.2 uaf Interface

The window.navigator.fido.uaf interface is the primary means of
interacting with the FIDO UAF Client. All operations are asynchronous.

WebIDL

interface uaf {
 void discover (DiscoveryCallback completionCallback, ErrorCallback errorCallback);
 void checkPolicy (UAFMessage message, ErrorCallback cb);
 void processUAFOperation (UAFMessage message, UAFResponseCallback completionCallback, ErrorCallback errorCallback);
 void notifyUAFResult (int responseCode, UAFMessage uafResponse);
};

5.2.1 Methods

discover

Discover if the user's client software and devices support
UAF and if authenticator capabilities are available that it may
be willing to
accept for authentication.

Parameter Type Nullable Optional Description
completionCallback DiscoveryCallback The callback that receives DiscoveryData from
the FIDO UAF

Client.
errorCallback ErrorCallback A callback function to receive error and progress events.

Return type: void

checkPolicy

Ask the browser or browser plugin if it would be able to process the supplied
request message without prompting the user.

Unlike other operations using an ErrorCallback,
this operation must always trigger the callback and
return NO_ERROR if
it believes that
the message can be processed and a
suitable authenticator matching the embedded policy is
available, or the appropriateErrorCode
value otherwise.

Parameter Type Nullable Optional Description
message UAFMessage A UAFMessage containing the policy and operation to be
tested.
cb ErrorCallback The callback function which receives the status of the operation.

Return type: void

EXAMPLE 1
<script>

if(!!window.navigator.fido.uaf) { var useUAF = true; }

</script>

NOTE

Because this call should not prompt
the user, it should not incur a potentially disrupting
context-switch even if the FIDO UAF
Client is implemented
out-of-process.

processUAFOperation
Invokes the FIDO UAF Client, transferring control to prompt the user
as necessary to complete the operation, and returns to the
callback a message in one of the supported protocol versions
indicated by the UAFMessage.

Parameter Type Nullable Optional Description
message UAFMessage The UAFMessage to be used by the FIDO client software.
completionCallback UAFResponseCallback The callback that receives the client response UAFMessage from

the FIDO UAF Client, to be delivered to the relying party server.
errorCallback ErrorCallback A callback function to receive error and progress events from
the

FIDO UAF Client.

Return type: void

notifyUAFResult

Used to indicate the status code resulting from a FIDO UAF message delivered to the
remote server. Applications must make this call
when they
receive a UAF status code from a server. This allows the FIDO UAF Client to
perform housekeeping for a better user
experience, for example
not attempting to use keys that a server refused to register.

Parameter Type Nullable Optional Description
responseCode int The uafResult field of a ServerResponse.
uafResponse UAFMessage The UAFMessage to which this responseCode applies.

Return type: void

5.3 UAFResponseCallback

A UAFResponseCallback is used upon successful completion of an
asynchronous operation by the FIDO UAF Client to return the
protocol
response message to the client application for
transport to the server.

WebIDL

callback UAFResponseCallback = void (UAFMessage uafResponse);

5.3.1 Callback UAFResponseCallback Parameters

uafResponse of type UAFMessage
The message and any additional data representing the FIDO
UAF Client's response to the server's request message.

5.4 DiscoveryCallback

A DiscoveryCallback is used upon successful completion of an
asynchronous discover operation by the FIDO UAF Client to return the
DiscoveryData to the client application.

WebIDL

callback DiscoveryCallback = void (DiscoveryData data);

5.4.1 Callback DiscoveryCallback Parameters

data of type DiscoveryData
Describes the current state of FIDO UAF client software and authenticators available to the application.

5.5 ErrorCallback

NOTE

If, and how, a status code is delivered by the server, is
application and transport specific. A non-normative example can
be
found below in the HTTPS Transport Interoperability Profile.

NOTE

This callback is also called in the case of deregistration completion, even though the response object is empty then.

An ErrorCallback is used to return progress and error codes from
asynchronous operations performed by the FIDO UAF Client.

WebIDL

callback ErrorCallback = void (ErrorCode code);

5.5.1 Callback ErrorCallback Parameters

code of type ErrorCode
A value from the ErrorCode interface indicating the result of the operation.

For certain operations, an ErrorCallback may be called multiple
times, for example with the WAIT_USER_ACTION code.

5.6 Privacy Considerations for the DOM API

This section is non-normative.

Differences in the FIDO capabilities on a user device may (among
many other characteristics) allow a server to "fingerprint" a
remote client and
attempt to persistently identify it, even in
the absence of any explicit session state maintenance
mechanism. Although it may contribute some
amount of signal to
servers attempting to fingerprint clients, the attributes
exposed by the Discovery API are designed to have a large
anonymity
set size and should present little or no
qualitatively new privacy risk. Nonetheless, an unusual
configuration of FIDO Authenticators may be
sufficient to
uniquely identify a user.

It is recommended that user agents
expose the Discovery API to all applications without requiring
explicit user consent by default, but user
agents or FIDO
Client implementers should provide users with the means to
opt-out of discovery if they wish to do so for privacy reasons.

5.7 Security Considerations for the DOM API

This section is non-normative.

5.7.1 Insecure Mixed Content

When FIDO UAF APIs are called and operations are performed in a
Document context in a web user agent, such a context must not
contain
insecure mixed content. The exact definition insecure
mixed content is specific to each user agent, but generally
includes any script, plugins
and other "active" content,
forming part of or with access to the DOM, that was not itself
loaded over HTTPS.

The UAF APIs must immediately trigger the ErrorCallback with the
INSECURE_TRANSPORT code and cease any further processing if any
APIs
defined in this document are invoked by a Document context
that was not loaded over a secure transport and/or which
contains insecure mixed
content.

5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

When retrieving or transporting UAF protocol messages over HTTP,
it is important to maintain consistency among the web origin of
the
document context and the origin embedded in the UAF
protocol message. Mismatches may cause the protocol to fail or
enable attacks against
the protocol. Therefore:

FIDO UAF messages should not be transported using methods that
opt-out of the Same Origin Policy [SOP], for example, using
<script
src=”url”> to non-same-origin
URLs or by setting the Access-Control-Allow-Origin header
at the server.

When transporting FIDO UAF messages using XMLHttpRequest
[XHR] the client should not follow redirects that are to
URLs with a different
origin than the requesting document.

FIDO UAF messages should not be exposed in HTTP responses where the
entire response body parses as valid ECMAScript. Resources
exposed in this manner may be subject to unauthorized
interactions by hostile applications hosted at untrusted
origins through cross-origin
embedding using <script
src=”url”>.

Web applications should not share FIDO UAF messages
across origins through channels such as postMessage() [webmessaging].

5.8 Implementation Notes for Browser/Plugin Authors

This section is non-normative.

Web applications utilizing UAF depend on services from the web
browser as a trusted platform. The APIs for web applications do
not provide a
means to assert an origin as an application
identity for the purposes of FIDO operations as this will be
provided to the FIDO UAF Client by the
browser based on its
privileged understanding of the actual origin context.

The browser must enforce that the web origin communicated to the
FIDO UAF Client as the application identity is accurate

The browser must also enforce that resource instances containing
insecure mixed-content cannot utilize the UAF DOM APIs.

6. Android Intent API

This section is normative.

This section describes how an Android [ANDROID] client
application can locate and communicate with a conforming FIDO
Client installation
operating on the host device.

6.1 Android-specific Definitions

6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT

FIDO UAF Clients running on Android versions prior to Android 5 must declare
the org.fidoalliance.uaf.permissions.FIDO_CLIENT
permission
and they also must declare the related "uses-permission". See the below example of this permission expressed in an Android app manifest file
<permission/> and <uses-permission/> element [AndroidAppManifest].

FIDO UAF Clients running on Android version 5 or later must not declare this permission and they also must not declare the related "uses-
permission".

6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER

Android applications requesting services from the FIDO UAF
Client can do so under their own identity, or they can act as
the user's agent by
explicitly declaring an RFC6454
[RFC6454] serialization of the remote server's origin when
invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity
must not set an explicit origin. Omitting an explicit origin
will cause the FIDO UAF
Client to determine the caller's identity as
android:apk-key-hash:<hash-of-public-key>. The FIDO UAF Client will
then compare this with the list
of authorized application facets
for the target AppID and proceed if it is listed as trusted.

If the application is explicitly intended to operate as the
user's agent in the context of an arbitrary number of remote
applications (as when
implementing a full web browser) it may
set its origin to the RFC6454 [RFC6454] Unicode
serialization of the remote application's Origin. The
application must satisfy the necessary conditions described in
Transport Security Requirements
for authenticating the remote server before

NOTE

As with web applications, a variety of integration patterns are
possible on the Android platform. The API described here allows
an app to
communicate with a shared FIDO UAF Client on the user device
in a loosely-coupled fashion using Android Intents.

EXAMPLE 2
<permission
 android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"
 android:label="Act as a FIDO Client."
 android:description="This application acts as a FIDO Client. It may
 access authentication devices available on the system, create and
 delete FIDO registrations on behalf of other applications."
 android:protectionLevel="dangerous"
/>
<uses-permission android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"/>

NOTE

Since FIDO Clients perform security relevant tasks (e.g. verifying the AppID/FacetID relation and asking for user consent), users
should carefully select the FIDO Clients they use. Requiring apps acting as FIDO Clients to declare and use this permission
allows
them to be identified as such to users.
There are not any FIDO Client resources needing "protection" based upon the FIDO_CLIENT permission. The reason for having
FIDO Client declare the FIDO_CLIENT permission is solely that users should be able to
carefully decide which FIDO Clients to
install.
Android version 5 changed the way it handles the case where multiple apps declare the same permission [Android5Changes]; it
blocks
the installation of all subsequent apps declaring that permission.
The best way to flag the fact that an app may act as a FIDO Client needs to be determined for Android version 5.

NOTE

See the UAF Protocol Specification [UAFProtocol] for more
information on application and facet identifiers.

setting the origin.

Use of the origin parameter requires the application to declare
the org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
permission, and the
FIDO UAF Client must verify that the calling
application has this permission before processing the
operation.

6.1.3 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for
supplying any available channel binding information to the FIDO
Client, but an
Android application, as the direct owner of the
transport channel, must provide this information itself.

The channelBindings data structure is:

Map<String,String>

with the keys as defined for the ChannelBinding structure in the UAF
Protocol Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that
the channel over which UAF protocol messages are transported is
the same
channel the legitimate client is using and that
messages have not been forwarded through a malicious party.

UAF defines support for the tls-unique and
tls-server-end-point bindings from [RFC5929], as well as
server certificate and ChannelID
[ChannelID] bindings. The
client should supply all channel binding information available
to it.

Missing or invalid channel binding information may cause a relying
party server to reject a transaction.

6.1.4 UAFIntentType enumeration

This enumeration describes the type of operation for the intent implementing the Android API.

If the user selected to make different FIDO
UAF Clients the default for different intents representing
different phases, it could produce
inconsistent results or
fail to function at all.

If the application workflow requires
multiple calls to the client (and it usually does)
the application should read the componentName from the intent
extras it receives
from startActivityForResult()
and pass it to setComponent() for subsequent intents to be sure they are explicitly resolved to
the same FIDO UAF Client.

WebIDL

enum UAFIntentType {
 "DISCOVER",
 "DISCOVER_RESULT",
 "CHECK_POLICY",
 "CHECK_POLICY_RESULT",
 "UAF_OPERATION",
 "UAF_OPERATION_RESULT",
 "UAF_OPERATION_COMPLETION_STATUS"
};

Enumeration description
DISCOVER Discovery
DISCOVER_RESULT Discovery results
CHECK_POLICY Perform a no-op check if a message could be processed.
CHECK_POLICY_RESULT Check Policy results.
UAF_OPERATION Process a Registration, Authentication, Transaction Confirmation or Deregistration message.

EXAMPLE 3
<permission
 android:name="org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER"
 android:label="Act as a browser for FIDO registrations."
 android:description="This application may act as a web browser,
 creating new and accessing existing FIDO registrations for any domain."
 android:protectionLevel="dangerous"
/>

NOTE

UAF uses only a single intent to simplify
behavior in the situation even where multiple FIDO clients may be
installed. In such a case, the
user will be prompted which of
the installed FIDO UAF clients should be used to handle an
implicit intent.

UAF_OPERATION_RESULT UAF Operation results.

UAF_OPERATION_COMPLETION_STATUS
Inform the FIDO UAF Client of the completion status of a Registration, Authentication, Transaction
Confirmation or Deregistration message.

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent

All interactions between a FIDO UAF Client and an application
on Android takes place via a single Android intent:

org.fidoalliance.intent.FIDO_OPERATION

The specifics of the operation are carried by the MIME media type and various extra data included with the intent.

The operations described in this document are of MIME media type application/fido.uaf_client+json and this must be set as the type
attribute of any intent.

Extra Type Description

UAFIntentType String One of the UAFIntentType enumeration values describing the intent.

discoveryData String DiscoveryData JSON dictionary.

componentName String The component name of the responding FIDO UAF Client. It must be serialized using
ComponentName.flattenString()

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFIntentType.

origin String An RFC6454 Web Origin [RFC6454] string for the request, if the caller has the
org.fidoalliance.permissions.ACT_AS_WEB_BROWSER permission.

channelBindings String The JSON dictionary of channel bindings for the
operation.

responseCode short The uafResult field of a ServerResponse.

The following table shows what intent extras are expected, depending on the value of the UAFIntentType extra:

UAFIntentType value discoveryData componentName errorCode message origin channelBindings responseCode

"DISCOVER"

"DISCOVER_RESULT" optional required required

"CHECK_POLICY" required optional

"CHECK_POLICY_RESULT" required required

"UAF_OPERATION" required optional required

"UAF_OPERATION_RESULT" required required optional

"UAF_OPERATION_COMPLETION_STATUS" required required

6.2.1 UAFIntentType.DISCOVER

This Android intent invokes the FIDO UAF Client to discover the available authenticators and capabilities.
The FIDO UAF Client generally will
not show a UI associated with the handling of this intent, but
immediately return the JSON structure. The calling
application cannot depend on
this however, as the FIDO UAF Client may show a UI for privacy purposes,
allowing the user to choose whether and which authenticators to
disclose to the calling application.

This intent must be invoked with startActivityForResult().

NOTE

Client applications can discover if a FIDO UAF Client (or several) is available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags)
with this intent to see if any activities are available.

http://developer.android.com/reference/android/content/ComponentName.html#flattenToString()
http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent,%20int)

6.2.2 UAFIntentType.DISCOVER_RESULT

An intent with this type is returned by the FIDO UAF Client as an argument to onActivityResult() in response to receiving an intent of type
DISCOVER.

If the resultCode passed to onActivityResult() is RESULT_OK,
and the intent extra errorCode is NO_ERROR,
this intent has an extra, discoveryData,
containing a String representation of a DiscoveryData JSON dictionary with the available authenticators and capabilities.

6.2.3 UAFIntentType.CHECK_POLICY

This intent invokes the FIDO UAF Client to discover if it would be able to process the supplied
message without prompting the user. The action
handling this intent should not show a UI to
the user.

This intent requires the following extras:

message, containing a String representation
of a UAFMessage representing the request message to test.
origin, an optional extra that allows a caller with the
org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply an
RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.

This intent must be invoked with startActivityForResult().

6.2.4 UAFIntentType.CHECK_POLICY_RESULT

This Android intent is returned by the FIDO UAF Client as an argument to onActivityResult() in response to receiving a CHECK_POLICY intent.

In addition to the resultCode passed to onActivityResult(),
this intent has an extra, errorCode, containing an ErrorCode value
indicating the
specific error condition or NO_ERROR if the FIDO UAF Client could
process the message.

6.2.5 UAFIntentType.UAF_OPERATION

This Android intent invokes the FIDO UAF Client to process the supplied request
message and return a response message ready for delivery to
the FIDO UAF Server.

The sender should assume that the FIDO UAF Client will display
a user interface allowing the user to handle this intent,
for example, prompting
the user to complete their verification
ceremony.

This intent requires the following extras:

message, containing a String representation
of a UAFMessage representing the request message to process.
channelBindings, containing a String representation
of a JSON dictionary as defined by the ChannelBinding structure in the FIDO UAF
Protocol Specification [UAFProtocol].
origin, an optional parameter that allows a caller with the
org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply
an RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.

This intent must be invoked with startActivityForResult().

6.2.6 UAFIntentType.UAF_OPERATION_RESULT

This intent is returned by the FIDO UAF Client as an argument to onActivityResult(), in response to receiving a UAF_OPERATION intent.

If the resultCode passed to onActivityResult() is RESULT_CANCELLED,
this intent will have an extra, errorCode parameter, containing an
ErrorCode value
indicating the specific error condition.

If the resultCode passed to onActivityResult() is RESULT_OK,
and the errorCode is NO_ERROR,
this intent has a message, containing a String
representation of a UAFMessage, being the UAF protocol response message
to be delivered to the FIDO Server.

6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

This intent must be delivered to the FIDO UAF Client to
indicate the processing status of a FIDO UAF message delivered
to the remote server.
This is especially important as a new
registration may be considered by the client to be in a
pending state until it is communicated that the
server
accepted it.

6.3 Alternate Android AIDL Service UAF Client Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism to Android Intents. While
Android Intents work at the UI layer, Android AIDL services are performed at a lower level. This can ease integration with relying party apps,
since UAF requests can be fulfilled without interfering with existing relying party app UI and application lifecycle behavior.

The UAF Android AIDL service needs to be defined in the UAF client manifest. This is done using the <service> tag for an Android AIDL service
instead of the <activity> tag in Android Intents. Just as with Android intents, the manifest definition for the AIDL service uses an intent filter
(note org.fidoalliance.aidl.FIDO_OPERATION versus org.fidoalliance.intent.FIDO_OPERATION) to identify itself as a FIDO UAF client to the
relying party app:

Once the relying party app chooses a UAF client from the list discovered by PackageManager.queryIntentServices(), the relying party app and
the FIDO UAF client share the following AIDL interface to service UAF requests:

For consistency, the Intents for the Android AIDL service are the same as defined in the Android Intent specification in the UAF standard. In
process(), the uafRequest parameter is the Intent that would be passed to startActivityForResult(). The uafResponseListener parameter is a
listener interface that receives the result. The following AIDL defines this interface:

In the listener, the uafResponse parameter is the Intent that would be passed to onActivityResult.

6.4 Security Considerations for Android Implementations

This section is non-normative.

Android applications may choose to implement the
user-interactive portion of FIDO in at least two ways:

by authoring an Android Activity using Android-native user interface
components, or
with an HTML-based experience by loading an
Android WebView and injecting the UAF DOM APIs with
addJavaScriptInterface().

An application that chooses to inject the UAF interface into a
WebView must follow all appropriate security considerations
that apply to usage of
the DOM APIs, and those that apply to
user agent implementers.

In particular, the content of a WebView
into which an API will be injected must be loaded only from
trusted local content or over a secure
channel as specified in
Transport Security Requirements
and must not contain insecure mixed-content.

Applications should not declare the ACT_AS_WEB_BROWSER permission
unless they need to act as the user's agent for an un-predetermined
number
of third party applications. Where an Android application
has an explicit relationship with a relying party application(s),
the preferred method of
access control is for those applications
to list the Android application's identity as a trusted facet. See the UAF Protocol Specification
[UAFProtocol] for more information on application and facet identifiers.

To protect against a malicious application registering itself
as a FIDO UAF Client, relying party applications can obtain
the identity of the
responding application, and utilize it in
risk management decisions around the authentication or
transaction events.

For example, a relying party might
maintain a list of application identities known to belong to
malware and refuse to accept operations
completed with such
clients, or a list of application identities of known-good
clients that receive preferred risk-scoring.

EXAMPLE 4
<service android:name="foo" >
<intent-filter>
<action android:name="org.fidoalliance.aidl.FIDO_OPERATION" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="application/fido.uaf_client+json" />
</intent-filter>
</service>

EXAMPLE 5
package org.fidoalliance.aidl

oneway interface IUAFOperation
{	
	 void process(in Intent uafRequest, in IUAFResponseListener uafResponseListener);
}

NOTE

Android AIDL services use Binder.getCallingUid() instead of Activity.getCallingActivity() with Android Intents to identify the caller
and obtain FacetID information.

EXAMPLE 6
package org.fidoalliance.aidl

interface IUAFResponseListener
{
	 void onResult(in Intent uafResponse);
}

Relying party applications running on Android versions prior to Android 5 must make sure that a FIDO UAF Client has the "uses-permission" for
org.fidoalliance.uaf.permissions.FIDO_CLIENT. Relying party applications running on Android 5 should not implement this check.

Relying party applications which use the AIDL service implementation of the UAF Client Intent API must use an explicit intent to bind to the AIDL
service. Failing to do so may result in binding to an unexpected and possibly malicious service, because intent filter resolution depends on
application installation order and intent filter priority. Android 5.0 and later will throw a SecurityException if an implicit intent is used, but earlier
versions do not enforce this behavior.

7. iOS Custom URL API

This section is normative.

This section describes how an iOS relying party
application can locate and communicate with a conforming FIDO UAF
Client installed on the
host device.

7.1 iOS-specific Definitions

7.1.1 X-Callback-URL Transport

When the relying party application communicates with the FIDO UAF Client, it sends a URL with the
standard x-callback-url format (see x-
callback-url.com):

NOTE

Relying party applications should implement the check on Android prior to 5 by using the package manager to verify that the FIDO Client
indeed declared the org.fidoalliance.uaf.permissions.FIDO_CLIENT permission (see example below). Relying party applications should

not use a "uses-permission" for FIDO_CLIENT.

EXAMPLE 7
boolean checkFIDOClientPermission(String packageName)
 throws NameNotFoundException {
 for (String requestedPermission :
 getPackageManager().getPackageInfo(packageName,
 PackageManager.GET_PERMISSIONS).requestedPermissions) {
 if (requestedPermission.matches(
 "org.fidoalliance.uaf.permissions.FIDO_CLIENT"))
 return true;
 }
 return false;
}

NOTE

Because of sandboxing and no true multitasking support, the iOS operating system offers very limited ways to do interprocess
communication (IPC).

Any IPC solution for a FIDO UAF Client must be able to:

1. Identify the calling app in order to provide FacetID approval.
2. Allow transition to another app without user intervention

Currently the only IPC method on iOS that satisfies both of these requirements is custom URL handlers.

Custom URL handlers use the iOS operating system to handle URL requests from the sender, launch the receiving app, and then pass
the request to the receiving app for processing. By enabling custom URL handlers for two different applications, it is possible to achieve
bidirectional IPC between them--one custom URL handler to send data from app A to app B and another custom URL handler to send
data from app B to app A.

Because iOS has no true multitasking, there must be an app transition to process each request and response. Too many app transitions
can negatively affect the user experience, so relying party applications must carefully choose when it is necessary to query the FIDO UAF
Client.

EXAMPLE 8
FidoUAFClient1://x-callback-url/[UAFxRequestType]?x-success=[RelyingPartyURL]://x-callback-url/
 [UAFxResponseType]&
 key=[SecretKey]&
 state=[STATE]&

http://x-callback-url.com/
http://x-callback-url.com/

FidoUAFClient1 is the iOS custom URL scheme used by FIDO UAF Clients. As specified
in the x-callback-url standard, version
information for the transport layer is encoded in
the URL scheme itself (in this case, FidoUAFClient1). This is so other applications can
check
for support for the 1.0 version by using the canOpenURL call.
[UAFxRequestType] is the type that should be used for request operations,
which are described later in this document.
[RelyingPartyURL] is the URL that the relying party app has registered in order
to receive the response. According to the x-callback-url
standard, this is defined using the x-success parameter.
[UAFxResponseType] is the type that should be used for response operations,
which are described later in this document.
[SecretKey] is a base64url-encoded, without padding, random key generated for each request by the calling application.

The response from the FIDO UAF Client will be encrypted with this key
in order to prevent rogue applications from obtaining information
by spoofing the return URL.

[STATE] is data that can be used to match the request with the response.
Finally [Base64URLEncodedJSON] contains the message to be sent to the FIDO UAF Client.

Items are stored in JSON format and then base64url-encoded without padding.

For FIDO UAF Clients, the custom URL scheme handler entrypoint is the openURL() function:

Objective-C

SWIFT

Here, the URL above is received via the url parameter. For security considerations,
the sourceApplication parameter contains the iOS bundle
ID of the relying party application.
This bundle ID must be used to verify the application FacetID.

Conversely, when the FIDO UAF Client responds to the request, it sends the following URL back
in standard x-callback-url format:

The parameters in the response are similar to those of the request, except that the
[Base64URLEncodedEncryptedJSON] parameter is encrypted
with the public key before
being base64url-encoded without padding. [STATE] is the same STATE as was sent in the request--it is echoed
back to
the sender to verify the matched response.

In the relying party application's openURL() handler, the url parameter will be the URL
listed above and the sourceApplication parameter
will be
the iOS bundle ID for the FIDO client application.

7.1.2 Secret Key Generation

A new secret encryption key must be generated by the calling application every time it sends a request to FIDO UAF Client.
The FIDO UAF
Client must then use this key to encrypt the response message before responding to the caller.

JSON Web Encryption (JWE),
JSON Serialization (JWE Section 7.2)
format must be used to represent the encrypted response message.

The encryption algorithm is that specified in "A128CBC-HS256"
where the JWE "Key Management Mode" employed is "Direct Encryption" and
the JWE "Content Encryption Key (CEK)" is the secret key generated by the calling application and passed to the FIDO UAF Client in the key
parameter of the request.

 json=[Base64URLEncodedJSON]

EXAMPLE 9
(BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(NSString *)sourceApplication
annotation:(id)annotation

EXAMPLE 10
func application(_ application: UIApplication, open url: URL, sourceApplication: String?, annotation: Any) -> Bool {
 ...
}

EXAMPLE 11
[RelyingPartyURL]://x-callback-url/
 [UAFxResponseType]?
 state=[STATE]&
 json=[Base64URLEncodedJWE]

EXAMPLE 12

http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#section-7.2
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#appendix-B

7.1.3 Origin

iOS applications requesting services from the FIDO
Client can do so under their
own identity, or they can act as the
user's agent by explicitly
declaring an
RFC6454 [RFC6454] serialization of the
remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity
must not set an explicit origin. Omitting an explicit origin
will cause the FIDO UAF
Client to determine the caller's identity as
"ios:bundle-id". The FIDO UAF Client will
then compare this with the list of authorized application
facets
for the target AppID and proceed if it is listed as trusted.

See the UAF Protocol Specification [UAFProtocol] for more
information on application and facet identifiers.

If the application is explicitly intended to operate as the
user's agent in the context of an arbitrary number of remote
applications (as when
implementing a full web browser)
it may set origin to the
RFC6454 [RFC6454] Unicode serialization of the remote
application's Origin. The
application must satisfy the
necessary conditions described in
Transport Security Requirements
for authenticating the remote server before
setting origin.

7.1.4 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for
supplying any available channel binding information to the FIDO
Client, but an
iOS application, as the direct owner of the
transport channel, must provide this information itself.

The channelBindings data structure is Map<String,String> with
the keys as defined for the ChannelBinding structure in the FIDO UAF
Protocol
Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that
the channel over which UAF protocol messages are transported is
the same
channel the legitimate client is using and that
messages have not been forwarded through a malicious party. UAF
defines support for the tls-
unique and tls-server-end-point
bindings from [RFC5929], as well as server certificate and
ChannelID [ChannelID] bindings. The client should
supply all
channel binding information available to it.

Missing or invalid channel binding information may cause a relying
party server to reject a transaction.

7.1.5 UAFxType

This value describes the type of operation for the x-callback-url operations implementing the iOS API.

WebIDL

enum UAFxType {
 "DISCOVER",
 "DISCOVER_RESULT",
 "CHECK_POLICY",
 "CHECK_POLICY_RESULT",
 "UAF_OPERATION",
 "UAF_OPERATION_RESULT",
 "UAF_OPERATION_COMPLETION_STATUS"
};

Enumeration description
DISCOVER Discovery
DISCOVER_RESULT Discovery results
CHECK_POLICY Perform a no-op check if a message could be processed.
CHECK_POLICY_RESULT Check Policy results.
UAF_OPERATION The UAF message operation type (for example Registration).
UAF_OPERATION_RESULT UAF Operation results.
UAF_OPERATION_COMPLETION_STATUS Inform the FIDO UAF Client of the completion status of a UAF operation (such as Registration.

7.2 JSON Values

The specifics of the UAFxType operation are carried by various JSON values encoded in the json x-callback-url parameter.

{
 "unprotected": {"alg": "dir", "enc": "A128CBC-HS256"},
 "iv": "...",
 "ciphertext": "...",
 "tag": "..."
}

JSON value Type Description

discoveryData String DiscoveryData JSON dictionary.

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFxType.

origin String An RFC6454 Web Origin [RFC6454]
string for the request.

channelBindings String The channel bindings
JSON dictionary for the operation.

responseCode short The uafResult field of a ServerResponse.

The following table shows what JSON values are expected, depending on the value of the UAFxType x-callback-url operation:

UAFxType operation discoveryData errorCode message origin channelBindings responseCode

"DISCOVER"

"DISCOVER_RESULT" optional required

"CHECK_POLICY" required optional

"CHECK_POLICY_RESULT" required

"UAF_OPERATION" required optional required

"UAF_OPERATION_RESULT" required optional

"UAF_OPERATION_COMPLETION_STATUS" required required

7.2.1 DISCOVER

This operation invokes the FIDO UAF Client to discover the
available authenticators and capabilities. The FIDO UAF
Client generally will not
show a user interface associated
with the handling of this operation, but will simply
return the resulting JSON structure.

The calling application cannot depend on this however, as the
client may show a user interface for privacy
purposes, allowing the user to choose
whether and which
authenticators to disclose to the calling application.

7.2.2 DISCOVER_RESULT

An operation with this type is returned by the FIDO UAF Client in response to receiving an x-callback-url
operation of type DISCOVER.

If x-callback-url JSON value errorCode is NO_ERROR,
this x-callback-url operation has a JSON value, discoveryData, containing a String
representation of a DiscoveryData JSON dictionary listing the
available authenticators and their capabilities.

7.2.3 CHECK_POLICY

This operation invokes the FIDO UAF Client to discover if
the client would be able to process the supplied message,
without prompting the user.

The related Action handling this
operation should not show an interface to the user.

This x-callback-url operation requires the following JSON values:

message, containing a String representation
of a UAFMessage representing the request message to test.
origin, an optional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no user interface is
displayed.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no UI is displayed.

own identity.

7.2.4 CHECK_POLICY_RESULT

This operation is returned by the FIDO UAF Client in response to receiving a CHECK_POLICY x-callback-url operation.

The x-callback-url JSON value errorCode containing an ErrorCode value
indicating the specific error condition or NO_ERROR if the FIDO Client
could
process the message.

7.2.5 UAF_OPERATION

This operation invokes the FIDO UAF Client to process the supplied request
message and return a result message ready for delivery to the
FIDO UAF Server.
The sender should assume that the FIDO UAF Client will display a UI to the user to
handle this x-callback-url operation, e.g.
prompting the user to complete their verification ceremony.

This x-callback-url operation requires the following JSON values:

message, containing a String representation
of a UAFMessage representing the request message to process.
channelBindings, containing a String representation
of a JSON dictionary as defined by the ChannelBinding structure in the
UAF Protocol
Specification [UAFProtocol].
origin, an optional JSON value that allows a caller
to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.

7.2.6 UAF_OPERATION_RESULT

This x-callback-url operation is returned by the FIDO UAF Client in response to receiving a UAF_OPERATION x-callback-url operation.

The x-callback-url JSON value errorCode containing an ErrorCodevalue
indicating the specific error condition.

If x-callback-url JSON value errorCode is NO_ERROR,
this x-callback-url operation has a JSON value, message, containing a String representation
of a UAFMessage, being the UAF protocol response message to be
delivered to the FIDO Server.

7.2.7 UAF_OPERATION_COMPLETION_STATUS

This x-callback-url operation must be delivered to the FIDO UAF Client to indicate the completion status of
a FIDO UAF message delivered to
the remote server. This is especially important as, e.g. a new
registration may be considered in a pending status until it is known the server
accepted it.

