fco

ALLIANCE

FIDO UAF Android Protected Confirmation Assertion Format
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.ora/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-apccbor-v1.2-ps-20201020.html

Editor:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also
be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

This document defines the assertion format "APCV1CBOR" in order to use Android Protected Confirmation
for FIDO UAF Transaction Confirmation.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current FIDO Alliance publications and the latest revision of this
technical report can be found in the FIDQ Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the EIDO Alliance as a Proposed Standard. If you wish to make
comments regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any
other contributors to the Specification are not, and shall not be held, responsible in any manner for

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-apccbor-v1.2-ps-20201020.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF
ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It
is a stable document and may be used as reference material or cited from another document. FIDO
Alliance's role in making the Recommendation is to draw attention to the specification and to promote its
widespread deployment.

Table of Contents

e 1. Notation
o 1.1 Key Words
2. Overview

3. Data Structures for APCV1CBOR
o 3.1 Registration Assertion

o 3.2 Authentication Assertion

4. Processing Rules
o 4.1 Registration Response Processing Rules for ASM

[¢]

4.2 Registration Response Processing Rules for FIDO Server
4.3 Authentication Response Generation Rules for ASM
4.4 Authentication Response Processing Rules for FIDO Server

5. Example for FIDO Metadata Statement

A. References
o A.1 Normative references

[¢]

[¢]

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.
String literals are enclosed in “, e.g. “UAF-TLV”.

In formulas we use

“|” to denote byte wise concatenation operations.
UAF specific terminology used in this document is defined in [FIDOGIlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

LI 11 LI 11 LE 11 L1 LL 11 » M ”

The key words “musT”, “musT NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “sHOULD”, “sHOULD NOT”, “RECOMMENDED”, “MAY”,
and “opTioNAL” in this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the assertion format "APCV1CBOR" in order to use Android Protected Confirmation
for FIDO Transaction Confirmation.

3. Data Structures for APCV1CBOR

This section is normative.
3.1 Registration Assertion

The registration assertion for the assertion format "APCV1CBOR" contains an object as specified in section
5.2.1 in [UAFAuthnrCommands], with the following specifics:

1. Only Surrogate Basic Attestation is supported. The extension "fido.uaf.android.key_attestation"
[UAFRegistry] musT be present.

2. The signature field (TAG_SIGNATURE) sHaLL have zero bytes length, since the key cannot be used

to create a self-signature.

3.2 Authentication Assertion

The authentication assertion is a TLV structure containing a CBOR encoded to-be-signed object:

iy Description
Structure P
1 UINT16 Tag | TAG_APCV1CBOR_AUTH_ASSERTION
UINT16
1.1 Length Length of the structure.
1.2 UINT16 Tag | TAG_APCV1CBOR_SIGNED_DATA
UINT16
1.2.1 Length Length of the structure.
UINT8 . : , . .
1.2.2 The serialized Android Protected Confirmation CBOR object.
tbsData
1.3 UINT16 Tag | TAG_AAID
UINT16
1.3.1 Length Length of AAID
1.3.2 | UINTS8[] AAID | Authenticator Attestation ID
1.4 UINT16 Tag | TAG_KEYID
UINT16
1.41 Length Length of KeylID
14.2 | YINTSI (binary value of) KeyID

https://developer.android.com/training/articles/security-android-protected-confirmation

KeylD

1.5 UINT16 Tag | TAG_SIGNATURE

UINT16

1.51 Length Length of Signature
152 UINTS]] Signature calculated using UAuth.priv over tbsData - not including any TAGs nor
7 | Signature the KeyID and AAID.
NOTE

Only the data in tospata is included in the signature computation. All other fields are essentially
unauthenticated and are treated as 'hints' only.

4. Processing Rules

This section is normative.

4.1

Registration Response Processing Rules for ASM

Refer to [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned
in this paragraph.

1

2.

. Locate authenticator using authenticatorindex. If the authenticator cannot be located, then fail with
UAF ASM STATUS AUTHENTICATOR DISCONNECTED

If a user is already enrolled with this authenticator (such as biometric enroliment, PIN setup, etc. for
example) then the ASM musT request that the authenticator verifies the user.

NOTE

If the authenticator supports vserverificationtoken (sSee [UAFAuthnrCommands]), then the
ASM must obtain this token in order to later include it with the register command.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot
automatically trigger unblocking, return var asv sTATUS USER LOCKOUT.

o If verification fails, return var asv sTatus access DENTED

If the user is not enrolled with the authenticator then take the user through the enroliment process.

o If neither the ASM nor the Authenticator can trigger the enrollment process, return
UAF ASM STATUS USER NOT ENROLLED.

o If enrollment fails, return var asv sTATUS ACCESS DENTED

Hash the provided registerin. finalchallenge Using the authenticator-specific hash function
(FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm defined in the

AuthenticatorInfo.authenticationAlgorithm field.

5. Generate a key pair with apropriate protection settings and mark it for use with Android Protected

Confirmation, see https://developer.android.com/training/articles/security-android-protected-
confirmation.

6. Create a 7ac auTsENTICATOR ASseErTION Structure containing a Tac uvarvi rec asserTTON Object with
the following specifics:
1. set signature of Surrogate Basic Attestation to 0 bytes length

2. add the Android Hardware Key Attestation extension

7. If the authenticator is a bound authenticator

1. Store caiierip (see [UAFASM]), 2pp1D, TAG KEYHANDLE, TAG KEYTD @nd CurrentTimestamp in the
ASM's database.

NOTE

What data an ASM will store at this stage depends on underlying authenticator's
architecture. For example some authenticators might store ApplD, KeyHandle, KeyID
inside their own secure storage. In this case ASM doesn't have to store these data in its
database.

8. Create a registerout object
1. Set Registerout.assertionScheme according to "APCV1CBOR"
2. Encode the content of Tac AUTHENTICATOR ASSERTION (i.€. TAG UAFVI REG ASSERTION)IN

base64url format and set as registerout.assertion as described in section "Data Structures for
APCV1CBOR".

3. Return registerout object

4.2 Registration Response Processing Rules for FIDO Server

Instead of skipping the assertion as described in step 6.9, follow these rules:

1. if a.assertionscheme == "APCV1CBOR" AND 2 .zssertion.TAG UAFVI REG ASSERTION contains
Tac varvl xrD as first element:

1. Obtain vetadata (2a1D) .AttestationType for the AAID and make sure that
a.assertion.TAG UAFVI REG AssErTTON contains the most preferred attestation tag specified in
field MatchCriteria.attestationTypes in RegistrationRequest.policy (If this field is present).

m |fa.assertion.Tac UAFVI REG AsserTION doesn't contain the preferred attestation - it is
RECOMMENDED to skip this assertion and continue with next one

2. Make sure that = .assertion.TAG UAFVI REG ASSERTTON.TAG UAFVI KRD.FinalChallengeHash ==
FCHash

m |f comparison fails - continue with next assertion

3. Obtain vetadata (AATD) .Authenticatorversion for the AAID and make sure that it is lower or
equal o a.assertion. TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.AuthenticatorVersion.
m |f Metadata (AATD) .Authenticatorversion iS higher (i.e. the authenticator firmware is
outdated), it is RecommeENDED to assume increased risk. See sections "StatusReport

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

dictionary" and "Metadata TOC object Processing Rules" in [FIDOMetadataService] for

more details on this.

4. Check whether z.assertion.TAG UAFVI REG ASSERTION.TAG UAFVI KRD.RegCounter iS 0 since it is

not supported in this assertion scheme.

m |fa. assertion.TAG UAFVI REG ASSERTTION.TAG UAFVI KRD.RegCounter IS NON-zero, this
assertion might be skipped and processing will continue with next one

5. Make sure = .assertion.TAG UAFVI REG ASSERTION contains an object of type

ATTESTATION BASIC SURROGATE

1. There is no real attestation for the AAID, so we just assume the AAID is the real one.

2. Ifentry attestationrootcertificates for the AAID in the metadata is not empty - continue
with next assertion (as the AAID obviously is expecting a different attestation method).

3. Verify that extension "fido.uaf.android.key_attestation" is present and check whether it is
positively verified according to its server processing rules as specified [UAFRegistry].

m If verification fails — continue with next assertion

4. Verify that the attestation statement included in that extension includes the flag
TrRUSTED conrIrMATION REQUIRED indicating that the key will be restricted to sign valid
transaction confirmation assertions (see
https://developer.android.com/training/articles/security-key-attestation and
https://developer.android.com/training/articles/security-android-protected-confirmation).

n [f verification fails — continue with next assertion

5. Mark assertion as positively verified

6. Extract 2 .assertion.TAG UAFVI REG ASSERTTION.TAG UAFV1 KRD.PublickKey into PublicKey,

a.assertion.TAG UAFV1 REG ASSERTION.

a.assertion.TAG UAFV1 REG ASSERTION

into AuthenticatorVersion, a.assertion
AAID.

TAG_UAFV1 KRD

.TAG _UAFV1 KRD
a.assertion.TAG UAFV1 REG ASSERTION.

TAG_UAFV1 KRD

.TAG_UAFV1 REG

.xey1D into KeylD,

.signcounter into SignCounter,

.TAG _ASSERTION INFO.authenticatorVersion
_ASSERTION.TAG UAFV1 KRD.TAG AAID into

4.3 Authentication Response Generation Rules for ASM

See [UAFASM] for details of the ASM API.

1.

if this is a bound authenticator, verify cz11<ri4d against the one stored at registration time and return
uar asM sTATUS Access penteD if it doesn't match.

The ASM musT request the authenticator to verify the user.

Hash the provided ruthenticatetn. finalchallenge using the preferred authenticator-specific hash

funCﬂon(FinalChallenquash)

The authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithmfkﬂd.

If Authenticateln.keylDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with ruthenticatern.appin and
authenticateln.keyIDs and obtain the KeyHandles associated with it.
m Return var asv staTus kevy pisappeared pErRMANENTLY if the related key disappeared
permanently from the authenticator.

UAF ASM STATUS ACCESS DENIED

https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-android-protected-confirmation

8.

10.

11.

Return if no entry has been found.
2. If this is a roaming authenticator, then treat ruthenticatetn. key1ns as KeyHandles

If Authenticateln.keylDs is empty, lookup all KeyHandles matching this request.

If multiple KeyHandles exist that match this request, show the related distinct usernames and ask the
user to choose a single username. Remember the KeyHandle related to this key.

Call confirmationrrompt.Builder and pass the transactionText as parameter to method

setPromptText See also https://developer.android.com/training/articles/security-android-protected-
confirmation.

Pass the rinaichallengerash as parameter to method sctextranata, see also

https://developer.android.com/training/articles/security-android-protected-confirmation

Call vui1a method of the ConfirmationPrompt and then call method presentrrompt providing an
appropriate callback that will sign the datathatwascontirmea with the key identified by the KeyHandle
remembered earlier.

Create tac apcviceor auTH AsserTION Structure.
1. Copy the serialized datathatwasconfirmed CBOR object into field tospata.

2. Copy ~n1D0 and key1D into the respective TLV fields.
3. Copy signature into the Tac stenature field.
Create the ruthenticateout object
1. Set avthenticateout.assertionschene to "APCV1CBOR"
2. Encode the content of Tac arcvicror auTH asserTION in base64url format and set as

AuthenticateOut.assertion

3. Return the ruthenticateout Object

The authenticator metadata statement musT truly indicate the type of transaction confirmation display
implementation. Typically the "Transaction Confirmation Display" flag will be set to

TRANSACTION CONFIRMATION DIspray ANy (bitwise) or

TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE.

4.4 Authentication Response Processing Rules for FIDO Server

Instead of skipping the assertion according to step 6.6. in section 3.5.7.5 [UAFProtocol], follow these rules:

NOTE

The extraData in tbsData.dataThatWasConfirmed is the finalChallengeHash as computed by the
ASM. The promptText in tbsData.dataThatWasConfirmed is the Authenticateln.Transaction.content
value. Authenticateln.Transaction.contentType is "text/plain".

1.

if 2.assertionscheme == "APCV1CBOR" AND = .2ssertion startes with a valid CBOR structure as

defined in section 3.2 Authentication Assertion, then
1. set tbspata to the CBOR object contained in 2. assertion.tbsbata.

2. Verify the AAID against the AAID stored in the user's record at time of Registration.
= |f comparison fails — continue with next assertion

3. Locate urutn.pub associated with (2. assertion.aa1D, a.assertion.KeyD) in the user's record.

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

» |f such record doesn't exist - continue with next assertion
4. Locate authenticator specific authentication algorithms from authenticator metadata (field
AuthenticationAlqs)

5. If rcp is of type FinalChallengeParams, then hash
AuthenticationResponse.FinalChallengeParams USING the hashing algorithm suitable for this
authenticator type. Look up the hash algorithm in authenticator Metadata, field
authenticationalgs. Itis the hash algorithm associated with the first entry related to a constant
with prefix ALG_SIGN.

B FCHash = hash(AuthenticationResponse.FinalChallengeParams)

6. If repis of type ClientData, then hash ruthenticationresponse. feParams using hashing
algorithm specified in fcp.nashala.

B FCHash = hash (AuthenticationResponse.fcParams)
7. Make sure that tbspata.dataThatWwasConfirmed.extraData == FCHash
= |f comparison fails — continue with next assertion

8. Make sure there is a transaction cached on Relying Party side in the list cachedTransactions.
= |f not — continue with next assertion

NOTE

The promtprext included in this authenticationresponse must match the transaction
content specified in the related ~uthenticationrequest. As FIDO doesn’t mandate any
specific FIDO Server API, the transaction content could be cached by any relying party
software component, e.g. the FIDO Server or the relying party Web Application.

9. Make sure that tbsData.dataThatWasConfirmed.promptText is included in the list

cachedTransactions

m [fit's not in the list — continue with next assertion

10. Use the uruth.pub key found in step 1.2 and the appropriate authentication algorithm to verify
the signature = .assertion.signature of the to-be-signed object tospata.

1. If signature verification fails — continue with next assertion

5. Example for FIDO Metadata Statement

This section is non-normative.

This example Authenticator has the following characteristics:

e Authenticator implementing transaction confirmation display using TrustedUI (i.e. in TEE)
e Leveraging TEE backed key store and user verification
e Only fingerprint based user verification is implemented - no alternative password

{
"description": "FIDO Alliance Sample UAF Authenticator supporting Android Protected
Confirmation",

"aaid": "1234#5679",

"authenticatorVersion": 2,
n upv n : [
{ "major": 1, "minor": 2 }
1,
"assertionScheme": "APCV1CBOR",

"authenticationAlgorithm": 1,
"publicKeyAlgAndEncoding": 256,
"attestationTypes": [15880],
"userVerificationDetails": [

[

"userVerification": 2,
"baDesc": {
"selfAttestedFAR": 0.00002,
"maxRetries": 5,
"blockSlowdown": 30,
"maxTemplates": 5
}
H]
1,
"keyProtection": 6,
"isKeyRestricted": true,
"matcherProtection": 2,
"cryptoStrength": 128,
"operatingEnv": "TEEs based on ARM TrustZone HW",
"attachmentHint": 1,
"isSecondFactorOnly": false,
"tcDisplay": 5,
"tcDisplayContentType": "text/plain",
"attestationRootCertificates": [1,
"supportedExtensions": [{
"id": "fido.uaf.android.key attestation",
"data": "{ \"attestationRootCertificates\":

\"MIICPTCCAeOgAWIBAgIJAOuUexvU30y2wMAOGCCgGSM4 9BAMCMHSsx I DAeBgNVBAMM
F1NhbXBsZSBBAHR1c3RhdG1lvbiBSb2 90MRYWEFAYDVQQOKDA1GSURPIEFsbGlhbmN1
MREwDwYDVQQLDAhVQUYgVEFJHLDESMBAGA1UEBwwJUGEFsbyBBOHRVMQOswCQYDVQQT
DAJDQTELMAKGA1UEBhMCVVMwHhcNMTQwWNjE4AMTMzMzMyWhcNNDEXMTAZMTMzMzMy
WIB7MSAwWHgYDVQQODDBATYW1wbGUgQXROZXNOYXRpb24gUm9vdDEWMBQGA1UECgwWN
Rk1ETyBBbGxpYW5)ZTERMASGALIUECWwIVUFGIFRXRywxEjAQBgNVBACMCVBhbGS8g
QWx0bzELMAKGA1UECAWCQOExCzAJBgNVBAYTALIVTMFkwEWYHK0ZIzjO0OCAQYIKOZI
zjJ0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrgqOBb58pxGaHIRyX/ 6NQME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It7zE4w8hk5EJ/MB8GAIUdIWQYMBaAFPOHA3CLhXFbCO0It7zE4w8hk5EJ/MAWG
AlUdEwWQFMAMBAf8wCgYIKoZIzjOEAWIDSAAWRQIhAJO6QSXt9ihIbEKYKIjsPkri
VdLI%tfszSu7Erszr4AquoYCZfO+zI55aQeAHjIzA9Xm63rrquBZ9ps922XN
10==\"] 1",

"fail if unknown": false

1,

"icon": "data:image/png;base64,
1VBORWOKGgoAAAANSUhEUgAAAESAAAAVCAYAAACIwIfcAAAAAXNSROIArs4c6QAAAARNQUIBAACK
Jwv8YQUAAAAJCEhZcwAADSMAAATDACAVOGQAARAAhSURBVGhD7Zr5bxR1IGMf9KzTB8AM/YEhE2W7p
QZCcWKKBCc1lSpHAT1ELARE7KNECCA3FKWKOCKKSCFIsKBcgVCDWGNESdAYidwgggdJBiRiMhFc/4wy8
884zu9Nd1InGTfZ2IJP2n3n0++88933fveBBx+PqCzJkTUvBbLmpUDWVvBTImpcCSZvXLCAX9R05Sk19
bb5atf599£fG+/erA541g47aP1LLVa9SIyVNU18I18d5kGTsi30NFv7aidn7QZPMwbdys2erU2XMg
Udy8+ZcaNmGimE8yXN3RUd3al8nF0fUlovZ+0CTzWpd2Vj+eOmlbEyy6Dx415pUMGHveo506g227
dtuWBIuffr6oWpVOFPNLhowl751Nm21LvPH3rVtWjfz66LEfgl8tX7FR1O9YFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvpOkZHMTZg9x 7bLHcMnThb1l 6eJ+mVEQq8yaUZQNG64 i
XZ+0/kgq6uOZF00QtatdWKEXnRQ99BJ9I1R50IFnk54 JNOmkUigqlO3XDW+M1+98mKB6tW7riWpZcPc+
0zg4tLrY1lUc86E6eGD]jIMubVpcusearfgIYGRk6brhzZVr/JcHzooL7550jedLExopWcApi2ZUghu
7JLvrVsQU81lzkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6oua¥YvEe
nW/W1YJjp8cwbMm682tPwgWlR4At)/2SHI3IRIY14moZvXpiSgDr7dXtQHxa/PK3/+BWsK1dTgHuU6GV
8tQJI3bwFkwpFrUOQ50slr3levm8zZcgl 7+BBaw/K81EKS5gzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVNB82iuv38im7NtaXtV1CVgbRgwdpksmbdi3bu2De7YfaBBxcqfvgPrUjFQNTQ221£fdUVVT68rT
JKF5DnSmUjgdgg4mSS9pms fDIJR3G6ToHO1W9aV7/LWLHYXK11TDtOLTAtkYIaamplQjVv++uyGUxV
dJODNVXSm+b1gRxpl84ddfX1Lpl0/d69tsod0vs5hGredxu8o+fpLR1cGhNTD6Z57CIKMWXefJdO
Z94bb9%90gdlRONS7gITTzHimMgivbO3g0DdVyk3WQBhBztK35YKNdOnc803acS6£fDZFgKaXLsEJpS
rdrliBgp89cJcs/m7Tvs0rkjGEN4AbOkPoZn3UJulOrnz22yPlfmvUx+05gSgebVim+zSuYNVhg/T
WbDiLVv1jplLlop6CLXP+2gtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPavVvIBCgee/NjYk6ve61lK
9cwiUc/STtf1HDpM3b592y7h3Thx50zK69HLpYWuAwaqS5cv26g7ceb8efVYaReP31FU8z)1knSw
ZXHMmnCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCepdmoZoH+1£G3xD4tT7x8kwy]j8nw
b9ev26V0B6d+7H4zKvudAH537FjqyzOHddnHEuzmXq/Wjx0bvNMbv7nhywsX2aVsWtC8+48aleap
E7p5wKZ10A2AQRV5nVvR4AE+uJc+b61kApgInxBgmd/4V5QP/mt18HDC7sRHftmeu51mhV0Orn/ALX2
32bgd4BFnDx7VilcWS2uff0IbB47gexxmU]j9QutYjupd3tY¥D6abWBBMrh+apNbOKrNF1+ugCadri
XGfwMPPtViavhU3YMOAANuUb/RO7LOy0Se0adE88ApsXFGEf30ynhlIJgM51CU6vVNOEzgnpvHBEUY
iVraePiwJ53DF5ZTZnomENg85kNUd20J12Wpr4Ommk fN4x4zHf1iVFc8Dv8NzuhNgOidi1GvA6DGuU
eZwO78AAQN6CiEk6+rwSVevjvgNDYPOoIUwaKShrxAuXL1kH4aYuGEfMYDclOWEF5Ta31hPJOfcUhr
U/J1INi6c6elRYdBpo6++Yfjx611GNfRm4MD5rJ1j3FoGHNjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3WplLzNfNk54XxC1lwDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GgxQ6BzeNboBk5n8k4nebRh+k1hWExTFOD1EyWUsS5nv+dgQgKaxzuCdEOL
sH102NQ8ah0OmXr12La3m0f9wik9+wLNTMY/86MP0o8yi310fxmT6PWogGo+DZukYna56mSZt5WWSy
5qVAlrwUyJgXAlnzkiai/gHSD7RkTyihogAAAABJRUSErkJggg=="

A. References

A.1 Normative references

[FIDOGIlossary]
R. Llndemann D. Baghdasaryan B. H|II J. Hodges. FIDO Technical Glossagg Review Draft. URL:

[RFC21 19]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current

Practice. URL: https://tools.ietf.org/html/rfc2119
[UAFASM]

D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific
Module API. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-
asm-api-v1.2-ps-20201020.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill; J. Hodges; K. Yang. EIDO UAE
Authenticator Commands. Review Draft. URL: https:/fi lliance.or fido-uaf-v1.2-
20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

[UAFProtocol]

R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAFE

Protocol Specification v1.2. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-
20201020/fido-uaf-protocol-v1.2-ps-20201020.html

[UAFRegistry]
R. Llndemann D. Baghdasaryan B Hill. FIDO UAF Reg/strz of Predeflned Value Review Draft.

A.2 Informative references

[FIDOMetadataService]
R. Llndemann B. Hill; D. Baghdasaryan FIDO Metadata Service. ReV|ew Draft URL:

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html

f o

ALLIANCE

FIDO UAF APDU
FIDO Alliance Proposed Standard 20 October 2020

Contributors:

Virginie Galindo, Gemalto
Rolf Lindemann, Nok Nok Labs. Inc.

Ullrich Martini, Gi 3 D
Chris Edwards, Intercede
Jeff Hodges, Paypal

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

This specification defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units (APDUs) thus facilitating UAF
authenticators based on Secure Elements.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https.//fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS 1S AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be
used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-apdu-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-apdu-v1.2-id-20180220.html
mailto:naama.bak@morpho.com
https://www.morpho.com/
mailto:Virginie.Galindo@gemalto.com
https://www.gemalto.com/
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:Ullrich.Martini@gi-de.com
https://www.gi-de.com/
mailto:Chris.Edwards@intercede.com
https://www.intercede.com/
mailto:jeff.hodges@paypal.com
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

e 1. Notation
o 1.1 Key Words
e 2. Introduction

e 3. SE-based Authenticator Implementation Use Cases
o 3.1 Hybrid SE Authenticator
= 3.1.1 Architecture of the Hybrid SE Authenticator

= 3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator
e 4. FIDO UAF Applet and APDU commands

o 4.1 UAF Applet in the Authenticator
= 4.1.1 Application Identifier

m 4.1.2 User Verification
= 4.1.3 Cryptographic operations
o 4.2 APDU Commands for FIDO UAF

= 4.2.1 Class byte coding

= 4.2.2 APDU command "UAF"
= 4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands
m 4.2.2.2 Response message and status conditions of an "UAF" APDU command

= 4.2.3 APDU Command "SELECT"

n 4.2.4 APDU Command "VERIFY"
s 4.2.4.1 Command structure

m 4.2.4.2 Response message and status conditions

o 4.3 Managing Long APDU Commands and Responses
» 4.3.11SO Variant

= 4.3.2 Proprietary Variant

e 5. Security considerations

e A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.
String literals are enclosed in **, e.g. “UAF-TLV".

In formulas we use

ulu

to denote byte wise concatenation operations.

The notation pasesdurl (byte(8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

UAF specific terminology used in this document is defined in [FIDOGIlossary].
All diagrams, examples, notes in this specification are non-normative.
All TLV structures defined in this document musT be encoded in little-endian format.

All APDU defined in this document musT be encoded as defined in [ISOIEC-7816-4-2013].

1.1 Key Words

» o« ” o« » o« » o« ” o« » o« » o«

The key words “musT”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “opTIoNAL” in this document are
to be interpreted as described in [RFC2119].

2. Introduction

This section is non-normative.

This specification defines the interface between the FIDO UAF Authenticator Specific Module (ASM) [UAFASM] and authenticators based upon
"Secure Element" technology. The applicable secure element form factors are UICC (SIM card), embedded Secure Element (eSE), uSD, NFC

card, and USB token. Their common characteristic is they communicate using Application Programming Data Units (APDU) in compliance with
[ISOIEC-7816-4-2013].

Implementation of this specification is optional in the UAF framework, however, products claiming to implement the transport of UAF messages
over APDUs should implement it.

This specification first describes the various fashions in which Secure Elements can be incorporated into UAF authenticator implementations —
known as SE-based authenticators or just SE authenticators — and which components are responsible for handling user verification as well as
cryptographic operations. The specification then describes the overall architecture of an SE-based authenticator stack from the ASM down to the
secure element, the role of the "UAF Applet" running in the secure element, and outlines the nominal communication flow between the ASM and
the SE. It then defines the mapping of UAF Authenticator commands to APDUs, as well as the FIDO-specific variants of the VERIFY APDU

command.

NOTE

This specification does not define how an SE-based authenticator stack may be implemented, e.g., its integration with TEE or biometric
sensors. However, SE-based authenticator vendors should reflect such implementation characteristics in the authenticator metadata such
that FIDO Relying Parties wishing to be informed of said characteristics may have access to it.

3. SE-based Authenticator Implementation Use Cases

This section is non-normative.

Secure elements can be leveraged in different scenarios in the UAF technology. It can support user gestures (used to unlock access to FIDO
credentials) or it can be involved in the actual cryptographic operations related to FIDO authentication. In this specification, we will be
considering the following SE-based authenticator implementation use cases:

1. The Secure Element (SE) is the (silent) Authenticator.
2. The SE is part of the Authenticator which is composed of a Trusted Application (TEE) based User Verification component, potentially a
TEE based transaction confirmation display and the crypto kernel inside the SE (Hybrid SE Authenticator).
3. The authenticator (Hybrid SE Authenticator) consists of
o the SE implementing the matcher and the crypto kernel
o and a specific software module (e.g. running on the FIDO User Device) to capture the user verification data (e.g. PIN, Face,
Fingerprint).

3.1 Hybrid SE Authenticator

In FIDO UAF, the access to credentials for performing the actual authentication can be protected by a user verification step. This user
verification step can be based on a PIN, a biometric or other methods. The authenticator functionality might be implemented in different
components, including combinations such as TEE and SE, or fingerprint sensor and SE. In that case the SE implements only a part of the
authenticator functionality.

NOTE

The reason for using such hybrid configuration is that Secure Elements do not have any user interface and hence cannot directly
distinguish physical user interaction from programmatic communication (e.g. by malware). The ability to require a physical user interaction
that cannot be emulated by malware is essential for protecting against scalable attacks (see [FIDOSecRef]). On the other hand, TEEs (or
biometric sensors implemented in separate hardware) which can provide a trusted user interface typically do not offer the same level of
key protection as Secure Elements.

Strictly spoken, a Hybrid SE Authenticator (voluntarily) uses the Authenticator Command interface [UAFAuthnrCommands] inside the
authenticator, e.g. between the crypto kernel and the user verification component.

Examples of Hybrid SE authenticators are:

1. User PIN code capture and verification are implemented entirely in a TEE relying on Trusted User Interface and secure storage capabilities
of the TEE and, once the PIN code is verified, the FIDO UAF crypto operations are performed in the SE.

2. User fingerprint is captured via a fingerprint sensor, the fingerprint match is performed in the TEE, relying on matching algorithms. Once
the fingerprint has been positively checked, the cryptographic operations are executed in the Secure Element.

3. The user verification is implemented as match-on-chip in separate hardware and FIDO UAF cryptographic operations are implemented in
the SE.

In all those cases, the hybrid nature of the authenticator will be managed by the software-based host, regardless of its nature (TEE, SW,
Biometric sensor..). There are a number of possible interactions between the ASM and the SE actually implementing the verification and the
cryptographic operations to consider within those use cases.

1. PIN user verification where the user interaction for the PIN entry is performed externally to the SE. The PIN may then be passed within a
VERIFY command to the SE, followed by the actual cryptographic operations (such as the Register and Sign UAF authenticator
commands).

2. Biometric user verification where the sample capture and matching is performed externally to the SE (e.g. in TEE or in a match-on-chip FP
sensor). This would then only need to send to the SE the actual cryptographic operation needed in this session (such as the Register and
Sign UAF authenticator commands).

3. User verification sample (Faceprint, Fingerprint..) capture is performed externally to the SE. The sample is then sent to a match-on-card
applet in the SE that behaves as a global PIN to enable access to the cryptographic operation required within this session.

3.1.1 Architecture of the Hybrid SE Authenticator

In order to support an Hybrid SE Authenticator, a dedicated software-based host musT be created which knows how the SE applet works. The
communication between the SE applet and the host is defined based on [ISOIEC-7816-4-2013]. Whether a PC or mobile device the architecture
is still the same, as defined below:

e npplication Layer : This component is responsible for acquiring the user verification sample and mapping UAF commands to APDU
commands.

® Communication layer : This is the [ISOIEC-7816-4-2013] APDUs interface, which provides methods to list and select readers, connect to a
Secure Element and interact with it.

® SE Access 0OS APIs . OMA, PC/SC, NFC APl, CCID...
e sccure Element : UICC, micro SD, eSE, Dual Interface card...

ASM

Authenticator

Software based Host

Secure

Element

Fig. 1 Architecture of Hybrid SE Authenticator

APDU command-response paire are handled as indicated in [ISOIEC-7816-4-2013].
3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

The host is the entity communicating with the SE and which knows how the SE and the applet running in the SE can be accessed. The host
could be a Trusted Application (TA) which runs inside a TEE or simply an application which runs in the normal world.

The following diagram illustrates how the Host of the Hybrid SE Authenticator may map the UAF commands to APDU commands. In this diagram,
the User Verification Module is considered inside the SE applet.

NOTE

If the User Verification Module is inside the Host, for example in the context of the TEE, the userverificationToken shall be generated in
the Host and not in the SE. As a result step 6 (Figure 2) should be executed in the Host instead of the SE.

User SE Authenticator Host ASM

o UAF TLV command

o - Parses & Identifies the UAF TLV
command using TAG_UAFV1..

N

If the cpommand does NOT require user verification

o UAF APDU command (see section UAF APDU command) - Includes UAF TLV command on
P the payload of an APDU command

<

o UAF APDU response (see section UAF APDU command)
)

—— i ——

Sy
- |

>
o - Includes UAF TLV command on
o UAF APDU command the payload of an APDU command

N

@ UAF APDU response

S
=

L -~ |
If the command requires user verification
N ':
: o Displays [the venification interface, and retrieves the user mean. 1
1 (£ 1
N I
' (2] '
1 User megn 1
> 1
i - I
H o VERIFY APDU command (see VERIFY section below) I
I < 1
I < 1
: o - Verify user :
1 - Generates UserVerificationToken 1
1 1
: o User Verification Token User Verification Token :
I > I
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
[1

A4

Fig. 2 Communication flow between the ASM and the Hybrid SE Authenticator
4. FIDO UAF Applet and APDU commands
This section is normative.
4.1 UAF Applet in the Authenticator
4.1.1 Application Identifier
The FIDO UAF AID is defined in [UAFRegistry].
4.1.2 User Verification

The User verification is based on the submission of a PIN/password (i.e., knowledge based) or a biometric template (i.e., biometric based).

In this document, the envisaged user verification methods are PIN and biometric based.

4.1.3 Cryptographic operations

The SE applet must be able to perform a set of cryptographic operations, such as key generation and signature computation. The cryptographic
operations are defined in [UAFAuthnrCommands]. The SE applet must be able also to create data structures that can be parsed by FIDO
Server. The SE applet sHaLL use the cryptographic algorithms indicated in [UAFRegistry].

4.2 APDU Commands for FIDO UAF

4.2.1 Class byte coding

CLA indicates the class of the command.

Commands CLA
SELECT, VERIFY (ISO Version), GET RESPONSE (ISO Version) | 0x00

VERIFY, UAF, GET RESPONSE 0x80

Table 1: Class byte coding

NOTE

If the payload of an APDU command is longer than 255 bytes, command chaining as described in [ISOIEC-7816-4-2013] should be used,
even though CLA is proprietary.

4.2.2 APDU command "UAF"
4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

This section describes the mapping between FIDO UAF authenticator commands and APDU commands.

The mapping consists of encapsulating the entire UAF Authenticator Command in the payload of the APDU command, and the UAF
Authenticator Command response in the payload of the APDU Response.

The host sHALL set the INS byte to “0x36” for all UAF commands The SE sHaLL read the UAF command number and data from the payload in the
data part of the command.

The payload of the APDU command is encoded according to [UAFAuthnrCommands], the first 2 bytes of each command are the UAF command
number. Upon command reception, the SE applet musT parse the first TLV tag (2 bytes) and figure out which UAF command is being issued. The
SE applet sHALL parse the rest of the FIDO Authenticator Command payload according to [UAFAuthnrCommands].

The mapping of UAF Authenticator Commands to APDU commands is defined in the following table:

Proprietary(See Table 1) | 0x36 | 0x00 | 0x00 | Variable | UAF Authenticator Command structure | None

Table 2: UAF APDU command

The UAF Authenticator Command structures are defined in part 6.2 of [UAFAuthnrCommands].

NOTE

If the userverificationToken is supported, The ASM must set the T2c vservertry Toxew flag in the value of the UserverificationToken,
received previously contained in either a register or sign command. Please refer to the FIG 1 in Use-Case section.

4.2.2.2 Response message and status conditions of an "UAF" APDU command

The status word of an "UAF" APDU response is handled at the Host level; the host must interpret and map the status word based on the table
below.

If the status word is equals to “9000”, the host shall return back to the ASM the entire data field of the APDU response. It the status word is
“61xx”, the host shall issue ceT resronse (see below) until no more data is available, concatenate these response parts and then return the
entire response. Otherwise, the host has to build an UAF TLV response with the mapped status codes T2c sTtaTus cope, using the following
table.

For example, if the status word returned by the Applet is “6A88”, the host shall put var cvup sTaTus vser wor mnrorreDd in the status codes of the
UAF TLV response.

APDU FIDO UAF
STATUS STATUS DESCRIPTION
(ofe]n] CODE
9000 0x00 UAF_CMD_STATUS_OK Success.
Success, xx bytes available for GET
61xx 0x00 UAF_CMD_STATUS_OK RESPONSE.
6982 0x02 UAF_CMD_STATUS ACCESS DENIED Access to this operation is denied.
6A88 0x03 UAF_CMD_STATUS_USER_NOT_ENROLLED User is not enrolled with the
- - - - - authenticator.
N/A 0x04 UAF_CMD_STATUS_CANNOT RENDER_TRANSACTION_CONTENT zsng‘:éion content cannot be
N/A 0x05 UAF_CMD_STATUS USER_CANCELLED User has cancelled the operation.
6400 0x06 UAF_CMD_STATUS_CMD_NOT_SUPPORTED Command not supported.
6A81 0x07 UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED Required attestation not supported.
6A80 0x08 UAF_CMD_STATUS_PARAMS_INVALID The request was rejected due to an
- - - - incorrect data field.
The UAuth key which is relevant for
6983 0x09 UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY this command disappeared from the
- - - - - authenticator and cannot be
restored.
N/A 0x0a UAF CMD STATUS TIMEOUT The operation in the authenticator
- - - took longer than expected.
N/A 0x0e UAF_CMD_STATUS_USER_NOT RESPONSIVE The user took too long to follow an
- - - - - instruction.
Insufficient resources in the
6A84 0oxof UAF_CMD_STATUS_INSUFFICIENT_RESOURCES authenticator to perform the
requested task.
The operation failed because the
63C0 0x10 UAF_CMD_STATUS_USER_LOCKOUT user is locked outand the
authenticator cannot automatically
trigger an action to change that.
ﬁ(')' d‘::e’ 0x01 UAF_CMD_STATUS_ERR_UNKNOWN An unknown error

Table 3: Mapping between APDU Status Codes and FIDO Status Codes [UAFAuthnrCommands]

The response message of an UAF APDU command is defined in the following table :

Data field SW1 - SW2

“6982” — The request was rejected due to user verification being required.
“6A80” — The request was rejected due to an incorrect data field.

“6A81” — Required attestation not supported

not present
“6A88” — The user is not enrolled with the SE

“6400” — Execution error, undefined UAF command

“6983” — Authentication data not usable, Auth key disappeared

“61xx” — Success, xx bytes available for GET RESPONSE.
UAF Authenticator Command response [UAFAuthnrCommands]

“9000” — Success

Table 4: Response message of an "UAF" APDU command
4.2.3 APDU Command "SELECT"

A successful SELECT AID allows the host to know that the applet is active in the SE, and to open a logical channel with this end.

In Android smartphones apps are not allowed to use the basic channel to the SIM because this channel is reserved for the baseband processor
and the GSM/UMTS/LTE activities. In this case the app must select the applet in a logical channel.

The host must send a serect apou command to the SE applet before any others commands.

As a result, the command for selecting the applet using the FIDO UAF AID is :

Data In

No response data is requested if the SELECT command's "Le" field is absent.
0x00 | OxA4 | 0x04 | OxOC | 0x08 | 0xA000000647AF0001 | Otherwise, if the "Le" field is present, vendor-proprietary data is being
requested.

Table 5: SELECT AID command

4.2.4 APDU Command "VERIFY"

This command is used to request access rights using a PIN or Biometric sample. The SE applet shall verify the sample data given by the Host
against the reference PIN or Biometric held in the SE.

Please refer to [ISOIEC-7816-4-2013] and [ISOIEC-19794] for Personal verification through biometric methods.

If the verification is successful and vserverificationToken is supported by the SE applet, a token sHaLL be generated and sent to the Host.
Without having this token, the Host cannot invoke special UAF commands such as Register or Sign.

The support of userverificationToken can be checked by examining the contents of the cetinfo response in the authenticatortype TAG or the
response of serzcT arpu command [UAFAuthnrCommands].

Refer to [FIDOGIlossary] for more information about vserverificationToken.

4.2.4.1 Command structure

ISO or Proprietary: see [ISOIEC- 0x20 (for PIN) or 0x21 (for
7816-4-2013] biometry) data UserVerificationToken

0x00 | 0x00 | Variable Verification | None or expected Le for

Table 6: VERIFY command encoding for PIN verification

4.2.4.2 Response message and status conditions

Data Out SW1 - SW2

Absent (ISO-Variant) or userverificationToken (proprietary) See [ISOIEC-7816-4-2013]

Table 7: Response message and status conditions

NOTE

An SE applet that does not support UserverificationToken, may use the [ISOIEC-7816-4-2013] VERIFY command. In this case, the
VERIFY command must be securely bound to register and sign commands, so a secure bound method shall be implemented in the SE
applet, such as Secure Messaging.

4.3 Managing Long APDU Commands and Responses

If a Secure Element is able to send a complete response (e.g. extended length APDU, block chaining), cer resronsz APDU command sHaLL be

used, as defined in 1so variant section. Otherwise, the proprietary solution sHALL be used, as defined in section rroprietary variant.
4.3.1 ISO Variant

The [ISOIEC-7816-4-2013] GET RESPONSE command is used in order to retrieve big data returned by APDU command "UAF".

4.3.2 Proprietary Variant

In order to avoid using Get Response APDU command which is not supported by all devices and terminals, a propriatry method is defined for
managing the long data answers at application level.

When using the proprietary variant, the response to the UAF APDU command sHaLL include the Tag "0x2813", that specifies the length of the
response.

Response Data Out description

Tag
0x2813
Length
variable (2 bytes)
Value
Expected data length (2 bytes)

In the case where the data does not fit into a single Data Out message, the host sHaLL repeat the "UAF" command with P2 = 1 value mentioning
this is a repetition of the incoming APDU to get all the data. This process sHALL be repeated until the entire data are collected by the host.

Here is an example of an APDU Response which contains more than 255 bytes in the payload.

SE Authenticator Host ASM

o UAF TLV command

e - Parses & Identifies the UAF TLV
command using TAG_UAFV1..

N

- Includes UAF TLV command on the
payload of an APDU command

e UAF APDU command (80 36 00 00 LC UAF_TLV)

e

e
o UAF APDU response (1328 0200 0003 SW1 SW2)

S
-~

6 UAF APDU command (80 36 00 01 00 FF)

e

B
o UAF APDU response (255_BYTES_DATA SW1 SW2)

.
-

o UAF APDU command (80 36 00 01 00 03)

e
B

o UAF APDU response (3_BYTES_DATA SW1SW2)

- Builds TLV response

@ UAF TLV Response

2

Fig. 3 Long APDU management using the defined proprietary method

NOTE

The host shall support both versions of Get Response APDU command, and figure out which command must be sent to the Applet by
parsing the response of the UAF APDU command. If the UAF APDU command response contains the Tag "0x2813", the host must send
a proprietary Get Response APDU command, otherwise the host must send the ISO variant of Get Response APDU command.

5. Security considerations

This section is non-normative.

Guaranteeing trust and security in a fragmented architecture such as the one levering on SE is a challenge that the Host has to address
regardless of its nature (TEE or Software based), which results in different challenges from a security and architecture perspective. One could
list the following ones:

e use of a trusted user interface to enter a PIN on the device,
e secure transmission of PIN or fingerprint minutiae,

e minutiae extraction format,
o integrity of data transmitted between a Host and a SE.

Hence, we will only consider here, security challenges affecting the interface between the Host and the SE.

A possible way to maintain the integrity and confidentiality when APDUs commands are exchanged is to enable a secure channel between the
Host and the SE. While this is left to implementation, there are several technologies allowing to build a secure channel between a SE and a
devices, that may be implemented.

e Secure channel between a trusted application in a TEE and an applet in a SE [GlobalPlatform-TEE-SE].
e Secure channel between a device and an applet in a secure element [GlobalPlatform-Card].
e Secure channel between a device and a SE [ETSI-Secure-Channel].

A. References

A.1 Normative references

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

A.2 Informative references

[ETSI-Secure-Channel]
ETSI TS 102 484 Sm rds; re channel ween I nd an end-point terminal. URL.:
[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-

[FIDOSecRef]
R. Lmdemann D. Baghdasaryan B. H|II J. Hill; D. Blggs FIDO Securltz Referenc 27 February 2018. Implementation Draft. URL:

[GlobalPlatform-Card]

. Secure Channel Protocol 03 — GlobalPlatform Card Specification v.2.2 — Amendment D. URL:
[GlobalPlatform-TEE-SE]

. TEE Secure Element API Specification v1.0 | GPD_SPE_024. URL:
[ISOIEC-19794]

ISO 19794: Information technology - Biometric data interchange formats. URL:
[ISOIEC 7816-4-2013]

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
h : Is.ietf.org/html/rfc211

[UAFASM]

D Baghdasaryan J. Kemp, R Lindemann; B. Hill; R. Sasson FIDO UAF Authenticator-Specific Module API. Review Draft. URL:

[UAFAuthanommands])
D. Baghdasaryan J Kemp; R. Lmdemann R. Sasson; B. Hill; J Hodges K. Yang EIDO UAF Authenticator Commands. Review Draft.

[UAFReglstry]

R. Lindemann; D. Baghdasaryan; B. Hill. EIDO UAF Registry of Predefined Values. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-registry-v2.0-id-20180227.htm

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

fco

ALLIANCE

FIDO UAF Authenticator-Specific Module API
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

Editors:
Dr. Rolf Lindemann, Nok Nok L Inc.
John Kemp, FIDO Alliance
Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Roni Sasson, Discretix, Inc.

Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok L Inc.

The English version of this specification is the only normative version. Non-normative translations may also be
available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc).
The UAF Authenticator-Specific Module (ASM) is a software interface on top of UAF authenticators which gives a
standardized way for FIDO UAF Clients to detect and access the functionality of UAF authenticators and hides
internal communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs, defines the UAF ASM API and explains how FIDO UAF
Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO FIDO UAF Client vendors.

Status of This Document

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in
the EIDO Allian ifications index at https://fidoalliance.org/specifications/.

This document was published by the EIDO Alliance as a Proposed Standard. If you wish to make comments
regarding this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property
rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors
to the Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or
all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable
document and may be used as reference material or cited from another document. FIDO Alliance's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents

¢ 1. Notation
o 1.1 Key Words

e 2. Overview
o 2.1 Code Example format

e 3. ASM Requests and Responses
o 3.1 Request enum

3.2 StatusCode Interface
m 3.2.1 Constants

= 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

3.3 ASMRequest Dictionary
m 3.3.1 Dictionary asvrequest Members

o

o

o

3.4 ASMResponse Dictionary
m 3.4.1 Dictionary 2svresponse Members
3.5 GetInfo Request

= 3.5.1 GetInfoOut Dictionary
= 3.5.1.1 Dictionary cetinfoout Members

o

m 3.5.2 Authenticatorinfo Dictionary
s 3.5.2.1 Dictionary Authenticatorinfo Members

o

3.6 Register Request
= 3.6.1 Registerln Object
= 3.6.1.1 Dictionary registerin Members

= 3.6.2 RegisterOut Object
m 3.6.2.1 Dictionary registerout Members

m 3.6.3 Detailed Description for Processing the Register Request

o

3.7 Authenticate Request
= 3.7.1 Authenticateln Object

https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.7.1.1 Dictionary ruthenticatein Members
s 3.7.2 Transaction Object
m 3.7.2.1 Dictionary transaction Members
= 3.7.3 AuthenticateOut Object
= 3.7.3.1 Dictionary Authenticateout Members
m 3.7.4 Detailed Description for Processing the Authenticate Request

o 3.8 Deregister Request
s 3.8.1 Deregisterln Object
= 3.8.1.1 Dictionary peregisterin Members
m 3.8.2 Detailed Description for Processing the Deregister Request

o 3.9 GetRegistrations Request
= 3.9.1 GetRegistrationsOut Object
= 3.9.1.1 Dictionary GetRegistrationsout Members

= 3.9.2 AppRegistration Object
s 3.9.2.1 Dictionary rppregistration Members
m 3.9.3 Detailed Description for Processing the GetRegistrations Request
o 3.10 OpenSettings Request
e 4. Using ASM API

e 5. ASM APIs for various platforms
o 5.1 Android ASM Intent API
= 5.1.1 Discovering ASMs

m 5.1.2 Alternate Android AIDL Service ASM Implementation
o 5.2 Java ASM API for Android
o 5.3 C++ ASM API for iOS
o 5.4 Windows ASM API
e 6. CTAP2 Interface

o 6.1 authenticatorMakeCredential
= 6.1.1 Processing rules for authenticatorMakeCredential

6.2 authenticatorGetAssertion
m 6.2.1 Processing rules for authenticatorGetAssertion

o

o

6.3 authenticatorGetNextAssertion
6.4 authenticatorCancel

o

6.5 authenticatorReset
6.6 authenticatorGetinfo
= 6.6.1 Processing rules for authenticatorGetinfo

o

o

e 7. Security and Privacy Guidelines
o 7.1 KHAccessToken

o 7.2 Access Control for ASM APls

e A. References
o A.1 Normative references

o A.2 Informative references

. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “*, e.g. “UAF-TLV".

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without
padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members musT NOT have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it MusT NOT be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it musT NOT be an empty list.

UAF specific terminology used in this document is defined in [FIDOGIlossary].

All diagrams, examples, notes in this specification are non-normative.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this document, as required. The keyword required
has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which
implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means to
ensure those fields are present.

1.1 Key Words

The key words “musT”, “MUsT NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “sHouLD”, “sHOULD NOT”, “RECOMMENDED”, “MAY”, and
“opTIONAL” in this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc.).
The UAF Authenticator-Specific module (ASM) is a software interface on top of UAF authenticators which gives a
standardized way for FIDO UAF Clients to detect and access the functionality of UAF authenticators, and hides
internal communication complexity from clients.

The ASM is a platform-specific software component offering an API to FIDO UAF Clients, enabling them to discover
and communicate with one or more available authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and FIDO UAF Client vendors.

NOTE

Platform vendors might choose to not expose the ASM API defined in this document to applications. They

might instead choose to expose ASM functionality through some other API (such as, for example, the Android
KeyStore API, or iOS KeyChain API). In these cases it's important to make sure that the underlying ASM
communicates with the FIDO UAF authenticator in a manner defined in this document.

The FIDO UAF protocol and its various operations is described in the FIDO UAF Protocol Specification
[UAFProtocol]. The following simplified architecture diagram illustrates the interactions and actors this document is
concerned with:

UAF
Client

ASM

Authnr

Authenticator

Fig. 1 UAF ASM API Architecture
2.1 Code Example format
ASM requests and responses are presented in WebIDL format.
3. ASM Requests and Responses

This section is normative.

The ASM API is defined in terms of JSON-formatted [ECMA-404] request and reply messages. In order to send a
request to an ASM, a FIDO UAF Client creates an appropriate object (e.g., in ECMAscript), "stringifies" it (also known
as serialization) into a JSON-formated string, and sends it to the ASM. The ASM de-serializes the JSON-formatted
string, processes the request, constructs a response, stringifies it, returning it as a JSON-formatted string.

NOTE

The ASM request processing rules in this document explicitly assume that the underlying authenticator
implements the "UAFV1TLV" assertion scheme (e.g. references to TLVs and tags) as described in
[UAFProtocol]. If an authenticator supports a different assertion scheme then the corresponding processing
rules must be replaced with appropriate assertion scheme-specific rules.

Authenticator implementers may create custom authenticator command interfaces other than the one defined in
[UAFAuthnrCommands]. Such implementations are not required to implement the exact message-specific processing
steps described in this section. However,

1. the command interfaces musT present the ASM with external behavior equivalent to that described below in
order for the ASM to properly respond to the client request messages (e.g. returning appropriate UAF status
codes for specific conditions).

2. all authenticator implementations musT support an assertion scheme as defined [UAFRegistry] and musT return

the related objects, i.e. Tac varv1 rREG AsserTTON @nd Tac UAFVI AUTH AssErTION as defined in
[UAFAuthnrCommands].

3.1 Request enum

WebIDL

enum Request ({
"GetInfo",
"Register",
"Authenticate",
"Deregister",
"GetRegistrations",
"OpenSettings"

Enumeration description

GetInfo Getlnfo
Register Register
Authenticate Authenticate
Deregister Deregister

GetRegistrations GetRegistrations

OpenSettings OpenSettings

3.2 StatusCode Interface

If the ASM needs to return an error received from the authenticator, it sHALL map the status code received from the
authenticator to the appropriate ASM status code as specified here.

If the ASM doesn't understand the authenticator's status code, it sHALL treat it as uar cup sTaTus =rRrR UnkNOWN and
map itto uar asm status error if it cannot be handled otherwise.

If the caller of the ASM interface (i.e. the FIDO Client) doesn't understand a status code returned by the ASM, it sHALL
treat it as var asm status =rror. This might occur when new error codes are introduced.

WebIDL

interface StatusCode {
const short UAF ASM STATUS OK = 0x00;

const short UAF ASM

const short UAF _ASM STATUS ACCESS DENIED
const short UAF ASM ST USER CANCELLED = 0x03;

const short 0x04;
const short
const short
const short U
const short S

const short UAE _ASM_S THTUwUERwLoMOJT 0x10;
const short U ATUS USER NOT FYROTTTD = 0x11;

const short = 0x12;

= 0x0f;

3.2.1 Constants

UAF_AsSM STATUS_ok Of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR Of type short
An unknown error has been encountered during the processing.

UAF_ASM_STATUS_ ACCESS_DENIED Of type short
Access to this request is denied.

UAF_ASM_STATUS_USER CANCELLED Of type short
Indicates that user explicitly canceled the request.

UAF_ASM_STATUS_CANNOT RENDER TRANSACTION CONTENT Of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

UAF_ASM_STATUS_KEY DISAPPEARED PERMANENTLY Of type short
Indicates that the UAuth key disappeared from the authenticator and canot be restored.

UAF_ASM STATUS AUTHENTICATOR DISCONNECTED Of type short
Indicates that the authenticator is no longer connected to the ASM.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE Of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

UAF_ASM STATUS INSUFFICIENT AUTHENTICATOR_ RESOURCES oftype short
Insufficient resources in the authenticator to perform the requested task.

UAF_ASM_STATUS_USER_Lockout of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an
action to change that. Typically the user would have to enter an alternative password (formally: undergo
some other alternative user verification method) to re-enable the use of the main user verification method.

NOTE

Any method the user can use to (re-) enable the main user verification method is considered an
alternative user verification method and must be properly declared as such. For example, if the user
can enter an alternative password to re-enable the use of fingerprints or to add additional fingers,
the authenticator obviously supports fingerprint or password based user verification.

UAF_ASM_STATUS_USER_NOT_ENROLLED Of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot
automatically trigger user enrollment.

UAF_ASM_STATUS_SYSTEM INTERRUPTED Of type short
Indicates that the system interrupted the operation. Retry might make sense.

3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

Authenticators are returning a status code in their responses to the ASM. The ASM needs to act on those responses
and also map the status code returned by the authenticator to an ASM status code.

The mapping of authenticator status codes to ASM status codes is specified here:

Authenticator Status Code

UAF CMD_STATUS OK

ASM Status Code

UAF ASM STATUS OK

Comment

Pass-through success status.

UAF CMD STATUS ERR_UNKNOWN

UAF ASM STATUS ERROR

Pass-through unspecific error status.

UAF CMD STATUS ACCESS DENTED

UAF ASM STATUS ACCESS DENIED

Pass-through status code.

UAF CMD STATUS USER
_NOT_ENROLLED

UAF _ASM_STATUS USER
_NOT_ENROLLED
UAF ASM_STATUS ACCESS DENIED

(or

in some situations)

According to [UAFAuthnrCommands], this
might occur at the Sign command or at the
Register command if the authenticator cannot
automatically trigger user enroliment. The
mapping depends on the command as follows.

In the case of "Register" command, the error is
mapped to
UAF_ASM_STATUS USER _NOT_ENROLLED
in order to tell the calling FIDO Client the there
is an authenticator present but the user
enroliment needs to be triggered outside the
authenticator.

In the case of the "Sign" command, the Uauth
key needs to be protected by one of the
authenticator's user verification methods at all
times. So if this error occurs it is considered an
internal error and hence mapped to
UAF_ASM_STATUS_ACCESS_DENIED.

UAF CMD STATUS CANNOT RENDER
TRANSACTION CONTENT

UAF ASM STATUS CANNOT RENDER
TRANSACTION CONTENT

Pass-through status code as it indicates a
problem to be resolved by the entity providing
the transaction text.

UAF CMD_STATUS USER CANCELLED

UAF ASM STATUS USER CANCELLED

Map to uar ASM STATUS USER CANCELLED.

UAF _CMD_STATUS CMD
_NOT SUPPORTED

UAF ASM STATUS OK OrF
UAF ASM STATUS ERROR

If the ASM is able to handle that command on
behalf of the authenticator (e.g. removing the
key handle in the case of Dereg command for a
bound authenticator), the uar asv status ok
must be returned. Map the status code to

UAF ASM STATUS ERROR Otherwise.

UAF CMD STATUS ATTESTATION
_NOT SUPPORTED

UAF ASM STATUS ERROR

Indicates an ASM issue as the ASM has
obviously not requested one of the supported
attestation types indicated in the authenticator's
response to the Getinfo command.

UAF CMD STATUS PARAMS INVALID

UAF ASM STATUS ERROR

Indicates an ASM issue as the ASM has
obviously not provided the correct parameters
to the authenticator when sending the

command.

UAF CMD STATUS KEY
DISAPPEARED PERMANENTLY

UAF ASM STATUS KEY
DISAPPEARED PERMANENTLY

Pass-through status code. It indicates that the
Uauth key disappeared permanently and the
RP App might want to trigger re-registration of
the authenticator.