7.3 Implementation Guidelines for iOS Implementations

Each iOS Custom URL based request results in a human-noticeable context switch between the App and FIDO UAF Client and vice
versa. This
will be most noticeable when invoking DISCOVER and CHECK_POLICY requests since typically these requests
will be invoked automatically,
without user's involvement. Such a context switch impacts the User Experience and
therefore it's recommended to avoid making these two
requests and integrate FIDO without using them.

7.4 Security Considerations for iOS Implementations

This section is non-normative.

A security concern with custom URLs under iOS is that any app can register any custom URL.
If multiple applications register the same custom
URL, the behavior for handling the URL call in iOS is undefined.

On the FIDO UAF Client side, this issue with custom URL scheme handlers is solved by using the
sourceApplication parameter which provides
the bundle ID of the URL originator.
This is effective as long as the device has not been jailbroken and as long as Apple has done due diligence
vetting submissions to the app store for malware with faked bundle IDs.
The sourceApplication parameter can be matched with the FacetID list
to ensure that
the calling app is approved to use the credentials for the relying party.

On the relying party app side, encryption is used to prevent a rogue app from spoofing
the relying party app's response URL. The relying party
app generates a random encryption key on every request and
sends it to the FIDO client.
The FIDO client then encrypts the response to this
key. In this manner, only the relying party app
can decrypt the response. Even in the event that malware is able to spoof the relying party app's
URL and
intercept the response, it would not be able to decode it.

To protect against potentially malicious applications registering
themselves to handle the FIDO UAF Client custom URL scheme, relying party
Applications can obtain the bundle-id of the responding app and utilize it in
risk management decisions around the authentication or transaction
events. For example, a relying party might maintain a list of
bundle-ids known to belong to malware and refuse to accept operations
completed
with such clients, or a list of bundle-ids of known-good
clients that receive preferred risk-scoring.

8. Transport Binding Profile

This section is normative.

This section describes general normative security requirements
for how a client application transports FIDO UAF protocol
messages, gives
specific requirements for Transport Layer
Security (TLS), and describes an interoperability profile for
using HTTP over TLS [RFC2818] with the
FIDO UAF protocol.

8.1 Transport Security Requirements

This section is non-normative.

The UAF protocol contains no inherent means of identifying a
relying party server, or for end-to-end protection of UAF
protocol messages. To
perform a secure UAF protocol exchange,
the following abstract requirements apply:

1. The client application must securely authenticate the server
endpoint as authorized, from that client's viewpoint, to
represent the Web
origin [RFC6454] (scheme:host:port tuple)
reported to the FIDO UAF Client by the client
application. Most typically this will be done by
using TLS and
verifying the server's certificate is valid, asserts the
correct DNS name, and chains up to a root trusted by the
client
platform. Clients may also utilize other means to
authenticate a server, such as via a pre-provisioned
certificate or key that is distributed
with an application, or
alternative network authentication protocols such as Kerberos
[RFC4120].

2. The transport mechanism for UAF protocol messages must
provide confidentiality for the message, to prevent disclosure
of their contents
to unauthorized third parties. These
protections should be cryptographically bound to proof of the
server's identity as described above.

3. The transport mechanism for UAF protocol messages must protect
the integrity of the message from tampering by unauthorized
third
parties. These protections should be cryptographically
bound to proof of the server's identity in as described above.

8.2 TLS Security Requirements

This section is non-normative.

If using HTTP over TLS ([RFC2246] [RFC4346], [RFC5246] or
[TLS13draft02]) to transport an UAF protocol exchange, the following
specific
requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any
other error level with the TLS connection, the HTTP client must
terminate
the connection without prompting the user. For
example, this includes any errors found in certificate validity
checking that HTTP clients
employ, such as via TLS server
identity checking [RFC6125], Certificate Revocation Lists
(CRLs) [RFC5280], or via the Online Certificate
Status Protocol
(OCSP) [RFC2560].

2. Whenever comparisons are made between the presented TLS server
identity (as presented during the TLS handshake, typically
within the
server certificate) and the intended source TLS
server identity (e.g., as entered by a user, or embedded in a
link), [RFC6125] server
identity checking must be employed. The
client must terminate the connection without prompting the user
upon any error condition.

3. The TLS server certificate must either be provisioned explicitly
out-of-band (e.g. packaged with an app as a "pinned
certificate") or be
trusted by chaining to a root included in
the certificate store of the operating system or a major
browser by virtue of being currently in
compliance with their
root store program requirements. The client must terminate the
connection without user recourse if there are any
error
conditions when building the chain of trust.

4. The "anon" and "null" crypto suites are not allowed and insecure
cryptographic algorithms in TLS (e.g. MD4, RC4, SHA1) should be
avoided (see NIST SP800-131A [SP800-131A]).

5. The client and server should use the latest practicable TLS
version.
6. The client should supply, and the server should verify whatever
practicable channel binding information is available, including
a ChannelID

[ChannelID] public key, the tls-unique and
tls-server-end-point bindings [RFC5929], and TLS server
certificate binding [UAFProtocol].
This information provides
protection against certain classes of network attackers and the
forwarding of protocol messages, and a server
may reject a
message that lacks or has channel binding data that does not
verify correctly.

8.3 HTTPS Transport Interoperability Profile

This section is normative.

Conforming applications may support this profile.

Complex and highly-optimized applications utilizing UAF will
often transport UAF protocol messages in-line with other
application protocol
messages. The profile defined here for
transporting UAF protocol messages over HTTPS is intended to:

Provide an interoperability profile to enable easier composition
of client-side application libraries and server-side
implementations for FIDO
UAF-enabled products from different
vendors.
Provide detailed illustration of specific necessary security
properties for the transport layer and HTTP interfaces,
especially as they may
interact with a browser-hosted
application.
This profile is also utilized in the examples that constitute
the appendices of this document. This profile is optional to
implement. RFC 2119

key words are used in this section to
indicate necessary security and other properties for
implementations that intend to use this profile to
interoperate [RFC2119].

8.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request
messages as part of a response body containing other
application content, e.g. in
a script block as such:

However, request messages have a limited lifetime, and an
installed application cannot be delivered with a request, so
client applications
generally need the ability to retrieve a
fresh request.

When sending a request message over HTTPS with XMLHttpRequest
[XHR] or another HTTP API:

1. The URI of the server endpoint, and how it is communicated to the
client, is application-specific.
2. The client must set the HTTP method to POST. [RFC7231]
3. The client should set the HTTP “Content-Type” header to
“application/fido+uaf; charset=utf-8”. [RFC7231]
4. The client should include “application/fido+uaf” as a media type
in the HTTP “Accept” header [RFC7231]. Conforming servers must

accept “application/fido+uaf” as media type.
5. The client may need to supply additional headers, such as a
HTTP Cookie [RFC6265], to demonstrate, in an application-specific
manner,

their authorization to perform a request.
6. The entire POST body must consist entirely of a JSON [ECMA-404]
structure described by the GetUAFRequest dictionary.
7. The server's response should set the HTTP “Content-Type” to
“application/fido+uaf; charset=utf-8”
8. The client should decode the response byte string as UTF-8 with error handling. [HTML5]
9. The decoded body of the response must consist entirely of a JSON structure described by
the ReturnUAFRequest interface.

8.3.2 Operation enum

Describes the operation type of a FIDO UAF message or request for a message.

WebIDL

enum Operation {
 "Reg",
 "Auth",
 "Dereg"
};

Enumeration description
Reg Registration
Auth Authentication or Transaction Confirmation
Dereg Deregistration

8.3.3 GetUAFRequest dictionary

WebIDL

NOTE

Certain FIDO UAF operations, in
particular, transaction confirmation, will always require
an application-specific implementation. This
interoperability
profile only provides a skeleton framework suitable for
replacing username/password authentication.

EXAMPLE 13
...

<script type=”application/json”>
{
“initialRequest”: {
// initial request message here
},

“lifetimeMillis”: 60000; // hint: this initial request is valid for 60 seconds
}
</script>

...

dictionary GetUAFRequest {
 Operation op;
 DOMString previousRequest;
 DOMString context;
};

8.3.3.1 Dictionary GetUAFRequest Members

op of type Operation
The type of the UAF request message desired. Allowable string
values are defined by the Operation enum. This field is
optional but
must be set if the operation is not known to the
server through other context, e.g. an operation-specific URL
endpoint.

previousRequest of type DOMString
If the application is requesting a new UAF request message
because a previous one has expired, this optional key can include
the
previous one to assist the server in locating any state
that should be re-associated with a new request message, should
one be
issued.

context of type DOMString
Any additional contextual information that may be useful or
necessary for the server to generate the correct request
message. This
key is optional and the format and nature of this
data is application-specific.

8.3.4 ReturnUAFRequest dictionary

WebIDL

dictionary ReturnUAFRequest {
 required unsigned long statusCode;
 DOMString uafRequest;
 Operation op;
 long lifetimeMillis;
};

8.3.4.1 Dictionary ReturnUAFRequest Members

statusCode of type required unsigned long
The UAF Status Code for the operation (see section 3.1 UAF Status Codes).

uafRequest of type DOMString
The new UAF Request Message, optional, if the server decided to issue one.

op of type Operation
An optional hint to the client of the operation type of the
message, useful if the server might return a different type
than was
requested. For example, a server might return a
deregister message if an authentication request referred to a
key it no longer
considers valid. Allowable string values are
defined by the Operation enum.

lifetimeMillis of type long
If the server returned a uafRequest, this is an optional hint
informing the client application of the lifetime of the message
in
milliseconds.

8.3.5 SendUAFResponse dictionary

WebIDL

dictionary SendUAFResponse {
 required DOMString uafResponse;
 DOMString context;
};

8.3.5.1 Dictionary SendUAFResponse Members

uafResponse of type required DOMString
The UAF Response Message. It must be set to
UAFMessage.uafProtocolMessage returned by FIDO UAF Client.

context of type DOMString
Any additional contextual information that may be useful or necessary for the server to process
the response message.
This key is
optional and the format and nature of this data is application-specific.

8.3.6 Delivering a UAF Response

Although it is not the only pattern possible, an asynchronous
HTTP request is a useful way of delivering a UAF Response to
the remote server
for either web applications or standalone
applications.

When delivering a response message over HTTPS with
XMLHttpRequest [XHR] or another API:

1. The URI of the server endpoint and how it is communicated to the
client is application-specific.
2. The client must set the HTTP method to POST. [RFC7231]
3. The client must set the HTTP “Content-Type” header to
“application/fido+uaf; charset=utf-8”. [RFC7231]
4. The client should include “application/fido+uaf” as a media type
in the HTTP “Accept” header. [RFC7231]
5. The client may need to supply additional headers, such as a
HTTP Cookie [RFC6265], to demonstrate, in an application-specific
manner,

their authorization to perform an operation.
6. The entire POST body must consist entirely of a JSON
[ECMA-404] structure described by the
SendUAFResponse.
7. The server's response should set the “Content-Type” to
“application/fido+uaf; charset=utf-8” and the body of the
response must

consist entirely of a JSON structure described by
the ServerResponse interface.

8.3.7 ServerResponse Interface

The ServerResponse interface represents the completion status
and additional application-specific additional data that
results from successful
processing of a Register, Authenticate,
or Transaction Confirmation operation. This message is not
formally part of the UAF protocol, but the
statusCode should be
posted to the FIDO UAF Client, for housekeeping, using the
notifyUAFResult() operation.

WebIDL

interface ServerResponse {
 readonly attribute int statusCode;
 [Optional]
 readonly attribute DOMString description;
 [Optional]
 readonly attribute Token[] additionalTokens;
 [Optional]
 readonly attribute DOMString location;
 [Optional]
 readonly attribute DOMString postData;
 [Optional]
 readonly attribute DOMString newUAFRequest;
};

8.3.7.1 Attributes

statusCode of type int, readonly
The FIDO UAF response status code. Note that this status code
describes the result of processing the tunneled UAF operation,
not
the status code for the outer HTTP transport.

description of type DOMString, readonly
A detailed message describing the status code or providing
additional information to the user.

additionalTokens of type array of Token, readonly
This key contains new authentication or authorization token(s)
for the client that are not natively handled by the HTTP
transport.
Tokens should be processed prior to processing of
location.

location of type DOMString, readonly
If present, indicates to the client web application that it
should navigate the Document context to the URI contained on
this field after
processing any tokens.

postData of type DOMString, readonly
If present in combination with location, indicates that the
client should POST the contents to the specified location after
processing
any tokens.

newUAFRequest of type DOMString, readonly
The server may use this to return a new UAF protocol message.
This might be used to supply a fresh request to retry an
operation in
response to a transient failure, to request
additional confirmation for a transaction, or to send a
deregistration message in response to
a permanent failure.

8.3.8 Token interface

NOTE

The UAF Server is not responsible for creating
additional tokens returned as part of a UAF response. Such
tokens exist to provide a

WebIDL

interface Token {
 readonly attribute TokenType type;
 readonly attribute DOMString value;
};

8.3.8.1 Attributes

type of type TokenType, readonly
The type of the additional authentication / authorization token.

value of type DOMString, readonly
The string value of the additional authentication / authorization token.

8.3.9 TokenType enum

WebIDL

enum TokenType {
 "HTTP_COOKIE",
 "OAUTH",
 "OAUTH2",
 "SAML1_1",
 "SAML2",
 "JWT",
 "OPENID_CONNECT"
};

Enumeration description

HTTP_COOKIE

If the user agent is a standard web browser or other HTTP native
client with a cookie store, this TokenType should not be
used.
Cookies should be set directly with the Set-Cookie HTTP header
for processing by the user agent. For non-HTTP or
non-browser
contexts this indicates a token intended to be set as an HTTP
cookie. [RFC6265] For example, a native VPN
client that
authenticates with UAF might use this TokenType to
automatically add a cookie to the browser cookie jar.

OAUTH Indicates that the token is of type OAUTH. [RFC5849].
OAUTH2 Indicates that the token is of type OAUTH2. [RFC6749].
SAML1_1 Indicates that the token is of type SAML 1.1. [SAML11].
SAML2 Indicates that the token is of type SAML 2.0. [SAML2-CORE]
JWT Indicates that the token is of type JSON Web Token (JWT). [JWT]
OPENID_CONNECT Indicates that the token is an OpenID Connect “id_token”. [OpenIDConnect]

8.3.10 Security Considerations

This section is non-normative.

It is important that the client set, and the server require, the
method be POST and the “Content-Type” HTTP header be the correct
values.
Because the response body is valid ECMAScript, to
protect against unauthorized cross-origin access, a server must not
respond to the type of
request that can be generated by a
script tag, e.g. <script
src=”https://example.com/fido/uaf/getRequest”>. The request a
user agent
generates with this kind of embedding cannot set
custom headers.

Likewise, by requiring a custom “Content-Type” header,
cross-origin requests cannot be made with an XMLHttpRequest [XHR]
without
triggering a CORS preflight access check. [CORS]

As FIDO UAF messages are only valid when used same-origin, servers
should not supply an “Access-Control-Allow-Origin” [CORS]
header with
responses that would allow them to be read by
non-same-origin content.

To protect from some classes of cross-origin, browser-based,
distributed denial-of-service attacks, request endpoints should
ignore, without
performing additional processing, all requests
with an “Access-Control-Request-Method” [CORS] HTTP header or
an incorrect “Content-Type”
HTTP header.

If a server chooses to respond to requests made with the GET
method and without the custom “Content-Type” header, it should
apply a prefix
string such as “while(1);” or
“&&&BEGIN_UAF_RESPONSE&&&” to the body of all replies and so
prevent their being read through cross-origin <script>

means for the relying party
application to update the authentication/authorization state
of the client in response to a successful UAF
operation. For
example, these fields could be used to allow UAF to serve as
the initial authentication leg of a federation protocol, but
the
scope and details of any such federation are outside of
the scope of UAF.

tag
embedding. Legitimate same-origin callers will need to (and
alone be able to) strip this prefix string before parsing the
JSON content.

A. References

A.1 Normative references

[AndroidAppManifest]
Android App Manifest. Work in Progress. URL: http://developer.android.com/guide/topics/manifest/manifest-intro.html

[ChannelID]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL: http://tools.ietf.org/html/draft-balfanz-tls-channelid

[DOM]
Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.es/ecma262/

[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL: https://www.ecma-international.org/publications/files/ECMA-
ST/ECMA-404.pdf

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-
id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-statement-v2.0-id-20180227.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[HTML5]
I. Hickson; R.Berjon; S. Faulkner; T. Leithead; E. D. Navara; E. O'Connor; S. Pfeiffer. HTML5: A vocabulary and associated APIs for
HTML and XHTML. 28 October 2014. W3C Recommendation. URL: http://www.w3.org/TR/html5/

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7519

[OpenIDConnect]
. OpenID Connect. Work in Progress. URL: http://openid.net/connect/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C Recommendation. URL:
https://www.w3.org/TR/PNG/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[RFC2818]
E. Rescorla. HTTP Over TLS. May 2000. Informational. URL: https://httpwg.org/specs/rfc2818.html

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5849]
E. Hammer-Lahav. The OAuth 1.0 Protocol (RFC 5849). April 2010. URL: http://www.ietf.org/rfc/rfc5849.txt

[RFC5929]
J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL: http://www.ietf.org/rfc/rfc5929.txt

[RFC6125]
P. Saint-Andre; J. Hodges. Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125). March 2011. URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6265]
A. Barth. HTTP State Management Mechanism. April 2011. Proposed Standard. URL: https://httpwg.org/specs/rfc6265.html

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[RFC6749]
D. Hardt, Ed.. The OAuth 2.0 Authorization Framework (RFC 6749). October 2012. URL: http://www.ietf.org/rfc/rfc6749.txt

[RFC7230]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. June 2014. Proposed Standard.
URL: https://httpwg.org/specs/rfc7230.html

[RFC7231]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. June 2014. Proposed Standard. URL:
https://httpwg.org/specs/rfc7231.html

[SAML11]
E. Maler; P. Mishra; R. Philpott. The Security Assertion Markup Language (SAML) v1.1. October 2003. URL: https://www.oasis-
open.org/standards#samlv1.1

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://openid.net/connect/
http://openid.net/connect/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://httpwg.org/specs/rfc2818.html
https://httpwg.org/specs/rfc2818.html
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://httpwg.org/specs/rfc6265.html
https://httpwg.org/specs/rfc6265.html
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://httpwg.org/specs/rfc7230.html
https://httpwg.org/specs/rfc7230.html
https://httpwg.org/specs/rfc7231.html
https://httpwg.org/specs/rfc7231.html
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1

[SAML2-CORE]
Scott Cantor; John Kemp; Rob Philpott; Eve Maler. Assertions and Protocols for SAML V2.0 15 March 2005. URL: http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol Specification v1.2. Review Draft.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/

A.2 Informative references

[ANDROID]
The Android™ Operating System. URL: http://developer.android.com/

[Android5Changes]
Android 5.0 Behavior Changes. Work in progress. URL: http://developer.android.com/about/versions/android-5.0-changes.html

[CORS]
Anne van Kesteren. Cross-Origin Resource Sharing. 2 June 2020. W3C Recommendation. URL: https://www.w3.org/TR/cors/

[RFC2045]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. November 1996.
Draft Standard. URL: https://tools.ietf.org/html/rfc2045

[RFC2246]
T. Dierks; E. Rescorla. The TLS Protocol Version 1.0. January 1999. URL: http://www.ietf.org/rfc/rfc2246.txt

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560

[RFC4120]
C. Neuman; T. Yu; S. Hartman; K. Raeburn. The Kerberos Network Authentication Protocol (V5) (RFC 4120). July 2005. URL:
http://www.ietf.org/rfc/rfc4120.txt

[RFC4346]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. April 2006. URL: http://www.ietf.org/rfc/rfc4346.txt

[RFC5246]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol. August 2008. URL: http://www.ietf.org/rfc/rfc5246.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280

[SOP]
. Same Origin Policy for JavaScript. January 2014. URL: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript

[SP800-131A]
E. Barker; A. Roginsky. NIST Special Publication 800-131A: Transitions: Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths. January 2011. Withdrawn on November 06, 2015. URL: http://csrc.nist.gov/publications/nistpubs/800-
131A/sp800-131A.pdf

[TLS13draft02]
T. Dierks; E. Rescorla. The Transport Layer Security (TLD) Protocol Version 1.3 (draft 02). July 2014. URL: https://tools.ietf.org/html/draft-
ietf-tls-tls13-02

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

[WebIDL]
Boris Zbarsky. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

[XHR]
Anne van Kesteren. XMLHttpRequest Standard. Living Standard. URL: https://xhr.spec.whatwg.org/

[webmessaging]
Ian Hickson. HTML5 Web Messaging. 19 May 2015. W3C Recommendation. URL: https://www.w3.org/TR/webmessaging/

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/about/versions/android-5.0-changes.html
http://developer.android.com/about/versions/android-5.0-changes.html
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/webmessaging/
https://www.w3.org/TR/webmessaging/

FIDO UAF Architectural Overview
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-overview-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html

Editors:
Salah Machani, RSA, the Security Division of EMC
Rob Philpott, RSA, the Security Division of EMC
Sampath Srinivas, Google, Inc.
John Kemp, FIDO Alliance
Jeff Hodges, PayPal, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

The FIDO UAF strong authentication framework enables online
services and websites, whether on the open Internet or within
enterprises, to
transparently leverage native security features
of end-user computing devices for strong user authentication and
to reduce the problems
associated with creating and remembering
many online credentials. The FIDO UAF Reference Architecture
describes the components, protocols,
and interfaces that make
up the FIDO UAF strong authentication ecosystem.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current
FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this document, please
Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the Specification are not, and shall not be held,
responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable document and may be used
as reference material or cited from another
document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification
and to promote its widespread deployment.

Table of Contents

1. Introduction

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-overview-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html
mailto:salah.machani@rsa.com
https://www.emc.com/domains/rsa/index.htm
https://www.emc.com/domains/rsa/index.htm
https://www.google.com/
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

1.1 Background
1.2 FIDO UAF Documentation
1.3 FIDO UAF Goals

2. FIDO UAF High-Level Architecture
2.1 FIDO UAF Client
2.2 FIDO UAF Server
2.3 FIDO UAF Protocols
2.4 FIDO UAF Authenticator Abstraction Layer
2.5 FIDO UAF Authenticator
2.6 FIDO UAF Authenticator Metadata Validation

3. FIDO UAF Usage Scenarios and Protocol Message Flows
3.1 FIDO UAF Authenticator Acquisition and User Enrollment
3.2 Authenticator Registration
3.3 Authentication
3.4 Step-up Authentication
3.5 Transaction Confirmation
3.6 Authenticator Deregistration
3.7 Adoption of New Types of FIDO UAF Authenticators

4. Privacy Considerations
5. Relationship to Other Technologies
6. OATH, TCG, PKCS#11, and ISO 24727
7. Table of Figures

1. Introduction

This section is non-normative.

This document describes the FIDO Universal Authentication
Framework (UAF) Reference Architecture. The target audience for
this document is
decision makers and technical architects who
need a high-level understanding of the FIDO UAF strong
authentication solution and its relationship
to other relevant
industry standards.

The FIDO UAF specifications are as follows:

FIDO UAF Protocol
FIDO UAF Application API and Transport Binding
FIDO UAF Authenticator Commands
FIDO UAF Authenticator-Specific Module API
FIDO UAF Registry of Predefined Values
FIDO UAF APDU

The following additional FIDO documents provide important information relevant to the UAF specifications:

FIDO AppID and Facets Specification
FIDO Metadata Statements
FIDO Metadata Service
FIDO Registry of Predefined Values
FIDO ECDAA Algorithm
FIDO Security Reference
FIDO Glossary

These documents may all be found on the FIDO Alliance website at
http://fidoalliance.org/specifications/download/

1.1 Background

This section is non-normative.

The FIDO Alliance mission is to change the nature of online
strong authentication by:

Developing technical specifications defining open, scalable,
interoperable mechanisms that supplant reliance on passwords to
securely

http://fidoalliance.org/specifications/download/

authenticate users of online services.
Operating industry programs to help ensure successful worldwide
adoption of the specifications.
Submitting mature technical specifications to recognized
standards development organization(s) for formal
standardization.

The core ideas driving the FIDO Alliance's efforts are 1) ease
of use, 2) privacy and security, and 3) standardization. The
primary objective is to
enable online services and websites,
whether on the open Internet or within enterprises, to leverage
native security features of end-user computing
devices for
strong user authentication and to reduce the problems
associated with creating and remembering many online
credentials.

There are two key protocols included in the FIDO architecture
that cater to two basic options for user experience when
dealing with Internet
services. The two protocols share many of
underpinnings but are tuned to the specific intended use cases.

Universal Authentication Framework (UAF) Protocol

The UAF protocol allows online services to offer password-less
and multi-factor security. The user registers their device to
the online service by
selecting a local authentication
mechanism such as swiping a finger, looking at the camera,
speaking into the mic, entering a PIN, etc. The UAF
protocol
allows the service to select which mechanisms are presented to
the user.

Once registered, the user simply repeats the local
authentication action whenever they need to authenticate to the
service. The user no longer
needs to enter their password when
authenticating from that device. UAF also allows experiences
that combine multiple authentication
mechanisms such as
fingerprint + PIN.

This document that you are reading describes the UAF reference
architecture.

Universal 2nd Factor (U2F) Protocol

The U2F protocol allows online services to augment the security
of their existing password infrastructure by adding a strong
second factor to user
login. The user logs in with a username
and password as before. The service can also prompt the user to
present a second factor device at any
time it chooses. The
strong second factor allows the service to simplify its
passwords (e.g. 4-digit PIN) without compromising security.

During registration and authentication, the user presents the
second factor by simply pressing a button on a USB device or
tapping over NFC. The
user can use their FIDO U2F device across
all online services that support the protocol leveraging
built-in support in web browsers.

Please refer to the FIDO website for an overview and
documentation set focused on the U2F protocol.

1.2 FIDO UAF Documentation

This section is non-normative.

To understand the FIDO UAF protocol, it is recommended that new
audiences start by reading this architecture overview document and become
familiar with the
technical terminology used in the specifications (the
glossary). Then they should proceed to the individual UAF
documents in the
recommended order listed below.

FIDO UAF Overview: This document. Provides an introduction to the
FIDO UAF architecture, protocols, and specifications.
FIDO Technical Glossary: Defines the technical terms and phrases
used in FIDO Alliance specifications and documents.
Universal Authentication Framework (UAF)

UAF Protocol Specification : Message formats and processing rules for all UAF
protocol messages.
UAF Application API and Transport Binding Specification: APIs
and interoperability profile for client applications to utilize FIDO
UAF.
UAF Authenticator Commands: Low-level functionality that UAF
Authenticators should implement to support the UAF protocol.
UAF Authenticator-specific Module API: Authenticator-specific
Module API provided by an ASM to the FIDO client.
UAF Registry of Predefined Values: defines all the strings and
constants reserved by UAF protocols.
UAF APDU: defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units (APDUs).

FIDO AppID and Facet Specification : Scope of user credentials and how
a trusted computing base which supports application isolation
may make access control decisions
about which keys can be used by which applications and web origins.
FIDO Metadata Statements: Information describing form factors,
characteristics, and capabilities of FIDO Authenticators
used to inform
interactions with and make policy decisions about the authenticators.
FIDO Metadata Service : Baseline method for
relying parties to access the latest Metadata statements.
FIDO ECDAA Algorithm : Defines the direct anonymous attestation
algorithm for FIDO Authenticators.
FIDO Registry of Predefined Values: defines all the strings and
constants reserved by FIDO protocols with relevance to multiple FIDO
protocol families.
FIDO Security Reference: Provides an analysis of FIDO security
based on detailed analysis of security threats pertinent to the
FIDO
protocols based on its goals, assumptions, and inherent security measures.

The remainder of this Overview section of the reference
architecture document introduces the key drivers, goals, and
principles which inform the
design of FIDO UAF.

Following the Overview, this document describes:

A high-level look at the components, protocols, and APIs
defined by the architecture
The main FIDO UAF use cases and the protocol message flows
required to implement them.
The relationship of the FIDO protocols to other relevant
industry standards.

1.3 FIDO UAF Goals

This section is non-normative.

In order to address today's strong authentication issues and
develop a smoothly-functioning low-friction ecosystem, a
comprehensive, open, multi-
vendor solution architecture is
needed that encompasses:

User devices, whether personally acquired, enterprise-issued, or
enterprise BYOD, and the device's potential operating
environment, e.g.
home, office, in the field, etc.

Authenticators1

Relying party applications and their deployment environments
Meeting the needs of both end users and Relying Parties
Strong focus on both browser- and native-app-based end-user
experience

This solution architecture must feature:

FIDO UAF Authenticator discovery, attestation, and provisioning
Cross-platform strong authentication protocols leveraging FIDO
UAF Authenticators
A uniform cross-platform authenticator API
Simple mechanisms for Relying Party integration

The FIDO Alliance envisions an open, multi-vendor,
cross-platform reference architecture with these goals:

Support strong, multi-factor authentication: Protect Relying
Parties against unauthorized access by supporting end user
authentication
using two or more strong authentication factors
("something you know", "something you have", "something you
are").
Build on, but not require, existing device capabilities:
Facilitate user authentication using built-in platform
authenticators or capabilities
(fingerprint sensors, cameras,
microphones, embedded TPM hardware), but do not preclude the
use of discrete additional authenticators.
Enable selection of the authentication mechanism: Facilitate
Relying Party and user choice amongst supported authentication
mechanisms in order to mitigate risks for their particular use
cases.
Simplify integration of new authentication capabilities: Enable
organizations to expand their use of strong authentication to
address new
use cases, leverage new device's capabilities, and
address new risks with a single authentication approach.
Incorporate extensibility for future refinements and
innovations: Design extensible protocols and APIs in order to
support the future
emergence of additional types of
authenticators, authentication methods, and authentication
protocols, while maintaining reasonable
backwards
compatibility.
Leverage existing open standards where possible, openly innovate
and extend where not: An open, standardized, royalty-free
specification suite will enable the establishment of a
virtuous-circle ecosystem, and decrease the risk, complexity,
and costs associated with
deploying strong authentication.
Existing gaps -- notably uniform authenticator provisioning and
attestation, a uniform cross-platform
authenticator API, as
well as a flexible strong authentication challenge-response
protocol leveraging the user's authenticators will be
addressed.
Complement existing single sign-on, federation initiatives:
While industry initiatives (such as OpenID, OAuth, SAML, and
others) have
created mechanisms to reduce the reliance on
passwords through single sign-on or federation technologies,
they do not directly address the
need for an initial strong
authentication interaction between end users and Relying
Parties.
Preserve the privacy of the end user: Provide the user control
over the sharing of device capability information with Relying
Parties, and
mitigate the potential for collusion amongst
Relying Parties.
Unify end-User Experience: Create easy, fun, and unified
end-user experiences across all platforms and across similar
Authenticators.

2. FIDO UAF High-Level Architecture

This section is non-normative.

The FIDO UAF Architecture is designed to meet the FIDO
goals and yield the desired ecosystem benefits. It accomplishes
this by filling in the
status-quo's gaps using standardized
protocols and APIs.

The following diagram summarizes the reference architecture and
how its components relate to typical user devices and Relying
Parties.

The FIDO-specific components of the reference architecture are
described below.

Fig. 1 FIDO UAF High-Level Architecture

2.1 FIDO UAF Client

A FIDO UAF Client implements the client side of the FIDO UAF
protocols, and is responsible for:

Interacting with specific FIDO UAF Authenticators using the FIDO
UAF Authenticator Abstraction layer via the FIDO UAF
Authenticator API.
Interacting with a user agent on the device (e.g. a mobile app,
browser) using user agent-specific interfaces to communicate
with the FIDO
UAF Server. For example, a FIDO-specific browser
plugin would use existing browser plugin interfaces or a mobile
app may use a FIDO-
specific SDK. The user agent is then
responsible for communicating FIDO UAF messages to a FIDO UAF
Server at a Relying Party.