UAF STATUS CMD TIMEOUT

UAF_ASM_STATUS_ERROR

Retry operation and map to
urr asu sTaTUs ERROR if the problem persists.

UAF CMD STATUS USER
NOT RESPONSIVE

UAF ASM STATUS USER
NOT RESPONSIVE

Pass-through status code. The RP App might
want to retry the operation once the user pays
attention to the application again.

UAF_CMD_STATUS
INSUFFICIENT RESOURCES

UAF ASM STATUS INSUFFICIENT
AUTHENTICATOR RESOURCES

Pass-through status code.

UAF_CMD_STATUS_ USER LOCKOUT UAF_ASM_STATUS_ USER LOCKOUT

Pass-through status code.

Any other status code

UAF_ASM_STATUS_ERROR

Map any unknown error code to

UAF ASM STATUS ERROR. This might happen
when an ASM communicates with an
authenticator implementing a newer UAF
specification than the ASM.

3.3 ASMRequest Dictionary

All ASM requests are represented as 2svrequest objects.

WebIDL

dictionary ASMRequest {

Version
unsigned short
object
Extension|[]

3.3.1 Dictionary asMrequest Members

requestType Of type required Request

Request type

asmVersion Of type Version
ASM message version to be used with this request. For the definition of the version dictionary see
[UAFProtocol]. The asmVersion vust be 1.2 (i.e. major version is 1 and minor version is 2) for this version
of the specification.

authenticatorIndex Of type unsigned short
Refer to the cet1nro request for more details. Field authenticatorindex MUST NOT be set for cet 1nfo

request.

args of type object

Request-specific arguments. If set, this attribute may take one of the following types:

® RegisterIn

® Authenticateln

® DeregisterIn

exts Of type array of Extension
List of UAF extensions. For the definition of the extension dictionary see [UAFProtocol].

3.4 ASMResponse Dictionary

All ASM responses are represented as 2suresponse objects.

WebIDL

dictionary ASMResponse {
required short statusCode;

object re 1seDatay
Extension|[] exts;

3.4.1 Dictionary asvresponse Members

statusCode Of type required short
musT contain one of the values defined in the statuscode interface

responseData Of type object
Request-specific response data. This attribute musT have one of the following types:

® GetInfoOut
® RegisterOut
® AuthenticateOut

® GetRegistrationOut

exts Of type array of Extension
List of UAF extensions. For the definition of the =xtension dictionary see [UAFProtocol].

3.5 GetInfo Request

Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports
2. Collect information about all of them

3. Assign indices to them (authenticatorindex)

4. Return the information to the caller

NOTE

Where possible, an authenticatorindex should be a persistent identifier that uniquely identifies an
authenticator over time, even if it is repeatedly disconnected and reconnected. This avoids possible confusion
if the set of available authenticators changes between a cet1nfo request and subsequent ASM requests, and
allows a FIDO client to perform caching of information about removable authenticators for a better user
experience.

NOTE

It is up to the ASM to decide whether authenticators which are disconnected temporarily will be reported or
not. However, if disconnected authenticators are reported, the FIDO Client might trigger an operation via the
ASM on those. The ASM will have to notify the user to connect the authenticator and report an appropriate
error if the authenticator isn't connected in time.

For a GetInfo request, the following asMrequest member(s) must have the following value(s). The remaining
ASMRequest members sHouLD be omitted:

® ASMRequest.requestType MUST be setto cetinfo

For a GetInfo response, the following asMresponse member(s) musTt have the following value(s). The remaining
ASMResponse members sHouLd be omitted:

e ASMResponse.statusCode MUST have one of the following values
© UAF_ASM STATUS OK
o UAFiASMiSTATUsiERROR

e ASMResponse.responseData MUST be an object of type cetinfoout. In the case of an error the values of the fields
might be empty (e.g. array with no members).

See section 3.2.2 Mapping Authenticator Stat to ASM Stat for details on the mapping of
authenticator status codes to ASM status codes.

3.5.1 GetinfoOut Dictionary

WebIDL

dictionary GetInfoOut {
required AuthenticatorInfo[] Authenticators;

}i

3.5.1.1 Dictionary cetinfoout Members

Authenticators Of type array of required Authenticatorinfo
List of authenticators reported by the current ASM. may be empty an empty list.

3.5.2 Authenticatorinfo Dictionary

WebIDL

dictionary AuthenticatorInfo {
required unsigned short authenticatorIndex;
required Version|[]
required boolean
required boolean
required AAID
required DOMString
required unsigned short
required unsigned short[]
required unsigned long
required unsigned short
required unsigned short
required unsigned long
required boolean
required boolean
required DOMString|]
required unsigned short
DOMString

DisplayPNGCharacteristicsDescriptor|[]
DOMString
DOMString
DOMString

3.5.2.1 Dictionary Authenticatorinfo Members

authenticatorIndex Of type required unsigned short
Authenticator index. Unique, within the scope of all authenticators reported by the ASM, index referring to
an authenticator. This index is used by the UAF Client to refer to the appropriate authenticator in further
requests.

asmvVersions Of type array of required Version
A list of ASM Versions that this authenticator can be used with. For the definition of the version dictionary
see [UAFProtocol].

isUserEnrolled Of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators which don't have user
verification technology must always return true. Bound authenticators which support different profiles per
operating system (OS) user musT report enroliment status for the current OS user.

hasSettings Of type required boolean
A boolean value indicating whether the authenticator has its own settings. If so, then a FIDO UAF Client
can launch these settings by sending a opensettings request.

aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and batch of the authenticator. See
[UAFProtocol] for the definition of the AAID structure.

assertionScheme Of type required DOMString
The assertion scheme the authenticator uses for attested data and signatures.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].

authenticationAlgorithm Of type required unsigned short
Indicates the authentication algorithm that the authenticator uses. Authentication algorithm identifiers are
defined in are defined in [FIDORegistry] with 21.c prefix.

attestationTypes Of type array of required unsigned short
Indicates attestation types supported by the authenticator. Attestation type TAGs are defined in
[UAFRegistry] with Tac arTesTarTon prefix

userVerification Of type required unsigned long
A set of bit flags indicating the user verification method(s) supported by the authenticator. The algorithm for
combining the flags is defined in [UAFProtocol], section 3.1.12.1. The values are defined by the
user veriry constants in [FIDORegistry].

keyProtection Of type required unsigned short
A set of bit flags indicating the key protections used by the authenticator. The values are defined by the
key proTECTTON constants in [FIDORegistry].

matcherProtection Of type required unsigned short
A set of bit flags indicating the matcher protections used by the authenticator. The values are defined by
the vaTcuer proTECTTON constants in [FIDORegistry].

attachmentHint Of type required unsigned long
A set of bit flags indicating how the authenticator is currently connected to the system hosting the FIDO

UAF Client software. The values are defined by the arracuvenT ninT constants defined in [FIDORegistry].

NOTE

Because the connection state and topology of an authenticator may be transient, these values are
only hints that can be used by server-supplied policy to guide the user experience, e.g. to prefer a
device that is connected and ready for authenticating or confirming a low-value transaction, rather
than one that is more secure but requires more user effort. These values are not reflected in
authenticator metadata and cannot be relied on by the relying party, although some models of
authenticator may provide attested measurements with similar semantics as part of UAF protocol
messages.

isSecondFactoronly Of type required boolean
Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator Of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs Of type array of required DOMString
List of supported UAF extension IDs. may be an empty list.

tcbisplay Of type required unsigned short
A set of bit flags indicating the availability and type of the authenticator's transaction confirmation display.
The values are defined by the TransacTron conrirvaTTON DTspray constants in [FIDORegistry].

This value musT be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString
Supported transaction content type [FIDOMetadataStatement].

This value musT be present if transaction confirmation is supported, i.e. tcpisplay is non-zero.

tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction Portable Network Graphic (PNG) type [FIDOMetadataStatement]. For the definition
of the pisplayPNGCharacteristicsbescriptor structure see [FIDOMetadataStatement].

This list musT be present if PNG-image based transaction confirmation is supported, i.e. tcpisplay is non-
zero and tcDisplayContentType is image/png.

title of type DOMString
A human-readable short title for the authenticator. It should be localized for the current locale.

NOTE

If the ASM doesn't return a title, the FIDO UAF Client must provide a title to the calling App. See
section "Authenticator interface" in [UAFAppAPIAndTransport].

description Of type DOMString
Human-readable longer description of what the authenticator represents.

NOTE

This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from the description specified in the
metadata statement for the authenticator [FIDOMetadataStatement].

If the ASM doesn't return a description, the FIDO UAF Client will provide a description to the calling
application. See section "Authenticator interface" in [UAFAppAPIAndTransport].

icon of type DOMString
Portable Network Graphic (PNG) format image file representing the icon encoded as a data: url
[RFC23971].

NOTE

If the ASM doesn't return an icon, the FIDO UAF Client will provide a default icon to the calling
application. See section "Authenticator interface" in [UAFAppAPIAndTransport].

3.6 Register Request

Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following asMrequest member(s) must have the following value(s). The remaining
ASMRequest Mmembers sHouLD be omitted:

® ASMRequest.requestType MUST be set to Register

e ASMRequest.asmVersion MUST be set to the desired version

® ASMRequest.authenticatorindex MUST be set to the target authenticator index

e ASMRequest.args MUST be set to an object of type registerin

e nsMRequest.exts MAY include some extensions to be processed by the ASM or the by Authenticator.

For a Register response, the following asvMresponse member(s) must have the following value(s). The remaining
ASMResponse members sHouLb be omitted:

® ASMResponse.statusCode MUST have one of the foIIowing values:
© UAF_ASM STATUS OK
© UAF_ASM STATUS ERROR
o0 UAF ASM STATUS ACCESS DENIED
O UAF ASM STATUS USER CANCELLED
O UAF ASM STATUS AUTHENTICATOR DISCONNECTED
© UAF_ASM STATUS USER NOT RESPONSIVE
O UAF ASM STATUS INSUFFICIENT AUTHENTICATOR RESOURCES
© UAF_ASM STATUS USER LOCKOUT
© UAF_ASM STATUS USER NOT ENROLLED

® nSMResponse.responseData MUST be an object of type registerout. In the case of an error the values of the fields
might be empty (e.g. empty strings).

3.6.1 Registerin Object

WebIDL

dictionary RegisterIn ({

required DOMString applD;
required DOMString username;

required DOMString finalChallenge;

required unsigned short attestationType;

3.6.1.1 Dictionary registerin Members

appID Of type required DOMString
The FIDO server Application Identity.

username Of type required DOMString
Human-readable user account name

finalChallenge Of type required DOMString
base64url-encoded challenge data [RFC4648]

attestationType Of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

WebIDL

dictionary RegisterOut {

3.6.2.1 Dictionary registerout Members

assertion Of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionScheme Of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].
3.6.3 Detailed Description for Processing the Register Request

Refer to [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this
paragraph.

1. Locate authenticator using autnhenticatorindex. If the authenticator cannot be located, then fail with
UAF ASM STATUS AUTHENTICATOR DISCONNECTED.

2. If a user is already enrolled with this authenticator (such as biometric enroliment, PIN setup, etc. for example)
then the ASM wmusT request that the authenticator verifies the user.

NOTE

If the authenticator supports userverificationToken (Se€ [UAFAuthnrCommands]), then the ASM must
obtain this token in order to later include it with the reqister command.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot
automatically trigger unblocking, return var asu STATUS USER LOCKOUT.

o If verification fails, return uar asu status access DENTED

3. If the user is not enrolled with the authenticator then take the user through the enroliment process.
o If neither the ASM nor the Authenticator can trigger the enroliment process, return
UAF ASM STATUS USER NOT ENROLLED.
o If enrollment fails, return var asu sTATUS ACCESS DENTED
4. Verify whether registerln.applD and the appID included in the finalChallenge parameter are identical. The
registerin.finalChallenge value needs to be (1) base64url decoded and (2) parsed into a JSON object first.
o If verification fails, return var asv sTATUS ACCESS DENTED

5. Construct xirccessToken (see section KHAccessToken for more details)

6. Hash the provided registerin.finalchallenge Using the authenticator-specific hash function
(FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

7. Create a 72c varvi recTsTER cup Structure and pass it to the authenticator
1. Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username, UserVerificationToken,
RegisterIn.ApplID, RegisterIn.AttestationType
1. Depending on ruthenticatorType SOMe arguments may be optional. Refer to
[UAFAuthnrCommands] for more information on authenticator types and their required arguments.

2. Add the extensions from the asvrequest.exts dictionary appropriately to the tac varvi rREGTSTER CMD @s
TAG EXTENSION Object.

8. Invoke the command and receive the response. If the authenticator returns an error, handle that error
appropriately. If the connection to the authenticator gets lost and cannot be restored, return
UAF ASM STATUS AUTHENTICATOR DIsconNecTED. If the operation finally fails, map the authenticator error code to

the the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status
Codes for details).

9. Parse TAG UAFV1 REGISTER CMD RESP
1. Parse the content of 1ac auTsENTICATOR ASSERTTON (€.9. TAG UAFVI REG AsserTION) and extract tac kevip
10. If the authenticator is a bound authenticator
1. Store callerip, AppTD, TAG KEYHANDLE, TAG KEYTD @nd currentTimestamnp iN the ASM's database.

NOTE

What data an ASM will store at this stage depends on underlying authenticator's architecture. For
example some authenticators might store ApplD, KeyHandle, KeyID inside their own secure
storage. In this case ASM doesn't have to store these data in its database.

11. Create a registerout oObject

1. Set RegisterOut.assertionScheme according fo AuthenticatorInfo.assertionScheme

2. Encode the content of T2ac auTHENTICATOR AssErTION (€.9. TAG UAFVI REG ASSERTION) N base64url format
and set as registerout.assertion.

3. Return registerout object

3.7 Authenticate Request

Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following asMrequest member(s) must have the following value(s). The remaining
ASMRequest members sHouLD be omitted:

® ASMRequest.

® ASMRequest.

® ASMRequest

® ASMRequest.

® ASMRequest.

requestType MUST be setto ruthenticate.

asmversion MUST be set to the desired version.

.authenticatorIndex MUST be set to the target authenticator index.

args MUST be set to an object of type ruthenticatein
exts MAY include some extensions to be processed by the ASM or the by Authenticator.

For an Authenticate response, the following asMresponse member(s) musT have the following value(s). The remaining
ASMResponse members sHouLD be omitted:

e ASMResponse.statusCode MUST have one of the following values:

0 UAF ASM STATUS OK

O UAF ASM STATUS ERROR

O UAF ASM STATUS ACCESS DENIED

O UAF ASM STATUS USER CANCELLED

O UAF ASM STATUS CANNOT RENDER TRANSACTION CONTENT

e ASMResponse.responseData MUST be an object of type ruthenticateout. In the case of an error the values of the

o

o

UAF_ASM_STATUS_KEY DISAPPEARED PERMANENTLY
UAF ASM STATUS AUTHENTICATOR DISCONNECTED
UAF ASM STATUS USER NOT RESPONSIVE
UAF_ASM STATUS USER LOCKOUT

UAF ASM STATUS USER NOT ENROLLED

fields might be empty (e.g. empty strings).

3.7.1 Authenticateln Object

WebIDL

dictionary AuthenticateIn ({

3.7.1.1 Dictionary authenticatein Members

app1D Of type required DOMString

applD string

keyIDs Of type array of DOMString

base64url [RFC4648] encoded keylDs

finalChallenge Of type required DOMString

base64url [RFC4648] encoded final challenge

transaction Of type array of Transaction

An array of transaction data to be confirmed by user. If multiple transactions are provided, then the ASM

musT select the one that best matches the current display characteristics.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the
moment of transaction.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
required DOMString contentType;

required DOMString content;

3.7.2.1 Dictionary Transaction Members

contentType Of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to its metadata statement (see
[FIDOMetadataStatement])

content Of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to the contenttype to be shown
to the user.

tcDisplayPNGCharacteristics Of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the pisplaypPnccharacteristicsbescriptor
structure See [FIDOMetadataStatement].

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {

}i

3.7.3.1 Dictionary authenticateout Members

assertion Of type required DOMString
Authenticator UAF authentication assertion.

assertionScheme Of type required DOMString
Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this
paragraph.

1. Locate the authenticator using authenticatorindex. If the authenticator cannot be located, then fail with

UAF ASM STATUS AUTHENTICATOR DISCONNECTED.

2. If no user is enrolled with this authenticator (such as biometric enroliment, PIN setup, etc.), return
UAF ASM STATUS ACCESS DENIED
3. The ASM wusT request the authenticator to verify the user.

o If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot
automatically trigger unblocking, return var AsM STATUS USER LOCKOUT.

o If verification fails, return var asv sTATUS ACCESS DENTED

NOTE

If the authenticator supports UserverificationToken (see [UAFAuthnrCommands]), the ASM must
obtain this token in order to later pass to sign command.

4. Construct xiaccessToken (see section KHAccessToken for more details)

5. Hash the provided authenticateTn. finalchallenge Using an authenticator-specific hash function
(FinaLChaiienquash)

The authenticator's preferred hash function information must meet the algorithm defined in the
Authenticatorlnfo.authenticationAlgorithmfkﬂd.

6. If this is a Second Factor authenticator and ruthenticatein.keyins is empty, then return
UAF ASM STATUS ACCESS DENIED
7. If Authenticateln.keylIDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with zuthenticateIn.appid and
AuthenticatelIn.keyIDs and obtain the KeyHandles associated with it.

m Return var asu sTatus kevy prsappeareD PERMANENTLY if the related key disappeared permanently
from the authenticator.

m Return var asv status access penieD if no entry has been found.
2. If this is a roaming authenticator, then treat ruthenticatern. keyids as KeyHandles

8. Create 7ac varvi sicn cump structure and pass it to the authenticator.
1. COpyZﬂHhenticateIn.AppID,Aathenticateln.Transaction.content Ufnotenﬂﬁy),?inalChallengeHash
KHAccessToken, UserVerificationToken, KeyHandles
= Depending on AuthenticatorType some arguments may be optional. Refer to
[UAFAuthnrCommands] for more information on authenticator types and their required arguments.

= |f multiple transactions are provided, select the one that best matches the current display
characteristics.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or
vertically at the moment of transaction.

m Decode the base64url encoded ruthenticatein.Transaction.content before passing it to the
authenticator

2. Add the extensions from the rsvrequest . exts dictionary appropriately to the tac varvi rEcrsTER CMD @S
TAG EXTENSTON Object.

9. Invoke the command and receive the response. If the authenticator returns an error, handle that error
appropriately. If the connection to the authenticator gets lost and cannot be restored, return

UAF ASM STATUS AUTHENTICATOR DIsconnecTeD. If the operation finally fails, map the authenticator error code to

the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes
for details).

10. Parse tac UAFV1 SIGN CMD RESP
o Ifit's a first-factor authenticator and the response includes tac usernaME AND KEYHANDLE, then
1. Extract usernames from tac usernaMe aND KEvHANDLE fields

2. If two or more equal usernames are found, then choose the one which has registered most recently

NOTE

After this step, a first-factor bound authenticator which stores KeyHandles inside the ASM's
database may delete the redundant KeyHandles from the ASM's database. This avoids
having unusable (old) private key in the authenticator which (surprisingly) might become
active after deregistering the newly generated one.

3. Show remaining distinct usernames and ask the user to choose a single username

4. Set ac varvl sTcn cub.KeyHandles to the single KeyHandle associated with the selected
username.

5. Go to step #8 and send a new TAG UAFV1 SIGN CMD command

1. Set ruthenticateOut.assertionScheme @S AuthenticatorInfo.assertionScheme

2. Encode the content of Tac auTsENTICATOR ASSERTTON (€.9. TAG UAFVI AUTH AssErTION) in base64url format
and set as AuthenticateOut.assertion

3. Return the authenticateout object

NOTE

Some authenticators might support "Transaction Confirmation Display" functionality not inside the
authenticator but within the boundaries of the ASM. Typically these are software based Transaction
Confirmation Displays. When processing the sign command with a given transaction such ASM should show
transaction content in its own Ul and after user confirms it -- pass the content to authenticator so that the
authenticator includes it in the final assertion.

See [FIDORegistry] for flags describing Transaction Confirmation Display type.

The authenticator metadata statement musT truly indicate the type of transaction confirmation display implementation.
Typically the "Transaction Confirmation Display" flag will be set to TransacTron conFirvaTION DIsPLAY ANy (bitwise)
Or TRANSAC TION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE.

3.8 Deregister Request

Delete registered UAF record from the authenticator.

For a Deregister request, the following asvrequest member(s) musT have the following value(s). The remaining
ASMRequest members sHouLD be omitted:

® ASMRequest.requestType MUST be set to Deregister
e ASMRequest.asmVersion MUST be set to the desired version
® nSMRequest.authenticatorIndex MUST be set to the target authenticator index

® ASMRequest.args MUST be set to an ObjeCt of type DeregisterIn

For a Deregister response, the following asvresponse member(s) musT have the following value(s). The remaining
ASMResponse members sHouLb be omitted:

® ASMResponse.statusCode MUST have one of the foIIowing values:

O UAF ASM STATUS OK
O UAF ASM STATUS ERROR
© UAF ASM STATUS ACCESS DENIED

O UAF ASM STATUS AUTHENTICATOR DISCONNECTED

3.8.1 Deregisterin Object

WebIDL

dictionary DeregisterIn ({

required DOMString keyID;

3.8.1.1 Dictionary peregisterin Members

appID Of type required DOMString

FIDO Server Application Identity

keyID Of type required DOMString

Base64url-encoded [RFC4648] key identifier of the authenticator to be de-registered. The xey1p can be an
empty string. In this case all xey1ps related to this app1p MusT be deregistered.

3.8.2 Detailed Description for Processing the Deregister Request

Refer to [UAFAuthnrCommands] for more information about the TAGs and structures mentioned in this paragraph.

1.
2.
3.

Locate the authenticator using authenticatorIndex
Construct kHaccessToken (see section KHAccessToken for more details).

If this is a bound authenticator, then
o If the value of peregisterin. keyip is an empty string, then lookup all pairs of this zpp1p and any xey1p
mapped to this authenticatorindex and delete them. Go to step 4.

o Otherwise, lookup the authenticator related data in the ASM database and delete the record associated
with DeregisterIn.applD and DeregisterIn.keyID. Go to step 4,

Create the T26 uvarvi DErREGISTER CMD Structure, COpY KiaccessToken @nd bDeregisterin.keyId and pass it to the
authenticator.

NOTE

In the case of roaming authenticators, the xey1p passed to the authenticator might be an empty string.
The authenticator is supposed to deregister all keys related to this app 10 in this case.

Invoke the command and receive the response. If the authenticator returns an error, handle that error
appropriately. If the connection to the authenticator gets lost and cannot be restored, return
UAF ASM STATUS AUTHENTICATOR DisconnecTeD. If the operation finally fails, map the authenticator error code to

the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Stat to ASM
for details). Return proper ASMResponse.

3.9 GetRegistrations Request

Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the following asMrequest member(s) musTt have the following value(s). The remaining
ASMRequest members sHouLD be omitted:

® ASMRequest.requestType MUST be setto cetregistrations
® ASMRequest.asmVersion MUST be set to the desired version
® ASMRequest.authenticatorTndex MUST be set to corresponding ID

For a GetRegistrations response, the following asMresponse member(s) musT have the following value(s). The
remaining asMresponse members sHouLD be omitted:

e ASMResponse.statusCode MUST have one of the following values:
O UAF ASM STATUS OK

O UAF ASM STATUS ERROR

O UAF ASM STATUS AUTHENTICATOR DISCONNECTED

e The asMresponse.responsebata MUST be an object of type cetregistrationsout. In the case of an error the
values of the fields might be empty (e.g. empty strings).

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut ({
required AppRegistration[] appRegs;
}i

3.9.1.1 Dictionary GetRegistrationsout Members

appRegs Of type array of required AppRegistration
List of registrations associated with an app 1D (S€€ Appregistration below). Mmay be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration ({
required DOMString applD;
required DOMString[] keyIDs;

}i

3.9.2.1 Dictionary apprRegistration Members

app1D Of type required DOMString
FIDO Server Application Identity.

keyIDs Of type array of required DOMString
List of key identifiers associated with the zpp1D

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator using authenticatorindex

2. If this is bound authenticator, then
o Lookup the registrations associated with CallerID and AppID in the ASM database and construct a list of

AppRegistration ObjeCtS
NOTE

Some ASMs might not store this information inside their own database. Instead it might have been
stored inside the authenticator's secure storage area. In this case the ASM must send a proprietary
command to obtain the necessary data.

3. If this is not a bound authenticator, then set the list to empty.
4. Create Getregistrationsout ObjeCt and return

3.10 OpenSettings Request

Display the authenticator-specific settings interface. If the authenticator has its own built-in user interface, then the
ASM wmusT invoke tac uarvl oren seTTINGS cMD to display it.

For an OpenSettings request, the following asMrequest member(s) must have the following value(s). The remaining
ASMRequest members sHouLD be omitted:

® ASMRequest.requestType MUST be setto opensettings
e ASMRequest.asmVersion MUST be set to the desired version
® ASMRequest.authenticatorIndex MUST be set to the target authenticator index

For an OpenSettings response, the following asMresponse member(s) musTt have the following value(s). The remaining
ASMResponse members sHouLb be omitted:

® nSMResponse.statusCode MUST have one of the following values:

© UAF ASM STATUS OK

4. Using ASM API

This section is non-normative.

In a typical implementation, the FIDO UAF Client will call cet1nfo during initialization and obtain information about
the authenticators. Once the information is obtained it will typically be used during FIDO UAF message processing to
find a match for given FIDO UAF policy. Once a match is found the FIDO UAF Client will send the appropriate
request (Register/Authenticate/Deregister...) to this ASM.

The FIDO UAF Client may use the information obtained from a cet1nro response to display relevant information
about an authenticator to the user.

5. ASM APIs for various platforms

This section is normative.

5.1 Android ASM Intent API

On Android systems FIDO UAF ASMs may be implemented as a separate APK-packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions between the FIDO UAF Client and
an ASM on Android takes place through the following intent identifier:

org.fidoalliance.intent.FIDO_OPERATION

To carry messages described in this document, an intent musT also have its type attribute set to

application/fido.uaf asm+json.
ASMs musT register that intent in their manifest file and implement a handler for it.

FIDO UAF Clients musT append an extra, message, containing a string representation of a asmrequest, before
invoking the intent.

FIDO UAF Clients musT invoke ASMs by calling startactivityForResult ()

FIDO UAF Clients sHouLb assume that ASMs will display an interface to the user in order to handle this intent, e.g.
prompting the user to complete the verification ceremony. However, the ASM sHouLp NoT display any user interface
when processing a cet1nfo request.

After processing is complete the ASM will return the response intent as an argument to onactivityresult (). The
response intent will have an extra, nessage, containing a string representation of a AsMresponse.

5.1.1 Discovering ASMs

FIDO UAF Clients can discover the ASMs available on the system by using

PackageManager.queryIntentActivities (Intent intent, int flags) with the FIDO Intent described above to see if
any activities are available.

A typical FIDO UAF Client will enumerate all ASM applications using this function and will invoke the cet1nfo
operation for each one discovered.

5.1.2 Alternate Android AIDL Service ASM Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism
to Android Intents. Please see Android Intent API section [UAFAppAPIAndTransport] for differences between the
Android AIDL service and Android Intent implementation.

This API should be used if the ASM itself doesn't implement any user interface.
NOTE

The advantage of this AIDL Server based API is that it doesn't cause a focus lose on the caller App.

5.2 Java ASM API for Android

NOTE

The Java ASM API is useful for ASMs for KeyStore based authenticators. In this case the platform limits key
use-access to the application generating the key. The ASM runs in the process scope of the RP App.

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent,%20int)
http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent,%20int)

public interface IASM {
enum Event {
PLUGGED, /** Indicates that the authenticator was Plugged to system */
UNPLUGGED /** Indicates that the authenticator was Unplugged from system */

}
public interface IEnumeratorListener {
* %

This function is called when an authenticator is plugged or
unplugged.
@param eventType event type (plugged/unplugged)
@param serialized AuthenticatorInfo JSON based GetInfoResponse object
*/
void onNotify (Event eventType, String authenticatorInfo);

}

public interface IResponseReceiver {
/**

This function is called when ASM's response is ready.

@param response serialized response JSON based event data
@param exchangeData for ASM if it needs some
data back right after calling the callback function.
onResponse will set the exchangeData to the data to
/ be returned to the ASM.
*
void onResponse (String response, StringBuilder exchangeData);

}

/**
Initializes the ASM. This is the first function to
be called.
@param ctx the Android Application context of the calling application (or null)
@param enumeratorListener caller provided Enumerator
@return ASM StatusCode value
*/
short init (Context ctx, IEnumeratorListener enumeratorListener);

/**
Process given JSON request and returns JSON response.
If the caller wants to execute a function defined in ASM JSON
schema then this is the function that must be called.
@param act the calling Android Activity or null
@param inData input JSON data
@param ProcessListener event listener for receiving events from ASM
@return ASM StatusCode value
*/

short process (Activity act, String inData, IResponseReceiver responseReceiver);

/**
Uninitializes (shut's down) the ASM.

@return ASM StatusCode value
*/
short uninit();

5.3 C++ ASM API for iOS

NOTE

The C++ ASM API is useful for ASMs for KeyChain based authenticators. In this case the platform limits key
use-access to the application generating the key. The ASM runs in the process scope of the RP App.

#include
namespace FIDO UAF {

class IASM {
public:

typedef enum {
PLUGGED, /** Indicates that the authenticator was Plugged to system */
UNPLUGGED /** Indicates that the authenticator was Unplugged from system */
} Event;

class IEnumeratorListener {

virtual ~IEnumeratorListener () {}

/**
This function is called when an authenticator is plugged or
unplugged.

@param eventType event type (plugged/unplugged)
@param serialized AuthenticatorInfo JSON based GetInfoResponse object

*/
virtual void onNotify (Event eventType, const std::string& authenticatorInfo) {};
}i

class IResponseReceiver {
virtual ~IResponseReceiver () {}
/**

This function is called when ASM's response is ready.

@param response serialized JSON based event data
@param exchangeData for ASM if it needs some
data back right after calling the callback function.

*/
virtual void onResponse (const std::string& response, std::string &exchangeData) {};
}i
/**
Initializes the ASM. This is the first function to
be called.

@param unc the platform UINavigationController or one of the derived classes
(e.g. UINavigationController) in order to allow smooth UI integration of the ASM.
@param EnumerationListener caller provided Enumerator
@return ASM StatusCode value
*

virtual short int init (UINavigationController unc, IEnumerator EnumerationListener)=0;

/**
Process given JSON request and returns JSON response.
If the caller wants to execute a function defined in ASM JSON
schema then this is the function that must be called.
@param unc the platform UINavigationController or one of the derived classes
(e.g. UINavigationController) in order to allow smooth UI integration of the ASM
@param InData input JSON data
@param ProcessListener event listener for receiving events from ASM
@return ASM StatusCode value
*/
virtual short int process (UINavigationController unc, const std::string& InData, ICallback
ProcessListener)=0;

/**
Uninitializes (shut's down) the ASM.
@return ASM StatusCode value

*/

virtual short int uninit()=0;

}i
}

5.4 Windows ASM API

On Windows, an ASM is implemented in the form of a Dynamic Link Library (DLL). The following is an example
asmplugin.h header file defining a Windows ASM API:

/*! @file asm.h
W/

#ifndef ASMH

#define = ASMH

#ifdef WIN32 —

#define ASM API declspec (dllexport)
#endif - 47

#ifdef WIN32
#pragma warning (disable : 4251)
#endif

#define ASM FUNC extern "C" ASM API
#define ASM NULL 0

/*! \brief Error codes returned by ASM Plugin API.
* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.

*/

enum asmResult t

; .
Success = 0, /**< Success */
Failure /**< Generic failure */

’

/*! \brief Generic structure containing JSON string in UTF-8
* format.
* This structure is used throughout functions to pass and receives

* JSON data.
=/

struct asmJSONData t
{

int length; /**< JSON data length */
char *pData; /**< JSON data */

’

/*! \brief Enumeration event types for authenticators.

These events will be fired when an authenticator becomes
available (plugged) or unavailable (unplugged).

=/

enum asmEnumerationType t

Plugged = 0, /**< Indicates that authenticator Plugged to system */
Unplugged /**< Indicates that authenticator Unplugged from system */

namespace ASM

{
/*! \brief Callback listener.
FIDO UAF Client must pass an object implementating this interface to
Authenticator::Process function. This interface is used to provide
ASM JSON based response data.*/
class ICallback
{
public
virtual ~ICallback() {}
/**

This function is called when ASM's response is ready.
*

@param response JSON based event data

@param exchangeData must be provided by ASM if it needs some
data back right after calling the callback function.

The lifecycle of this parameter must be managed by ASM. ASM must
allocate enough memory for getting the data back.

*/

virtual void Callback(const asmJSONData t &response,
asmJSONData t &exchangeData) = 0;
b8 N

/*! \brief Authenticator Enumerator.

FIDO UAF Client must provide an object implementing this

interface. It will be invoked when a new authenticator is plugged or
when an authenticator has been unplugged. */

class IEnumerator

{

public
virtual ~IEnumerator () {}
/‘k‘k
This function is called when an authenticator is plugged or

unplugged.
* @param eventType event type (plugged/unplugged)

@param AuthenticatorInfo JSON based GetInfoResponse object
*/

virtual void Notify(const asmEnumerationType t eventType, const
asmJSONData t &AuthenticatorInfo) = 0;
} 8 N
}

/**
Initializes ASM plugin. This is the first function to be

called.
*

@param pEnumerationListener caller provided Enumerator
*

ASM FUNC asmResult t asmInit (ASM::IEnumerator
*pEnumerationListener) ;
/**

Process given JSON request and returns JSON response.
*

If the caller wants to execute a function defined in ASM JSON

schema then this is the function that must be called.
*

@param pInData input JSON data
@param plistener event listener for receiving events from ASM
*

ASM FUNC asmResult t asmProcess (const asmJSONData t *pInData,
ASM: :ICallback *pListener);
/**

Uninitializes ASM plugin.
*

=y
ASM FUNC asmResult t asmUninit();

#endif // _ ASMPLUGINH

A Windows-based FIDO UAF Client musT look for ASM DLLs in the following registry paths:
HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The FIDO UAF Client iterates over all keys under this path and looks for "path" field:
[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<AB SOLUTE PATH TO ASM>. daiil"

path MUST point to the absolute location of the ASM DLL.
6. CTAPZ2 Interface

This section is normative.

ASMs can (optionally) provide a FIDO CTAP 2 interface in order to allow the authenticator being used as external
authenticator from a FIDO2 or Web Authentication enabled platform supporting the CTAP 2 protocol [FIDOCTAP].

In this case the CTAP2 enabled ASM provides the CTAP2 interface upstream through one or more of the transport
protocols defined in [FIDOCTAP] (e.g. USB, NFC, BLE). Note that the CTAP2 interface is the connection to the FIDO
Client / FIDO enabled platform.

In the following section we specify how the ASM needs to map the parameters received via the FIDO CTAP2
interface to FIDO UAF Authenticator Commands [UAFAuthnrCommands].

6.1 authenticatorMakeCredential

This section is normative.

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

clientDataHash (required, byte array).

rp (required, PublicKeyCredentialEntity). Identity of the relying party.

user (required, PublicKeyCredentialUserEntity).

pubKeyCredParams (required, CBOR array).

excludelList (optional, sequence of PublicKeyCredentialDescriptors).

extensions (optional, CBOR map). Parameters to influence authenticator operation.

options (optional, sequence of authenticator options, i.e. "rk" and "uv"). Parameters to influence
authenticator operation.

N o g~ D=

o

pinAuth (optional, byte array).
9. pinProtocol (optional, unsigned integer).

The output parameters are (see [FIDOCTAP]):

1. authData (required, sequence of bytes). The authenticator data object.
2. fmt (required, String). The attestation statement format identifier.

3. attStmt (required, sequence of bytes). The attestation statement.

6.1.1 Processing rules for authenticatorMakeCredential

This section is normative.

1. invoke register command for UAF authenticator as described in [UAFAuthnrCommands] section 6.2.4 using
the following field mapping instructions:
authenticatorindex set appropriately, e.g. 1.

o

o

If webauthn appid is present, then
1. Verify that the effective domain of »pp10 is identical to the effective domain of rp. iq.

2.

Set 2pp1D to the value of extension webauthn appid (see [WebAuthn]).

If webauthn appid is not present, then set app1p to rp. id (see [WebAuthn]).

FinalChallengeHash S€t 10 clientDataHash.

Username Set 10 user.displayname (see [WebAuthn]). This string will be displayed to the user in order to
select a specific account if the user has multiple accounts at that relying party.

attestationType Set to the attestation supported by that authenticator, e.g. artesTaTTON BASTC FULL OF
ATTESTATION ECDAA.

KHAccessToken Set to some persistent identifier used for this authenticator. If the authenticator is bound to
the platform this ASM is running on, it needs to be a secret identifier only known to this ASM instance. If
the authenticator is a "roaming authenticator”, i.e. external to the platform this ASM is running on, the
identifier can have value 0.

Add the fido.uaf.useria extension with value user.id to the Register command.

Use the pinauth and pinprotocol parameters appropriately when communicating with the authenticator (if
supported).

2. If this is a bound authenticator and the Authenticator doesn't support the rido.vaf.userid, let the ASM
remember the user. id value related to the generated UAuth key pair.

3. If the command was successful, create the result object as follows

o set authpata to a freshly generated authenticator data object, containing the corresponding values taken
from the assertion geenrated by the authenticator. That means:

set authpata.rpip to the SHA256 hash of rpp1b.

initialize zutnpata with 0 and then set set flag authpata. 21 to 1 and set authpata.ur to 1 if the
authenticator is not a silent authenticator. Set flag autnpata.uv to 1 if the authenticator is not a silent
authenticator. The flags authpata.vur and authpata.vv need to be 0O if it is a silent authenticator. Set
authpata.=D to 1 if the authenticator added extensions to the assertion. In this case add the
individual extensions to the CBOR map appropriately.

set authpata.signCount to the uafassertion. signCounter.

set authbata.attestationbata.ArcUTD {0 the 221D of this authenticator. Setting the remaining bytes
to 0.

set authData.attestationData.CredentiallID {0 uafAssertion.keyHandle and set the Iength L of the
Credential ID to the size of the keyHandle.

set authbata.attestationData.pubKey {0 uafassertion.publickey With appropriate encoding
conversion

o set fmt to the "fido-uaf".

o setattstnt to the avruenTICcATOR AsserTTON element of the Tac varvi rEcIsTER CcMD rRESPONSE returned by
the authenticator.

4. Return authData, fmt and attstme.

https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain

6.2 authenticatorGetAssertion

This section is normative.

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

rpld (required, String). Identity of the relying party.

clientDataHash (required, byte array).

extensions (optional, CBOR map).

1.
2.
3. allowList (optional, sequence of PublicKeyCredentialDescriptors).
4.
5.

options (optional, sequence of authenticator options, i.e. "up" and "uv").

The output parameters are (see [FIDOCTAP]):

credential (optional, PublicKeyCredentialDescriptor).

authData (required, byte array).

user (required, PublicKeyCredentialUserEntity).

1.
2.
3. signature (required, byte array).
4.
5.

numberOfCredentials (optional, integer).

6.2.1 Processing rules for authenticatorGetAssertion

This section is normative.

1. invoke sign command for UAF authenticator as described in [UAFAuthnrCommands] section 6.3.4 using the
following field mapping instructions

o

o

authenticatorindex set appropriately, e.g. 1.
If wvebauthn appid is present, then
1. Verify that the effective domain of zpp10 is identical to the effective domain of rp1a.
2. Set »pp1D to the value of extension webautnn appid (see [WebAuthn]).
If webauthn appid is not present, then set rpp1o to rp1a (see [WebAuthn]).
FinalChallengeHash S€t 10 clientDataHash.

TransactionContent Set to value of extension webauthn txAuthGeneric OF webauthn txAuthsimple (see
[WebAuthn]) depending on which extension is present and supported by this authenticator. If the
authenticator doesn't natively support transactionConfirmation, the hash of the value included in either of
the webauthn_tx* extensions can be computed by the ASM and passed to the authenticator in
TransactionContentHash. See [UAFAuthnrCommands] section 6.3.1 for details.

kHAccessToken Set to the persistent identifier used for this authenticator (at authenticatorMakeCredential).
If a110wList is present then add the .14 field of each element as xeyHand1e element to the command.

Use the pinauth and pinprotocol parameters appropriately when communicating with the authenticator (if
supported).

2. If the command was successful (with potential ambiguities of RawKeyHandles resolved), create the result
object as follows

o

set credential.id to the keyrandle returned by the authenticator command. Set credential.type to
"public-key-uaf" and set credential.transports to the transport currently being used by this authenticator
(e.g. "usb").

https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain

o setauthpata to the varvi steuep para element included in the rureeEnTTCATOR ASseErTTON €lement.
o set signature to the stenaTure element included in the ruTnenTICATOR ASsErTION element.

o If the authenticator returned the fido.uar.userid extension, then set user.id to the value of the
fido.uaf.userid extension as returned by the authenticator.

o If the authenticator did not return the rfido.uar.userid extension but the ASM remembered the user ID,
then set user.id to the value of the user ID remembered by the ASM.

3. Return credential, authData, signature, user.
6.3 authenticatorGetNextAssertion

This section is normative.

Not supported. This interface will always return a single assertion.
6.4 authenticatorCancel

This section is normative.

Cancel the existing authenticator command if it is still pending.
6.5 authenticatorReset

This section is normative.

Reset the authenticator back to factory default state. In order to prevent accidental trigger of this mechanism, some
form of user approval may be performed by the authenticator itself.

6.6 authenticatorGetinfo

This section is normative.

This interface has no input parameters.

NOTE

Output parameters are (see [FIDOCTAP]):

versions (required, sequence of strings). List of FIDO protocol versions supported by the authenticator.
extensions (optional, sequence of strings). List of extensions supported by the authenticator.
aaguid (optional, string). The AAGUID claimed by the authenticator.

options (optional, map). Map of "plat", "rk", "clientPin", "up", "uv"
maxMsgSize (optional, unsignd integer). The maximum message size accepted by the authenticator.

© g~ 0D~

pinProtocols (optional, array of unsigned integers).

6.6.1 Processing rules for authenticatorGetinfo

This section is normative.

This interface is expected to report a single authenticator only.

1. Invoke the cet1nfo command [UAFAuthnrCommands] for the connected authenticator.

o authenticatorlndex set appropriately, e.g. 1.
2. If the command was successful, create the result object as follows
o setversions to "FIDO_2_0" as this is the only version supported by CTAP2 at this time.

o set extensions to the list of extensions returned by the authenticator (one entry per field
SupportedExtensionID).

o set aaguid to the AAID returned by the authenticator, setting all remaining bytes to 0.

o set options appropriately.

o setmaxusgsize to the maximum message size supported by the authenticator - if known
o setpinrrotocols to the list of supported pin protocols (if any).

3. Return versions, extensions, aaguid, options, mxMsgSize (If known) and pinProtocols (If any).

7. Security and Privacy Guidelines

This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs must follow these security
guidelines:

e ASMs musT implement a mechanism for isolating UAF credentials registered by two different FIDO UAF Clients
from one another. One FIDO UAF Client musT NnoT have access to FIDO UAF credentials that have been
registered via a different FIDO UAF Client. This prevents malware from exercising credentials associated with a
legitimate FIDO Client.

NOTE

ASMs must properly protect their sensitive data against malware using platform-provided isolation
capabilities in order to follow the assumptions made in [FIDOSecRef]. Malware with root access to the
system or direct physical attack on the device are out of scope for this requirement.

NOTE

The following are examples for achieving this:

o If an ASM is bundled with a FIDO UAF Client, this isolation mechanism is already built-in.

o If the ASM and FIDO UAF Client are implemented by the same vendor, the vendor may implement
proprietary mechanisms to bind its ASM exclusively to its own FIDO UAF Client.

o On some platforms ASMs and the FIDO UAF Clients may be assigned with a special privilege or
permissions which regular applications don't have. ASMs built for such platforms may avoid
supporting isolation of UAF credentials per FIDO UAF Clients since all FIDO UAF Clients will be
considered equally trusted.

e An ASM designed specifically for bound authenticators must ensure that FIDO UAF credentials registered with
one ASM cannot be accessed by another ASM. This is to prevent an application pretending to be an ASM from
exercising legitimate UAF credentials.

o Using a KHAccessToken offers such a mechanism.

e An ASM wmusT implement platform-provided security best practices for protecting UAF-related stored data.

o ASMs musT NoT store any sensitive FIDO UAF data in its local storage, except the following:

O CallerID, ASMToken, PersonalD, KeyID, KeyHandle, AppID

NOTE

An ASM, for example, must never store a username provided by a FIDO Server in its local storage in a
form other than being decryptable exclusively by the authenticator.

e ASMs sHouLD ensure that applications cannot use silent authenticators for tracking purposes. ASMs
implementing support for a silent authenticator must show, during every registration, a user interface which
explains what a silent authenticator is, asking for the users consent for the registration. Also, it is RECOMMENDED
that ASMs designed to support roaming silent authenticators either

o Run with a special permission/privilege on the system, or

o Have a built-in binding with the authenticator which ensures that other applications cannot directly
communicate with the authenticator by bypassing this ASM.

7.1 KHAccessToken

KHAccessToken IS @n access control mechanism for protecting an authenticator's FIDO UAF credentials from
unauthorized use. It is created by the ASM by mixing various sources of information together. Typically, a
KHAccessToken contains the following four data items in it: 2pp1D, Personatn, asvToken @and caller1n.

appID is provided by the FIDO Server and is contained in every FIDO UAF message.

personaID iS Obtained by the ASM from the operational environment. Typically a different rersona1p is assigned to
every operating system user account.

AsSMToken is @ randomly generated secret which is maintained and protected by the ASM.

NOTE

In a typical implementation an ASM will randomly generate an ASMToken when it is launched the first time
and will maintain this secret until the ASM is uninstalled.

callerzpis the ID the platform has assigned to the calling FIDO UAF Client (e.g. "bundle ID" for iOS). On different
platforms the CallerID can be obtained differently.

NOTE

For example on Android platform ASM can use the hash of the caller's apk-signing-cert.

The ASM uses the kiaccessToken to establish a link between the ASM and the key handle that is created by
authenticator on behalf of this ASM.

The ASM provides the kiaccessToken to the authenticator with every command which works with key handles.

NOTE

The following example describes how the ASM constructs and uses xiaccessToken.

e During a register request

o Set kHaccessToken to a secret value only known to the ASM. This value will always be the same for
this ASM.
Append 2pp1D

B KHAccessToken = AppID

o

o

If a bound authenticator, append 2sutoken, Personatp and callertd

B KHAccessToken |= ASMToken PersonaID | CallerID

Hash xHEAccessToken
m Hash rHaccessToken using the authenticator's hashing algorithm. The reason of using
authenticator specific hash function is to make sure of interoperability between ASMs. If
interoperability is not required, an ASM can use any other secure hash function it wants.

o

B KHAccessToken=hash (KHAccessToken)
Provide xnzccessToken to the authenticator

The authenticator puts the kirccessToken iNtO rawkeyHandle (see [UAFAuthnrCommands] for more
details)

o

o

e During other commands which require xirccessToken as input argument
o The ASM computes kHaccessToken the same way as during the register request and provides it to
the authenticator along with other arguments.

o The authenticator unwraps the provided key handle(s) and proceeds with the command only if
RawKeyHandle.KHAccessToken iS equal to the provided xHAccessToken.

Bound authenticators musT support a mechanism for binding generated key handles to ASMs. The binding
mechanism musT have at least the same security characteristics as mechanism for protcting xiaccesstoken described
above. As a consequence it is REcoMMENDED to securely derive kiaccessToken from app1p, AsMToken, Personald and
the calilertn.

Alternative methods for binding key handles to ASMs can be used if their security level is equal or better.

From a security perspective, the KHAccessToken method relies on the OS/platform to:

1. allow the ASM keeping the ASMToken secret
2. and let the ASM determine the CalledID correctly
3. and let the FIDO Client verify the ApplD/FacetID correctly

NOTE

It is recommended for roaming authenticators that the xiaccesstoken contains only the 2pp 1o since otherwise
users won't be able to use them on different machines (personaip, asuroken and calierip are platform
specific). If the authenticator vendor decides to do that in order to address a specific use case, however, it is
allowed.

Including personaibp in the kHaccessToken is optional for all types of authenticators. However an authenticator
designed for multi-user systems will likely have to support it.

If an ASM for roaming authenticators doesn't use a xiaccessToken Which is different for each ~pp1p, the ASM musTt

include the 2pp 10 in the command for a deregister request containing an empty key1o.
7.2 Access Control for ASM APls

The following table summarizes the access control requirements for each API call.

ASMs musT implement the access control requirements defined below. ASM vendors may implement additional
security mechanisms.

Terms used in the table:

e NoAuth -- NO access control

e caller1D -- FIDO UAF Client's platform-assigned ID is verified
e Userverify -- User must be explicitly verified

e xeyIDList -- must be known to the caller

Second-factor

First-factor

First-factor bound Second-factor

COMIHETRE authenticator bound authenticator roaming roaming
authenticator authenticator
Getlnfo NoAuth NoAuth NoAuth NoAuth
OpenSettings NoAuth NoAuth NoAuth NoAuth
Reqister UserVerify UserVerify UserVerify UserVerify
. UserVerify
X;S[gerlfy AppID UserVerify UserVerify
Authenticate KeyIDList AppiD
CallerlD ApplID .
CallerlD KeylDList
PersonalD
PersonalD
. . .| CallerlD CallerlD
GetRegistrations PersonalD PersonalD X X
ApplID ApplID
. KeyID KeyID ApplD ApplD
Deregister PersonalD PersonalD KeylD KeyID
CallerlD CallerlD

A. References

A.1 Normative references

[ECMA-262]

ECMAScript Language Specification. URL: https://tc39.es/ecma262/

[FIDOCTAP]

C. Brand; A. Czeskis; J. Ehrensvard; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. EIDO 2.0:

Client To Authenticator Protocol. 30 January 2019. URL: htt

llian

20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html

[FIDOGIlossary]

-v2.0-

R. Lmdemann D. Baghdasaryan B. Hill; J. Hodges. FIDO Technical Glossag(Review Draft. URL:

[FIDOMetadataStatement]

B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL:

https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html

[FIDOReglstry]
R. Lindemann; D. Baghdasaryan; B. Hill. EIDO Registry of Predefined Values. Proposed Standard. URL.:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[RFC2119]
S. Bradner. Key words for in RECs to Indicate Requirement [evels. March 1997. Best Current Practice.
URL.: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (REC 4648). October 2006. URL:

http://www.ietf.org/rfc/rfc4648.txt
[UAFAuthnrCommands]

D. Baghdasaryan; J. Kemp; R. Lmdemann R Sasson; B. Hill; J Hodges; K. Yang. EIDO UAFAuthentlcator
Commands. Review Draft. URL: https: .
v1.2-ps-20201020.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol
Specification v1.2. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-

[-v1.2-ps-20201020.html

[UAFRegistry]

R. Lmdemann D. Baghdasaryan B. H|II FIDO UAF Reg/stgg ofPredef/ned Values. Review Draft. URL:

[WebIDL- ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.qgithub.io/webidl/

A.2 Informative references

[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL: https://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf
[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill; J Hill; D Biggs. FIDO SecurltzReferenc 27 February 2018
Implementation Draft. URL: https://fi i f-v2,
20180227 .html
[RFC2397]
L. Masinter. The "data” URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397
[UAFAppAPIAndTransport]

B. Hill; D. Baghdasaryan; B. Blanke. EID AF Application APl and Transport Bindin ification. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-
20201020.html

[WebAuthn]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael B. Jones; Akshay Kumar; Angelo Liao; Rolf
Lindemann; Emil Lundberg. Web Authentication: An API for ing Public Ki redentials Level 1. March
2019. TR. URL: https://www.w3.org/TR/webauthn/

[WebIDL]

Boris Zbarsky. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

fco

ALLIANCE

FIDO UAF Authenticator Commands
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
Previous version:

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, EIDO Alliance
Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Roni Sasson, Discretix
Brad Hill, PayPal, Inc.

Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok L Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

UAF Authenticators may take different forms. Implementations may range from a secure application running inside tamper-
resistant hardware to software-only solutions on consumer devices.

This document defines normative aspects of UAF Authenticators and offers security and implementation guidelines for
authenticator implementors.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the EIDO
Alliance specifications index at https.//fidoalliance.org/specifications/.

This document was published by the EIDO Alliance as a Proposed Standard. If you wish to make comments regarding this
document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
mailto:rlindemann@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such third
party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS 1S” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable

document and may be used as reference material or cited from another document. FIDO Alliance's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents

1. Notation
o 1.1 Conformance

2. Overview

3. UAF Authenticator
o 3.1 Types of Authenticators

4. Tags
o 4.1 Command Tags

o 4.2 Tags used only in Authenticator Commands
o 4.3 Tags used in UAF Protocol
o 4.4 Status Codes
5. Structures
o 5.1 RawKeyHandle

o 5.2 Structures to be parsed by FIDO Server
s 52.1 TAG_UAFV1_REG_ASSERTION

m 5.2.2 TAG_UAFV1_AUTH_ASSERTION

o 5.3 UserVerificationToken

e 6. Commands
o 6.1 GetiInfo Command
= 6.1.1 Command Description

= 6.1.2 Command Structure
= 6.1.3 Command Response
m 6.1.4 Status Codes
o 6.2 Register Command
= 6.2.1 Command Structure
= 6.2.2 Command Response
= 6.2.3 Status Codes
= 6.2.4 Command Description
o 6.3 Sign Command
= 6.3.1 Command Structure
= 6.3.2 Command Response
m 6.3.3 Status Codes
= 6.3.4 Command Description
o 6.4 Deregister Command
= 6.4.1 Command Structure
= 6.4.2 Command Response

6.4.3 Status Codes
= 6.4.4 Command Description
o 6.5 OpenSettings Command
= 6.5.1 Command Structure
= 6.5.2 Command Response
= 6.5.3 Status Codes

7. KeylDs and key handles
7.1 first-factor Bound Authenticator

7.2 2ndF Bound Authenticator
7.3 first-factor Roaming Authenticator
7.4 2ndF Roaming Authenticator

8. Access Control for Commands

9. Considerations
o 9.1 Algorithms and Key Sizes

o 9.2 Indicating the Authenticator Model

o

o

o

o

10. Relationship to other standards
o 10.1 TEE

o 10.2 Secure Elements
o 10.3 TPM
o 10.4 Unreliable Transports

A. Security Guidelines
B. Table of Figures

C. References
o C.1 Normative references

o C.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.
String literals are enclosed in ", e.g. "UAF-TLV".

In formulas we use "|" to denote byte wise concatenation operations.

"
UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

Unless otherwise specified all data described in this document musT be encoded in little-endian format.

All TLV structures can be parsed using a "recursive-descent" parsing approach. In some cases multiple occurrences of a
single tag may be allowed within a structure, in which case all values musT be preserved.

All fields in TLV structures are mandatory, unless explicitly mentioned as otherwise.
1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and oPTIONAL in this specification are to be
interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document specifies low-level functionality which UAF Authenticators should implement in order to support the UAF
protocol. It has the following goals:

¢ Define normative aspects of UAF Authenticator implementations
¢ Define a set of commands implementing UAF functionality that may be implemented by different types of authenticators
¢ Define varviTrv assertion scheme-specific structures which will be parsed by a FIDO Server

NOTE

The UAF Protocol supports various assertion schemes. Commands and structures defined in this document assume
that an authenticator supports the vza=viTv assertion scheme. Authenticators implementing a different assertion
scheme do not have to follow requirements specified in this document.

The overall architecture of the UAF protocol and its various operations is described in [UAFProtocol]. The following simplified
architecture diagram illustrates the interactions and actors this document is concerned with:

UAF
Client

API

ASM

UAF
Authenticator

Fig. 1 UAF Authenticator Commands

3. UAF Authenticator

This section is non-normative.

The UAF Authenticator is an authentication component that meets the UAF protocol requirements as described in
[UAFProtocol]. The main functions to be provided by UAF Authenticators are:

1. [Mandatory] Verifying the user or the user's presence with the verification mechanism built into the authenticator. The
verification technology can vary, from biometric verification to simply verifying physical presence, or no user verification
at all (the so-called Silent Authenticator).

[Mandatory] Performing the cryptographic operations defined in [UAFProtocol]
[Mandatory] Creating data structures that can be parsed by FIDO Server.
[Mandatory] Attesting itself to the FIDO Server if there is a built-in support for attestation

o bk~ 0D

[Optional] Displaying the transaction content to the user using the transaction confirmation display

ASM

FIDO Authenticator

"4

Interface

User

Verification Attestation Key

> Confirmation Authentication
. Display | Keyg

User

Fig. 2 FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

¢ A fingerprint sensor built into a mobile device

PIN authenticator implemented inside a secure element

A mobile phone acting as an authenticator to a different device

A USB token with built-in user presence verification

A voice or face verification technology built into a device

3.1 Types of Authenticators

There are four types of authenticators defined in this document. These definitions are not normative (unless otherwise stated)
and are provided merely for simplifying some of the descriptions.

NOTE

The following is the rationale for considering only these 4 types of authenticators:

e Bound authenticators are typically embedded into a user's computing device and thus can utilize the host's
storage for their needs. It makes more sense from an economic perspective to utilize the host's storage rather
than have embedded storage. Trusted Execution Environments (TEE), Secure Elements and Trusted Platform
Modules (TPM) are typically designed in this manner.

o First-factor roaming authenticators must have an internal storage for key handles.

¢ Second-factor roaming authenticators can store their key handles on an associated server, in order to avoid the
need for internal storage.

o Defining such constraints makes the specification simpler and clearer for defining the mainstream use-cases.

Vendors, however, are not limited to these constraints. For example a bound authenticator which has internal storage
for storing key handles is possible. Vendors are free to design and implement such authenticators as long as their
design follows the normative requirements described in this document.

e First-factor Bound Authenticator

o These authenticators have an internal matcher. The matcher is able to verify an already enrolled user. If there is
more than one user enrolled - the matcher can also identify a user.

o There is a logical binding between this authenticator and the device it is attached to (the binding is expressed
through a concept called KeyHandleAccessToken). This authenticator cannot be bound with more than one
device.

o These authenticators do not store key handles in their own internal storage. They always return the key handle to
the ASM and the latter stores it in its local database.

o Authenticators of this type may also work as a second factor.
o Examples
= A fingerprint sensor built into a laptop, phone or tablet
= Embedded secure element in a mobile device
= Voice verification built into a device

o Second-factor (2ndF) Bound Authenticator

o This type of authenticator is similar to first-factor bound authenticators, except that it can operate only as the
second-factor in a multi-factor authentication

o Examples
= USB dongle with a built-in capacitive touch device for verifying user presence

= A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

o First Factor (1stF) Roaming Authenticator
o These authenticators are not bound to any device. User can use them with any number of devices.

o Itis assumed that these authenticators have an internal matcher. The matcher is able to verify an already enrolled
user. If there is more than one user enrolled - the matcher can also identify a user.

o ltis assumed that these authenticators are designed to store key handles in their own internal secure storage and
not expose externally.

o These authenticators may also work as a second factor.
o Examples
= A Bluetooth LE based hardware token with built-in fingerprint sensor
= PIN protected USB hardware token
= A first-factor bound authenticator acting as a roaming authenticator for a different device on the user's behalf

e Second-factor Roaming Authenticator
o These authenticators are not bound to any device. A user may use them with any number of devices.

o

These authenticators may have an internal matcher. The matcher is able to verify an already enrolled user. If
there is more than one user enrolled then the matcher can also identify a particular specific user.

o

It is assumed that these authenticators do not store key handles in their own internal storage. Instead they push
key handles to the FIDO Server and receive them back during the authentication operation.

These authenticators can only work as second factors.
Examples
= USB dongle with a built-in capacitive touch device for verifying user presence

= A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

o

o

Throughout the document there will be special conditions applying to these types of authenticators.

NORMATIVE

In some deployments, the combination of ASM and a bound authenticator can act as a roaming authenticator (for
example when an ASM with an embedded authenticator on a mobile device acts as a roaming authenticator for another
device). When this happens such an authenticator must follow the requirements applying to bound authenticators within
the boundary of the system the authenticator is bound to, and follow the requirements that apply to roaming authenticators
in any other system it connects to externally.

Conforming authenticators must implement at least one attestation type defined in [UAFRegistry], as well as one
authentication algorithm and one key format listed in [FIDORegistry].

NOTE

As stated above, the bound authenticator does not store key handles and roaming authenticators do store them. In the
example above the ASM would store the key handles of the bound authenticator and hence meets these assumptions.

4. Tags

This section is normative.

In this document UAF Authenticators use "Tag-Length-Value" (TLV) format to communicate with the outside world. All
requests and response data musT be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by appending other TLV tags (custom or predefined).
Refer to [UAFRegistry] for information about predefined TLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g. a UINT32[4] will have length 16.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the
limitations of some hardware platforms.

Arrays are implicit. The description of some structures indicates where multiple values are permitted, and in these cases, if
same tag appears more than once, all values are signifanct and should be treated as an array.

For convenience in decoding TLV-formatted messages, all composite tags - those with values that must be parsed by
recursive descent - have the 13th bit (0x1000) set.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver musT abort processing the entire message if it
cannot process that tag.

Since UAF Authenticators may have extremely constrained processing environments, an ASM musT follow a normative
ordering of structures when sending commands.

It is assumed that ASM and Server have sufficient resources to handle parsing tags in any order so structures send from
authenticator may use tags in any order.

4.1 Command Tags

Name Value Description
TAG_UAFV1_GETINFO_CMD 0x3401 | Tag for Getinfo command.
TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 | Tag for Getinfo command response.
TAG_UAFV1_REGISTER_CMD 0x3402 | Tag for Register command.
TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 | Tag for Register command response.
TAG_UAFV1_SIGN_CMD 0x3403 | Tag for Sign command.
TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 | Tag for Sign command response.
TAG_UAFV1_DEREGISTER_CMD 0x3404 | Tag for Deregister command.
TAG_UAFV1 _DEREGISTER _CMD_RESPONSE 0x3604 | Tag for Deregister command response.
TAG_UAFV1_OPEN_SETTINGS CMD 0x3406 | Tag for OpenSettings command.
TAG_UAFV1_OPEN_SETTINGS CMD_RESPONSE 0x3606 | Tag for OpenSettings command response.

Table 4.1.1: UAF Authenticator Command TLV tags (0x3400 - 0x34FF, 0x3600-0x36FF)

4.2 Tags used only in Authenticator Commands

Name Value Description

Represents key handle.

TAG_KEYHANDLE 0x2801 | Refer to [FIDOGlossary] for more information about key
handle.

Represents an associated Username and key handle.

This is a composite tag that contains a TAG_USERNAME

and TAG_KEYHANDLE that identify a registration valid oin
TAG_USERNAME_AND_KEYHANDLE 0x3802 | the authenticator.

Refer to [FIDOGIossary] for more information about
username.

Represents a User Verification Token.

TAG_USERVERIFY_TOKEN 0x2803 | Refer to [FIDOGIlossary] for more information about user
verification tokens.

A full AppID as a UINT8[] encoding of a UTF-8 string.

TAG_APPID 0x2804 Refer to [FIDOGIossary] for more information about AppID.
TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 | Represents a key handle Access Token.

TAG_USERNAME 0x2806 | A Username as a UINT8[] encoding of a UTF-8 string.
TAG_ATTESTATION_TYPE 0x2807 | Represents an Attestation Type.

TAG_STATUS_CODE 0x2808 | Represents a Status Code.
TAG_AUTHENTICATOR_METADATA 0x2809 | Represents a more detailed set of authenticator information.
TAG_ASSERTION_SCHEME 0x280A A UINTS8[] containing the UTF8-encoded Assertion Scheme

as defined in [UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS | 0x280B

If an authenticator contains a PNG-capable transaction
confirmation display that is not implemented by a higher-level
layer, this tag is describing this display. See
[FIDOMetadataStatement] for additional information on the
format of this field.

A UINT8[] containing the UTF-8-encoded transaction display

TAG_TC_DISPLAY_CONTENT_TYPE 0x280C | content type as defined in [FIDOMetadataStatement].
("image/png")
TAG_AUTHENTICATOR_INDEX 0x280D | Authenticator Index
TAG_API_VERSION 0x280E | API Version
The content of this TLV tag is an assertion generated by the
TAG AUTHENTICATOR ASSERTION OX280F f'autr.]entlcator. Since authenticators may generate assertions
- - in different formats - the content format may vary from
authenticator to authenticator.
TAG_TRANSACTION_CONTENT 0x2810 | Represents transaction content sent to the authenticator.
TAG AUTHENTICATOR INFO 0x3811 IncIudg_s'detaiIed information about authenticator's
- - capabilities.
TAG_SUPPORTED_EXTENSION_ID 0x2812 | Represents extension ID supported by authenticator.

TAG_TRANSACTIONCONFIRMATION_TOKEN | 0x2813

Represents a token for transaction confirmation. It might be
returned by the authenticator to the ASM and given back to
the authenticator at a later stage. The meaning of it is similar
to TAG_USERVERIFY_TOKEN, except that it is used for the
user's approval of a displayed transaction text.

Table 4.2.1: Non-Command Tags (0x2800 - 0x28FF, 0x3800 - 0x38FF)

4.3 Tags used in UAF Protocol

Name
TAG_UAFV1_REG_ASSERTION

Value

0x3E01 | Authenticator response to Register command.

Description

TAG_UAFV1_AUTH_ASSERTION

0x3E02 | Authenticator response to Sign command.

TAG_UAFV1_KRD

0x3E03 | Key Registration Data

TAG_UAFV1_SIGNED_DATA

0x3E04 | Data signed by authenticator with the UAuth.priv key

Each entry contains a single X.509 DER-encoded [ITU-X690-2008]
certificate. Multiple occurrences are allowed and form the
attestation certificate chain. Multiple occurrences must be ordered.

TAG_ATTESTATION_CERT 0x2E05 The attestation certificate itself musT occur first. Each subsequent
occurrence (if exists) musT be the issuing certificate of the previous
occurrence.

TAG_SIGNATURE 0x2E06 | A cryptographic signature

ATTESTATION_BASIC_FULL O0x3EQ07 | Full Basic Attestation as defined in [UAFProtocol]

ATTESTATION_BASIC_SURROGATE Ox3EO08 | Surrogate Basic Attestation as defined in [UAFProtocol]

Elliptic curve based direct anonymous attestation as defined in

ATTESTATION_ECDAA 0x3E09 | [UAFProtocol]. In this case the signature in TAG_SIGNATURE is a
ECDAA signature as specified in [FIDOEcdaaAlgorithm].

TAG_KEYID 0x2E09 | Represents a KeylD.

Represents a Hash of the Final Challenge.

TAG_FINAL_CHALLENGE_HASH 0x2EOA | Refer to [UAFASM)] for more information about the Final Challenge
Hash.

Represents an authenticator Attestation ID.

TAG_AAID 0x2E08B Refer to [UAFProtocol] for more information about the AAID.

TAG_PUB_KEY 0x2EOC | Represents a Public Key.

TAG_COUNTERS O0x2EOD | Represents a use counters for the authenticator.

TAG ASSERTION INFO OX2EOQE Represe_‘nts assertion information necessary for message

- - processing.
Represents a nonce value generated by the authenticator.
The Authenticator Nonce allows the authenticator to enforce the to-

TAG AUTHENTICATOR NONCE OX2EOF be-signed object bel_ng f:llffert_ant each time it is generated - even

- - under attack scenarios in which the caller (e.g. ASM) sends similar
data. Side channels attacks are more difficult to perform if the data
to-be-signed is different each time.

TAG_TRANSACTION_CONTENT_HASH | 0x2E10 | Represents a hash of transaction content.

This is a composite tag indicating that the content is an extension.
If the tag is Ox3E11 - it's a critical extension and if the recipient
does not understand the contents of this tag, it musT abort
processing of the entire message.

This tag has two embedded tags - TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more information about UAF
extensions refer to [UAFProtocol]

TAG_EXTENSION Ox3E1T,

- 0x3E12

NOTE

This tag can be appended to any command and response.

Using tag 0x3E11 (as opposed to tag 0x3E12) has the same
meaning as the flag fai1 if unknown in [UAFProtocol].

TAG_EXTENSION_ID 0x2E13

Represents extension ID. Content of this tag is a UINT8[] encoding
of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14

array.

Represents extension data. Content of this tag is a UINT8[] byte

Table 4.3.1: Tags used in the UAF Protocol (0x2E00 - 0x2EFF, 0x3E00 - Ox3EFF). Normatively defined in [UAFRegistry]

4 4 Status Codes

Name Value Description
UAF_CMD_STATUS_OK 0x00 | Success.
UAF_CMD_STATUS _ERR_UNKNOWN 0x01 | An unknown error.
UAF_CMD_STATUS_ACCESS_DENIED 0x02 | Access to this operation is denied.
User is not enrolled with the
UAF_CMD_STATUS _USER _NOT_ENROLLED 0x03 [authenticator and the authenticator
cannot automatically trigger enroliment.
UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT | 0x04 gﬁngggon content cannot be
UAF CMD STATUS USER CANCELLED 0x05 User has cancelled the operation. No
- - - - retry should be performed.
UAF_CMD_STATUS _CMD_NOT_SUPPORTED 0x06 | Command not supported.
UAF_CMD_STATUS ATTESTATION_NOT_SUPPORTED 0x07 | Required attestation not supported.
The parameters for the command
UAF_CMD_STATUS_ PARAMS_INVALID 0x08 | received by the authenticator are
malformed/invalid.
The UAuth key which is relevant for
this command disappeared from the
authenticator and cannot be restored.
UAF_CMD_STATUS KEY_DISAPPEARED_ PERMANENTLY 0x09 [On some authenticators this error
occurs when the user verification
reference data set was modified (e.g.
new fingerprint template added).
The operation in the authenticator took
UAF_CMD_STATUS_TIMEOUT Ox0a [longer than expected (due to technical
issues) and it was finally aborted.
The user took too long to follow an
UAF_CMD_STATUS_USER_NOT_RESPONSIVE Ox0e | instruction, e.g. didn't swipe the finger
within the accepted time.
Insufficient resources in the
UAF_CMD_STATUS_INSUFFICIENT_RESOURCES 0x0f | authenticator to perform the requested

task.

The operation failed because the user
is locked out and the authenticator
cannot automatically trigger an action
to change that. Typically the user
would have to enter an alternative
password (formally: undergo some
other alternative user verification
method) to re-enable the use of the
main user verification method.

NOTE

Any method the user can use to
UAF_CMD_STATUS_USER_LOCKOUT 0x10 (re_) enable the main user
verification method is considered
an alternative user verification
method and must be properly
declared as such. For example,
if the user can enter an
alternative password to re-
enable the use of fingerprints or
to add additional fingers, the
authenticator obviously supports
fingerprint or password based
user verification.

The system interrupted the operation.

UAF_CMD_STATUS_SYSTEM_INTERRUPTED 0x12 .
- - - - Retry might make sense.

Table 4.4.1: UAF Authenticator Status Codes (0x00 - OxFF)
5. Structures

This section is normative.

5.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the authenticator. Authenticators may define RawKeyHandle in
different ways and the internal structure is relevant only to the specific authenticator implementation.

RawKeyHandle for a typical first-factor bound authenticator has the following structure.

Depends on hashing Depends on key type. Username Size
algorithm (e.g. 32 bytes) (e.g. 32 bytes) (1 byte) Max 128 bytes
KHAccessToken UAuth.priv Size Username

Table 5.1: RawKeyHandle Structure

First Factor authenticators musT store Usernames in the authenticator and they musT link the Username to the related key.
This may be achieved by storing the Username inside the RawKeyHandle. Second Factor authenticators musT noT store the
Username.

The ability to support Usernames is a key difference between first-, and second-factor authenticators.

The RawKeyHandle musT be cryptographically wrapped before leaving the authenticator boundary since it typically contains
sensitive information, e.g. the user authentication private key (UAuth.priv).

5.2 Structures to be parsed by FIDO Server

The structures defined in this section are created by UAF Authenticators and parsed by FIDO Servers.

Authenticators musT generate these structures if they implement "UAFVATLV" assertion scheme.

NOTE

"UAFV1TLV" assertion scheme assumes that the authenticator has exclusive control over all data included inside
TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.

The nesting structure musT be preserved, but the order of tags within a composite tag is not normative. FIDO Servers must be
prepared to handle tags appearing in any order.

5.2.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the authenticator during processing of a Register command. It is then delivered
to FIDO Server intact, and parsed by the server. The structure embeds a TAG_UAFV1_KRD tag which among other data
contains the newly generated UAuth.pub.

If the authenticator wants to append custom data to TAG_UAFV1_KRD structure (and thus sign with Attestation Key) - this
data musT be included as TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to FIDO Server without signing it - this data musT be included as
TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_REG_ASSERTION and not inside
TAG_UAFV1_KRD.

Currently this document only specifies ATTESTATION_BASIC_FULL, ATTESTATION_BASIC_SURROGATE and
ATTESTATION_ECDAA. In case if the authenticator is required to perform "Some_Other_Attestation" on TAG_UAFV1_KRD
- it musT use the TLV tag and content defined for "Some_Other_Attestation" (defined in [FIDORegistry]).

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REG_ASSERTION
1.1 UINT16 Length Length of the structure
1.2 UINT16 Tag TAG_UAFV1_KRD
1.2.1 UINT16 Length Length of the structure
1.2.2 UINT16 Tag TAG_AAID
1.2.2.1 | UINT16 Length Length of AAID
1.2.2.2 | UINT8[] AAID Authenticator Attestation ID
1.2.3 UINT16 Tag TAG_ASSERTION_INFO
1.2.3.1 | UINT16 Length Length of Assertion Information

UINT16 . . .
1.2.3.2 AuthenticatorVersion Vendor assigned authenticator version

UINT8 For Registration this must be 0x01 indicating that the user has explicitly verified the
1.2.3.3 _— .

AuthenticationMode action.

Signature Algorithm and Encoding of the attestation signature.

1234 | YINT16

SignatureAlgAndEncoding

Refer to [FIDORegistry] for information on supported algorithms and their values.

UINT16 Public Key algorithm and encoding of the newly generated vruth.pub key.
1.2.35 . .
PublicKeyAlgAndEncoding Refer to [FIDORegistry] for information on supported algorithms and their values.

1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.4.1 | UINT16 Length Final Challenge Hash length

1242 | YINT8I (binary value of) Final Challenge Hash provided in the Command

U FinalChallengeHash

1.2.5 UINT16 Tag TAG_KEYID

1.2.5.1 | UINT16 Length Length of KeylD

1.2.5.2 | UINT8[] KeylD (binary value of) KeyID for the key generated by the Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 | UINT16 Length Length of Counters
Signature Counter.

1.26.2 | UINT32 SignCounter Indicates how many times this authenticator has performed signatures in the past.
Registration Counter.

1.2.6.3 | UINT32 RegCounter Indicates how many times this authenticator has performed registrations in the
past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 | UINT16 Length Length of UAuth.pub

1.2.7.2 | UINT8[] PublicKey User authentication public key (UAuth.pub) newly generated by authenticator

1.3

(choice | UINT16 Tag ATTESTATION_BASIC_FULL

1)

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature
Signature calculated with Basic Attestation Private Key over TAG_UAFV1_KRD
content.

1.3.2.2 | UINT8[] Signature The entire TAG_UAFV1_KRD content, including the tag and it's length field, musT
be included during signature computation.
TAG_ATTESTATION_CERT (multiple occurrences possible)
Multiple occurrences must be ordered. The attestation certificate must occur first.

133 UINT16 Tag Each subsequent occurrence (if exists) musT be the issuing certificate of the

previous occurrence. The last occurence musT be chained to one of the certificates
included in field attestationrootcertificate in the related Metadata Statement
[FIDOMetadataStatement].

1.3.3.1 | UINT16 Length Length of Attestation Cert

e Single X.509 DER-encoded [ITU-X690-2008] Attestation Certificate or a single

1.33.2 | UINT8[] Certificate certificate from the attestation certificate chain (see description above).

1.3

(choice | UINT16 Tag ATTESTATION_BASIC_SURROGATE

2)

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature
Signature calculated with newly generated UAuth.priv key over TAG_UAFV1_KRD
content.

1.3.2.2 1 UINT8[] Signature The entire TAG_UAFV1_KRD content, including the tag and it's length field, musTt
be included during signature computation.

1.3

(choice | UINT16 Tag ATTESTATION_ECDAA

3)

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 | UINT16 Length Length of signature

1.3.2.2 | UINTSJ] Signature The binary ECDAA signature as specified in [FIDOEcdaaAlgorithm].

5.2.2 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an authenticator during processing of a Sign command. It is then delivered to
FIDO Server intact and parsed by the server. The structure embeds a TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom data to TAG_UAFV1_SIGNED_DATA structure (and thus sign with Attestation
Key) - this data musT be included as an additional tag inside TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to FIDO Server without signing it - this data musT be included as an
additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside TAG_UAFV1_SIGNED_DATA.

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION
1.1 UINT16 Length Length of the structure.
1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA
1.21 UINT16 Length Length of the structure.
1.2.2 UINT16 Tag TAG_AAID

1.2.2.1

UINT16 Length

Length of AAID

1.2.2.2 | UINT8[] AAID Authenticator Attestation 1D
1.2.3 UINT16 Tag TAG_ASSERTION_INFO
1.2.3.1 | UINT16 Length Length of Assertion Information

1.2.3.2

UINT16
AuthenticatorVersion

Vendor assigned authenticator version.

1.2.3.3

UINTS8
AuthenticationMode

Authentication Mode indicating whether user explicitly verified or not and indicating if
there is a transaction content or not.

e 0x01 means that user has been explicitly verified

e 0x02 means that transaction content has been shown on the display and user
confirmed it by explicitly verifying with authenticator

1.23.4

UINT16
SignatureAlgAndEncoding

Signature algorithm and encoding format.

Refer to [FIDORegistry] for information on supported algorithms and their values.

1.24 UINT16 Tag TAG_AUTHENTICATOR_NONCE
1.2.4.1 | UINT16 Length Itgi’fst_h of authenticator Nonce - musT be at least 8 bytes, and NOT longer than 64
1.2.4.2 | UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by Authenticator
1.2.5 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.2.5.1 | UINT16 Length Length of Final Challenge Hash
1.25.2 U_INT8[] (binary value of) Final Challenge Hash provided in the Command
FinalChallengeHash
1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH
1.2.6.2 | UINT8[] TCHash (binary value of) Transaction Content Hash
1.2.7 UINT16 Tag TAG_KEYID
1.2.7.1 | UINT16 Length Length of KeyID
1.2.7.2 | UINTS8[] KeyID (binary value of) KeylD
1.2.8 UINT16 Tag TAG_COUNTERS
1.2.8.1 | UINT16 Length Length of Counters
Signature Counter.
1.2.8.2 | UINT32 SignCounter Indicates how many times this authenticator has performed signatures in the past.
1.3 UINT16 Tag TAG_SIGNATURE
1.3.1 UINT16 Length Length of Signature

Signature calculated using UAuth.priv over TAG_UAFV1_SIGNED_DATA structure.

1.3.2 UINT8J] Signature The entire TAG_UAFV1_SIGNED_DATA content, including the tag and it's length
field, musT be included during signature computation.

5.3 UserVerificationToken

This specification doesn't specify how exactly user verification must be performed inside the authenticator. Verification is
considered to be an authenticator, and vendor, specific operation.

This document provides an example on how the "vendor_specific_UserVerify" command (a command which verifies the user
using Authenticator's built-in technology) could be securely bound to UAF Register and Sign commands. This binding is done
through a concept called vserverificationToken. Such a binding allows decoupling "vendor_specific_UserVerify" and "UAF
Register/Sign" commands from each other.

Here is how it is defined:

o The ASM invokes the "vendor_specific_UserVerify" command. The authenticator verifies the user and returns a
UserVerificationToken back.

o The ASM invokes UAF.Register/Sign command and passes userverificationToken t0 it. The authenticator verifies the
validity of userverificationToken and performs the FIDO operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement this binding in a very
different way. For example an authenticator vendor may decide to append a UAF Register request directly to their
"vendor_specific_UserVerify" command and process both as a single command.

If userverificationToken binding is implemented, it should either meet one of the following criteria or implement a
mechanism providing similar, or better security:

® UserverificationToken must allow performing only a single UAF Register or UAF Sign operation.

verificationToken must be time bound, and allow performing multiple UAF operations within the specified time.

® User

6. Commands
This section is non-normative.

NORMATIVE

UAF Authenticators which are designed to be interoperable with ASMs from different vendors musT implement the
command interface defined in this section. Examples of such authenticators:

e Bound Authenticators in which the core authenticator functionality is developed by one vendor, and the ASM is
developed by another vendor

o Roaming Authenticators

NORMATIVE

UAF Authenticators which are tightly integrated with a custom ASM (typically bound authenticators) may implement a
different command interface.

NOTE

Examples of such different command interface include native key store or key chain APIs. It is important to declare
whether the Uauth keys are restricted to sign valid FIDO UAF assertions only. See [FIDOMetadataStatement] entry

"isKeyRestricted".

All UAF Authenticator commands and responses are semantically similar - they are all represented as TLV-encoded blobs.
The first 2 bytes of each command is the command code. After receiving a command, the authenticator must parse the first
TLV tag and figure out which command is being issued.

6.1 Getlnfo Command

6.1.1 Command Description

This command returns information about the connected authenticators. It may return 0 or more authenticators. Each
authenticator has an assigned authenticatorindex Which is used in other commands as an authenticator reference.

6.1.2 Command Structure

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_GETINFO_CMD
1.1 UINT16 Length Entire Command Length - must be 0 for this command

6.1.3 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1 UINT16 Length Response length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status Code returned by Authenticator

1.3 UINT16 Tag TAG_API_VERSION

1.3.1 UINT16 Length Length of API Version (must be 0x0001)
Authenticator API Version (must be 0x01). This version indicates the types of

1.3.2 UINT8 Version commands, and formatting associated with them, that are supported by the
authenticator.

14 UINT16 Tag TAG_AUTHENTICATOR _INFO (multiple occurrences possible)

1.4.1 UINT16 Length Length of Authenticator Info

1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.4.2.1 | UINT16 Length Length of Authenticatorndex (must be 0x0001)

1.4.2.2 | UINT8 Authenticatorindex Authenticator Index

1.4.3 UINT16 Tag TAG_AAID

1.4.3.1 | UINT16 Length Length of AAID

1.4.3.2 | UINT8[] AAID Vendor assigned AAID

1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA

1.4.4.1

UINT16 Length

Length of Authenticator Metadata

1.4.4.2

UINT16 AuthenticatorType

Indicates whether the authenticator is bound or roaming, and whether it is first-
, or second-factor only. The ASM must use this information to understand how
to work with the authenticator.

Predefined values:

e 0x0001 - Indicates second-factor authenticator (first-factor when the flag
is not set)

e 0x0002 - Indicates roaming authenticator (bound authenticator when the
flag is not set)

e 0x0004 - Key handles will be stored inside authenticator and won't be
returned to ASM

e 0x0008 - Authenticator has a built-in Ul for enroliment and verification.
ASM should not show its custom Ul

e 0x0010 - Authenticator has a built-in Ul for settings, and supports
OpenSettings command.

e 0x0020 - Authenticator expects TAG_APPID to be passed as an
argument to commands where it is defined as an optional argument

e 0x0040 - At least one user is enrolled in the authenticator. Authenticators
which don't support the concept of user enroliment (e.g.
USER _VERIFY_NONE, USER_VERIFY_PRESENCE) must always
have this bit set.

e 0x0080 - Authenticator supports user verification tokens (UVTs) as
described in this document. See section 5. rVerificationToken.

e 0x0100 - Authenticator only accepts TAG_TRANSACTION_TEXT_HASH
in Sign command. This flag may ONLY be set if

TransactionConfirmationDisplay is set to 0x0003 (see section 6.3 Sign
Command).

1443

UINT8 MaxKeyHandles

Indicates maximum number of key handles this authenticator can receive and
process in a single command. This information will be used by the ASM when
invoking SIGN command with multiple key handles.

1444

UINT32 UserVerification

User Verification method (as defined in [FIDORegistry])

1.4.45

UINT16 KeyProtection

Key Protection type (as defined in [FIDORegistry]).

1446

UINT16 MatcherProtection

Matcher Protection type (as defined in [FIDORegistry]).

1447

UINT16
TransactionConfirmationDisplay

Transaction Confirmation type (as defined in [FIDORegistry]).

NOTE
If Authenticator doesn't support Transaction Confirmation - this value
must be set to 0.

14438

UINT16 AuthenticationAlg

Authentication Algorithm (as defined in [FIDORegistry]).

1.4.5 UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)
1.4.5.1 | UINT16 Length Length of content type.
14.5.2 | UINT8[] ContentType Transaction Confirmation Display Content Type. See

[FIDOMetadataStatement] for additional information on the format of this field.

146 UINT16 Tag 'cIJ'CAC(lBJF;gEeDSIiZI;rﬁ;EZ;VG_CHARACTERISTICS (optional,multiple
1.4.6.1 | UINT16 Length Length of display characteristics information.
1.4.6.2 | UINT32 Width See [FIDOMetadataStatement] for additional information.
1.4.6.3 | UINT32 Height See [FIDOMetadataStatement] for additional information.
1.4.6.4 | UINT8 BitDepth See [FIDOMetadataStatement] for additional information.
1.4.6.5 | UINT8 ColorType See [FIDOMetadataStatement] for additional information.
1.4.6.6 | UINT8 Compression See [FIDOMetadataStatement] for additional information.
1.4.6.7 | UINTS8 Filter See [FIDOMetadataStatement] for additional information.
1.4.6.8 | UINT8 Interlace See [FIDOMetadataStatement] for additional information.
A PLTE packet descriptor, defined by 3 byte word.
Offset Length Mnemonic Description
0 1 R Red channel value
14.6.9 | UINT8[] PLTE 1 1 G Green channel value
2 1 B Blue channel value
See [FIDOMetadataStatement] for additional information.
1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME
1.4.7.1 | UINT16 Length Length of Assertion Scheme
1.4.7.2 | UINT8J] AssertionScheme Assertion Scheme (as defined in [UAFRegistry])
1.4.8 UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)
1.4.8.1 | UINT16 Length Length of AttestationType
14.8.2 | UINT16 AttestationType S:;eﬂsxtaTthloi'l}T/?eT\:aTI:ue]s are defined in [UAFRegistry] by the constants with the
1.4.9 UINT16 Tag TAG_SUPPORTED_EXTENSION_ID (optional, multiple occurrences possible)
1.4.9.1 | UINT16 Length Length of SupportedExtensionID
1.4.9.2 | UINT8[] SupportedExtensionID | SupportedExtensionlD as a UINT8[] encoding of a UTF-8 string

6.1.4 Status Codes

® UAF CMD STATUS OK
® UAF CMD_ STATUS ERR_UNKNOWN
® UAF_CMD_STATUS_ PARAMS INVALID

6.2 Register Command

This command generates a UAF registration assertion. This assertion can be used to register the authenticator with a FIDO

Server.

6.2.1 Command Structure

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_REGISTER_CMD
1.1 UINT16 Length Command Length
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.21 UINT16 Length

Length of Authenticatorindex (must be 0x0001)

1.2.2 UINT8 Authenticatorindex

Authenticator Index

1.3 UINT16 Tag

TAG_APPID (optional)

1.3.1 UINT16 Length

Length of AppID

1.3.2 | UINT8[] AppID

AppID (max 512 bytes)

1.4 UINT16 Tag

TAG_FINAL_CHALLENGE_HASH

141 UINT16 Length

Final Challenge Hash Length

14.2 UINT8J[] FinalChallengeHash

Final Challenge Hash provided by ASM (max 32 bytes)

1.5 UINT16 Tag

TAG_USERNAME

1.5.1 UINT16 Length

Length of Username

1.5.2 UINT8[] Username

Username provided by ASM (max 128 bytes)

1.6 UINT16 Tag

TAG_ATTESTATION_TYPE

1.6.1 UINT16 Length

Length of AttestationType

1.6.2 UINT16 AttestationType

Attestation Type to be used

1.7 UINT16 Tag

TAG_KEYHANDLE_ACCESS_TOKEN

1.7.1 UINT16 Length

Length of KHAccessToken

1.7.2 UINT8[] KHAccessToken

KHAccessToken provided by ASM (max 32 bytes)

1.8 UINT16 Tag

TAG_USERVERIFY_TOKEN (optional)

1.8.1 UINT16 Length

Length of VerificationToken

1.8.2 UINTS8][] VerificationToken

User verification token

6.2.2 Command Response

TLV Structure
1 UINT16 Tag

TAG_UAFV1_REGISTER_CMD_RESPONSE

Description

11 UINT16 Length

Command Length

1.2 UINT16 Tag

TAG_STATUS_CODE

1.2.1 UINT16 Length

Status Code Length

1.2.2 UINT16 Value Status code returned by Authenticator

1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION

1.3.1 UINT16 Length Length of Assertion

1.3.2 UINTS8[] Assertion Registration Assertion (see section TAG_UAFV1_REG _ASSERTION).
1.4 UINT16 Tag TAG_KEYHANDLE (optional)

141 UINT16 Length Length of key handle

14.2 UINT8J[] Value (binary value of) key handle

6.2.3 Status Codes

® UAF CMD STATUS OK

® UAF CMD_ STATUS ERR UNKNOWN

® UAF CMD_STATUS_ ACCESS_DENIED

® UAF CMD_STATUS_USER_NOT ENROLLED

® UAF CMD STATUS USER

CANCELLED

® UAF CMD STATUS ATTESTATION NOT SUPPORTED

® UAF CMD STATUS PARAMS INVALID

® UAF CMD STATUS TIMEOUT

® UAF CMD STATUS USER NOT RESPONSIVE

® UAF CMD_STATUS_ INSUFFICIENT RESOURCES

® UAF CMD STATUS USER LOCKOUT

6.2.4 Command Description

The authenticator must perform the following steps (see below table for command structure):

If the command structure is invalid (e.g. cannot be parsed correctly), return var cup

STATUS PARAMS INVALID.

1. If this authenticator has a transaction confirmation display and is able to display AppID, then make sure
command.TAG APPID iS provided, and show its content on the display when verifying the user. Return
UAF CMD STATUS PARAMS INVALID if command.Tac appID is not provided in such case. Update command.kiAccessToken With
TAG APPID.

is a cryptographic hash function.

NOTE

o Update Command.KHAccessToken by mixing it with Command. TAG_APPID. An example of such mixing function

This method allows us to avoid storing the AppID separately in the RawKeyHandle.

m For example: Command.KHAccessToken=hash(Command.KHAccessToken | Command. TAG_APPID)

2. If the user is already enrolled with this authenticator (via biometric enroliment, PIN setup or similar mechanism) - verify
the user. If the verification has been already done in a previous command - make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger

unblocking, return uar cv

1D STATUS USER LOCKOUT.

1. If the user doesn't respond to the request to get verified - return var cvp STATUS USER NOT RESPONSIVE

2. If verification fails - return var _cvp startus ac

SS_DENIED

3. If user explicitly cancels the operation - return var cvp STATUS USER CANCELLED
3. If the user is not enrolled with the authenticator then take the user through the enroliment process. If the enrollment
process cannot be triggered by the authenticator, return var cup sTATUS USER NOT ENROLLED.
1. If the authenticator can trigger enrollment, but the user doesn't respond to the request to enroll - return

UAF CMD STATUS USER NOT RESPONSIVE
2. If the authenticator can trigger enroliment, but enroliment fails - return var cup sTATUS ACCESS DENIED
3. If the authenticator can trigger enrollment, but the user explicitly cancels the enroliment operation - return
UAF CMD STATUS USER CANCELLED
4. Make sure that Command.TAG_ATTESTATION_TYPE is supported. If not - return
UAF CMD STATUS ATTESTATION NOT SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv) If the process takes longer than accepted - return
UAFﬁCM)isWﬁngiW\VHOU‘

6. Create a RawKeyHandle, for example as follows
1. Add UAuth.priv to RawKeyHandle
2. Add Command.KHAccessToken to RawKeyHandle

3. If afirst-factor authenticator, then add Command.Username to RawKeyHandle

If there are not enough resources in the authenticator to perform this task - return
UAF CMD STATUS INSUFFICIENT RESOURCES.

7. Wrap RawKeyHandle with Wrap.sym key
8. Create TAG_UAFV1_KRD structure

1. If this is a second-factor roaming authenticator - place key handle inside TAG_KEYID. Otherwise generate a
KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section TAG_UAFV1 REG ASSERTION)

9. Perform attestation on TAG_UAFV1_KRD based on provided Command.AttestationType.

10. Create TAG_AUTHENTICATOR_ASSERTION
1. Create TAG_UAFV1_REG_ASSERTION

1. Copy all the mandatory fields (see section TAG_UAFV1 REG ASSERTION)
2. If this is a first-factor roaming authenticator - add KeyID and key handle into internal storage
3. If this is a bound authenticator - return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

11. Return TAG_UAFV1_REGISTER_CMD_RESPONSE
1. Use urr cup sTaTus ok as status code
2. Add TAG_AUTHENTICATOR_ASSERTION
3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

NORMATIVE

The authenticator musT NOT process a register command without verifying the user (or enrolling the user, if this is the first
time the user has used the authenticator).

The authenticator musT generate a unique UAuth key pair each time the Register command is called.

The authenticator sHouLD either store key handle in its internal secure storage or cryptographically wrap it and export it to
the ASM.

For silent authenticators, the key handle must never be stored on a FIDO Server, otherwise this would enable tracking of
users without providing the ability for users to clear key handles from the local device.

If KeylID is not the key handle itself (e.g. such as in case of a second-factor roaming authenticator) - it musT be a unique
and unguessable byte array with a maximum length of 32 bytes. It musT be unique within the scope of the AAID.

In the case of bound authenticators implementing a different command interface, the ASM could generate a temporary
KeyID and provide it as input to the authenticator in a Register command and change it to the final KeyID (e.g. derived
from the public key) when the authenticator has completed the Register command execution.

NOTE

command.

If the KeylID is generated randomly (instead of, for example, being derived from a key handle or the public key) - it
should be stored inside RawKeyHandle so that it can be accessed by the authenticator while processing the Sign

If the authenticator doesn't support signcounter Or Regcounter it MusT set these to 0 in TAG_UAFV1_KRD. The regcounter
musT be set to 0 when a factory reset for the authenticator is performed. The signcounter MusT be set to 0 when a factory
reset for the authenticator is performed.

6.3 Sign Command

This command generates a UAF assertion. This assertion can be further verified by a FIDO Server which has a prior

registration with this authenticator.

6.3.1 Command Structure

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_SIGN_CMD
1.1 UINT16 Length Length of Command
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
UINT8 .
1.2.2 Authenticatorindex Authenticator Index
1.3 UINT16 Tag TAG_APPID (optional)
1.3.1 | UINT16 Length Length of AppID
1.3.2 | UINTS8[] AppID AppID (max 512 bytes)
1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.4.1 | UINT16 Length Length of Final Challenge Hash
14.2 UINT8]] (binary value of) Final Challenge Hash provided by ASM (max 32 bytes)
"7 | FinalChallengeHash
1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)
1.5.1 | UINT16 Length Length of Transaction Content
1.5.2 UINT8]] (binary value of) Transaction Content provided by the ASM
"7 | TransactionContent
TAG_TRANSACTION_CONTENT_HASH (optional and mutually exclusive with
TAG_TRANSACTION_CONTENT). This TAG is only allowed for authenticators not able
1.5 UINT16 Tag to display the transaction text, i.e. authenticator with ccpispiay=0x0003 (i.e. flags

TRANSACTION CONFIRMATION DISPLAY ANY and
TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE are Set).

1.5.1

UINT16 Length

Length of Transaction Content Hash

1.5.2 'Lrjrlgrj—si[ltionContentHash (binary value of) Transaction Content Hash provided by the ASM

1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.6.1 | UINT16 Length Length of KHAccessToken

1.6.2 UINT8]] (binary value of) KHAccessToken provided by ASM (max 32 bytes)
KHAccessToken

1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.7.1 | UINT16 Length Length of the User Verification Token

1.7.2 \L;tla'\rli;‘lgggtionToken User Verification Token

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)

1.8.1 | UINT16 Length Length of KeyHandle

1.8.2 | UINTS8[] KeyHandle (binary value of) key handle

6.3.2 Command Response

TLV

Structure Description
1 %'3”6 TAG_UAFV1_SIGN_CMD_RESPONSE

UINT16 .
1.1 Length Entire Length of Command Response
12 UINT16 | tAG STATUS_CODE

Tag

UINT16
1.21 Length Status Code Length
1.2.2 UINT16 Status code returned by authenticator

Value

TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)
1.3 UINT16 This TLV tag can be used to convey multiple (>=1) {Username, Keyhandle} entries. Each
(choice Tag occurance of TAG_USERNAME_AND_KEYHANDLE contains one pair.
1)
If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present

UINT16
1.3.1 Length Length of the structure
132 | YNT16 | 1A USERNAME

Tag

UINT16
1.3.21 Length Length of Username

1.3.2.2 UINT8]] Username
Username
133 | YNT16 | 1AG KEYHANDLE
Tag
UINT16) .
1.3.3.1 Length Length of keyHandle
UINT8[] .
1.3.3.2 KeyHandle (binary value of) key handle
13 TAG_AUTHENTICATOR_ASSERTION (optional)
Lo UINT16
(2‘;h°'°e Tag If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present
UINT16 :
1.3.1 Length Assertion Length
139 UINTS] Authentication assertion generated by the authenticator (see section
e Assertion | TAG_UAFV1_AUTH_ASSERTION).

6.3.3 Status Codes

® UAF CMD STATUS OK

® UAF CMD STATUS ERR UNKNOWN

® UAF CMD STATUS ACCESS DENIED

® UAF CMD STATUS USER NOT ENROLLED

® UAF CMD STATUS USER CANCELLED

® UAF CMD STATUS CANNOT RENDER TRANSACTION CONTENT
® UAF CMD STATUS PARAMS INVALID

® UAF CMD STATUS KEY DISAPPEARED PERMANENTLY

® UAF CMD STATUS TIMEOUT

® UAF CMD STATUS USER NOT RESPONSIVE

® UAF CMD_STATUS USER_LOCKOUT

6.3.4 Command Description

NOTE

First-factor authenticators should implement this command in two stages.

1. The first stage will be executed only if the authenticator finds out that there are multiple key handles after filtering
with the KHAccessToken. In this stage, the authenticator must return a list of usernames along with
corresponding key handles

2. In the second stage, after the user selects a username, this command will be called with a single key handle and
will return a UAF assertion based on this key handle

If a second-factor authenticator is presented with more than one valid key handles, it must exercise only the first one
and ignore the rest.

The command is implemented in two stages to ensure that only one assertion can be generated for each command
invocation.

Authenticators must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return vAr cvp STATUS PARAMS INVALID.

1. If this authenticator has a transaction confirmation display, and is able to display the AppID - make sure
Command.TAG_APPID is provided, and show it on the display when verifying the user. Return
UAF CMD STATUS PARAMS TINVALID if Command.Tac app1D is not provided in such case.
o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such a mixing
function is a cryptographic hash function.

= Command.KHAccessToken=hash(Command.KHAccessToken | Command. TAG_APPID)

2. If rransactioncontent is not empty
o If this is a silent authenticator, then return var cup status access pEnTED
o If the authenticator doesn't support transaction confirmation (it has set Transactionconfirmationnisplay to 0 in the
response to a cet 1nfo Command), then return uar cvp STATUS ACCESS DENTED
o If the authenticator has a built-in transaction confirmation display and the Authenticator implements displaying
transaction text before user verification, then show command. Transactioncontent and command.TAG APPID (optional)
on display and wait for the user to confirm it by passing user verification (see step below):
m Return var cwp sTaTus user not responsTve if the user doesn't respond.
m Return var cvp staTus user cancenied if the user cancels the transaction.
m Return var cvp sTATUS cannNOT RENDER TRANSACTION conTENT if the provided transaction content cannot be
rendered.

Compute hash of TransactionContent
s TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)

s Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

3. If the user is already enrolled with the authenticator (such as biometric enroliment, PIN setup, etc.) then verify the user.
If the verification has already been done in one of the previous commands, make sure that
Command.TAG USERVERIFY TOKEN iS a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger
unblocking, return uAr cup STATUS USER LOCKOUT.

1. If the user doesn't respond to the request to get verified - return var cvp STATUS USER NOT RESPONSIVE
2. If verification fails - return var cvp sTaTUS ACCESS DENTED
3. If the user explicitly cancels the operation - return uvar cvp STATUS USER CANCELLED

4. If the user is not enrolled then return var cvMp STATUS USER NOT ENROLLED

NOTE

This should not occur as the Uauth key must be protected by the authenticator's user verification method. If the
authenticator supports alternative user verification methods (e.g. alternative password and finger print verification
and the alternative password must be provided before enrolling a finger and only the finger print is verified as part
of the Register or Sign operation, then the authenticator should automatically and implicitly ask the user to enroll
the modality required in the operation (instead of just returning an error).

5. Unwrap all provided key handles from Command.TAG_KEYHANDLE values using Wrap.sym
1. If this is a first-factor roaming authenticator:

= |[f Command. TAG_KEYHANDLE are provided, then the items in this list are KeyIDs. Use these KeylIDs to
locate key handles stored in internal storage

= |[f no Command. TAG_KEYHANDLE are provided - unwrap all key handles stored in internal storage

If no RawKeyHandles are found - return var cvp STATUS KEY DISAPPEARED PERMANENTLY.

6. Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken ==
Command.KHAccessToken)
7. If the number of remaining RawKeyHandles is 0, then fail with var cvp sTaTus Access DENTED
8. If number of remaining RawKeyHandles is > 1
1. If this authenticator has a user interface and wants to use it for this purpose: Ask the user which of the usernames
he wants to use for this operation. Select the related RawKeyHandle and jump to step #8.
2. If this is a second-factor authenticator, then choose the first RawKeyHandle only and jump to step #8.

3. Copy {Command.KeyHandle, RawKeyHandle.username} for all remaining RawKeyHandles into
TAG_USERNAME_AND_KEYHANDLE tag.

= If this is a first-factor roaming authenticator, then the returned TAG_USERNAME_AND_ KEYHANDLEs must
be ordered by the key handle registration date (the latest-registered key handle must come the latest).

NOTE

If two or more key handles with the same username are found, a first-factor roaming authenticator
may only keep the one that is registered most recently and delete the rest. This avoids having
unusable (old) private key in the authenticator which (surprisingly) might become active after
deregistering the newly generated one.

4. Copy TAG_USERNAME_AND_KEYHANDLE into TAG_UAFV1_SIGN_CMD_RESPONSE and return

9. If number of remaining RawKeyHandles is 1
1. If the Uauth key related to the RawKeyHandle cannot be used or disappeared and cannot be restored - return
UAF CMD STATUS KEY DISAPPEARED PERMANENTLY.
2. Create TAG_UAFV1_SIGNED_DATA and set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01
3. If Transactioncontent is not empty
= [f the authenticator has a built-in transaction confirmation display and the authenticator implements
displaying transaction text after user verification, then show command. Transactioncontent and
command.TAG app1D (Optional) on display and wait for the user to confirm it:
m Return var cvp staTus User nNoT rReEsPoNsSTVE if the user doesn't respond.
m Return var cvp staTus user cancerneD if the user cancels the transaction.
m Return var cup sTaTus cannoT RENDER TRANSACTION conTENT if the provided transaction content cannot
be rendered.
= Compute hash of TransactionContent
s TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)

n Set TAG_UAFV1_SIGNED_DATA AuthenticationMode to 0x02

4. If TransactionContent is not set, but Transactioncontenttash is not empty

= [f this is a silent authenticator, then return var cup status access DENTED

= [f the conditions for receiving TransactionContentHash are not satisfied (if the authenticator's
TransactionConfirmationDisplay iS NOT set to 0x0003 in the response to a cet 1nfo Command), then return
UAF CMD STATUS PARAMS INVALID

= Perform the following steps

s TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
Command.TransactionContentHash

m Set TAG_UAFV1_SIGNED_DATA. AuthenticationMode to 0x02

5. Create TAG_UAFV1_AUTH_ASSERTION
= Fill in the rest of TAG_UAFV1_SIGNED_DATA fields

= Perform the following steps
m Increment SignCounter and put into TAG_UAFV1_SIGNED_DATA

= Copy all the mandatory fields (see section TAG_UAFV1 AUTH ASSERTION)

s [f TAG_UAFV1_SIGNED_DATA. AuthenticationMode == 0x01 - set
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Length to 0

= Sign TAG_UAFV1_SIGNED_DATA with UAuth.priv
If these steps take longer than expected by the authenticator - return var cvp status TrMEOUT.
6. Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION
7. Copy TAG_AUTHENTICATOR_ASSERTION into TAG_UAFV1_SIGN_CMD_RESPONSE and return

NORMATIVE

Authenticator must NoT process Sign command without verifying the user first.

Authenticator must NoT reveal Username without verifying the user first.

Bound authenticators musTt NoT process Sign command without validating KHAccessToken first.

Bound authenticators implementing a different command interface, may implement a different method for binding keys to a
specific ApplD, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App). See [UAFASM] section "KHAccessToken" for more details.

UAuth.priv keys musTt never leave Authenticator's security boundary in plaintext form. UAuth.priv protection boundary is
specified in vetadata. keyProtection field in Metadata [FIDOMetadataStatement]).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display - it musT display provided
transaction content in this display and include the hash of content inside TAG_UAFV1_SIGNED_DATA structure.

Authenticators supporting Transaction Confirmation Display sHALL either display the transaction text before user
verification (see step #2) or after it (see step 9.3). Displaying the transaction text before user verification is preferred.

Silent Authenticators musT NoT operate in first-factor mode in order to follow the assumptions made in [FIDOSecRef].
However, a native App or web page could "cache" the keyHandle or a Cookie and hence would be considered a first-
factor that could be combined with a Silent Authenticator (when doing do).

If Authenticator doesn't support signcounter, then it must setitto 0 in TAG_UAFV1_SIGNED_DATA. The signcounter
musT be set to 0 when a factory reset for the Authenticator is performed, in order to follow the assumptions made in
[FIDOSecRef].

Some Authenticators might support Transaction Confirmation display functionality not inside the Authenticator but within
the boundaries of ASM. Typically these are software based Transaction Confirmation displays. When processing the Sign
command with a given transaction such Authenticators should assume that they do have a builtin Transaction
Confirmation display and should include the hash of transaction content in the final assertion without displaying anything
to the user. Also, such Authenticator's Metadata file musT clearly indicate the type of Transaction Confirmation display.
Typically the flag of Transaction Confirmation display will be TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE. See [FIDORegistry] for flags describing
Transaction Confirmation Display type.

6.4 Deregister Command
This command deletes a registered UAF credential from Authenticator.

6.4.1 Command Structure

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD
1.1 UINT16 Length Entire Command Length
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
1.2.2 | UINT8 Authenticatorindex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 | UINT16 Length Length of AppID

1.3.2 | UINTS8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 | UINT16 Length Length of KeylD

1.4.2 | UINT8[] KeylD (binary value of) KeyID provided by ASM

1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.5.1 | UINT16 Length Length of KeyHandle Access Token

1.5.2 | UINT8[] KHAccessToken (binary value of) KeyHandle Access Token provided by ASM (max 32 bytes)

6.4.2 Command Response

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response
1.2 UINT16 Tag TAG_STATUS_CODE
1.2.1 UINT16 Length Status Code Length
1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.4.3 Status Codes

® UAF CMD_STATUS_ OK

® UAF CMD_STATUS_ERR UNKNOWN

® UAF CMD STATUS ACCESS DENIED

® UAF CMD STATUS CMD NOT SUPPORTED

® UAF CMD STATUS PARAMS INVALID

6.4.4 Command Description

Authenticator must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return var cup STATUS PARAMS TNVALID.

1. If this authenticator has a Transaction Confirmation display and is able to display AppID, then make sure
Command.TAG_APPID is provided. Return uvar cup status paraMs INVALID if Command.TAG APP1D iS not provided in
such case.

o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function

is a cryptographic hash function.
= Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If this Authenticator doesn't store key handles internally, then return var cup status cvp NOT SUPPORTED

3. If the length of Tac keviD is zero (i.e., 0000 Hex), then
o if tac_apr1D is provided, then
= for each KeyHandle that maps to 7ac arrip do

1. if RawKeyHandle.KHAccessToken == Command.KHAccessToken, then delete KeyHandle from
internal storage, otherwise, note an error occured

m if an error occured, then return UAF_CMD_STATUS_ACCESS_DENIED

o if tac apr1D is not provided, then delete all KeyHandles from internal storage where
RawKeyHandle.KHAccessToken == Command.KHAccessToken

o Gotostep5

4. If the length of Tac x=vrpis NOT zero, then
o Find KeyHandle that matches Command.KeyID

o Ensure that RawKeyHandle.KHAccessToken == Command.KHAccessToken
= [f not, then return var cup sTatus access DENTED

o Delete this KeyHandle from internal storage

5. Return var cup sTATUS OK

NOTE

The authenticator must unwrap the relevant KeyHandles using Wrap.sym as needed.

NORMATIVE
Bound authenticators musTt NoT process Deregister command without validating KHAccessToken first.

Bound authenticators implementing a different command interface, may implement a different method for binding keys to a
specific ApplID, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App). See [UAFASM] section "KHAccessToken" for more details.

Deregister command sHouLb NoT explicitly reveal whether the provided keylD was registered or not.

NOTE
This command never returns uar cvp sTATUS KEY DISAPPEARED PERMANENTLY @$ this could reveal the keylID registration
status.

6.5 OpenSettings Command
This command instructs the Authenticator to open its built-in settings Ul (e.g. change PIN, enroll new fingerprint, etc).
The Authenticator must return var cvp status cup vot suprorTED if it doesn't support such functionality.

If the command structure is invalid (e.g. cannot be parsed correctly), the authenticator must return
UAF CMD STATUS PARAMS INVALID.

6.5.1 Command Structure

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.21

UINT16 Length Length of Authenticatorindex (must be 0x0001)

1.2.2

UINT8 Authenticatorindex Authenticator Index

6.5.2 Command Response

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response
1.2 UINT16 Tag TAG_STATUS_CODE
1.2.1 UINT16 Length Status Code Length
1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.5.3 Status Codes

® UAF CMD STATUS OK

® UAF CMD STATUS ERR UNKNOWN

® UAF CMD_STATUS CMD NOT SUPPORTED

® UAF CMD_STATUS PARAMS INVALID

7. KeyIDs and key handles

This section is non-normative.

There are 4

types of Authenticators defined in this document and due to their specifics they behave differently while

processing commands. One of the main differences between them is how they store and process key handles. This section
tries to clarify it by describing the behavior of every type of Authenticator during the processing of relevant command.

7.1 first-factor Bound Authenticator

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
Register database.
Command : . .
KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).
When there is no user session (no cookies, a clear machine) the Server doesn't provide any KeyID (since it
doesn't know which KeylDs to provide). In this scenario the ASM selects all key handles and passes them to
Sign Authenticator.
Command
During step-up authentication (when there is a user session) Server provides relevant KeylDs. ASM selects
key handles that correspond to provided KeylDs and pass to Authenticator.
Deregister Since Authenticator doesn't store key handles, then there is nothing to delete inside Authenticator.
Command ASM finds the KeyHandle corresponding to provided KeylID and deletes it.

7.2 2ndF Bound Authenticator

Authenticator might not store key handles. Instead the KeyHandle might be returned to the ASM and stored in
Register the ASM database.
Command . . .
KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).
This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
user session (no cookies, a clear machine); unless, for example, the user identifies their account and the
Sign server is then able to provide a KeyID.
Command
During step-up authentication (when there is a user session) Server provides relevant KeylDs. ASM selects
key handles that correspond to provided KeylDs and pass to Authenticator.
Deregister If the Authenticator doesn't store key handles, then there is nothing to delete inside it.
Command The ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.3 first-factor Roaming Authenticator

Authenticator stores key handles inside its internal storage. KeyHandle is never returned back to ASM.
Register
Command | KeylID is a randomly generated 32 bytes number (or simply the hash of KeyHandle)
When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID (since it
doesn't know which KeylDs to provide). In this scenario Authenticator uses all key handles that correspond to
Sign the provided ApplID.
Command
During step-up authentication (when there is a user session) Server provides relevant KeylDs. Authenticator
selects key handles that correspond to provided KeylDs and uses them.
PEEHA] Authenticator finds the right KeyHandle and deletes it from its storage.
Command

7.4 2ndF Roaming Authenticator

Reqister Typically neither the Authenticator nor the ASM store key handles. Instead the KeyHandle is sent to the
Co?nmand Server (in place of KeylD) and stored in User's record. From Server's perspective it's a KeyID. In fact the
KeyID is identical to the KeyHandle.
This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
Sign user session (no cookies, a clear machine).
Command During step-up authentication Server provides KeylDs which are in fact key handles. Authenticator finds the
right KeyHandle and uses it.
gﬁ:ﬁﬁ::tnec; Since Authenticator and ASM don't store key handles, then there is nothing to delete on client side.