The FIDO UAF architecture ensures that FIDO client software can
be implemented across a range of system types, operating
systems, and Web
browsers. While FIDO client software is
typically platform-specific, the interactions between the
components should ensure a consistent user
experience from
platform to platform.

2.2 FIDO UAF Server

A FIDO UAF server implements the server side of the FIDO UAF
protocols and is responsible for:

Interacting with the Relying Party web server to communicate
FIDO UAF protocol messages to a FIDO UAF Client via a device
user agent.
Validating FIDO UAF authenticator attestations against the
configured authenticator metadata to ensure only trusted
authenticators are
registered for use.
Manage the association of registered FIDO UAF Authenticators to
user accounts at the Relying Party.
Evaluating user authentication and transaction confirmation
responses to determine their validity.

The FIDO UAF server is conceived as being deployable as an
on-premise server by Relying Parties or as being outsourced to
a FIDO-enabled
third-party service provider.

2.3 FIDO UAF Protocols

The FIDO UAF protocols carry FIDO UAF messages between user
devices and Relying Parties. There are protocol messages
addressing:

Authenticator Registration: The FIDO UAF registration protocol
enables Relying Parties to:
Discover the FIDO UAF Authenticators available on a user's
system or device. Discovery will convey FIDO UAF Authenticator
attributes to the Relying Party thus enabling policy decisions
and enforcement to take place.
Verify attestation assertions made by the FIDO UAF
Authenticators to ensure the authenticator is authentic and
trusted. Verification
occurs using the attestation public key
certificates distributed via authenticator metadata.
Register the authenticator and associate it with the user's
account at the Relying Party. Once an authenticator attestation
has been
validated, the Relying Party can provide a unique
secure identifier that is specific to the Relying Party and the
FIDO UAF Authenticator.
This identifier can be used in future
interactions between the pair {RP, Authenticator} and is not
known to any other devices.

User Authentication: Authentication is typically based on
cryptographic challenge-response authentication protocols and
will facilitate user
choice regarding which FIDO UAF
Authenticators are employed in an authentication event.
Secure Transaction Confirmation: If the user authenticator
includes the capability to do so, a Relying Party can present
the user with a

secure message for confirmation. The message
content is determined by the Relying Party and could be used in
a variety of contexts such
as confirming a financial
transaction, a user agreement ,or releasing patient records.
Authenticator Deregistration: Deregistration is typically required when the user account is removed at the Relying Party. The Relying Party
can trigger the deregistration by requesting the Authenticator to delete the associated UAF credential with the user account.

2.4 FIDO UAF Authenticator Abstraction Layer

The FIDO UAF Authenticator Abstraction Layer provides a uniform
API to FIDO Clients enabling the use of authenticator-based
cryptographic
services for FIDO-supported operations. It
provides a uniform lower-layer "authenticator plugin" API
facilitating the deployment of multi-vendor
FIDO UAF
Authenticators and their requisite drivers.

2.5 FIDO UAF Authenticator

A FIDO UAF Authenticator is a secure entity, connected to or
housed within FIDO user devices, that can create key material
associated to a
Relying Party. The key can then be used to
participate in FIDO UAF strong authentication protocols. For
example, the FIDO UAF Authenticator
can provide a response to a
cryptographic challenge using the key material thus
authenticating itself to the Relying Party.

In order to meet the goal of simplifying integration of trusted
authentication capabilities, a FIDO UAF Authenticator will be
able to attest to its
particular type (e.g., biometric) and
capabilities (e.g., supported crypto algorithms), as well as to
its provenance. This provides a Relying Party with
a high degree
of confidence that the user being authenticated is indeed the
user that originally registered with the site.

2.6 FIDO UAF Authenticator Metadata Validation

In the FIDO UAF context, attestation is how Authenticators make
claims to a Relying Party during registration that the keys
they generate, and/or
certain measurements they report,
originate from genuine devices with certified characteristics.
An attestation signature, carried in a FIDO UAF
registration
protocol message is validated by the FIDO UAF Server. FIDO UAF
Authenticators are created with attestation private keys used
to
create the signatures and the FIDO UAF Server validates the
signature using that authenticator's attestation public key
certificate located in the
authenticator metadata. The metadata
holding attestation certificates is shared with FIDO UAF Servers
out of band.

3. FIDO UAF Usage Scenarios and Protocol Message Flows

This section is non-normative.

The FIDO UAF ecosystem supports the use cases briefly described
in this section.

3.1 FIDO UAF Authenticator Acquisition and User Enrollment

It is expected that users will acquire FIDO UAF Authenticators
in various ways: they purchase a new system that comes with
embedded FIDO
UAF Authenticator capability; they purchase a
device with an embedded FIDO UAF Authenticator, or they are
given a FIDO Authenticator by their
employer or some other
institution such as their bank.

After receiving a FIDO UAF Authenticator, the user must go
through an authenticator-specific enrollment process, which is
outside the scope of the
FIDO UAF protocols. For example, in
the case of a fingerprint sensing authenticator, the user must
register their fingerprint(s) with the
authenticator. Once
enrollment is complete, the FIDO UAF Authenticator is ready for
registration with FIDO UAF enabled online services and
websites.

3.2 Authenticator Registration

Given the FIDO UAF architecture, a Relying Party is able to
transparently detect when a user begins interacting with them
while possessing an
initialized FIDO UAF Authenticator. In this
initial introduction phase, the website will prompt the user
regarding any detected FIDO UAF
Authenticator(s), giving the
user options regarding registering it with the website or not.

Fig. 2 Registration Message Flow

3.3 Authentication

Following registration, the FIDO UAF Authenticator will be
subsequently employed whenever the user authenticates with the
website (and the
authenticator is present). The website can
implement various fallback strategies for those occasions when
the FIDO Authenticator is not present.
These might range from
allowing conventional login with diminished privileges to
disallowing login.

Fig. 3 Authentication Message Flow

This overall scenario will vary slightly depending upon the type
of FIDO UAF Authenticator being employed. Some authenticators
may sample
biometric data such as a face image, fingerprint, or
voice print. Others will require a PIN or local
authenticator-specific passphrase entry. Still
others may
simply be a hardware bearer authenticator. Note that it is
permissible for a FIDO Client to interact with external
services as part of the
authentication of the user to the
authenticator as long as the FIDO Privacy Principles are
adhered to.

3.4 Step-up Authentication

Step-up authentication is an embellishment to the basic website
login use case. Often, online services and websites allow
unauthenticated, and/or
only nominally authenticated use -- for
informational browsing, for example. However, once users
request more valuable interactions, such as
entering a
members-only area, the website may request further
higher-assurance authentication. This could proceed in several
steps if the user
then wishes to purchase
something, with higher-assurance steps with increasing
transaction value.

FIDO UAF will smoothly facilitate this interaction style since
the website will be able to discover which FIDO UAF
Authenticators are available on
FIDO-wielding users' systems,
and select incorporation of the appropriate one(s) in any particular authentication interaction. Thus
online services
and websites will be able to dynamically tailor
initial, as well as step-up authentication interactions
according to what the user is able to wield and
the needed
inputs to website's risk analysis engine given the interaction
the user has requested.

3.5 Transaction Confirmation

There are various innovative use cases possible given FIDO
UAF-enabled Relying Parties with end-users wielding FIDO UAF
Authenticators.
Website login and step-up authentication are
relatively simple examples. A somewhat more advanced use case
is secure transaction processing.

Fig. 4 Confirmation Message Flow

Imagine a situation in which a Relying Party wants the end-user
to confirm a transaction (e.g. financial operation, privileged
operation, etc) so that
any tampering of a transaction message
during its route to the end device display and back can be
detected. FIDO architecture has a concept of
"secure
transaction" which provides this capability. Basically if a
FIDO UAF Authenticator has a transaction confirmation display capability, FIDO
UAF architecture makes sure that the system supports What You
See is What You Sign mode (WYSIWYS). A number of different use
cases can
derive from this capability -- mainly related to
authorization of transactions (send money, perform a context
specific privileged action, confirmation
of email/address,
etc).

3.6 Authenticator Deregistration

There are some situations where a Relying Party may need to remove the UAF credentials associated with a specific user account in FIDO
Authenticator. For example, the user’s account is cancelled or deleted, the user’s FIDO Authenticator is lost or stolen, etc. In these situations, the
RP may request the FIDO Authenticator to delete authentication keys that are bound to user account.

Fig. 5 Deregistration Message Flow

3.7 Adoption of New Types of FIDO UAF Authenticators

Authenticators will evolve and new types are expected to appear
in the future. Their adoption on the part of both users and
Relying Parties is
facilitated by the FIDO architecture. In
order to support a new FIDO UAF Authenticator type, Relying
Parties need only to add a new entry to their
configuration
describing the new authenticator, along with its FIDO
Attestation Certificate. Afterwards, end users will be able to
use the new FIDO
UAF Authenticator type with those Relying
Parties.

4. Privacy Considerations

This section is non-normative.

User privacy is fundamental to FIDO and is supported in UAF by design. Some of the key privacy-aware design elements are summarized here:

A UAF device does not have a global identifier visible across relying parties and does not have a global identifier within a particular relying
party. If for example, a person looses their UAF device, someone finding it cannot “point it at a relying party” and discover if the original user
had any accounts with that relying party. Similarly, if two users share a UAF device and each has registered their account with the same
relying party with this device, the relying party will not be able to discern that the two accounts share a device, based on the UAF protocol
alone.
The UAF protocol generates unique asymmetric cryptographic key pairs
on a per-device, per-user account, and per-relying party basis.
Cryptographic keys used with different relying parties will not allow any one party to link all the actions to the same user, hence the
unlinkability property of UAF.
The UAF protocol operations require minimal personal data collection:
at most they incorporate a user's relying party username. This
personal data is only used for FIDO purposes, for example to perform user registration, user verification, or authorization.
This personal data
does not leave the user’s computing environment and is only persisted locally when necessary.
In UAF, user verification is performed locally. The UAF protocol does not convey biometric data to relying parties, nor does it require the
storage of such data at relying parties.
Users explicitly approve the use of a UAF device with a specific relying party. Unique cryptographic keys are generated and bound to a
relying party during registration only after the user’s consent.
UAF authenticators can only be identified by their attestation certificates on a production batch-level or on manufacturer- and device model-
level. They cannot be identified individually. The UAF specifications require implementers to ship UAF authenticators with the same
attestation certificate and private key in batches of 100,000 or more in order to provide unlinkability.

5. Relationship to Other Technologies

This section is non-normative.

OpenID, SAML, and OAuth

FIDO protocols (both UAF and U2F) complement Federated Identity
Management (FIM) frameworks, such as OpenID and SAML, as well
as web

authorization protocols, such as OAuth. FIM Relying
Parties can leverage an initial authentication event at an
identity provider (IdP). However,
OpenID and SAML do not define
specific mechanisms for direct user authentication at the IdP.

When an IdP is integrated with a FIDO-enabled authentication
service, it can subsequently leverage the attributes of the
strong authentication with
its Relying Parties. The following
diagram illustrates this relationship. FIDO-based
authentication (1) would logically occur first, and the FIM
protocols would then leverage that authentication event into
single sign-on events between the identity provider and its
federated Relying Parties
(2).2

Fig. 6 FIDO UAF & Federated Identity Frameworks

6. OATH, TCG, PKCS#11, and ISO 24727

These are either initiatives (OATH, Trusted Computing Group
(TCG)), or industry standards (PKCS#11, ISO 24727). They all
share an underlying
focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator
abstractions.

TCG produces specifications for the Trusted Platform Module, as
well as networked trusted computing.

OATH, the "Initiative for Open AuTHentication", focuses on
defining symmetric key provisioning protocols and
authentication algorithms for
hardware One-Time Password (OTP)
authenticators.

The FIDO framework shares several core notions with the
foregoing efforts, such as an authentication abstraction
interface, authenticator
attestation, key provisioning, and
authentication algorithms. FIDO's work will leverage and extend
some of these specifications.

Specifically, FIDO will complement them by addressing:

Authenticator discovery
User experience
Harmonization of various authenticator types, such as biometric,
OTP, simple presence, smart card, TPM, etc.

7. Table of Figures

Fig. 1 FIDO UAF High-Level Architecture
Fig. 2 Registration Message Flow
Fig. 3 Authentication Message Flow
Fig. 4 Confirmation Message Flow
Fig. 5 Deregistration Message Flow
Fig. 6 FIDO UAF & Federated Identity Frameworks

1. Also known as: Authentication Tokens, Security Tokens, etc.↩

2. FIM protocols typically convey IdP <-> RP interactions through
the browser via HTTP redirects and POSTs.↩

FIDO UAF Protocol Specification
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Eric Tiffany, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Dirk Balfanz, Google, Inc.
Brad Hill, PayPal, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

The goal of the Universal Authentication Framework is to provide
a unified and extensible authentication mechanism that supplants
passwords
while avoiding the shortcomings of current alternative
authentication approaches.

This approach is designed to allow
the relying party to choose the best available authentication
mechanism for a particular end user or
interaction, while
preserving the option to leverage
emerging device security capabilities in the future without
requiring additional integration
effort.

This document describes the FIDO architecture in detail, it
defines the flow and content of all UAF protocol messages and
presents the
rationale behind the design choices.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of
current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this document, please
Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the Specification are not, and shall not be held,
responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
https://www.noknok.com/
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable document and may be
used as reference material or cited from another
document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Scope
2.2 Architecture
2.3 Protocol Conversation

2.3.1 Registration
2.3.2 Authentication
2.3.3 Transaction Confirmation
2.3.4 Deregistration

2.4 Relationship to Other Specifications

3. Protocol Details
3.1 Shared Structures and Types

3.1.1 Version Interface
3.1.1.1 Attributes

3.1.2 Operation enumeration
3.1.3 OperationHeader dictionary

3.1.3.1 Dictionary OperationHeader Members

3.1.4 Authenticator Attestation ID (AAID) typedef
3.1.5 KeyID typedef
3.1.6 ServerChallenge typedef
3.1.7 FinalChallengeParams dictionary

3.1.7.1 Dictionary FinalChallengeParams Members

3.1.8 CollectedClientData dictionary
3.1.9 TLS ChannelBinding dictionary

3.1.9.1 Dictionary ChannelBinding Members

3.1.10 JwkKey dictionary
3.1.10.1 Dictionary JwkKey Members

3.1.11 Extension dictionary
3.1.11.1 Dictionary Extension Members

3.1.12 MatchCriteria dictionary
3.1.12.1 Dictionary MatchCriteria Members

3.1.13 Policy dictionary
3.1.13.1 Dictionary Policy Members

3.2 Processing Rules for the Server Policy
3.2.1 Examples

3.3 Version Negotiation
3.4 Registration Operation

3.4.1 Registration Request Message
3.4.2 RegistrationRequest dictionary

3.4.2.1 Dictionary RegistrationRequest Members

3.4.3 AuthenticatorRegistrationAssertion dictionary
3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

3.4.4 Registration Response Message
3.4.5 RegistrationResponse dictionary

3.4.5.1 Dictionary RegistrationResponse Members

3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server
3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

3.4.6.2.1 Mapping ASM Status Codes to ErrorCode

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
3.4.6.4 Registration Response Generation Rules for FIDO UAF Client
3.4.6.5 Registration Response Processing Rules for FIDO Server

3.5 Authentication Operation
3.5.1 Transaction dictionary

3.5.1.1 Dictionary Transaction Members

3.5.2 Authentication Request Message
3.5.3 AuthenticationRequest dictionary

3.5.3.1 Dictionary AuthenticationRequest Members

3.5.4 AuthenticatorSignAssertion dictionary
3.5.4.1 Dictionary AuthenticatorSignAssertion Members

3.5.5 AuthenticationResponse dictionary
3.5.5.1 Dictionary AuthenticationResponse Members

3.5.6 Authentication Response Message
3.5.7 Authentication Processing Rules

3.5.7.1 Authentication Request Generation Rules for FIDO Server
3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client
3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client
3.5.7.5 Authentication Response Processing Rules for FIDO Server

3.6 Deregistration Operation
3.6.1 Deregistration Request Message
3.6.2 DeregisterAuthenticator dictionary

3.6.2.1 Dictionary DeregisterAuthenticator Members

3.6.3 DeregistrationRequest dictionary
3.6.3.1 Dictionary DeregistrationRequest Members

3.6.4 Deregistration Processing Rules
3.6.4.1 Deregistration Request Generation Rules for FIDO Server
3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client
3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

4. Considerations
4.1 Protocol Core Design Considerations

4.1.1 Authenticator Metadata
4.1.2 Authenticator Attestation

4.1.2.1 Basic Attestation
4.1.2.1.1 Full Basic Attestation
4.1.2.1.2 Surrogate Basic Attestation

4.1.2.2 Direct Anonymous Attestation (ECDAA)

4.1.3 Error Handling
4.1.4 Assertion Schemes
4.1.5 Username in Authenticator
4.1.6 Silent Authenticators
4.1.7 TLS Protected Communication

4.2 Implementation Considerations
4.2.1 Server Challenge and Random Numbers
4.2.2 Revealing KeyIDs

4.3 Security Considerations

4.3.1 FIDO Authenticator Security
4.3.2 Cryptographic Algorithms
4.3.3 FIDO Client Trust Model

4.3.3.1 Isolation using KHAccessToken

4.3.4 TLS Binding
4.3.5 Session Management
4.3.6 Personas
4.3.7 ServerData and KeyHandle
4.3.8 Authenticator Information retrieved through UAF Application API vs.
Metadata
4.3.9 Policy Verification
4.3.10 Replay Attack Protection
4.3.11 Protection against Cloned Authenticators
4.3.12 Anti-Fraud Signals

4.4 Interoperability Considerations

5. UAF Supported Assertion Schemes
5.1 Assertion Scheme "UAFV1TLV"

5.1.1 KeyRegistrationData
5.1.2 SignedData

6. Definitions
7. Table of Figures
A. References

A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation
operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename
Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null — i.e., there are no declarations of nullable dictionary members in this specification.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are
to be interpreted as described in [RFC2119].

2. Overview

NOTE

Note: Certain dictionary members need to be present in order to
comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as
required. The keyword required has been
introduced by [WebIDL-ED], which is a work-
in-progress. If you
are using a WebIDL parser which implements [WebIDL], then you
may remove the keyword required from your
WebIDL and
use other means to ensure those fields are present.

This section is non-normative.

The goal of this Universal Authentication Framework is to
provide a unified and extensible authentication mechanism that
supplants passwords
while avoiding the shortcomings of current
alternative authentication approaches.

The design goal of the protocol is to enable Relying Parties
to leverage the diverse and heterogeneous set of security
capabilities available on
end users' devices via a single,
unified protocol.

This approach is designed to allow the
FIDO Relying Parties to choose the best available authentication
mechanism for a particular end user
or interaction, while
preserving the option for a relying party to leverage
emerging device security capabilities in the future, without
requiring
additional integration effort.

2.1 Scope

This document describes FIDO architecture in detail and defines
the UAF protocol as a network protocol. It defines the flow and
content of all
UAF messages and presents the rationale behind
the design choices.

Particular application-level bindings are outside the scope of
this document. This document is not intended to answer
questions such as:

What does an HTTP binding look like for UAF?
How can a web application communicate to FIDO UAF Client?
How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF
specifications, e.g. [UAFAppAPIAndTransport] [UAFASM]
[UAFAuthnrCommands].

2.2 Architecture

The following diagram depicts the entities involved in UAF
protocol.

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or
process UAF protocol messages:

FIDO Server, running on the relying party's infrastructure
FIDO UAF Client, part of the user agent and running on the FIDO user
device
FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to
the UAF Authenticator Metadata [FIDOMetadataStatement] describing
all the
authenticators it will interact with.

2.3 Protocol Conversation

The core UAF protocol consists of four conceptual conversations
between a FIDO UAF Client and FIDO Server.

Registration: UAF allows the relying party to register a FIDO
Authenticator with the user's account at the relying party. The
relying party
can specify a policy for supporting various FIDO
Authenticator types. A FIDO UAF Client will only register existing
authenticators in
accordance with that policy.

Authentication: UAF allows the relying party to prompt the end
user to authenticate using a previously registered FIDO
Authenticator.
This authentication can be invoked any time, at
the relying party's discretion.

Transaction Confirmation: In addition to providing a general
authentication prompt, UAF offers support for prompting the
user to
confirm a specific transaction.

This prompt includes
the ability to communicate additional information to the client
for display to the end user, using the client's
transaction confirmation display. The goal of this additional authentication operation is to enable relying parties to ensure
that the user is
confirming a specified set of the transaction
details (instead of authenticating a session to the user agent).

Deregistration: The relying party can trigger the deletion of
the account-related authentication key material.

Although this document defines the FIDO Server as the initiator
of requests, in a real world deployment the first UAF operation
will always
follow a user agent's (e.g. HTTP) request
to a relying party.

The following sections give a brief overview of the protocol
conversation for individual operations. More detailed
descriptions can be found in
the sections Registration
Operation, Authentication Operation, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for
registration.

Fig. 2 UAF Registration Message Flow

2.3.2 Authentication

The following diagram depicts the message flows for the
authentication operation.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

Fig. 3 Authentication Message Flow

2.3.3 Transaction Confirmation

The following figure depicts the transaction confirmation
message flow.

Fig. 4 Transaction Confirmation Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.

NOTE

2.3.4 Deregistration

The following diagram depicts the deregistration message flow.

Fig. 5 Deregistration Message Flow

2.4 Relationship to Other Specifications

The following data elements might be referenced by other specifications and hence
should not be changed in their fundamental data type or
high-level semantics without
liaising with the other specifications:

1. aaid, data type byte string and identifying the authenticator model,
i.e. identical values mean that they refer to the same authenticator
model
and different values mean they refer to different authenticator models.

2. AppID, data type string representing the Application Identifier,
i.e. identical values mean that they refer to the same relying party.
3. keyID, data type byte string identifying a specific credential,
i.e. identical values mean that they refer to the same credential
and different

values mean they refer to different credentials.

3. Protocol Details

This section is normative.

This section provides a detailed description of operations
supported by the UAF Protocol.

Support of all protocol elements is
mandatory for conforming software, unless stated otherwise.

All string literals in this specification are constructed from
Unicode codepoints within the set U+0000..U+007F.

Unless otherwise specified, protocol messages are transferred
with a UTF-8 content encoding.

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

Some of the data elements might have an internal structure that might change.
Other specifications shall not rely on such internal
structure.

NOTE

All data used in this protocol must be exchanged using a secure
transport protocol (such as TLS/HTTPS) established between the FIDO
UAF Client
and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section 4.1.7 TLS
Protected Communication.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data
encoded in base64url, "Base 64 Encoding with URL and Filename
Safe
Alphabet" [RFC4648] without padding.

The notation string[5] reads as five unicode characters, represented as a
UTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a
WebIDL [WebIDL-ED] DOMString.

As the UTF-8 representation has variable length, the
maximum byte length of string[5] is string[4*5].

All strings are case-sensitive unless stated otherwise.

This document uses WebIDL [WebIDL-ED] to define UAF protocol messages.

Implementations must serialize the UAF protocol messages for
transmission using UTF-8 encoded JSON [RFC4627].

3.1 Shared Structures and Types

This section defines types and structures shared by various
operations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.

WebIDL

interface Version {
 readonly attribute unsigned short major;
 readonly attribute unsigned short minor;
};

3.1.1.1 Attributes

major of type unsigned short, readonly
Major version.

minor of type unsigned short, readonly
Minor version.

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

WebIDL

enum Operation {
 "Reg",
 "Auth",
 "Dereg"
};

Enumeration description
Reg Registration
Auth Authentication or Transaction Confirmation
Dereg Deregistration

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

WebIDL

dictionary OperationHeader {
 required Version upv;
 required Operation op;
 DOMString appID;
 DOMString serverData;
 Extension[] exts;
};

3.1.3.1 Dictionary OperationHeader Members

upv of type required Version
UAF protocol version (upv). To conform with this version of the UAF spec set, the major value must be 1 and the minor value must be
2.

op of type required Operation
Name of FIDO operation (op) this message relates to.

appID of type DOMString
string[0..512].

The application identifier that the relying party would like to assert.

There are three ways to set the AppID [FIDOAppIDAndFacets]:

1. If the element is missing or empty in the request,
the FIDO UAF Client must set it to the FacetID of the caller.
2. If the appID present in the message is identical to
the FacetID of the caller, the FIDO UAF Client must accept it.
3. If it is an URI with HTTPS protocol scheme, the
FIDO UAF Client must use it to load the list of
trusted facet identifiers from the

specified
URI. The FIDO UAF Client must only accept the
request, if the facet identifier of the caller
matches one of the trusted
facet identifiers in the
list returned from dereferencing this URI.

serverData of type DOMString
string[1..1536].

A session identifier created by the relying party.

exts of type array of Extension
List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

WebIDL

typedef DOMString AAID;

string[9]

Each authenticator must have an AAID to identify UAF
enabled authenticator models globally. The AAID must uniquely identify a specific
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security characteristics within the model (see Security Considerations).

The AAID is a string with format "V#M", where

NOTE

"Auth" is used for both authentication and transaction
confirmation.

NOTE

The new key pair that the authenticator generates will be
associated with this application identifier.

Security Relevance: The application identifier is used
by the FIDO UAF Client to verify the eligibility of an application
to trigger
the use of a specific UAuth.Key. See [FIDOAppIDAndFacets]

NOTE
The relying party can opaquely store things like expiration times for the registration
session, protocol version used and other
useful information
in serverData. This data is opaque to FIDO UAF Clients. FIDO Servers may
reject a response that is
lacking this data or is containing unauthorized
modifications to it.

Servers that depend on the integrity of serverData should apply appropriate security measures, as described in
Registration
Request Generation Rules for FIDO Server and section
ServerData and KeyHandle.

"#" is a separator

"V" indicates the authenticator Vendor Code. This code
consists of 4 hexadecimal digits.

"M" indicates the authenticator Model Code. This code consists
of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the AAID is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)

The FIDO Alliance is responsible for assigning authenticator
vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes
to their authenticators. Authenticator vendors must assign
unique AAIDs to authenticators with different security
characteristics.

AAIDs are unique and each of them must relate to a distinct
authentication metadata file ([FIDOMetadataStatement])

3.1.5 KeyID typedef

WebIDL

typedef DOMString KeyID;

base64url(byte[32...2048])

KeyID is a unique identifier (within the scope of an AAID) used
to refer to a specific UAuth.Key. It is generated by the
authenticator or ASM and
registered with a FIDO Server.

The (AAID, KeyID) tuple must uniquely identify an
authenticator's registration for a relying party. Whenever a
FIDO Server wants to provide
specific information to a
particular authenticator it must use the (AAID, KeyID) tuple.

KeyID must be base64url encoded within the UAF message (see
above).

During step-up authentication and deregistration operations, the FIDO Server should provide the KeyID back to the authenticator for the latter to
locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage
for, and cannot rely on any ASM to store, generated key
handles should provide the
key handle as part of the AuthenticatorRegistrationAssertion.assertion.KeyID
during the registration operation (see also
section ServerData
and KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the MatchCriteria dictionary which
is
part of the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

3.1.6 ServerChallenge typedef

WebIDL

typedef DOMString ServerChallenge;

base64url(byte[8...64])

ServerChallenge is a server-provided random challenge. Security
Relevance: The challenge is used by the FIDO Server to verify
whether an

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are
identical.

NOTE

Adding new firmware/software
features, or changing the underlying hardware protection
mechanisms will typically change the security
characteristics
of an authenticator and hence would require a new AAID to be used. Refer to ([FIDOMetadataStatement]) for more
details.

NOTE

The exact structure and content of a KeyID is
specific to the authenticator / ASM implementation.

incoming response is new, or has already been
processed. See section Replay Attack Protection for more
details.

The ServerChallenge should be mixed into the entropy pool of the
authenticator. Security Relevance: The FIDO Server should
provide a
challenge containing strong cryptographic randomness
whenever possible. See section Server Challenge
and Random Numbers.

3.1.7 FinalChallengeParams dictionary

WebIDL

dictionary FinalChallengeParams {
 required DOMString appID;
 required ServerChallenge challenge;
 required DOMString facetID;
 required ChannelBinding channelBinding;
};

3.1.7.1 Dictionary FinalChallengeParams Members

appID of type required DOMString
string[1..512]

The value must be taken from the appID field of the OperationHeader

challenge of type required ServerChallenge

The value must be taken from the challenge field of the request
(e.g. RegistrationRequest.challenge,
AuthenticationRequest.challenge).

facetID of type required DOMString
string[1..512]

The value is determined by the FIDO UAF Client and it depends on the
calling application. See [FIDOAppIDAndFacets] for more
details.
Security Relevance: The facetID is determined by the FIDO UAF Client and
verified against the list of trusted facets
retrieved by dereferencing the appID of
the calling application.

channelBinding of type required ChannelBinding

Contains the TLS information to be sent by the FIDO
Client to the FIDO Server, binding the TLS channel to
the FIDO operation.

3.1.8 CollectedClientData dictionary

CollectedClientData is an alternative to the FinalChallengeParams structure. It is used by platforms supporting CTAP2 and Web Authentication.
The exact definition of CollectedClientData can be found in [WebAuthn].

NOTE

The minimum challenge length of 8 bytes follows the requirement
in [SP800-63] and is equivalent to the 20 decimal digits as
required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can
be used without truncation.

NOTE

The mixing of multiple sources of randomness is
recommended to improve the quality of the random numbers
generated by the
authenticator, as described in [RFC4086].

NOTE

WebIDL

dictionary CollectedClientData {
 required DOMString challenge;

3.1.9 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

Further requirements:

1. If data related to any of the channel binding
methods, described here, is available to the FIDO UAF
Client (i.e. included in this dictionary),
it must be
used according to the relevant specification .

2. All channel binding methods described here must be supported by the FIDO Server. The FIDO Server may reject operations if the channel
binding cannot be verified successfully.

 required DOMString origin;
 required AlgorithmIdentifier hashAlg;
 DOMString tokenBinding;
 WebAuthnExtensions extensions;
};

Dictionary CollectedClientData Members

challenge of type required DOMString

Contains the base64url encoding of the challenge provided by the RP.

This field plays a similar role as the challenge field in FinalChallengeParams.

origin of type required DOMString

The fully qualified origin of the requester, as provided to the authenticator by the client, in the synrax defined by [RFC6454].

This field plays a similar role as the facetID field in FinalChallengeParams.

hashAlg of type required AlgorithmIdentifier

The hash algorithm used to compute the clientDataHash, e.g. "S256", etc.

This field is relevant here as the client can freely select the hash algorithm - unlike FinalChallengeParams, where the
authenticator must use
the same algorithm as for signing the assertion.

tokenBinding of type DOMString

Contains the base64url encoding of the Token Binding ID provided by the client.
The syntax is equivalent to the cid_pubkey in
section ChannelBinding dictionary.

This field plays a similar role as the channelBinding field in FinalChallengeParams.

extensions of type WebAuthnExtensions

Additional parameters generated by processing of extensions passed in by the relying party.

NOTE

Security
Relevance:The channel binding may be verified by the FIDO Server in order
to detect and prevent MITM attacks.

At this time, the following channel binding methods are supported:

TokenBinding ID (tokenBinding [RFC8471]
TLS ChannelID (cid_pubkey) [ChannelID]
serverEndPoint [RFC5929]
tlsServerCertificate
tlsUnique [RFC5929]

WebIDL

dictionary ChannelBinding {
 DOMString serverEndPoint;
 DOMString tlsServerCertificate;
 DOMString tlsUnique;
 DOMString cid_pubkey;
 DOMString tokenBinding;
};

3.1.9.1 Dictionary ChannelBinding Members

serverEndPoint of type DOMString

The field serverEndPoint must be set
to the base64url-encoded hash of the TLS server
certificate if this is available. The hash
function must be
selected as follows:

1. if the certificate's signatureAlgorithm uses a single hash
function and that hash function is either MD5 [RFC1321] or
SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's signatureAlgorithm uses
a single hash function and that hash function is
neither MD5 nor SHA-1, then use
the hash function
associated with the certificate'ssignatureAlgorithm;

3. if the certificate's signatureAlgorithm uses
no hash functions, or uses multiple hash functions,
then this channel binding type's
channel bindings
are undefined at this time (updates to this channel
binding type may occur to address this issue if it
ever
arises)

This field must be absent if the TLS server certificate is not available to the
processing entity (e.g., the FIDO UAF Client) or the hash
function
cannot be determined as described.

tlsServerCertificate of type DOMString

This field must be absent if the TLS server
certificate is not available to the FIDO UAF Client.