8. Access Control for Commands

This section is normative.

FIDO Authenticators may implement various mechanisms to guard access to privileged commands.
The following table summarizes the access control requirements for each command.

All UAF Authenticators musT satisfy the access control requirements defined below.

Authenticator vendors may offer additional security mechanisms.

Terms used in the table:

e NoAuth - no access control

UserVerify - explicit user verification
KHAccessToken - musT be known to the caller (or alternative method with similar security level musT be used)

KeyHandleList - musT be known to the caller

KeyID - musT be known to the caller

Command First-factor Bound 2ndF Bound First-factor Roaming 2ndF Roaming
Authenticator Authenticator Authenticator Authenticator
Getlnfo NoAuth NoAuth NoAuth NoAuth
OpenSettings | NoAuth NoAuth NoAuth NoAuth
Register UserVerify UserVerify UserVerify UserVerify
UserVerify UserVerify UserVerify UserVerify
Sign KHAccessToken KHAccessToken KHAccessToken KHAccessToken
KeyHandleList KeyHandleList KeyHandleList
Deregister KHAccessToken KHAccessToken KHAccessToken KHAccessToken
KeylID KeylID KeylD KeylID

Table 1: Access Control for Commands

9. Considerations

This section is nhon-normative.

9.1 Algorithms and Key Sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.
9.2 Indicating the Authenticator Model

Some authenticators (e.g. TPMv2) do not have the ability to include their model identifier (i.e. vendor ID and model name) in
attested messages (i.e. the to-be-signed part of the registration assertion). The TPM's endorsement key certificate typically
contains that information directly or at least it allows the model to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator model (i.e. AAID).

If the authenticator cannot securely include its model (i.e. AAID) in the registration assertion (i.e. in the KRD object), we
require the ECDAA-Issuers public key (ipkk) to be dedicated to one single authenticator model (identified by its AAID).

Using this method, the issuer public key is uniquely related to one entry in the Metadata Statement and can be used by the
FIDO server to get a cryptographic proof of the Authenticator model.

10. Relationship to other standards

This section is non-normative.
The existing standard specifications most relevant to UAF authenticator are [TPM], [TEE] and [SecureElement].

Hardware modules implementing these standards may be extended to incorporate UAF functionality through their
extensibility mechanisms such as by loading secure applications (trustlets, applets, etc) into them. Modules which do not
support such extensibility mechanisms cannot be fully leveraged within UAF framework.

10.1 TEE

In order to support UAF inside TEE a special Trustlet (trusted application running inside TEE) may be designed which
implements UAF Authenticator functionality specified in this document and also implements some kind of user verification
technology (biometric verification, PIN or anything else).

An additional ASM must be created which knows how to work with the Trustlet.
10.2 Secure Elements

In order to support UAF inside Secure Element (SE) a special Applet (trusted application running inside SE) may be designed
which implements UAF Authenticator functionality specified in this document and also implements some kind of user
verification technology (biometric verification, PIN or similar mechanisms).

An additional ASM must be created which knows how to work the Applet.
10.3 TPM

TPMs typically have a built-in attestation capability however the attestation model supported in TPMs is currently
incompatible with UAF's basic attestation model. The future enhancements of UAF may include compatible attestation
schemes.

Typically TPMs also have a built-in PIN verification functionality which may be leveraged for UAF. In order to support UAF
with an existing TPM module, the vendor should write an ASM which:

e Translates UAF data to TPM data by calling TPM APlIs
o Creates assertions using TPMs API
e Reports itself as a valid UAF authenticator to FIDO UAF Client

A special AssertionScheme, designed for TPMs, must be also created (see [FIDOMetadataStatement]) and published by
FIDO Alliance. When FIDO Server receives an assertion with this AssertionScheme it will treat the received data as TPM-
generated data and will parse/validate it accordingly.

10.4 Unreliable Transports

The command structures described in this document assume a reliable transport and provide no support at the application-
layer to detect or correct for issues such as unreliable ordering, duplication, dropping or modification of messages. If the

transport layer(s) between the ASM and Authenticator are not reliable, the non-normative private contract between the ASM
and Authenticator may need to provide a means to detect and correct such errors.

A. Security Guidelines
This section is non-normative.

(0£:1-Ts [o]3% Guidelines

Registered ApplIDs and KeylDs must not be returned by an authenticator in plaintext, without first

AppIDs and performing user verification.

KeylDs If an attacker gets physical access to a roaming authenticator, then it should not be easy to read out

ApplIDs and KeylIDs.

Attestation
Private Key

Authenticators must protect the attestation private key as a very sensitive asset. The overall security of
the authenticator depends on the protection level of this key.

It is highly recommended to store and operate this key inside a tamper-resistant hardware module, e.g.
[SecureElement].

It is assumed by registration assertion schemes, that the authenticator has exclusive control over the
data being signed with the attestation key.

FIDO Authenticators must ensure that the attestation private key:

1. is only used to attest authentication keys generated and protected by the authenticator, using the
FIDO-defined data structures, KeyRegistrationData.

2. is never accessible outside the security boundary of the authenticator.

Attestation must be implemented in a way such that two different relying parties cannot link registrations,
authentications or other transactions (see [UAFProtocol]).

Certifications

Vendors should strive to pass common security standard certifications with authenticators, such as
[FIPS140-2], [CommonCriteria] and similar. Passing such certifications will positively impact the UAF
implementation of the authenticator.

Cryptographic

(Crypto)
Kernel

The crypto kernel is a module of the authenticator implementing cryptographic functions (key generation,
signing, wrapping, etc) necessary for UAF, and having access to UAuth.priv, Attestation Private Key and
Wrap.sym.

For optimal security, this module should reside within the same security boundary as the UAuth.priv,
Att.priv and Wrap.sym keys. If it resides within a different security boundary, then the implementation
must guarantee the same level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted execution environment
[TEE].

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

Software-based authenticators must make sure to use state of the art code protection and obfuscation
techniques to protect this module, and whitebox encryption techniques to protect the associated keys.

Authenticators need good random number generators using a high quality entropy source, for:

1. generating authentication keys
2. generating signatures
3. computing authenticator-generated challenges

The authenticator's random number generator (RNG) should be such that it cannot be disabled or
controlled in a way that may cause it to generate predictable outputs.

If the authenticator doesn't have sufficient entropy for generating strong random numbers, it should fail
safely.

See the section of this table regarding random numbers

It is highly recommended to use authenticated encryption while wrapping key handles with Wrap.sym.

KeyHandle

Algorithms such as AES-GCM and AES-CCM are most suitable for this operation.

Liveness
Detection /
Presentation
Attack
Detection

The user verification method should include liveness detection [NSTCBiometrics], i.e. a technique to
ensure that the sample submitted is actually from a (live) user.

In the case of PIN-based matching, this could be implemented using [TEESecureDisplay] in order to
ensure that malware can't emulate PIN entry.

Matcher

By definition, the matcher component is part of the authenticator. This does not impose any restrictions
on the authenticator implementation, but implementers need to make sure that there is a proper security
boundary binding the matcher and the other parts of the authenticator together.

Tampering with the matcher module may have significant security consequences. It is highly
recommended for this module to reside within the integrity boundaries of the authenticator, and be
capable of detecting tampering.

It is highly recommended to run this module inside a trusted execution environment [TEE] or inside a
secure element [SecureElement].

Authenticators which have separated matcher and CryptoKernel modules should implement mechanisms
which would allow the CryptoKernel to securely receive assertions from the matcher module indicating
the user's local verification status.

Software based Authenticators (if not in trusted execution environment) must make sure to use state of
the art code protection and obfuscation techniques to protect this module.

When an Authenticator receives an invalid UserVerificationToken it should treat this as an attack, and
invalidate the cached UserVerificationToken.

A UserVerificationToken should have a lifetime not exceeding 10 seconds.
Authenticators must implement anti-hammering protections for their matchers.

Biometrics based authenticators must protect the captured biometrics data (such as fingerprints) as well
as the reference data (templates), and make sure that the biometric data never leaves the security
boundaries of authenticators.

Matchers must only accept verification reference data enrolled by the user, i.e. they must not include any
default PINs or default biometric reference data.

Private Keys
(UAuth.priv
and
Attestation
Private Key)

This document requires (a) the attestation key to be used for attestation purposes only and (b) the
authentication keys to be used for FIDO authentication purposes only. The related to-be-signed objects
(i.e. Key Registration Data and SignData) are designed to reduce the likelihood of such attacks:

1. They start with a tag marking them as specific FIDO objects

2. They include an authenticator-generated random value. As a consequence all to-be-signed objects
are unique with a very high probability.

3. They have a structure allowing only very few fields containing uncontrolled values, i.e. values which
are neither generated nor verified by the authenticator

The FIDO Authenticator uses its random number generator to generate authentication key pairs, client
side challenges, and potentially for creating ECDSA signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the FIDO Authenticator to work with good random
numbers only.

Random
Numbers

The (pseudo-)random numbers used by authenticators should successfully pass the randomness test
specified in [Coron99] and they should follow the guidelines given in [SP800-90b].

Additionally, authenticators may choose to incorporate entropy provided by the FIDO Server via the
serverChallenge Sentin requests (see [UAFProtocol]).

When mixing multiple entropy sources, a suitable mixing function should be used, such as those
described in [RFC4086].

RegCounter

The regcounter provides an anti-fraud signal to the relying parties. Using the regcounter, the relying party
can detect authenticators which have been excessively registered.

If the regcounter is implemented: ensure that

1. itis increased by any registration operation and
2. it cannot be manipulated/modified otherwise (e.g. via API calls, etc.)

A registration counter should be implemented as a global counter, i.e. one covering registrations to all
ApplDs. This global counter should be increased by 1 upon any registration operation.

Note: The RegCounter value should not be decreased by peregistration operations.

SignCounter

When an attacker is able to extract a Uauth.priv key from a registered authenticator, this key can be used
independently from the original authenticator. This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent cloning authenticators. In
some situations the protection measures might not be sufficient.

If the Authenticator maintains a signature counter signcounter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If the signcounter is implemented: ensure that

1. Itis increased by any authentication / transaction confirmation operation and
2. it cannot be manipulated/modified otherwise (e.g. API calls, etc.)

Signature counters should be implemented that are dedicated for each private key in order to preserve
the user's privacy.

A per-key signcounter should be increased by 1, whenever the corresponding UAuth.priv key signs an
assertion.

A per-key signcounter should be deleted whenever the corresponding UAuth key is deleted.

If the authenticator is not able to handle many different signature counters, then a global signature
counter covering all private keys should be implemented. A global signcounter should be increased by a
random positive integer value whenever any of the UAuth.priv keys is used to sign an assertion.

NOTE

There are multiple reasons why the s:igncounter value could be 0 in a registration response. A
signcounter value of 0 in an authentication response indicates that the authenticator doesn't
Support the signcounter concept.

A transaction confirmation display must ensure that the user is presented with the provided transaction

Transaction
Confirmation
Display

content, e.g. not overlaid by other display elements and clearly recognizable. See [CLICKJACKING] for
some examples of threats and potential counter-measures

For more guidelines refer to [TEESecureDisplay].

UAuth.priv

An authenticator must protect all UAuth.priv keys as its most sensitive assets. The overall security of the
authenticator depends significantly on the protection level of these keys.

It is highly recommended that this key is generated, stored and operated inside a trusted execution
environment.

In situations where physical attacks and side channel attacks are considered within the threat model, it is
highly recommended to use a tamper-resistant hardware module.

FIDO Authenticators must ensure that UAuth.priv keys:

1. are specific to the particular account at one relying party (relying party is identified by an AppID)

2. are generated based on good random numbers with sufficient entropy. The challenge provided by
the FIDO Server during registration and authentication operations should be mixed into the entropy
pool in order to provide additional entropy.

3. are never directly revealed, i.e. always remain in exclusive control of the FIDO Authenticator

4. are only being used for the defined authentication modes, i.e.
1. authenticating to the application (as identified by the AppID) they have been generated for, or

2. confirming transactions to the application (as identified by ApplID) they have been generated
for, or

3. are only being used to create the FIDO defined data structures, i.e. KRD, SignData.

Username

A username must not be returned in plaintext in any condition other than the conditions described for the
SIGN command. In all other conditions usernames must be stored within a xeyrandie.

Verification
Reference
Data

The verification reference data, such as fingerprint templates or the reference value of a PIN, are by
definition part of the authenticator. This does not impose any particular restrictions on the authenticator
implementation, but implementers need to make sure that there is a proper security boundary binding all
parts of the authenticator together.

Wrap.sym

If the authenticator has a wrapping key (Wrap.sym), then the authenticator must protect this key as its
most sensitive asset. The overall security of the authenticator depends on the protection of this key.

Wrap.sym key strength must be equal or higher than the strength of secrets stored in a RawKeyHandle.
Refer to [SP800-57] and [SP800-38F] publications for more information about choosing the right
wrapping algorithm and implementing it correctly.

It is highly recommended to generate, store and operate this key inside a trusted execution environment.

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

If the authenticator uses Wrap.sym, it must ensure that unwrapping corrupted KeyHandle and
unwrapping data which has invalid contents (e.g. KeyHandle from invalid origin) are indistinguishable to
the caller.

B. Table of Figures

Fig. 1 UAF Authenticator Commands
Fig. 2 FIDO Authenticator Logical Sub-Components

C. References

C.1 Normative references

[Coron99]
J. Coron; D. Naccache. An accurate evaluation of Maurer's universal test. February 1999. URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edglngton A. Lehmann R. Urian. FIDO ECDAA A/gor/thm 28 November
2017. Review Draft. URL: https://fidoalli . fido-v2.

20180227 .html
[FIDOGIlossary]

R. Lmdemann D. Baghdasaryan B. H|II J. Hodges. IDQ Technical QQ§§Q ry. Review Draft. URL:

[FIDOMetadataStatement]

B. H|II D. Baghdasaryan J. Kemp IDQ MQLaQaLa Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-
1

[FIDOReglstry]
R. Lindemann; D. Baghdasaryan; B. Hill. EIDO Reaqistry of Predefined Values. Proposed Standard. URL:

https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
[ITU-X690- 2008]

! ncodmg Rules (CER) and D/st/ngwshed Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL.:

https://www_itu.int/rec/T-REC-X.690-200811-S
[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[SP800-90b]
Meltem S6énmez Turan; Elaine Barker; John Kelsey; Kerry McKay; Mary Baish; Michael Boyle. NIST Special Publication
800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation. January 2018. URL:
https://csrc.nist.gov lication tail - final

[UAFProtocol]
R. Lindemann; D. Baghdasaryan E. Tlffany, D. Balfanz; B. Hill; J. Hodges; K. Yang IDQ UAF Protocol Specification
v1.2. Review Draft. URL: https:/fi r i . f- I-v1.2-
20201020.html

[UAFRegistry]

R. Lindemann; D. Baghdasaryan; B. Hill. EIDO UAF Registry of Predefined Values. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227 /fido-registry-v2.0-id-20180227 .html

C.2 Informative references

[CLICKJACKING]
D. Lin-Shung Huang; C. Jackson; A. Moshchuk; H. Wang, S. Schlechter. Clickjacking: Attacks and Defenses. July
2012. URL: https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
[CommonCriteria]
CCRA Members. Common Criteria Publications. Work in Progress. URL: http://www.commoncriteriaportal.org/cc/
[FIDOSecRef]
R. Lindemann; D. Baghdasaryan B. Hill; J. Hill; D. Blggs IDQ Sggur/tz Rgfgrgngg 27 February 2018. Implementation
Draft. URL: https://fi fido-v2.
[FIPS140-2]
. EIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov lications/fips/fips140-2/fips1402.pdf
[NSTCBiometrics]

http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

. Biometrics Glossary. 14 September 2006. URL: http://biometrics.gov/Documents/Glossary.pdf
[RFC4086]
D. Eastlake 3rd; J. Schiller; S. Crocker. Randomness Requirements for Security (RFC 4086). June 2005. URL:

http://www.ietf.org/rfc/rfc4086.txt
[SP800-38F]

M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http://nvilpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-57]
Recommendation for Key Management — Part 1: General (Revision 3). SP800-57. July 2012. U.S. Department of
Commerce/National Institute of Standards and Technology. URL: https://csrc.nist.gov. lications/nist -
rt1 rev3 general.
[SecureElement]
. GlobalPlatform Card Specifications. URL.: https://www.globalplatform.org/specifications.asp
[TEE]
. GlobalPlatform Trusted Execution Environment Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
. GlobalPlatform Trusted User Interface API Specifications. URL.: https://www.globalplatform.org/specifications.asp
[TPM]
. TPM Main Specification. URL.: http://www.trustedcomputinggroup.org/resources/tpm_main_specification
[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

f o

ALLIANCE

FIDO UAF Application APl and Transport Binding Specification
FIDO Alliance Proposed Standard 20 October 2020

Dr. Rolf Lindemann, Nok Nok L Inc.
Contributors:

Brad Hill, PayPal, Inc.

Davit Baghdasaryan, Nok Nok Labs, Inc.

Bill Blanke, Nok Nok | abs, Inc.

Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

Describes APIs and an interoperability profile for client applications to utilize FIDO UAF. This includes methods of communicating with a FIDO
UAF Client for both Web platform and Android applications, transport requirements, and an HTTPS interoperability profile for sending FIDO
UAF messages to a compatible server.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://ffidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS I1S” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be
used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
mailto:bblanke@noknok.com
https://www.noknok.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1. Notation
o 1.1 Key Words

2. Overview
o 2.1 Audience

o 2.2 Scope

o 2.3 Architecture
= 2.3.1 Protocol Conversation

3. Common Definitions
o 3.1 UAF Status Codes

4. Shared Definitions
o 4.1 UAFMessage Dictionary
= 4.1.1 Dictionary varvessage Members

4.2 Version interface
n 4.2.1 Attributes

4.3 Authenticator interface
m 4.3.1 Attributes

= 4.3.2 Authenticator Interface Constants

o

o

o

4.4 DiscoveryData dictionary
= 4.4.1 Dictionary piscoverybata Members

4.5 ErrorCode interface
= 4.5.1 Constants

e 5.DOM API
o 5.1 Feature Detection

o

o 5.2 uaf Interface
n 5.2.1 Methods

5.3 UAFResponseCallback
n 5.3.1 Callback ux "ResponseCallback Parameters

o

o

5.4 DiscoveryCallback
= 5.4.1 Callback DiscoveryCallback Parameters

5.5 ErrorCallback
m 55.1 Callback rrrorcaliback Parameters
5.6 Privacy Considerations for the DOM API

5.7 Security Considerations for the DOM API
= 5.7.1 Insecure Mixed Content

m 5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content
o 5.8 Implementation Notes for Browser/Plugin Authors

e 6. Android Intent API
o 6.1 Android-specific Definitions
6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT
6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
= 6.1.3 channelBindings

o

o

o

= 6.1.4 UAFIntentType enumeration
o 6.2 org.fidoalliance.intent.FIDO_OPERATION Intent
= 6.2.1 UAFIntentType.DISCOVER
= 6.2.2 UAFIntentType.DISCOVER_RESULT
= 6.2.3 UAFIntentType.CHECK_POLICY
= 6.2.4 UAFIntentType.CHECK_POLICY_RESULT
= 6.2.5 UAFIntentType.UAF_OPERATION
= 6.2.6 UAFIntentType.UAF_OPERATION_RESULT
= 6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

o 6.3 Alternate Android AIDL Service UAF Client Implementation

o 6.4 Security Considerations for Android Implementations
e 7.i0S Custom URL API
o 7.1i0S-specific Definitions
= 7.1.1 X-Callback-URL Transport
m 7.1.2 Secret Key Generation
= 7.1.3 Origin
= 7.1.4 channelBindings
= 7.1.5 UAFXType
o 7.2 JSON Values
= 7.2.1 DISCOVER
m 7.2.2 DISCOVER_RESULT
= 7.2.3 CHECK_POLICY
= 7.2.4 CHECK_POLICY_RESULT
= 7.2.5 UAF_OPERATION
= 7.2.6 UAF_OPERATION_RESULT
= 7.2.7 UAF_OPERATION_COMPLETION_STATUS

o 7.3 Implementation Guidelines for iOS Implementations
o 7.4 Security Considerations for iOS Implementations
e 8. Transport Binding Profile
o 8.1 Transport Security Requirements
o 8.2 TLS Security Requirements

o 8.3 HTTPS Transport Interoperability Profile
= 8.3.1 Obtaining a UAF Request message
= 8.3.2 Operation enum
8.3.3 GetUAFRequest dictionary
= 8.3.3.1 Dictionary cetuarrequest: Members
8.3.4 ReturnUAFRequest dictionary
m 8.3.4.1 Dictionary returnvuarrequest Members

8.3.5 SendUAFResponse dictionary
= 8.3.5.1 Dictionary SendUuaFResponse Members

8.3.6 Delivering a UAF Response

8.3.7 ServerResponse Interface
= 8.3.7.1 Attributes

8.3.8 Token interface
= 8.3.8.1 Attributes

= 8.3.9 TokenType enum

= 8.3.10 Security Considerations

e A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “, e.g. “UAF-TLV".

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.
DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WeblIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WeblIDL dictionary members musT NOT have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it musT NoT be empty.
Unless otherwise specified, if a WebIDL dictionary member is a List, it musT NoT be an empty list.
UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as required. The keyword required has been introduced by [WeblIDL-ED], which is a work-in-
progress. If you are using a WebIDL parser which implements [WeblDL], then you may remove the keyword requireda from your WeblDL
and use other means to ensure those fields are present.

1.1 Key Words

» o« » o« » o« » o« » o« » o« » o » o«

The key words “musTt”, “musT NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “sHouLD”, “sHoOULD NOT”, “RECOMMENDED”, “mMAY”, and “opTioNAL” in this document are
to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO UAF technology replaces traditional username and password-based authentication solutions for online services, with a stronger and
simpler alternative. The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server:
Registration, Authentication, Transaction Confirmation, and Deregistration. As specified in the core protocol, these messages do not have a
defined network transport, or describe how application software that a user interfaces with can use UAF. This document describes the API
surface that a client application can use to communicate with FIDO UAF Client software, and transport patterns and security requirements for
delivering UAF Protocol messages to a remote server.

The reader should also be familiar with the FIDO Glossary of Terms [FIDOGIlossary] and the UAF Protocol specification [UAFProtocol].
2.1 Audience

This document is of interest to client-side application authors that wish to utilize FIDO UAF, as well as implementers of web browsers, browser
plugins and FIDO clients, in that it describes the API surface they need to expose to application authors.

2.2 Scope

This document describes:

e The local ECMAScript [ECMA-262] API exposed by a FIDO UAF-enabled web browser to client-side web applications.

¢ The mechanisms and APIs for Android [ANDROID] applications to discover and utilize a shared FIDO UAF Client service.
e The general security requirements for applications initiating and transporting UAF protocol exchanges.

e An interoperability profile for transporting FIDO UAF messages over HTTPS [RFC2818].

The following are out of scope for this document:

e The format and details of the underlying UAF Protocol messages
o APIs for, and any details of interactions between FIDO Server software and the server-side application stack.

NOTE

The goal of describing standard APIs and an interoperability profile for the transport of FIDO UAF messages here is to provide an
example of how to develop a FIDO-enabled application and to promote the ease of integrating interoperable layers from different vendors
to build a complete FIDO UAF solution. For any given application instance, these particular patterns may not be ideal and are not
mandatory. Applications may use alternate transports, bundle UAF Protocol messages with other network data, or discover and utilize
alternative APIs as they see fit.

2.3 Architecture

The overall architecture of the UAF protocol and its various operations is described in the FIDO UAF Protocol Specification [UAFProtocol]. The

following simplified architecture diagram illustrates the interactions and actors this document is concerned with:

FIDO
~UAF Server

.,
~,

Relying Party
/\ Server
_/ \- Application

TLS | System Boundary

Relying Party
Client
Application

FIDO
Client

FIDO
AN % Authenticator

Fig. 1 UAF Application API Architecture and Transport Layers

This document describes the shaded components in Fig 1.
2.3.1 Protocol Conversation

The core UAF protocol consists of five conceptual phases:

o Discovery allows the relying party server to determine the availability of FIDO capabilities at the client, including metadata about the
available authenticators.

o Registration allows the client to generate and associate new key material with an account at the relying party server, subject to policy set
by the server and acceptable attestation that the authenticator and registration matches that policy.

o Authentication allows a user to provide an account identifier, proof-of-possession of previously registered key material associated with
that identifier, and potentially other attested data, to the relying party server.

¢ Transaction Confirmation allows a server to request that a FIDO client and authenticator with the appropriate capabilities display some
information to the user, request that the user authenticate locally to their FIDO authenticator to confirm it, and provide proof-of-possession
of previously registered key material and an attestation of the confirmation back to the relying party server.

o Deregistration allows a relying party server to tell an authenticator to forget selected locally managed key material associated with that
relying party in case such keys are no longer considered valid by the relying party.

Discovery does not involve a protocol exchange with the FIDO Server. However, the information available through the discovery APls might be
communicated back to the server in an application-specific manner, such as by obtaining a UAF protocol request message containing an
authenticator policy tailored to the specific capabilities of the FIDO user device.

Although the UAF protocol abstractly defines the FIDO server as the initiator of requests, UAF client applications working as described in this
document will always transport UAF protocol messages over a client-initiated request/response protocol such as HTTP.

The protocol flow from the point of view of the relying party client application for registration, authentication, and transaction confirmation is as
follows:

1. The client application either explicitly contacts the server to obtain a UAF Protocol Request Message, or this message is delivered along
with other client application content.

2. The client application invokes the appropriate API to pass the UAF protocol request message asynchronously to the FIDO UAF Client,
and receives a set of callbacks.

3. The FIDO UAF Client performs any necessary interactions with the user and authenticator(s) to complete the request and uses a callback
to either notify the client application of an error, or to return a UAF response message.

4. The client application delivers the UAF response message to the server over a transport protocol such as HTTP.
5. The server optionally returns an indication of the results of the operation and additional data such as authorization tokens or a redirect.

6. The client application optionally uses the appropriate API to inform the FIDO UAF Client of the results of the operation. This allows the
FIDO UAF Client to perform “housekeeping” tasks for a better user experience, e.g. by not attempting to use again later a key that the
server refused to register.

7. The client application optionally processes additional data returned to it in an application-specific manner, e.g. processing new
authorization tokens, redirecting the user to a new resource or interpreting an error code to determine if and how it should retry a failed
operation.

Deregister does not involve a UAF protocol round-trip. If the relying party server instructs the client application to perform a deregistration, the
client application simply delivers the UAF protocol Request message to the FIDO UAF Client using the appropriate API. The FIDO UAF Client
does not return the results of a deregister operation to the relying party client application or FIDO Server.

UAF protocol Messages are JSON [ECMA-404] structures, but client applications are discouraged from modifying them. These messages may
contain embedded cryptographic integrity protections and any modifications might invalidate the messages from the point of view of the FIDO
UAF Client or Server.

3. Common Definitions

This section is normative.

These elements are shared by several APIs and layers.
3.1 UAF Status Codes

This table lists UAF protocol status codes.

NOTE

These codes indicate the result of the UAF operation at the FIDO Server. They do not represent the HTTP [RFC7230] layer or other
transport layers. These codes are intended for consumption by both the client-side web app and FIDO UAF Client to inform application-
specific error reporting, retry and housekeeping behavior.

Code Meaning

1200 | OK. Operation completed

Accepted. Message accepted, but not completed at this time. The RP may need time to process the attestation, run risk scoring, etc.

1202 The server sHouLb NoT send an authenticationToken with a 1202 response

1400 | Bad Request. The server did not understand the message

1401 | Unauthorized. The userid must be authenticated to perform this operation, or this KeyID is not associated with this UserID.

1403 | Forbidden. The userid is not allowed to perform this operation. Client sHouLd NoT retry

1404 | Not Found.

1408 | Request Timeout.

1480 | Unknown AAID. The server was unable to locate authoritative metadata for the AAID.

Unknown KeyID. The server was unable to locate a registration for the given UserlD and KeylD combination.

1481 | This error indicates that there is an invalid registration on the user's device. It is recommended that FIDO UAF Client deletes the key
from local device when this error is received.

1490 | Channel Binding Refused. The server refused to service the request due to a missing or mismatched channel binding(s).

1491 Request Invalid. The server refused to service the request because the request message nonce was unknown, expired or the server
has previously serviced a message with the same nonce and user ID.

Unacceptable Authenticator. The authenticator is not acceptable according to the server's policy, for example because the capability

1492 registry used by the server reported different capabilities than client-side discovery.

1493 | Revoked Authenticator. The authenticator is considered revoked by the server.

1494 | Unacceptable Key. The key used is unacceptable. Perhaps it is on a list of known weak keys or uses insecure parameter choices.

Unacceptable Algorithm. The server believes the authenticator to be capable of using a stronger mutually-agreeable algorithm than

1495 was presented in the request.

1496 | Unacceptable Attestation. The attestation(s) provided were not accepted by the server.

Unacceptable Client Capabilities. The server was unable or unwilling to use required capabilities provided supplementally to the

1497 authenticator by the client software.

1498 | Unacceptable Content. There was a problem with the contents of the message and the server was unwilling or unable to process it.

1500 | Internal Server Error

4. Shared Definitions

This section is normative.

NOTE

This section defines a number of JSSON structures, specified with WebIDL [WebIDL-ED]. These structures are shared among APls for
multiple target platforms.

4.1 UAFMessage Dictionary

The UAFMessage dictionary is a wrapper object that contains the raw UAF protocol Message and additional JSON data that may be used to
carry application-specific data for use by either the client application or FIDO UAF Client.

WebIDL

dictionary UAFMessage ({

Object

4.1.1 Dictionary varvessage Members

uafProtocolMessage Of type required DOMString
This key contains the UAF protocol Message that will be processed by the FIDO UAF Client or Server. Modification by the client
application may invalidate the message. A client application may examine the contents of a message, for example, to determine if a
message is still fresh. Details of the structure of the message can be found in the UAF protocol Specification [UAFProtocol].

additionalData Of type Object
This key allows the FIDO Server or client application to attach additional data for use by the FIDO UAF Client as a JSON object, or
the FIDO UAF Client or client application to attach additional data for use by the client application.

4.2 Version interface

Describes a version of the UAF protocol or FIDO UAF Client for compatibility checking.

WebIDL

interface Version ({
readonly attribute unsigned short m
readonly attribute

}i

4.2.1 Attributes

major Of type unsigned short, readonly
Maijor version number.

minor Of type unsigned short, readonly
Minor version number.

4.3 Authenticator interface

Used by several phases of UAF, the authenticator interface exposes a subset of both verified metadata [FIDOMetadataStatement] and
transient information about the state of an available authenticator.

WebIDL

interface Authenticator {

readonly attribute DOMString
readonly attribute AAID

readonly attribute DOMString
readonly attribute Version|]
readonly attribute DOMString
readonly attribute unsigned short
readonly attribute unsigned short[]
readonly attribute unsigned long
readonly attribute unsigned short
readonly attribute unsigned short
readonly attribute unsigned long
readonly attribute boolean
readonly attribute unsigned short
readonly attribute DOMString
readonly attribute DisplayPNGCharacteristicsDescriptor([]
readonly attribute DOMString
readonly attribute DOMStringl[]

4.3.1 Attributes

title of type DOMString, readonly
A short, user-friendly name for the authenticator.
NOTE
This text must be localized for current locale.

If the ASM doesn't return a title in the authenticatorinfo object [UAFASM], the FIDO UAF Client must generate a title based
on the other fields in ruthenticatorinfo, because +it1e must not be empty (see section 1. Notation).

aaid of type AAID, readonly
The Authenticator Attestation ID, which identifies the type and batch of the authenticator. See [UAFProtocol] for the definition of the
AAID structure.
description Of type DOMString, readonly
A user-friendly description string for the authenticator.
NOTE

This text must be localized for current locale.

It is intended to be displayed to the user. It might deviate from the description specified in the authenticator's metadata

statement [FIDOMetadataStatement].

If the ASM doesn't return a description in the ruthenticatorinto object [UAFASM], the FIDO UAF Client must generate a
meaningful description to the calling App based on the other fields in ruthenticatorinfo, because description must not be
empty (see section 1. Notation).

supportedUAFVersions Of type array of Version, readonly
Indicates the UAF protocol Versions supported by the authenticator.

assertionScheme Of type DOMString, readonly
The assertion scheme the authenticator uses for attested data and signatures.
Assertion scheme identifiers are defined in the UAF Registry of Predefined Values. [UAFRegistry]

authenticationAlgorithm Of type unsigned short, readonly
Supported Authentication Algorithm. The value musT be related to constants with prefix 21c stcn.

attestationTypes Of type array of unsigned short, readonly
A list of supported attestation types. The values are defined in [UAFRegistry] by the constants with the prefix tzc_artesTarron.

userVerification Of type unsigned long, readonly
A set of bit flags indicating the user verification methods supported by the authenticator. The algorithm for combining the flags is
defined in [UAFProtocol], section 3.1.12.1. The values are defined by the constants with the prefix user vertey.

keyProtection Of type unsigned short, readonly
A set of bit flags indicating the key protection used by the authenticator. The values are defined by the constants with the prefix
KEY PROTECTION.

matcherProtection Of type unsigned short, readonly
A set of bit flags indicating the matcher protection used by the authenticator. The values are defined by the constants with the prefix
MATCHER_PROTECTION.

attachmentHint Of type unsigned long, readonly
A set of bit flags indicating how the authenticator is currently connected to the FIDO User Device. The values are defined by the
constants with the prefix atracsveEnT HINT.

NOTE
Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used
in applying server-supplied policy to guide the user experience. This can be used to, for example, prefer a device that is

connected and ready for authenticating or confirming a low-value transaction, rather than one that is more secure but requires
more user effort.

These values are not reflected in authenticator metadata and cannot be relied upon by the relying party, although some models of
authenticator may provide attested measurements with similar semantics as part of UAF protocol messages.

isSecondFactoronly Of type boolean, readonly
Indicates whether the authenticator can only be used as a second-factor.

teDisplay Of type unsigned short, readonly
A set of bit flags indicating the availability and type of transaction confirmation display. The values are defined by the constants with
the prefix TRANSACTION CONFIRMATION DISPLAY.

This value musT be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType Of type DOMString, readonly
The MIME content-type [RFC2045] supported by the transaction confirmation display, such as text/plain Or image/pno.

This value musT be non-empty if transaction confirmation is supported (tcbisplay is non-zero).
tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor, readonly
The set of PNG characteristics currently supported by the transaction confirmation display (if any).
NOTE

See [FIDOMetadataStatement] for additional information on the format of this field and the definition of the
DisplayPNGCharacteristicsDescriptor Structure.

This list musT be non-empty if PNG-image based transaction confirmation is supported, i.e. tcpispiay is non-zero and

tcDisplayContentType IS image/png

icon Of type DOMString, readonly
A PNG [PNG] icon for the authenticator, encoded as a data: url [RFC2397].

NOTE

If the ASM doesn't return an icon in the ruthenticatorinfo object [UAFASM], the FIDO UAF Client must set a default icon,
because icon must not be empty (see section 1. Notation).

supportedExtensionIDs Of type array of DOMString, readonly
A list of supported UAF protocol extension identifiers. These may be vendor-specific.

4.3.2 Authenticator Interface Constants

A number of constants are defined for use with the bit flag fields userVerification, keyProtection, attachmentHint, @and tcbisplay. TO avoid
duplication and inconsistencies, these are defined in the FIDO Registry of Predefined Values [FIDORegistry].

4.4 DiscoveryData dictionary

WebIDL

dictionary DiscoveryData {
required Version[]
required DOMString
required Version
required Authenticator/(]

4.4.1 Dictionary piscoverybata Members

supportedUAFVersions Of type array of required Version
A list of the FIDO UAF protocol versions supported by the client, most-preferred first.

clientVendor Of type required DOMString
The vendor of the FIDO UAF Client.

clientVersion Of type required Version
The version of the FIDO UAF Client. This is a vendor-specific version for the client software, not a UAF version.

availableAuthenticators Of type array of required Authenticator
An array containing Authenticator dictionaries describing the available UAF authenticators. The order is not significant. The list may be
empty.

4.5 ErrorCode interface

WebIDL

interface ErrorCode {
const short NO ERROR = 0x0;
const short)
const short
const short
const short

const short)R = 0x05;
const short

const short 0x07;

const short ANENTLY = 0x09;
const short 1ED 0 DENIED = 0xOc;
const short CNT = 0x0d;

const short 0x0e;
const short JTHENTICATOR_RESOURCES = 0x0f;
const short

const short
const short
const short Ul

0x11;

4.5.1 Constants

No_ERROR Of type short
The operation completed with no error condition encountered. Upon receipt of this code, an application should no longer expect an
associated UAFResponseCallback {0 fire.

WAIT_USER_ACTION Of type short
Waiting on user action to proceed. For example, selecting an authenticator in the FIDO client user interface, performing user
verification, or completing an enroliment step with an authenticator.

INSECURE_TRANSPORT Of type short
window.location.protocol is Not "httpS" or the DOM contains insecure mixed content.

USER_CANCELLED Of type short
The user declined any necessary part of the interaction to complete the registration.

UNSUPPORTED_VERSION Of type short
The varMessage does not specify a protocol version supported by this FIDO UAF Client.

NO_SUITABLE_AUTHENTICATOR Of type short
No authenticator matching the authenticator policy specified in the uarmessage is available to service the request, or the user declined
to consent to the use of a suitable authenticator.

PROTOCOL_ERROR Of type short
A violation of the UAF protocol occurred. The interaction may have timed out; the origin associated with the message may not match
the origin of the calling DOM context, or the protocol message may be malformed or tampered with.

UNTRUSTED_FACET_ID Of type short
The client declined to process the operation because the caller's calculated facet identifier was not found in the trusted list for the
application identifier specified in the request message.

KEY_DISAPPEARED PERMANENTLY Of type short
The UAuth key disappeared from the authenticator and cannot be restored.
NOTE

The RP App might want to re-register the authenticator in this case.

AUTHENTICATOR_ACCESS_DENIED Of type short
The authenticator denied access to the resulting request.

INVALID_TRANSACTION CONTENT Of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

NOTE

The transaction content format requirements are specified in the authenticator's metadata statement.

USER_NOT_RESPONSIVE Of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

INSUFFICIENT AUTHENTICATOR RESOURCES Of type short
Insufficient resources in the authenticator to perform the requested task.

User_rockout of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an action to change that. For
example, an authenticator could allow the user to enter an alternative password to re-enable the use of fingerprints after too many
failed finger verification attempts. This error will be reported if such method either doesn't exist or the ASM / authenticator cannot
automatically trigger it.

USER_NOT_ENROLLED Of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot automatically trigger user
enroliment.

SYSTEM_INTERRUPTED Of type short
The system interrupted the operation. Retry might make sense.

uNkNowN Of type short

An error condition not described by the above-listed codes.
5. DOM API

This section is normative.

This section describes the API details exposed by a web browser or browser plugin to a client-side web application executing in a pocument
[DOM] context.

5.1 Feature Detection

FIDO's UAF DOM APIs are rooted in a new rido object, a property of window.navigator code; the existence and properties of which may be
used for feature detection.

<script>
if (!'!'window.navigator.fido.uaf) { var useUAF = true; }

</script>

5.2 uaf Interface

The window.navigator.fido.uaf interface is the primary means of interacting with the FIDO UAF Client. All operations are asynchronous.

WebIDL

interface uaf
void disc

DiscoveryCallback completionCallback, ErrorCallback errorCallback);
y (UAFMessage message, ErrorCallback cb);
ation (UAFMessage message, UAFResponseCallback completionCallback, ErrorCallback errorCallback);

void no t (int responseCode, UAFMessage uafResponse);

5.2.1 Methods

discover

Discover if the user's client software and devices support UAF and if authenticator capabilities are available that it may be willing to
accept for authentication.

Parameter Type Nullable Optional Description

completionCallback Dpiscoverycallback The callback that receives piscoverypata from the FIDO UAF
Client.

errorCallback ErrorCallback A callback function to receive error and progress events.

Return type: void

checkPolicy
Ask the browser or browser plugin if it would be able to process the supplied request message without prompting the user.
Unlike other operations using an errorcaliback, this operation must always trigger the callback and return no_zrror if it believes that
the message can be processed and a suitable authenticator matching the embedded policy is available, or the appropriateerrorcode
value otherwise.

NOTE

Because this call should not prompt the user, it should not incur a potentially disrupting context-switch even if the FIDO UAF
Client is implemented out-of-process.

Parameter Type Nullable Optional Description
message UAFMessage A uarMessage containing the policy and operation to be tested.
cb ErrorCallback The callback function which receives the status of the operation.

Return type: void

processUAFOperation
Invokes the FIDO UAF Client, transferring control to prompt the user as necessary to complete the operation, and returns to the
callback a message in one of the supported protocol versions indicated by the UAFMessage.

Parameter Type Nullable Optional Description
message UAFMessage The varmMessage to be used by the FIDO client software.
completionCallback vaFresponsecallback The callback that receives the client response varMessage from

the FIDO UAF Client, to be delivered to the relying party server.

errorCallback ErrorCallback A callback function to receive error and progress events from the
FIDO UAF Client.

Return type: void
notifyUAFResult

Used to indicate the status code resulting from a FIDO UAF message delivered to the remote server. Applications must make this call
when they receive a UAF status code from a server. This allows the FIDO UAF Client to perform housekeeping for a better user
experience, for example not attempting to use keys that a server refused to register.

NOTE
If, and how, a status code is delivered by the server, is application and transport specific. A non-normative example can be
found below in the HTTPS Tran Interoperability Profile.

Parameter Type Nullable Optional Description

responseCode int The vafresult field of @ serverresponse.

uafResponse UAFMessage The varMessage to which this responsecode applies.

Return type: void
5.3 UAFResponseCallback

A urrresponsecallback is used upon successful completion of an asynchronous operation by the FIDO UAF Client to return the protocol
response message to the client application for transport to the server.

NOTE

This callback is also called in the case of deregistration completion, even though the response object is empty then.

WebIDL

callback UAFResponseCallback = void (UAFMessage uafResponse);

5.3.1 Callback uarresponsecallback Parameters

uafResponse Of type uaFMessage
The message and any additional data representing the FIDO UAF Client's response to the server's request message.

5.4 DiscoveryCallback

A piscoverycallback is used upon successful completion of an asynchronous discover operation by the FIDO UAF Client to return the
DiscoveryData tO the client application.

WebIDL

callback DiscoveryCallback = void (DiscoveryData data);

5.4.1 Callback piscoverycallback Parameters

data of type DiscoveryData
Describes the current state of FIDO UAF client software and authenticators available to the application.

5.5 ErrorCallback

An ErrorCallback is used to return progress and error codes from asynchronous operations performed by the FIDO UAF Client.

WebIDL

callback ErrorCallback = void (ErrorCode code);

5.5.1 Callback Errorcallback Parameters

code of type ErrorCode
A value from the =rrorcode interface indicating the result of the operation.

For certain operations, an ErrorCallback may be called multiple times, for example with the watr vser acTron code.
5.6 Privacy Considerations for the DOM API

This section is non-normative.

Differences in the FIDO capabilities on a user device may (among many other characteristics) allow a server to "fingerprint" a remote client and
attempt to persistently identify it, even in the absence of any explicit session state maintenance mechanism. Although it may contribute some
amount of signal to servers attempting to fingerprint clients, the attributes exposed by the Discovery API are designed to have a large anonymity
set size and should present little or no qualitatively new privacy risk. Nonetheless, an unusual configuration of FIDO Authenticators may be
sufficient to uniquely identify a user.

It is recommended that user agents expose the Discovery API to all applications without requiring explicit user consent by default, but user
agents or FIDO Client implementers should provide users with the means to opt-out of discovery if they wish to do so for privacy reasons.

5.7 Security Considerations for the DOM API
This section is non-normative.
5.7.1 Insecure Mixed Content

When FIDO UAF APIs are called and operations are performed in a bocunent context in a web user agent, such a context musT NoT contain
insecure mixed content. The exact definition insecure mixed content is specific to each user agent, but generally includes any script, plugins
and other "active" content, forming part of or with access to the DOM, that was not itself loaded over HTTPS.

The UAF APIs must immediately trigger the Errorcaliback with the tuszcure TrRaNSPORT cOode and cease any further processing if any APls
defined in this document are invoked by a Document context that was not loaded over a secure transport and/or which contains insecure mixed
content.

5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

When retrieving or transporting UAF protocol messages over HTTP, it is important to maintain consistency among the web origin of the
document context and the origin embedded in the UAF protocol message. Mismatches may cause the protocol to fail or enable attacks against
the protocol. Therefore:

FIDO UAF messages should not be transported using methods that opt-out of the Same Origin Policy [SOP], for example, using <script
sre="ur1”> to non-same-origin URLs or by setting the ~ccess-control-al10w-0rigin header at the server.

When transporting FIDO UAF messages using XMLHttpRequest [XHR] the client should not follow redirects that are to URLs with a different
origin than the requesting document.

FIDO UAF messages should not be exposed in HTTP responses where the entire response body parses as valid ECMAScript. Resources
exposed in this manner may be subject to unauthorized interactions by hostile applications hosted at untrusted origins through cross-origin
embedding using <script src="url”>.

Web applications should not share FIDO UAF messages across origins through channels such as o«) [webmessaging].

5.8 Implementation Notes for Browser/Plugin Authors

This section is non-normative.

Web applications utilizing UAF depend on services from the web browser as a trusted platform. The APIs for web applications do not provide a
means to assert an origin as an application identity for the purposes of FIDO operations as this will be provided to the FIDO UAF Client by the
browser based on its privileged understanding of the actual origin context.

The browser must enforce that the web origin communicated to the FIDO UAF Client as the application identity is accurate

The browser must also enforce that resource instances containing insecure mixed-content cannot utilize the UAF DOM APIs.

6. Android Intent API

This section is normative.

This section describes how an Android [ANDROID] client application can locate and communicate with a conforming FIDO Client installation
operating on the host device.

NOTE

As with web applications, a variety of integration patterns are possible on the Android platform. The API described here allows an app to
communicate with a shared FIDO UAF Client on the user device in a loosely-coupled fashion using Android Intents.

6.1 Android-specific Definitions
6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT

FIDO UAF Clients running on Android versions prior to Android 5 musT declare the org. fidoalliance.uaf.permissions. ID0_CLIENT permission
and they also musT declare the related "uses-permission”. See the below example of this permission expressed in an Android app manifest file
<permission/> and <uses-permission/> element [AndrOIdAppManlfest]

FIDO UAF Clients running on Android version 5 or later musT NoT declare this permission and they also musT NoT declare the related "uses-
permission”.

<permission
android:name="org.fidoalliance.uaf.permissions.FIDO CLIENT"
android:label="Act as a FIDO Client." -
android:description="This application acts as a FIDO Client. It may
access authentication devices available on the system, create and
delete FIDO registrations on behalf of other applications."
/ android:protectionlLevel="dangerous"
>

<uses-permission android:name="org.fidoalliance.uaf.permissions.FIDO CLIENT"/>

NOTE

e Since FIDO Clients perform security relevant tasks (e.g. verifying the ApplD/FacetID relation and asking for user consent), users
should carefully select the FIDO Clients they use. Requiring apps acting as FIDO Clients to declare and use this permission allows
them to be identified as such to users.

e There are not any FIDO Client resources needing "protection" based upon the FIDO_CLIENT permission. The reason for having
FIDO Client declare the FIDO_CLIENT permission is solely that users should be able to carefully decide which FIDO Clients to
install.

e Android version 5 changed the way it handles the case where multiple apps declare the same permission [Android5Changes]; it
blocks the installation of all subsequent apps declaring that permission.

The best way to flag the fact that an app may act as a FIDO Client needs to be determined for Android version 5.

6.1.2 org.fidoalliance.uaf.permissions. ACT_AS_WEB_BROWSER

Android applications requesting services from the FIDO UAF Client can do so under their own identity, or they can act as the user's agent by
explicitly declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity musT NoT set an explicit origin. Omitting an explicit origin will cause the FIDO UAF
Client to determine the caller's Identlty as android:apk-key-hash:<hash-of-public-key>. The FIDO UAF Client will then compare this with the list
of authorized application facets for the target ApplD and proceed if it is listed as trusted.

NOTE

See the UAF Protocol Specification [UAFProtocol] for more information on application and facet identifiers.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when
implementing a full web browser) it may set its origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The
application musT satisfy the necessary conditions described in Transport Security Requirements for authenticating the remote server before

setting the origin.

Use of the origin parameter requires the application to declare the crg.fidoalliance.vaf.permissions.ACT AS WEB BROWSER permission, and the

FIDO UAF Client musT verify that the calling application has this permission before processing the operation.

<permission
android:name="org.fidoalliance.uaf.permissions.ACT AS WEB BROWSER"
android:label="Act as a browser for FIDO registrations." —
android:description="This application may act as a web browser,
creating new and accessing existing FIDO registrations for any domain."
android:protectionLevel="dangerous"

/>

6.1.3 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
Android application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is:
Map<String, String>
with the keys as defined for the channe1zinding structure in the UAF Protocol Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same
channel the legitimate client is using and that messages have not been forwarded through a malicious party.

UAF defines support for the tls-unique @nd tls-server-end-point bindings from [RFC5929], as well as server certificate and ChannellD
[ChannellD] bindings. The client should supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.
6.1.4 UAFIntentType enumeration

This enumeration describes the type of operation for the intent implementing the Android API.

NOTE

UAF uses only a single intent to simplify behavior in the situation even where multiple FIDO clients may be installed. In such a case, the
user will be prompted which of the installed FIDO UAF clients should be used to handle an implicit intent.

If the user selected to make different FIDO UAF Clients the default for different intents representing different phases, it could produce
inconsistent results or fail to function at all.

If the application workflow requires multiple calls to the client (and it usually does) the application should read the componentiane from the intent
extras it receives from starcactivityrorresult () and pass it to setcomponent () for subsequent intents to be sure they are explicitly resolved to
the same FIDO UAF Client.

WebIDL

enum UAFIntentType {
"DISCOVER",
"DISCOVER RESULT",
"CHECK_POLICY",
"CHECK_POLICY RESULT",
"UAF_OPERATION",
"UAF_OPERATION RESULT",
"UAF_OPERATION COMPLETION STATUS"

Enumeration description

DISCOVER Discovery

DISCOVER RESULT Discovery results

CHECK POLICY Perform a no-op check if a message could be processed.
CHECK_POLICY RESULT Check Policy results.

UAF OPERATION Process a Registration, Authentication, Transaction Confirmation or Deregistration message.

UAF_OPERATION RESULT UAF Operation results.

Inform the FIDO UAF Client of the completion status of a Registration, Authentication, Transaction

UAF OPERATION COMPLETION STATUS a q q
- - - Confirmation or Deregistration message.

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent

All interactions between a FIDO UAF Client and an application on Android takes place via a single Android intent:
org.fidoalliance.intent.FIDO OPERATION
The specifics of the operation are carried by the MIME media type and various extra data included with the intent.
The operations described in this document are of MIME media type application/fido.uaf c
attribute of any intent.

NOTE

Client applications can discover if a FIDO UAF Client (or several) is available on the system by using

PackageManager.gueryIntentActivities (Intent intent, int flags) With this intent to see if any activities are available.

ient+json and this musT be set as the type

Extra Type Description
UAFIntentType String | One of the varintentType enumeration values describing the intent.
discoveryData String | piscoverypata JSON dictionary.
b onen e String The component name of thg responding FIDO UAF Client. It must be serialized using
errorCode short | Exrrorcode value for operation
message String | varMessage request to test or process, depending on UAFIntentType.
origin String An RF064§4 Web Origiln [RFCG454] strﬁig for the request., if.the caller has the
org.fidoalliance.permissions.ACT AS WEB BROWSER permission.
channelBindings | String | The JSON dictionary of channel bindings for the operation.
responseCode short | The uarresult field of @ serverresponse.

The following table shows what intent extras are expected, depending on the value of the varintentType extra:

UAFIntentType value discoveryData componentName errorCode message origin channelBindings responseCode
"DISCOVER"
"DISCOVER_RESULT" OPTIONAL REQUIRED REQUIRED
"CHECK_POLICY" REQUIRED | OPTIONAL
"CHECK_POLICY_RESULT" REQUIRED REQUIRED
"UAF_OPERATION" REQUIRED | OPTIONAL | REQUIRED
"UAF_OPERATION_RESULT" REQUIRED REQUIRED | OPTIONAL
"UAF_OPERATION_COMPLETION_STATUS" REQUIRED REQUIRED

6.2.1 UAFIntentType.DISCOVER

This Android intent invokes the FIDO UAF Client to discover the available authenticators and capabilities. The FIDO UAF Client generally will
not show a Ul associated with the handling of this intent, but immediately return the JSON structure. The calling application cannot depend on
this however, as the FIDO UAF Client may show a Ul for privacy purposes, allowing the user to choose whether and which authenticators to

disclose to the calling application.

This intent musT be invoked with startactivi tyForResult ().

http://developer.android.com/reference/android/content/ComponentName.html#flattenToString()
http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent,%20int)

6.2.2 UAFIntentType.DISCOVER_RESULT

An mtent with this type is returned by the FIDO UAF Client as an argument to o ityResult () in response to receiving an intent of type

DIS ER.

If the resultcode passed to onactivityresult () iS RESULT 0k, and the intent extra errorcode is n0 ErrOR, this intent has an extra, discoverypata,
containing a string representation of a piscoverybata JSON dictionary with the available authenticators and capabilities.

6.2.3 UAFIntentType.CHECK_POLICY

This intent invokes the FIDO UAF Client to discover if it would be able to process the supplied message without prompting the user. The action
handling this intent shouLp NoT show a Ul to the user.

This intent requires the following extras:

o containing a string representation of a uarMessage representing the request message to test.

e origin, an oPTIONAL extra that allows a caller with the org. fidoalliance.uaf.permissions.ACT AS

RFC6454 Origin [RFC6454] string to be used instead of the appllcatlon s own |dent|ty

= permission to supply an

This intent musT be invoked with startactivi tyForResult ().
6.2.4 UAFIntentType.CHECK_POLICY_RESULT

This Android intent is returned by the FIDO UAF Client as an argument to onactivityresult () in response to receiving a cieck por1cy intent.

In addition to the resuitcode passed to onactivityresult (), this intent has an extra, errorcode, containing an exrorcode value indicating the
specific error condition or vo error if the FIDO UAF Client could process the message.

6.2.5 UAFIntentType.UAF_OPERATION

This Android intent invokes the FIDO UAF Client to process the supplied request message and return a response message ready for delivery to
the FIDO UAF Server.

The sender sHouLp assume that the FIDO UAF Client will display a user interface allowing the user to handle this intent, for example, prompting
the user to complete their verification ceremony.

This intent requires the following extras:

e nessage, containing a string representation of a varmessage representing the request message to process.

channelBindings, containing a string representation of a JSON dictionary as defined by the channeizinding structure in the FIDO UAF
Protocol Specmcatlon [UAFProtocol].

e origin, an opTIONAL parameter that allows a caller with the org. fidoalliance.vaf.permissions.ACT AS WER BROWSER permission to supply
an RFC6454 Origin [RFC6454] string to be used instead of the application's own identity.

This intent musT be invoked with startactivityrorresult ().
6.2.6 UAFIntentType.UAF_OPERATION_RESULT

This intent is returned by the FIDO UAF Client as an argument to onactivityresult (), in response to receiving a var oreraTioN intent.

If the resultcode passed to onactivityresult () IS RESULT canceLLED, this intent will have an extra, errorcode parameter, containing an
ErrorCode Value indicating the specmc error condition.

If the resultcode passed to onactiv rityResult () iS RESULT OK, and the errorcode is no ERROR, this intent has a message, containing a string
representation of a uaFMessage, belng the UAF protocol response message to be delivered to the FIDO Server.

6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

This intent musT be delivered to the FIDO UAF Client to indicate the processing status of a FIDO UAF message delivered to the remote server.
This is especially important as a new registration may be considered by the client to be in a pending state until it is communicated that the
server accepted it.

6.3 Alternate Android AIDL Service UAF Client Implementation
The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism to Android Intents. While

Android Intents work at the Ul layer, Android AIDL services are performed at a lower level. This can ease integration with relying party apps,
since UAF requests can be fulfilled without interfering with existing relying party app Ul and application lifecycle behavior.

The UAF Android AIDL service needs to be defined in the UAF client manifest. This is done using the <scrvice> tag for an Android AIDL service
instead of the <activity> tag in Android Intents. Just as with Android intents, the manifest definition for the AIDL service uses an intent filter
(nOte org.fidoalliance.aidl.FIDO OPERATION VEISUS org.fidoalliance.intent.FIDO OPERATI OI\.) to Identlfy itself as a FIDO UAF client to the
relying party app:

<service android:name="foo" >

<intent-filter>

<action android:name="org.fidoalliance.aidl.FIDO OPERATION" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="application/fido.uaf client+json" />
</intent-filter> -

</service>

Once the relying party app chooses a UAF client from the list discovered by rackagevanager.queryintentservices (), the relying party app and
the FIDO UAF client share the following AIDL interface to service UAF requests:

package org.fidoalliance.aidl

oneway interface IUAFOperation

{
}

void process(in Intent uafRequest, in IUAFResponselListener uafResponselistener);

NOTE

Android AIDL services use Binder.getCallinguid() instead of activity.getcallingactivity () with Android Intents to identify the caller
and obtain FacetID information.

For consistency, the Intents for the Android AIDL service are the same as defined in the Android Intent specification in the UAF standard. In
process (), the uafRequest parameter is the Intent that would be passed 10 startActivityForResult (). The u afResponselistener parameter isa
listener interface that receives the result. The following AIDL defines this interface:

package org.fidoalliance.aidl

interface IUAFResponselistener

{
}

void onResult (in Intent uafResponse);

In the listener, the vafresponse parameter is the Intent that would be passed to onactivityresuit.

6.4 Security Considerations for Android Implementations

This section is non-normative.

Android applications may choose to implement the user-interactive portion of FIDO in at least two ways:

o by authoring an Android Activity using Android-native user interface components, or
¢ with an HTML-based experience by loading an Android WebView and injecting the UAF DOM APIs with addjavascriptinterface ().

An application that chooses to inject the UAF interface into a WebView musT follow all appropriate security considerations that apply to usage of
the DOM APIs, and those that apply to user agent implementers.

In particular, the content of a WebView into which an API will be injected musT be loaded only from trusted local content or over a secure
channel as specified in Transport Security Requirements and must not contain insecure mixed-content.

Applications sHouLD NoT declare the acT s wes Browser permission unless they need to act as the user's agent for an un-predetermined number
of third party applications. Where an Android application has an explicit relationship with a relying party application(s), the preferred method of
access control is for those applications to list the Android application's identity as a trusted facet. See the UAF Protocol Specification
[UAFProtocol] for more information on application and facet identifiers.

To protect against a malicious application registering itself as a FIDO UAF Client, relying party applications can obtain the identity of the
responding application, and utilize it in risk management decisions around the authentication or transaction events.

For example, a relying party might maintain a list of application identities known to belong to malware and refuse to accept operations
completed with such clients, or a list of application identities of known-good clients that receive preferred risk-scoring.

Relying party applications running on Android versions prior to Android 5 musT make sure that a FIDO UAF Client has the "uses-permission" for
org.fidoalliance.uaf.permissions. 100 CLTENT. Relying party applications running on Android 5 sHouLb NoT implement this check.

NOTE
Relying party applications sHouLb implement the check on Android prior to 5 by using the package manager to verify that the FIDO Client

indeed declared the orqg. fidoalli- .uaf.permissions.FIDO CLIENT permission (see example below). Relying party applications sHouLb
NOT use a "uses-permission” for =t IENT.

boolean checkFIDOClientPermission (String packageName)
throws NameNotFoundException {
for (String requestedPermission :
getPackageManager () .getPackageInfo (packageName,
PackageManager.GET PERMISSIONS) .requestedPermissions) {
if (requestedPermission.matches (
"org.fidoalliance.uaf.permissions.FIDO CLIENT")
return true; o

return false;

}

Relying party applications which use the AIDL service implementation of the UAF Client Intent APl musT use an explicit intent to bind to the AIDL
service. Failing to do so may result in binding to an unexpected and possibly malicious service, because intent filter resolution depends on
application installation order and intent filter priority. Android 5.0 and later will throw a securityexception if an implicit intent is used, but earlier
versions do not enforce this behavior.

7.i0S Custom URL API

This section is normative.
This section describes how an iOS relying party application can locate and communicate with a conforming FIDO UAF Client installed on the
host device.

NOTE

Because of sandboxing and no true multitasking support, the iOS operating system offers very limited ways to do interprocess
communication (IPC).

Any IPC solution for a FIDO UAF Client must be able to:

1. Identify the calling app in order to provide FacetID approval.
2. Allow transition to another app without user intervention

Currently the only IPC method on iOS that satisfies both of these requirements is custom URL handlers.

Custom URL handlers use the iOS operating system to handle URL requests from the sender, launch the receiving app, and then pass
the request to the receiving app for processing. By enabling custom URL handlers for two different applications, it is possible to achieve
bidirectional IPC between them--one custom URL handler to send data from app A to app B and another custom URL handler to send
data from app B to app A.

Because iOS has no true multitasking, there must be an app transition to process each request and response. Too many app transitions
can negatively affect the user experience, so relying party applications must carefully choose when it is necessary to query the FIDO UAF
Client.

7.1 i0S-specific Definitions

7.1.1 X-Callback-URL Transport

When the relying party application communicates with the FIDO UAF Client, it sends a URL with the standard «-ca11back-ur1 format (see x-
callback-url.com):

FidoUAFClientl://x-callback-url/[UAFxRequestType] ?x-success=[RelyingPartyURL]://x-callback-url/
[UAE 'ypel &

http://x-callback-url.com/
http://x-callback-url.com/

json=[Base64URLEncodedJSON]

e ridounrclientl is the iOS custom URL scheme used by FIDO UAF Clients. As specified in the x-calipack-ur1 standard, version

information for the transport layer is encoded in the URL scheme itself (in this case, ridouarciient1). This is so other applications can

check for support for the 1.0 version by using the canopenurr call.
e [uarxrequestType] iS the type that should be used for request operations, which are described later in this document.

e [relyingrartyUrL] iS the URL that the relying party app has registered in order to receive the response. According to the x-caliback-ur1

standard, this is defined using the x-success parameter.
eType] is the type that should be used for response operations, which are described later in this document.

® [UAFxRe

secretkey] is @ base64url-encoded, without padding, random key generated for each request by the calling application.

The response from the FIDO UAF Client will be encrypted with this key in order to prevent rogue applications from obtaining information

by spoofing the return URL.

e [staTe] is data that can be used to match the request with the response.

e Finally (Bases4UrRLEncOdedTsON] contains the message to be sent to the FIDO UAF Client.

Iltems are stored in JSON format and then base64url-encoded without padding.
For FIDO UAF Clients, the custom URL scheme handler entrypoint is the openURL() function:

Objective-C

(BOOL) application: (UIApplication *)application openURL: (NSURL *)url sourceBApplication: (NSString *)sourceApplication
annotation: (id) annotation

SWIFT

func application(_ application: UIApplication, open url: URL, sourceApplication: String?, annotation: Any) -> Bool ({

} o
Here, the URL above is received via the ur1 parameter. For security considerations, the sourceappiication parameter contains the iOS bundle
ID of the relying party application. This bundle ID musT be used to verify the application racet1n.

Conversely, when the FIDO UAF Client responds to the request, it sends the following URL back in standard x-ca11vack-ur1 format:

://x-callback-url/
Typel?

64URLEncodedJWE]
The parameters in the response are similar to those of the request, except that the (szsc64urLENCOdedEncryptedsson] parameter is encrypted
with the public key before being base64url-encoded without padding. (staTe] is the same sTaTe as was sent in the request--it is echoed back to

the sender to verify the matched response.

In the relying party application's cpenurt () handler, the -1 parameter will be the URL listed above and the sourcerpplication parameter will be

the iOS bundle ID for the FIDO client application.
7.1.2 Secret Key Generation

A new secret encryption key musT be generated by the calling application every time it sends a request to FIDO UAF Client. The FIDO UAF
Client musT then use this key to encrypt the response message before responding to the caller.

JSON Web Encryption (JWE), JSON Serialization (JWE Section 7.2) format musT be used to represent the encrypted response message.

The encryption algorithm is that specified in "A128CBC-HS256" where the JWE "Key Management Mode" employed is "Direct Encryption" and
the JWE "Content Encryption Key (CEK)" is the secret key generated by the calling application and passed to the FIDO UAF Client in the xey

parameter of the request.

http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#section-7.2
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#appendix-B

"unprotected": {"alg": "dir", "enc": "A128CBC-HS256"},
miyh, o

"ciphertext": "...",

mEagh: "L n

7.1.3 Origin

iOS applications requesting services from the FIDO Client can do so under their own identity, or they can act as the user's agent by explicitly
declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity musT NoT set an explicit origin. Omitting an explicit origin will cause the FIDO UAF
Client to determine the caller's identity as "ios:bundle-id". The FIDO UAF Client will then compare this with the list of authorized application
facets for the target AppID and proceed if it is listed as trusted.

See the UAF Protocol Specification [UAFProtocol] for more information on application and facet identifiers.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when
implementing a full web browser) it may set origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The
application musT satisfy the necessary conditions described in Transport Security Requirements for authenticating the remote server before
setting origin.

7.1.4 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
iOS application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is vap<string, string> with the keys as defined for the channe1sinding structure in the FIDO UAF Protocol
Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same
channel the legitimate client is using and that messages have not been forwarded through a malicious party. UAF defines support for the «1s-
unique and tls-server-end-point bindings from [RFC5929], as well as server certificate and channe11p [ChannellD] bindings. The client should
supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.
7.1.5 UAFxType

This value describes the type of operation for the x-cz11back-ur1 operations implementing the iOS API.

WebIDL

enum UAFxType ({
"DISCOVER",
"DISCOVER RESULT",
"CHECK_POLICY",
"CHECK_POLICY RESULT",
"UAF_OPERATION",
"UAF_OPERATION_ RESULT",
"UAF_OPERATION COMPLETION_STATUS"

Enumeration description

DISCOVER Discovery

DISCOVER RESULT Discovery results

CHECK POLICY Perform a no-op check if a message could be processed.
CHECK_POLICY RESULT Check Policy results.

UAF_OPERATION The UAF message operation type (for example registration).

ON_RESULT UAF Operation results.
var operaTION covpreTION sTATUS Inform the FIDO UAF Client of the completion status of a UAF operation (such as registration.

7.2 JSON Values

The specifics of the UAFxType operation are carried by various JSON values encoded in the json x-callback-url parameter.

JSON value Type Description

discoveryData String DiscoveryData JSON dictionary.

errorCode short ErrorCode Value for operation

message String UAFMessage request to test or process, depending on vaFxType.
origin String An RFC6454 Web Origin [RFC6454] string for the request.
channelBindings String The channel bindings JSON dictionary for the operation.
responseCode short The vafresult field of @ serverresponse.

The following table shows what JSON values are expected, depending on the value of the varxType x-callback-ur1l operation:

UAFxType operation discoveryData errorCode message origin channelBindings responseCode
"DISCOVER"
"DISCOVER_RESULT" OPTIONAL REQUIRED
"CHECK_POLICY" REQUIRED | OPTIONAL
"CHECK_POLICY_RESULT" REQUIRED
"UAF_OPERATION" REQUIRED | OPTIONAL | REQUIRED
"UAF_OPERATION_RESULT" REQUIRED OPTIONAL
"UAF_OPERATION_COMPLETION_STATUS" REQUIRED REQUIRED

7.2.1 DISCOVER

This operation invokes the FIDO UAF Client to discover the available authenticators and capabilities. The FIDO UAF Client generally will not
show a user interface associated with the handling of this operation, but will simply return the resulting JSON structure.

The calling application cannot depend on this however, as the client may show a user interface for privacy purposes, allowing the user to choose
whether and which authenticators to disclose to the calling application.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no user interface is
displayed.
7.2.2 DISCOVER_RESULT

An operation with this type is returned by the FIDO UAF Client in response to receiving an x-callback-ur1 operation of type nrscover.

If x-callback-url JSON value errorcode is N0 _ErRrOR, this x-callback-url operation has a JSON value, discoverybata, containing a string
representation of a piscoverypata JSON dictionary listing the available authenticators and their capabilities.

7.2.3 CHECK_POLICY

This operation invokes the FIDO UAF Client to discover if the client would be able to process the supplied message, without prompting the user.

The related ~ction handling this operation sHouLp NoT show an interface to the user.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no Ul is displayed.

This x-callback-url operation requires the following JSON values:

® nessage, containing a string representation of a uarmMessage representing the request message to test.

origin, an oPTIONAL JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's

own identity.

7.2.4 CHECK_POLICY_RESULT

This operation is returned by the FIDO UAF Client in response to receiving a cuzcx rornicy x-callback-url operation.

The x-callback-url JSON value «rrorcode containing an Exrorcode value indicating the specific error condition or no_=zzox if the FIDO Client
could process the message.

7.2.5 UAF_OPERATION

This operation invokes the FIDO UAF Client to process the supplied request message and return a result message ready for delivery to the
FIDO UAF Server. The sender sHouLb assume that the FIDO UAF Client will display a Ul to the user to handle this x-callback-url operation, e.g.
prompting the user to complete their verification ceremony.

This x-callback-url operation requires the following JSON values:

® nessage, cOntaining a string representation of a varvessage representing the request message to process.

e channelBindings, containing a string representation of a JSON dictionary as defined by the channeirinding structure in the UAF Protocol
Specification [UAFProtocol].

e origin, an oPTIONAL JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's
own identity.

7.2.6 UAF_OPERATION_RESULT

This x-callback-url operation is returned by the FIDO UAF Client in response to receiving a uar orzraT1on X-callback-url operation.
The x-callback-url JSON value «rrorcode containing an Exrorcodevalue indicating the specific error condition.
If x-callback-url JSON value errorcode is N0 ErRROR, this x-callback-url operation has a JSON value, message, containing a string representation

of a uarMessage, being the UAF protocol response message to be delivered to the FIDO Server.
7.2.7 UAF_OPERATION_COMPLETION_STATUS

This x-callback-url operation must be delivered to the FIDO UAF Client to indicate the completion status of a FIDO UAF message delivered to
the remote server. This is especially important as, e.g. a new registration may be considered in a pending status until it is known the server
accepted it.

7.3 Implementation Guidelines for iOS Implementations

Each iOS Custom URL based request results in a human-noticeable context switch between the App and FIDO UAF Client and vice versa. This
will be most noticeable when invoking DISCOVER and CHECK_POLICY requests since typically these requests will be invoked automatically,
without user's involvement. Such a context switch impacts the User Experience and therefore it's REcommenDED to avoid making these two
requests and integrate FIDO without using them.

7.4 Security Considerations for iOS Implementations

This section is non-normative.

A security concern with custom URLs under iOS is that any app can register any custom URL. If multiple applications register the same custom
URL, the behavior for handling the URL call in iOS is undefined.

On the FIDO UAF Client side, this issue with custom URL scheme handlers is solved by using the sourcerpplication parameter which provides
the bundle ID of the URL originator. This is effective as long as the device has not been jailbroken and as long as Apple has done due diligence
vetting submissions to the app store for malware with faked bundle IDs. The sourceappiication parameter can be matched with the FacetlID list
to ensure that the calling app is approved to use the credentials for the relying party.

On the relying party app side, encryption is used to prevent a rogue app from spoofing the relying party app's response URL. The relying party
app generates a random encryption key on every request and sends it to the FIDO client. The FIDO client then encrypts the response to this
key. In this manner, only the relying party app can decrypt the response. Even in the event that malware is able to spoof the relying party app's
URL and intercept the response, it would not be able to decode it.

To protect against potentially malicious applications registering themselves to handle the FIDO UAF Client custom URL scheme, relying party
Applications can obtain the bundle-id of the responding app and utilize it in risk management decisions around the authentication or transaction
events. For example, a relying party might maintain a list of bundle-ids known to belong to malware and refuse to accept operations completed
with such clients, or a list of bundle-ids of known-good clients that receive preferred risk-scoring.

8. Transport Binding Profile

This section is normative.

This section describes general normative security requirements for how a client application transports FIDO UAF protocol messages, gives
specific requirements for Transport Layer Security (TLS), and describes an interoperability profile for using HTTP over TLS [RFC2818] with the
FIDO UAF protocol.

8.1 Transport Security Requirements

This section is non-normative.

The UAF protocol contains no inherent means of identifying a relying party server, or for end-to-end protection of UAF protocol messages. To
perform a secure UAF protocol exchange, the following abstract requirements apply:

1. The client application must securely authenticate the server endpoint as authorized, from that client's viewpoint, to represent the Web
origin [RFC6454] (scheme:host:port tuple) reported to the FIDO UAF Client by the client application. Most typically this will be done by
using TLS and verifying the server's certificate is valid, asserts the correct DNS name, and chains up to a root trusted by the client
platform. Clients may also utilize other means to authenticate a server, such as via a pre-provisioned certificate or key that is distributed
with an application, or alternative network authentication protocols such as Kerberos [RFC4120].

2. The transport mechanism for UAF protocol messages must provide confidentiality for the message, to prevent disclosure of their contents
to unauthorized third parties. These protections should be cryptographically bound to proof of the server's identity as described above.

3. The transport mechanism for UAF protocol messages must protect the integrity of the message from tampering by unauthorized third
parties. These protections should be cryptographically bound to proof of the server's identity in as described above.

8.2 TLS Security Requirements

This section is non-normative.

If using HTTP over TLS ([RFC2246] [RFC4346], [RFC5246] or [TLS13draft02]) to transport an UAF protocol exchange, the following specific
requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any other error level with the TLS connection, the HTTP client must terminate
the connection without prompting the user. For example, this includes any errors found in certificate validity checking that HTTP clients
employ, such as via TLS server identity checking [RFC6125], Certificate Revocation Lists (CRLs) [RFC5280], or via the Online Certificate
Status Protocol (OCSP) [RFC2560].

2. Whenever comparisons are made between the presented TLS server identity (as presented during the TLS handshake, typically within the
server certificate) and the intended source TLS server identity (e.g., as entered by a user, or embedded in a link), [RFC6125] server
identity checking must be employed. The client must terminate the connection without prompting the user upon any error condition.

3. The TLS server certificate must either be provisioned explicitly out-of-band (e.g. packaged with an app as a "pinned certificate") or be
trusted by chaining to a root included in the certificate store of the operating system or a major browser by virtue of being currently in
compliance with their root store program requirements. The client must terminate the connection without user recourse if there are any
error conditions when building the chain of trust.

4. The "anon" and "null" crypto suites are not allowed and insecure cryptographic algorithms in TLS (e.g. MD4, RC4, SHA1) should be
avoided (see NIST SP800-131A [SP800-131A]).

5. The client and server should use the latest practicable TLS version.

6. The client should supply, and the server should verify whatever practicable channel binding information is available, including a channe11o
[ChannellD] public key, the t1s-unigue and t1s-server-end-point bindings [RFC5929], and TLS server certificate binding [UAFProtocol].
This information provides protection against certain classes of network attackers and the forwarding of protocol messages, and a server
may reject a message that lacks or has channel binding data that does not verify correctly.

8.3 HTTPS Transport Interoperability Profile

This section is normative.
Conforming applications may support this profile.

Complex and highly-optimized applications utilizing UAF will often transport UAF protocol messages in-line with other application protocol
messages. The profile defined here for transporting UAF protocol messages over HTTPS is intended to:

o Provide an interoperability profile to enable easier composition of client-side application libraries and server-side implementations for FIDO
UAF-enabled products from different vendors.

o Provide detailed illustration of specific necessary security properties for the transport layer and HTTP interfaces, especially as they may
interact with a browser-hosted application.

e This profile is also utilized in the examples that constitute the appendices of this document. This profile is opTionAL to implement. RFC 2119

key words are used in this section to indicate necessary security and other properties for implementations that intend to use this profile to
interoperate [RFC2119].

NOTE

Certain FIDO UAF operations, in particular, transaction confirmation, will always require an application-specific implementation. This
interoperability profile only provides a skeleton framework suitable for replacing username/password authentication.

8.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request messages as part of a response body containing other application content, e.g. in
a script block as such:

<script type="application/json”>

“initialRequest”: {

// initial request message here

by

“lifetimeMillis”: 60000; // hint: this initial request is valid for 60 seconds
}

</script>

However, request messages have a limited lifetime, and an installed application cannot be delivered with a request, so client applications
generally need the ability to retrieve a fresh request.

When sending a request message over HTTPS with XMLHttpRequest [XHR] or another HTTP API:

1. The URI of the server endpoint, and how it is communicated to the client, is application-specific.

2. The client musT set the HTTP method to POST. [RFC7231]

3. The client sHouLp set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-8”. [RFC7231]

4. The client sHouLp include “application/fido+uat” as a media type in the HTTP “Accept” header [RFC7231]. Conforming servers musTt
accept “application/fidotuat” as media type

5. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific manner,
their authorization to perform a request.

6. The entire POST body musT consist entirely of a JSON [ECMA-404] structure described by the cetuarrequest dictionary.

7. The server's response sHouLD set the HTTP “Content-Type” to “application/fido+uaf; charset=utf-8”

8. The client sHouLp decode the response byte string as UTF-8 with error handling. [HTML5]

9. The decoded body of the response musT consist entirely of a JSON structure described by the returnuarrequest interface.

8.3.2 Operation enum

Describes the operation type of a FIDO UAF message or request for a message.

WebIDL

enum Operation {
"Reg",
"Auth",
"Dereg"

Enumeration description

Reg Registration
Auth Authentication or Transaction Confirmation
pereg Deregistration

8.3.3 GetUAFRequest dictionary

WebIDL

dictionary GetUAFRequest {
Operation op;
DOMString p:
DOMString c

1sRequest;

8.3.3.1 Dictionary cetuarrequest Members

op Of type Operation
The type of the UAF request message desired. Allowable string values are defined by the Operation enum. This field is opTioNAL but

musT be set if the operation is not known to the server through other context, e.g. an operation-specific URL endpoint.

previousRequest Of type DOMString
If the application is requesting a new UAF request message because a previous one has expired, this orTionAL key can include the

previous one to assist the server in locating any state that should be re-associated with a new request message, should one be

issued.

context Of type DOMString
Any additional contextual information that may be useful or necessary for the server to generate the correct request message. This

key is opTionAL and the format and nature of this data is application-specific.

8.3.4 ReturnUAFRequest dictionary

WebIDL

dictionary ReturnUAFRequest {
required unsigned long s
DOMString
Operation
long

8.3.4.1 Dictionary returnuaFrRequest Members
statusCode Of type required unsigned long
The UAF Status Code for the operation (see section 3.1 UAF Status Codes).

uafRequest Of type DOMString
The new UAF Request Message, opTioNAL, if the server decided to issue one.

op Of type Operation
An opTioNAL hint to the client of the operation type of the message, useful if the server might return a different type than was

requested. For example, a server might return a deregister message if an authentication request referred to a key it no longer
considers valid. Allowable string values are defined by the Operation enum.

lifetimeMillis Of type long
If the server returned a uafrequest, this is an opTionAL hint informing the client application of the lifetime of the message in
milliseconds.

8.3.5 SendUAFResponse dictionary

WebIDL

dictionary SendUAFResponse {
required DOMString u.
DOMString c

8.3.5.1 Dictionary sendvarresponse Members

uafResponse Of type required DOMString
The UAF Response Message. It MmusT be set to UrFMessage. uafProtocolMessage returned by FIDO UAF Client.

context Of type DOMString
Any additional contextual information that may be useful or necessary for the server to process the response message. This key is

orTIoNAL and the format and nature of this data is application-specific.

8.3.6 Delivering a UAF Response

Although it is not the only pattern possible, an asynchronous HTTP request is a useful way of delivering a UAF Response to the remote server
for either web applications or standalone applications.

When delivering a response message over HTTPS with XMLHttpRequest [XHR] or another API:

1. The URI of the server endpoint and how it is communicated to the client is application-specific.

2. The client musT set the HTTP method to POST. [RFC7231]

3. The client musT set the HTTP “Content-Type” header to “application/fido+tuas; charset=utf-87. [RFC7231]
4. The client sHouLb include “application/fido+uat” as a media type in the HTTP “Accept” header. [RFC7231]
5

. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific manner,
their authorization to perform an operation.

. The entire POST body musT consist entirely of a JSON [ECMA-404] structure described by the senduarresp

. The server's response sHouLD set the “Content-Type” to “application/fidotuaf; charset=utf-8” and the body of the response must
consist entirely of a JSON structure described by the serverresponse interface.

»

~

8.3.7 ServerResponse Interface

The serverresponse interface represents the completion status and additional application-specific additional data that results from successful
processing of a Register, Authenticate, or Transaction Confirmation operation. This message is not formally part of the UAF protocol, but the
statusCode Should be posted to the FIDO UAF Client, for housekeeping, using the notifyuarresulc () operation.

WebIDL

interface ServerResponse {

readonly attribute int

[Optionall

readonly attribute DOMString description;
[Optional]

readonly attribute Token][]

[Optional]

readonly attribute DOMString lo
[Optionall

readonly attribute DOMString po
[Optionall

readonly attribute

8.3.7.1 Attributes

statusCode Of type int, readonly
The FIDO UAF response status code. Note that this status code describes the result of processing the tunneled UAF operation, not
the status code for the outer HTTP transport.

description Of type DOMString, readonly
A detailed message describing the status code or providing additional information to the user.

additionalTokens Of type array of Token, readonly
This key contains new authentication or authorization token(s) for the client that are not natively handled by the HTTP transport.
Tokens sHouLb be processed prior to processing of 1ocation.

location Of type DOMString, readonly
If present, indicates to the client web application that it should navigate the Document context to the URI contained on this field after
processing any tokens.

postData Of type DOMString, readonly
If present in combination with 10cation, indicates that the client should POST the contents to the specified location after processing
any tokens.

newUAFRequest Of type DOMString, readonly
The server may use this to return a new UAF protocol message. This might be used to supply a fresh request to retry an operation in
response to a transient failure, to request additional confirmation for a transaction, or to send a deregistration message in response to
a permanent failure.

8.3.8 Token interface

NOTE

The UAF Server is not responsible for creating additional tokens returned as part of a UAF response. Such tokens exist to provide a

means for the relying party application to update the authentication/authorization state of the client in response to a successful UAF
operation. For example, these fields could be used to allow UAF to serve as the initial authentication leg of a federation protocol, but the
scope and details of any such federation are outside of the scope of UAF.

WebIDL

interface Token {
readonly attribute TokenType type;
readonly attribute DOMString value;

8.3.8.1 Attributes

type of type TokenType, readonly
The type of the additional authentication / authorization token.

value Of type DOMString, readonly
The string value of the additional authentication / authorization token.

8.3.9 TokenType enum

WebIDL

enum TokenType {
"HTTP_COOKIE",
"OAUTH",
"OAUTH2",
"SAML1 1",
"SAML2",
"JWT",
"OPENID_CONNECT"

Enumeration description

If the user agent is a standard web browser or other HTTP native client with a cookie store, this TokenType sHouLD NOT be
used. Cookies should be set directly with the Set-Cookie HTTP header for processing by the user agent. For non-HTTP or

HITE_COOKIR non-browser contexts this indicates a token intended to be set as an HTTP cookie. [RFC6265] For example, a native VPN
client that authenticates with UAF might use this TokenType to automatically add a cookie to the browser cookie jar.

OAUTH Indicates that the token is of type OAUTH. [RFC5849].

OAUTH2 Indicates that the token is of type OAUTH2. [RFC6749].

SAML Indicates that the token is of type SAML 1.1. [SAML11].

SAML2 Indicates that the token is of type SAML 2.0. [SAML2-CORE]

JWT Indicates that the token is of type JSON Web Token (JWT). [JWT]

orenip connecT Indicates that the token is an OpenlID Connect “id_token”. [OpenIDConnect]

8.3.10 Security Considerations

This section is non-normative.

It is important that the client set, and the server require, the method be POST and the “Content-Type” HTTP header be the correct values.
Because the response body is valid ECMAScript, to protect against unauthorized cross-origin access, a server must not respond to the type of
request that can be generated by a SCFipt tag, e.g. <script src="https://example.com/fido/uaf/getRequest”>. The request a user agent
generates with this kind of embedding cannot set custom headers.

Likewise, by requiring a custom “Content-Type” header, cross-origin requests cannot be made with an XMLHttpRequest [XHR] without
triggering a CORS preflight access check. [CORS]

As FIDO UAF messages are only valid when used same-origin, servers should not supply an “Access-Control-Allow-Origin” [CORS] header with
responses that would allow them to be read by non-same-origin content.

To protect from some classes of cross-origin, browser-based, distributed denial-of-service attacks, request endpoints should ignore, without
performing additional processing, all requests with an “Access-Control-Request-Method” [CORS] HTTP header or an incorrect “Content-Type”
HTTP header.

If a server chooses to respond to requests made with the GET method and without the custom “Content-Type” header, it should apply a prefix

string such as “while (1);” or “sssBEcin Uar rREsponsEsss” to the body of all replies and so prevent their being read through cross-origin <script>

tag embedding. Legitimate same-origin callers will need to (and alone be able to) strip this prefix string before parsing the JSON content.

A. References

A.1 Normative references

[AndroidAppManifest]

Android App Manifest. Work in Progress. URL: http://developer.android.com/guide/topics/manifest/manifest-intro.html
[ChannellD]

D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL: http:/tools.ietf.org/html/draft-balfanz-tls-channelid
[DOM]

Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/
[ECMA-262]
ript Lan ification. URL: https://tc39.es/ecma262/
[ECMA-404]

The JSON Data Interchange Format. 1 October 2013. Standard. URL: https://www.ecma-international.org/publications/files/ECMA-
ST/ECMA-404.pdf

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. £IDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-

id-20180227/fido-glossary-v2.0-id-20180227.html
[FIDOMetadataStatement]

B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: h
20180227/fido-m - ment-v2.0-id-20180227 .html

[FIDORegistry]

R. Lindemann; D. Baghdasaryan; B. Hill. EIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[HTMLS5]
I. Hickson; R.Berjon; S. Faulkner; T. Leithead; E. D. Navara; E. O'Connor; S. Pfeiffer. HTML5: A vocabulary and associated APIs for
HTML and XHTML. 28 October 2014. W3C Recommendation. URL: http://www.w3.org/TR/html5/
[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. RFC. URL: https:/tools.ietf.org/html/rfc7519
[OpenIDConnect]

. OpenlD Connect. Work in Progress. URL: http://openid.net/connect/

[PNG]
Tom Lane. Portable Network Graphics (PN ification nd Edition). 10 November 2003. W3C Recommendation. URL:
https://www.w3.org/TR/PN

[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119
[RFC2397]
L. Masinter. The "data” URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397
[RFC2818]
E. Rescorla. HTTP Over TLS. May 2000. Informational. URL: https://httpwg.org/specs/rfc2818.html
[RFC4648]
S. Josefsson. The B 16. B 2, and B 4 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt
[RFC5849]

E. Hammer-Lahav. The OAuth 1.0 Protocol (REC 5849). April 2010. URL: http://www.ietf.org/rfc/rfc5849.txt
[RFC5929]

J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL: http://www.ietf.org/rfc/rfc5929.txt
[RFC6125]
P. Saint-Andre; J Hodges.

. March 2011. URL

h www.ietf.org/rfc/rf X
[RF06265]

A. Barth. HTTP State Management Mechanism. April 2011. Proposed Standard. URL: https://httpwg.org/specs/rfc6265.html
[RFC6454]

A. Barth. The Web Origin Concept (REC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt
[RFC6749]

D. Hardt, Ed.. The OAuth 2.0 Authorization Framework (RFC 6749). October 2012. URL: http://www.ietf.org/rfc/rfc6749.txt

[RFC7230]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. June 2014. Proposed Standard.
URL: https:/httpwg.org/specs/rfc7230.html

[RFC7231]
R. Fielding, Ed.; J. Reschke, Ed.. H xt Transfer Pr | (HTTP/1.1): Semanti n ntent. June 2014. Proposed Standard. URL:
h ://httpwg.or: rfc7231.html

[SAML11]
E. Maler; P. Mishra; R. Philpott. The Security Assertion Markup Language (SAML) v1.1. October 2003. URL: https://www.oasis-

open.org/standards#samivi.1

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://openid.net/connect/
http://openid.net/connect/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://httpwg.org/specs/rfc2818.html
https://httpwg.org/specs/rfc2818.html
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://httpwg.org/specs/rfc6265.html
https://httpwg.org/specs/rfc6265.html
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://httpwg.org/specs/rfc7230.html
https://httpwg.org/specs/rfc7230.html
https://httpwg.org/specs/rfc7231.html
https://httpwg.org/specs/rfc7231.html
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1

[SAML2-CORE]
Scott Cantor; John Kemp; Rob Philpott; Eve Maler. Assertions and Protocols for SAML V2.0 15 March 2005. URL: http:/docs.oasis-
[UAFProtocol]
R. Llndemann D. Baghdasaryan; E. Tiffany; D. Balfanz; B. H|II J. Hodges; K. Yang EIDO UAF Pr / ification v1.2. Review Draft.
Lli . fi f-v1. f-prot .

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. EIDO UAF Registry of Predefined Values. Review Draft. URL: https://fidoalliance.org/specs/fido-

v2.0-id-20180227/fido-registry-v2.0-id-20180227 html
[WebIDL-ED]

Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.qgithub.io/webidl/

A.2 Informative references

[ANDROID]
The Android™ Operating System. URL: http://developer.android.com/
[Android5Changes]
Android 5.0 Behavior Changes. Work in progress. URL: http:
[CORS]
Anne van Kesteren. Cross-Origin Resource Sharing. 2 June 2020. W3C Recommendation. URL: https://www.w3.org/TR/cors/
[RFC2045]

N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. November 1996.

Draft Standard. URL: https://tools.ietf.org/html/rfc2045
[RFC2246]

T. Dierks; E. Rescorla. The TLS Protocol Version 1.0. January 1999. URL: http://www.ietf.org/rfc/rfc2246.txt
[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Cetrtificate Status Protocol -
OCSP. June 1999. Proposed Standard. URL: https:/tools.ietf.org/html/rfc2560
[RFC4120]
C. Neuman; T. Yu; S. Hartman; K. Raeburn. The Kerberos Network Authentication Pr [(V5) (RFC 4120). July 2005. URL:

http://www.ietf.org/rfc/rfc4120.txt

[RFC4346]
T. Dierks; E. Rescorla. The Transport Layer rity (TLS) Pr [Version 1.1. April 2006. URL: http://www.ietf.org/rfc/rfc4346.txt
[RFC5246]

T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol. August 2008. URL: http://www.ietf.org/rfc/rfc5246.txt
[RFC5280]

D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Cetrtificate and Certificate
Revocation List (CRL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280
[SOP]
. Same Origin Policy for JavaScript. January 2014. URL: https://developer.mozilla.org/en-
W vaScri me_origin_policy for_JavaScri
[SP800-131A]

E. Barker; A. Roginsky. NIST f
Algorithms and Key Lengths. January 2011. Wlthdrawn on November 06 2015. URL: http://csrc.nist. tions/nist
131A/sp800-131A.pdf

[TLS13draft02]

T. Dierks; E. Rescorla. The Transport Layer Security (TLD) Protocol Version 1.3 (draft 02). July 2014. URL: https://tools.ietf.org/html/draft-
ietf-tls-tls13-02

[UAFASM]

D Baghdasaryan J. Kemp R. Lindemann; B. Hill; R. Sasson ElMAEAuIb_euILQaLQr_Sp_e_QLfLC_Mo_d_uLe_ABl Review Draft. URL:
[WebIDL] ‘

Boris Zbarsky. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.qgithub.io/webidl/
[XHR]

Anne van Kesteren. XMLH{t{pRequest Standard. Living Standard. URL: https://xhr.spec.whatwg.org/

[webmessaging]
lan Hickson. HTML5 Web Messaging. 19 May 2015. W3C Recommendation. URL: https://www.w3.org/TR/webmessaging/

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/about/versions/android-5.0-changes.html
http://developer.android.com/about/versions/android-5.0-changes.html
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/webmessaging/
https://www.w3.org/TR/webmessaging/

fco

ALLIANCE

FIDO UAF Architectural Overview
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fi
Previous version:
https://fidoallian
Editors:
S M] . L
Rob Philpott, RSA, the Security Division of EMC
Sampath Srinivas, Google, Inc.
John Kemp, FIDO Alliance
Jeff Hodges, PayPal, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

The FIDO UAF strong authentication framework enables online services and websites, whether on the open Internet or within enterprises, to
transparently leverage native security features of end-user computing devices for strong user authentication and to reduce the problems
associated with creating and remembering many online credentials. The FIDO UAF Reference Architecture describes the components, protocols,
and interfaces that make up the FIDO UAF strong authentication ecosystem.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the EIDO Allian ifications in
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used
as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the specification
and to promote its widespread deployment.

Table of Contents

e 1. Introduction

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-overview-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html
mailto:salah.machani@rsa.com
https://www.emc.com/domains/rsa/index.htm
https://www.emc.com/domains/rsa/index.htm
https://www.google.com/
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

o 1.1 Background
o 1.2 FIDO UAF Documentation
o 1.3 FIDO UAF Goals
e 2. FIDO UAF High-Level Architecture
o 2.1 FIDO UAF Client
o 2.2 FIDO UAF Server
o 2.3 FIDO UAF Protocols
o 2.4 FIDO UAF Authenticator Abstraction Layer
o 2.5 FIDO UAF Authenticator
o 2.6 FIDO UAF Authenticator Metadata Validation
e 3. FIDO UAF Usage Scenarios and Protocol Message Flows
o 3.1 FIDO UAF Authenticator Acquisition and User Enrollment
o 3.2 Authenticator Registration
o 3.3 Authentication
o 3.4 Step-up Authentication
o 3.5 Transaction Confirmation
o 3.6 Authenticator Deregistration
o 3.7 Adoption of New Types of FIDO UAF Authenticators

4. Privacy Considerations

5. Relationship to Other Technologies

6. OATH, TCG, PKCS#11, and ISO 24727
e 7. Table of Figures

1. Introduction

This section is non-normative.

This document describes the FIDO Universal Authentication Framework (UAF) Reference Architecture. The target audience for this document is
decision makers and technical architects who need a high-level understanding of the FIDO UAF strong authentication solution and its relationship
to other relevant industry standards.

The FIDO UAF specifications are as follows:

e FIDO UAF Protocol

e FIDO UAF Application APl and Transport Binding
e FIDO UAF Authenticator Commands

e FIDO UAF Authenticator-Specific Module API

o FIDO UAF Registry of Predefined Values

e FIDO UAF APDU

The following additional FIDO documents provide important information relevant to the UAF specifications:

e FIDO ApplID and Facets Specification
o FIDO Metadata Statements

e FIDO Metadata Service

e FIDO Registry of Predefined Values
e FIDO ECDAA Algorithm

e FIDO Security Reference

e FIDO Glossary

These documents may all be found on the FIDO Alliance website at http://fidoalliance.org/specifications/download/
1.1 Background

This section is non-normative.

The FIDO Alliance mission is to change the nature of online strong authentication by:

e Developing technical specifications defining open, scalable, interoperable mechanisms that supplant reliance on passwords to securely

http://fidoalliance.org/specifications/download/

authenticate users of online services.
e Operating industry programs to help ensure successful worldwide adoption of the specifications.
e Submitting mature technical specifications to recognized standards development organization(s) for formal standardization.

The core ideas driving the FIDO Alliance's efforts are 1) ease of use, 2) privacy and security, and 3) standardization. The primary objective is to
enable online services and websites, whether on the open Internet or within enterprises, to leverage native security features of end-user computing
devices for strong user authentication and to reduce the problems associated with creating and remembering many online credentials.

There are two key protocols included in the FIDO architecture that cater to two basic options for user experience when dealing with Internet
services. The two protocols share many of underpinnings but are tuned to the specific intended use cases.

Universal Authentication Framework (UAF) Protocol

The UAF protocol allows online services to offer password-less and multi-factor security. The user registers their device to the online service by
selecting a local authentication mechanism such as swiping a finger, looking at the camera, speaking into the mic, entering a PIN, etc. The UAF
protocol allows the service to select which mechanisms are presented to the user.

Once registered, the user simply repeats the local authentication action whenever they need to authenticate to the service. The user no longer
needs to enter their password when authenticating from that device. UAF also allows experiences that combine multiple authentication
mechanisms such as fingerprint + PIN.

This document that you are reading describes the UAF reference architecture.
Universal 2nd Factor (U2F) Protocol

The U2F protocol allows online services to augment the security of their existing password infrastructure by adding a strong second factor to user
login. The user logs in with a username and password as before. The service can also prompt the user to present a second factor device at any
time it chooses. The strong second factor allows the service to simplify its passwords (e.g. 4-digit PIN) without compromising security.

During registration and authentication, the user presents the second factor by simply pressing a button on a USB device or tapping over NFC. The
user can use their FIDO U2F device across all online services that support the protocol leveraging built-in support in web browsers.

Please refer to the FIDO website for an overview and documentation set focused on the U2F protocol.
1.2 FIDO UAF Documentation

This section is non-normative.

To understand the FIDO UAF protocol, it is recommended that new audiences start by reading this architecture overview document and become
familiar with the technical terminology used in the specifications (the glossary). Then they should proceed to the individual UAF documents in the
recommended order listed below.

e FIDO UAF Overview: This document. Provides an introduction to the FIDO UAF architecture, protocols, and specifications.
e FIDO Technical Glossary: Defines the technical terms and phrases used in FIDO Alliance specifications and documents.
e Universal Authentication Framework (UAF)

o UAF Protocol Specification : Message formats and processing rules for all UAF protocol messages.

o UAF Application APl and Transport Binding Specification: APIs and interoperability profile for client applications to utilize FIDO
UAF.

o UAF Authenticator Commands: Low-level functionality that UAF Authenticators should implement to support the UAF protocol.
o UAF Authenticator-specific Module API: Authenticator-specific Module API provided by an ASM to the FIDO client.

o UAF Registry of Predefined Values: defines all the strings and constants reserved by UAF protocols.

o UAF APDU: defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units (APDUSs).

FIDO AppID and Facet Specification : Scope of user credentials and how a trusted computing base which supports application isolation
may make access control decisions about which keys can be used by which applications and web origins.

FIDO Metadata Statements: Information describing form factors, characteristics, and capabilities of FIDO Authenticators used to inform
interactions with and make policy decisions about the authenticators.

o FIDO Metadata Service : Baseline method for relying parties to access the latest Metadata statements.
FIDO ECDAA Algorithm : Defines the direct anonymous attestation algorithm for FIDO Authenticators.

FIDO Registry of Predefined Values: defines all the strings and constants reserved by FIDO protocols with relevance to multiple FIDO
protocol families.

FIDO Security Reference: Provides an analysis of FIDO security based on detailed analysis of security threats pertinent to the FIDO
protocols based on its goals, assumptions, and inherent security measures.

The remainder of this Overview section of the reference architecture document introduces the key drivers, goals, and principles which inform the
design of FIDO UAF.

Following the Overview, this document describes:

A high-level look at the components, protocols, and APIs defined by the architecture
The main FIDO UAF use cases and the protocol message flows required to implement them.
The relationship of the FIDO protocols to other relevant industry standards.

1.3 FIDO UAF Goals

This section is non-normative.

In order to address today's strong authentication issues and develop a smoothly-functioning low-friction ecosystem, a comprehensive, open, multi-
vendor solution architecture is needed that encompasses:

User devices, whether personally acquired, enterprise-issued, or enterprise BYOD, and the device's potential operating environment, e.g.
home, office, in the field, etc.

Authenticators®

Relying party applications and their deployment environments

Meeting the needs of both end users and Relying Parties

Strong focus on both browser- and native-app-based end-user experience

This solution architecture must feature:

FIDO UAF Authenticator discovery, attestation, and provisioning

Cross-platform strong authentication protocols leveraging FIDO UAF Authenticators
A uniform cross-platform authenticator API

Simple mechanisms for Relying Party integration

The FIDO Alliance envisions an open, multi-vendor, cross-platform reference architecture with these goals:

Support strong, multi-factor authentication: Protect Relying Parties against unauthorized access by supporting end user authentication

using two or more strong authentication factors ("something you know", "something you have", "something you are").

Build on, but not require, existing device capabilities: Facilitate user authentication using built-in platform authenticators or capabilities
(fingerprint sensors, cameras, microphones, embedded TPM hardware), but do not preclude the use of discrete additional authenticators.

Enable selection of the authentication mechanism: Facilitate Relying Party and user choice amongst supported authentication
mechanisms in order to mitigate risks for their particular use cases.

Simplify integration of new authentication capabilities: Enable organizations to expand their use of strong authentication to address new
use cases, leverage new device's capabilities, and address new risks with a single authentication approach.

Incorporate extensibility for future refinements and innovations: Design extensible protocols and APIs in order to support the future
emergence of additional types of authenticators, authentication methods, and authentication protocols, while maintaining reasonable
backwards compatibility.

Leverage existing open standards where possible, openly innovate and extend where not: An open, standardized, royalty-free
specification suite will enable the establishment of a virtuous-circle ecosystem, and decrease the risk, complexity, and costs associated with
deploying strong authentication. Existing gaps -- notably uniform authenticator provisioning and attestation, a uniform cross-platform
authenticator API, as well as a flexible strong authentication challenge-response protocol leveraging the user's authenticators will be
addressed.

Complement existing single sign-on, federation initiatives: While industry initiatives (such as OpenID, OAuth, SAML, and others) have
created mechanisms to reduce the reliance on passwords through single sign-on or federation technologies, they do not directly address the
need for an initial strong authentication interaction between end users and Relying Parties.

Preserve the privacy of the end user: Provide the user control over the sharing of device capability information with Relying Parties, and
mitigate the potential for collusion amongst Relying Parties.

Unify end-User Experience: Create easy, fun, and unified end-user experiences across all platforms and across similar Authenticators.

2. FIDO UAF High-Level Architecture

This section is non-normative.

The FIDO UAF Architecture is designed to meet the FIDO goals and yield the desired ecosystem benefits. It accomplishes this by filling in the
status-quo's gaps using standardized protocols and APls.

The following diagram summarizes the reference architecture and how its components relate to typical user devices and Relying Parties.

The FIDO-specific components of the reference architecture are described below.

TLS
_3rcﬂ| |TLS<.9-.J-

BROWSER. / APP UAF Protocol WEB SERVER

Cryptographic FIDO SERVER

FIDO CLIENT authentication key
reference DB

Authentication
ks

FIDO AUTHENTICATOR

Aftestation key

Authenticator S FIDO METADATA SERVICE
metadata &
attestation trust
store J)
/ : Certify ‘

T compliance

Fig. 1 FIDO UAF High-Level Architecture

2.1 FIDO UAF Client
A FIDO UAF Client implements the client side of the FIDO UAF protocols, and is responsible for:

e Interacting with specific FIDO UAF Authenticators using the FIDO UAF Authenticator Abstraction layer via the FIDO UAF Authenticator API.

e Interacting with a user agent on the device (e.g. a mobile app, browser) using user agent-specific interfaces to communicate with the FIDO
UAF Server. For example, a FIDO-specific browser plugin would use existing browser plugin interfaces or a mobile app may use a FIDO-
specific SDK. The user agent is then responsible for communicating FIDO UAF messages to a FIDO UAF Server at a Relying Party.

The FIDO UAF architecture ensures that FIDO client software can be implemented across a range of system types, operating systems, and Web
browsers. While FIDO client software is typically platform-specific, the interactions between the components should ensure a consistent user
experience from platform to platform.

2.2 FIDO UAF Server

A FIDO UAF server implements the server side of the FIDO UAF protocols and is responsible for:

e Interacting with the Relying Party web server to communicate FIDO UAF protocol messages to a FIDO UAF Client via a device user agent.

o Validating FIDO UAF authenticator attestations against the configured authenticator metadata to ensure only trusted authenticators are
registered for use.

e Manage the association of registered FIDO UAF Authenticators to user accounts at the Relying Party.
e Evaluating user authentication and transaction confirmation responses to determine their validity.

The FIDO UAF server is conceived as being deployable as an on-premise server by Relying Parties or as being outsourced to a FIDO-enabled
third-party service provider.

2.3 FIDO UAF Protocols

The FIDO UAF protocols carry FIDO UAF messages between user devices and Relying Parties. There are protocol messages addressing:

o Authenticator Registration: The FIDO UAF registration protocol enables Relying Parties to:

o Discover the FIDO UAF Authenticators available on a user's system or device. Discovery will convey FIDO UAF Authenticator
attributes to the Relying Party thus enabling policy decisions and enforcement to take place.

o Verify attestation assertions made by the FIDO UAF Authenticators to ensure the authenticator is authentic and trusted. Verification
occurs using the attestation public key certificates distributed via authenticator metadata.

o Register the authenticator and associate it with the user's account at the Relying Party. Once an authenticator attestation has been
validated, the Relying Party can provide a unique secure identifier that is specific to the Relying Party and the FIDO UAF Authenticator.
This identifier can be used in future interactions between the pair {RP, Authenticator} and is not known to any other devices.

e User Authentication: Authentication is typically based on cryptographic challenge-response authentication protocols and will facilitate user
choice regarding which FIDO UAF Authenticators are employed in an authentication event.

e Secure Transaction Confirmation: If the user authenticator includes the capability to do so, a Relying Party can present the user with a

secure message for confirmation. The message content is determined by the Relying Party and could be used in a variety of contexts such
as confirming a financial transaction, a user agreement ,or releasing patient records.

o Authenticator Deregistration: Deregistration is typically required when the user account is removed at the Relying Party. The Relying Party
can trigger the deregistration by requesting the Authenticator to delete the associated UAF credential with the user account.

2.4 FIDO UAF Authenticator Abstraction Layer

The FIDO UAF Authenticator Abstraction Layer provides a uniform API to FIDO Clients enabling the use of authenticator-based cryptographic
services for FIDO-supported operations. It provides a uniform lower-layer "authenticator plugin" API facilitating the deployment of multi-vendor
FIDO UAF Authenticators and their requisite drivers.

2.5 FIDO UAF Authenticator

A FIDO UAF Authenticator is a secure entity, connected to or housed within FIDO user devices, that can create key material associated to a
Relying Party. The key can then be used to participate in FIDO UAF strong authentication protocols. For example, the FIDO UAF Authenticator
can provide a response to a cryptographic challenge using the key material thus authenticating itself to the Relying Party.

In order to meet the goal of simplifying integration of trusted authentication capabilities, a FIDO UAF Authenticator will be able to attest to its
particular type (e.g., biometric) and capabilities (e.g., supported crypto algorithms), as well as to its provenance. This provides a Relying Party with
a high degree of confidence that the user being authenticated is indeed the user that originally registered with the site.

2.6 FIDO UAF Authenticator Metadata Validation

In the FIDO UAF context, attestation is how Authenticators make claims to a Relying Party during registration that the keys they generate, and/or
certain measurements they report, originate from genuine devices with certified characteristics. An attestation signature, carried in a FIDO UAF
registration protocol message is validated by the FIDO UAF Server. FIDO UAF Authenticators are created with attestation private keys used to
create the signatures and the FIDO UAF Server validates the signature using that authenticator's attestation public key certificate located in the
authenticator metadata. The metadata holding attestation certificates is shared with FIDO UAF Servers out of band.

3. FIDO UAF Usage Scenarios and Protocol Message Flows

This section is non-normative.

The FIDO UAF ecosystem supports the use cases briefly described in this section.
3.1 FIDO UAF Authenticator Acquisition and User Enroliment

It is expected that users will acquire FIDO UAF Authenticators in various ways: they purchase a new system that comes with embedded FIDO
UAF Authenticator capability; they purchase a device with an embedded FIDO UAF Authenticator, or they are given a FIDO Authenticator by their
employer or some other institution such as their bank.

After receiving a FIDO UAF Authenticator, the user must go through an authenticator-specific enroliment process, which is outside the scope of the
FIDO UAF protocols. For example, in the case of a fingerprint sensing authenticator, the user must register their fingerprint(s) with the
authenticator. Once enroliment is complete, the FIDO UAF Authenticator is ready for registration with FIDO UAF enabled online services and
websites.

3.2 Authenticator Registration
Given the FIDO UAF architecture, a Relying Party is able to transparently detect when a user begins interacting with them while possessing an

initialized FIDO UAF Authenticator. In this initial introduction phase, the website will prompt the user regarding any detected FIDO UAF
Authenticator(s), giving the user options regarding registering it with the website or not.

User Device Relying Party

FIDO Client User Agent
(Windows, Mac,
iOS, Android, ...) Initiate Registration

Registration Request
+ Policy

Registration Response +
Attestation + User's Public

Key
FIDO Authenticators
Validate Response
& Attestation,
Enroll User & Store User's
Generate New Key Pair Public Key

(specific to RP WebApp)

Fig. 2 Registration Message Flow

3.3 Authentication

Following registration, the FIDO UAF Authenticator will be subsequently employed whenever the user authenticates with the website (and the
authenticator is present). The website can implement various fallback strategies for those occasions when the FIDO Authenticator is not present.

These might range from allowing conventional login with diminished privileges to disallowing login.

User Device Relying Party

FIDO Client User Agent

(Windows, Mac, (App,
iOS, Android, ...) Browser. ...)

Initiate Authentication

Authentication Reguest
+ Challenge + Policy

Authentication Response
Signed by User's Private Key

FIDO Authenticators

Validate Response
Using User’s

Private Key Public Key

(specific to User + RP

WebApp)

Verify User & Unlock

Fig. 3 Authentication Message Flow

This overall scenario will vary slightly depending upon the type of FIDO UAF Authenticator being employed. Some authenticators may sample
biometric data such as a face image, fingerprint, or voice print. Others will require a PIN or local authenticator-specific passphrase entry. Still
others may simply be a hardware bearer authenticator. Note that it is permissible for a FIDO Client to interact with external services as part of the
authentication of the user to the authenticator as long as the FIDO Privacy Principles are adhered to.

3.4 Step-up Authentication

Step-up authentication is an embellishment to the basic website login use case. Often, online services and websites allow unauthenticated, and/or
only nominally authenticated use -- for informational browsing, for example. However, once users request more valuable interactions, such as
entering a members-only area, the website may request further higher-assurance authentication. This could proceed in several steps if the user
then wishes to purchase something, with higher-assurance steps with increasing transaction value.

FIDO UAF will smoothly facilitate this interaction style since the website will be able to discover which FIDO UAF Authenticators are available on
FIDO-wielding users' systems, and select incorporation of the appropriate one(s) in any particular authentication interaction. Thus online services
and websites will be able to dynamically tailor initial, as well as step-up authentication interactions according to what the user is able to wield and
the needed inputs to website's risk analysis engine given the interaction the user has requested.

3.5 Transaction Confirmation

There are various innovative use cases possible given FIDO UAF-enabled Relying Parties with end-users wielding FIDO UAF Authenticators.
Website login and step-up authentication are relatively simple examples. A somewhat more advanced use case is secure transaction processing.

User Device Relying Party

FIDO Server

FIDO Client User Agent
(Windows, Mac, (App,
i0S, Android, ...) Browser, ...) Initiate Transaction

Authentication Request
+ Transaction Text

Authentication Response +
Text Hash Signed by User's
Private Key

FIDO Authenticators

Validate Response
& Text Hash
Using User’s

Public Key

Verify User, Display Text,
& Unlock Private Key
(specific to User + RP
WebApp)

Fig. 4 Confirmation Message Flow

Imagine a situation in which a Relying Party wants the end-user to confirm a transaction (e.g. financial operation, privileged operation, etc) so that
any tampering of a transaction message during its route to the end device display and back can be detected. FIDO architecture has a concept of
"secure transaction" which provides this capability. Basically if a FIDO UAF Authenticator has a transaction confirmation display capability, FIDO
UAF architecture makes sure that the system supports What You See is What You Sign mode (WYSIWYS). A number of different use cases can
derive from this capability -- mainly related to authorization of transactions (send money, perform a context specific privileged action, confirmation

of email/address, etc).

3.6 Authenticator Deregistration

There are some situations where a Relying Party may need to remove the UAF credentials associated with a specific user account in FIDO
Authenticator. For example, the user’s account is cancelled or deleted, the user’s FIDO Authenticator is lost or stolen, etc. In these situations, the
RP may request the FIDO Authenticator to delete authentication keys that are bound to user account.

User Device Relying Party

FIDO Client FIDO Server
(Windows, Mac, iOS,
Android, ...)
Contact RP _
Deregistration
Request

Delete local
key materia

FIDO Authenticators

Fig. 5 Deregistration Message Flow
3.7 Adoption of New Types of FIDO UAF Authenticators

Authenticators will evolve and new types are expected to appear in the future. Their adoption on the part of both users and Relying Parties is
facilitated by the FIDO architecture. In order to support a new FIDO UAF Authenticator type, Relying Parties need only to add a new entry to their
configuration describing the new authenticator, along with its FIDO Attestation Certificate. Afterwards, end users will be able to use the new FIDO
UAF Authenticator type with those Relying Parties.

4. Privacy Considerations

This section is non-normative.