This field must be set to the base64url-encoded,
DER-encoded TLS server certificate, if this data is
available to the FIDO UAF Client.

tlsUnique of type DOMString
must be set to the base64url-encoded TLS channel
Finished structure. It must, however, be absent, if this
data is not available to the
FIDO UAF Client [RFC5929].

The use of the tlsUnique is deprecated as the security of the tls-unqiue channel binding type [RFC5929] is broken, see [TLSAUTH].

cid_pubkey of type DOMString

must be absent if the client TLS stack doesn't provide TLS ChannelID
[ChannelID] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if TLS ChannelID information is supported by
the client-side TLS stack but has not been signaled by the TLS
(web) server.

Otherwise, it must be set to the base64url-encoded serialized
[RFC4627] JwkKey structure using UTF-8 encoding.

tokenBinding of type DOMString

must be absent if the client TLS stack doesn't provide Token Binding ID
[RFC8471] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if Token Binding ID information is supported by
the client-side TLS stack but has not been signaled by the
TLS
(web) server.

Otherwise, it must be set to the base64url-encoded serialized
[RFC8471] TokenBindingID structure using UTF-8 encoding.

NOTE

If channel binding data or Token Binding ID is accessible to the web
browser or client application, it must be relayed to
the FIDO
UAF Client in order to follow the assumptions
made in [FIDOSecRef].
If channel binding data or Token Binding ID is accessible to the web server, it must be relayed to the FIDO Server in order to follow
the assumptions made in [FIDOSecRef]. The FIDO Server relies on the web server to provide
accurate channel binding
information.

3.1.10 JwkKey dictionary

JwkKey is a dictionary representing a JSON Web Key encoding of
an elliptic curve public key [JWK].

This public key is the ChannelID public
key minted by the client TLS stack for the particular relying party.
[ChannelID] stipulates using only a
particular elliptic curve, and the particular
coordinate type.

WebIDL

dictionary JwkKey {
 required DOMString kty = "EC";
 required DOMString crv = "P-256";
 required DOMString x;
 required DOMString y;
};

3.1.10.1 Dictionary JwkKey Members

kty of type required DOMString, defaulting to "EC"
Denotes the key type used for Channel ID. At this
time only elliptic curve is supported by [ChannelID], so it
must be set to "EC"
[JWA].

crv of type required DOMString, defaulting to "P-256"
Denotes the elliptic curve on which this public
key is defined. At this time only the NIST curve secp256r1 is supported by
[ChannelID],
so the crv parameter must be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate
of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate
of the public key (big-endian, 32-byte value).

3.1.11 Extension dictionary

FIDO extensions can appear in several places, including
the UAF protocol messages, authenticator commands, or in the
assertion signed by
the authenticator.

Each extension has an identifier, and the namespace for
extension identifiers is FIDO UAF global (i.e. doesn't
depend on the message where
the extension is present).

Extensions can be defined in a way such that a processing
entity which doesn't understand the meaning of a specific
extension must abort
processing, or they can be specified
in a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section
where extensions are allowed.

Generic extensions used in various operations.

WebIDL

dictionary Extension {
 required DOMString id;
 required DOMString data;
 required boolean fail_if_unknown;
};

3.1.11.1 Dictionary Extension Members

id of type required DOMString
string[1..32].

Identifies the extension.

data of type required DOMString
Contains arbitrary data with a semantics agreed
between server and client. Binary data is base64url-encoded.

This field may be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions
must be ignored (false) or must lead to an
error (true).

A value of false indicates that unknown extensions must be ignored
A value of true indicates that unknown extensions must result in an error.

3.1.12 MatchCriteria dictionary

Represents the matching criteria to
be used in the server policy.

The MatchCriteria object is considered to match an authenticator, if all fields in the object are considered to match (as indicated
in the
particular fields).

WebIDL

dictionary MatchCriteria {
 AAID[] aaid;
 DOMString[] vendorID;
 KeyID[] keyIDs;
 unsigned long userVerification;
 unsigned short keyProtection;
 unsigned short matcherProtection;
 unsigned long attachmentHint;
 unsigned short tcDisplay;
 unsigned short[] authenticationAlgorithms;
 DOMString[] assertionSchemes;
 unsigned short[] attestationTypes;
 unsigned short authenticatorVersion;
 Extension[] exts;
};

3.1.12.1 Dictionary MatchCriteria Members

aaid of type array of AAID
List of AAIDs, causing matching to be restricted to certain AAIDs.

The field m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.

If m.aaid is not provided - both m.authenticationAlgorithms and
m.assertionSchemes must be provided.

The match succeeds if at least one AAID entry in this array matches AuthenticatorInfo.aaid [UAFASM].

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be
passed through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be
passed through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and fail_if_unknown is not set). If
the FIDO authenticator doesn't understand the
meaning of the extension and fail_if_unknown is set, it must generate an error
(see
definition of fail_if_unknown above).

When passing through an extension to the next entity, the fail_if_unknown flag
must be preserved (see [UAFASM]
[UAFAuthnrCommands]).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should
be accompanied by a related (and signed) extension in the authenticator assertion (e.g. TAG_UAFV1_REG_ASSERTION,
TAG_UAFV1_AUTH_ASSERTION). If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata
statement accepts
multiple fingers but in this specific case indicates that the finger used at registration
was also used for authentication)
there is no need to mark the extension as fail_if_unknown (i.e. tag 0x3E12 should be used [UAFAuthnrCommands]).
If the security has
been degraded (e.g. the FIDO authenticator according to the description in the metadata statement accepts only the finger used at
registration for authentication but in this specific case indicates that a different finger was used for authentication) the extension must be
marked as fail_if_unknown (i.e. tag 0x3E11 must be used [UAFAuthnrCommands]).

NOTE

This field corresponds to MetadataStatement.aaid [FIDOMetadataStatement].

vendorID of type array of DOMString
The vendorID causing matching to be restricted to
authenticator models of the given vendor. The first 4 characters of the AAID are
the vendorID (see AAID)).

The match succeeds if at least one entry in this array matches the first 4 characters of the AuthenticatorInfo.aaid [UAFASM].

keyIDs of type array of KeyID
A list of authenticator KeyIDs causing matching to be
restricted to a given set of KeyID instances. (see TAG_KEYID in
[UAFRegistry]).

This match succeeds if at least one entry in this array matches.

userVerification of type unsigned long
A set of 32 bit flags which may be set if
matching should be restricted by the user verification method (see
[FIDORegistry]).

keyProtection of type unsigned short
A set of 16 bit flags which may be set if
matching should be restricted by the key protections used (see
[FIDORegistry]).

This match succeeds, if at least one of the bit flags matches the
value of AuthenticatorInfo.keyProtection [UAFASM].

NOTE

This field corresponds to the first 4
characters of MetadataStatement.aaid [FIDOMetadataStatement].

NOTE

This field corresponds to AppRegistration.keyIDs [UAFASM].

NOTE
The match with AuthenticatorInfo.userVerification
([UAFASM]) succeeds, if the following condition
holds (written in Java):

if (
 // They are equal
 (AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||

 // USER_VERIFY_ALL is not set in both of them and they have at least one common bit set
 (
 ((AuthenticatorInfo.userVerification & USER_VERIFY_ALL) == 0) &&
 ((MatchCriteria.userVerification & USER_VERIFY_ALL) == 0) &&
 ((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
)
)
		

NOTE
This field value can be derived from MetadataStatement.userVerificationDetails
as follows (in order to write matchCriteria
that apply to the respective authenticator model):

For each entry in MetadataStatement.userVerificationDetails combine all
sub-entries
MetadataStatement.userVerificationDetails[i][0].userVerification
to MetadataStatement.userVerificationDetails[i][N-
1].userVerification into
a single value using a bitwise OR operation.

The combined bitflags will either all be interpreted as alternatives or as "and" combinations
(depending on the flag
USER_VERIFY_ALL).
For example, an authenticator that allows Passcode OR (both, Voice AND Face), will either look like:

1. Passcode OR Voice OR Face, or it will look like
2. Passcode AND Voice AND Face.

The algorithm above will encode it as alternative (1) if the USER_VERIFY_ALL flag is not set.
It will encode it as alternative
(2) if the USER_VERIFY_ALL flag is set.

NOTE

This field corresponds to MetadataStatement.keyProtection [FIDOMetadataStatement].

matcherProtection of type unsigned short
A set of 16 bit flags which may be set if
matching should be restricted by the matcher protection (see
[FIDORegistry]).

The match succeeds if at least one of the bit flags matches the
value of AuthenticatorInfo.matcherProtection [UAFASM].

attachmentHint of type unsigned long
A set of 32 bit flags which may be set if matching
should be restricted by the authenticator attachment
mechanism (see
[FIDORegistry]).

This field is considered to match, if at least one
of the bit flags matches the value of AuthenticatorInfo.attachmentHint [UAFASM].

tcDisplay of type unsigned short
A set of 16 bit flags which may be set if matching
should be restricted by the transaction confirmation
display availability and type.
(see [FIDORegistry]).

This match succeeds if at least one of the bit flags matches the value of AuthenticatorInfo.tcDisplay [UAFASM].

authenticationAlgorithms of type array of unsigned short
An array containing values of
supported authentication algorithm TAG values (see
[FIDORegistry], prefix ALG_SIGN) if
matching
should be restricted by the supported
authentication algorithms. This field must be present, if field aaid is missing.

This match succeeds if at least one entry in this array matches
the AuthenticatorInfo.authenticationAlgorithm [UAFASM].

assertionSchemes of type array of DOMString
A list of supported assertion
schemes if matching should be restricted by the supported schemes. This field must be present, if field
aaid is missing.

See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches
AuthenticatorInfo.assertionScheme [UAFASM].

attestationTypes of type array of unsigned short
An array containing the preferred attestation
TAG values (see [UAFRegistry], prefix TAG_ATTESTATION). The order of items must be
preserved. The most-preferred attestation type comes first.

This match succeeds if at least one entry in this array matches one entry in AuthenticatorInfo.attestationTypes [UAFASM].

NOTE

This field corresponds to the
MetadataStatement.matcherProtection metadata
statement. See [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.attachmentHint metadata
statement.

NOTE

This field corresponds to the
MetadataStatement.tcDisplay metadata statement. See [FIDOMetadataStatement].

NOTE

This field corresponds to the
MetadataStatement.authenticationAlgorithm metadata statement. See
[FIDOMetadataStatement].

NOTE

This field corresponds to the
MetadataStatement.assertionScheme metadata
statement. See [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.attestationTypes metadata statement. See [FIDOMetadataStatement].

authenticatorVersion of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equal to the field AuthenticatorVersion included
in TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION or
a corresponding value in the case of a different assertion scheme.

The use of authenticatorVersion in the policy is deprecated since there is no standardized way for the FIDO Client to learn the
authenticatorVersion. The authenticatorVersion is included in the auhentication assertion and hence can still be evaluated in the
FIDO Server.

exts of type array of Extension
Extensions for matching policy.

3.1.13 Policy dictionary

Contains a specification of accepted
authenticators and a specification of disallowed
authenticators.

WebIDL

dictionary Policy {
 required MatchCriteria[][] accepted;
 MatchCriteria[] disallowed;
};

3.1.13.1 Dictionary Policy Members

accepted of type array of array of required MatchCriteria

This field is a two-dimensional array describing the
required authenticator characteristics for the server to accept
either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements
(i.e. the sets) are alternatives (OR condition).

All elements
within a set must be combined:

The first array index indicates OR conditions (i.e. the list).
Any set of authenticator(s) satisfying these MatchCriteria in
the first index
is acceptable to the server for
this operation.

Sub-arrays of MatchCriteria in the second index (i.e. the set)
indicate that multiple authenticators (i.e. each set element)
must be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the
server. Servers must put their preferred authenticators
first, and FIDO
UAF Clients should respect those preferences,
either by presenting authenticator
options to the user in the same order, or by offering
to
perform the operation using only the highest-preference authenticator(s).

NOTE

Since the semantic of the authenticatorVersion depends
on the AAID, the field authenticatorVersion should always be
combined with a single aaid
in MatchCriteria.

This field corresponds to the MetadataStatement.authenticatorVersion metadata
statement. See [FIDOMetadataStatement].

NOTE
This list must not be empty. If the FIDO Server accepts any authenticator, it can follow the example below.

EXAMPLE 1: Example for an 'any' policy
{
 "accepted":
 [
	 [{ "userVerification": 1023 }]
]
}

NOTE

disallowed of type array of MatchCriteria
Any authenticator that matches
any of MatchCriteria contained
in the field disallowed must be excluded from
eligibility for the
operation, regardless of whether
it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy

This section is normative.

The FIDO UAF Client must follow the following rules while parsing server
policy:

1. During registration:
1. Policy.accepted is a list of combinations. Each combination
indicates a list of criteria for authenticators that the server
wants the

user to register.
2. Follow the priority of items in Policy.accepted[][]. The lists
are ordered with highest priority first.
3. Choose the combination whose criteria best match the features of the
currently available authenticators
4. Collect information about available authenticators
5. Ignore authenticators which match the Policy.disallowed criteria
6. Match collected information with the matching criteria imposed
in the policy (see MatchCriteria dictionary for more details on

matching)
7. Guide the user to register the authenticators specified in the
chosen combination

2. During authentication and transaction confirmation:

1. Follow the priority of items in Policy.accepted[][]. The lists
are ordered with highest priority first.
2. Choose the combination whose criteria best match the features of the
currently available authenticators
3. Collect information about available authenticators
4. Ignore authenticators which meet the Policy.disallowed criteria
5. Match collected information with the matching criteria described
in the policy
6. Guide the user to authenticate with the authenticators specified
in the chosen combination
7. A pending operation will be approved by the server only after all
criteria of a single combination are entirely met

3.2.1 Examples

This section is non-normative.

Combining these two bit-flags and the flag USER_VERIFY_ALL (USER_VERIFY_ALL = 1024) into a single userVerification value would
match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.

1023 = 0x3ff = USER_VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... | USER_VERIFY_NONE

NOTE

Policy.accepted is a list of combinations. Each
combination indicates a set of criteria which is enough to completely
authenticate the current pending operation

EXAMPLE 2: Policy matching either a FPS-, or Face
Recognition-based Authenticator
{
 "accepted":
 [
	 [{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}],
 	 [{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]
]
}

EXAMPLE 3: Policy matching authenticators
implementing FPS and Face Recognition as alternative combination of
user verification
methods.

{
 "accepted":
 [
	 [{ "userVerification": 18, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]
]
}

The next example requires two authenticators to be used:

Other criteria can be specified in addition to the
userVerification:

The policy for accepting authenticators of vendor with ID 1234 only is as follows:

3.3 Version Negotiation

The UAF protocol includes multiple versioned constructs:
UAF protocol version, the
version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [UAFRegistry]), and
the ASM version, see [UAFASM].

As a consequence the FIDO UAF Client must select the authenticators
which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client must perform the following steps:

1. Create a set (FC_Version_Set) of version pairs,
ASM version (asmVersion) and UAF Protocol version (upv) and add all pairs
supported by
the FIDO UAF Client into FC_Version_Set

e.g. [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]

EXAMPLE 4: Policy matching authenticators
implementing FPS and Face Recognition as mandatory combination of
user verification
methods.

{
 "accepted": [[{ "userVerification": 1042, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]]
}

EXAMPLE 5: Policy matching the combination of a FPS based and a Face Recognition
based authenticator
{
 "accepted":
 [
	 [
	 { "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]},
	 { "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}
]
]
}

EXAMPLE 6: Policy requiring the combination of a bound FPS based and a bound Face Recognition based authenticator
{
 "accepted":
 [
	 [
	 { "userVerification": 2, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":
["UAFV1TLV"]},
	 { "userVerification": 16, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":
["UAFV1TLV"]}
]
]
}

EXAMPLE 7: Policy accepting all authenticators from vendor with ID 1234
{
 "accepted":
 [[{ "vendorID": "1234", "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]]
}

NOTE

The Key Registration Data and Signed Data objects have to be parsed
and verified by the FIDO Server. This verification is only
possible
if the FIDO Server understands their encoding and the
content. Each UAF protocol version supports a set of
Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

NOTE

The ASM versions are retrieved from the AuthenticatorInfo.asmVersion field.
The UAF protocol version is derived from the related
AuthenticatorInfo.assertionScheme field.

2. Intersect FC_Version_Set with the set of upv included in UAF
Message (i.e. keep only those pairs where the upv value is also
contained in
the UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy.
For each authenticator:
Construct a set (Authnr_Version_Set) of version pairs including authenticator supported asmVersion and the compatible upv(s).

e.g. [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]

Intersect Authnr_Version_Set with FC_Version_Set and select highest version pair from it.
Take the pair where the upv is highest. In all these pairs leave only the one with highest asmVersion.

Use the remaining version pair with this authenticator

3.4 Registration Operation

NOTE

Each version consists of major and minor fields.
In order to compare two versions - compare the Major fields and if they are equal
compare the Minor fields.

Each UAF message contains a version field upv. UAF Protocol
version negotiation is always between FIDO UAF Client and FIDO
Server.

A possible implementation optimization is to have the RP web
application itself preemptively convey to the FIDO Server the UAF
protocol version(s) (UPV) supported by the FIDO Client. This
allows the FIDO Server to craft its UAF messages using the
UAF
version most preferred by both the FIDO client and server.

NOTE

The Registration operation allows the FIDO Server and the FIDO
Authenticator to agree on an authentication key.

Fig. 6 UAF Registration Sequence Diagram

The steps 11a and 11b and 12 to 13 are not always necessary as the related data could be cached.

The following diagram depicts the cryptographic data flow for
the registration sequence.

3.4.1 Registration Request Message

UAF Registration request message is represented as an array of dictionaries. The array must contain exactly one dictionary.
The request is
defined as
RegistrationRequest dictionary.

Fig. 7 UAF Registration Cryptographic Data Flow

The FIDO Server sends the AppID (see section AppID and FacetID
Assertion), the authenticator Policy,
the ServerChallenge and the
Username to the FIDO UAF Client.

The FIDO UAF Client computes the FinalChallengeParams (FCP) from
the ServerChallenge and some other values and sends the AppID,
the FCH and the
Username to the authenticator.

The ASM computes the finalChallengeHash (FCH) and calls the authenticator. The authenticator creates
a Key Registration Data object
(e.g. TAG_UAFV1_KRD,
see [UAFAuthnrCommands]) containing the hash of FCH, the newly
generated user public key (UAuth.pub) and
some other values and
signs it (see section Authenticator Attestation for more details). This KRD object is then
cryptographically verified
by the FIDO Server.

EXAMPLE 8: UAF Registration Request
[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Reg",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "ZQ_fRGDH2ar_LvrTM8JnQcl-wfnaOutiyCmpBgmMcuE"
 },
 "challenge": "Yb39SdUhU2B0089pS5L7VBW8afdlplnvR4B1Ana5vk4",
 "username": "alice@website.org",
 "policy": {
 "accepted": [
 [{
 "aaid": ["FFFF#FC03"]
 }],
 [{
 "userVerification": 512,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]

3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
 required OperationHeader header;
 required ServerChallenge challenge;
 required DOMString username;
 required Policy policy;
};

3.4.2.1 Dictionary RegistrationRequest Members

header of type required OperationHeader
Operation header. Header.op must be "Reg"

challenge of type required ServerChallenge
Server-provided challenge value

username of type required DOMString
string[1..128]

A human-readable user name intended to allow the
user to distinguish and select from among different accounts at the same relying
party.

 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 4,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 2,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1, 3]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 2,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 32,
 "keyProtection": 2,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 4,
 "keyProtection": 1,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 }]
],
 "disallowed": [
 {
 "userVerification": 512,
 "keyProtection": 16,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 256,
 "keyProtection": 16
 },
 {
 "aaid": ["FFFF#FC02"],
 "keyIDs": ["RfY_RDhsf4z5PCOhnZExMeVloZZmK0hxaSi10tkY_c4"]
 }
]
 }
}]

policy of type required Policy
Describes which types of authenticators are acceptable
for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion {
 required DOMString assertionScheme;
 required DOMString assertion;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 Extension[] exts;
};

3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode the assertion. See
UAF Supported Assertion Schemes for details.

assertion of type required DOMString
base64url(byte[1..4096])
Contains the TAG_UAFV1_REG_ASSERTION object containing the assertion scheme specific
KeyRegistrationData (KRD) object which in turn contains the newly generated UAuth.pub and is signed by the
Attestation Private
Key.

This assertion must be generated by the
authenticator and it must be used only in this Registration operation.
The format of this
assertion can vary from one assertion scheme to another
(e.g. for "UAFV1TLV" assertion scheme it must be TAG_UAFV1_KRD).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [FIDOMetadataStatement].
For the definition of the DisplayPNGCharacteristicsDescriptor structure
See [FIDOMetadataStatement].

exts of type array of Extension
Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message

A UAF Registration response message is represented as an
array of dictionaries. Each dictionary contains a
registration response for a
specific protocol version. The
array must not contain two dictionaries of the same
protocol version. The response is
defined as
RegistrationResponse dictionary.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

EXAMPLE 9: Registration Response
[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Reg",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "ZQ_fRGDH2ar_LvrTM8JnQcl-wfnaOutiyCmpBgmMcuE"
 },

 "fcParams": "eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20iLCJhcHBJRCI6Imh0dHBzOi8vdWFmLmV4YW1
 wbGUuY29tL2ZhY2V0cy5qc29uIiwiY2hhbGxlbmdlIjoiWWIzOVNkVWhVMkIwMDg5cFM1TDdWQlc4YWZkbHBsbnZSNEI
 xQW5hNXZrNCIsImNoYW5uZWxCaW5kaW5nIjp7fX0",

 "assertions": [{
 "assertionScheme": "UAFV1TLV",
 "assertion": "AT73AgM-sQALLgkARkZGRiNGQzAzDi4HAAEAAQIAAAEKLiAAbkZZjz4ysihP9vVgevgoH8SEV2JITk
 TxKFfsKbAiofQJLiAA2onnfjAyZ0Uc3GL4VyOEdRgIkz7qogqzmITcEPLovP0NLggAAAAAAAEAAAAMLkEABNfRNiA1Hp
 QSfrvD_9Qug55Vw2oaKmjgbC8TdiFXGZ6hjP7jYHV0GtYqO0EvrRRvsNBbnyhXUpq6P_iNq9laDGsHPj4CBi5GADBEAi
 C57WZpOHWCTil_IuAYSEfuj3zgyY6KFp_rgNw5kO5OwwIgiZbTG6ZmY3T6ZqvdeOxcA6FBgn6YLCncK-Wyk0XVY8kFLv
 ABMIIB7DCCAZKgAwIBAgIBBDAKBggqhkjOPQQDAjBwMQswCQYDVQQGEwJOWjEjMCEGA1UEAwwaRklETyBDb25mb3JtYW
 NlIFRlc3QgVG9vbHMxFjAUBgNVBAoMDUZJRE8gQWxsaWFuY2UxJDAiBgNVBAsMG0NlcnRpZmljYXRpb24gV29ya2luZy
 BHcm91cDAeFw0xNzAyMjkxNDMxMTJaFw0yMjAyMjgxNDMxMTJaMHAxCzAJBgNVBAYTAk5aMSMwIQYDVQQDDBpGSURPIE
 NvbmZvcm1hY2UgVGVzdCBUb29sczEWMBQGA1UECgwNRklETyBBbGxpYW5jZTEkMCIGA1UECwwbQ2VydGlmaWNhdGlvbi
 BXb3JraW5nIEdyb3VwMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEZaRKB92Abz8nqEZFf8Xz84ajfA7lLjt4O-i2wq
 1FnD_svIyTyEYm_QbOYJC0GUVE-L6V7OiD8K9Z4PfiBFRO-qMdMBswDAYDVR0TBAUwAwEB_zALBgNVHQ8EBAMCBsAwCg
 YIKoZIzj0EAwIDSAAwRQIgWDy1Oxu8PT6diGXycY0rxb1e16omexfQ-Iv9KOg5p9cCIQCFPPCArmDh3-EyxI_OaZFPvW
 2kG2hQBmi9PnC-bBrfYQ"
 }]

3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.

WebIDL

dictionary RegistrationResponse {
 required OperationHeader header;
 required DOMString fcParams;
 required AuthenticatorRegistrationAssertion[] assertions;
};

3.4.5.1 Dictionary RegistrationResponse Members

header of type required OperationHeader
Header.op must be "Reg".

fcParams of type required DOMString
The base64url-encoded serialized [RFC4627]
FinalChallengeParams
using UTF8 encoding (see FinalChallengeParams dictionary) or
alternatively it contains the serialized CollectedClientData object.
In both cases, all parameters required
for the server to verify the
Final Challenge are included.

assertions of type array of required AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules

3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed
MatchCriteria (see Policy). This array can be
considered a list (first dimension) of sets
(second dimension)
of authenticators (identified by MatchCriteria). All
authenticators in a specific set must be registered
simultaneously in
order to match the policy. But any of those
sets in the list are valid, as the list elements are
alternatives.

The FIDO Server must follow the following steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an array of
MatchCriteria objects, containing the set of
authenticators to be registered simultaneously
that need to be
identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to
be registered simultaneously that can be
identified by the same rule, create a
MatchCriteria object m, where

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m.aaid must not be combined with any other match criteria field.
If m.aaid is not provided - both m.authenticationAlgorithms and
m.assertionSchemes must be provided

2. Add m to v, e.g. v[j+1]=m.

2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed Authenticators.
1. For each already registered AAID for the current user

1. Create a MatchCriteria object m and
add AAID and corresponding KeyIDs to m.aaid and m.KeyIDs.

The FIDO Server must include already registered
AAIDs and KeyIDs into field p.disallowed to hint that the client should
not register these again.

2. Create a MatchCriteria object m and
add the AAIDs of all disallowed Authenticators
to m.aaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [FIDOMetadataService]) of
some authenticators might

}]

NOTE

Line breaks in fcParams have been inserted for improving readability.

be unacceptable. Such authenticators should
be included in p.disallowed.

3. If needed - create MatchCriteria m for other disallowed criteria
(e.g. unsupported authenticationAlgs)
4. Add all m to p.disallowed.

2. Create a RegistrationRequest object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData.

FIDO Servers that depend on the integrity of r.header.serverData should
apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they should also cryptographically bind serverData to the related message, e.g. by
re-including r.challenge, see also section
ServerData and KeyHandle.

2. Generate a random challenge and assign it to r.challenge
3. Assign the username of the user to be registered to r.username
4. Assign p to r.policy.
5. Append r to the array o of message with various versions (RegistrationRequest)

3. Send o to the FIDO UAF Client

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client must perform the following steps:

1. Choose the message m with upv set to the appropriate version number.
2. Parse the message m
3. If a mandatory field in UAF message is not present or a field
doesn't correspond to its type and value - reject the operation
4. Filter the available authenticators with the given policy and
present the filtered authenticators to User. Make sure to not
include already

registered authenticators for this user
specified in RegRequest.policy.disallowed[].keyIDs
5. Obtain FacetID of the requesting Application. If the AppID is missing or
empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation

6. Obtain TLS data if it is available
7. Create a FinalChallengeParams structure fcp and set fcp.appID,
fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately.

Serialize [RFC4627] fcp using UTF8 encoding and base64url
encode it.
FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see
section Version Negotiation) and user agrees to register:
1. Add AppID, Username, FinalChallenge, AttestationType
and all other required fields to the ASMRequest [UAFASM].

The FIDO UAF Client must follow the server policy and find the single preferred attestation type.
A single attestation type must be
provided to the ASM.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately.
The status code returned by the
ASM [UAFASM] must be mapped to a
status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.4.6.2.1 Mapping ASM Status Codes to ErrorCode

ASMs are returning a status code in their responses to the FIDO Client. The FIDO Client needs to act on those responses and also map the
status code returned the ASM [UAFASM] to an ErrorCode specified in [UAFAppAPIAndTransport].

The mapping of ASM status codes to ErrorCode is specified here:

ASM Status Code ErrorCode Comment

NOTE

All other FIDO components (except the FIDO server) will treat
r.header.serverData as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

UAF_ASM_STATUS_OK NO_ERROR Pass-through success status.

UAF_ASM_STATUS_ERROR UNKNOWN Map to UNKNOWN.

UAF_ASM_STATUS_ACCESS_DENIED AUTHENTICATOR_ACCESS_DENIED Map to AUTHENTICATOR_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED USER_CANCELLED Pass-through status code.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT INVALID_TRANSACTION_CONTENT

Map to INVALID_TRANSACTION_CONTENT.
This code indicates a problem to be
resolved by the entity providing the
transaction text.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY KEY_DISAPPEARED_PERMANENTLY

Pass-through status code. It indicates
that the Uauth key disappeared
permanently and the RP App might
want to trigger re-registration of the
authenticator.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED
NO_SUITABLE_AUTHENTICATOR or
WAIT_USER_ACTION

Retry operation with other suitable
authenticators and map to
NO_SUITABLE_AUTHENTICATOR if the
problem persists.
Return
WAIT_USER_ACTION if being called while
retrying.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE USER_NOT_RESPONSIVE

Pass-through status code. The RP App
might want to retry the operation once
the user
pays attention to the
application again.

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES INSUFFICIENT_AUTHENTICATOR_RESOURCES

The FIDO Client shall try other
authenticators matching the policy. If
none exist, pass-through status code.

UAF_ASM_STATUS_USER_LOCKOUT USER_LOCKOUT Pass-through status code.

UAF_ASM_STATUS_USER_NOT_ENROLLED USER_NOT_ENROLLED Pass-through status code.

UAF_ASM_STATUS_SYSTEM_INTERRUPTED SYSTEM_INTERRUPTED Pass-through status code.

Any other status code UNKNOWN

Map any unknown error code to
UNKNOWN.
This might happen when a
FIDO Client communicates with an
ASM implementing a newer UAF
specification than the FIDO Client.

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Register Command".

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create a RegistrationResponse message
2. Copy RegistrationRequest.header into RegistrationResponse.header

NOTE

When the appID provided in the request was empty, the
FIDO Client must set the appID in this header to the facetID (see
[FIDOAppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process.
Those rules are defined in the related
section in [UAFRegistry].

3. Set RegistrationResponse.fcParams to FinalChallenge (base64url
encoded serialized and utf8 encoded FinalChallengeParams)
4. Append the response from each Authenticator into
RegistrationResponse.assertions
5. Send RegistrationResponse message to FIDO Server

3.4.6.5 Registration Response Processing Rules for FIDO Server

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (RegistrationResponse.header.upv) is not
supported – reject the operation
2. If a mandatory field in UAF message is not present or a field
doesn't correspond to its type and value - reject the operation

2. Verify that RegistrationResponse.header.serverData, if used,
passes any implementation-specific checks against its validity. See also
section
ServerData and KeyHandle.

3. base64url decode RegistrationResponse.fcParams and convert it
into an object (fcp)
4. If this fcp object is a FinalChallengeParams object, then verify each field in fcp and make sure it is valid:

1. Make sure fcp.appID corresponds to the one stored by the FIDO Server

2. Make sure fcp.facetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]
3. Make sure fcp.channelBinding is as expected (see section ChannelBinding dictionary)

4. Make sure fcp.challenge has really been generated by the FIDO Server
for this operation and it is not expired
5. Reject the response if any of these checks fails

5. If this fcp object is a CollectedClientData object, then verify each field in fcp and make sure it is valid:
1. Make sure fcp.origin is considered a legitimate origin for this registration request.
2. Make sure fcp.tokenBinding is as expected (see field cid_pubkey in section ChannelBinding dictionary)

3. Make sure fcp.challenge has really been generated by the FIDO Server
for this operation and it is not expired
4. Reject the response if any of these checks fails

6. For each assertion a in RegistrationResponse.assertions
1. Parse data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and make

sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to
have, verify that the assertion has a valid
syntax, and verify that the assertion doesn't include unknown fields (identified by TAGs or IDs)
that belong to extensions marked as
"fail-if-unknown" set to true [FIDOMetadataStatement].

If it doesn't - continue with next assertion

2. if a.assertion contains an object of type TAG_UAFV1_REG_ASSERTION, then

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme.
Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

NOTE

When the appID provided in the request was empty, the
FIDO Client must set the appID to the facetID (see
[FIDOAppIDAndFacets]).
In this case, the Uauth key cannot be used by other application facets.

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

1. Retrieve the AAID from the assertion.

2. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

3. Verify that the AAID indeed matches the policy specified
in the registration request.

If it doesn't match the policy - continue with next assertion

4. Locate authenticator-specific authentication algorithms from
the authenticator metadata [FIDOMetadataStatement] using the
AAID.

5. If fcp is of type FinalChallengeParams, then hash RegistrationResponse.fcParams using hashing algorithm
suitable for this
authenticator type. Look up the hash
algorithm in authenticator metadata, field AuthenticationAlgs.
It is the hash algorithm
associated with the first entry
related to a constant with prefix ALG_SIGN.

FCHash = hash(RegistrationResponse.fcParams)

6. If fcp is of type CollectedClientData, then hash RegistrationResponse.fcParams using hashing algorithm
specified in
fcp.hashAlg.

FCHash = hash(RegistrationResponse.fcParams)

7. if a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_UAFV1_KRD as first element:
1. Obtain Metadata(AAID).AttestationType for the AAID and make sure that a.assertion.TAG_UAFV1_REG_ASSERTION

contains the most preferred
attestation tag specified in field MatchCriteria.attestationTypes in
RegistrationRequest.policy (if this field is present).

If a.assertion.TAG_UAFV1_REG_ASSERTION doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one

2. Make sure that a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.FinalChallengeHash == FCHash
If comparison fails - continue with next assertion

3. Obtain Metadata(AAID).AuthenticatorVersion for the AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), it is recommended to
assume increased risk.
See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[FIDOMetadataService] for more details on this.

4. Check whether a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is acceptable, i.e. it is either not
supported (value is 0 or the field isKeyRestricted
is set to 'false' in the related Metadata Statement) or it is not
exceedingly high

If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is exceedingly high, this assertion might be
skipped
and processing will continue with next one

5. If a.assertion.TAG_UAFV1_REG_ASSERTION contains ATTESTATION_BASIC_FULL tag
1. If entry AttestationRootCertificates for the AAID in the
metadata [FIDOMetadataStatement] contains at least

one element:
1. Obtain contents of all TAG_ATTESTATION_CERT tags from

a.assertion.TAG_UAFV1_REG_ASSERTION.ATTESTATION_BASIC_FULL object. The occurrences are ordered (see
[UAFAuthnrCommands])
and represent the attestation certificate followed by the related certificate chain.

2. Obtain all entries of AttestationRootCertificates
for the AAID in authenticator Metadata, field
AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to
the Attestation Root Certificate using
Certificate Path
Validation as specified in [RFC5280]

If verification fails – continue with next assertion
4. Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.ATTESTATION_BASIC_FULL.Signature using the

attestation certificate (obtained before).
If verification fails – continue with next assertion

NOTE

The AAID in TAG_UAFV1_KRD is contained in a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions
included in this RegistrationResponse in order to determine whether this AAID matches the policy.

2. If Metadata(AAID).AttestationRootCertificates for this AAID is
empty - continue with next assertion
3. Mark assertion as positively verified

6. If a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type ATTESTATION_BASIC_SURROGATE
1. There is no real attestation for the AAID, so we just assume the AAID is the real one.
2. If entry AttestationRootCertificates for the AAID in the
metadata is empty

Verify a.assertion.TAG_UAFV1_REG_ASSERTION.ATTESTATION_BASIC_SURROGATE.Signature using
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_PUB_KEY

If verification fails – continue with next assertion

3. If entry AttestationRootCertificates for the AAID in the
metadata is not empty - continue with next assertion (as
the AAID obviously is expecting a different attestation method).

4. Mark assertion as positively verified

7. If a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type ATTESTATION_ECDAA
1. If entry ecdaaTrustAnchors for the AAID in the
metadata [FIDOMetadataStatement] contains at least one element:

1. For each of the ecdaaTrustAnchors entries, perform the ECDAA Verify operation as specified in
[FIDOEcdaaAlgorithm].

If verification fails – continue with next ecdaaTrustAnchors entry

2. If no ECDAA Verify operation succeeded – continue with next assertion

2. If Metadata(AAID).ecdaaTrustAnchors for this AAID is
empty - continue with next assertion
3. Mark assertion as positively verified and the authenticator indeed is of model
as indicated by the AAID.

8. If a.assertion.TAG_UAFV1_REG_ASSERTION contains another TAG_ATTESTATION tag - verify the attestation by following
appropriate processing rules applicable to that attestation.
Currently this document defines the processing rules for
Basic Attestation and direct anonymous attestation (ECDAA).

8. if a.assertion.TAG_UAFV1_REG_ASSERTION contains a different object than
TAG_UAFV1_KRD as first element, then follow the rules
specific to that object.

9. Extract a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.PublicKey into PublicKey,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.KeyID into KeyID,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.SignCounter into SignCounter,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ASSERTION_INFO.authenticatorVersion into AuthenticatorVersion,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into AAID.

3. if a.assertion doesn't contain an object of type TAG_UAFV1_REG_ASSERTION, then then follow the respective processing rules of that
assertion format if supported - otherwise skip this assertion.

7. For each positively verified assertion a
Store PublicKey, KeyID, SignCounter, AuthenticatorVersion, AAID
and a.tcDisplayPNGCharacteristics into a record
associated
with the user's identity. If an entry with the same
pair of AAID and KeyID already exists then fail (should never
occur).

3.5 Authentication Operation

NOTE

Fig. 8 UAF Authentication Sequence Diagram

The steps 7a and 7a and 8 to 9 are not always necessary as the related data could be cached.

The TransactionText (TranTxt) is only required in the case of Transaction Confirmation (see section 3.5.1 Transaction dictionary), it is
absent in the case of a pure Authenticate operation.

During this operation, the FIDO Server asks the FIDO UAF Client to
authenticate user with server-specified authenticators, and return
an
authentication response.

In order for this operation to succeed,
the authenticator and the relying party must have a previously
shared registration.

3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

WebIDL

dictionary Transaction {
 required DOMString contentType;
 required DOMString content;
 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.5.1.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [FIDOMetadataStatement]).

content of type required DOMString
base64url(byte[1...])

Fig. 9 UAF Authentication Cryptographic Data Flow

Diagram of cryptographic flow:

The FIDO Server sends the AppID (see [FIDOAppIDAndFacets]), the authenticator policy
and the ServerChallenge to the FIDO UAF
Client.

The FIDO UAF Client computes the hash of the
FinalChallengeParams, produced
from the ServerChallenge
and other values, as
described in this document, and sends
the AppID and hashed FinalChallengeParams to the Authenticator.

The authenticator creates the SignedData object (see
TAG_UAFV1_SIGNED_DATA in [UAFAuthnrCommands]) containing the hash of the final
challenge parameters, and some other values and signs it using the UAuth.priv key. This assertion
is then cryptographically verified by
the FIDO Server.

NOTE

For best interoperability, at least the values text/plain and/or image/png should be supported.

Contains the base64url encoded transaction content according to the contentType to be shown to the user.

If contentType is "text/plain" then the content must be the base64url encoding of the UTF8
[RFC3629] encoded text with a maximum
length of 200 characters. The Authenticator shall display the default character
if it doesn't know how to display the intended one.

If contentType is "image/png" or any other type, then it must be base64url encoded
(i.e. the base64url encoded PNG [PNG] image in
the case of "image/png").

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the
DisplayPNGCharacteristicsDescriptor structure See
[FIDOMetadataStatement].
This field must be present if the contentType is "image/png".

3.5.2 Authentication Request Message

UAF Authentication request message is represented as an array of dictionaries. The array must contain exactly one dictionary.
The request is
defined as
AuthenticationRequest dictionary.

EXAMPLE 10: UAF Authentication Request
[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
 },
 "challenge": "4D8eUxdSzQ_Rbk7Gf0SooK7Xr9O2LU-g150stOpK0go",
 "policy": {
 "accepted": [
 [{
 "aaid": ["FFFF#FC01"]
 }],
 [{
 "userVerification": 512,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 4,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 2,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1, 3]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 2,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 32,
 "keyProtection": 2,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 4,
 "keyProtection": 1,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 }]
]
 }
}]

3.5.3 AuthenticationRequest dictionary

Contains the UAF Authentication Request Message:

WebIDL

dictionary AuthenticationRequest {
 required OperationHeader header;
 required ServerChallenge challenge;
 Transaction[] transaction;
 required Policy policy;
};

EXAMPLE 11: UAF Authentication Request with text/plain Transaction
[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "DLbLt14MdqvuS4fESNCAPJmS8yIKPJ3Ad0xb1cMyu2Q"
 },
 "challenge": "vui9bgJ453N_kWlZbiwMz9q6uPvssjnXjkHYzk-LurY",
 "transaction": [
 {
 "contentType": "text/plain",
 "content": "VHJhbnNmZXIgMjAwMCQgdG8gRXZl"
 }
],
 "policy": {
 "accepted": [
 [{
 "aaid": ["FFFF#FC01"]
 }],
 [{
 "userVerification": 512,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 4,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 2,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1, 3]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 2,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 32,
 "keyProtection": 2,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 4,
 "keyProtection": 1,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 }]
]
 }
}]

3.5.3.1 Dictionary AuthenticationRequest Members

header of type required OperationHeader
Header.op must be "Auth"

challenge of type required ServerChallenge
Server-provided challenge value

transaction of type array of Transaction
Transaction data to be explicitly confirmed by the user.

The list contains the same transaction content in various content types and various image sizes.
Refer to [FIDOMetadataStatement]
for more information about
Transaction Confirmation Display characteristics.

policy of type required Policy
Server-provided policy defining what types of authenticators are
acceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:

WebIDL

dictionary AuthenticatorSignAssertion {
 required DOMString assertionScheme;
 required DOMString assertion;
 Extension[] exts;
};

3.5.4.1 Dictionary AuthenticatorSignAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode assertion.
See	UAF Supported Assertion Schemes for details.

assertion of type required DOMString
base64url(byte[1..4096])
Contains the assertion containing a signature generated by UAuth.priv,
i.e. TAG_UAFV1_AUTH_ASSERTION.

exts of type array of Extension
Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed
assertions from registered authenticators.

WebIDL

dictionary AuthenticationResponse {
 required OperationHeader header;
 required DOMString fcParams;
 required AuthenticatorSignAssertion[] assertions;
};

3.5.5.1 Dictionary AuthenticationResponse Members

header of type required OperationHeader
Header.op must be "Auth"

fcParams of type required DOMString
The field fcParams is the base64url-encoded serialized [RFC4627]
FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) or alternatively it contains the serialized CollectedClientData object.
In both cases, all parameters
required
for the server to verify the Final Challenge are included.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertions of type array of required AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. The array must contain exactly one dictionary.
The response
is defined as
AuthenticationResponse dictionary.

3.5.7 Authentication Processing Rules

3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed
MatchCriteria (see Policy). This array can be
considered a list (first dimension) of sets
(second dimension)
of authenticators (identified by MatchCriteria). All
authenticators in a specific set must be used for authentication
simultaneously in order to match the policy. But any of those
sets in the list are valid, i.e. the list elements are
alternatives.

The FIDO Server must follow the steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be used for authentication
simultaneously that can be identified by the same
rule, create a MatchCriteria object m, where

EXAMPLE 12: UAF Authentication Response
[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
 },

 "fcParams": "eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20iLCJhcHBJRCI6Imh0dHBzOi8vdWFmLmV4YW1
 wbGUuY29tL2ZhY2V0cy5qc29uIiwiY2hhbGxlbmdlIjoiNEQ4ZVV4ZFN6UV9SYms3R2YwU29vSzdYcjlPMkxVLWcxNTB
 zdE9wSzBnbyIsImNoYW5uZWxCaW5kaW5nIjp7fX0",

 "assertions": [{
 "assertionScheme": "UAFV1TLV",
 "assertion": "Aj7EAAQ-dgALLgkARkZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvCi4gAMYR1ZSqYuPLiNpYl
 omDJYGZZGQRGSlLlThqf8ZzF-k2EC4AAAkuIADaied-MDJnRRzcYvhXI4R1GAiTPuqiCrOYhNwQ8ui8_Q0uBAABAAAA
 Bi5GADBEAiDDt4-pzmEWZyakWcWGdtBQLIXSf75wL3tEjiCIry_QtQIgjw0oMlQqKOHdG2M26e1Z0bG4wGjfow_vu5z
 p-VkALFo"
 }]
}]

EXAMPLE 13: UAF Authentication Response for text/plain Transaction
[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
 },

 "fcParams": "eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20vaW5kZXguaHRtbCIsImFwcElEIjoiaHR0cH
 M6Ly91YWYuZXhhbXBsZS5jb20vZmFjZXRzLmpzb24iLCJjaGFsbGVuZ2UiOiI0RDhlVXhkU3pRX1JiazdHZjBTb29LN1hyO
 U8yTFUtZzE1MHN0T3BLMGdvIiwiY2hhbm5lbEJpbmRpbmciOnt9fQ",

 "assertions": [{
 "assertionScheme": "UAFV1TLV",
 "assertion": "Aj7EAAQ-dgALLgkARkZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvCi4gAMYR1ZSqYuPLiNpYl
 omDJYGZZGQRGSlLlThqf8ZzF-k2EC4AAAkuIADaied-MDJnRRzcYvhXI4R1GAiTPuqiCrOYhNwQ8ui8_Q0uBAABAAAA
 Bi5GADBEAiDDt4-pzmEWZyakWcWGdtBQLIXSf75wL3tEjiCIry_QtQIgjw0oMlQqKOHdG2M26e1Z0bG4wGjfow_vu5z
 p-VkALFo"
 }]
}]

NOTE

Line breaks in fcParams have been inserted for improving readability.

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m.aaid must not be combined with any other match criteria field.
If m.aaid is not provided - both m.authenticationAlgorithms and
m.assertionSchemes must be provided
In case of step-up authentication (i.e. in the case where it is
expected the user is already known due to a previous
authentication step) every item in Policy.accepted must include
the AAID and KeyID of the authenticator registered
for this
account in order to avoid ambiguities when having multiple
accounts at this relying party.

2. Add m to v, e.g. v[j+1]=m.

2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed authenticators.
1. Create a MatchCriteria object m and add AAIDs of all disallowed authenticators
to m.aaid.

The status (as provided in the metadata TOC [FIDOMetadataService]) of
some authenticators might be unacceptable. Such
authenticators should
be included in p.disallowed.

2. If needed - create MatchCriteria m for other disallowed criteria
(e.g. unsupported authenticationAlgs)
3. Add all m to p.disallowed.

2. Create an AuthenticationRequest object r with appropriate r.header for the supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData.
FIDO Servers that depend on the integrity

of r.header.serverData should
apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and
they should also cryptographically bind serverData to the related message, e.g. by re-including r.challenge, see also section
ServerData and KeyHandle.

2. Generate a random challenge and assign it to r.challenge
3. If this is a transaction confirmation operation - look up TransactionConfirmationDisplayContentTypes/

TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every
participating AAID, generate a list of
corresponding transaction content and
insert the list into r.transaction.

If the authenticator reported (a dynamic) AuthenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during
Registration - it must be preferred over the (static) value specified in the authenticator Metadata.

4. Set r.policy to our new policy object p created above, e.g. r.policy = p.
5. Add the authentication request message the array

3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message m with upv set to the appropriate version number.
2. Parse the message m

If a mandatory field in the UAF message is not present or a
field doesn't correspond to its type and value then reject the
operation

3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation

4. Filter available authenticators with the given policy and
present the filtered list to User.
5. Let the user select the preferred Authenticator.
6. Obtain TLS data if its available
7. Create a FinalChallengeParams structure fcp and set fcp.AppID,
fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately.

Serialize [RFC4627] fcp using UTF8 encoding and base64url
encode it.
FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that supports an Authenticator Interface
Version AIV compatible with message version
AuthenticationRequest.header.upv (see Version Negotiation) and
user agrees to authenticate with:

NOTE

All other FIDO components (except the FIDO server) will treat
r.header.serverData as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

1. Add AppID, FinalChallenge, Transactions (if present),
and all other fields to the ASMRequest.
2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately.
The status code returned by the

ASM [UAFASM] must be mapped to a
status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Sign Command".

3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create an AuthenticationResponse message
2. Copy AuthenticationRequest.header into AuthenticationResponse.header

3. Fill out AuthenticationResponse.FinalChallengeParams with appropriate
fields and then stringify it
4. Append the response from each authenticator into AuthenticationResponse.assertions
5. Send AuthenticationResponse message to the FIDO Server

3.5.7.5 Authentication Response Processing Rules for FIDO Server

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (AuthenticationResponse.header.upv) is not supported – reject the operation
2. If a mandatory field in UAF message is not present or a field
doesn't correspond to its type and value - reject the operation

2. Verify that AuthenticationResponse.header.serverData, if used, passes any
implementation-specific checks against its validity. See also
section
ServerData and KeyHandle.

3. base64url decode AuthenticationResponse.fcParams and convert into an
object (fcp)
4. If this fcp object is a FinalChallengeParams object, then verify each field in fcp and make sure it's valid:

1. Make sure fcp.appID corresponds to the one stored by the FIDO Server

2. Make sure fcp.facetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]
3. Make sure ChannelBinding is as expected (see section ChannelBinding dictionary)

NOTE

When the appID provided in the request was empty, the
FIDO Client must set the appID in this header to the facetID (see
[FIDOAppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process.
Those rules are defined in the related
section in [UAFRegistry].

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme.
Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

NOTE

When the appID provided in the request was empty, the
FIDO Client must set the appID to the facetID (see
[FIDOAppIDAndFacets]).
In this case, the Uauth key cannot be used by other application facets.

NOTE

4. Make sure fcp.challenge has really been generated by the FIDO Server
for this operation and it is not expired
5. Reject the response if any of the above checks fails

5. If this fcp object is a CollectedClientData object, then verify each field in fcp and make sure it's valid:
1. Make sure fcp.origin is considered a legitimate origin for this registration request.
2. Make sure fcp.tokenBinding is as expected (see field cid_pubkey in section ChannelBinding dictionary)

3. Make sure fcp.challenge has really been generated by the FIDO Server
for this operation and it is not expired
4. Reject the response if any of the above checks fails

6. For each assertion a in AuthenticationResponse.assertions
1. Parse data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and make

sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to
have, verify that the assertion has a valid
syntax, and verify that the assertion doesn't include unknown fields (identified by TAGs or IDs)
that belong to extensions marked as
"fail-if-unknown" set to true [FIDOMetadataStatement].

If it doesn't - continue with next assertion

2. if a.assertion contains an object of type TAG_UAFV1_AUTH_ASSERTION, then
1. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains TAG_UAFV1_SIGNED_DATA as first element:

1. Retrieve the AAID from the assertion.

2. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

3. Make sure that the AAID indeed matches the policy of the Authentication Request
If it doesn't meet the policy – continue with next assertion

4. Obtain Metadata(AAID).AuthenticatorVersion for this AAID and make sure that
it is lower or equal to
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), it is recommended to
assume increased authentication risk.
See "StatusReport dictionary" and "Metadata TOC object Processing Rules"
in [FIDOMetadataService] for more details on this.

5. Retrieve a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_KEYID as KeyID
6. Locate UAuth.pub public key associated with (AAID, KeyID) in the user's record.

If such record doesn't exist - continue with next assertion

7. Verify the AAID against the AAID stored
in the user's record at time of Registration.
If comparison fails – continue with next assertion

8. Locate authenticator specific authentication algorithms from
authenticator metadata (field AuthenticationAlgs)
9. Check the Signature Counter a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter and make

sure it is either not supported by the authenticator (i.e. the value provided and the value stored in the user's record are
both 0 or the value isKeyRestricted is set to 'false' in the related Metadata Statement) or it has been incremented
(compared to the value stored in the user's record)

If it is greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a
cloned authenticator has been used previously).

10. If fcp is of type FinalChallengeParams, then hash AuthenticationResponse.FinalChallengeParams using the hashing
algorithm suitable for this authenticator type. Look up the
hash algorithm in authenticator Metadata, field
AuthenticationAlgs. It is the hash algorithm associated with
the first entry related to a constant with prefix ALG_SIGN.

FCHash = hash(AuthenticationResponse.FinalChallengeParams)

fcp AuthenticationResponse.fcParams

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

The AAID in TAG_UAFV1_SIGNED_DATA is contained in
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_AAID.

11. If is of type CollectedClientData, then hash using hashing algorithm
specified in
fcp.hashAlg.

FCHash = hash(AuthenticationResponse.fcParams)

12. Make sure that a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_FINAL_CHALLENGE_HASH
== FCHash
If comparison fails – continue with next assertion

13. If a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.authenticationMode
== 2

1. Make sure there is a transaction cached on Relying Party side.
If not – continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for
the same transaction)
and calculate their hashes using hashing algorithm suitable for
this authenticator (same hash algorithm as used for
FinalChallenge).

For each cachedTransaction add hash(cachedTransaction) into
cachedTransactionHashList

3. Make sure that a.TransactionHash is in cachedTransactionHashList
If it's not in the list – continue with next assertion

14. Use UAuth.pub key and appropriate authentication algorithm to
verify
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_SIGNATURE

1. If signature verification fails – continue with next assertion
2. Update SignCounter in user's record with

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter

2. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains a different object than TAG_UAFV1_SIGNED_DATA as first element, then follow
the rules specific to that object.

3. if a.assertion doesn't contain an object of type TAG_UAFV1_AUTH_ASSERTION, then follow the respective processing rules of that
assertion format if supported - otherwise skip this assertion.

4. Treat this assertion a as positively verified.

7. Process all positively verified authentication assertions a.

3.6 Deregistration Operation

This operation allows FIDO Server to ask the FIDO Authenticator
to delete keys related to the particular relying party.

The FIDO Server may explicitly enumerate the keys to be deleted, or the FIDO server may signal deregistration of all keys on all authenticators
managed by the FIDO UAF Client and relating to a given appID.

3.6.1 Deregistration Request Message

The FIDO UAF Deregistration request message is represented as an array of dictionaries. The array must contain exactly one dictionary.
The
request is defined as
DeregistrationRequest dictionary.

NOTE

The transaction hash included in this AuthenticationResponse must match the transaction content specified in the
related AuthenticationRequest.
As FIDO doesn’t mandate any specific FIDO Server API, the transaction content
could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web
Application.

NOTE
There are various deregistration use cases that both FIDO Server and FIDO Client implementations should allow for. Two in particular
are:

1. FIDO Servers should trigger this operation in the event a user removes
their account at the relying party.
2. FIDO Clients should ensure that relying party application facets -- e.g., mobile apps, web pages -- have means to initiate a

deregistration
operation without having necessarily received a UAF protocol message
with an op value of "Dereg". This allows the
relying party app facet to remove a user's keys from authenticators during events such as relying party app removal or installation.

EXAMPLE 14: UAF Deregistration Request
[{
 "header": {

The example above contains a deregistration request. This
request will deregister the key with the specified keyID registered for the
authenticator with aaid "FFFF#FC03" for the given
appID.

3.6.2 DeregisterAuthenticator dictionary

WebIDL

dictionary DeregisterAuthenticator {
 required AAID aaid;
 required KeyID keyID;
};

3.6.2.1 Dictionary DeregisterAuthenticator Members

aaid of type required AAID
AAID of the authenticator housing the UAuth.priv key to deregister, or an empty string if all keys related to the specified appID are to
be de-registered.

keyID of type required KeyID
The unique KeyID related to UAuth.priv.
KeyID is assumed to be unique within the scope of an AAID only. If aaid is not an empty
string,
then:

1. keyID may contain a value of type KeyID, or,
2. keyID may be an
empty string.

(1) signals deletion of a particular UAuth.priv key mapped
to the (AAID, KeyID) tuple.

(2) signals deletion of all KeyIDs associated with the specified aaid.

If aaid is an empty string, then keyID must also be an empty string. This signals deregistration of all keys on all authenticators that
are mapped to the specified appID.

3.6.3 DeregistrationRequest dictionary

WebIDL

dictionary DeregistrationRequest {
 required OperationHeader header;
 required DeregisterAuthenticator[] authenticators;
};

3.6.3.1 Dictionary DeregistrationRequest Members

header of type required OperationHeader
Header.op must be "Dereg".

authenticators of type array of required DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules

 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Dereg",
 "appID": "https://uaf.example.com/facets.json"
 },
 "authenticators": [
 {
 "keyID": "kbufhLYGoFFLJPRCUvwiUu-fr1nh3sX3IjM9i9lcOrQ",
 "aaid": "FFFF#FC03"
 }
]
}]

NOTE

There is no deregistration response object.

3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server must follow the steps:

1. Create a DeregistrationRequest message m with m.header.upv set to the appropriate version number.
2. If the FIDO Server intends to deregister all keys on all authenticators managed by the FIDO UAF Client for this appID, then:

1. create one and only one DeregisterAuthenticator object o
2. Set o.aaid and o.keyID to be empty string values
3. Append o to m.authenticators, and go to step 5

3. If the FIDO Server intends to deregister all keys on all authenticators with a given AAID managed by the FIDO UAF Client for this appID,
then:

1. create one and only one DeregisterAuthenticator object o
2. Set o.aaid to the intended AAID and set o.keyID to be an empty string.
3. Append o to m.authenticators, and go to step 5

4. Otherwise, if the FIDO Server intends to deregister specific (AAID, KeyID) tuples, then for each tuple to be deregistered:
1. create a DeregisterAuthenticator object o
2. Set o.aaid and o.keyID appropriately
3. Append o to m.authenticators

5. delete related entry (or entries) in FIDO Server's account database
6. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message m with upv set to the appropriate version number.
2. Parse the message

If a mandatory field in DeregistrationRequest message is not present
or a field doesn't correspond to its type and value – reject
the
operation
Empty string values for o.aaid and o.keyID must occur in the first and only DeregisterAuthenticator object o, otherwise reject the
operation

3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation

4. If the set of authenticators compatible with the message version DeregistrationRequest.header.upv and having an AAID matching
one of the provided AAIDs
(an AAID of an authenticator matches if it is either (a) equal to one of the AAIDs in the
DeregistrationRequest or if (b) the AAID in the DeregistrationRequest is an empty string)
is empty, then return
NO_SUITABLE_AUTHENTICATOR.

5. For each authenticator compatible with the message version
DeregistrationRequest.header.upv and having an AAID matching one
of the provided AAIDs
(an AAID of an authenticator matches if it is either (a) equal to one of the AAIDs in the
DeregistrationRequest or if (b) the AAID in the DeregistrationRequest is an empty string):

1. Create appropriate ASMRequest for Deregister function and send it to the ASM. If the ASM returns an error, handle that error
appropriately.
The status code returned by the ASM [UAFASM] must be mapped to a
status code defined in
[UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping ASM Status Codes to ErrorCode.

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

See [UAFASM] section "Deregister request".

4. Considerations

This section is non-normative.

4.1 Protocol Core Design Considerations

This section describes the important design elements used in the
protocol.

4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all
supported authenticators and their corresponding Metadata.
Authenticator metadata
[FIDOMetadataStatement] contains
information such as:

Supported Registration and Authentication Schemes
Authentication Factor, Installation type, supported
content-types and other supplementary information, etc.

In order to make a decision about which authenticators are
appropriate for a specific transaction, FIDO Server looks up
the list of authenticator
metadata by AAID and retrieves the
required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be
identified with a unique authenticator Attestation ID (AAID).

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating
authenticator model identity during registration. It allows
Relying Parties to
cryptographically verify that the
authenticator reported by FIDO UAF Client is really what it claims
to be.

Using authenticator Attestation, a relying party
"example-rp.com" will be able to verify that the
authenticator model of the "example-
Authenticator", reported
with AAID "1234#5678", is not malware running on the FIDO User
Device but is really a authenticator of model
"1234#5678".

NORMATIVE

FIDO Authenticators should support "Basic Attestation" or "ECDAA" described
below. New Attestation mechanisms may be added to the
protocol
over time.

NORMATIVE

FIDO Authenticators not providing sufficient protection for
Attestation keys (non-attested authenticators) must use the
UAuth.priv key in
order to formally generate the same KeyRegistrationData object as attested authenticators. This behavior must be properly declared in the
Authenticator
Metadata.

4.1.2.1 Basic Attestation

NORMATIVE

There are two different flavors of Basic Attestation:

Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).

Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key
corresponding to the UAuth.pub key included in the attestation object.
As a consequence it does not provide a cryptographic proof of
the security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 Full Basic Attestation

NOTE

FIDO Servers must have access to a trust anchor for verifying
attestation public keys (i.e. Attestation Certificate trust
store) in order to
follow the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation
signature during the registration process for
the same reason. The attestation trust anchor is shared with FIDO Servers out of band (as part
of the Metadata). This sharing process
shouldt be done according to [FIDOMetadataService].

NOTE

In this Full Basic Attestation model, a large number of
authenticators must share the same Attestation certificate and
Attestation Private Key in
order to provide non-linkability
(see Protocol Core Design Considerations).
Authenticators can only be identified on a production batch
level or
an AAID level by their Attestation Certificate, and
not individually. A large number of authenticators sharing the
same Attestation Certificate
provides better privacy, but also
makes the related private key a more attractive attack target.

Fig. 10 Attestation Certificate Chain

4.1.2.1.2 Surrogate Basic Attestation

NORMATIVE

In this attestation method, the UAuth.priv key must be used to sign the
Registration Data object. This behavior must be properly declared in
the Authenticator
Metadata.

4.1.2.2 Direct Anonymous Attestation (ECDAA)

The FIDO Basic Attestation scheme uses attestation "group" keys shared across a set of authenticators with identical characteristics in order to
preserve privacy by avoiding the introduction of global correlation handles. If such an attestation key is extracted from one single authenticator,
it is possible to create a "fake" authenticator using the same key and hence indistinguishable from the original authenticators by the relying
party. Removing trust for registering new authenticators
with the related key would affect the entire set of authenticators sharing the same
"group" key. Depending on the number of authenticators,
this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as opposed to targeted physical attacks.

The protection measures of the Authenticator's attestation
private key depend on the specific authenticator model's
implementation.

NOTE

The FIDO Server must load the appropriate Authenticator
Attestation Root Certificate from its trust store based on the
AAID provided in
KeyRegistrationData object.

NOTE

When using Full Basic Attestation: A given set of authenticators sharing the same manufacturer and
essential characteristics must not
be issued a new Attestation
Key before at least 100,000 devices are issued the previous
shared key.

NOTE

FIDO Authenticators not providing sufficient protection for
Attestation keys (non-attested authenticators) must use this attestation
method.

An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA [TPMv1-2-Part1]. Translated to FIDO, this
approach would require one Privacy-CA interaction for each Uauth key. This means relatively high load and high availability requirements for
the Privacy-CA. Additionally the Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This
might make the Privacy-CA an interesting attack target.

Another alternative is the Direct Anonymous Attestation [BriCamChe2004-DAA]. Direct Anonymous Attestation is a cryptographic scheme
combining privacy with security. It uses the Authenticator specific secret once to communicate with a single DAA Issuer (either at
manufacturing time or after being sold before first use)
and uses the resulting DAA credential in the DAA-Sign protocol with each relying party.
The (original) DAA scheme has been adopted by the Trusted Computing Group for TPM v1.2 [TPMv1-2-Part1].

ECDAA (see [FIDOEcdaaAlgorithm] for details) is an improved DAA scheme based on elliptic curves and bilinear pairings [CheLi2013-
ECDAA]. This scheme provides significantly improved performance compared with the original DAA and it is part of the TPMv2 specification
[TPMv2-Part1].

NORMATIVE

The ECDAA attestation algorithm is used as specified in [FIDOEcdaaAlgorithm].