User privacy is fundamental to FIDO and is supported in UAF by design. Some of the key privacy-aware design elements are summarized here:

o A UAF device does not have a global identifier visible across relying parties and does not have a global identifier within a particular relying
party. If for example, a person looses their UAF device, someone finding it cannot “point it at a relying party” and discover if the original user
had any accounts with that relying party. Similarly, if two users share a UAF device and each has registered their account with the same
relying party with this device, the relying party will not be able to discern that the two accounts share a device, based on the UAF protocol
alone.

e The UAF protocol generates unique asymmetric cryptographic key pairs on a per-device, per-user account, and per-relying party basis.
Cryptographic keys used with different relying parties will not allow any one party to link all the actions to the same user, hence the
unlinkability property of UAF.

e The UAF protocol operations require minimal personal data collection: at most they incorporate a user's relying party username. This
personal data is only used for FIDO purposes, for example to perform user registration, user verification, or authorization. This personal data
does not leave the user’'s computing environment and is only persisted locally when necessary.

e In UAF, user verification is performed locally. The UAF protocol does not convey biometric data to relying parties, nor does it require the
storage of such data at relying parties.

e Users explicitly approve the use of a UAF device with a specific relying party. Unique cryptographic keys are generated and bound to a
relying party during registration only after the user’s consent.

o UAF authenticators can only be identified by their attestation certificates on a production batch-level or on manufacturer- and device model-
level. They cannot be identified individually. The UAF specifications require implementers to ship UAF authenticators with the same
attestation certificate and private key in batches of 100,000 or more in order to provide unlinkability.

5. Relationship to Other Technologies

This section is non-normative.
OpenID, SAML, and OAuth

FIDO protocols (both UAF and U2F) complement Federated Identity Management (FIM) frameworks, such as OpenlID and SAML, as well as web

authorization protocols, such as OAuth. FIM Relying Parties can leverage an initial authentication event at an identity provider (IdP). However,
OpenID and SAML do not define specific mechanisms for direct user authentication at the IdP.

When an IdP is integrated with a FIDO-enabled authentication service, it can subsequently leverage the attributes of the strong authentication with
its Relying Parties. The following diagram illustrates this relationship. FIDO-based authentication (1) would logically occur first, and the FIM
protocols would then leverage that authentication event into single sign-on events between the identity provider and its federated Relying Parties

(2)2

Federated Relying Party

Federated Relying Party Identity Provider and
Website Relying Party

Identity Provider Services

$

(2) Federated Identity
Management Protocols

(e.g. OpenlD, SAML)

Web Application

$

User Device

User Agent (Mobile App,
Browser, ...
0S/Server
Security
Components

1) FIDO Registration,
entication, Confirmation

FIDO Client
(Windows, Mac, iOS, Android)

FIDO Risk & Identity

Authenticator Systems
Metadata
Validation

FIDO Authenticators

Fig. 6 FIDO UAF & Federated Identity Frameworks
6. OATH, TCG, PKCS#11, and ISO 24727

These are either initiatives (OATH, Trusted Computing Group (TCG)), or industry standards (PKCS#11, ISO 24727). They all share an underlying
focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator abstractions.
TCG produces specifications for the Trusted Platform Module, as well as networked trusted computing.

OATH, the "Initiative for Open AuTHentication", focuses on defining symmetric key provisioning protocols and authentication algorithms for
hardware One-Time Password (OTP) authenticators.

The FIDO framework shares several core notions with the foregoing efforts, such as an authentication abstraction interface, authenticator
attestation, key provisioning, and authentication algorithms. FIDO's work will leverage and extend some of these specifications.

Specifically, FIDO will complement them by addressing:

o Authenticator discovery
e User experience
e Harmonization of various authenticator types, such as biometric, OTP, simple presence, smart card, TPM, etc.

7. Table of Figures

Fig. 1 FIDO UAF High-Level Architecture

Fig. 2 Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Confirmation Message Flow

Fig. 5 Deregistration Message Flow

Fig. 6 FIDO UAF & Federated Identity Frameworks

1. Also known as: Authentication Tokens, Security Tokens, etc.€

2. FIM protocols typically convey IdP <-> RP interactions through the browser via HTTP redirects and POSTs.€

f o

ALLIANCE

FIDO UAF Protocol Specification
FIDO Alliance Proposed Standard 20 October 2020

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
Editors:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.

Eric Tiffany, FIDO Alliance
Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.

Dirk Balfanz, Google, Inc.

Brad Hill, PayPal, Inc.

Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok L Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

The goal of the Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication mechanism for a particular end user or
interaction, while preserving the option to leverage emerging device security capabilities in the future without requiring additional integration
effort.

This document describes the FIDO architecture in detall, it defines the flow and content of all UAF protocol messages and presents the
rationale behind the design choices.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the EIDO Alliance specifications index at
https://ffidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS 1S” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
https://www.noknok.com/
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be
used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

o 1. Notation
o 1.1 Key Words

o 2. Overview
o 2.1 Scope
o 2.2 Architecture
o 2.3 Protocol Conversation
= 2.3.1 Registration
m 2.3.2 Authentication
m 2.3.3 Transaction Confirmation
m 2.3.4 Deregistration
o 2.4 Relationship to Other Specifications
o 3. Protocol Details
o 3.1 Shared Structures and Types
= 3.1.1 Version Interface
= 3.1.1.1 Attributes
= 3.1.2 Operation enumeration
= 3.1.3 OperationHeader dictionary
m 3.1.3.1 Dictionary operationicader Members
= 3.1.4 Authenticator Attestation ID (AAID) typedef
= 3.1.5 KeylID typedef
= 3.1.6 ServerChallenge typedef
» 3.1.7 FinalChallengeParams dictionary
n 3.1.71 Dictionary FinalChallengeParams Members
= 3.1.8 CollectedClientData dictionary
= 3.1.9 TLS ChannelBinding dictionary
= 3.1.9.1 Dictionary ChannelBinding Members
= 3.1.10 JwkKey dictionary
= 3.1.10.1 Dictionary swkxey Members
= 3.1.11 Extension dictionary
= 3.1.11.1 Dictionary £xtension Members
= 3.1.12 MatchCriteria dictionary
m 3.1.12.1 Dictionary vatchcriteria Members
= 3.1.13 Policy dictionary
= 3.1.13.1 Dictionary ro1icy Members

o 3.2 Processing Rules for the Server Policy
= 3.2.1 Examples
o 3.3 Version Negotiation

o 3.4 Registration Operation
» 3.4.1 Registration Request Message

= 3.4.2 RegistrationRequest dictionary
= 3421 Dictionary RegistrationRequest Members
» 3.4.3 AuthenticatorRegistrationAssertion dictionary
s 343.1 Dictionary AuthenticatorRegistrationAssertion Members
m 3.4.4 Registration Response Message
= 3.4.5 RegistrationResponse dictionary

3.4.51 Dictionary RegistrationResponse Members

= 3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server
3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

= 3.4.6.2.1 Mapping ASM Status Codes to ErrorCode
3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
3.4.6.4 Registration Response Generation Rules for FIDO UAF Client
3.4.6.5 Registration Response Processing Rules for FIDO Server

o 3.5 Authentication Operation

= 3.5.1 Transaction dictionary

= 351.1 Dictionary Transaction Members
= 3.5.2 Authentication Request Message
» 3.5.3 AuthenticationRequest dictionary

n 3.5.3.1 Dictionary AuthenticationRequest Members
= 3.5.4 AuthenticatorSignAssertion dictionary

= 3541 Dictionary AuthenticatorSignAssertion Members
= 3.5.5 AuthenticationResponse dictionary

= 3551 Dictionary AuthenticationResponse Members
» 3.5.6 Authentication Response Message

m 3.5.7 Authentication Processing Rules
= 3.5.7.1 Authentication Request Generation Rules for FIDO Server

= 3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

= 3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
= 3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client
3.5.7.5 Authentication Response Processing Rules for FIDO Server

o 3.6 Deregistration Operation
= 3.6.1 Deregistration Request Message
» 3.6.2 DeregisterAuthenticator dictionary
= 3.6.2.1 Dictionary DeregisterAuthenticator Members
» 3.6.3 DeregistrationRequest dictionary

= 3.6.3.1 Dictionary DeregistrationrRequest Members

= 3.6.4 Deregistration Processing Rules
m 3.6.4.1 Deregistration Request Generation Rules for FIDO Server

= 3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client
= 3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

e 4. Considerations
o 4.1 Protocol Core Design Considerations
» 4.1.1 Authenticator Metadata

= 4.1.2 Authenticator Attestation
= 4.1.2.1 Basic Attestation
= 4.1.2.1.1 Full Basic Attestation

m 4.1.2.1.2 Surrogate Basic Attestation
= 4.1.2.2 Direct Anonymous Attestation (ECDAA)
» 4.1.3 Error Handling
m 4.1.4 Assertion Schemes
= 4.1.5 Username in Authenticator
» 4.1.6 Silent Authenticators
m 4.1.7 TLS Protected Communication
o 4.2 Implementation Considerations
= 4.2.1 Server Challenge and Random Numbers
= 4.2.2 Revealing KeylDs

o 4.3 Security Considerations

= 4.3.1 FIDO Authenticator Security
= 4.3.2 Cryptographic Algorithms

= 4.3.3 FIDO Client Trust Model
m 4.3.3.1 Isolation using KHAccessToken

m 4.3.4 TLS Binding
m 4.3.5 Session Management
= 4.3.6 Personas
m 4.3.7 ServerData and KeyHandle
» 4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata
= 4.3.9 Policy Verification
= 4.3.10 Replay Attack Protection
= 4.3.11 Protection against Cloned Authenticators
m 4.3.12 Anti-Fraud Signals
o 4.4 Interoperability Considerations

o 5. UAF Supported Assertion Schemes
o 5.1 Assertion Scheme "UAFV1TLV"
= 5.1.1 KeyRegistrationData

» 5.1.2 SignedData

e 6. Definitions
e 7. Table of Figures

e A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WeblIDL dictionary members musT noT have a value of null — i.e., there are no declarations of nullable dictionary members in this specification.
Unless otherwise specified, if a WebIDL dictionary member is DOMString, it musT NoT be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it musT NOoT be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

NOTE
Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-

in-progress. If you are using a WebIDL parser which implements [WebIDL], then you may remove the keyword rcquired from your
WebIDL and use other means to ensure those fields are present.

1.1 Key Words

The key words “musT”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “sHoULD”, “sHOULD NOT”, “RECOMMENDED”, “MAY”, and “opTioNAL” in this document are
to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The goal of this Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

The design goal of the protocol is to enable Relying Parties to leverage the diverse and heterogeneous set of security capabilities available on
end users' devices via a single, unified protocol.

This approach is designed to allow the FIDO Relying Parties to choose the best available authentication mechanism for a particular end user

or interaction, while preserving the option for a relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

2.1 Scope

This document describes FIDO architecture in detail and defines the UAF protocol as a network protocol. It defines the flow and content of all
UAF messages and presents the rationale behind the design choices.

Particular application-level bindings are outside the scope of this document. This document is not intended to answer questions such as:

o What does an HTTP binding look like for UAF?
e How can a web application communicate to FIDO UAF Client?
e How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF specifications, e.g. [UAFAppAPIAndTransport] [UAFASM] [UAFAuthnrCommands].
2.2 Architecture

The following diagram depicts the entities involved in UAF protocol.

TLS ‘)
protocol | TLS key

BROWSER /APP | WEB SERVER

Cryptograghic FIDO SERVER

FIDO CLIENT authentication key
reference DB

] Authentication
: keys

FIDO AUTHENTICATOR

| Attestation key

metadata &
attestation trust

| Authenticator FIDO METADATA SERVICE
‘ store | J ‘

Certify

T compliance

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

o FIDO Server, running on the relying party's infrastructure
o FIDO UAF Client, part of the user agent and running on the FIDO user device
o FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to the UAF Authenticator Metadata [FIDOMetadataStatement] describing all the
authenticators it will interact with.

2.3 Protocol Conversation

The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server.

e Registration: UAF allows the relying party to register a FIDO Authenticator with the user's account at the relying party. The relying party
can specify a policy for supporting various FIDO Authenticator types. A FIDO UAF Client will only register existing authenticators in
accordance with that policy.

o Authentication: UAF allows the relying party to prompt the end user to authenticate using a previously registered FIDO Authenticator.
This authentication can be invoked any time, at the relying party's discretion.

¢ Transaction Confirmation: In addition to providing a general authentication prompt, UAF offers support for prompting the user to
confirm a specific transaction.

This prompt includes the ability to communicate additional information to the client for display to the end user, using the client's
transaction confirmation display. The goal of this additional authentication operation is to enable relying parties to ensure that the user is
confirming a specified set of the transaction details (instead of authenticating a session to the user agent).

e Deregistration: The relying party can trigger the deletion of the account-related authentication key material.

Although this document defines the FIDO Server as the initiator of requests, in a real world deployment the first UAF operation will always
follow a user agent's (e.g. HTTP) request to a relying party.

The following sections give a brief overview of the protocol conversation for individual operations. More detailed descriptions can be found in

the sections Registration Operation, Authentication ration, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for registration.

FIDO Client FIDO Server
Login to Relying Party :
Application |

If you have these Authenticators — register them

[
el
'

i Fingerprint Face .
Authentication Authentication

5 Voice !
User ! [TPM] [Authentication J !

Select an i
Authenticator

Iy

Here is a proof of possession of this .
Authenticator type and a new key generated ;
for this account on FIDO Server

' !
r '

Fig. 2 UAF Registration Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.2 Authentication

The following diagram depicts the message flows for the authentication operation.

FIDO Client FIDO Server

Initiate an authentication to Relying Party !

-
-

If you have any of these Authenticators -
authenticate with them

Lill-
[l

. Fingerprint Face .
' Authentication Authentication '

E Voice .
User ' [TPM J [Authentication J '

[
-

! Authenticate to
Authenticator(s)

i Authentication response from each
Authenticator

! .
r

Fig. 3 Authentication Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.

2.3.3 Transaction Confirmation

The following figure depicts the transaction confirmation message flow.

FIDO Client FIDO Server

' Initiate a transaction with Relying Party

If you have any of these Authenticators -
authenticate with them

'
[
.

. Fingerprint Face i
! Authentication Authentication '

5 Voice !
User ! [TPM } [Authentication } !

Display . .
Transaction Text | :

1
el

Authenticate to !
Authenticator(s) i !

Authentication response from each
Authenticator

P
' !
r '

Fig. 4 Transaction Confirmation Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.4 Deregistration

The

24

following diagram depicts the deregistration message flow.

FIDO Client FIDO Server

i Login to Relying Party Application

o'
-

Deregister this Authenticator !
Delete local L 9 ' : !

registration data | |

Fig. 5 Deregistration Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

Relationship to Other Specifications

The following data elements might be referenced by other specifications and hence should not be changed in their fundamental data type or
high-level semantics without liaising with the other specifications:

1.

aaid, data type byte string and identifying the authenticator model, i.e. identical values mean that they refer to the same authenticator
model and different values mean they refer to different authenticator models.

2. ApplD, data type string representing the Application Identifier, i.e. identical values mean that they refer to the same relying party.

3. keylD, data type byte string identifying a specific credential, i.e. identical values mean that they refer to the same credential and different

3.

values mean they refer to different credentials.
NOTE

Some of the data elements might have an internal structure that might change. Other specifications shall not rely on such internal
structure.

Protocol Details

This section is normative.

This section provides a detailed description of operations supported by the UAF Protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

All string literals in this specification are constructed from Unicode codepoints within the set u+0000..u+007F.

Unless otherwise specified, protocol messages are transferred with a UTF-8 content encoding.

NOTE

All data used in this protocol must be exchanged using a secure transport protocol (such as TLS/HTTPS) established between the FIDO
UAF Client and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section 4.1.7 TLS
Protected Communication.

The notation vases4ur1 (byters..647) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

The notation string (5] reads as five unicode characters, represented as a UTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a WebIDL [WeblIDL-ED] DOMString.

As the UTF-8 representation has variable length, the maximum byte length of string(57 IS string[4+5].

All strings are case-sensitive unless stated otherwise.

This document uses WebIDL [WebIDL-ED] to define UAF protocol messages.

Implementations musT serialize the UAF protocol messages for transmission using UTF-8 encoded JSON [RFC4627].
3.1 Shared Structures and Types

This section defines types and structures shared by various operations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.

WebIDL

interface Version {
readonly attribute unsigned short major;
readonly attribute unsigned short mi ;

bi

3.1.1.1 Attributes

major Of type unsigned short, readonly
Major version.

minor Of type unsigned short, readonly
Minor version.

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

WebIDL

enum Operation {
"Reg",
"Auth",
"Dereg"

}i

Enumeration description

Reg Registration
Auth Authentication or Transaction Confirmation
pereg Deregistration

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

WebIDL

dictionary OperationHeader ({
required Version upv;
required Operation op;
DOMString
DOMString
Extension|]

3.1.3.1 Dictionary OperationHeader Members

upv Of type required Version
UAF protocol version (upv). To conform with this version of the UAF spec set, the n=70r value musT be 1 and the minor value must be

2.

op Of type required Operation
Name of FIDO operation (op) this message relates to.

NOTE

"Auth" is used for both authentication and transaction confirmation.

appID Of type DOMString

string[0..512].
The application identifier that the relying party would like to assert.
There are three ways to set the 2pp10 [FIDOAppIDAndFacets]:

1. If the element is missing or empty in the request, the FIDO UAF Client musT set it to the racet 10 of the caller.
2. If the app 1D present in the message is identical to the racet 10 of the caller, the FIDO UAF Client musT accept it.

3. Ifitis an URI with HTTPS protocol scheme, the FIDO UAF Client musT use it to load the list of trusted facet identifiers from the
specified URI. The FIDO UAF Client musT only accept the request, if the facet identifier of the caller matches one of the trusted
facet identifiers in the list returned from dereferencing this URI.

NOTE
The new key pair that the authenticator generates will be associated with this application identifier.

Security Relevance: The application identifier is used by the FIDO UAF Client to verify the eligibility of an application to trigger
the use of a specific vauth.xey. See [FIDOAppIDAndFacets]

serverData Of type DOMString

string[l..1536].

A session identifier created by the relying party.

NOTE
The relying party can opaquely store things like expiration times for the registration session, protocol version used and other

useful information in servernata. This data is opaque to FIDO UAF Clients. FIDO Servers may reject a response that is
lacking this data or is containing unauthorized modifications to it.

Servers that depend on the integrity of serverpata should apply appropriate security measures, as described in Registration

Request Generation Rules for FIDO Server and section ServerData and KeyHandle.

exts Of type array of Extension
List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

WebIDL

typedef DOMString AAID;

string[9]

Each authenticator must have an 210 to identify UAF enabled authenticator models globally. The 2210 musT uniquely identify a specific
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security characteristics within the model (see Security Considerations).

The 2210 is a string with format "V#M", where

"#" is a separator
"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.
"M" indicates the authenticator Model Code. This code consists of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the 221D is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are identical.

The FIDO Alliance is responsible for assigning authenticator vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators. Authenticator vendors musT assign
unique ~21ps to authenticators with different security characteristics.

AAIDs are unique and each of them must relate to a distinct authentication metadata file ([FIDOMetadataStatement])

NOTE

Adding new firmware/software features, or changing the underlying hardware protection mechanisms will typically change the security
characteristics of an authenticator and hence would require a new 2210 to be used. Refer to ([FIDOMetadataStatement]) for more
details.

3.1.5 KeyID typedef

WebIDL

typedef DOMString KeyID;

base64url (byte[32...2048]

KeyTD is @ unique identifier (within the scope of an »~1p) used to refer to a specific vruth.key. It is generated by the authenticator or ASM and
registered with a FIDO Server.

The (221D, xey1D) tuple musT uniquely identify an authenticator's registration for a relying party. Whenever a FIDO Server wants to provide
specific information to a particular authenticator it musT use the (2210, key1D) tuple.

key1D MUST be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the FIDO Server sHouLp provide the ey 10 back to the authenticator for the latter to
locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage for, and cannot rely on any ASM to store, generated key handles sHouLp provide the
key handle as part of the ruthenticatorregistrationassertion.assertion.keyD during the registration operation (see also section ServerData
and KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the uatcncriteria dictionary which is
part of the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

NOTE

The exact structure and content of a xey 1D is specific to the authenticator / ASM implementation.

3.1.6 ServerChallenge typedef

WebIDL

typedef DOMString ServerChallenge;

s4url (byte[8...647)

serverChallenge iS a server-provided random challenge. Security Relevance: The challenge is used by the FIDO Server to verify whether an

incoming response is new, or has already been processed. See section Replay Attack Protection for more details.

The serverchallenge sHouLb be mixed into the entropy pool of the authenticator. Security Relevance: The FIDO Server sHouLp provide a
challenge containing strong cryptographic randomness whenever possible. See section Server Challenge and Random Numbers.

NOTE

The minimum challenge length of 8 bytes follows the requirement in [SP800-63] and is equivalent to the 20 decimal digits as required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can be used without truncation.

NOTE

The mixing of multiple sources of randomness is recommended to improve the quality of the random numbers generated by the
authenticator, as described in [RFC4086].

3.1.7 FinalChallengeParams dictionary

WebIDL

dictionary FinalChallengeParams {
required DOMString
required ServerChallenge
required DOMString
required ChannelBinding

}i

3.1.7.1 Dictionary FinalChallengeParams Members

appID Of type required DOMString

string[l..512]

The value musT be taken from the app 1 field of the operationteader
challenge Of type required ServerChallenge

The value musT be taken from the challenge field of the request (e.g. RegistrationRequest.challenge,
AuthenticationRequest.challenge).

facetID Of type required DOMString

string[1l..512]

The value is determined by the FIDO UAF Client and it depends on the calling application. See [FIDOAppIDAndFacets] for more
details. Security Relevance: The racet 10 is determined by the FIDO UAF Client and verified against the list of trusted facets
retrieved by dereferencing the app10 of the calling application.

channelBinding Of type required ChannelBinding

Contains the TLS information to be sent by the FIDO Client to the FIDO Server, binding the TLS channel to the FIDO operation.
3.1.8 CollectedClientData dictionary

CollectedClientData is an alternative to the Finaichaliengerarams structure. It is used by platforms supporting CTAP2 and Web Authentication.
The exact definition of CollectedClientData can be found in [WebAuthn].

NOTE

WebIDL

dictionary CollectedClientData ({
required DOMString challenge;

required DOMString

required AlgorithmIdentifier
DOMString

WebAuthnExtensions

Dictionary coiiectedclientpata Members

challenge Of type required DOMString

Contains the base64url encoding of the challenge provided by the RP.
This field plays a similar role as the chailienge field in FinalchallengeParams.

origin Of type required DOMString

The fully qualified origin of the requester, as provided to the authenticator by the client, in the synrax defined by [RFC6454].
This field plays a similar role as the racet1p field in FinalchallengeParams.

hashalg of type required Algorithmldentifier

The hash algorithm used to compute the clientDataHash, e.g. "S256", etc.

This field is relevant here as the client can freely select the hash algorithm - unlike Finalchallengeparams, where the
authenticator musT use the same algorithm as for signing the assertion.

tokenBinding Of type DOMString

Contains the base64url encoding of the Token Binding ID provided by the client. The syntax is equivalent to the cid_pubkey in
section ChannelBinding dictionary.

This field plays a similar role as the channeirinding field in FinalchallengeParams.

extensions Of type WebAuthnExtensions

Additional parameters generated by processing of extensions passed in by the relying party.

3.1.9 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

NOTE
Security Relevance:The channel binding may be verified by the FIDO Server in order to detect and prevent MITM attacks.

At this time, the following channel binding methods are supported:

e TokenBinding ID (tokenzinding [RFC8471]
TLS ChannellD (cid pubkey) [ChannellD]
serverEndPoint [RFC5929]
tisServerCertificate

tisUnique [RFC5929]

Further requirements:

1. If data related to any of the channel binding methods, described here, is available to the FIDO UAF Client (i.e. included in this dictionary),
it MusT be used according to the relevant specification .

2. All channel binding methods described here musT be supported by the FIDO Server. The FIDO Server may reject operations if the channel
binding cannot be verified successfully.

NOTE

o [f channel binding data or Token Binding ID is accessible to the web browser or client application, it must be relayed to the FIDO
UAF Client in order to follow the assumptions made in [FIDOSecRef].

e [f channel binding data or Token Binding ID is accessible to the web server, it must be relayed to the FIDO Server in order to follow
the assumptions made in [FIDOSecRef]. The FIDO Server relies on the web server to provide accurate channel binding
information.

WebIDL

dictionary ChannelBinding {
DOMString . i
DOMString
DOMString
DOMString
DOMString

3.1.9.1 Dictionary channelBinding Members

serverEndPoint Of type DOMString

The field serverendroint MUsT be set to the base64url-encoded hash of the TLS server certificate if this is available. The hash
function musT be selected as follows:

1. if the certificate's signaturenigorithm uses a single hash function and that hash function is either MD5 [RFC1321] or SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's signaturerigorithm Uses a single hash function and that hash function is neither MD5 nor SHA-1, then use
the hash function associated with the certificate'ssignaturealgorithm;

3. if the certificate's signatureaigorithm uses no hash functions, or uses multiple hash functions, then this channel binding type's
channel bindings are undefined at this time (updates to this channel binding type may occur to address this issue if it ever
arises)

This field musT be absent if the TLS server certificate is not available to the processing entity (e.g., the FIDO UAF Client) or the hash
function cannot be determined as described.

tlsServerCertificate Of type DOMString
This field musT be absent if the TLS server certificate is not available to the FIDO UAF Client.
This field musT be set to the base64url-encoded, DER-encoded TLS server certificate, if this data is available to the FIDO UAF Client.

tlsunique Of type DOMString
musT be set to the base64url-encoded TLS channel rinishea structure. It musT, however, be absent, if this data is not available to the
FIDO UAF Client [RFC5929].

The use of the tlsUnique is deprecated as the security of the t1s-unqgiue channel binding type [RFC5929] is broken, see [TLSAUTH].
cid_pubkey Of type DOMString

musT be absent if the client TLS stack doesn't provide TLS ChannellD [ChannellD] information to the processing entity (e.g., the web
browser or client application).

musT be set to "unused" if TLS ChannellD information is supported by the client-side TLS stack but has not been signaled by the TLS
(web) server.

Otherwise, it MusT be set to the base64url-encoded serialized [RFC4627] swkkey structure using UTF-8 encoding.
tokenBinding Of type DOMString

musT be absent if the client TLS stack doesn't provide Token Binding ID [RFC8471] information to the processing entity (e.g., the web
browser or client application).

musT be set to "unused" if Token Binding ID information is supported by the client-side TLS stack but has not been signaled by the
TLS (web) server.

Otherwise, it MmusT be set to the base64url-encoded serialized [RFC8471] TokenBindinglID structure using UTF-8 encoding.

3.1.10 JwkKey dictionary

Jwkkey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key [JWK].

This public key is the ChannellD public key minted by the client TLS stack for the particular relying party. [ChannellD] stipulates using only a
particular elliptic curve, and the particular coordinate type.

WebIDL

dictionary JwkKey ({
required DOMString kty
required DOMString crv

required DOMString x;
required DOMString y;

wgCh
"P-256";

3.1.10.1 Dictionary swkrxey Members

kty of type required DOMString, defaulting to "ec"
Denotes the key type used for Channel ID. At this time only elliptic curve is supported by [ChannellD], so it musT be set to "EC"
[JWA].

crv Of type required DOMString, defaulting to "p-256"
Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve secp256-1 is supported by [ChannellD],
so the crv parameter musT be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

3.1.11 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator commands, or in the assertion signed by
the authenticator.

Each extension has an identifier, and the namespace for extension identifiers is FIDO UAF global (i.e. doesn't depend on the message where
the extension is present).

Extensions can be defined in a way such that a processing entity which doesn't understand the meaning of a specific extension must abort
processing, or they can be specified in a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section where extensions are allowed.

Generic extensions used in various operations.

WebIDL

dictionary Extension ({
required DOMString id;
required DOMString d
required boolean

atay

,,,,,,,,,, if unknown;

bi

3.1.11.1 Dictionary Extension Members

id of type required DOMString

string[1l..32].
Identifies the extension.

data Of type required DOMString
Contains arbitrary data with a semantics agreed between server and client. Binary data is base64url-encoded.

This field may be empty.

fail_if_unknown Of type required boolean
Indicates whether unknown extensions must be ignored (ra1s<) or must lead to an error (true).

e A value of ra1se indicates that unknown extensions must be ignored
e A value of true indicates that unknown extensions musT result in an error.

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be
passed through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be
passed through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and tzi1 if unknown is not set). If
the FIDO authenticator doesn't understand the meaning of the extension and fai1 if unknown is set, it must generate an error (see
definition of fai1 if unknown above).

When passing through an extension to the next entity, the fai1 if unknown flag must be preserved (see [UAFASM]
[UAFAuthnrCommands]).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should
be accompanied by a related (and signed) extension in the authenticator assertion (e.g. T2c UAFV1 REG ASSERTION,

Tac UAFVL AUTE asserTiON). If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata
statement accepts multiple fingers but in this specific case indicates that the finger used at registration was also used for authentication)
there is no need to mark the extension as fai1 if unknown (i.e. tag 0x3E12 should be used [UAFAuthnrCommands]). If the security has
been degraded (e.g. the FIDO authenticator according to the description in the metadata statement accepts only the finger used at
registration for authentication but in this specific case indicates that a different finger was used for authentication) the extension must be
marked as fzi1 if unknown (i.e. tag 0Xx3E11 must be used [UAFAuthnrCommands]).

3.1.12 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

The vatcheriteria object is considered to match an authenticator, if all fields in the object are considered to match (as indicated in the
particular fields).

WebIDL

dictionary MatchCriteria ({
AAIDI[] aaid;
DOMString|[]
KeyID[]
unsigned long
unsigned short
unsigned short
unsigned long
unsigned short
unsigned short[]
DOMString/[]
unsigned short[]
unsigned short
Extension|]

3.1.12.1 Dictionary Matchcriteria Members

aaid of type array of AAID
List of AAIDs, causing matching to be restricted to certain AAIDs.

The field m.zaid mAY be combined with (one or more Of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and . exts, but
m.aaid MUST NOT be combined with any other match criteria field.

If m.aaid is not provided - both m.authenticationalgorithms @nd m.assertionSchemes MUST be provided.

The match succeeds if at least one AAID entry in this array matches 2uthenticatorinfo.aaid [UAFASM].

NOTE

This field corresponds to vetadatastatement . aaid [FIDOMetadataStatement].

vendorID Of type array of DOMString
The vendorID causing matching to be restricted to authenticator models of the given vendor. The first 4 characters of the AAID are

the vendorID (see aa1p)).

The match succeeds if at least one entry in this array matches the first 4 characters of the authenticatorinfo.aaid [UAFASM].

NOTE

This field corresponds to the first 4 characters of uctadatastatement . aaid [FIDOMetadataStatement].

keyIDs Of type array of Keyl/D
A list of authenticator KeylDs causing matching to be restricted to a given set of =y 10 instances. (see TAG_KEYID in

[UAFRegistry]).

This match succeeds if at least one entry in this array matches.

NOTE

This field corresponds to 2ppregistration.keyins [UAFASM].

userVerification Of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the user verification method (see [FIDORegistry]).

NOTE
The match with authenticatorInfo.userVerification ([UAFASM]) succeeds, if the fOIIOWing condition holds (written in Java):

if (
// They are equal
(AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||
// USER VERIFY ALL is not set in both of them and they have at least one common bit set
(
((AuthenticatorInfo.userVerification & USER VERIFY ALL) == 0) &&
((MatchCriteria.userVerification & USER VERIFY ALL) == 0) &&
((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
)
)
NOTE
This field value can be derived from vetadatastatenent .userverificationbetails as follows (in order to write matchCriteria
that apply to the respective authenticator model):
For each entry iNn MetadataStatement .userVerificationDetails combine all sub-entries
MetadataStatement.userVerificationDetails[i] [0] .userVerification to MetadataStatement.userVerificationDetails [1] [N-
1] .userVerification into a single value using a bitwise OR operation.

The combined bitflags will either all be interpreted as alternatives or as "and" combinations (depending on the flag
USER_VERIFY_ALL). For example, an authenticator that allows Passcode OR (both, Voice AND Face), will either look like:

1. Passcode OR Voice OR Face, or it will look like
2. Passcode AND Voice AND Face.

The algorithm above will encode it as alternative (1) if the USER_VERIFY_ALL flag is not set. It will encode it as alternative
(2) if the USER_VERIFY_ALL flag is set.

keyProtection Of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the key protections used (see [FIDORegistry]).

This match succeeds, if at least one of the bit flags matches the value of ruthenticatorinfo. keyProtection [UAFASM]

NOTE

This field corresponds {0 MetadataStatement.keyProtection [FIDOMetadataStatement].

matcherProtection Of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the matcher protection (see [FIDORegistry]).

The match succeeds if at least one of the bit flags matches the value of authenticatorinfo.matcherprotection [UAFASM].

NOTE
This field corresponds to the Metadatastatement .matcherprotection metadata statement. See [FIDOMetadataStatement].
attachmentHint Of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the authenticator attachment mechanism (see

[FIDORegistry]).

This field is considered to match, if at least one of the bit flags matches the value of ruthenticatorinfo.attachmentiint [UAFASMI.

NOTE

This field Corresponds to the Metadatastatement.attachmentiint metadata statement.

tebisplay Of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the transaction confirmation display availability and type.
(see [FIDORegistry]).

This match succeeds if at least one of the bit flags matches the value of rutnenticatorinfo.tenisplay [UAFASM].

NOTE

This field corresponds to the vetadatastatement. tebisplay metadata statement. See [FIDOMetadataStatement].

authenticationAlgorithms Of type array of unsigned short
An array containing values of supported authentication algorithm TAG values (see [FIDORegistry], prefix 21.c_s1cw) if matching
should be restricted by the supported authentication algorithms. This field musT be present, if field 2214 is missing.

This match succeeds if at least one entry in this array matches the ruthenticatorinfo.authenticationalgorithn [UAFASMI.

NOTE
This field corresponds to the vetadatastatement.authenticationalgorithm metadata statement. See

[FIDOMetadataStatement].

assertionSchemes Of type array of DOMString
A list of supported assertion schemes if matching should be restricted by the supported schemes. This field musT be present, if field
aaid is missing.

See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches authenticatorinfo.assertionscheme [UAFASM].

NOTE
This field corresponds to the Metadatastatement . assertionScheme metadata statement. See [FIDOMetadataStatement].
attestationTypes Of type array of unsigned short

An array containing the preferred attestation TAG values (see [UAFRegistry], prefix Tac_arrestarron). The order of items must be
preserved. The most-preferred attestation type comes first.

This match succeeds if at least one entry in this array matches one entry in authenticatorinfo.attestationTypes [UAFASM].

NOTE

This field corresponds to the Metadatastatement.attestationTypes metadata statement. See [FIDOMetadataStatement].

authenticatorVersion Of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equal to the field ruthenticatorversion included in Tac UAFVI REG ASSERTION OF
TAG UAFV1 AUTE ASSERTION OF @ corresponding value in the case of a different assertion scheme.
NOTE

Since the semantic of the authenticatorversion depends on the AAID, the field zuthenticatorversion should always be
combined with a single azid in Matchcriteria.

This field corresponds to the vetadatastatenent . authenticatorversion metadata statement. See [FIDOMetadataStatement].

The use of authenticatorVersion in the policy is deprecated since there is no standardized way for the FIDO Client to learn the
authenticatorVersion. The authenticatorVersion is included in the auhentication assertion and hence can still be evaluated in the
FIDO Server.

exts Of type array of Extension
Extensions for matching policy.

3.1.13 Policy dictionary

Contains a specification of accepted authenticators and a specification of disallowed authenticators.

WebIDL

dictionary Policy {
required MatchCriterial][] a
MatchCriterial]

}i

3.1.13.1 Dictionary po1icy Members

accepted Of type array of array of required MatchCriteria

This field is a two-dimensional array describing the required authenticator characteristics for the server to accept either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e. the sets) are alternatives (OR condition).
All elements within a set musT be combined:

The first array index indicates OR conditions (i.e. the list). Any set of authenticator(s) satisfying these Matchcriteria in the first index
is acceptable to the server for this operation.

Sub-arrays of MatchCriteria in the second index (i.e. the set) indicate that multiple authenticators (i.e. each set element) musT be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the server. Servers musT put their preferred authenticators first, and FIDO
UAF Clients sHouLp respect those preferences, either by presenting authenticator options to the user in the same order, or by offering
to perform the operation using only the highest-preference authenticator(s).

NOTE
This list musT NOT be empty. If the FIDO Server accepts any authenticator, it can follow the example below.

"accepted":
[{ "userVerification": 1023 }]

1
}

NOTE

1023 = Ox3ff = USER_VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... | USER_VERIFY_NONE

disallowed Of type array of MatchCriteria
Any authenticator that matches any of MatchCriteria contained in the field disallowed musT be excluded from eligibility for the
operation, regardless of whether it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy

This section is normative.
The FIDO UAF Client musT follow the following rules while parsing server policy:

1. During registration:
1. policy.accepted is a list of combinations. Each combination indicates a list of criteria for authenticators that the server wants the
user to register.

. Follow the priority of items in rolicy.accepted(] (1. The lists are ordered with highest priority first.

. Choose the combination whose criteria best match the features of the currently available authenticators
. Collect information about available authenticators

. Ignore authenticators which match the ro1icy.disal1owed criteria

o g WODN

. Match collected information with the matching criteria imposed in the policy (see MatchCriteria dictionary for more details on
matching)

7. Guide the user to register the authenticators specified in the chosen combination

2. During authentication and transaction confirmation:

NOTE

olicy.accepted is a list of combinations. Each combination indicates a set of criteria which is enough to completely
authenticate the current pending operation

. Follow the priority of items in policy.accepted(] 1. The lists are ordered with highest priority first.

. Choose the combination whose criteria best match the features of the currently available authenticators
. Collect information about available authenticators

. Ignore authenticators which meet the ro1icy.disal1owed criteria

. Match collected information with the matching criteria described in the policy

. Guide the user to authenticate with the authenticators specified in the chosen combination

N o g ODN -

. A pending operation will be approved by the server only after all criteria of a single combination are entirely met

3.2.1 Examples

This section is non-normative.

"accepted":
[[{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1ITLV"]}],
[{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFVITLV"]}]
)]
"accepted":
[{ "userVerification": 18, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFVITLV"]}]

]
}

Combining these two bit-flags and the flag vser veriey arn (USER_VERIFY_ALL = 1024) into a single userverification value would match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.

{
"accepted": [[{ "userVerification": 1042, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFVITLV"]}]]

The next example requires two authenticators to be used:

{

"accepted":

[

{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1ITLV"]},
{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}
]
]
}
Other criteria can be specified in addition to the userverification:
"accepted":
: [
{ "userVerification": 2, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":
["UAFV1ITLV"]},
{ "userVerification": 16, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":
["UAFV1ITLV"]}
]
]
}
The policy for accepting authenticators of vendor with ID 1234 only is as follows:
{
"accepted":
[[{ "vendorID": "1234", "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFVITLV"]}]]

}

3.3 Version Negotiation

The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [UAFRegistry]), and the ASM version, see [UAFASM].
NOTE

The Key Registration Data and Signed Data objects have to be parsed and verified by the FIDO Server. This verification is only possible
if the FIDO Server understands their encoding and the content. Each UAF protocol version supports a set of Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

As a consequence the FIDO UAF Client musT select the authenticators which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client musT perform the following steps:

1. Create a set (r C Version Se
the FIDO UAF Client into =
o e.g. [{upvl, asmVe

) of version pairs, ASM version (asmversion) and UAF Protocol version (upv) and add all pairs supported by

NOTE

The ASM versions are retrieved from the authenticatorinfo.asnversion field. The UAF protocol version is derived from the related
eme field.

Authenti orInfo.assertionS

2. Intersect rc version set with the set of upv included in UAF Message (i.e. keep only those pairs where the upv value is also contained in
the UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:

o Construct a set (ruthnr version set) of version pairs including authenticator supported zsmversion and the compatible uwpv (s).
® e.0. [{upvl, asmVersionl}, {upv2, asmVersionl}, ...]

o Intersect authnr version set with 7c version set and select highest version pair from it.
= Take the pair where the upv is highest. In all these pairs leave only the one with highest asnversion.

o Use the remaining version pair with this authenticator

NOTE

Each version consists of major and minor fields. In order to compare two versions - compare the Major fields and if they are equal
compare the Minor fields.

Each UAF message contains a version field upv. UAF Protocol version negotiation is always between FIDO UAF Client and FIDO
Server.

A possible implementation optimization is to have the RP web application itself preemptively convey to the FIDO Server the UAF
protocol version(s) (UPV) supported by the FIDO Client. This allows the FIDO Server to craft its UAF messages using the UAF
version most preferred by both the FIDO client and server.

3.4 Registration Operation

NOTE

The Registration operation allows the FIDO Server and the FIDO Authenticator to agree on an authentication key.

Usﬂ Authenticator
[AAID, stiestation key pair
att. priv, Cert]att.pub])

1. User clicks on or en

ters URL: hitpsl/weba

||

PR

|FIDO Client |

‘UserAgent

RP We

3a. Render legacy log

in form

& Web

2a. HTTP GET hitps:/'webapp

3b. User enters
usemame + legacy
password and
clicks [Submit]

12a. Getinfo cmd

13a. Getinfo resp.

12a. Getinfo req.

1
-—
18a. Trigger Local
User Verification

’—4—
18b. Userinteracts
with Authenticator:

13b. Getinfo resp.

+ ApplD + TLS binding
e

2b. HTTP OK + legacy login form

4 HTTP POST legacy login form

b App
Server

5 Verify usemame
+ |egacy password

10. UAF Reg. request

v

9 HTTP OK + UAF Reg. request +
webapp JS + webapp session binding

11a. Fetch list ofFacetlDs identified by ApplD (URI}

7. Register cmd.

15. Register req.
‘_

18. User Verfied

Generate both a Uauth Key Pair
(specificto ApplD and Usemame), and a
KRD cbject: [Cert[Alt. pub], Uauth.pub,
ALID, etc] signed by Att.priv.

swipes finger, or
speaks, or
enters PIN, etc.

20

-
=

16. Generate KH Acces
for this ApplD

20b. Registerresp.

r

a. Registerresp.

sToken

21. return UAF Reg.
responselcentaing KRD)

11b. return Facet| D list

14, Seledt authenticator(s)

according to policy

Fig. 6 UAF Registration Sequence Diagram

L2

22. return UAF Reg. response

. Signal initiation of UAF
Registration Operation

2. UAF Reg. Reguest

{ + authnr policy}
-

23. send UAF Reg.
responss

FIDO Server

7. Generate
authenticator
policy

24, Verify KRD
signature, verfy
attestation,

and store new
Uauth.pub key
on behalf of user

The steps 11a and 11b and 12 to 13 are not always necessary as the related data could be cached.

The following diagram depicts the cryptographic data flow for the registration sequence.

___________ .

25. return verification resuft

Registration

Mote: This represents a FIDO UAF 1stF Embedded

Authenticator.
_ Relying
ASM + FIDO Client Party
1stF eAuthnr + Browser (mycorp.com)

select Authenticator according to policy; username, policy

check ApplD, get tisData (i e. channel id, etc.); <
generate APIKey random, compute access key ,APF”D. challenge
ak ;= hash{Appl D|APIKey|Personal D|Caller! D) —
fep = {a, challenge, facetiD, tlsData} a
P username u, ak; hash(fcp)
generate: - -
key kpub fe
key k., | |
handle h aaid, kf}_ub, fc, h, att.estatlon cert, reg-cntr, c;ntr,p
signature(aaid,fc,reg-cntr.entr k) . .
~ aaid, kpub, fc, h, attestation cert,
5 reg-cntr, cntr, s store:
key k.,
handle h

Fig. 7 UAF Registration Cryptographic Data Flow

The FIDO Server sends the ~pp10 (see section ApplD and FacetlD Assertion), the authenticator Policy, the serverchallenge and the

Username

to the FIDO UAF Client.

The FIDO UAF Client computes the Finalchallengeparams (FCP) from the serverchallenge and some other values and sends the ~pp1p,

the rcz and the vsername t

o the authenticator.

The ASM computes the finalChallengeHash (=ct) and calls the authenticator. The authenticator creates a Key Registration Data object
(e.g. Tac varvi xrDp, see [UAFAuthnrCommands]) containing the hash of =cx, the newly generated user public key (UAuth.pub) and
some other values and signs it (see section Authenticator Attestation for more details). This KRD object is then cryptographically verified

by the FIDO Server.

3.4.1 Registration Request Message

UAF Registration request message is represented as an array of dictionaries. The array musT contain exactly one dictionary. The request is
defined as RegistrationRequest dictionary.

"header": {

TupvT:
"major":
"minor":

by

"opt: "Reg",
"appID":
"serverData":

’
"challenge":
"username":
"policy": {

"accepted":

[{
}
[

[

"aaid":

’

1
{

1,
2

"https //uaf.example.com/facets.json",

"ZQ fRGDH2ar LvrTM8JnQcl-wfnaOutiyCmpBgmMcukE"

"Yb39SdUhU2B0089pS5L7VBW8afdlplnvR4B1lAna5vk4",
"alice@website.org",

["FFFF#FC03"]

"userVerification": 512,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [1],
"assertionSchemes": ["UAFVlTLV"]
1,
[{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [1],
"assertionSchemes": ["UAFVITLV"]

"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [2]

"userVerification": 2,
"keyProtection": 4,
"tcDisplay": 1,
"authenticationAlgorithms": [2]

"userVerification": 4,
"keyProtection": 2,

"tcDisplay": 1,
"authenticationAlgorithms": [1, 3]

"userVerification": 2,
"keyProtection": 2,
"authenticationAlgorithms": [2]

"userVerification": 32,
"keyProtection": 2,

"assertionSchemes": ["UAFVITLV"]

by

{
"userVerification": 2,
"authenticationAlgorithms": [1, 3],
"assertionSchemes": ["UAFVITLV"]

by

(. . .
"userVerification": 2,
"authenticationAlgorithms": [1, 3],
"assertionSchemes": ["UAFVITLV"]

by

{
"userVerification": 4,

"keyProtection": 1,
"authenticationAlgorithms": [1, 3],

"assertionSchemes": ["UAFVITLV"]
H
1y
"disallowed": [
"userVerification": 512,

"keyProtection": 16,
"assertionSchemes": ["UAFVITLV"]

"userVerification": 256,
"keyProtection": 16

"aaid": ["FFFF#FC02"],
"keyIDs": ["RfY_RDhsf4z5PCOhnZExMeVloZZmKOhanilOth_c4"]

3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
required OperationHeader h
required ServerChallenge c
required DOMString
required Policy

3.4.2.1 Dictionary RegistrationRequest Members

header Of type required OperationHeader
Operation header. seader.op MUST be "Reg

challenge Of type required ServerChallenge
Server-provided challenge value

username Of type required DOMString
string[1l..128

A human-readable user name intended to allow the user to distinguish and select from among different accounts at the same relying
party.

policy Of type required Policy
Describes which types of authenticators are acceptable for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion ({
required DOMString
required DOMString
DisplayPNGCharacteristicsDescriptor|[]
Extension|]

3.4.3.1 Dictionary authenticatorRegistrationAssertion Members

assertionScheme Of type required DOMString
The name of the Assertion Scheme used to encode the -

rtion. See UAF Supported Assertion Schemes for details.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertion Of type required DOMString

baseb4url (byte[1..4096]) Contains the Tac varvi rEG asserTTON Object containing the assertion scheme specific
KeyRegistrationData (KRD) object which in turn contains the newly generated vruth.pub and is signed by the Attestation Private
Key.

This assertion musT be generated by the authenticator and it musT be used only in this Registration operation. The format of this
assertion can vary from one assertion scheme to another (e.g. for "UAFV1TLV" assertion scheme it musT be 72¢ vasvi krD).

tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [FIDOMetadataStatement]. For the definition of the DisplayPNGCharacteristicsDescriptor structure
See [FIDOMetadataStatement].

exts Of type array of Extension
Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message
A UAF Registration response message is represented as an array of dictionaries. Each dictionary contains a registration response for a

specific protocol version. The array musT NoT contain two dictionaries of the same protocol version. The response is defined as
RegistrationResponse dictionary.

"header": {
"upv"
"major": 1,
"minor": 2
’
"op": "Reg",
"appID": "https://uaf.example.com/facets.json",
"serverData": "ZQ fRGDH2ar LvrTM8JnQcl-wfnaOutiyCmpBgmMcuE"
by - -
"fcParams": "eyJmYWN1dElEIjoiaHROcCHM6Ly91YWYuZXhhbXBsZS5jb20iLCIJhcHBIJRCI6IMhOdHBZzO1i8vdAWFMLMV4YW1

wbGUuY29tL2Z2hY2V0cy5qgc29uliwi¥2hhbGx1lbmdlIjoiWWIzOVNKVWhVMkIwMDg5cFM1ITDAWQlc4YWZkbHBsbnZSNET
XQWShNXZrNCIsImNoYW5S5uZWxCaWSkaWsnIjp7£X0",

"assertions": [{

"assertionScheme": "UAFVITLV",

"assertion": "AT73AgM-sQALLgkARkZGRiNGQzAzDi4HAAEAAQIAAAEKLiAAbkZZ]jz4ysihP9vVgevgoH8SEV2JITk
TxKFfsKbAiofQJLiAA2onnfjAyZz0Uc3GL4AVYOEdRgIkz7qogqzmI TcEPLovPONLggAAAAAAAEAAAAMLKEABNERNiALHp
0SfrvD 9Qug55Vw20aKmjgbC8TdiFXGZ6hiP7)YHVOGtYGOOEVrRRVsNBbnyhXUpg6P iNg91aDGsHPj4CBi5GADBEAL
C57WZpOHWCTil IuAYSEfuj3zgyY6KFp rgNw5kO50wwIgizZbTG6ZmY3T6ZqvdeOxcABFBgn6YLCNCK-Wyk0XVY8KFLy
ABMIIB7DCCAZKGAwWIBAGIBBDAKBggghkJOPQQDAIBwMQswCQYDVQQGEWJOW]EJMCEGA1UEAwwaRk1ETyBDb25mb3Jt YW
N1IFR1c3QgVGOvbHMxFJjAUBgNVBAOMDUZJRES8gQWxsaWFuY2UxJDAIBgNVBASMGON1cnRpZmljYXRpb24gV29ya2luZy
BHcm91cDAeFw0xNzAyM] kxNDMxMTJaFw0yMjAyMjgxNDMxMTJaMHAXCzAJBgNVBAYTAk5aMSMwIQYDVQQODDBpGSURPIE
NvbmzZvemlhY2UgVGVzdCBUb29sczEWMBQGALIUECGWNRk1IETyBBbGxpYW5) ZTEKMCIGALIUECwWwbQ2VydGlmaWNhdGlvbi
BXb3JraWSnIEdyb3VwMFkwEWYHK0ZIzj0CAQYIKoZIzj0DAQcDQgAEZaRKBI2Abz8ngEZF£8Xz84ajfA71Ljt40-12wqg
1FnD svIyTyEYm QbOYJCOGUVE-L6V70iD8K9Z4PfiBFRO-gMdMBswDAYDVROTBAUWAWEB zALBgNVHQ8EBAMCBsSAwWCY
YIKoZIzjO0EAWIDSAAWRQIgWDY10xu8PT6diGXycYOrxblel6oomexfQ-IvIKOg5p9cCIQCFPPCArmDh3-EyxI OaZFPVvWW
2kG2hQOBmi9PnC-bBrfyYQ" -

NOTE

Line breaks in fcParams have been inserted for improving readability.

3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.

WebIDL

dictionary RegistrationResponse {
required OperationHeader
required DOMString .
required AuthenticatorRegistrationAssertion(] 2

}i

3.4.5.1 Dictionary RegistrationResponse Members

header Of type required OperationHeader
Header.op MUST be "Reg".

fcparams Of type required DOMString
The base64url-encoded serialized [RFC4627] Finalchallengeparams Using UTF8 encoding (see FinalChallengeParams dictionary) or
alternatively it contains the serialized co11ectedcilientbata Object. In both cases, all parameters required for the server to verify the
Final Challenge are included.

assertions Of type array of required AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed mMatchcriteria (See Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by vatchcriteria). All authenticators in a specific set musT be registered simultaneously in
order to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

The FIDO Server musT follow the following steps:

1. Construct appropriate authentication policy »
1. for each set of alternative authenticators do
1. Create an array of MatchCriteria objects, containing the set of authenticators to be registered simultaneously that need to be
identified by separate MatchCriteria objects .
1. For each collection of authenticators = to be registered simultaneously that can be identified by the same rule, create a
MatchCriteria object m, where
m 1. a2aid MAY be combined with (one or more Of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and . exts,
but m. 2214 MusT NOT be combined with any other match criteria field.

m [fm.aaidis not provided -both m.authenticationalgorithms and m.assertionSchemes MUST be provided
2. Addntov,e.g.vij+i]=m.
2. Add v to p.allowed, €.Jd.p.allowed[i+1]=v

2. Create MatchCriteria objects [for all disallowed Authenticators.
1. For each already registered AAID for the current user
1. Create a MatchCriteria object « and add AAID and corresponding KeyIDs t0 m.zaid and m.key1ps.

The FIDO Server musT include already registered AAIDs and KeylIDs into field p.disz110wed to hint that the client should
not register these again.

2. Create a MatchCriteria object m and add the AAIDs of all disallowed Authenticators t0 m.za1q.

The status (as provided in the metadata TOC (Table-of-Contents file) [FIDOMetadataService]) of some authenticators might

2

3.

be unacceptable. Such authenticators sHouLp be included in p.disalilowed.

3. If needed - create MatchCriteria n for other disallowed criteria (e.g. unsupported authenticationAlgs)

Create a registrationrequest object r with appropriate r.neader for each supported version, and
1. FIDO Servers sHouLd NoT assume any implicit integrity protection of «.neader.servernata.

FIDO Servers that depend on the integrity of r.header.servernata sHouLb apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they sHouLb also cryptographically bind serverData to the related message, e.g. by

re-including r.challenge, see also section ServerData and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat - .neader.serverpata as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

. Generate a random challenge and assign it to r.chalienge
. Assign the username of the user to be registered to r.username

A w0 DN

. ASSign pto r.policy.
5. Append - to the array o of message with various versions (registrationRequest)
Send o to the FIDO UAF Client

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client musT perform the following steps:

A WODN -

. Choose the message n with upv set to the appropriate version number.

. Parse the message n

. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

. Filter the available authenticators with the given policy and present the filtered authenticators to User. Make sure to not include already

registered authenticators for this user specified in regrequest.policy.disallowed[].keyIDs

. Obtain racet 10 of the requesting Application. If the zpp 10 is missing or empty, set the zpp 10 to the racet1p.

Verify that the racet 10 is authorized for the ~pp 10 according to the algorithms in [FIDOAppIDAndFacets].

o If the racet 1D of the requesting Application is not authorized, reject the operation

. Obtain TLS data if it is available
. Create a rFinalchallengeParams Structure scp and set fcp.appiD, fep.challenge, fop. facet1D, @nd fep.channelBinding appropriately.

Serialize [RFC4627] fcp using UTF8 encoding and base64ur| encode it.

0 FinalChallenge = base64url (serialize (utf8encode (fcp)))

. For each authenticator that matches UAF protocol version (see section Version Negotiation) and user agrees to register:

1. Add ApplD, Username, FinalChallenge, AttestationType and all other required fields to the ASMRequest [UAFASM]

The FIDO UAF Client musT follow the server policy and find the single preferred attestation type. A single attestation type must be
provided to the ASM.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the
ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.4.6.2.1 Marring ASM StaTus Cobpes To ERRORCODE

ASMs are returning a status code in their responses to the FIDO Client. The FIDO Client needs to act on those responses and also map the
status code returned the ASM [UAFASM] to an ErrorCode specified in [UAFAppAPIAndTransport].

The mapping of ASM status codes to ErrorCode is specified here:

ASM Status Code ErrorCode Comment

UAF ASM STATUS OK

NO ERROR

Pass-through success status.

UAF_ASM STATUS_ ERROR

UNK

Map to vnxnom

UAF_ASM STATUS_ACCESS_DENIED

AUTHENTICATOR_ACCESS DENIED

Map to rUTHENTT CATOR_ACCESS_DENIED

UAF_ASM_STATUS_ USER_CANCELLED

USER_CANCELLED

Pass-through status code.

Map tO INVALID TRANSACTION CONTENT.
This code indicates a problem to be

UAF_ASM_STATUS CANNOT RENDER TRANSACTION CONTENT INVALTD TRANSACTION CONTENT resolved by the entity providing the
transaction text.
Pass-through status code. It indicates
that the Uauth key disappeared

UAF ASM STATUS KEY DISAPPEARED PERMANENTLY KEY DISAPPEARED PERMANENTLY permanently and the RP App might

want to trigger re-registration of the
authenticator.