4.1.3 Error Handling

NORMATIVE

FIDO Authenticators must inform the FIDO UAF Client (see FIDO Interoperability
Overview) about any error conditions
encountered when
processing commands through the Authenticator
Specific Module (ASM). See [UAFASM] and [UAFAuthnrCommands] for
details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of
existing authenticators (TPMs, Fingerprint Sensors, Secure
Elements, etc.) and
also future authenticators designed for
FIDO. Therefore extensibility is a core capability designed
into the protocol.

It is considered that there are two particular aspects that need
careful extensibility. These are:

Cryptographic key provisioning (KeyRegistrationData)
Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is
called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See
also UAF Supported Assertion Schemes.

The Registration Assertion defines how and in which format a
cryptographic key is exchanged between the authenticator and
the FIDO Server.

The Authentication Assertion defines how and in which format the
authenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in
[UAFRegistry].

4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e. replacing username and password). As part of the FIDO UAF
Registration, the Uauth key is registered (linked) to the related user account at the RP. The authenticator stores the username (allowing the
user to select a specific account at the RP in the case he has multiple ones). See [UAFAuthnrCommands], section "Sign Command" for
details.

4.1.6 Silent Authenticators

FIDO UAF supports authenticators not requiring any types of user verification or
user presence check. Such authenticators are called Silent
Authenticators.

In order to meet user's expectations, such Silent Authenticators need specific properties:

It must be possible for a user to effectively remove a Uauth key maintained by a Silent Authenticator (in order to avoid being tracked) at

NOTE

FIDO Servers must inform the calling Relying Party Web
Application Server (see FIDO Interoperability
Overview) about any error
conditions encountered when
generating or processing UAF messages through their proprietary
API.

the user's discretion (see [UAFAuthnrCommands]). This is not compatible with statelesss implementations storing the Uauth private key
wrapped inside a KeyHandle on the FIDO Server.
TransactionConfirmation is not supported (as it would require user input which is not intended),
see [UAFAuthnrCommands].
They might not operate in first factor mode (see [UAFAuthnrCommands]) as this might violate the privacy principles.

The MetadataStatement has to truthfully reflect the Silent Authenticator, i.e. field userVerification needs to be set to USER_VERIFY_NONE.

4.1.7 TLS Protected Communication

We recommend, that the

1. TLS Client verifies and validates the server
certificate chain according to [RFC5280], section 6
"Certificate Path Validation". The
certificate revocation status
should be checked (e.g. using OCSP [RFC2560] or CRL based
validation [RFC5280]) and the TLS server
identity should be checked as well
[RFC6125].

2. TLS Client's trusted certificate root store
is properly maintained and at least requires the CAs
included in the root store to annually pass
Web Trust or ETSI
(ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.

See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on
how to use TLS.

4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

4.2.2 Revealing KeyIDs

FIDO UAF uses key identifiers (KeyIDs) to identify Uauth keys registered by an authenticator to a relying party.
By design (see
[UAFAuthnrCommands], section 6.2.4), KeyIDs do not reveal any secret information.
However, if an attacker could provide a username to a
relying party and the relying party server would reveal the related KeyID if an account for that username
exists or give an error otherwise, the
attacker would implicitly learn
whether the user has an account at that relying party.

As a consequence, relying parties should reveal a KeyID only after performing some basic authentication steps, e.g.
verifying the existence of
a Cookie, authentication using FIDO Silent Authenticator, etc.).

4.3 Security Considerations

There is no "one size fits all" authentication method. The FIDO
goal is to decouple the user verification method from the
authentication protocol
and the authentication server, and to
support a broad range of user verification methods and a broad
range of assurance levels. FIDO
authenticators should be able
to leverage capabilities of existing computing hardware, e.g.
mobile devices or smart cards.

The overall assurance level of electronic user authentications
highly depends (a) on the security and integrity of the user's
equipment involved
and (b) on the authentication method being
used to authenticate the user.

NOTE

In order to protect the data communication
between FIDO UAF Client and FIDO Server a protected TLS channel
must be used by FIDO
UAF Client (or User Agent) and the
Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying
Party
2. The client endpoint of the TLS connection must be either the FIDO UAF Client
or the User Agent / App
3. TLS Client and Server should
use TLS v1.2 or newer and should only use TLS v1.1 if TLS
v1.2 or higher are not available. The

"anon" and "null" TLS
crypto suites are not allowed and must be rejected; insecure
crypto-algorithms in TLS (e.g. MD5, RC4,
SHA1) should be
avoided [SP800-131A] [RFC7525].

4. TLS Extended Master Secret Extension [RFC7627] and TLS Renegotiation Indication Extension [RFC5746] should be used to
protect against MITM attacks.

5. The use of the tls-unique method is deprecated as its security is broken, see [TLSAUTH].

NOTE

A ServerChallenge needs appropriate random sources in order to be effective (see
[RFC4086] for more details). The (pseudo-)random
numbers used
for generating the Server Challenge should successfully pass
the randomness test specified in [Coron99] and they
should follow the guideline given in [SP800-90b].

When using FIDO, users should have the freedom to use any
available equipment and a variety of authentication methods.
The relying party
needs reliable information about the security
relevant parts of the equipment and the authentication method
itself in order to determine whether
the overall risk of an
electronic authentication is acceptable in a particular
business context. The FIDO Metadata Service
[FIDOMetadataService] is intended to provide such information.

It is important for the UAF protocol to provide this kind of
reliable information about the security relevant parts of the
equipment and the
authentication method itself to the FIDO
server.

The overall security is determined by the weakest link. In order
to support scalable security in FIDO, the underlying UAF
protocol needs to
provide a very high conceptual security
level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels. The FIDO Alliance
envisions a broad range of FIDO UAF Clients, FIDO
Authenticators and
FIDO Servers to be offered by various vendors. Relying parties
should be able to select a FIDO Server providing the
appropriate level of security. They should also be in a
position to accept FIDO Authenticators meeting the security
needs of the given business
context, to compensate assurance
level deficits by adding appropriate implicit authentication
measures, and to reject authenticators not
meeting their
requirements. FIDO does not mandate a very high assurance level
for FIDO Authenticators, instead it provides the basis for
authenticator and user verification method competition.

Authentication vs. Transaction Confirmation. Existing Cloud
services are typically based on authentication. The user launches
an
application (i.e. User Agent) assumed to be trusted and
authenticates to the Cloud service in order to establish an
authenticated
communication channel between the application and
the Cloud service. After this authentication, the application
can perform any actions to the
Cloud service using the authenticated channel. The service provider will attribute all those actions to the user.
Essentially the user
authenticates all actions performed by the
application in advance until the service connection or
authentication times out. This is a very
convenient way as the
user doesn't get distracted by manual actions required for the
authentication. It is suitable for actions with low risk
consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is
typically being used when non-repudiation is required. The
resulting requirement for this scenario is called
What You See
Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and
"Transaction Confirmation". The technical difference is, that
with
Authentication the user confirms a random challenge, where
in the case of Transaction Confirmation the user also confirms
a human readable
content, i.e. the contract. From a security
point, in the case of authentication the application needs to
be trusted as it performs any action once
the authenticated
communication channel has been established. In the case of
Transaction Confirmation only the transaction confirmation
display component implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in
order to determine the risk associated with an authentication,
it is
important to know details about some components of the
user's environment. Web Browsers typically send a "User Agent"
string to the web
server. Unfortunately any application could
send any string as "User Agent" to the relying party. So this
method doesn't provide strong security.
FIDO UAF is based on a
concept of cryptographic attestation. With this concept, the
component to be attested owns a cryptographic secret
and
authenticates its identity with this cryptographic secret. In
FIDO UAF the cryptographic secret is called "Authenticator
Attestation Key". The
relying party gets access to reference
data required for verifying the attestation.

In order to enable the relying party to appropriately determine
the risk associated with an authentication, all components
performing significant
security functions need to be
attestable.

In FIDO UAF significant security functions are implemented in the
"FIDO Authenticators". Security functions are:

1. Protecting the attestation key.
2. Generating and protecting the Authentication key(s), typically
one per relying party and user account on relying party.
3. Verifying the user.
4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).

Some FIDO Authenticators might implement these functions in
software running on the FIDO User Device, others might
implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators
might even be
formally evaluated and accredited to some national
or international scheme. Each FIDO Authenticator model has an attestation ID
(AAID),
uniquely identifying the related security characteristics.
Relying parties get access to these security properties of the
FIDO Authenticators and
the reference data required for
verifying the attestation.

Resilience to leaks from other verifiers. One of the important
issues with existing authentication solutions is a weak server
side
implementation, affecting the security of authentication
of typical users to other relying parties. It is the goal of
the FIDO UAF protocol to
decouple the security of different relying
parties.

Decoupling User Verification Method from Authentication Protocol.
In order to decouple the user verification method from the
authentication protocol, FIDO UAF is based on an extensible set of
cryptographic authentication algorithms. The cryptographic
secret will be
unlocked after user verification by the
Authenticator. This secret is then used for the
authenticator-to-relying party authentication. The set of
cryptographic algorithms is chosen according to the
capabilities of existing cryptographic hardware and computing
devices. It can be extended
in order to support new
cryptographic hardware.

Privacy Protection. Different regions in the world have different
privacy regulations. The FIDO UAF protocol should be acceptable in
all
regions and hence must support the highest level of data
protection. As a consequence, FIDO UAF doesn't require transmission
of biometric
data to the relying party nor does it require the
storage of biometric reference data [ISOBiometrics] at the relying
party. Additionally,
cryptographic secrets used for different
relying parties shall not allow the parties to link actions to
the same user entity. UAF supports this
concept, known as
non-linkability. Consequently, the UAF protocol doesn't require
a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all
enabled FIDO Authenticators on the FIDO User Device using the
Discovery interface
[UAFAppAPIAndTransport]. The combination of
AAIDs adds to the entropy provided by the client to relying
parties. Based on such information,
relying parties can
fingerprint clients on the internet (see Browser Uniqueness at
eff.org and https://wiki.mozilla.org/Fingerprinting). In order
to
minimize the entropy added by FIDO, the user can
enable/disable individual authenticators – even when they are
embedded in the device (see
[UAFAppAPIAndTransport], section
"privacy considerations").

4.3.1 FIDO Authenticator Security

See [UAFAuthnrCommands].

4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key
operations fast enough for small devices, it is suggested that
implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512
hash algorithms. However, the RSA algorithm is also supported.
See
[FIDORegistry] "Authentication Algorithms" and "Public Key Representation Formats"
for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for
each signature generation, a fresh random value. For effective
security, this value
must be chosen randomly and uniformly from
a set of modular integers, using a cryptographically secure
process. Even slight biases in that
process may be turned into
attacks on the signature schemes.

4.3.3 FIDO Client Trust Model

The FIDO environment on a FIDO User Device comprises 4 entities:

User Agents (a native app or a browser)
FIDO UAF Clients (a shared service potentially used by multiple User Agents)
Authenticator Specific Modules (ASMs)
Authenticators

NOTE

If such random values cannot be provided under all possible environmental conditions, then a
deterministic version of ECDSA should be
used (see [RFC6979]).

Fig. 11 UAF Client Trust Model

The security and privacy principles that underpin mobile operating systems require certain behaviours from apps. FIDO must uphold those
principles wherever possible. This means that each of these components has to enforce specific trust relationships with the others to avoid the
risk of rogue components subverting the integrity of the solution.

One specific requirement on handsets is that apps originating from different vendors must not be allowed directly to view or edit each other’s
data (e.g. FIDO UAF credentials).

Given that FIDO UAF Clients are intended to provide a shared service, the principle of siloed app data has been applied to the FIDO UAF
Client, rather than individual apps. This means that if two or more FIDO UAF Clients are present on a device, then each FIDO UAF Client is
unable to access authentication keys created by another FIDO UAF Client. A given FIDO UAF Client may however provide services to multiple
User Agents, so that the same authentication key can authenticate to different facets of the same Relying Party, even if one facet is a 3rd party
browser.

This exclusive access restriction is enforced through the KHAccessToken. When a FIDO UAF Client communicates with an ASM, the ASM
reads the identity of the FIDO UAF Client caller1 and includes that Client ID in the KHAccessToken that it sends to the authenticator.
Subsequent calls to the authenticator must include the same Client ID in the KHAccessToken. Each authentication key is also bound to the
ASM that created it, by means of an ASMToken (a random unique ID for the ASM) that is also included in the KHAccessToken.

Finally, the User Agents that a FIDO UAF Client will recognise are determined by the Relying Party itself. The FIDO UAF Client requests a list
of Trusted Apps from the RP as part of the Registration and Authentication protocols. This prevents User Agents that have not been explicitly
authorized by the Relying Party from using the FIDO credentials.

In this manner, in a compliant FIDO installation, UAF credentials can only be accessed via apps that the relying party explicitly trusts and
through the same client and ASM that performed the original registration.

It should be noted that the specification allows for FIDO UAF Clients to be built directly into User Agents. However, such implementations will
restrict the ability to support multiple facets for relying party applications unless they also expose the UAF Client API for other User Agents to
consume.

4.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and
hence might not be able to verify the calling software entity
(i.e. the ASM).

The KHAccessToken allows restricting access to the keys
generated by the FIDO Authenticator to the intended ASM. It is
based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key
provided by the caller (i.e. the ASM). This key is called
KHAccessToken.

This technique allows making sure that registered keys are only
accessible by the caller that originally registered them. A
malicious App on a
mobile platform won't be able to access keys
by bypassing the related ASM (assuming that this ASM originally
registered these keys).

The KHAccessToken is typically specific to the AppID, PersonaID,
ASMToken and the CallerID. See [UAFASM] for more details.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g.
[RFC5929] and [ChannelID]).

UAF relies on TLS server authentication for binding
authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for
the same AppID as the relying party and they might be able to
manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server
private key and certificate and they might be able to
manipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a
consequence, "tls-unique" defined in [RFC5929] might be
difficult to
implement.

2. Data centers might use SSL concentrators.
3. Data centers might implement load-balancing for TLS endpoints
using different TLS certificates. As a consequence,
"tls-server-end-point"

defined in [RFC5929], i.e. the hash of
the TLS server certificate might be inappropriate.
4. Unfortunately, hashing of the TLS server certificate (as in
"tls-server-end-point") also limits the usefulness of the
channel binding in a

particular, but quite common circumstance.
If the client is operated behind a trusted (to that client)
proxy that acts as a TLS man-in-the-
middle, your client will
see a different certificate than the one the server is using.
This is actually quite common on corporate or military
networks
with a high security posture that want to inspect all incoming
and outgoing traffic. If the FIDO Server just gets a hash
value,
there's no way to distinguish this from an attack. If
sending the entire certificate is acceptable from a performance
perspective, the server
can examine it and determine if it is a
certificate for a valid name from a non-standard issuer (likely
administratively trusted) or a
certificate for a different name
(which almost certainly indicates a forwarding attack).

See ChannelBinding dictionary for more details.

4.3.5 Session Management

FIDO does not define any specific session management methods. However, several FIDO functions
rely on a robust session management
being implemented by the relying party's web application:

FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.

FIDO Authentication
After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).

4.3.6 Personas

FIDO supports unlinkability [AnonTerminology] of accounts at
different relying parties by using relying party specific keys.

Sometimes users have multiple accounts at a particular relying
party and even want to maintain unlinkability between these
accounts.

Today, this is difficult and requires certain measures to be
strictly applied.

NOTE

On some platforms, the ASM additionally might need special
permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among
applications.

FIDO does not want to add more complexity to maintaining
unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use
different authenticators for the various personas (e.g.
"business", "personal").
This is possible as roaming
authenticators typically are small and not excessively
expensive.

In the case of bound authenticators, this is different. FIDO
recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona
(e.g. "business" or "personal"). Some administrative interface
(not standardized
by FIDO) of the authenticator may allow
maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g.
authentication keys, usernames, KeyIDs, …) related to the
Persona being active
at that time.

With this concept, the User can switch to the "Personal" Persona
and register new accounts. After switching back to "Business"
Persona, these
accounts will not be recognized by the
authenticator (until the User switches back to "Personal"
Persona again).

In order to support the persona feature, the FIDO Authenticator-specific Module API [UAFASM] supports the use of
a 'PersonaID' to identify
the persona in use by the
authenticator. How Personas are managed or communicated with
the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see Operation
Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be
echoed
back to the FIDO Server as part of the related UAF
response message.

4.3.8 Authenticator Information retrieved through UAF Application API vs.
Metadata

Several authenticator properties (e.g. UserVerificationMethods,
KeyProtection, TransactionConfirmationDisplay, ...) are available in the
metadata [FIDOMetadataStatement] and through the FIDO UAF Application API.
The properties included in the metadata are authoritative and
are provided by a trusted source. When in doubt, decisions
should be based on the properties retrieved from the Metadata
as opposed to the
data retrieved through the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide
a good "hint" what to expect from the Authenticator. Such
"hints" are well suited to drive and optimize the user
experience.

4.3.9 Policy Verification

FIDO UAF Response messages do not include all parameters
received in the related FIDO UAF request message into the
to-be-signed object.
As a consequence, any MITM could modify
such entries.

FIDO Server will detect such changes if the modified value is
unacceptable.

NOTE

The FIDO Server should not assume any kind of implicit integrity
protection of such data nor any implicit session binding. The FIDO
Server must explicitly bind the serverData to an active
session.

NOTE

In some situations, it is desirable to protect sensitive data
such that it can be stored in arbitrary places (e.g. in
serverData or in the
KeyHandle). In such situations, the
confidentiality and integrity of such sensitive data must be
protected. This can be achieved by using
a suitable encryption
algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or
CTR [CTRMode]. This cipher mode needs to be used
correctly. For
CBC, for example, a fresh random IV for each encryption is
required. The data might have to be padded first in order to
obtain an integral number of blocks in length. The integrity
protection can be achieved by adding a MAC or a digital signature on the
ciphertext, using a different key than for the encryption, e.g. using HMAC [FIPS198-1].
Alternatively, an authenticated encryption
scheme such as
AES-GCM [SP800-38D] or AES-CCM [SP800-38C] could be used.
Such a scheme provides both integrity and
confidentiality in a
single algorithm and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by
re-including the challenge value in the authenticated
serverData.

For example, a MITM could replace a generic policy by a policy
specifying only the weakest possible FIDO Authenticator. Such a
change will
be detected by FIDO Server if the weakest possible
FIDO Authenticator does not match the initial policy (see
Registration Response
Processing Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection

The FIDO UAF protocol specifies two different methods for
replay-attack protection:

1. Secure transport protocol (TLS)
2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when
implemented correctly [TLS].

Additionally, each protocol message contains some random
bytes in the ServerChallenge field. The FIDO server should only
accept incoming
FIDO UAF messages which contain a valid
ServerChallenge value. This is done by
verifying that the ServerChallenge value, sent
by the client,
was previously generated by the FIDO server.
See FinalChallengeParams.

It should also be noted that under some (albeit unlikely)
circumstances, random numbers generated by the FIDO server
may not be unique,
and in such cases, the same ServerChallenge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by
an authenticator with the security characteristics specified
for the model
(identified by the AAID). The security is better
when only a single authenticator with that specific UAuth.Key
instance exists. Consequently
FIDO UAF specifies some
protection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate
measures then cloning should be hard as such keys cannot be
extracted easily.

Secondly, UAF specifies a Signature Counter (see Authentication Response Processing Rules and [UAFAuthnrCommands]). This counter is
increased by every signature operation. If a cloned
authenticator is used, then the subsequent use of the original
authenticator would include a
signature counter lower to or
equal to the previous (malicious) operation. Such an incident
can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals

There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:

1. Register the authenticator to some relying party for one account
2. Commit fraud
3. Deregister the Authenticator
4. Register the authenticator to some relying party for another account
5. Commit fraud
6. Deregister the Authenticator
7. and so on...

4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native
PC Applications. Such applications are referred to as FIDO enabled
applications.

NOTE

Authenticators might support a Registration Counter (RegCounter). The RegCounter will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios.
See [UAFAuthnrCommands] for more details.

Fig. 12 FIDO Interoperability Overview

Web applications typically consist of the web application server
and the related Web App. The Web App code (e.g. HTML and
JavaScript) is
rendered and executed on the client side by the
User Agent. The Web App code talks to the User Agent via a set
of JavaScript APIs, e.g.
HTML DOM. The FIDO DOM API
is defined in [UAFAppAPIAndTransport]. The protocol between the Web App and the
Relying Party Web
Application Server is typically proprietary.

Mobile Apps play the role of the User Agent and the Web App
(Client). The protocol between the Mobile App and the Relying
Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web
App (Client). Those applications are typically expected to be independent
from any
particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [UAFAppAPIAndTransport].

5. UAF Supported Assertion Schemes

This section is normative.

5.1 Assertion Scheme "UAFV1TLV"

This scheme is mandatory to implement for FIDO Servers.
This scheme is mandatory to implement for FIDO Authenticators.

This Assertion Scheme allows the authenticator and the FIDO
Server to exchange an asymmetric authentication key generated
by the
Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to
encode registration and authentication assertions generated by

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO
Authenticators and
have to be verified by the FIDO Server.
Verification will fail if the values are modified during
transport.

The ASM API [UAFASM] specifies the standardized API to access
authenticator Specific Modules (ASMs) on Desktop PCs and Mobile
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API.
Instead it lists the minimum data set and a specific
message
format which needs to be transferred to and from the FIDO
Authenticator.

authenticators.
This is the default assertion scheme for UAF protocol.

TAGs and Algorithms are defined in [UAFRegistry].

The authenticator must use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the metadata
statement [FIDOMetadataStatement] for each relying party. This key pair should be generated as part of the registration operation.

Conforming FIDO Servers must implement all
authentication algorithms and key formats listed in document
[FIDORegistry] unless they are
explicitly marked as optional in [FIDORegistry].

Conforming FIDO Servers must implement all
attestation types (TAG_ATTESTATION_*) listed in document
[UAFRegistry] unless they are explicitly
marked as optional in [UAFRegistry].

Conforming authenticators must implement (at least) one
attestation type defined in [UAFRegistry], as well as one authentication algorithm and
one key format listed in [FIDORegistry].

5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

6. Definitions

See [FIDOGlossary].

7. Table of Figures

Fig. 1 The UAF Architecture
Fig. 2 UAF Registration Message Flow
Fig. 3 Authentication Message Flow
Fig. 4 Transaction Confirmation Message Flow
Fig. 5 Deregistration Message Flow
Fig. 6 UAF Registration Sequence Diagram
Fig. 7 UAF Registration Cryptographic Data Flow
Fig. 8 UAF Authentication Sequence Diagram
Fig. 9 UAF Authentication Cryptographic Data Flow
Fig. 10 Attestation Certificate Chain
Fig. 11 UAF Client Trust Model
Fig. 12 FIDO Interoperability Overview

A. References

A.1 Normative references

[ABNF]
D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNF. January 2008. Internet Standard. URL:
https://tools.ietf.org/html/rfc5234

[ChannelID]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL: http://tools.ietf.org/html/draft-balfanz-tls-channelid

[Coron99]
J. Coron; D. Naccache. An accurate evaluation of Maurer's universal test. February 1999. URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOAppIDAndFacets]
D. Balfanz; B. Hill; R. Lindemann; D. Baghdasaryan. FIDO AppID and Facets. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-
id-20180227/fido-appid-and-facets-v2.0-id-20180227.html

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. 28 November 2017. Review
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-statement-v2.0-id-20180227.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). August 2015. URL: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[JWA]
M. Jones. JSON Web Algorithms (JWA). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7518

[JWK]
M. Jones. JSON Web Key (JWK). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7517

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C Recommendation. URL:
https://www.w3.org/TR/PNG/

[RFC1321]
R. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). April 1992. URL: http://www.ietf.org/rfc/rfc1321.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC3629]
F. Yergeau. UTF-8, a transformation format of ISO 10646. November 2003. Internet Standard. URL: https://tools.ietf.org/html/rfc3629

[RFC4086]
D. Eastlake 3rd; J. Schiller; S. Crocker. Randomness Requirements for Security (RFC 4086). June 2005. URL:
http://www.ietf.org/rfc/rfc4086.txt

[RFC4627]
D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON). July 2006. Informational. URL:
https://tools.ietf.org/html/rfc4627

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5056]
N. Williams. On the Use of Channel Bindings to Secure Channels (RFC 5056). November 2007. URL: http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280

[RFC5929]
J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL: http://www.ietf.org/rfc/rfc5929.txt

[RFC6234]
D. Eastlake 3rd; T. Hansen. US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) (RFC 6234). May 2011. URL:
http://www.ietf.org/rfc/rfc6234.txt

[RFC6979]
T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)
(RFC6979). August 2013. URL: http://www.ietf.org/rfc/rfc6979.txt

[RFC8471]
A. Popov, Ed.; M. Nystroem; D. Balfanz; J. Hodges. The Token Binding Protocol Version 1.0. October 2018. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8471

[SP800-90b]
Meltem Sönmez Turan; Elaine Barker; John Kelsey; Kerry McKay; Mary Baish; Michael Boyle. NIST Special Publication 800-90B:
Recommendation for the Entropy Sources Used for Random Bit Generation. January 2018. URL:
https://csrc.nist.gov/publications/detail/sp/800-90b/final

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill; J. Hodges; K. Yang. FIDO UAF Authenticator Commands. Review Draft.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

[WebAuthn]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael B. Jones; Akshay Kumar; Angelo Liao; Rolf Lindemann; Emil Lundberg.
Web Authentication: An API for accessing Public Key Credentials Level 1. March 2019. TR. URL: https://www.w3.org/TR/webauthn/

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
https://tools.ietf.org/html/rfc8471
https://tools.ietf.org/html/rfc8471
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/

A.2 Informative references

[AnonTerminology]
A. Pfitzmann; M. Hansen. Anonymity, Unlinkability, Unobservability, Pseudonymity, and Identity Management - A Consolidated Proposal
for Terminology, Version 0.34. August 2010. URL: http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

[BriCamChe2004-DAA]
Ernie Brickell; Jan Camenisch; Liqun Chen. Direct Anonymous Attestation. 2004. URL: http://eprint.iacr.org/2004/205.pdf

[CTRMode]
H. Lipmea; P. Rogaway; D. Wagner. Comments to NIST concerning AES Modes of Operation: CTR-Mode Encryption. URL:
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf

[CheLi2013-ECDAA]
Liqun Chen; Jiangtao Li. Flexible and Scalable Digital Signatures in TPM 2.0. 2013. URL: http://dx.doi.org/10.1145/2508859.2516729

[ECDSA-ANSI]
. Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography
ANSI X9.63-2011 (R2017). 2017. URL: https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-service-v2.0-id-20180227.html

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hill; D. Biggs. FIDO Security Reference. 27 February 2018. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html

[FIPS198-1]
. FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC). July 2008. URL:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[ISOBiometrics]
. ISO/IEC 2382-37 Harmonized Biometric Vocabulary. 2017. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en

[OWASP2013]
. . 2013. OWASP Top 10 - 2013. The Ten Most Critical Web Application Security Risks. URL:
https://www.owasp.org/index.php/Top_10_2013-Top_10

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560

[RFC5746]
E. Rescorla; M. Ray; S. Dispensa; N. Oskov. Transport Layer Security (TLS) Renegotiation Indication Extension. February 2010.
Proposed Standard. URL: https://tools.ietf.org/html/rfc5746

[RFC6125]
P. Saint-Andre; J. Hodges. Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125). March 2011. URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6287]
D. M'Raihi; J. Rydell; S. Bajaj; S. Machani; D. Naccache. OCRA: OATH Challenge-Response Algorithm (RFC 6287). June 2011. URL:
http://www.ietf.org/rfc/rfc6287.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[RFC7525]
Y. Sheffer; R. Holz; P. Saint-Andre. Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS). May 2015. Best Current Practice. URL: https://tools.ietf.org/html/rfc7525

[RFC7627]
K. Bhargavan, Ed.; A. Delignat-Lavaud; A. Pironti; A. Langley; M. Ray. Transport Layer Security (TLS) Session Hash and Extended
Master Secret Extension. September 2015. Proposed Standard. URL: https://tools.ietf.org/html/rfc7627

[SHEFFER-TLS]
Y. Sheffer; R. Holz; P. Saint-Andre. Recommendations for Secure Use of TLS and DTLS. Internet-Draft (Work in Progress). URL:
https://tools.ietf.org/html/draft-sheffer-tls-bcp

[SP800-131A]
E. Barker; A. Roginsky. NIST Special Publication 800-131A: Transitions: Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths. January 2011. Withdrawn on November 06, 2015. URL: http://csrc.nist.gov/publications/nistpubs/800-
131A/sp800-131A.pdf

[SP800-38C]
M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. July 2007. URL: http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-
July20_2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)
and GMAC. November 2007. URL: https://csrc.nist.gov/publications/detail/sp/800-38d/final

[SP800-63]
W. Burr; D. Dodson; E. Newton; R. Perlner; W.T. Polk; S. Gupta; E. Nabbus. NIST Special Publication 800-63-2: Electronic
Authentication Guideline. August 2013. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

[TLS]

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2004/205.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://dx.doi.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc5746
https://tools.ietf.org/html/rfc5746
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/draft-sheffer-tls-bcp
https://tools.ietf.org/html/draft-sheffer-tls-bcp
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. August 2008. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5246

[TLSAUTH]
Karthikeyan Bhargavan; Antoine Delignat-Lavaud; Cédric Fournet; Alfredo Pironti; Pierre-Yves Strub. Triple Handshakes and Cookie
Cutters: Breaking and Fixing Authentication over TLS. February 2014. URL: https://ieeexplore.ieee.org/document/6956559

[TPMv1-2-Part1]
. TPM 1.2 Part 1: Design Principles. URL: http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-
D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf

[TPMv2-Part1]
. Trusted Platform Module Library, Part 1: Architecture. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-
1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf

[TR-03116-4]
Technische Richtlinie TR-03116-4: eCard-Projekte der Bundesregierung: Teil 4 – Vorgaben für Kommunikationsverfahren im eGovernment. 2013.
URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf

[WebIDL]
Boris Zbarsky. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://ieeexplore.ieee.org/document/6956559
https://ieeexplore.ieee.org/document/6956559
https://ieeexplore.ieee.org/document/6956559
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

FIDO UAF Registry of Predefined Values
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

Editor:
Dr. Rolf Lindemann , Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan , Nok Nok Labs, Inc.
Brad Hill, PayPal

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are referenced by various
UAF specifications.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A
list of current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance
specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this document, please
Contact Us .
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance , Inc. and its Members
and any other contributors to the Specification are not, and shall not be held,
responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable document and may be used
as reference material or cited from another
document. FIDO Alliance 's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1. Notation
1.1 Key Words

2. Overview
3. Authenticator Characteristics

3.1 Assertion Schemes

4. Predefined Tags
4.1 Tags used in the protocol

5. Predefined Extensions
5.1 User Verification Method Extension
5.2 User ID Extension
5.3 Android SafetyNet Extension
5.4 Android Key Attestation
5.5 User Verification Caching

5.5.1 UVC Request
5.5.2 UVC Response
5.5.3 Privacy Considerations
5.5.4 Security Considerations

5.6 Require Resident Key Extension
5.7 Attestation Conveyance Extension

6. Other Identifiers specific to FIDO UAF
6.1 FIDO UAF Application Identifier (AID)

A. References
A.1 Normative references
A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “ must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in
this
document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of UAF-specific constants that are used and referenced in various UAF specifications.
It is expected that,
over time, new constants will be added to this registry. For example new authentication algorithms and
new types of authenticator
characteristics will require new constants to be defined for use within the specifications.

FIDO-specific constants that are common to multiple protocol families are defined in [FIDORegistry].

3. Authenticator Characteristics

This section is normative.

3.1 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
authenticator. The authenticator must generate a key pair (UAuth.pub/UAuth.priv) to be used with algorithm suites listed in
[FIDORegistry] section "Authentication Algorithms" (with prefix
ALG_). This assertion scheme is using a compact Tag Length Value
(TLV) encoding for the KRD and SignData messages generated by the authenticators. This is the default assertion scheme for the UAF
protocol.