UAF ASM STATUS

AUTHENTICATOR DISCONNECTED

NO SUITABLE AUTHENTICATOR OrF

ACTION

WAIT USER

Retry operation with other suitable
authenticators and map to

NO SUITABLE AUTHENTICATOR if the
problem persists. Return

watT user action if being called while
retrying.

UAF_ASM STATUS USER NOT RESPONSIVE

USER_NOT_ RESPONSIVE

Pass-through status code. The RP App
might want to retry the operation once
the user pays attention to the
application again.

UAF_ASM_STATUS_INSUFFICIENT AUTHENTICATOR_RESOURCES

INSUFFICIENT AUTHENTICATOR_RESOURCES

The FIDO Client sHALL try other
authenticators matching the policy. If
none exist, pass-through status code.

UAF_ASM_STATUS_USER_LOCKOUT

USER_LOCKOUT

Pass-through status code.

UAF ASM STATUS USER NOT ENROLLED

USER NOT ENROLLED

Pass-through status code.

UAF ASM STATUS

SYSTEM INTERRUPTED

SYSTEM INTERRUPTED

Pass-through status code.

Any other status code

UNKNOWN

Map any unknown error code to
unenomy. This might happen when a
FIDO Client communicates with an
ASM implementing a newer UAF
specification than the FIDO Client.

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Register Command".

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client musT follow the steps:

1. Create a RegistrationResponse Message

2. COpy RegistrationRequest.header iNtO RegistrationResponse.header

NOTE

When the app10 provided in the request was empty, the FIDO Client must set the app 10 in this header to the facetID (see

[FIDOAppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process. Those rules are defined in the related

section in [UAFRegistry].

3. Set registrationResponse. feParams 10 Finalchallenge (base64url encoded serialized and utf8 encoded FinalChallengeParams)
4. Append the response from each Authenticator into registrationresponse.assertions
5. Send registrationresponse message to FIDO Server

3.4.6.5 Registration Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFVATLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

The FIDO Server musT follow the steps:

1. Parse the message
1. If protocol version (registrationResponse.header.upv) IS NOt supported — reject the operation
2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

2. Verify that registrationresponse.header.serverbata, if used, passes any implementation-specific checks against its validity. See also
section ServerD nd KeyHandle.
3. baseb4url decode registrationresponse. ferarams and convert it into an object (fcp)

4. If this rcp object is a Finalchallengeparams Object, then verify each field in fcp and make sure it is valid:
1. Make sure rcp.app1D corresponds to the one stored by the FIDO Server

NOTE

When the app 10 provided in the request was empty, the FIDO Client must set the app 10 to the facetID (see
[FIDOAppIDANndFacets]). In this case, the Uauth key cannot be used by other application facets.

2. Make sure rcp.facet1n is in the list of trusted FacetlDs [FIDOAppIDAndFacets]
3. Make sure fcp.channelBinding is as expected (see section ChannelBinding dictionary)

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

4. Make sure rcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
5. Reject the response if any of these checks fails
5. If this rcp object is a col1ectedclientpata Object, then verify each field in rcp and make sure it is valid:
1. Make sure cp.origin is considered a legitimate origin for this registration request.
2. Make sure fcp.tokenBinding is as expected (see field cid pubkey in section ChannelBinding dictionary)

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

3. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
4. Reject the response if any of these checks fails

6. For each assertion = in
1. Parse data from =.zssertion @assuming it is encoded according to the suspected assertion scheme = .assertionscheme and make
sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to have, verify that the assertion has a valid
syntax, and verify that the assertion doesn't include unknown fields (identified by TAGs or IDs) that belong to extensions marked as
"fail-if-unknown" set to true [FIDOMetadataStatement].

= |f it doesn't - continue with next assertion

trat lFILRPSPC?fLHP .asserctions

2. if 2.assertion contains an object of type tac varvi rec asserTION, then

1. Retrieve the AAID from the assertion.

NOTE

The AAID in Tac uarvl KrD is contained in a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.TAG AAID.

2. Verlfy that a.assertionscheme matches Metadata (AAID) .assertionScheme
= [f it doesn't match - continue with next assertion

3. Verify that the AAID indeed matches the policy specified in the registration request.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions
included in this registrationresponse in order to determine whether this AAID matches the policy.

= [fit doesn't match the policy - continue with next assertion

4. Locate authenticator-specific authentication algorithms from the authenticator metadata [FIDOMetadataStatement] using the
AAID.

5. If fcp is of type FinalchallengeParams, then hash registrationresponse. feparans using hashing algorithm suitable for this
authenticator type. Look up the hash algorithm in authenticator metadata, field authenticationaigs. Itis the hash algorithm
associated with the first entry related to a constant with prefix ALG_SIGN.

B FCHash = hash (RegistrationResponse.fcParams)

6. If fcp is of type collectedclientData, then hash registrationresponse. ferarans using hashing algorithm specified in

fcp.hashAlg.

B FCHash = hash (RegistrationResponse.fcParams)

7. if a.assertion.TAG UAFVI REG ASSERTION contains Tac uvarvi xrp as first element:
1. Obtain vetadata (AATD) .Attestat ionType for the AAID and make sure that - .2
contains the most preferred attestation tag specified in field vatchcriteria.at
RegistrationRequest.policy (If this field is present).
m [fa.assertion.Tac UAFVI rREG AsserTION doesn't contain the preferred attestation - it is RecommeNDED to skip this

assertion and continue with next one

tion.TAG UAFV1 REG ASSERTION

tationTypes in

2. Make sure that a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.FinalChallengeHash == FCHash
= |f comparison fails - continue with next assertion

3. Obtain vetadata (AATD) .Authenticatorversion for the AAID and make sure that it is lower or equal to
2 .assertion.TAG V1 REG SSERTION.TAG UAFV1 KRD.AuthenticatorVersion.
m [fvetadata (AATD) .Authenticatorversion is higher (i.e. the authenticator firmware is outdated), it is REcoMMENDED to
assume increased risk. See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[FIDOMetadataService] for more details on this.

4. Check whether z.assertion.TAG UAFVI REG ASSERTION.TAG UAFV1 KRD.RegCounter iS acceptable, i.e. it is either not
supported (value is 0 or the field isKeyRestricted is set to 'false’ in the related Metadata Statement) or it is not
exceedingly high

m [fa. assertion.TAG UAFVI REG ASSERTION.TAG UAFV1 KRD.RegCounter IS exceedingly high, this assertion might be
skipped and processing will continue with next one

N contains ATTEsTATION BASIC FULL tag
-s for the AAID in the metadata [FIDOMetadataStatement] contains at least

5. If a.assertion.TAG UAFV1 REG Z
1. If entry Attestatior

one element:
1. Obtain contents of all Tac ATTESTAT

a.assertion.TAG UAFV1 REG ASSERT

n_cert tags from
LATTESTATION BASIC FULL Object. The occurrences are ordered (see
[UAFAuthnrCommands]) and represent the attestation certificate followed by the related certificate chain.

2. Obtain all entries of attestationrootcertificates for the AAID in authenticator Metadata, field

AttestationRootCertific

3. Verify the attestation certificate and the entire certificate chain up to the Attestation Root Certificate using
Certificate Path Validation as specified in [RFC5280]

= |f verification fails — continue with next assertion

4. Verify a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.ATTESTATION BASIC FULL.Signature Using the
attestation certificate (obtained before).

n [f verification fails — continue with next assertion

2. If Metadata (AAID) .AttestationRootCertificates for this AAID is empty - continue with next assertion
3. Mark assertion as positively verified

6. If a.assertion.TAG UAFVI REG ASSERTION contains an object of type ATTESTATION BASTC SURROGATE

1. There is no real attestation for the AAID, so we just assume the AAID is the real one.
2. Ifentry attestationrootcertificates for the AAID in the metadata is empty

m Verify = 1 REG

a.assertion.TAG UAFV1 REG

n |f verlflcatlon fails — continue with next assertion

ASSERTION.ATTESTATION BASIC SURROGATE.Signature USing
ASSERTION.TAG UAFV1 KRD.TAG PUB KEY

3. Ifentry attestationrootcertificates for the AAID in the metadata is not empty - continue with next assertion (as
the AAID obviously is expecting a different attestation method).

4. Mark assertion as positively verified
7. If a.assertion.TAG UAFVI REG ASSERTION contains an object of type arrestarron =cp
1. If entry ec ustAnchors for the AAID in the metadata [FIDOMetadataStatement] contains at least one element:

1. For each of the ccdaatrustanchors entries, perform the ECDAA Verify operation as specified in
[FIDOEcdaaAlgorithm].

= [f verification fails — continue with next ccdaaTrustanchors entry

2. If no ECDAA Verify operation succeeded — continue with next assertion
2. If vetadata (AATD) .ecdaaTrustanchors for this AAID is empty - continue with next assertion
3. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the AAID.

8. If a.assertion.TAG UAFVI REG ASSERTTON cOntains another rac artrestarron tag - verify the attestation by following
appropriate processing rules applicable to that attestation. Currently this document defines the processing rules for
Basic Attestation and direct anonymous attestation (ECDAA).

8. if a.assertion.Tac varvl REG AsserTION contains a different object than tzc varvi xrp as first element, then follow the rules
specific to that object.
ION.TAG UAFV1 KRD.PublicKey into PublicKey,

9. Extract 2. zassertion.TAG UAFV
assertion.TAG UAFV1 > into KeylID,

sunter into SignCounter,

ERTION INFO.authenticatorversion into AuthenticatorVersion,

an1D into AAID.

AFV1_KRD.Key
rtion.TAG KR v

>rtion.TAG U

KRD. TZ

sertion.TAG UAFV1 REG ASSERTION.TAG UAFV

3. if a.assertion doesn't contain an object of type 1ac UrFvI F

¢ asserTION, then then follow the respective processing rules of that
assertion format if supported - otherwise skip this assertion.

7. For each positively verified assertion =

o Store PublicKey, KeyID, SignCounter, AuthenticatorVersion, AAID and a.tcbisplaypiGcharacteristics into a record associated
with the user's identity. If an entry with the same pair of AAID and KeyID already exists then fail (should never occur).

3.5 Authentication Operation

NOTE

User| |Authenticator |ASM| |FIDO Client | |User Agent RP Web App | |FIDO Server

[AAID, stiestation key pain:
latt.pri\\:. Cert[att. pub]. 15er's & WED Sewer
private keys: Uauth. privd
I
1a. User isinteracling with a web application, dicks on “purchase”. https/f webapp 1b. HTTP GET hitps:iivebapp/?purchase 2. generate UAF
» Authn request
5. UAF Auth reguest 4. return UAF Authn req.
(incl. AppID, challenge, 5. HTTP OK + UAF Authn Reguest '(I'Hl-'lacl'll.'l'p;g‘“w. challenge,
PUT'E;- b.“lij'?) (incl. ApplD, challen ge, policy, TranTxt) e -
:____T_'"_g ————————————————————————————— 3. Generate
" . . challenge,
7a. Fetch list of FacetlD s identified by ApplD (URI) J authenticator
| policy,
Tb. return FacetiD list Transaction
2a. Getinfo req. *+-—-——————————— - —————————————————————
Ba, Getinfo crmd _._E__&_n__re_q ______ Text
- —]
9a. Getlnfo resp.
i P 8b. Getinfo resp.
10. Select authenticatons)
according to policy
11. Authenticate req.
+ ApplD + challenge + TranTxt
g TR T R 2
. 12. Look up KHACcessToken
13. Sign cmd. i i
fincl. KHAccessToken, j for this FIDO Client
challenge, TranTxt)
14a. Trigger T T T T T
U ser Verification
L)
> 7 15. User Verified
f Unleck Uauth.priv (specific to ApplD
—) and Usemame), generate both a nonce and the
mﬁ;l::ﬁru:ter?cts SignData object. [nonce, challenge, TranTxt, etc.]
e signed by Uauth.priv.
swipes finger, or
speaks, or
enters PIN, etc. 18a. Sign cmd resp.
16b Authenticate resp. | 17 retum UAF
> . retum =
Authenticate response i?gnvggg
{centains SignData) 18. ret_urn U_AF Authn response contents and
(contains SignData) b
» 19 send UAF Authn | Signature
response (contains (using .
SignData) Uauth.pub)
22, send content + session binding 21. return verification resuft
-——— T =
+ ______________________

Fig. 8 UAF Authentication Sequence Diagram
The steps 7a and 7a and 8 to 9 are not always necessary as the related data could be cached.

The TransactionText (TranTxt) is only required in the case of Transaction Confirmation (see section 3.5.1 Transaction dictionary), it is
absent in the case of a pure Authenticate operation.

During this operation, the FIDO Server asks the FIDO UAF Client to authenticate user with server-specified authenticators, and return
an authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously shared registration.

Authentication

_ Relying
ASM + FIDO Client Party
1stF eAuthnr + Browser (mycorp.com)
select Authenticator according to policy; - pollcy,.ApplDl, challenge
check ApplD, get tisData (i.e. channel id, etc.); —y
check- ak lookup key handle h and access key ak; a
. fep = {a, challenge, facetiD, tisData}

retrieve:

key kpriv < h, ak; hash(fcp)

from h; —

cntr++ fc

generate

Adthnr fc, n, cntr, signature(fe,n,cntr) lookup k

Nonce n A — — > P Kous

") from DB
s fcp, n, entr, s o check:

policy +
signature
using
key k.,

Fig. 9 UAF Authentication Cryptographic Data Flow
Diagram of cryptographic flow:

The FIDO Server sends the ~pp10 (see [FIDOAppIDAndFacets]), the authenticator policy and the serverchalienge to the FIDO UAF
Client.

The FIDO UAF Client computes the hash of the Finalchallengerarams, produced from the serverchalienge and other values, as
described in this document, and sends the 2pp10 and hashed rinaichaliengeprarans to the Authenticator.

The authenticator creates the signedpata object (see tac varvi steuen pata in [UAFAuthnrCommands]) containing the hash of the final
challenge parameters, and some other values and signs it using the vauth.priv key. This assertion is then cryptographically verified by
the FIDO Server.

3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

WebIDL

dictionary Transaction {
required DOMString contentType;
required DOMString C
DisplayPNGCharacteristicsDescriptor ¢t

3.5.1.1 Dictionary Transaction Members

contentType Of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [FIDOMetadataStatement]).

NOTE

For best interoperability, at least the values tcxt/p1ain and/or inage/png should be supported.

content Of type required DOMString
base6b4url (byte[l...])

Contains the base64url encoded transaction content according to the contentrype to be shown to the user.

If contentType is "text/plain” then the content must be the base64url encoding of the UTF8 [RFC3629] encoded text with a maximum
length of 200 characters. The Authenticator sHaLL display the default character if it doesn't know how to display the intended one.

If contentType is "image/png" or any other type, then it must be base64url encoded (i.e. the base64url encoded PNG [PNG] image in
the case of "image/png").

tcDisplayPNGCharacteristics Of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See
[FIDOMetadataStatement]. This field musT be present if the contentType is "image/png".

3.5.2 Authentication Request Message

UAF Authentication request message is represented as an array of dictionaries. The array musT contain exactly one dictionary. The request is
defined as AuthenticationRequest dictionary.

"header": ({
TupvT: |
"major": 1,
"minor": 2
by
"op": "Auth",
"appID": "https://uaf.example.com/facets.json",
"serverData": "mzOYSKHLXDd StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
}y
"challenge": "4D8eUxdSzQ Rbk7Gf0S0oK7Xr902LU-gl50stOpKOgo",
"policy": { -
"accepted": [

[{
}
[

"aaid": ["FFFF#FCO01"]
1,
{
"userVerification": 512,
"keyProtection": 1,
"tcDisplay": 1,

"authenticationAlgorithms": [1],
"assertionSchemes": ["UAFV1ITLV"]
11,
[{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [1],
"assertionSchemes": ["UAFVITLV"]

"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [2]

"userVerification": 2,
"keyProtection": 4,
"tcDisplay": 1,
"authenticationAlgorithms": [2]

"userVerification": 4,
"keyProtection": 2,

"tcDisplay": 1,
"authenticationAlgorithms": [1, 3]

"userVerification": 2,
"keyProtection": 2,
"authenticationAlgorithms": [2]

"userVerification": 32,

"keyProtection": 2,
"assertionSchemes": ["UAFVITLV"]

by

{
"userVerification": 2,
"authenticationAlgorithms": [1, 3],
"assertionSchemes": ["UAFVITLV"]

I

{
"userVerification": 2,
"authenticationAlgorithms": [1, 31,
"assertionSchemes": ["UAFVITLV"]

I

{
"userVerification": 4,
"keyProtection": 1,
"authenticationAlgorithms": [1, 3],

"assertionSchemes": ["UAFVITLV"]

"header": {

TupvT: |
"major": 1,
"minor": 2

HE ok A,
"appID": "https //uaf.example.com/facets.json",
"serverData": "DLbLt14MdgvuS4fESNCAPImS8yIKPJ3Ad0xblcMyuz2Q"

}
"éhallenge": "vui9bgJ453N_kWlZbiwMz9g6uPvssinXjkHYzk-LurY",
"transaction": [

"contentType": "text/plain",
"content": "VHJIhbnNmZXIgMjAwMCQgdG8gRXZ1"
}

1,
"policy": {
"accepted": [

[{
}
[

"aaid": ["FFFF#FCO01"]
1,
{

"userVerification": 512,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [1],

"assertionSchemes": ["UAFVITLV"]

"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,

"authenticationAlgorithms": [1],
"assertionSchemes": ["UAFVITLV"]
11,
[{
"userVerification": 4,

"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [2]

"userVerification": 2,
"keyProtection": 4,
"tcDisplay": 1,
"authenticationAlgorithms": [2]

"userVerification": 4,
"keyProtection": 2,

"tcDisplay": 1,
"authenticationAlgorithms": [1, 3]

"userVerification": 2,
"keyProtection": 2,
"authentlcatlonAlgorlthms": [2]

"userVerification": 32,
"keyProtection": 2,
"assertionSchemes": ["UAFV1TLV"]

"userVerification": 2,
"authenticationAlgorithms": [1, 3],
"assertionSchemes": ["UAFV1TLV"]

by

{
"userVerification": 2,
"authenticationAlgorithms": [1, 3],
"assertionSchemes": ["UAFVITLV"]

"userVerification": 4,
"keyProtection": 1,
"authenticationAlgorithms": [1, 31,
"assertionSchemes": ["UAFV1TLV"]

3.5.3 AuthenticationRequest dictionary

Contains the UAF Authentication Request Message:

WebIDL

dictionary AuthenticationRequest {
required OperationHeader he
required ServerChallenge ch
Transaction[] tr
required Policy policy;

alléngﬁ;

3.5.3.1 Dictionary authenticationRequest Members

header Of type required OperationHeader
Header.op MUST be "Auth"

challenge Of type required ServerChallenge
Server-provided challenge value

transaction Of type array of Transaction
Transaction data to be explicitly confirmed by the user.

The list contains the same transaction content in various content types and various image sizes. Refer to [FIDOMetadataStatement]
for more information about Transaction Confirmation Display characteristics.

policy Of type required Policy
Server-provided policy defining what types of authenticators are acceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:

WebIDL

dictionary AuthenticatorSignAssertion ({
required DOMString
required DOMString
Extension|]

3.5.4.1 Dictionary authenticatorsignassertion Members

assertionScheme Of type required DOMString

The name of the Assertion Scheme used to encode assertion. See UAF Supported Assertion Schemes for details.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertion Of type required DOMString
base6durl (byte[1..4096]) Contains the assertion containing a signature generated by vauth.priv, i.e. TAG UAFV1 AUTH ASSERTION.

exts Of type array of Extension
Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered authenticators.

WebIDL

dictionary AuthenticationResponse ({
required OperationHeader
required DOMString
required AuthenticatorSignAssertion[] a:

bi

3.5.5.1 Dictionary AuthenticationResponse Members

header Of type required OperationHeader
Header.op MUST be "Auth"

fcparams Of type required DOMString
The field fcParams is the base64url-encoded serialized [RFC4627] FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) or alternatively it contains the serialized co11ectedclientpata object. In both cases, all parameters
required for the server to verify the Final Challenge are included.

assertions Of type array of required AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. The array must contain exactly one dictionary. The response
is defined as AuthenticationResponse dictionary.

"header": {
"upvT:
"major": 1,
"minor": 2
by
"op": "Auth",
"appID": "https://uaf.example.com/facets.json",
"serverData": "mzOYSKHLXDd StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
s -
"fcParams": "eyJmYWN1dElEIjoiaHROcHM6Ly91YWYuZXhhbXBsZS5jb20iLCIJhcHBJRCI6IMhO0dHBZzO1i8vAWFMLMV4YW1

wbGUuY29tL2Z2hY2V0cy5qc29uliwi¥2hhbGx1lbmdlIjoiNEQ4ZVV4ZFN6UVISYms3R2YwU29vSzdYcjlPMkxVLWCxXNTB
zdE9wSzBnbyIsImNoYWSuzZWxCaWSkaWsSnIjp7£X0",

"assertions": [{
"assertionScheme": "UAFVITLV",
"assertion": "Aj7EAAQ-dgALLgkARkZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvCi4gAMYR1IZSqgYuPLiNpY1l
omDJYGZZGQRGS1L1Thqf8ZzF-k2EC4AAAkuIADaied-MDInRRzcYVhXI4R1GAITPugiCrOYhNwQ8ui8 QOuBAABAAAA
Bi5GADBEA1DDt4-pzmEWZyakWcWGAtBQLIXSE75wL3tEJiCIry QtQIgjw0oM1QgKOHAG2M26e1Z0bG4awG] fow vu5z
p-VkALFo"

"header": {

Tupvt: {
"major":
"minor":

N

by

"op": "Auth",

"appID": "https://uaf.example.com/facets.json",
"serverData": "mzOYSKHLXDd StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"

by

"fcParams": "eyJmYWN1dElEIjoiaHROcCHM6Ly91YWYuZXhhbXBsZS5jb20vaW5kZXguaHRtbCIsImFwcE1EIjoiaHROCH
M6Ly91YWYuZXhhbXBsZS5jb20vZmFjZXRzLmpzb24iLCJjaGFsbGVuzZ2UiOiI0RDh1VXhkU3pRX1JiazdHZjBTb29LN1hyO
U8yTFUtZzE1IMHNOT3BLMGdvIiwiY2hhbm51bEJpbmRpbmciOnt9£Q",

"assertions": [{
"assertionScheme": "UAFVITLV",
"assertion": "Aj7EAAQ-dgALLgkARkKZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvVCi4gAMYR1IZSgYuPLiNpYl
omDJYGZZGQRGS1L1Thqf8ZzF-k2EC4AAAkuIADaied-MDInRRzcYVhXI4R1GAITPugiCrOYhNwQ8ui8 QOuBAABAAAA
Bi5GADBEAi1DDt4-pzmEWZyakWcWGAtBQLIXSE75wL3tEJiCIry QtQIgjw0oM1QgKOHAG2M26e1Z0bGAwG]fow vu5z
p-VkALFo"

NOTE

Line breaks in fcParams have been inserted for improving readability.

3.5.7 Authentication Processing Rules
3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by MatchCriteria). All authenticators in a specific set musT be used for authentication
simultaneously in order to match the policy. But any of those sets in the list are valid, i.e. the list elements are alternatives.

The FIDO Server musT follow the steps:

1. Construct appropriate authentication policy »
1. for each set of alternative authenticators do
1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by separate MatchCriteria objects .
1. For each collection of authenticators = to be used for authentication simultaneously that can be identified by the same
rule, create a MatchCriteria object n, where

= . aaid MAY be combined with (One or more Of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m. 2214 MusT NOT be combined with any other match criteria field.
m |fn.aaidis not provided -both m.authenticationalgorithns and m.assertionSchemes MUST be pI'OVidEd
= |n case of step-up authentication (i.e. in the case where it is expected the user is already known due to a previous
authentication step) every item in rolicy.accepted MusT include the 221p and xey 10 of the authenticator registered
for this account in order to avoid ambiguities when having multiple accounts at this relying party.
2. Addnto v, e.g. vij+1]=m.
2. Add v to p. allowed, €.g. p.allowed[i+1]=v
2. Create MatchCriteria objects 1 for all disallowed authenticators.
1. Create a MatchCriteria object » and add AAIDs of all disallowed authenticators to m.zz14.

The status (as provided in the metadata TOC [FIDOMetadataService]) of some authenticators might be unacceptable. Such
authenticators sHouLb be included in p.disallowed.

2. If needed - create MatchCriteria = for other disallowed criteria (e.g. unsupported authenticationAlgs)
3. Add all n to p.disallowed.

2. Create an AuthenticationRequest object - with appropriate r.nheader for the supported version, and

1. FIDO Servers sHouLb NoT assume any implicit integrity protection of . header.servernata. FIDO Servers that depend on the integrity
of r.header.serverbata sHouLD apply and verify a cryptographically secure Message Authentication Code (MAC) to serverData and
they sHouLp also cryptographically bind serverData to the related message, e.g. by re-including r.cnal1enge, see also section

ServerData and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat - .header.serverbata as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

2. Generate a random challenge and assign it to r.chalienge

3. If this is a transaction confirmation operation - look up TransactionConfirmationDisplayContentTypes/
TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every participating AAID, generate a list of
corresponding transaction content and insert the list into +. trans

» |f the authenticator reported (a dynamic) AuthenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during
Registration - it musT be preferred over the (static) value specified in the authenticator Metadata.

action.

4. Set r.policy to our new policy object p created above, e.g. r.policy = p.
5. Add the authentication request message the array

3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client musT follow the steps:

1. Choose the message n with upv set to the appropriate version number.
2. Parse the message n
o If a mandatory field in the UAF message is not present or a field doesn't correspond to its type and value then reject the operation

3. Obtain racet 10 of the requesting Application. If the ~pp 10 is missing or empty, set the 2pp10 to the Facet1n.

Verify that the racet 10 is authorized for the ~pp 10 according to the algorithms in [FIDOAppIDAndFacets].
o If the racet1D Of the requesting Application is not authorized, reject the operation
4. Filter available authenticators with the given policy and present the filtered list to User.
5. Let the user select the preferred Authenticator.
6. Obtain TLS data if its available
7. Create a FinalChallengeParams structure rcp and set fcp.2ppiD, fep.challenge, fop. facet1n, @and fep.channelBinding appropriately.
Serialize [RFC4627] rcp using UTF8 encoding and base64url encode it.
O FinalChallenge = base64url (serialize (utf8encode (fcp)))

8. For each authenticator that supports an Authenticator Interface Version AIV compatible with message version
AuthenticationRequest.header.upv (S€e Version Negotiation) and user agrees to authenticate with:

1. Add 2pp1D, FinalChallenge, Transactions (if present), and all other fields to the ASMRequest.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the
ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
See [UAFAuthnrCommands], section "Sign Command".
3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client musT follow the steps:

1. Create an AuthenticationResponse message
2. COpy Authenticat equest.he r into AuthenticationResponse.header

NOTE

When the app10 provided in the request was empty, the FIDO Client must set the =pp 10 in this header to the facetID (see
[FIDOAppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process. Those rules are defined in the related
section in [UAFRegistry].

3. Fill out ruthenticationResponse.FinalChallengerarams With appropriate fields and then stringify it
4. Append the response from each authenticator into ruthenticationResponse.assertions
5. Send AuthenticationResponse message to the FIDO Server

3.6.7.5 Authentication Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFVATLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

The FIDO Server musT follow the steps:

1. Parse the message
1. If protocol version (authenticationResponse.header.upv) iS NOt supported — reject the operation
2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

2. Verify that authenticationresponse.header.serverbata, if used, passes any implementation-specific checks against its validity. See also
section ServerData and KeyHandIe.
3. base64url decode ruthenticationresponse. feparans and convert into an object (fcp)

4. If this rcp object is @ FinalChallengeParams object, then verify each field in rcp and make sure it's valid:
1. Make sure rcp.app1D corresponds to the one stored by the FIDO Server

NOTE

When the app10 provided in the request was empty, the FIDO Client must set the app 10 to the facetID (see
[FIDOAppIDANndFacets]). In this case, the Uauth key cannot be used by other application facets.

2. Make sure rcp. facet1n is in the list of trusted FacetlDs [FIDOAppIDAndFacets]
3. Make sure channelBinding is as expected (see section ChannelBinding dictionary)

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

4. Make sure rcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
5. Reject the response if any of the above checks fails

5. If this rcp object is a col1ectedclientpata Object, then verify each field in ccp and make sure it's valid:
1. Make sure rcp.origin is considered a legitimate origin for this registration request.

2. Make sure fcp.tokenBinding is as expected (see field cid pubkey in section ChannelBinding dictionary)

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

3. Make sure rcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
4. Reject the response if any of the above checks fails

6. For each assertion =z in ruthenticationResponse.assertions
1. Parse data from =.zssertion @assuming it is encoded according to the suspected assertion scheme = .assertionschene and make
sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to have, verify that the assertion has a valid
syntax, and verify that the assertion doesn't include unknown fields (identified by TAGs or IDs) that belong to extensions marked as
"fail-if-unknown" set to true [FIDOMetadataStatement].

= If it doesn't - continue with next assertion
2. if a.assertion contains an object of type tac varvi auTH asserTION, then
1. if a.assertion.TAG UAFV1 AUTH ASSERTION contains Tac varvi sicued pata as first element:
1. Retrieve the AAID from the assertion.

NOTE
The AAID in t2c SIGNED DATA iS contalned in
a.assertion.T \77 uT % ASSERTION \ SIGNED DATA.TAG AZ

2. Verlfy that 2. assertionscheme matches vetadata (AA1D) .assertionScheme
= [fit doesn't match - continue with next assertion

3. Make sure that the AAID indeed matches the policy of the Authentication Request
= [f it doesn't meet the policy — continue with next assertion

4. Obtain vetadata (AATD) .AuthenticatorVersion for this AAID and make sure that it is lower or equal to
a.assertion. UAFV1 5 z 1 SIGNED DATA.TAG ASSERTION INFO.AuthenticatorVers

m f vet a (AATID) .Authen on 1S hlgher (| e. the authenticator firmware is outdated), it is REcOMMENDED to
assume increased authentication risk. See "StatusReport dictionary" and "Metadata TOC object Processing Rules"

in [FIDOMetadataService] for more details on this.

5. Retrieve a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFVI SIGNED DATA.TAG KEYID as KeylD
6. Locate uauth.pub public key associated with (AAID, KeylD) in the user's record.
» If such record doesn't exist - continue with next assertion

7. Verify the AAID against the AAID stored in the user's record at time of Registration.
= |f comparison fails — continue with next assertion

8. Locate authenticator specific authentication algorithms from authenticator metadata (field ruthenticationalgs)

9. Check the Signature Counter = .assertion.TAG UAFVI AUTH ASSERTTON.TAG UAFVI STGNED DATA.SignCounter and make
sure it is either not supported by the authentlcator (i.e. the value provided and the value stored in the user's record are
both 0 or the value isKeyRestricted is set to 'false’ in the related Metadata Statement) or it has been incremented
(compared to the value stored in the user's record)

= [fitis greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a
cloned authenticator has been used previously).

10. If rcp is of type FinalChallengeParams, then hash authenticationResponse.FinalChallengeParams using the hashing
algorlthm suitable for this authenticator type. Look up the hash algorithm in authenticator Metadata, field
Authenticationalgs. Itis the hash algorithm associated with the first entry related to a constant with prefix ALG_SIGN.

B FCHash = hash (AuthenticationResponse.FinalChallengeParams)

fcp AuthenticationResponse. fcParams

1. If is of type collectedclientData, then hash using hashing algorithm specified in
fcp.hashAlg.

B FCHash = hash (AuthenticationResponse.fcParams

12. Make sure that a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.TAG FINAL CHALLENGE HASH == FCHash

= |f comparison fails — continue with next assertion

13. If a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.TAG ASSERTION INFO.authenticationMode == 2

NOTE

The transaction hash included in this authenticationresponse must match the transaction content specified in the
related ruthenticationrequest. As FIDO doesn’t mandate any specific FIDO Server API, the transaction content
could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web
Application.

1. Make sure there is a transaction cached on Relying Party side.
= |f not — continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction)
and calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for
FinalChallenge).

m Foreach cachedrransaction add hash (cachedTransaction) into cachedTransactionHashList
3. Make sure that a. Transactiontash iS iN cachedTransactionHashList
= [fit's not in the list — continue with next assertion

14. Use vruth.pub key and appropriate authentication algorithm to verify
a sertion.TAG UAEF AUTH ASSERTION.TAG SIGNATURE

1. If signature verification fails — continue with next assertion

2. Update signcounter in user's record with

a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.SignCounter

2. if a.assertion.Tac UaFV1 AUTH AsserTION contains a different object than tac varvi steuep paTa as first element, then follow
the rules specific to that object.

3. if a.assertion doesn't contain an object of type T2c varvi aurs asserrroN, then follow the respective processing rules of that
assertion format if supported - otherwise skip this assertion.

4. Treat this assertion = as positively verified.

7. Process all positively verified authentication assertions -.

3.6 Deregistration Operation

This operation allows FIDO Server to ask the FIDO Authenticator to delete keys related to the particular relying party.

The FIDO Server may explicitly enumerate the keys to be deleted, or the FIDO server may signal deregistration of all keys on all authenticators
managed by the FIDO UAF Client and relating to a given applID.

NOTE
There are various deregistration use cases that both FIDO Server and FIDO Client implementations should allow for. Two in particular
are:

1. FIDO Servers should trigger this operation in the event a user removes their account at the relying party.

2. FIDO Clients should ensure that relying party application facets -- e.g., mobile apps, web pages -- have means to initiate a
deregistration operation without having necessarily received a UAF protocol message with an op value of "Dereg". This allows the
relying party app facet to remove a user's keys from authenticators during events such as relying party app removal or installation.

3.6.1 Deregistration Request Message

The FIDO UAF Deregistration request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The
request is defined as DeregistrationRequest dictionary.

"header": ({

TupvT:
"major": 1,
"minor": 2

uépn . "Dereg",
"appID": "https://uaf.example.com/facets.json"

’
"authenticators": [

"keyID": "kbufhLYGoFFLJPRCUvwiUu-frlnh3sX3IjM9i91cOrQ",
"aaid": "FFFF#FCO3"

The example above contains a deregistration request. This request will deregister the key with the specified keyID registered for the
authenticator with 2214 "FFFF#FCO03" for the given app1o.

NOTE

There is no deregistration response object.

3.6.2 DeregisterAuthenticator dictionary

WebIDL

dictionary DeregisterAuthenticator {
required AAID aaid;
eyID

bi

3.6.2.1 Dictionary peregisterAuthenticator Members

aaid of type required AAID
AAID of the authenticator housing the vzuth.priv key to deregister, or an empty string if all keys related to the specified zpp10 are to
be de-registered.

keyID Of type required KeylD
The unique KeyID related to vauth.priv. KeylD is assumed to be unique within the scope of an AAID only. If aaid is not an empty
string, then:

1. xey1D MAY contain a value of type KeylD, or,
2. xey1D MAY be an empty string.

(1) signals deletion of a particular vauth.priv key mapped to the (2210, xey1D) tuple.
(2) signals deletion of all KeylDs associated with the specified 221 4.

If 2aid is an empty string, then ey 10 MusT also be an empty string. This signals deregistration of all keys on all authenticators that
are mapped to the specified zpp1p.

3.6.3 DeregistrationRequest dictionary

WebIDL

dictionary DeregistrationRequest {
required OperationHeader
required DeregisterAuthenticator]

}i

3.6.3.1 Dictionary DeregistrationRequest Members

header Of type required OperationHeader
Header.op MUST be "Dereg".

authenticators Of type array of required DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules

3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server musT follow the steps:

1. Create a DeregistrationRequest message m With m.neader.upv set to the appropriate version number.

2. If the FIDO Server intends to deregister all keys on all authenticators managed by the FIDO UAF Client for this zpp 10, then:
1. create one and only one peregisterAuthenticator Object o
2. Seto.aaid and o.key1D to be empty string values
3. Append o t0 m.authenticators, and go to step 5

3. If the FIDO Server intends to deregister all keys on all authenticators with a given AAID managed by the FIDO UAF Client for this app1p,
then:
1. create one and only one peregisterAuthenticator Object o

2. Set 0.aaid to the intended AAID and set . xey1D to be an empty string.
3. Append o to m.authenticators, and go to step 5
4. Otherwise, if the FIDO Server intends to deregister specific (2210, xey10) tuples, then for each tuple to be deregistered:
1. create a peregisterAuthenticator Object o
2. Set o.aaid and o.xey1D appropriately
3. Append o t0 m.authenticators
5. delete related entry (or entries) in FIDO Server's account database
6. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client musT follow the steps:

1. Choose the message n with upv set to the appropriate version number.

2. Parse the message
o If a mandatory field in peregistrationrequest message is not present or a field doesn't correspond to its type and value — reject the

operation
o Empty string values for o.2aid and o. key1p MusT occur in the first and only DeregisterAuthenticator object o, otherwise reject the
operation
3. Obtain racet1p Of the requesting Application. If the 2op 10 is missing or empty, set the 2pp10 to the racet1n.

Verify that the racet 1D is authorized for the 2pp10 according to the algorithms in [FIDOAppIDAndFacets].

o If the racet 1D of the requesting Application is not authorized, reject the operation

4. If the set of authenticators compatible with the message version peregistrationRequest.header.upv and having an AAID matching
one of the provided 221ps (an AAID of an authenticator matches if it is either (a) equal to one of the 2a1ps in the
DeregistrationRequest OF if (b) the 2210 in the DeregistrationRequest is an empty string) is empty, then return
NO_SUITABLE_AUTHENTICATOR.

5. For each authenticator compatible with the message version peregistrationRequest.header.upv and having an AAID matching one
of the provided aa1ps (an AAID of an authenticator matches if it is either (a) equal to one of the aa1ps in the
DeregistrationRequest OrF if (b) the 2210 in the DeregistrationRequest is an empty string):

1. Create appropriate ~svrequest for Deregister function and send it to the ASM. If the ASM returns an error, handle that error
appropriately. The status code returned by the ASM [UAFASM] must be mapped to a status code defined in
[UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping ASM Status Codes to ErrorCode.

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

See [UAFASM] section "Deregister request".

4. Considerations

This section is non-normative.

4.1 Protocol Core Design Considerations

This section describes the important design elements used in the protocol.

4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all supported authenticators and their corresponding Metadata. Authenticator metadata
[FIDOMetadataStatement] contains information such as:

e Supported Registration and Authentication Schemes
o Authentication Factor, Installation type, supported content-types and other supplementary information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction, FIDO Server looks up the list of authenticator
metadata by AAID and retrieves the required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be identified with a unique authenticator Attestation ID (AAID).

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating authenticator model identity during registration. It allows Relying Parties to
cryptographically verify that the authenticator reported by FIDO UAF Client is really what it claims to be.

Using authenticator Attestation, a relying party "example-rp.com” will be able to verify that the authenticator model of the "example-
Authenticator”, reported with AAID "1234#5678", is not malware running on the FIDO User Device but is really a authenticator of model
"1234#5678".

NORMATIVE

FIDO Authenticators sHouLb support "Basic Attestation" or "ECDAA" described below. New Attestation mechanisms may be added to the
protocol over time.

NORMATIVE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use the UAuth.priv key in
order to formally generate the same KeyRegistrationData object as attested authenticators. This behavior musT be properly declared in the
Authenticator Metadata.

4.1.2.1 Basic Attestation

NORMATIVE
There are two different flavors of Basic Attestation:

Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).

Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key
corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not provide a cryptographic proof of
the security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 FuLL Basic ATTESTATION

NOTE

FIDO Servers must have access to a trust anchor for verifying attestation public keys (i.e. Attestation Certificate trust store) in order to
follow the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation signature during the registration process for
the same reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This sharing process
shouldt be done according to [FIDOMetadataService].

NOTE

The protection measures of the Authenticator's attestation private key depend on the specific authenticator model's implementation.

NOTE

The FIDO Server must load the appropriate Authenticator Attestation Root Certificate from its trust store based on the AAID provided in
KeyRegistrationData object.

In this Full Basic Attestation model, a large number of authenticators must share the same Attestation certificate and Attestation Private Key in
order to provide non-linkability (see Protocol Core Design Considerations). Authenticators can only be identified on a production batch level or
an AAID level by their Attestation Certificate, and not individually. A large number of authenticators sharing the same Attestation Certificate
provides better privacy, but also makes the related private key a more attractive attack target.

NOTE

When using Full Basic Attestation: A given set of authenticators sharing the same manufacturer and essential characteristics must not
be issued a new Attestation Key before at least 100,000 devices are issued the previous shared key.

Manufacturer Attestation Root

Intermediate Attestation Certificates

S

Intermediate Attestation Certificates

Attestation Certificate

Fig. 10 Attestation Certificate Chain

4.1.2.1.2 SURROGATE BAsic ATTESTATION

NORMATIVE

In this attestation method, the UAuth.priv key musT be used to sign the Registration Data object. This behavior musT be properly declared in
the Authenticator Metadata.

NOTE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use this attestation
method.

4.1.2.2 Direct Anonymous Attestation (ECDAA)

The FIDO Basic Attestation scheme uses attestation "group” keys shared across a set of authenticators with identical characteristics in order to
preserve privacy by avoiding the introduction of global correlation handles. If such an attestation key is extracted from one single authenticator,
it is possible to create a "fake" authenticator using the same key and hence indistinguishable from the original authenticators by the relying
party. Removing trust for registering new authenticators with the related key would affect the entire set of authenticators sharing the same
"group" key. Depending on the number of authenticators, this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as opposed to targeted physical attacks.

An alternative approach to "group” keys is the use of individual keys combined with a Privacy-CA [TPMv1-2-Part1]. Translated to FIDO, this
approach would require one Privacy-CA interaction for each Uauth key. This means relatively high load and high availability requirements for
the Privacy-CA. Additionally the Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This
might make the Privacy-CA an interesting attack target.

Another alternative is the Direct Anonymous Attestation [BriCamChe2004-DAA]. Direct Anonymous Attestation is a cryptographic scheme
combining privacy with security. It uses the Authenticator specific secret once to communicate with a single DAA Issuer (either at

manufacturing time or after being sold before first use) and uses the resulting DAA credential in the DAA-Sign protocol with each relying party.
The (original) DAA scheme has been adopted by the Trusted Computing Group for TPM v1.2 [TPMv1-2-Part1].

ECDAA (see [FIDOEcdaaAlgorithm] for details) is an improved DAA scheme based on elliptic curves and bilinear pairings [CheLi2013-

ECDAA]. This scheme provides significantly improved performance compared with the original DAA and it is part of the TPMv2 specification
[TPMv2-Part1].

NORMATIVE

The ECDAA attestation algorithm is used as specified in [FIDOEcdaaAlgorithm].

4.1.3 Error Handling

NOTE

FIDO Servers must inform the calling Relying Party Web Application Server (see EIDO Interoperabili verview) about any error
conditions encountered when generating or processing UAF messages through their proprietary API.

NORMATIVE

FIDO Authenticators musT inform the FIDO UAF Client (see EIDO Interoperability Overview) about any error conditions encountered when
processing commands through the Authenticator Specific Module (ASM). See [UAFASM] and [UAFAuthnrCommands] for details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs, Fingerprint Sensors, Secure Elements, etc.) and
also future authenticators designed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

o Cryptographic key provisioning (KeyRegistrationData)
e Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See also UAF Supported Assertion Schemes.

The Registration Assertion defines how and in which format a cryptographic key is exchanged between the authenticator and the FIDO Server.
The Authentication Assertion defines how and in which format the authenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in [UAFRegistry].

4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e. replacing username and password). As part of the FIDO UAF
Registration, the Uauth key is registered (linked) to the related user account at the RP. The authenticator stores the username (allowing the
user to select a specific account at the RP in the case he has multiple ones). See [UAFAuthnrCommands], section "Sign Command" for
details.

4.1.6 Silent Authenticators

FIDO UAF supports authenticators not requiring any types of user verification or user presence check. Such authenticators are called Silent
Authenticators.

In order to meet user's expectations, such Silent Authenticators need specific properties:

¢ |t must be possible for a user to effectively remove a Uauth key maintained by a Silent Authenticator (in order to avoid being tracked) at

the user's discretion (see [UAFAuthnrCommands]). This is not compatible with statelesss implementations storing the Uauth private key
wrapped inside a KeyHandle on the FIDO Server.

e TransactionConfirmation is not supported (as it would require user input which is not intended), see [UAFAuthnrCommands].
o They might not operate in first factor mode (see [UAFAuthnrCommands]) as this might violate the privacy principles.

The MetadataStatement has to truthfully reflect the Silent Authenticator, i.e. field userVerification needs to be set to USER_VERIFY_NONE.

4.1.7 TLS Protected Communication

NOTE

In order to protect the data communication between FIDO UAF Client and FIDO Server a protected TLS channel must be used by FIDO
UAF Client (or User Agent) and the Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying Party
2. The client endpoint of the TLS connection must be either the FIDO UAF Client or the User Agent / App

3. TLS Client and Server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS v1.2 or higher are not available. The
"anon" and "null" TLS crypto suites are not allowed and must be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4,
SHA1) should be avoided [SP800-131A] [RFC7525].

4. TLS Extended Master Secret Extension [RFC7627] and TLS Renegotiation Indication Extension [RFC5746] should be used to
protect against MITM attacks.

5. The use of the tls-unique method is deprecated as its security is broken, see [TLSAUTH].

We recommend, that the

1. TLS Client verifies and validates the server certificate chain according to [RFC5280], section 6 "Certificate Path Validation". The
certificate revocation status should be checked (e.g. using OCSP [RFC2560] or CRL based validation [RFC5280]) and the TLS server
identity should be checked as well [RFC6125].

2. TLS Client's trusted certificate root store is properly maintained and at least requires the CAs included in the root store to annually pass
Web Trust or ETSI (ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.

See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on how to use TLS.
4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

NOTE

A serverchallenge needs appropriate random sources in order to be effective (see [RFC4086] for more details). The (pseudo-)random
numbers used for generating the Server Challenge should successfully pass the randomness test specified in [Coron99] and they
should follow the guideline given in [SP800-90b].

4.2.2 Revealing KeylIDs

FIDO UAF uses key identifiers (KeylDs) to identify Uauth keys registered by an authenticator to a relying party. By design (see
[UAFAuthnrCommands], section 6.2.4), KeylDs do not reveal any secret information. However, if an attacker could provide a username to a
relying party and the relying party server would reveal the related KeyID if an account for that username exists or give an error otherwise, the
attacker would implicitly learn whether the user has an account at that relying party.

As a consequence, relying parties should reveal a KeyID only after performing some basic authentication steps, e.g. verifying the existence of
a Cookie, authentication using FIDO Silent Authenticator, etc.).

4.3 Security Considerations

There is no "one size fits all" authentication method. The FIDO goal is to decouple the user verification method from the authentication protocol
and the authentication server, and to support a broad range of user verification methods and a broad range of assurance levels. FIDO
authenticators should be able to leverage capabilities of existing computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and integrity of the user's equipment involved
and (b) on the authentication method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of authentication methods. The relying party
needs reliable information about the security relevant parts of the equipment and the authentication method itself in order to determine whether
the overall risk of an electronic authentication is acceptable in a particular business context. The FIDO Metadata Service
[FIDOMetadataService] is intended to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security relevant parts of the equipment and the
authentication method itself to the FIDO server.

The overall security is determined by the weakest link. In order to support scalable security in FIDO, the underlying UAF protocol needs to
provide a very high conceptual security level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels. The FIDO Alliance envisions a broad range of FIDO UAF Clients, FIDO
Authenticators and FIDO Servers to be offered by various vendors. Relying parties should be able to select a FIDO Server providing the
appropriate level of security. They should also be in a position to accept FIDO Authenticators meeting the security needs of the given business
context, to compensate assurance level deficits by adding appropriate implicit authentication measures, and to reject authenticators not
meeting their requirements. FIDO does not mandate a very high assurance level for FIDO Authenticators, instead it provides the basis for
authenticator and user verification method competition.

Authentication vs. Transaction Confirmation. Existing Cloud services are typically based on authentication. The user launches an
application (i.e. User Agent) assumed to be trusted and authenticates to the Cloud service in order to establish an authenticated
communication channel between the application and the Cloud service. After this authentication, the application can perform any actions to the
Cloud service using the authenticated channel. The service provider will attribute all those actions to the user. Essentially the user
authenticates all actions performed by the application in advance until the service connection or authentication times out. This is a very
convenient way as the user doesn't get distracted by manual actions required for the authentication. It is suitable for actions with low risk
consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is typically being used when non-repudiation is required. The resulting requirement for this scenario is called
What You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The technical difference is, that with
Authentication the user confirms a random challenge, where in the case of Transaction Confirmation the user also confirms a human readable
content, i.e. the contract. From a security point, in the case of authentication the application needs to be trusted as it performs any action once
the authenticated communication channel has been established. In the case of Transaction Confirmation only the transaction confirmation
display component implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in order to determine the risk associated with an authentication, it is
important to know details about some components of the user's environment. Web Browsers typically send a "User Agent" string to the web
server. Unfortunately any application could send any string as "User Agent" to the relying party. So this method doesn't provide strong security.
FIDO UAF is based on a concept of cryptographic attestation. With this concept, the component to be attested owns a cryptographic secret
and authenticates its identity with this cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation Key". The
relying party gets access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an authentication, all components performing significant
security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the "FIDO Authenticators". Security functions are:

1. Protecting the attestation key.

2. Generating and protecting the Authentication key(s), typically one per relying party and user account on relying party.
3. Verifying the user.

4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).

Some FIDO Authenticators might implement these functions in software running on the FIDO User Device, others might implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators might even be
formally evaluated and accredited to some national or international scheme. Each FIDO Authenticator model has an attestation ID (AAID),
uniquely identifying the related security characteristics. Relying parties get access to these security properties of the FIDO Authenticators and
the reference data required for verifying the attestation.

Resilience to leaks from other verifiers. One of the important issues with existing authentication solutions is a weak server side
implementation, affecting the security of authentication of typical users to other relying parties. It is the goal of the FIDO UAF protocol to
decouple the security of different relying parties.

Decoupling User Verification Method from Authentication Protocol. In order to decouple the user verification method from the
authentication protocol, FIDO UAF is based on an extensible set of cryptographic authentication algorithms. The cryptographic secret will be
unlocked after user verification by the Authenticator. This secret is then used for the authenticator-to-relying party authentication. The set of
cryptographic algorithms is chosen according to the capabilities of existing cryptographic hardware and computing devices. It can be extended
in order to support new cryptographic hardware.

Privacy Protection. Different regions in the world have different privacy regulations. The FIDO UAF protocol should be acceptable in all
regions and hence must support the highest level of data protection. As a consequence, FIDO UAF doesn't require transmission of biometric
data to the relying party nor does it require the storage of biometric reference data [ISOBiometrics] at the relying party. Additionally,
cryptographic secrets used for different relying parties shall not allow the parties to link actions to the same user entity. UAF supports this
concept, known as non-linkability. Consequently, the UAF protocol doesn't require a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO Authenticators on the FIDO User Device using the Discovery interface
[UAFAppAPIAndTransport]. The combination of AAIDs adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at eff.org and https://wiki.mozilla.org/Fingerprinting). In order to
minimize the entropy added by FIDO, the user can enable/disable individual authenticators — even when they are embedded in the device (see
[UAFAppAPIAndTransport], section "privacy considerations").

4.3.1 FIDO Authenticator Security
See [UAFAuthnrCommands].
4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it is suggested that implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is also supported. See
[FIDORegistry] "Authentication Algorithms" and "Public Key Representation Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random value. For effective security, this value
must be chosen randomly and uniformly from a set of modular integers, using a cryptographically secure process. Even slight biases in that
process may be turned into attacks on the signature schemes.

NOTE

If such random values cannot be provided under all possible environmental conditions, then a deterministic version of ECDSA should be
used (see [RFC6979]).

4.3.3 FIDO Client Trust Model
The FIDO environment on a FIDO User Device comprises 4 entities:

e User Agents (a native app or a browser)

o FIDO UAF Clients (a shared service potentially used by multiple User Agents)
o Authenticator Specific Modules (ASMs)

¢ Authenticators

Relying Party

TLS with server
____—— authentication

Platform specific

determination of —

FacetlD
FIDO User Device

Platform specific
determinationof ______
CallerlD

KHAccessToken

FIDO Authenticator

B Authenticator specific
~ User Verification

Fig. 11 UAF Client Trust Model

The security and privacy principles that underpin mobile operating systems require certain behaviours from apps. FIDO must uphold those
principles wherever possible. This means that each of these components has to enforce specific trust relationships with the others to avoid the
risk of rogue components subverting the integrity of the solution.

One specific requirement on handsets is that apps originating from different vendors must not be allowed directly to view or edit each other’s
data (e.g. FIDO UAF credentials).

Given that FIDO UAF Clients are intended to provide a shared service, the principle of siloed app data has been applied to the FIDO UAF
Client, rather than individual apps. This means that if two or more FIDO UAF Clients are present on a device, then each FIDO UAF Client is
unable to access authentication keys created by another FIDO UAF Client. A given FIDO UAF Client may however provide services to multiple
User Agents, so that the same authentication key can authenticate to different facets of the same Relying Party, even if one facet is a 3rd party
browser.

This exclusive access restriction is enforced through the KHAccessToken. When a FIDO UAF Client communicates with an ASM, the ASM
reads the identity of the FIDO UAF Client caller1 and includes that Client ID in the KHAccessToken that it sends to the authenticator.
Subsequent calls to the authenticator must include the same Client ID in the KHAccessToken. Each authentication key is also bound to the
ASM that created it, by means of an ASMToken (a random unique ID for the ASM) that is also included in the KHAccessToken.

Finally, the User Agents that a FIDO UAF Client will recognise are determined by the Relying Party itself. The FIDO UAF Client requests a list
of Trusted Apps from the RP as part of the Registration and Authentication protocols. This prevents User Agents that have not been explicitly
authorized by the Relying Party from using the FIDO credentials.

In this manner, in a compliant FIDO installation, UAF credentials can only be accessed via apps that the relying party explicitly trusts and
through the same client and ASM that performed the original registration.

It should be noted that the specification allows for FIDO UAF Clients to be built directly into User Agents. However, such implementations will

restrict the ability to support multiple facets for relying party applications unless they also expose the UAF Client API for other User Agents to
consume.

4.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify the calling software entity (i.e. the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to the intended ASM. It is based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e. the ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally registered them. A malicious App on a
mobile platform won't be able to access keys by bypassing the related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the ApplD, PersonalD, ASMToken and the CallerlD. See [UAFASM] for more details.

NOTE

On some platforms, the ASM additionally might need special permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among applications.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g. [RFC5929] and [ChannellD]).

UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for the same ApplID as the relying party and they might be able to manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and they might be able to manipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique" defined in [RFC5929] might be difficult to
implement.

2. Data centers might use SSL concentrators.

3. Data centers might implement load-balancing for TLS endpoints using different TLS certificates. As a consequence, "tls-server-end-point"
defined in [RFC5929], i.e. the hash of the TLS server certificate might be inappropriate.

4. Unfortunately, hashing of the TLS server certificate (as in "tIs-server-end-point") also limits the usefulness of the channel binding in a
particular, but quite common circumstance. If the client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-
middle, your client will see a different certificate than the one the server is using. This is actually quite common on corporate or military
networks with a high security posture that want to inspect all incoming and outgoing traffic. If the FIDO Server just gets a hash value,
there's no way to distinguish this from an attack. If sending the entire certificate is acceptable from a performance perspective, the server
can examine it and determine if it is a certificate for a valid name from a non-standard issuer (likely administratively trusted) or a
certificate for a different name (which almost certainly indicates a forwarding attack).

See ChannelBinding dictionary for more details.
4.3.5 Session Management

FIDO does not define any specific session management methods. However, several FIDO functions rely on a robust session management
being implemented by the relying party's web application:

FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.

EIDO Authentication

After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).
4.3.6 Personas

FIDO supports unlinkability [AnonTerminology] of accounts at different relying parties by using relying party specific keys.
Sometimes users have multiple accounts at a particular relying party and even want to maintain unlinkability between these accounts.

Today, this is difficult and requires certain measures to be strictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various personas (e.g. "business”, "personal").
This is possible as roaming authenticators typically are small and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona (e.g. "business" or "personal"). Some administrative interface (not standardized
by FIDO) of the authenticator may allow maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g. authentication keys, usernames, KeylDs, ...) related to the Persona being active
at that time.

With this concept, the User can switch to the "Personal" Persona and register new accounts. After switching back to "Business" Persona, these
accounts will not be recognized by the authenticator (until the User switches back to "Personal” Persona again).