4. Predefined Tags

This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence. The tag is a 2-byte unique unsigned value
describing the type of field the data represents, the length is a 2-byte unsigned value indicating the size of the value in bytes, and the value is the
variable-sized series of bytes which contain data for this item in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the limitations of some
hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it cannot process
that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1_REG_ASSERTION 0x3E01
The content of this tag is the authenticator response to a Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02
The content of this tag is the authenticator response to a Sign command.

TAG_UAFV1_KRD 0x3E03
Indicates Key Registration Data.

TAG_UAFV1_SIGNED_DATA 0x3E04
Indicates data signed by the authenticator using UAuth.priv key.

TAG_APCV1CBOR_AUTH_ASSERTION 0x3E05
The content of this tag is the authenticator response to a Sign command.

TAG_APCV1CBOR_SIGNED_DATA 0x3E06
Indicates Android Protected Confirmation data signed by the authenticator using UAuth.priv key.

TAG_ATTESTATION_CERT 0x2E05
Indicates DER encoded attestation certificate.

TAG_SIGNATURE 0x2E06
Indicates a cryptographic signature.

TAG_KEYID 0x2E09
Represents a generated KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A
Represents a generated final challenge hash as defined in [UAFProtocol].

TAG_AAID 0x2E0B
Represents an Authenticator Attestation ID as defined in [UAFProtocol].

TAG_PUB_KEY 0x2E0C
Represents a generated public key.

TAG_COUNTERS 0x2E0D
Represents the use counters for an authenticator.

TAG_ASSERTION_INFO 0x2E0E
Represents authenticator information necessary for message processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F
Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10

Represents a hash of the transaction content sent to the authenticator.
TAG_EXTENSION 0x3E11, 0x3E12

This is a composite tag indicating that the content is an extension.
TAG_EXTENSION_ID 0x2E13

Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.
TAG_EXTENSION_DATA 0x2E14

Represents extension data. Content of this tag is a UINT8[] byte array.
TAG_RAW_USER_VERIFICATION_INDEX 0x0103

This is the raw UVI as it might be used internally by authenticators. This TAG shall not appear in assertions leaving the authenticator
boundary as it could be used
as global correlation handle.

TAG_USER_VERIFICATION_INDEX 0x0104
The user verification index (UVI) is a value uniquely identifying a user verification data record.

Each UVI value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVI values must not be reused by the Authenticator (for other biometric data or users).

The UVI data can be used by FIDO Servers to understand whether an authentication
was authorized by the exact same biometric data as
the initial key generation.
This allows the detection and prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)),
where the rawUVI reflects (a) the biometric
reference data, (b) the related OS level user ID and (c) an identifier which changes whenever a
factory reset is performed for the device,
e.g. rawUVI = biometricReferenceData | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVI extensions must support a length of up to 32 bytes
for the UVI value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 04 01 -- TAG_USER_VERIFICATION_INDEX (0x0104)
 20 -- length of UVI
 00 43 B8 E3 BE 27 95 8C -- the UVI value itself
 28 D5 74 BF 46 8A 85 CF
 46 9A 14 F0 E5 16 69 31
 DA 4B CF FF C1 BB 11 32
 82
 ...
	

TAG_RAW_USER_VERIFICATION_STATE 0x0105
This is the raw UVS as it might be used internally by authenticators. This TAG shall not appear in assertions leaving the authenticator
boundary as it could be used
as global correlation handle.

TAG_USER_VERIFICATION_STATE 0x0106
The user verification state (UVS) is a value uniquely identifying the set of active user verification data records.

Each UVS value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVS values must not be reused by the Authenticator (for other biometric data sets or users).

The UVS data can be used by FIDO Servers to understand whether an authentication
was authorized by one of the biometric data records
already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)),
where the rawUVS reflects (a) the biometric
reference data sets, (b) the related OS level user ID and (c) an identifier which changes whenever a
factory reset is performed for the
device, e.g. rawUVS = biometricReferenceDataSet | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVS extensions must support a length of up to 32 bytes
for the UVS value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 06 01 -- TAG_USER_VERIFICATION_STATE (0x0106)
 20 -- length of UVS
 00 18 C3 47 81 73 2B 65 -- the UVS value itself
 83 E7 43 31 46 8A 85 CF
 93 6C 36 F0 AF 16 69 14
 DA 4B 1D 43 FE C7 43 24
 45
 ...
	

TAG_USER_VERIFICATION_CACHING 0x0108
This extension allows an app to specify such user verification caching time, i.e. the time for which the
user verification status can be
"cached" by the authenticator.

The value of this extension is defined as follows:

TLV
Structure Description

1 UINT16 Tag TAG_USER_VERIFICATION_CACHING

1.1 UINT16
Length Length of UVC structure in bytes

1.2 UINT16 maxUVC in seconds

1.3 UINT8 (optional) verifyIfExceeded. If 0(=:false): return error if maxUVC exceeded. If non-zero (=:true): verify user if
maxUVC exceeded.

Example of the TLV encoded UVC extension (contained in an authentication request)

 ...
 08 01 -- TAG_USER_VERIFICATION_CACHING (0x0108)
 05 -- length of UVC
 2c 01 00 00 -- the UVC value itself: maxUVC = 0x012c (300 secs),
 01 -- followd by verifyIfExceeded = 1 (true)
 ...
	

TAG_RESIDENT_KEY 0x0109
Is the key resident in the authenticator. The value is a boolean. See section
Require Resident Key Extension for details.

TAG_RESERVED_5 0x0201
Reserved for future use. Name of the tag will change, value is fixed.

5. Predefined Extensions

This section is normative.

5.1 User Verification Method Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to ask the authenticator for using a
specific user verification method and confirm that
in the related response extension.
by FIDO Clients to the ASM Request object (request extension) in order to ask the authenticator for using a specific user verification
method and confirm that
in the related response extension.
by ASMs to the authenticator command (request extension) in order to ask the authenticator for using a specific user verification method
and confirm that
in the related response extension.
by Authenticators to the assertion generated in response to a request in order
to confirm a specifc user verification method that was used
for the action.

Extension identifier
fido.uaf.uvm

When present in a request (request extension)
Same as described in Authenticator argument.

FIDO Client processing

The client should pass the (request) extension through to the Authenticator.

Authenticator argument

The payload of this extension is an array of:

	 UINT32 userVerificationMethod
	

The array can have multiple entries. Each entry shall have a single bit flag set. In this case the authenticator shall verify the user using all
(multiple) methods as indicated.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in
[FIDORegistry], "User
Verification Methods" section.

Authenticator processing
The authenticator supporting this extension

1. should limit the user verification methods selectable by the user to the
user verification method(s) specified in the request
extension.

2. shall truthfully report the selected user verification method(s) back in the related response
extension added to the assertion.

Authenticator data

The payload of this extension is an array of the following structure:

	 UINT32 userVerificationMethod
	 UINT16 keyProtection
	 UINT16 matcherProtection
	

The array can have multiple entries describing all user verification methods used.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in
[FIDORegistry], "User
Verification Methods" section.

keyProtection
The method used by the authenticator to protect the FIDO registration private key material. Available values are defined
in
[FIDORegistry], "Key Protection Types" section. This value has no meaning in the request extension.

matcherProtection
The method used by the authenticator to protect the matcher that performs user verification. Available values are defined
in
[FIDORegistry], "Matcher Protection Types" section.

Server processing
If the FIDO Server requested the UVM extension,

1. it should verify that a proper response is provided (if client side support can be assumed), and
2. it should verify that the UVM response extension specifies one or more
acceptable user verification method(s).

5.2 User ID Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader.
by FIDO Clients to the ASM Request object (request extension).
by ASMs to the TAG_UAFV1_REGISTER_CMD object using TAG_EXTENSION
(request extension).
by Authenticators to the registration or authentication assertion using TAG_EXTENSION
(response extension).

The main purpose of this extension is to allow relying parties finding the related user record by an existing index (i.e. the user ID). This user ID
is not intended to be displayed.

Authenticators should truthfully indicate support for this extension in their Metadata Statement.

Extension identifier
fido.uaf.userid

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value
Content of this tag is the UINT8[] encoding of the user ID as UTF-8 string.

5.3 Android SafetyNet Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger generation of the related
response extension.
by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related response extension.
by the ASM to the respective exts array in the ASMResponse object (response extension).
by the FIDO Client to the respective exts array in either the OperationHeader, or the AuthenticatorRegistrationAssertion, or the
AuthenticatorSignAssertion of the UAF Response object (response extension).

Extension identifier
fido.uaf.safetynet

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value
in order to trigger the
generation of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value
is set to the JSON Web Signature attestation response as
returned by the call to
com.google.android.gms.safetynet.SafetyNetApi.AttestationResponse.
If the FIDO Client or the ASM support this extension, but the underlying Android platform
does not support it (e.g. Google
Play Services is not installed), the data value
is set to the string "p" (i.e. platform issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value
is set to the string "a" (i.e. availability issue).

FIDO Client processing

FIDO Clients running on Android should support processing of this extension.

If the FIDO Client finds this (request) extension with empty data value in the UAF Request and it supports processing this extension,
then the FIDO Client

1. must call the Android API SafetyNet.SafetyNetApi.attest(mGoogleApiClient, nonce)
(see SafetyNet online documentation)
and add the response (or an error code as described above)
as extension to the response object.

2. must not copy the (request) extension to the ASM Request object (deviating from the general rule in [UAFProtocol], section
3.4.6.2 and 3.5.7.2).

If the FIDO Client does not support this extension it must copy this extension from the UAF Request to the ASM Request object

EXAMPLE 1: SafetyNet Request Extension

"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail_if_unknown": false}]

EXAMPLE 2: SafetyNet Response Extension - not supported by platform

"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail_if_unknown": false}]

EXAMPLE 3: SafetyNet Response Extension - temporarily unavailable

"exts": [{"id": "fido.uaf.safetynet", "data": "a", "fail_if_unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResponse
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

(according to the general rule in [UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it must call the SafetyNet API (see above) and add the response
as extension to the ASM Response
object. The FIDO Client must
copy the extension in the ASM Response
to the UAF Response object (according to sections 3.4.6.4. and
3.5.7.4 step 4 in [UAFProtocol]).

When calling the Android API, the nonce parameter must be set to the serialized JSON object with the following structure:

{
 "hashAlg": "S256", // the hash algorithm
 "fcHash": "..." // the finalChallengeHash
}
	

Where

hashAlg identifies the hash algorithm according to [FIDOSignatureFormat], section IANA Considerations.
fcHash is the base64url encoded hash value of FinalChallenge (see section 3.6.3 and 3.7.4 in [UAFASM] for details on how to
compute finalChallengeHash).
We use this method to bind this SafetyNet extension to the respective FIDO UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [FIDORegistry] shall be used (e.g. SHA256
because
it belongs to ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW).

Authenticator argument
N/A

Authenticator processing
N/A. This extension is related to the Android platform in general and not to the authenticator in particular. As a consequence there is no
need for an authenticator to receive the (request) extension nor to process it.

Authenticator data
N/A

Server processing
If the FIDO Server requested the SafetyNet extension,

1. it should verify that a proper response is provided (if client side support can be assumed), and
2. it should verify the SafetyNet AttestationResponse (see SafetyNet online documentation).

5.4 Android Key Attestation

This extension can be added

by FIDO Servers to the UAF Registration Request object (request extension) in the OperationHeader in order to trigger generation of the
related response extension.
by FIDO Clients to the ASM Registration Request object (request extension) in order to trigger generation of the related response
extension.
by the ASM to the respective exts array in the ASMResponse object related to a registration response (response extension).
by the FIDO Client to the respective exts array in either the OperationHeader, or the AuthenticatorRegistrationAssertion
of the
UAF Registration Response object (response extension).

Extension identifier

NOTE

The package name in AttestationResponse might relate to either the FIDO Client or the ASM.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker
would
remove the response extension, the FIDO server might not be able to distinguish this from the
"SafetyNet extension not supported
by FIDO Client/ASM" case.

https://developer.android.com/training/safetynet/attestation

fido.uaf.android.key_attestation
Extension fail-if-unknown flag

false, i.e. this (request and response) extension can safely be ignored by all entities.
Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value
in order to trigger the
generation of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value
is set to a JSON array containing the base64 encoded
entries of the array returned by the call to the KeyStore API function getCertificateChain.

EXAMPLE 4: Android KeyAttestation Request Extension

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "", "fail_if_unknown": false}]

EXAMPLE 5: Retrieve KeyAttestation and add it as extension

Calendar notBefore = Calendar.getInstance();
Calendar notAfter = Calendar.getInstance();
notAfter.add(Calendar.YEAR, 10);

KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_EC, "AndroidKeyStore");
kpGenerator.initialize(
 new KeyGenParameterSpec.Builder(keyUUID, KeyProperties.PURPOSE_SIGN)
 .setDigests(KeyProperties.DIGEST_SHA256)
 .setAlgorithmParameterSpec(new ECGenParameterSpec("prime256v1"))
 .setCertificateSubject(
 new X500Principal(String.format("CN=%s, OU=%s",
 keyUUID, aContext.getPackageName())))
 .setCertificateSerialNumber(BigInteger.ONE)
 .setKeyValidityStart(notBefore.getTime())
 .setKeyValidityEnd(notAfter.getTime())
 .setUserAuthenticationRequired(true)
 .setAttestationChallenge(fcHash) -- bind to Final Challenge
 .build());

kpGenerator.generateKeyPair(); // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain(keyUUID);
String certArray[]=new String[certarray.length];
int i=0;
for (Certificate cert : certarray) {
 byte[] buf = cert.getEncoded();
 certArray[i] = new String(Base64.encode(buf, Base64.DEFAULT))
 .replace("\n", "");
 i++;
}

JSONArray jarray=new JSONArray(certArray);
String key_attestation_data=jarray.toString();

EXAMPLE 6: Example of successfull key attestation extension response

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "
[\"MIIClDCCAjugAwIBAgIBATAKBggqhkjOPQQD
AjCBiDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlmb3JuaWExFTATBgNVBAoMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5k

cm9pZDE7MDkGA1UEAwwyQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZSBBdHRlc3RhdGlvbiBJbnRlcm1lZGlhdGUwIBcNNzAwMTAx

MDAwMDAwWhgPMjEwNjAyMDcwNjI4MTVaMB8xHTAbBgNVBAMMFEFuZHJvaWQgS2V5c3RvcmUgS2V5MFkwEwYHKoZIzj0CAQYIKoZI

zj0DAQcDQgAEJ/As4L+Kgbcxwcx+5LPQi35quIxg981k/TeWr2IPBLh8+NJ+buDBhQ9O5ln6B7JjbJc4Fvko1Pdz7spKTQdWpKOB

+zCB+DALBgNVHQ8EBAMCB4AwgccGCisGAQQB1nkCAREEgbgwgbUCAQIKAQACAQEKAQEEBkZDSEFTSAQAMGm/hT0IAgYBXtPjz6C/

hUVZBFcwVTEvMC0EKGNvbS5hbmRyb2lkLmtleXN0b3JlLmFuZHJvaWRrZXlzdG9yZWRlbW8CAQExIgQgdM/LUHSI9SkQhZHHpQWR

nzJ3MvvB2ANSauqYAAbS2JgwMqEFMQMCAQKiAwIBA6MEAgIBAKUFMQMCAQSqAwIBAb+DeAMCAQK/hT4DAgEAv4U/AgUAMB8GA1Ud

IwQYMBaAFD/8rNYasTqegSC41SUcxWW7HpGpMAoGCCqGSM49BAMCA0cAMEQCICgYLmk24alwS9Lm06y2lLiqWDddrWh4gmUUv4+A

5k2TAiAEttheSBBaNbQJGQCh3mY92v8nP5obU60IKjpPetRswQ==\",\"MIICeDCCAh6gAwIBAgICEAEwCgYIKoZIzj0EAwIwgZg

xCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRYwFAYDVQQHDA1Nb3VudGFpbiBWaWV3MRUwEwYDVQQKDAxHb29nbGU

sIEluYy4xEDAOBgNVBAsMB0FuZHJvaWQxMzAxBgNVBAMMKkFuZHJvaWQgS2V5c3RvcmUgU29mdHdhcmUgQXR0ZXN0YXRpb24gUm9

vdDAeFw0xNjAxMTEwMDQ2MDlaFw0yNjAxMDgwMDQ2MDlaMIGIMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEVMBM

GA1UECgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMTswOQYDVQQDDDJBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF

0dGVzdGF0aW9uIEludGVybWVkaWF0ZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOueefhCY1msyyqRTImGzHCtkGaTgqlzJhP

If the FIDO Client or the ASM support this extension, but the underlying Android platform
does not support it (e.g. Android
version doesn't yet support it), the data value
is set to the string "p" (i.e. platform issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value
is set to the string "a".

FIDO Client processing

FIDO Clients running on Android must pass this (request) extension with empty data value to the ASM.

If the ASM supports this extension it must call the KeyStore API (see above) and add the response
as extension to the ASM Response
object. The FIDO Client must
copy the extension in the ASM Response
to the UAF Response object (according to section 3.4.6.4 step 4
in [UAFProtocol]).

More details on Android key attestation can be found at:

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

Authenticator argument
N/A

Authenticator processing

+rMv4ISdMIXSXSir+pblNf2bU4GUQZjW8U7ego6ZxWD7bPhGuEBSjZjBkMB0GA1UdDgQWBBQ//KzWGrE6noEguNUlHMVlux6RqTA

fBgNVHSMEGDAWgBTIrel3TEXDo88NFhDkeUM6IVowzzASBgNVHRMBAf8ECDAGAQH/AgEAMA4GA1UdDwEB/wQEAwIChDAKBggqhkj

OPQQDAgNIADBFAiBLipt77oK8wDOHri/AiZi03cONqycqRZ9pDMfDktQPjgIhAO7aAV229DLp1IQ7YkyUBO86fMy9Xvsiu+f+uXc

/WT/7\",\"MIICizCCAjKgAwIBAgIJAKIFntEOQ1tXMAoGCCqGSM49BAMCMIGYMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaW

Zvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzEVMBMGA1UECgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMTMwMQ

YDVQQDDCpBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF0dGVzdGF0aW9uIFJvb3QwHhcNMTYwMTExMDA0MzUwWhcNMzYwMTA2MD

A0MzUwWjCBmDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlmb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFTATBgNVBA

oMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5kcm9pZDEzMDEGA1UEAwwqQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZSBBdHRlc3

RhdGlvbiBSb290MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE7l1ex+HA220Dpn7mthvsTWpdamguD/9/SQ59dx9EIm29sa/6Fs

vHrcV30lacqrewLVQBXT5DKyqO107sSHVBpKNjMGEwHQYDVR0OBBYEFMit6XdMRcOjzw0WEOR5QzohWjDPMB8GA1UdIwQYMBaAFM

it6XdMRcOjzw0WEOR5QzohWjDPMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgKEMAoGCCqGSM49BAMCA0cAMEQCIDUho+

+LNEYenNVg8x1YiSBq3KNlQfYNns6KGYxmSGB7AiBNC/NR2TB8fVvaNTQdqEcbY6WFZTytTySn502vQX3xvw==\"]",
"fail_if_unknown": false}]

NOTE

Line-breaks been added for readibility.

EXAMPLE 7: KeyAttestation Response Extension - not supported by platform

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "p", "fail_if_unknown": false}]

EXAMPLE 8: KeyAttestation Response Extension - temporarily unavailable

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "a", "fail_if_unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

The authenticator generates the attestation response. The call keyStore.getCertificateChain is finally processed by the authenticator.
Authenticator data

N/A
Server processing

If the FIDO Server requested the key attestation extension,

1. it must follow the registration response processing rules (see FIDO UAF Protocol, section 3.4.6.5) before processing this extension
2. it must verify the syntax of the key attestation extension and it must perform RFC5280 compliant chain validation of the entries in

the array
to one attestationRootCertificate specified in the Metadata Statement - accepting that that the keyCertSign bit in
the key usage extension of the certificate issuing the leaf certificate is NOT set (which is a deviation from
RFC5280).

3. it must determine the leaf certificate from that chain, and it must perform the following checks on this leaf certificate
1. Verify that KeyDescripion.attestationChallenge == FCHash (see FIDO UAF Protocol, section 3.4.6.5 Step 6.)
2. Verify that the public key included in the leaf certificate is identical to the public key included in the FIDO UAF Surrogate

attestation block
3. If the related Metadata Statement claims keyProtection KEY_PROTECTION_TEE, then refer to KeyDescription.teeEnforced

using "authzList".
If the related Metadata Statement claims keyProtection KEY_PROTECTION_SOFTWARE, then refer to
KeyDescription.softwareEnforced using "authzList".

4. Verify that
1. authzList.origin == KM_TAG_GENERATED
2. authzList.purpose == KM_PURPOSE_SIGN
3. authzList.keySize is acceptable, i.e. =2048 (bit) RSA or =256 (bit) ECDSA.
4. authzList.digest == KM_DIGEST_SHA_2_256.
5. authzList.userAuthType only contains acceptable user verification methods.
6. authzList.authTimeout == 0 (or not present).
7. authzList.noAuthRequired is not present (unless the Metadata Statement marks this authenticator as silent

authenticator, i.e. userVerificaton set to USER_VERIFY_NONE).
8. authzList.allApplications is not present, since FIDO Uauth keys must be bound to the generating app (AppID).

ExtensionDescriptor data value (for Metadata Statement)
In the case of extension id="fido.uaf.android.key_attestation", the data field of the ExtensionDescriptor as included in the Metadata
Statement will contain a dictionary containing the following data fields

DOMString attestationRootCertificates[]
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is valid for this authenticator model. Multiple
certificates might be used for different batches of the same model. The array does not represent a certificate
chain, but only the trust
anchor of that chain.

Each array element is a base64-encoded (section 4 of
[RFC4648]), DER-encoded [ITU-X690-2008] PKIX certificate
value.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker
would
remove the response extension, the FIDO server might not be able to distinguish this from the
"KeyAttestation extension not
supported by ASM/Authenticator" case.

NOTE

A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE

The field data is specified with type DOMString in [FIDOMetadataStatement] and hence will contain the
serialized object as
described above.

An example for the supportedExtensions field in the Metadata Statement could look as follows (with line breaks to improve
readability):

5.5 User Verification Caching

In several cases it is good enough for the relying party to know whether the user was verified by the authenticator "some time" ago.
This
extension allows an app to specify such user verification caching time, i.e. the time for which the
user verification status can be "cached" by the
authenticator.

For example: Do not ask the user for a fresh user verification to authorize a payment of 4€ if the user was verified by this authenticator within
the past 300 seconds.

This extension allows the authenticator to bridge the gap between a "silent" authenticator, i.e. an authenticator never verifying the user and a
"traditional" authenticator, i.e. an
authenticator always asking for fresh user verification.

We formally define one extension for the request and a separate extension for the response as
the request extension can be safely ignored, but
the response extension cannot.

Authenticator supporting this extension must truthfully specify both, the UVC Request and UVC Response extension in the
supportedExtensions list
of the related Metadata Statement [FIDOMetadataStatement].
The TAG of the UVC Response extension must be
specified in that list.

5.5.1 UVC Request

This extension can be added by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger
generation of the related response extension.

Extension Identifier
fido.uaf.uvc-req

Extension fail-if-unknown flag
false, i.e. the request extension can safely be ignored by all entities.

UVC Extension data value
A (base64url-encoded) TLV object as defined in the description of TAG_USER_VERIFICATION_CACHING.
In the UVC Extension provided
through the DOM API [UAFAppAPIAndTransport], the field verifyIfExceeded may NOT be present. The FIDO Client may add the
field verifyIfExceeded in order to improve processing.

FIDO Client processing

In a registration request: Simple pass-through to the platform preferred authenticator.
In a sign request: Simple pass-through to an authenticator which would not require fresh user verification and still meets all other
authentication selection criteria (if such authenticator exists). If this is not possible, then use the preferred authenticator (as normal)
but
pass-through this extension.

Authenticator argument

Same TLV object as defined in "Extension data value", but as binary object included in the Registration / Authentication command.

EXAMPLE 9: Example of a supportedExtensions field in Metadata Statement

"supportedExtensions": [{
 "id": "fido.uaf.android.key_attestation",
 "data": "{ \"attestationRootCertificates\": [
\"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
lQ==\"] }",
 "fail_if_unknown": false
 }]

Authenticator processing

In a registration request:
The Authenticator must always freshly verify the user and create a key marked with the maximum user verification caching time as
specified (referred to as regMaxUVC), i.e. in signAssertion the acceptable maximum user verification time can never exceed this
value.
The field (verifyIfExceeded) is not allowed in a registration request.

In a sign request:
If the authenticator supports specifying user verification caching time in a sign request:

1. compute maxUVC = min(maxUVC , regMaxUVC)
2. compute elapsedTime, i.e. the time since last user verification.
3. If (elapsedTime > maxUVC) AND verifyIfExceeded==false then return error
4. If (elapsedTime > maxUVC) AND ((verifyIfExceeded==true)OR(verifyIfExceeded is NOT PRESENT)) then verify user
5. If (elapsedTime ≤ maxUVC) then Sign the assertion as normal
6. Add the UVC Response extension to the assertion.

If the authenticator does not support specifying user verification caching time in a sign request, this extension will be ignored by the
authenticator.
This will be detected by the server since no extension output will be generated by the authenticator.

Authenticator data
N/A

Server processing
N/A

5.5.2 UVC Response

This extension can be added by the Authenticator to the AuthenticatorRegistrationAssertion, or the AuthenticatorSignAssertion
of the
UAF Response object (response extension).

Extension Identifier
fido.uaf.uvc-resp (TAG_USER_VERIFICATION_CACHING)

Extension fail-if-unknown flag
true, i.e. the response extension (included in the UAF assertion) may NOT be ignored if unknown. If the server is not prepared to
process the UVC response extension, it must fail.

Extension data value
N/A

FIDO Client processing
N/A

Authenticator argument
N/A

Authenticator processing
N/A

Authenticator data
If the extension is supported and the request extension was received and evaluated during the respective call,
then the binary TLV object
as described in the description of TAG_USER_VERIFICATION_CACHING will be included in the assertion generated by the Authenticator.

Where the field maxUVC contains an upper bound of trueUVC and where the field verifyIfExceeded will not be present.

The upper bound value is to be computed as follows:

1. Compute the elapsed seconds since last user verification (=:trueUVC).
2. Compute some upper bound of trueUVC, must not exceed min(command.maxUVC, regMaxUVC).

Where command.maxUVC refers to the maxUVC value of the related UVC Request .

Where regMaxUVC is the maxUVC value specified in the related registration call (see above) or 0 if no such value was provided
at registration time.

For example, use min(maxUVC, createMaxUVC) or min(round trueUVC to 5 seconds, maxUVC, createMaxUVC).

Server processing

If the FIDO Server requested the UVC extension,

1. Verify that the Metadata Statement related to this Authenticator indicates support for this extension in the field
supportedExtensions

2. Verify that assertion.maxUVC is less or equal to request.maxUVC, fail if it isn't.
3. Verify that assertion.maxUVC is acceptable, fail if it isn't.

If the FIDO Server did not request the UVC extension (but encounters it in the response) or
if the server doesn't understand the UVC
response extension, it must fail.

5.5.3 Privacy Considerations

Using the UVC Request extension with verifyIfExceeded set to FALSE might allow the caller to triage the last time the user was verified
without requiring any input from the user and without
notifying the user. We do not allow this field to be set through
the DOM API (i.e. by web
pages). However, native applications can use this field and hence could be
able to determine the last time the user was verified. Native
applications have substantially more
permissions and hence can have more detailed knowledge about the user's behavior than web pages
(e.g.
track whether the device is used by evaluating accelerometers).

In the UVC Response extension the Authenticator can provide an upper bound of the trueUVC
value in order to prevent disclosure of exact time
of user verification.

5.5.4 Security Considerations

FIDO Servers not expecting user verification being used, might expect a fresh user verification and
an explicit user consent being provided.
Authenticators supporting this extension shall only use it when they are asked for that (i.e. UVC Request extension is present). Additionally the
authenticator must indicate if the user was not freshly verified using the UVC Response extension. This response
extension is marked with
"fail-if-unknown" set to true, to make sure that servers receiving
this extension know that the user might not have been freshly verified.

5.6 Require Resident Key Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.rk (TAG_RESIDENT_KEY)

Extension fail-if-unknown flag
false, i.e. the extension may be ignored if unknown.

Extension data value
boolean, i.e. rk=true or rk=false.

FIDO Client processing
N/A

Authenticator argument
boolean, i.e. rk=true or rk=false.

Authenticator processing
If the authenticator supports this extension, it should

1. persistently store the credential's cryptographic key material internally is rk=true
2. NOT persistently store the credential's cryptographic key material internally is rk=false

Authenticator data
boolean, i.e. rk=true or rk=false in an assertion, indicating whether the current credential is resident in the authenticator or not.

Server processing

NOTE
It is expected that

1. authenticators with isSecondFactorOnly=false in their Metadata
Statement will persistently store the credential's
cryptographic key material internally if the extension is missing.

2. authenticators with isSecondFactorOnly=true in their Metadata
Statement will NOT persistently store the credential's
cryptographic key material internally if the extension is missing.

A response extension fido.uaf.rk set to false indicates that the FIDO Server needs to provide a keyHandle for triggering authentication.
This means that the authenticator
can only be used as a second factor (see also isSecondFactorOnly in [FIDOMetadataStatement].

If the FIDO Server did not request the fido.uaf.rk extension (but encounters it in the response) or
if the server doesn't understand the
fido.uaf.rk response extension, it can silently ignore the extension.

5.7 Attestation Conveyance Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.ac

Extension fail-if-unknown flag
false, i.e. the extension may be ignored if unknown.

Extension data value
string, i.e. ac='direct', ac='indirect', or ac='none'.

FIDO Client processing
If the ac value is

direct
the FIDO Client shall pass-through the attestation statement as received from the Authenticator.

indirect
the FIDO Client shall either

1. pass-through the attestation statement as received from the Authenticator or
2. replace the attestation statement received from the Authenticator
using some anonymization CA.

none
the FIDO Client shall remove the attestation statement received from the Authenticator.

Authenticator argument
N/A

Authenticator processing
If the authenticator supports this extension, it should

1. return an attestation statement according to the conveyance indicated.

Authenticator data
N/A (only indirectly through the generated attestation statement)

Server processing
The server should verify the attestation statement if it asked for it (i.e. ac='direct' or ac='indirect').

If the FIDO Server specified ac='none', but received an attestation statement, it can silently ignore it.

6. Other Identifiers specific to FIDO UAF

6.1 FIDO UAF Application Identifier (AID)

This AID [ISOIEC-7816-5] is used to identify FIDO UAF authenticator applications in a Secure Element.

The FIDO UAF AID consists of the following fields:

Table 1: FIDO UAF Applet AID

Field RID AC AX
Value 0xA000000647 0xAF 0x0001

A. References

A.1 Normative references

[FIDOGlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-statement-v2.0-id-20180227.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[ISOIEC-7816-5]
. ISO 7816-5: Identification cards - Integrated circuit cards - Part 5: Registration of application providers. URL:

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references

[FIDOCTAP]
C. Brand; A. Czeskis; J. Ehrensvärd; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. FIDO 2.0: Client To Authenticator
Protocol. 30 January 2019. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-
20190130.html

[FIDOSignatureFormat]
. FIDO 2.0: Signature format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html

[ITU-X690-2008]
. X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL: https://www.itu.int/rec/T-
REC-X.690-200811-S

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification. Review Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol Specification v1.2. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

FIDO UAF WebAuthentication Assertion Format
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-webauthn-v1.2-ps-20201020.html

Editor:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

This document defines the assertion format "WAV1CBOR" in order to use Web Authentication assertions through the FIDO UAF
protocol.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A
list of current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance
specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this
document, please Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including
without limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the Specification are not, and
shall not be held, responsible in any manner
for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable document and
may be used as reference material or cited from another
document. FIDO Alliance's role in making the Recommendation is to draw
attention to the
specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Key Words

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-webauthn-v1.2-ps-20201020.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2. Overview
3. Data Structures for WAV1CBOR

3.1 Registration Assertion
3.2 Authentication Assertion

4. Processing Rules
4.1 Registration Response Processing Rules for ASM
4.2 Registration Response Processing Rules for FIDO Server
4.3 Authentication Response Generation Rules for ASM
4.4 Authentication Response Processing Rules for FIDO Server

5. Mapping CTAP2 error codes to ASM error codes
A. References

A.1 Normative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in
this
document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the assertion format "WAV1CBOR" in order to use Web Authentication assertions through the FIDO UAF
protocol.

3. Data Structures for WAV1CBOR

This section is normative.

3.1 Registration Assertion

The registration assertion for the assertion format "WAV1CBOR" is a TLV encoded object containing
the CBOR encoded
authenticatorData, the name of the attestation format, and the atestation statement itself.

TLV Structure Description

1 UINT16 Tag TAG_WAV1CBOR_REG_ASSERTION

1.1 UINT16
Length Length of the structure.

1.2 UINT16 Tag TAG_WAV1CBOR_REG_DATA

1.2.1 UINT16
Length Length of the structure.

1.2.2 UINT8
tbsData

The binary authenticatorData structure as specified
in section 6.1 in [WebAuthn] with non-empty
attestedCredentialData field being present
followed by (i.e. binary concatenation) the clientDataHash.

1.3 UINT16 Tag TAG_ATTESTATION_FORMAT

1.3.1 UINT16
Length Length of Attestation Format

1.3.2
UINT8[]
Attestation
Format

Authenticator Attestation Format, see field "fmt" in section sctn-attestation in [WebAuthn]

1.4 UINT16 Tag TAG_ATTESTATION_STATEMENT

1.4.1 UINT16
Length Length of Attestation Statement

1.4.2
UINT8[]
Attestation
Statement

Authenticator Attestation Statement, see field "stmt" in section sctn-attestation in [WebAuthn].
This field
contains the signature in sub-field "sig".

3.2 Authentication Assertion

The authentication assertion is a TLV structure containing the CBOR encoded authenticatorData object,
the authenticator model
name (AAGUID), the key identifier and the signature of the authenticatorData object.

TLV
Structure Description

1 UINT16
Tag TAG_WAV1CBOR_AUTH_ASSERTION

1.1 UINT16
Length Length of the structure.

1.2 UINT16
Tag TAG_WAV1CBOR_SIGNED_DATA

1.2.1 UINT16
Length Length of the structure.

1.2.2 UINT8
tbsData

As described in step 11 in section 6.3.3 in [WebAuthn]: The binary authenticatorData structure as specified
in
section 6.1 in [WebAuthn] with empty attestedCredentialData field being present
followed by (i.e. binary
concatenation) the clientDataHash.

1.3 UINT16
Tag TAG_AAGUID

1.3.1 UINT16
Length Length of AAGUID

1.3.2 UINT8[]
AAGUID Authenticator Attestation GUID, see section 6.4.1 in [WebAuthn]

1.4 UINT16
Tag TAG_KEYID

1.4.1 UINT16
Length Length of KeyID

1.4.2 UINT8[]
KeyID (binary value of) Credential ID (see definition of CredentialID in [WebAuthn])

1.5 UINT16
Tag TAG_SIGNATURE

1.5.1 UINT16
Length Length of Signature

1.5.2 UINT8[]
Signature Signature calculated using UAuth.priv over
tbsData - not including any TAGs nor the KeyID and AAGUID.

4. Processing Rules

This section is normative.

4.1 Registration Response Processing Rules for ASM

See [UAFASM] for details of the ASM API.

Refer to [UAFAuthnrCommands] document for more information about
the TAGs and structure mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then fail with error code
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. Connect to the Authenticator and call authenticatorGetInfo [FIDOCTAP].
Remember whether the authenticator supports
residentKeys (rk), clientPin,
User Presence (up), User Verification (uv).
Also remember whether the authenticator is a roaming
authenticator (plat=false),
or a platform authenticator (plat=true). If the connection fails, then fail with error code
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

3. If clientPin is the requested user verification method (see UVM extension), but
step 2 indicated that clientPin is not yet set (i.e.
clientPin present but set to false),
then ask user to set (enroll) clientPin.

If neither the ASM nor the Authenticator can trigger the enrollment process,
return UAF_ASM_STATUS_USER_NOT_ENROLLED.
If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Hash the provided ASMRequest.args.finalChallenge using the authenticator-specific hash function and store the result in
FinalChallengeHash.

An authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

5. for each extension included in ASMRequest.exts
If the extension "fido.uaf.rk" is found, set parameter rk to the
value of that extension and continue with the next extension.
If the extension "fido.uaf.ac" is found, set parameter ac to the
value of that extension and continue with the next
extension.
If the extension was not handled before, create a corresponding WebAuthn/FIDO2 extension (see [WebAuthn])
extension
in extensionsCBOR. If no corresponding WebAuthn/FIDO2 extension is specified,
ignore this extension (if fail_if_unknown
is false) or return UAF_ASM_STATUS_ERROR (if fail_if_unknown is true).

6. Call authenticatorMakeCredential [FIDOCTAP] (either via CTAP or via a platform proprietary API),
send the required
information and receive result containing the error code of that operation.

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

1. clientDataHash (required, byte array).
2. rp (required, PublicKeyCredentialRpEntity). Identity of the relying party.
3. user (required, PublicKeyCredentialUserEntity).
4. pubKeyCredParams (required, CBOR array).
5. excludeList (optional, sequence of PublicKeyCredentialDescriptors).
6. extensions (optional, CBOR map). Parameters to influence authenticator operation.
7. options (optional, sequence of authenticator options, i.e. parameters rk, uv, and up).
8. pinAuth (optional, byte array).
9. pinProtocol (optional, unsigned integer).

The output parameters are (see [FIDOCTAP]):

1. authData (required, sequence of bytes). The authenticator data object.

Use the following values for the respective parameters:
Set rp.rpId to the ASMRequest.args.AppID
Set user.Id to the fido.uaf.userid extension retrieved from ASMRequest.exts;
set user.displayName to
ASMRequest.args.username.
Fail if the fido.uaf.userid extension is missing in ASMRequest.exts.
Set clientDataHash to FinalChallengeHash
Set pubKeyCredParams.type to "public-key" and pubKeyCredParams.alg
to the preferred algorithm, e.g. "ES256".
Set excludeList to an empty list
Set extensions to the CBOR map extensionsCBOR
Set pinAuth and pinProtocol to the respective values supported by this ASM
(to the extent the underlying platform allows
specifying these values).
Set options to an empty object and add items as follows

1. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod
includes one or more of the flags USER_VERIFY_FINGERPRINT,
USER_VERIFY_PASSCODE, USER_VERIFY_VOICEPRINT,
USER_VERIFY_FACEPRINT,
USER_VERIFY_LOCATION, USER_VERIFY_EYEPRINT, USER_VERIFY_PATTERN, or
USER_VERIFY_HANDPRINT
set options.userVerification to true and
set options.userPresence to true.

2. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod is
equal to USER_VERIFY_CLIENTPIN
set options.userVerification to true and
set options.userPresence to false.

3. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod is
equal to USER_VERIFY_PRESENCE
set options.userVerification to false and
set options.userPresence to true.

4. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod is
eequal to USER_VERIFY_NONE
set options.userVerification to false and
set options.userPresence to false.

7. If result is not equal to CTAP2_OK and retry cannot fix the problem, then
map the CTAP error code to a UAF ASM error code
using the table in section 5. Mapping CTAP2 error codes to ASM error codes
and return the resulting error code.

8. Create a TAG_WAV1CBOR_REG_ASSERTION structure:
1. Copy result.AuthData concatenated with the finalChallengeHash into field TAG_WAV1CBOR_SIGNED_DATA
2. Copy result.fmt into field TAG_ATTESTATION_FORMAT
3. Copy result.stmt into field TAG_ATTESTATION_STATEMENT

9. Create a RegisterOut object
1. Set RegisterOut.assertionScheme to "WAV1CBOR"
2. Encode the content of TAG_WAV1CBOR_REG_ASSERTION in base64url format and set as RegisterOut.assertion.

10. set ASMResponse.responseData to RegisterOut.
11. set ASMResponse.statusCode to the correct status code corresponding to the result received earlier.
12. set ASMResponse.exts to empty
13. Return ASMResponse object

4.2 Registration Response Processing Rules for FIDO Server

Instead of skipping the assertion as described in step 6.8 in section 3.4.6.5 [UAFProtocol], follow these rules:

1. if a.assertionScheme == "WAV1CBOR" AND a.assertion.TAG_WAV1CBOR_REG_ASSERTION contains TAG_WAV1CBOR_SIGNED_DATA as
first element:

1. extract authenticatorData from TAG_WAV1CBOR_SIGNED_DATA.tbsData
2. read claimedAAGUID from authenticatorData.attestedCredentialData.AAGUID.
3. Verify that a.assertionScheme matches Metadata(claimedAAGUID).assertionScheme

2. fmt (required, String). The attestation statement format identifier.
3. attStmt (required, sequence of bytes). The attestation statement.

NOTE

If the authenticator uses clientPin but the clientPin was not set
(indicated by CTAP2_ERR_PIN_NOT_SET), the ASM should
ask the user for the clientPin and provide it to the authenticator.

If it doesn't match - continue with next assertion

4. Verify that the claimedAAGUID indeed matches the policy specified
in the registration request.

If it doesn't match the policy - continue with next assertion

5. Locate authenticator-specific authentication algorithms from
the authenticator metadata [FIDOMetadataStatement]
identified by claimedAAGUID
(field authenticationAlgs).

6. If fcp is of type FinalChallengeParams [UAFProtocol], then hash RegistrationResponse.fcParams using hashing algorithm
suitable for this authenticator type. Look up the hash
algorithm in authenticator metadata, field AuthenticationAlgs.
It is
the hash algorithm associated with the first entry
related to a constant with prefix ALG_SIGN.

FCHash = hash(RegistrationResponse.fcParams)

7. If fcp is of type CollectedClientData [UAFProtocol], then hash RegistrationResponse.fcParams using hashing algorithm
specified in fcp.hashAlg.

FCHash = hash(RegistrationResponse.fcParams)

8. Obtain Metadata(claimedAAGUID).AttestationType for the claimedAAGUID and make sure that
a.assertion.TAG_WAV1CBOR_REG_ASSERTION contains the most preferred
attestation tag specified in field
MatchCriteria.attestationTypes in RegistrationRequest.policy (if this field is present).

If a.assertion.TAG_WAV1CBOR_REG_ASSERTION doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one

9. set tbsData to the data contained in a.assertion.tbsData.
10. set authenticatorData to the CBOR object tbsData starts with.
Use the "length" field of the CBOR object to determine its

end.
11. set clientDataHash to the remaining bytes of the tbsData (i.e. the bytes following the CBOR object).
12. Make sure that clientDataHash == FCHash

If comparison fails - continue with next assertion

13. Extract the up and uv bits from authenticatorData.
Verify whether these bits match the UVM extension sent in the request.
Fail if the verification result is not acceptable.

14. If a UVM extension is included in the response, extract this value and compare it
verify whether it matches the extension
from the request. Fail if the verification result is not acceptable.

15. If a.assertion.TAG_WAV1CBOR_REG_ASSERTION.TAG_ATTESTATION_STATEMENT contains ATTESTATION_BASIC_FULL tag
1. If entry AttestationRootCertificates for the claimedAAGUID in the
metadata [FIDOMetadataStatement] contains

at least one element:
1. Obtain contents of all TAG_ATTESTATION_CERT tags from

a.assertion.TAG_WAV1CBOR_REG_ASSERTION.ATTESTATION_BASIC_FULL object. The occurrences are ordered (see
[UAFAuthnrCommands])
and represent the attestation certificate followed by the related certificate chain.

2. Obtain all entries of AttestationRootCertificates
for the claimedAAGUID in authenticator Metadata, field
AttestationRootCertificates.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions
included in this RegistrationResponse in order to determine whether this AAGUID matches the policy.

NOTE
up=false and uv=false means silent authentication (USER_VERIFY_NONE)
up=true and uv=false means user presence check only (USER_VERIFY_PRESENCE)
up=false and uv=true means user verification that doesn't provide user presence check, e.g. client Pin
or
some other user verification method not necessarily implemented fully inside the authenticator
boundary
(USER_VERIFY_CLIENTPIN)
up=true and uv=true means user verification using a user verification method implemented
inside the
authenticator boundary (e.g. USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check
(USER_VERIFY_CLIENTPIN) AND USER_VERIFY_PRESENCE - depending on the authenticator
capabilities as
declared in the related Metadata Statement.

3. Verify the attestation certificate and the entire certificate chain up to
the Attestation Root Certificate using
Certificate Path
Validation as specified in [RFC5280]

If verification fails – continue with next assertion
4. Verify a.assertion.TAG_WAV1CBOR_REG_ASSERTION.TAG_ATTESTATION_STATEMENT.sig using the attestation

certificate (obtained before).
If verification fails – continue with next assertion

2. If Metadata(claimedAAGUID).AttestationRootCertificates for this claimedAAGUID is
empty - continue with next
assertion

3. Mark assertion as positively verified

16. if a.assertion.TAG_WAV1CBOR_REG_ASSERTION.TAG_ATESTATION_STATEMENT contains an object of type
ATTESTATION_BASIC_SURROGATE

1. There is no real attestation for the AAGUID, so we just assume the claimedAAGUID is the real one.
2. If entry AttestationRootCertificates for the claimedAAGUID in the
metadata is not empty - continue with next

assertion (as the AAGUID obviously is expecting a different attestation method).
3. Verify that extension "fido.uaf.android.key_attestation" is present and check whether it is positively verified

according to its server processing rules as specified [UAFRegistry].
If verification fails – continue with next assertion

4. Mark assertion as positively verified

17. If a.assertion.TAG_WAV1CBOR_REG_ASSERTION contains an object of type ATTESTATION_ECDAA
1. If entry ecdaaTrustAnchors for the claimedAAGUID in the
metadata [FIDOMetadataStatement] contains at least one

element:
1. For each of the ecdaaTrustAnchors entries, perform the ECDAA Verify operation as specified in

[FIDOEcdaaAlgorithm].
If verification fails – continue with next ecdaaTrustAnchors entry

2. If no ECDAA Verify operation succeeded – continue with next assertion

2. Mark assertion as positively verified and the authenticator indeed is of model
as indicated by the claimedAAGUID.
3. If Metadata(claimedAAID).ecdaaTrustAnchors for this claimedAAGUID is
empty - continue with next assertion
4. Mark assertion as positively verified and the authenticator indeed is of model
as indicated by the claimedAAGUID.

18. If a.assertion.TAG_UAFV1_REG_ASSERTION contains another TAG_ATTESTATION tag - verify the attestation by following
appropriate processing rules applicable to that attestation.
Currently this document defines the processing rules for Basic
Attestation and direct anonymous attestation (ECDAA).

19. Extract authenticatorData.attestedCredentialData.credentialPubKey into PublicKey,
authenticatorData.attestedCredentialData.credentialID into KeyID, authenticatorData.counter into SignCounter,
authenticatorData.attestedCredentialData.AAGUID into AAGUID.

20. Set AuthenticatorVersion to 0 (as it is not included in the message).

4.3 Authentication Response Generation Rules for ASM

See [UAFASM] for details of the ASM API.

1. Locate the authenticator using authenticatorIndex.
If the authenticator cannot be located, then fail with
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. if this is a bound authenticator, verify callerid against the one stored at registration time
and return
UAF_ASM_STATUS_ACCESS_DENIED if it doesn't match.

3. Hash the provided AuthenticateIn.finalChallenge using the preferred authenticator-specific hash function
(FinalChallengeHash).

The authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

4. Create an empty list KeyIDRecords of KeyID, related KeyHandle and related username
5. If AuthenticateIn.keyIDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with
AuthenticateIn.appID and AuthenticateIn.keyIDs and
matching entry into KeyIDRecords

Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the related key
disappeared permanently from the

authenticator.
Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found.

2. If this is a roaming authenticator, then for each entry in AuthenticateIn.keyIDs
add an entry in KeyIDRecords with
entry.KeyID and entry.KeyHandle
set to the respective keyID in AuthenticateIn.keyIDs. Set entry.userName to empty.

6. If AuthenticateIn.keyIDs is empty, lookup all KeyHandles matching this request
and add an entry in KeyIDRecords with
entry.KeyID and entry.KeyHandle
set to the respective KeyHandles. Set entry.userName the related userName.

7. If KeyIDRecords containes multiple entries,
show the related distinct usernames and ask the user to choose a single username.
Remember the KeyHandle and the related KeyID to this key.

8. If AuthenticateIn.transaction is NOT empty then select the
entry n with the content type best matching the authenticator
capabilities.

1. if AuthenticateIn.transaction[n].contentType == "text/plain"

then create a corresponding txAuthSimple extension in extensionsCBOR.

2. if AuthenticateIn.transaction[n].contentType != "text/plain"

then create a corresponding txAuthGeneric extension in extensionsCBOR.

9. for each extension included in ASMRequest.exts

create a corresponding WebAuthn/FIDO2 extension (see [WebAuthn])
extension in extensionsCBOR. If no corrsponding
WebAuthn/FIDO2 extension is specified, ignore this extension.

10. Call authenticatorGetAssertion (either via CTAP or via a platform proprietary API),
send the require information and receive the
expected result containing the error code of that operation.

Use the following values for the respective parameters:
Set rpId to the ASMRequest.args.AppID
Set clientDataHash to FinalChallengeHash
Set allowList to the KeyHandle remembered earlier
Set extensions to the CBOR map extensionsCBOR
Set pinAuth and pinProtocol to the respective values supported by this ASM
(to the extent the underlying platform allows
specifying these values).
Set options to an empty object and add items as follows

1. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod
includes one or more of the flags USER_VERIFY_FINGERPRINT,
USER_VERIFY_PASSCODE, USER_VERIFY_VOICEPRINT,

NOTE

authenticatorGetAssertion has the following input parameters (see [FIDOCTAP]):

1. rpId (required, String). Identity of the relying party.
2. clientDataHash (required, byte array).
3. allowList (optional, sequence of PublicKeyCredentialDescriptors).
4. extensions (optional, CBOR map).
5. options (optional, sequence of authenticator options, i.e. up for user presence
and uv for user verification).
6. pinAuth (optional, byte array).
7. pinProtocol (optional, unsigned integer).

The output parameters are (see [FIDOCTAP]):

1. credential (optional, PublicKeyCredentialDescriptor).
2. authData (required, byte array).
3. signature (required, byte array).
4. user (required, PublicKeyCredentialUserEntity).
5. numberOfCredentials (optional, integer).

USER_VERIFY_FACEPRINT,
USER_VERIFY_LOCATION, USER_VERIFY_EYEPRINT, USER_VERIFY_PATTERN, or
USER_VERIFY_HANDPRINT
set options.uv to true and
set options.up to true.

2. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod is
equal to USER_VERIFY_CLIENTPIN
set options.uv to true and
set options.up to false. Remember to provide the
clientPIN to the authenticator.

3. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod is
equal to USER_VERIFY_PRESENCE
set options.uv to false and
set options.up to true.

4. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and
uvm.userVerificationMethod is
equal to USER_VERIFY_NONE
set options.uv to false and
set options.up to false.

11. If result is not equal to CTAP2_OK and retry cannot fix the problem, then
map the CTAP error code to a UAF ASM error code
using the table in section 5. Mapping CTAP2 error codes to ASM error codes
and return the resulting error code.

12. If the numberOfCredentials in the response is > 1, then follow the rules in section "Client Logic" [FIDOCTAP] to receive and
process the remaining (numberOfCredentials-1) responses
(see authenticatorGetNextAssertion in [FIDOCTAP]).

13. Create TAG_WAV1CBOR_AUTH_ASSERTION structure.
1. Copy AAGUID (if known) into the respective TLV fields. Otherwise set the field to an empty value (zero length).

2. Copy the remembered KeyID into the respective TLV field.
3. Copy result.authData into the value of the TAG_WAV1CBOR_SIGNED_DATA field.
4. Copy result.signature into the value of the TAG_SIGNATURE field.

14. Create the AuthenticateOut object
1. Set AuthenticateOut.assertionScheme to "WAV1CBOR"
2. Encode the content of TAG_WAV1CBOR_AUTH_ASSERTION in base64url format and
set as AuthenticateOut.assertion

15. set ASMResponse.responseData to AuthenticateOut object.
16. set ASMResponse.statusCode to the correct status code corresponding to the result received earlier.
17. set ASMResponse.exts to empty
18. Return ASMResponse object

4.4 Authentication Response Processing Rules for FIDO Server

Instead of skipping the assertion according to step 6.5. in section 3.5.7.5 [UAFProtocol], follow these rules:

1. if a.assertionScheme == "WAV1CBOR" AND a.assertion starts with a valid structure as defined in section 3.2 Authentication
Assertion, then

1. set tbsData to the data contained in a.assertion.tbsData.
2. set authenticatorData to the CBOR object tbsData starts with.
Use the "length" field of the CBOR object to determine its

end.
3. set clientDataHash to the remaining bytes of the tbsData (i.e. the bytes following the CBOR object).
4. read claimedAAGUID from a.assertion.AAGUID (note that it might be empty).
5. read claimedKeyID from a.assertion.KeyID.
6. Locate UAuth.pub associated with (claimedAAGUID, claimedKeyID) in the user's record.
If claimedAAGUID is empty, search

for a matching claimedKeyID.

NOTE

If the authenticator uses clientPin but the clientPin was not set
(indicated by CTAP2_ERR_PIN_NOT_SET), the ASM should
ask the user for the clientPin and provide it to the authenticator.

NOTE

In the case of a platform authenticator, the AAGUID value can be remembered at registration time.
In the case of a
roaming authenticator, it might be possible to call
authenticatorGetInfo [FIDOCTAP] which provides the AAGUID in
the response.

If such record doesn't exist - continue with next assertion
If multiple records match the search criteria - use the first one

7. if claimedAAGUID is empty, set it to the AAGUID stored along with UAuth.pub
8. Verify that a.assertionScheme matches Metadata(claimedAAGUID).assertionScheme

If it doesn't match - continue with next assertion

9. Verify whether the claimedAAGUID
indeed matches the policy of the Authentication Request.
If it doesn't meet the policy – continue with next assertion

10. Check the Signature Counter authenticatorData.SignCounter and make sure it is either not supported by the
authenticator (i.e. the value provided and the value stored in the user's record are both 0 or the value isKeyRestricted is
set to 'false' in the related Metadata Statement) or it has been incremented (compared to the value stored in the user's
record)

If it is greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a cloned
authenticator has been used previously).

11. Locate authenticator specific authentication algorithms from
authenticator metadata (field AuthenticationAlgs)
12. If fcp is of type FinalChallengeParams, then hash AuthenticationResponse.FinalChallengeParams using the hashing

algorithm suitable for this authenticator type. Look up the
hash algorithm in authenticator Metadata, field
AuthenticationAlgs. It is the hash algorithm associated with
the first entry related to a constant with prefix ALG_SIGN.

FCHash = hash(AuthenticationResponse.FinalChallengeParams)

13. If fcp is of type CollectedClientData [UAFProtocol], then hash AuthenticationResponse.fcParams using hashing algorithm
specified in fcp.hashAlg.

FCHash = hash(AuthenticationResponse.fcParams)

14. Make sure that clientDataHash == FCHash
If comparison fails – continue with next assertion

15. Extract the up and uv bits from authenticatorData.
Verify whether these bits match the UVM extension sent in the request.
Fail if the verification result is not acceptable.

16. If a UVM extension is included in the response, extract this value and compare it
verify whether it matches the extension
from the request. Fail if the verification result is not acceptable.

17. If authenticatorData contains "txAuthSimple" (see section 10.2 [WebAuthn])
or "txAuthGeneric" (see section 10.3
[WebAuthn]) extension(s),

1. Make sure there is a transaction cached on Relying Party side.
If not – continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for
the same transaction) and
calculate their hashes using hashing algorithm suitable for
this authenticator (same hash algorithm as used for

NOTE
up=false and uv=false means silent authentication (USER_VERIFY_NONE)
up=true and uv=false means user presence check only (USER_VERIFY_PRESENCE)
up=false and uv=true means user verification that doesn't provide user presence, e.g. client Pin
or some other
user verification method not necessarily implemented fully inside the authenticator
boundary
(USER_VERIFY_CLIENTPIN)
up=true and uv=true means user verification using a user verification method implemented
inside the
authenticator boundary (e.g. USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check
(USER_VERIFY_CLIENTPIN) AND USER_VERIFY_PRESENCE - depending on the authenticator
capabilities as
declared in the related Metadata Statement.

NOTE

The transaction/transaction hash included in this AuthenticationResponse must match the transaction content
specified in the related AuthenticationRequest.
As FIDO doesn’t mandate any specific FIDO Server API, the
transaction content could be cached by any relying party software component, e.g. the FIDO Server or the relying
party Web Application.

FinalChallenge).
For each cachedTransaction add hash(cachedTransaction) into
cachedTransactionHashList

3. Make sure that the transaction ("txAuthSimple") or the transaction hash ("txAuthGeneric")
included in the extension
is in cachedTransactionHashList

If it's not in the list – continue with next assertion

18. Use the UAuth.pub key found in step 1.9 and the appropriate authentication algorithm to
verify the signature
a.assertion.Signature of the to-be-signed object tbsData.

1. If signature verification fails – continue with next assertion
2. Update SignCounter in user's record with
authenticatorData.SignCounter.

5. Mapping CTAP2 error codes to ASM error codes

In many cases the status code returned via [FIDOCTAP] needs to be processed and handled by the ASM.
If the communication to
the authenticator via [FIDOCTAP] finally failed with an error, the following error code mapping rules apply:

CTAP2
Code CTAP2 Name ASM Error Name

0x00 CTAP1_ERR_SUCCESS, CTAP2_OK UAF_ASM_STATUS_OK

0x01 CTAP1_ERR_INVALID_COMMAND UAF_ASM_STATUS_ERROR

0x02 CTAP1_ERR_INVALID_PARAMETER UAF_ASM_STATUS_ERROR

0x03 CTAP1_ERR_INVALID_LENGTH UAF_ASM_STATUS_ERROR

0x04 CTAP1_ERR_INVALID_SEQ UAF_ASM_STATUS_ERROR

0x05 CTAP1_ERR_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x06 CTAP1_ERR_CHANNEL_BUSY UAF_ASM_STATUS_ERROR

0x0A CTAP1_ERR_LOCK_REQUIRED UAF_ASM_STATUS_ERROR

0x0B CTAP1_ERR_INVALID_CHANNEL UAF_ASM_STATUS_ERROR

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE UAF_ASM_STATUS_ERROR

0x12 CTAP2_ERR_INVALID_CBOR UAF_ASM_STATUS_ERROR

0x14 CTAP2_ERR_MISSING_PARAMETER UAF_ASM_STATUS_ERROR

0x15 CTAP2_ERR_LIMIT_EXCEEDED UAF_ASM_STATUS_ERROR

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION UAF_ASM_STATUS_ERROR

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED UAF_ASM_STATUS_ERROR

0x21 CTAP2_ERR_PROCESSING UAF_ASM_STATUS_ERROR

0x22 CTAP2_ERR_INVALID_CREDENTIAL UAF_ASM_STATUS_ERROR

0x23 CTAP2_ERR_USER_ACTION_PENDING UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x24 CTAP2_ERR_OPERATION_PENDING UAF_ASM_STATUS_ERROR

0x25 CTAP2_ERR_NO_OPERATIONS UAF_ASM_STATUS_ERROR

NOTE

The values of claimedAAGUID and claimedKeyID are now
confirmed since the public key we looked up using those
values was the correct one.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM UAF_ASM_STATUS_ERROR

0x27 CTAP2_ERR_OPERATION_DENIED UAF_ASM_STATUS_ACCESS_DENIED

0x28 CTAP2_ERR_KEY_STORE_FULL UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

0x2A CTAP2_ERR_NO_OPERATION_PENDING UAF_ASM_STATUS_ERROR

0x2B CTAP2_ERR_UNSUPPORTED_OPTION UAF_ASM_STATUS_ERROR

0x2C CTAP2_ERR_INVALID_OPTION UAF_ASM_STATUS_ERROR

0x2D CTAP2_ERR_KEEPALIVE_CANCEL UAF_ASM_STATUS_ERROR

0x2E CTAP2_ERR_NO_CREDENTIALS UAF_ASM_STATUS_ERROR

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x30 CTAP2_ERR_NOT_ALLOWED UAF_ASM_STATUS_ERROR

0x31 CTAP2_ERR_PIN_INVALID UAF_ASM_STATUS_ACCESS_DENIED

0x32 CTAP2_ERR_PIN_BLOCKED UAF_ASM_STATUS_USER_LOCKOUT

0x33 CTAP2_ERR_PIN_AUTH_INVALID UAF_ASM_STATUS_ACCESS_DENIED

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED UAF_ASM_STATUS_USER_LOCKOUT

0x35 CTAP2_ERR_PIN_NOT_SET UAF_ASM_STATUS_USER_NOT_ENROLLED

0x36 CTAP2_ERR_PIN_REQUIRED UAF_ASM_STATUS_ACCESS_DENIED

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION UAF_ASM_STATUS_ACCESS_DENIED

0x38 CTAP2_ERR_PIN_TOKEN_EXPIRED UAF_ASM_STATUS_ACCESS_DENIED

0x39 CTAP2_ERR_REQUEST_TOO_LARGE UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

0x3A CTAP2_ERR_ACTION_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x3B CTAP2_ERR_UP_REQUIRED UAF_ASM_STATUS_ACCESS_DENIED

0x7F CTAP1_ERR_OTHER UAF_ASM_STATUS_ERROR

0xDF CTAP2_ERR_SPEC_LAST UAF_ASM_STATUS_ERROR

0xE0 CTAP2_ERR_EXTENSION_FIRST UAF_ASM_STATUS_ERROR

0xEF CTAP2_ERR_EXTENSION_LAST UAF_ASM_STATUS_ERROR

0xF0 CTAP2_ERR_VENDOR_FIRST UAF_ASM_STATUS_ERROR

0xFF CTAP2_ERR_VENDOR_LAST UAF_ASM_STATUS_ERROR

A. References

A.1 Normative references

[FIDOCTAP]
C. Brand; A. Czeskis; J. Ehrensvärd; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. FIDO 2.0: Client To
Authenticator Protocol. 30 January 2019. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-
protocol-v2.0-ps-20190130.html

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. 28 November 2017.

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
[FIDOGlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-statement-v2.0-id-20180227.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review Draft.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill; J. Hodges; K. Yang. FIDO UAF Authenticator Commands.
Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol Specification v1.2.
Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

[WebAuthn]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael B. Jones; Akshay Kumar; Angelo Liao; Rolf Lindemann; Emil
Lundberg. Web Authentication: An API for accessing Public Key Credentials Level 1. March 2019. TR. URL:
https://www.w3.org/TR/webauthn/

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/

	fido-uaf-apccbor-v1.2-ps-20201020
	Local Disk
	FIDO UAF Android Protected Confirmation Assertion Format

	fido-uaf-apdu-v1.2-ps-20201020
	Local Disk
	FIDO UAF APDU

	fido-uaf-asm-api-v1.2-ps-20201020
	Local Disk
	FIDO UAF Authenticator-Specific Module API

	fido-uaf-authnr-cmds-v1.2-ps-20201020
	Local Disk
	FIDO UAF Authenticator Commands

	fido-uaf-client-api-transport-v1.2-ps-20201020
	Local Disk
	FIDO UAF Application API and Transport Binding Specification

	fido-uaf-overview-v1.2-ps-20201020
	Local Disk
	FIDO UAF Architectural Overview

	fido-uaf-protocol-v1.2-ps-20201020
	Local Disk
	FIDO UAF Protocol Specification

	fido-uaf-reg-v1.2-ps-20201020
	Local Disk
	FIDO UAF Registry of Predefined Values

	fido-uaf-webauthn-v1.2-ps-20201020
	Local Disk
	FIDO UAF WebAuthentication Assertion Format