In order to support the persona feature, the FIDO Authenticator-specific Module APl [UAFASM] supports the use of a 'PersonalD' to identify
the persona in use by the authenticator. How Personas are managed or communicated with the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see Operation Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be echoed
back to the FIDO Server as part of the related UAF response message.

NOTE

The FIDO Server should not assume any kind of implicit integrity protection of such data nor any implicit session binding. The FIDO
Server must explicitly bind the serverData to an active session.

NOTE

In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary places (e.g. in serverData or in the
KeyHandle). In such situations, the confidentiality and integrity of such sensitive data must be protected. This can be achieved by using
a suitable encryption algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or CTR [CTRMode]. This cipher mode needs to be used
correctly. For CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first in order to
obtain an integral number of blocks in length. The integrity protection can be achieved by adding a MAC or a digital signature on the
ciphertext, using a different key than for the encryption, e.g. using HMAC [FIPS198-1]. Alternatively, an authenticated encryption
scheme such as AES-GCM [SP800-38D] or AES-CCM [SP800-38C] could be used. Such a scheme provides both integrity and
confidentiality in a single algorithm and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by re-including the challenge value in the authenticated serverData.

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

Several authenticator properties (e.g. UserVerificationMethods, KeyProtection, TransactionConfirmationDisplay, ...) are available in the
metadata [FIDOMetadataStatement] and through the FIDO UAF Application API. The properties included in the metadata are authoritative and
are provided by a trusted source. When in doubt, decisions should be based on the properties retrieved from the Metadata as opposed to the
data retrieved through the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint" what to expect from the Authenticator. Such
"hints" are well suited to drive and optimize the user experience.

4.3.9 Policy Verification

FIDO UAF Response messages do not include all parameters received in the related FIDO UAF request message into the to-be-signed object.
As a consequence, any MITM could modify such entries.

FIDO Server will detect such changes if the modified value is unacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible FIDO Authenticator. Such a change will
be detected by FIDO Server if the weakest possible FIDO Authenticator does not match the initial policy (see Registration Response

Processing Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection
The FIDO UAF protocol specifies two different methods for replay-attack protection:

1. Secure transport protocol (TLS)
2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [TLS].

Additionally, each protocol message contains some random bytes in the serverchalienge field. The FIDO server should only accept incoming
FIDO UAF messages which contain a valid serverchalienge value. This is done by verifying that the serverchalienge value, sent by the client,
was previously generated by the FIDO server. See FinalChallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated by the FIDO server may not be unique,
and in such cases, the same serverchalienge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security characteristics specified for the model
(identified by the AAID). The security is better when only a single authenticator with that specific UAuth.Key instance exists. Consequently
FIDO UAF specifies some protection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard as such keys cannot be extracted easily.

Secondly, UAF specifies a Signature Counter (see Authentication R nse Pr ing Rules and [UAFAuthnrCommands]). This counter is
increased by every signature operation. If a cloned authenticator is used, then the subsequent use of the original authenticator would include a
signature counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals
There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:

. Register the authenticator to some relying party for one account

. Commit fraud

. Deregister the Authenticator

. Register the authenticator to some relying party for another account
Commit fraud

. Deregister the Authenticator

N o oA WDN

. .and soon...

NOTE

Authenticators might support a Registration Counter (regcounter). The regcounter will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios. See [UAFAuthnrCommands] for more details.
4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native PC Applications. Such applications are referred to as FIDO enabled
applications.

__— UAF Client AP|

Relying Party Application

- -
A - -

FIDO Client

4

. UAF
“_ Protocol
Specification

A

“__ UAF Client AP

" UAF ASM API

UAF Authenticator FIDO Server
FIDO Authenticator ~ Commands

Fig. 12 FIDO Interoperability Overview

Web applications typically consist of the web application server and the related Web App. The Web App code (e.g. HTML and JavaScript) is
rendered and executed on the client side by the User Agent. The Web App code talks to the User Agent via a set of JavaScript APls, e.g.
HTML DOM. The FIDO DOM API is defined in [UAFAppAPIAndTransport]. The protocol between the Web App and the Relying Party Web
Application Server is typically proprietary.

Mobile Apps play the role of the User Agent and the Web App (Client). The protocol between the Mobile App and the Relying Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web App (Client). Those applications are typically expected to be independent
from any particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [UAFAppAPIAndTransport].

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO Authenticators and
have to be verified by the FIDO Server. Verification will fail if the values are modified during transport.

The ASM API [UAFASM)] specifies the standardized API to access authenticator Specific Modules (ASMs) on Desktop PCs and Mobile
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API. Instead it lists the minimum data set and a specific
message format which needs to be transferred to and from the FIDO Authenticator.

5. UAF Supported Assertion Schemes

This section is normative.
5.1 Assertion Scheme "UAFV1TLV"

This scheme is mandatory to implement for FIDO Servers. This scheme is mandatory to implement for FIDO Authenticators.

This Assertion Scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to encode registration and authentication assertions generated by

authenticators. This is the default assertion scheme for UAF protocol.
TAGs and Algorithms are defined in [UAFRegistry].

The authenticator musT use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the metadata
statement [FIDOMetadataStatement] for each relying party. This key pair sHouLb be generated as part of the registration operation.

Conforming FIDO Servers must implement all authentication algorithms and key formats listed in document [FIDORegistry] unless they are
explicitly marked as optional in [FIDORegistry].

Conforming FIDO Servers musT implement all attestation types (t2c_arrestarion «) listed in document [UAFRegistry] unless they are explicitly
marked as optional in [UAFRegistry].

Conforming authenticators musT implement (at least) one attestation type defined in [UAFRegistry], as well as one authentication algorithm and
one key format listed in [FIDORegistry].

5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".
6. Definitions

See [FIDOGIlossary].

7. Table of Figures

F.
F.
F
F
F
F.
F.
F
F
F
F
F.

g. 1 The UAF Architecture
g. 2 UAF Registration Message Flow

g. 3 Authentication Message Flow

g. 4 Transaction Confirmation Message Flow

g. 5 Deregistration Message Flow

g. 6 UAF Registration Sequence Diagram

g. 7 UAF Registration Cryptographic Data Flow

g. 8 UAF Authentication Sequence Diagram

g. 9 UAF Authentication Cryptographic Data Flow
g. 10 Attestation Certificate Chain

g. 11 UAF Client Trust Model

g. 12 FIDO Interoperability Overview

A. References

A.1 Normative references

[ABNF]
D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNF. January 2008. Internet Standard. URL:
https://tools.ietf.org/html/rfc5234
[ChannellD]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL: http:/tools.ietf.org/html/draft-balfanz-tls-channelid
[Coron99]
J. Coron; D. Naccache. An accurate evaluation of Maurer's universal test. February 1999. URL:
http://www.jscoron.fr lications/universal.pdf
[FIDOAppIDAndFacets]
D. Balfanz; B. Hill; R. Lindemann; D. Baghdasaryan. FIDO AppID and Facets. Review Draft. URL: https:/fidoalliance.org/specs/fido-v2.0-
id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenlsch M. Drljvers A Edglngton A Lehmann R. Urian. IDQ ECDAA Angrlthm 28 November 2017. Review
Draft. URL: https://fidoallia a/sp] jaa-alg id
[FIDOGlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL: https:/fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-gl ry-v2.0-id-20180227 .html

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FEIDO Metadata Statements. Review Draft. URL: htt|
20180227/fido-m - ment-v2.0-id-20180227 .html

[FIDORegistry]
R. Llndemann D. Baghdasaryan B. Hill. FIDO Reg/stgg of Predefined Values. Proposed Standard. URL:

[FIPS1 80-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). August 2015. URL: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
[JWA]
M. Jones. JSON Web Algorithms (JWA). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7518
[JWK]
M. Jones. JSON Web Key (JWK). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7517
[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C Recommendation. URL:
https://www.w3.org/TR/PN
[RFC1321]

R. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). April 1992. URL: http://www.ietf.org/rfc/rfc1321.txt
[RFC2119]

S. Bradner. Key words for use in RECs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:

https://tools.ietf.org/html/rfc2119
[RFC3629]
F. Yergeau. UTF-8, a transformation format of ISO 10646. November 2003. Internet Standard. URL: https://tools.ietf.org/html/rfc3629
[RFC4086]
D. Eastlake 3rd; J. Schiller; S. Crocker. Randomness Requirements for Security (RFC 4086). June 2005. URL:
http://www.ietf.org/rfc/rfc4086.txt
[RFC4627]
D. Crockford. The application/json Media Type for JavaScript Object Notation N). July 2006. Informational. URL:
https://tools.ietf.org/html/rfc4627
[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt
[RFC5056]
N. Williams. On the Use of Channel Bindings to Secure Channels (REC 5056). November 2007. URL: http://www.ietf.org/rfc/rfc5056.txt
[RFC5280]

D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280
[RFC5929]

J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL: http://www.ietf.org/rfc/rfc5929.ixt
[RFC6234]

D. Eastlake 3rd; T. Hansen. US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) (RFC 6234). May 2011. URL:
http://www.ietf.org/rfc/rfc6234.txt
[RFC6979]
T. Pornin. Deterministi Teli : 4
(REC6979). August 2013. URL http: //www ietf. org/rfc/rfc6979 txt
[RFC8471]
A. Popov, Ed.; M. Nystroem; D. Balfanz; J. Hodges. The Token Binding Protocol Version 1.0. October 2018. Proposed Standard. URL:

[SP800-90b]
Meltem Sénmez Turan; Elaine Barker; John Kelsey; Kerry McKay; Mary Baish; Michael Boyle. NIST Special Publication 800-90B:

Recommendation for the Entropy Sources Used for Random Bit Generation. January 2018. URL:
. . blicati Jetai 300-90b/fi

[UAFASM]
D. Baghdasaryan J. Kemp; R Lindemann; B. Hill; R. Sasson EIDO UAFAuthentlcator Specific Module API. Review Draft. URL:
https://fidoalli . . .

[UAFAppAPIAndTransport]
B. H|II D Baghdasaryan B. Blanke. FIDO UAF AQQl/cat/on API and Transgort Binding SQeCIf/cat/o Review Draft. URL:
/fid .

[UAFAuthanommands]
D. Baghdasaryan J Kemp; R. L|ndemann R. Sasson; B. Hill; J Hodges K. Yang. FIDO UAF Authenticator Commands. Review Draft.

[UAFReglstry]
R. Llndemann D. Baghdasaryan B Hill. E AF Registry of Predefined Values. Review Draft. URL: https://fidoalliance.org/specs/fido-
fi . .

[WebAuthn]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael B. Jones; Akshay Kumar; Angelo Liao; Rolf Lindemann; Emil Lundberg.
Web Authentication: An API for accessing Public Key Credentials Level 1. March 2019. TR. URL: https://www.w3.0org/TR/w: thn
[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
https://tools.ietf.org/html/rfc8471
https://tools.ietf.org/html/rfc8471
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/

A.2 Informative references

[AnonTerminology]
A. Pfitzmann; M. Hansen. Anonymii
for Terminology, Version 0.34. August 2010. URL http: //dud |nf tu- dresden de/hteratur/Anon Termlnology vO. 34 pdf
[BriCamChe2004-DAA]
Ernie Brickell; Jan Camenisch; Liqun Chen. Direct Anonymous Aftestation. 2004. URL: http://eprint.iacr.org/2004/205.pdf
[CTRMode]
H. Lipmea; P. Rogaway; D. Wagner. Comments to NIST concerning AES Modes of Operation: CTR-Mode Encryption. URL:
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
[CheLi2013-ECDAA]
Ligun Chen; Jiangtao Li. Flexible and Scalable Digital Signatures in TPM 2.0. 2013. URL: http://dx.doi.org/10.1145/2508859.2516729
[ECDSA-ANSI]
. Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography
ANSI X9.63-2011 (R2017). 2017. URL: https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017
[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-service-v2.0-id-20180227.html
[FIDOSecRef]

R. Llndemann D. Baghdasaryan B. H|II J. Hill; D. Blggs IDQ Segu rity Reference. 27 February 2018. Implementation Draft. URL:
[FIPS198 1]
IP§ PQB 1 95-1 The Ke;@gi—Hagh Megggge Agthent/gatlgn Qgge (HMAC). July 2008. URL:
[ISOBlometrlcs]
ISO/IEC 2382-37 Harmonized Biometric Vocabulary. 2017. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en
[0WASP2013]
. 2013. OWASP Top 10 - 2013. The Ten Most Critical Web Application Security Risks. URL:
[RFC2560] - -
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560
[RFC5746]

E. Rescorla; M. Ray; S. Dispensa; N. Oskov. Transport Layer Security (TLS) Renegotiation Indication Extension. February 2010.
Proposed Standard. URL: https://tools.ietf.org/html/rfc5746

[RFC6125]
P. Saint-Andre; J. Hodges. R

. March 2011. URL:

http://www.ietf.org/rfc/rfc6125.txt
[RFC6287]

D. M'Raihi; J. Rydell; S. Bajaj; S. Machani; D. Naccache. RA: OATH Challenge-R: nse Algorithm (RFC 6287). June 2011. URL.:

[RFC6454]
A. Barth. The Web Origin Concept (REC 6454). June 2011. URL: http://www_ietf.org/rfc/rfc6454.txt
[RFC7525]

Y. Sheffer; R. Holz; P. Saint-Andre.
Security (DTLS). May 2015. Best Current Practlce URL: https: //tools |etf org/html/rfc7525
[RFC7627]
K. Bhargavan, Ed.; A. Delignat-Lavaud; A. Pironti; A. Langley; M. Ray. Tran Layer rity (TL ion Hash and Exten
Master Secret Extension. September 2015. Proposed Standard. URL: https://tools.ietf.org/html/rfc7627
[SHEFFER-TLS]
Y. Sheffer; R. Holz; P. Saint-Andre. Recommendations for Secure Use of TLS and DTLS. Internet-Draft (Work in Progress). URL:
https://tools.ietf.org/html/draft-sheffer-tls-
[SP800-131A]
E. Barker; A. Roginsky. N\ i jcati ti Jati tioni
Algorithms and Key Lengths. January 2011 Wlthdrawn on November 06 2015. URL: http /[csrc. nlst gov/gubllcatlons/nlstgubSISOO-

131A/sp800-131A pdf
[SP800-38C]

M. Dworkin. /\ I icati ati i)
Authentication and Conf/dent/al/ty July 2007 URL http: //csrc nist. gov/publlcatlons/nlstpubs/800 SSC/SPBOO 38C updated-
July20_2007.pdf
[SP800-38D]
M. Dworkin. A I ublicati j i
and GMAC. November 2007 URL https://csrc.nist. gov/publlcatlons/detalllsp/BOO 38d/f|nal
[SP800-63]
W. Burr; D. Dodson; E. Newton; R. Perlner; W.T. Polk; S. Gupta; E. Nabbus. NIST ial Publicati -2 El

Authentication Guideline. August 2013. URL: mammmmm@@ﬁwmw
[TLS]

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2004/205.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://dx.doi.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc5746
https://tools.ietf.org/html/rfc5746
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/draft-sheffer-tls-bcp
https://tools.ietf.org/html/draft-sheffer-tls-bcp
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. August 2008. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5246

[TLSAUTH]
Karthikeyan Bhargavan; Antoine Delignat-Lavaud; Cédric Fournet; Alfredo Pironti; Pierre-Yves Strub. Triple Handshakes and Cookie
rs: Breaking and Fixing Authentication over TLS. February 2014. URL: https://ieeexplore.ieee.or ment
[TPMv1-2-Part1]

TP 12 Part 1: Desian P URL: htto: nc " . .
D002BCOBBCO62FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011. pdf
[TPMv2 Part1]

g,sted Platfgrm MQQng leragé Part 1: Artht_eQLu re. URL: h

[WebIDL]
Boris Zbarsky. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.qgithub.io/webidl/

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://ieeexplore.ieee.org/document/6956559
https://ieeexplore.ieee.org/document/6956559
https://ieeexplore.ieee.org/document/6956559
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

fco

ALLIANCE

FIDO UAF Registry of Predefined Values
FIDO Alliance Proposed Standard 20 October 2020

This version:

https:
Previous version:

https:/fidoallian
Editor:

Dr. Rolf Lindemann , Nok Nok Labs, Inc.
Contributors:

Davit Baghdasaryan , Nok Nok Labs, Inc.

Brad Hill, PayPal

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are referenced by various
UAF specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A
list of current FIDO Alliance publications and the latest revision of this technical report can be found in the EIDO Alliance
specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us . All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used
as reference material or cited from another document. FIDO Alliance 's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-reg-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

1. Notation
o 1.1 Key Words

2. Overview

3. Authenticator Characteristics

o 3.1 Assertion Schemes

4. Predefined Tags
o 4.1 Tags used in the protocol

5. Predefined Extensions
o 5.1 User Verification Method Extension

o 5.2 User ID Extension
5.3 Android SafetyNet Extension
5.4 Android Key Attestation

o

o

o

5.5 User Verification Caching
= 5.5.1 UVC Request

= 5.5.2 UVC Response
= 5.5.3 Privacy Considerations

= 5.5.4 Security Considerations

o 5.6 Require Resident Key Extension

o 5.7 Attestation Conveyance Extension

e 6. Other Identifiers specific to FIDO UAF
o 6.1 FIDO UAF Application Identifier (AID)

e A. References
o A.l1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.
String literals are enclosed in 7, e.g. “UAF-TLV”.

In formulas we use

“‘”

to denote byte wise concatenation operations.
UAF specific terminology used in this document is defined in [FIDOGIlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

CLINY3 EEINT3

The key words “ MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, ““SHOULD”,
document are to be interpreted as described in [RFC2119].

SHOULD NOT”, ‘RECOMMENDED”, ‘MAY”, and “OPTIONAL” in this

2. Overview

This section is non-normative.
This document defines the registry of UAF-specific constants that are used and referenced in various UAF specifications. It is expected that,
over time, new constants will be added to this registry. For example new authentication algorithms and new types of authenticator

characteristics will require new constants to be defined for use within the specifications.

FIDO-specific constants that are common to multiple protocol families are defined in [FIDORegistry].

3. Authenticator Characteristics

This section is normative.

3.1 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
authenticator. The authenticator MusT generate a key pair (UAuth.pub/UAuth.priv) to be used with algorithm suites listed in
[FIDORegistry] section "Authentication Algorithms" (with prefix ar.c). This assertion scheme is using a compact Tag Length Value
(TLV) encoding for the KRD and SignData messages generated by the authenticators. This is the default assertion scheme for the UAF
protocol.

4. Predefined Tags

This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence. The tag is a 2-byte unique unsigned value
describing the type of field the data represents, the length is a 2-byte unsigned value indicating the size of the value in bytes, and the value is the
variable-sized series of bytes which contain data for this item in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the limitations of some
hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it cannot process
that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1 REG ASSERTION 0x3E01
The content of this tag is the authenticator response to a Register command.
TAG _UAFV1 AUTH ASSERTION 0x3E02
The content of this tag is the authenticator response to a Sign command.
TAG_UAFV1_KRD 0x3E03
* Indicates Key Registration Data.
TAG_UAFV1_SIGNED DATA 0x3E04
Indicates data signed by the authenticator using UAuth.priv key.
TAG_APCVICBOR AUTH ASSERTION 0x3E05
The content of this tag is the authenticator response to a Sign command.
TAG_APCVICBOR SIGNED DATA 0x3E06
~ Indicates Android Protected Confirmation data signed by the authenticator using UAuth.priv key.
TAG_ATTESTATION CERT 0x2E05
~ Indicates DER encoded attestation certificate.
TAG_SIGNATURE 0x2E06
Indicates a cryptographic signature.
TAG_KEYID 0x2E09
Represents a generated KeyID.
TAG_FINAL CHALLENGE_ HASH 0x2EOA

Represents a generated final challenge hash as defined in [UAFProtocol].
TAG_AAID 0x2EOB
Represents an Authenticator Attestation ID as defined in [UAFProtocol].

TAG_PUB_KEY 0x2EOC

Represents a generated public key.
TAG_COUNTERS 0x2EOD

Represents the use counters for an authenticator.
TAG_ASSERTION_ INFO 0x2EOE

Represents authenticator information necessary for message processing.
TAG_AUTHENTICATOR NONCE 0x2EOF

Represents a nonce value generated by the authenticator.
TAG_TRANSACTION CONTENT HASH 0x2E10

Represents a hash of the transaction content sent to the authenticator.
TAG_EXTENSION 0x3E1l, 0x3E12
This is a composite tag indicating that the content is an extension.
TAG_EXTENSION ID 0x2E13
Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.
TAG_EXTENSION DATA 0x2E14
Represents extension data. Content of this tag is a UINTS[] byte array.
TAG_RAW USER VERIFICATION INDEX 0x0103
This is the raw UVI as it might be used internally by authenticators. This TAG SHALL NOT appear in assertions leaving the authenticator
boundary as it could be used as global correlation handle.
TAG_USER VERIFICATION INDEX 0x0104
The user verification index (UVI) is a value uniquely identifying a user verification data record.

Each UVI value musT be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVI values MusT NOT be reused by the Authenticator (for other biometric data or users).

The UVI data can be used by FIDO Servers to understand whether an authentication was authorized by the exact same biometric data as
the initial key generation. This allows the detection and prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)), where the rawUVI reflects (a) the biometric
reference data, (b) the related OS level user ID and (c) an identifier which changes whenever a factory reset is performed for the device,
e.g. rawUVI = biometricReferenceData | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVI extensions ~ MusT support a length of up to 32 bytes for the UVI value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG UAFV1 AUTH ASSERTION)

04 01 -- TAG USER VERIFICATION INDEX (0x0104)
20 -- length of UVI B
00 43 B8 E3 BE 27 95 8C -- the UVI value itself

28 D5 74 BF 46 8A 85 CF
46 9A 14 FO E5 16 69 31
DA 4B CF FF Cl1 BB 11 32
82

TAG_RAW USER VERIFICATION STATE 0x0105
This is the raw UVS as it might be used internally by authenticators. This TAG SHALL NOT appear in assertions leaving the authenticator
boundary as it could be used as global correlation handle.

TAG_USER VERIFICATION STATE 0x0106
The user verification state (UVS) is a value uniquely identifying the set of active user verification data records.

Each UVS value musT be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes
guessing impractical. UVS values musT NOT be reused by the Authenticator (for other biometric data sets or users).

The UVS data can be used by FIDO Servers to understand whether an authentication was authorized by one of the biometric data records
already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)), where the rawUVS reflects (a) the biometric
reference data sets, (b) the related OS level user ID and (c) an identifier which changes whenever a factory reset is performed for the
device, e.g. rawUVS = biometricReferenceDataSet | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVS extensions MusT support a length of up to 32 bytes for the UVS value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e. TAG_UAFV1 _REG_ASSERTION or
TAG UAFV1 _AUTH ASSERTION)

(.Jé.Ol -— TAG_USER VERIFICATION STATE (0x0106)
20 -- length of UVS
00 18 C3 47 81 73 2B 65 -— the UVS value itself

83 E7 43 31 46 8A 85 CF
93 6C 36 FO AF 16 69 14
DA 4B 1D 43 FE C7 43 24

TAG_USER VERIFICATION CACHING 0x0108
This extension allows an app to specify such user verification caching time, i.e. the time for which the user verification status can be
"cached" by the authenticator.

The value of this extension is defined as follows:

Uy Description
Structure
1 UINT16 Tag | TAG_USER_VERIFICATION_CACHING
UINT16 .

1.1 Length Length of UVC structure in bytes
1.2 | UINT16 maxUVC in seconds
13 | UINTS (optional) verifylfExceeded. If O(=:false): return error if maxUVC exceeded. If non-zero (=:true): verify user if

' maxUVC exceeded.

Example of the TLV encoded UVC extension (contained in an authentication request)

08 01 -— TAG_USER VERIFICATION CACHING (0x0108)
05 -- length of UVC
2c 01 00 00 -- the UVC value itself: maxUVC = 0x012c (300 secs),

01 -- followd by verifyIfExceeded = 1 (true)

TAG_RESIDENT KEY 0x0109

Is the key resident in the authenticator. The value is a boolean. See section Require Resident Key Extension for details.
TAG_RESERVED 5 0x0201

Reserved for future use. Name of the tag will change, value is fixed.

5. Predefined Extensions

This section is normative.

5.1 User Verification Method Extension
This extension can be added

e by FIDO Servers to the UAF Request object (request extension) in the operationHeader in order to ask the authenticator for using a
specific user verification method and confirm that in the related response extension.

¢ by FIDO Clients to the ASM Request object (request extension) in order to ask the authenticator for using a specific user verification
method and confirm that in the related response extension.

e by ASMs to the authenticator command (request extension) in order to ask the authenticator for using a specific user verification method
and confirm that in the related response extension.

¢ by Authenticators to the assertion generated in response to a request in order to confirm a specifc user verification method that was used
for the action.

Extension identifier
fido.uaf.uvm

When present in a request (request extension)
Same as described in Authenticator argument.

FIDO Client processing
The client sHouLD pass the (request) extension through to the Authenticator.
Authenticator argument

The payload of this extension is an array of:

UINT32 userVerificationMethod

The array can have multiple entries. Each entry sHALL have a single bit flag set. In this case the authenticator sHALL verify the user using all
(multiple) methods as indicated.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in [FIDORegistry], "User
Verification Methods" section.

Authenticator processing
The authenticator supporting this extension

1. sHouLD limit the user verification methods selectable by the user to the user verification method(s) specified in the request
extension.

2. sHALL truthfully report the selected user verification method(s) back in the related response extension added to the assertion.

Authenticator data

The payload of this extension is an array of the following structure:

UINT32 userVerificationMethod
UINT16 keyProtection
UINT16 matcherProtection

The array can have multiple entries describing all user verification methods used.
The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in [FIDORegistry], "User
Verification Methods" section.

keyProtection
The method used by the authenticator to protect the FIDO registration private key material. Available values are defined in
[FIDORegistry], "Key Protection Types" section. This value has no meaning in the request extension.

matcherProtection
The method used by the authenticator to protect the matcher that performs user verification. Available values are defined in
[FIDORegistry], "Matcher Protection Types" section.

Server processing
If the FIDO Server requested the UVM extension,

1. it sHouLD verify that a proper response is provided (if client side support can be assumed), and

2. it sHouLD verify that the UVM response extension specifies one or more acceptable user verification method(s).

5.2 User ID Extension
This extension can be added

e by FIDO Servers to the UAF Request object (request extension) in the operationieader.
¢ by FIDO Clients to the ASM Request object (request extension).
e by ASMs to the TAGc UAFVI REGISTER CMD objectusing TAG EXTENSION (request extension).

¢ by Authenticators to the registration or authentication assertion using TAc EXTENSION (response extension).

The main purpose of this extension is to allow relying parties finding the related user record by an existing index (i.e. the user ID). This user ID
is not intended to be displayed.

Authenticators sHouLD truthfully indicate support for this extension in their Metadata Statement.

Extension identifier

fido.uaf.userid
Extension fail-if-unknown flag

false, i.e. this (request and response) extension can safely be ignored by all entities.
Extension data value

Content of this tag is the UINT8[] encoding of the user ID as UTF-8 string.

5.3 Android SafetyNet Extension

This extension can be added

o by FIDO Servers to the UAF Request object (request extension) in the operationteader in order to trigger generation of the related
response extension.

¢ by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related response extension.
e by the ASM to the respective exts array in the AsMresponse object (response extension).

e by the FIDO Client to the respective exts array in either the operationteader, or the AuthenticatorRegistrationAssertion, or the
AuthenticatorsSignassertion of the UAF Response object (response extension).

Extension identifier
fido.uaf.safetynet

Extension fail-if-unknown flag
false, 1.e. this (request and response) extension can safely be ignored by all entities.

Extension data value
When present in a request (request extension)

empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty dat= value in order to trigger the
generation of this extension for the UAF Response.

"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail if unknown": false}]

When present in a response (response extension)

o If the request extension was successfully processed, the data value is set to the JSON Web Signature attestation response as
returned by the call to com.google.android.agms.safetynet.SafetyNetApi . AttestationResponse.

o Ifthe FIDO Client or the ASM support this extension, but the underlying Android platform does not support it (e.g. Google
Play Services is not installed), the data value is set to the string "p" (i.e. platform issue).

"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail if unknown": false}]

o Ifthe FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value is set to the string "a" (i.e. availability issue).

"exts": [{"id": "fido.uaf.safetynet"”, "data": "a", "fail if unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

FIDO Client processing
FIDO Clients running on Android should support processing of this extension.

If the FIDO Client finds this (request) extension with empty d=+a value in the UAF Request and it supports processing this extension,
then the FIDO Client

1. musT call the Android API SafetyNet.SafetyNetApi.attest (mGoogleApiClient, nonce) (see fe nlin mentati 1’1)
and add the response (or an error code as described above) as extension to the response object.

2. MUST NOT copy the (request) extension to the ASM Request object (deviating from the general rule in [UAFProtocol], section
3.4.6.2 and 3.5.7.2).

If the FIDO Client does not support this extension it MUsT copy this extension from the UAF Request to the ASM Request object

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResponse
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

(according to the general rule in [UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it musT call the SafetyNet API (see above) and add the response as extension to the ASM Response
object. The FIDO Client musT copy the extension in the ASM Response to the UAF Response object (according to sections 3.4.6.4. and
3.5.7.4 step 4 in [UAFProtocol]).

When calling the Android API, the nonce parameter MUST be set to the serialized JSON object with the following structure:

"hashAlg": "S256", // the hash algorithm
"fcHash": "..." // the finalChallengeHash
}

Where

e hashalg identifies the hash algorithm according to [FIDOSignatureFormat], section IANA Considerations.

e fcHash is the base64url encoded hash value of FinalChallenge (see section 3.6.3 and 3.7.4 in [UAFASM)] for details on how to
compute finalChallengeHas h)‘
We use this method to bind this SafetyNet extension to the respective FIDO UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [FIDORegistry] sHALL be used (e.g. SHA256
because it belongs to A1.G_STGN SECP256R1_ECDSA SHA256 RAW).

Authenticator argument
N/A

Authenticator processing
N/A. This extension is related to the Android platform in general and not to the authenticator in particular. As a consequence there is no
need for an authenticator to receive the (request) extension nor to process it.

Authenticator data
N/A

Server processing
If the FIDO Server requested the SafetyNet extension,

1. it sHouLD verify that a proper response is provided (if client side support can be assumed), and

2. it sHouLD verify the SafetyNet AttestationResponse (see SafetyNet onlin mentation).

NOTE

The package name in AttestationResponse might relate to either the FIDO Client or the ASM.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker would
remove the response extension, the FIDO server might not be able to distinguish this from the "SafetyNet extension not supported
by FIDO Client/ASM" case.

5.4 Android Key Attestation

This extension can be added

e by FIDO Servers to the UAF Registration Request object (request extension) in the operationteader in order to trigger generation of the
related response extension.

¢ by FIDO Clients to the ASM Registration Request object (request extension) in order to trigger generation of the related response

extension.
e by the ASM to the respective exts array in the Asvresponse object related to a registration response (response extension).
¢ by the FIDO Client to the respective exts array in either the operationteader, or the AuthenticatorRegistrationissertion of the

UAF Registration Response object (response extension).

Extension identifier

https://developer.android.com/training/safetynet/attestation

fido.uaf.android.key attestation
Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty dat= value in order to trigger the
generation of this extension for the UAF Response.

"exts": [{"id": "fido.uaf.android.key attestation", "data": "", "fail if unknown": false}]

When present in a response (response extension)

o If the request extension was successfully processed, the data value is set to a JSON array containing the base64 encoded
entries of the array returned by the call to the KeyStore API function getCertificateChain.

Calendar notBefore = Calendar.getInstance();
Calendar notAfter = Calendar.getInstance();
notAfter.add(Calendar.YEAR, 10);

KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance (
KeyProperties.KEY ALGORITHM EC, "AndroidKeyStore");
kpGenerator.initialize (-
new KeyGenParameterSpec.Builder (keyUUID, KeyProperties.PURPOSE SIGN)
.setDigests (KeyProperties.DIGEST SHA256)
.setAlgorithmParameterSpec (new ECGenParameterSpec ("prime256v1"))
.setCertificateSubject (
new X500Principal (String.format ("CN=%s, OU=%s",
keyUUID, aContext.getPackageName())))
.setCertificateSerialNumber (BigInteger.ONE)
.setKeyValidityStart (notBefore.getTime ())
.setKeyValidityEnd (notAfter.getTime ())
.setUserAuthenticationRequired (true)

.setAttestationChallenge (fcHash) -- bind to Final Challenge
.build());
kpGenerator.generateKeyPair () ; // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain (keyUUID) ;
String certArray[]l=new String[certarray.length];
int i=0;
for (Certificate cert : certarray) {
byte[] buf = cert.getEncoded();
certArray[i] = new String(Baseb64.encode (buf, Base64.DEFAULT))
) replace ("\n", wity
i++;

}

JSONArray jarray=new JSONArray (certArray);
String key attestation data=jarray.toString();

"exts": [{"id": "fido.uaf.android.key attestation", "data": "
[\"MIIC1DCCAjugAwIBAgIBATAKBggghkjOPQQD
AjCBiDELMAkKGA1UEBhMCVVMXEZzARBgNVBAgMCkNhbG1lmb3JuaWEXFTATBgNVBAOMDEdvb2dsZSwgSW53LIEQMA4GALIUECWWHQWSk
cm9pZDE7MDkGALUEAWWYQW5kecm9pZCBLZX12zdG9yZSBTb2Z20d2FyZSBBAHR1c3RhdG1lvbiBJIbnR1cml1Z2G1hdGUwIBCNNZAWMTAX
MDAWMDAWWhgPMJEwWNjAyMDcwNj I4MTVaMB8xHTAbBgNVBAMMFEFuZHIvaWQgS2V5c3RvemUgS2VSMFkwEWYHK0ZIzj0CAQYIKOZI
zjODAQCDQGAEJ/As4L+Kgbcxwex+5LPQ135quIixg981k/TeWr2IPBLh8+NJ+buDBhQ9051n6B7JjbJc4FvkolPdz7spKTQdWpKOB
+2zCB+DALBgNVHQ8EBAMCB4AwgccGC1isGAQOBInkCAREEgbgwgbUCAQIKAQACAQEKAQEEBkKZDSEFTSAQAMGM/hTOIAGYBXtPjz6C/
hUVZBFcwVTEVMCOEKGNvbS5hbmRyb21kLmt1eXNOb3J1LmFuZHJvaWRrZX1zdG9yZWR1bW8CAQExIgQgdM/LUHSI 9SkQhZHHPQWR
nzJ3MvvB2ANSaugYAAbS2JgwMgEFMOMCAQK1IAwIBAGMEAGIBAKUFMOMCAQSgAWIBAb+DeAMCAQK/hT4DAgEAVAU/AgUAMBEGALUd
IwQYMBaAFD/8rNYasTqegSC41SUcxWW7HpGpMAOGCCgGSM4 9BAMCAOCAMEQCICgYLmk24alwS9Lm06y21LigqWDddrWh4gmUUv4+A
5k2TA1AEttheSBBaNbQJIGQCh3mY92v8nP50bU60IKjpPetRswQ==\", \"MIICeDCCAh6gAWIBAgICEAEWCgYIK0ZIzjO0EAWIWgZg
xCzAJBgNVBAYTALVTMRMWEQYDVQQIDAPDYWxpZmOybmlhMRYWFAYDVQQOHDA1Nb3VudGFpbiBWaWV3MRUWEwWYDVQQKDAxXHb2 9nbGU
sIE1uYy4xEDAOBgNVBAsSMBOFuZHJIvaWQxMzAxBgNVBAMMKkFuZHIvaWQgS2V5c3RvemUgU2 9ImdHdhecmUgQXROZXNOYXRpb24gUm9
vdDAeFw0OxNjAXMTEwWMDQ2MD1aFw0yNjAxMDgwMDQ2MD1aMIGIMQOswCQYDVQQGEwJVUzZETMBEGA1UECAWKQ2FsaWZvemSpY TEVMBM
GA1UECgwMR29vZ2x1LCBIJbmMuMRAwWDgYDVQQLDAdBbmRyb21kMTswOQYDVQQODDDJIBbmRyb21kIEt1eXNOb3J1IFNVZnR3YXJ1IEF

0dGVzdGF0aW9uIEludGVybWVkaWF0ZTBZMBMGBygGSM4 9AgEGCCqGSM4 9AWEHAOIABOuee fhCY1msyygRTImGzHCtkGaTgglzJdhP

+rMv4ISAMIXSXSir+pblNf2bU4GUQZjW8U7ego6ZxWD7bPhGUEBS])ZjBkMBOGA1UADgQWBBQ/ /KzWGrE6noEguNULHMV1ux6RQTA
fBgNVHSMEGDAWGBTIrel3TEXDo88NFhDkeUM6IVowzzASBgNVHRMBAL8ECDAGAQH/AGEAMA4GA1UdDWEB/wQEAWIChDAKBggghkj
OPQQDAgGNIADBFAiBLipt770K8wDOHri/AiZi03cONgycqRZ9pDMEDktQPjgIhAO7aAV229DLplIQ7YkyUBO86EfMyIXvsiu+f+uXc
/WT/7\",\"MIICizCCAjKgAwIBAgIJAKIFntEOQltXMAOGCCgGSM4 9BAMCMIGYMQOswCQYDVQQGEwWJIVUZETMBEGA1UECAWKQ2FsaW
ZvcmSpYTEWMBQGALIUEBWWNTWIO 1 bnRhaW4gVml 1dzEVMBMGA1UECgwMR2 9vZ2x 1 LCBIJbmMuMRAwDgYDVQQLDAdBbmRyb2 1 kMTMwMQ
YDVQODDCpBbmRyb21kIEt1eXNOb3J1IFNVZNR3YXJ1IIEF0dGVzdGF0aWOuIFJvb3QwHheNMTYwMTEXMDAOMzUwWhceNMzYwMTA2MD
AOMzUWWjCBmDELMAKGA1UEBhMCVVMxEzZARBgNVBAgGMCkNhbG1Imb3JuaWEXFjJAUBgNVBACMDU1vAWS0YWIuIFZpZXcxFTATBGNVBA
OMDEdvb2dsZSwgSW5jLjEQMA4GAL1UECWWHQWS5 kecm9pZDEZMDEGALUEAWWgQWS5 kem9pZCBLZX1zdG9yZSBTb2Z0d2FyZSBBdHR1c3
RhdG1lvbiBSb290MFkwEWYHK0ZIzj0CAQYIK0oZIzjO0DAQCcDQgAE71lex+HA220Dpn7mthvsTWpdamguD/9/SQ59dx9EIm29sa/6Fs
vHrcV30lacqrewLVQBXT5DKyqO107sSHVBpKNjMGEWHQYDVROOBBYEFMit 6XdMRcOjzwOWEOR5QzohWjDPMB8GALUAIWQYMBaAFM
1t6XdMRcOFzwOWEOR5QzohWjDPMASGALUJEWER/wQFMAMBAf8wDgYDVROPAQH/BAQDAGKEMAOGCCgGSM4 9BAMCAOCAMEQCIDUho+

+LNEYenNVg8x1YiSBg3KN1QfYNns6KGYxmSGB7AiBNC/NR2TB8fVvaNTQAgEChY6WFZTytTySn502vQX3xvw==\"]",
"fail if unknown": false}]

NOTE

Line-breaks been added for readibility.

o Ifthe FIDO Client or the ASM support this extension, but the underlying Android platform does not support it (e.g. Android
version doesn't yet support it), the data value is set to the string "p" (i.e. platform issue).

"exts": [{"id": "fido.uaf.android.key attestation", "data": "p", "fail if unknown": false}]

o Ifthe FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value is set to the string "a".

"exts": [{"id": "fido.uaf.android.key attestation", "data": "a", "fail if unknown": false}]

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

FIDO Client processing

FIDO Clients running on Android musT pass this (request) extension with empty data value to the ASM.

If the ASM supports this extension it musT call the KeyStore API (see above) and add the response as extension to the ASM Response
object. The FIDO Client musT copy the extension in the ASM Response to the UAF Response object (according to section 3.4.6.4 step 4
in [UAFProtocol]).

More details on Android key attestation can be found at:

o https://developer.android.com/training/articles/keystore.html

o https://developer.android.com/training/articles/security-key-attestation
o https://source.android.com/security/keystore/

o https://source.android.com/security/keystore/implementer-ref.html

Authenticator argument

N/A

Authenticator processing

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

The authenticator generates the attestation response. The call keyStore.getCertificateChain is finally processed by the authenticator.
Authenticator data
N/A

Server processing
If the FIDO Server requested the key attestation extension,

1. it musT follow the registration response processing rules (see FIDO UAF Protocol, section 3.4.6.5) before processing this extension

2. it musT verify the syntax of the key attestation extension and it musT perform RFC5280 compliant chain validation of the entries in
the array to one attestationRootCertificate specified in the Metadata Statement - accepting that that the keyCertSign bit in
the key usage extension of the certificate issuing the leaf certificate is NOT set (which is a deviation from
RFC5280).
3. it MusT determine the leaf certificate from that chain, and it musT perform the following checks on this leaf certificate
1. Verify that KeyDescripion.attestationChallenge == FCHash (see FIDO UAF Protocol, section 3.4.6.5 Step 6.)

2. Verify that the public key included in the leaf certificate is identical to the public key included in the FIDO UAF Surrogate
attestation block

3. If the related Metadata Statement claims keyProtection KEY PROTECTION_TEE, then refer to KeyDescription.teeEnforced
using "authzList". If the related Metadata Statement claims keyProtection KEY PROTECTION_SOFTWARE, then refer to
KeyDescription.softwareEnforced using "authzList".

4. Verify that
1. authzList.origin == KM TAG_GENERATED

authzList.purpose == KM_PURPOSE_SIGN

authzList.keySize is acceptable, i.e. =2048 (bit) RSA or =256 (bit) ECDSA.
authzList.digest == KM_DIGEST _SHA 2 256.

authzList.userAuthType only contains acceptable user verification methods.

authzList.authTimeout == 0 (or not present).

NS Vv A DD

authzList.noAuthRequired is not present (unless the Metadata Statement marks this authenticator as silent
authenticator, i.e. userVerificaton set to USER_VERIFY NONE).

8. authzList.allApplications is not present, since FIDO Uauth keys musT be bound to the generating app (AppID).

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker would
remove the response extension, the FIDO server might not be able to distinguish this from the "KeyAttestation extension not
supported by ASM/Authenticator" case.

ExtensionDescriptor data value (for Metadata Statement)
In the case of extension id="fido.uaf.android.key attestation", the data field of the ExtensionDescriptor as included in the Metadata
Statement will contain a dictionary containing the following data fields

DOMString attestationRootCertificates[]
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is valid for this authenticator model. Multiple
certificates might be used for different batches of the same model. The array does not represent a certificate chain, but only the trust
anchor of that chain.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX certificate value.

NOTE

A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE

The field dat= is specified with type DOMString in [FIDOMetadataStatement] and hence will contain the serialized object as
described above.

An example for the supportedextensions field in the Metadata Statement could look as follows (with line breaks to improve

readability):
"supportedExtensions": [{
"id": "fido.uaf.android.key attestation",
"data": "{ \"attestationRootCertificates\": [

\"MIICPTCCAeOgAwWIBAgIJAOuexvU30y2wMAOGCCgGSM4 9BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBAHR1c3RhdG1lvbiBSb2 90MRYWFAYDVQQKDALIGSURPIEFsbGlhbmN1
MREwDwYDVQQLDAhVQUYgVFAHLDESMBAGA1UEBwwJUGF sbyBBbHRVMQswCQYDVQQT
DAJDQTELMAkKGA1UEBhMCVVMwHhcNMTQWNJE4AMTMzMzMyWhcNNDEXMTAZMTMzMzMy
WIB7MSAWHGYDVQQDDBATYW1wbGUgQXR0ZXNOYXRpb24gUm9vdDEWMBQGALUECGWN
Rk1ETYBBbGxpYW5] ZTERMA8GA1UECWWIVUFGI FRXRywxEjAQBgNVBACMCVBhbG8g
QWx0bzELMAKGALUECAWCQOExCzAJBgNVBAYTALVTMFkwEWYHK0ZIzj0CAQYIKOZI
zj0DAQCcDQgAEH8hv2D0HXa59/BmpQ7RZehl/FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrgOBb58pxGgHJIRyX/6NQME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It7zE4w8hk5EJ/MB8GAIUAIWQYMBaAFPOHA3CLhxFbCO0It7zE4w8hk5EJ/MAWG
AlUJEWQFMAMBAf8WCgYIKoZIzjOEAWIDSAAWRQIhAJO6QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBgoYCZf0+2zI155aQeAHIIzA9Xm63rruAxBZ9ps9z2XN
10==\"] }",
"fail if unknown": false

H

5.5 User Verification Caching

In several cases it is good enough for the relying party to know whether the user was verified by the authenticator "some time" ago. This
extension allows an app to specify such user verification caching time, i.e. the time for which the user verification status can be "cached" by the
authenticator.

For example: Do not ask the user for a fresh user verification to authorize a payment of 4€ if the user was verified by this authenticator within
the past 300 seconds.

This extension allows the authenticator to bridge the gap between a "silent" authenticator, i.e. an authenticator never verifying the user and a
"traditional" authenticator, i.e. an authenticator always asking for fresh user verification.

We formally define one extension for the request and a separate extension for the response as the request extension can be safely ignored, but
the response extension cannot.

Authenticator supporting this extension musT truthfully specify both, the UVC Request and UVC Response extension in the
supportedixtensions list of the related Metadata Statement [FIDOMetadataStatement]. The TAG of the UVC Response extension must be
specified in that list.

5.5.1 UVC Request

This extension can be added by FIDO Servers to the UAF Request object (request extension) in the operationteader in order to trigger
generation of the related response extension.

Extension Identifier
fido.uaf.uvc-req

Extension fail-if-unknown flag
false, i.e. the request extension can safely be ignored by all entities.

UVC Extension data value
A (base64url-encoded) TLV object as defined in the description of Tac UsE
through the DOM API [UAFAppAPIAndTransport], the field verifyifexce
field verifyTfExceeded in order to improve processing.

VERIFICATION cAcHING. Inthe UVC Extension provided
ded MaY NOT be present. The FIDO Client MAY add the

FIDO Client processing

o In a registration request: Simple pass-through to the platform preferred authenticator.

e In a sign request: Simple pass-through to an authenticator which would not require fresh user verification and still meets all other
authentication selection criteria (if such authenticator exists). If this is not possible, then use the preferred authenticator (as normal)
but pass-through this extension.

Authenticator argument

Same TLV object as defined in "Extension data value", but as binary object included in the Registration / Authentication command.

Authenticator processing

In a registration request:
The Authenticator MusT always freshly verify the user and create a key marked with the maximum user verification caching time as
specified (referred to as regMaxUVC), i.c. in signAssertion the acceptable maximum user verification time can never exceed this
value. The field (verifyTfExceeded) is not allowed in a registration request.

In a sign request:
If the authenticator supports specifying user verification caching time in a sign request:

. compute maxUVC = min(maxUVC, regMaxUVC)

. compute elapsedTime, i.c. the time since last user verification.

. If (elapsedTime > maxUVC) AND verifylfExceeded==false then return error

. If (elapsedTime > maxUVC) AND ((verifylfExceeded==true)OR(verifylfExceeded is NOT PRESENT)) then verify user
. If (elapsedTime < maxUVC) then Sign the assertion as normal

. Add the UVC Response extension to the assertion.

AN L AW N =

If the authenticator does not support specifying user verification caching time in a sign request, this extension will be ignored by the
authenticator. This will be detected by the server since no extension output will be generated by the authenticator.

Authenticator data
N/A

Server processing
N/A

5.5.2 UVC Response

This extension can be added by the Authenticator to the AuthenticatorRegistrationAssertion, OF the Authent icatorSignAssertion of the
UAF Response object (response extension).

Extension Identifier
fido.uaf.uvc-resp (TAG_USER_VERIFICATION CACHING)

Extension fail-if-unknown flag
true, i.e. the response extension (included in the UAF assertion) MAY NOT be ignored if unknown. If the server is not prepared to

process the UVC response extension, it MusT fail.

Extension data value
N/A

FIDO Client processing
N/A

Authenticator argument
N/A

Authenticator processing
N/A

Authenticator data

If the extension is supported and the request extension was received and evaluated during the respective call, then the binary TLV object
as described in the description of TAc User vErTIrIcATION cACHING Will be included in the assertion generated by the Authenticator.
Where the field maxUVC contains an upper bound of trueUVC and where the field verify1fExceeded will not be present.

The upper bound value is to be computed as follows:

1. Compute the elapsed seconds since last user verification (=:trueUVC).

2. Compute some upper bound of trueUVC, must not exceed min(command.maxUVC, regMaxUVC).
Where command.maxuvce refers to the maxUVC value of the related UVC Request .
Where regMaxUVC is the maxUVC value specified in the related registration call (see above) or 0 if no such value was provided
at registration time.
For example, use min(maxUVC, createMaxUVC) or min(round trueUVC to 5 seconds, maxUVC, createMaxUVC).

Server processing

If the FIDO Server requested the UVC extension,

1. Verify that the Metadata Statement related to this Authenticator indicates support for this extension in the field

supportedExtensions
2. Verify that assertion.maxUVC is less or equal to request. maxUVC, fail if it isn't.
3. Verify that assertion.maxUVC is acceptable, fail if it isn't.

If the FIDO Server did not request the UVC extension (but encounters it in the response) or if the server doesn't understand the UVC
response extension, it MusT fail.

5.5.3 Privacy Considerations

Using the UVC Request extension with verifyIfExceeded setto raLse might allow the caller to triage the last time the user was verified
without requiring any input from the user and without notifying the user. We do not allow this field to be set through the DOM API (i.e. by web
pages). However, native applications can use this field and hence could be able to determine the last time the user was verified. Native
applications have substantially more permissions and hence can have more detailed knowledge about the user's behavior than web pages (e.g.
track whether the device is used by evaluating accelerometers).

In the UVC Response extension the Authenticator can provide an upper bound of the « rueuve value in order to prevent disclosure of exact time
of user verification.

5.5.4 Security Considerations

FIDO Servers not expecting user verification being used, might expect a fresh user verification and an explicit user consent being provided.
Authenticators supporting this extension shall only use it when they are asked for that (i.e. UVC Request extension is present). Additionally the
authenticator must indicate if the user was not freshly verified using the UVC Response extension. This response extension is marked with
"fail-if-unknown" set to true, to make sure that servers receiving this extension know that the user might not have been freshly verified.

5.6 Require Resident Key Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.rk (TAG_RESIDENT KEY)

Extension fail-if-unknown flag
false, i.e. the extension MAY be ignored if unknown.
Extension data value
boolean, i.e. rk=true or rk=false.
FIDO Client processing
N/A
Authenticator argument
boolean, i.e. rk=true or rk=false.
Authenticator processing
If the authenticator supports this extension, it should

1. persistently store the credential's cryptographic key material internally is rk=true

2. NOT persistently store the credential's cryptographic key material internally is rk=false

NOTE
It is expected that

1. authenticators with issecondractoronly=false in their Metadata Statement will persistently store the credential's
cryptographic key material internally if the extension is missing.

2. authenticators with issecondractoronly=true in their Metadata Statement will NOT persistently store the credential's
cryptographic key material internally if the extension is missing.

Authenticator data
boolean, i.e. rk=true or rk=false in an assertion, indicating whether the current credential is resident in the authenticator or not.
Server processing

A response extension fido.uaf.rk set to false indicates that the FIDO Server needs to provide a keyHandle for triggering authentication.
This means that the authenticator can only be used as a second factor (see also issecondractoronly in [FIDOMetadataStatement].

If the FIDO Server did not request the fido.uaf. rk extension (but encounters it in the response) or if the server doesn't understand the
fido.uaf.rk response extension, it can silently ignore the extension.

5.7 Attestation Conveyance Extension

This extension is intended to simplify the integration of authenticators implementing [FIDOCTAP] with FIDO UAF [UAFProtocol].

Extension Identifier
fido.uaf.ac

Extension fail-if-unknown flag

false, i.e. the extension MAY be ignored if unknown.
Extension data value

string, i.e. ac="direct', ac="indirect', or ac='none'.
FIDO Client processing

If the ac value is

direct

the FIDO Client sHALL pass-through the attestation statement as received from the Authenticator.
indirect

the FIDO Client SHALL either

1. pass-through the attestation statement as received from the Authenticator or

2. replace the attestation statement received from the Authenticator using some anonymization CA.

none
the FIDO Client SHALL remove the attestation statement received from the Authenticator.

Authenticator argument
N/A

Authenticator processing
If the authenticator supports this extension, it should

1. return an attestation statement according to the conveyance indicated.
Authenticator data
N/A (only indirectly through the generated attestation statement)

Server processing
The server should verify the attestation statement if it asked for it (i.e. ac=direct' or ac="indirect').

If the FIDO Server specified ac="none', but received an attestation statement, it can silently ignore it.

6. Other Identifiers specific to FIDO UAF

6.1 FIDO UAF Application Identifier (AID)

This AID [ISOIEC-7816-5] is used to identify FIDO UAF authenticator applications in a Secure Element.

The FIDO UAF AID consists of the following fields:

VEIDEE 0xA000000647 | OXAF | 0x0001

Table 1: FIDO UAF Applet AID
A. References

A.1 Normative references

[FIDOGIlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. EIDO Technical Glossary. Review Draft. URL: https://fidoalliance.org/specs/fido-

2.0-id-20180227/fido-gl -v2.0-id-20180227.html
[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https:/fidoalliance.or fido-v2.0-id-

20180227/fido-metadata-statement-v2.0-id-20180227.html
[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. =~ FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.or: mmon- fido-registry-v2.1-ps-20191217.html
[ISOIEC-7816-5]
. ISO 7816-5: Identification cards - Integrated circuit cards - Part 5: Reqistration of application providers. URL:
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references

[FIDOCTAP]
C. Brand; A. Czeskis; J. Ehrensvird; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. EIDO 2.0: Client To Authenticator
Protocol. 30 January 2019. URL: https:/fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-
20190130.html
[FIDOSignatureFormat]
. FIDO 2.0: Signature format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
[ITU-X690-2008]

ules (CER) and Distinguished Encod/ng Rules (DER!, (T-REC-X.690-200811). November 2008. URL: https:/www.itu.int/r
RE -200811-

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (REC 4648). October 2006. URL:
http:/www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. [nternet X.509 Public Key Infrastructure Certificate and
fi ion Li. RL) Profile. May 2008. URL: https:/tools.ietf.org/html/rfc5280
[UAFASM]

D. Baghdasaryan J. Kemp, R. Lindemann; B. Hill; R. Sasson. IDQ UAF Authenticator-Specific Module API. Review Draft. URL:
llian m-api-vl.2-

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan B. Blanke. FIDO UAF Application AP/ and Transgort Binding Specification. Review Draft. URL:

allian.

[UAFProtocoI]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. EIDO UAF Protocol Specification v1.2. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-client-api-transport-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

fco

ALLIANCE

FIDO UAF WebAuthentication Assertion Format
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-webauthn-v1.2-ps-20201020.html

Dr. Rolf Lindemann, Nok Nok L. Inc.
The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

This document defines the assertion format "WAV1CBOR" in order to use Web Authentication assertions through the FIDO UAF
protocol.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A
list of current FIDO Alliance publications and the latest revision of this technical report can be found in the EIDQ Alliance
specifications index at https.//fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this
document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including
without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS 1S” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and

may be used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment.

Table of Contents

e 1. Notation
o 1.1 Key Words

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-webauthn-v1.2-ps-20201020.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2. Overview

3. Data Structures for WAV1CBOR
o 3.1 Registration Assertion

o 3.2 Authentication Assertion

4. Processing Rules
o 4.1 Registration Response Processing Rules for ASM

o

4.2 Registration Response Processing Rules for FIDO Server
4.3 Authentication Response Generation Rules for ASM
o 4.4 Authentication Response Processing Rules for FIDO Server

o

5. Mapping CTAP2 error codes to ASM error codes

A. References
o A.1 Normative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in *, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].
All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

"o« LT ” o« » o« » o« » oo« ” o«

The key words “musT”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “sHoULD”, “sHouLD NOT”, “RECOMMENDED”, “MAY”, and “opTIoNAL” in this
document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the assertion format "WAV1CBOR" in order to use Web Authentication assertions through the FIDO UAF
protocol.

3. Data Structures for WAV1CBOR

This section is normative.
3.1 Registration Assertion

The registration assertion for the assertion format "WAV1CBOR" is a TLV encoded object containing the CBOR encoded
authenticatorbata, the name of the attestation format, and the atestation statement itself.

TLV Structure Description

1 UINT16 Tag TAG_WAV1CBOR_REG_ASSERTION

UINT16

11 Length

Length of the structure.

1.2 UINT16 Tag TAG_WAV1CBOR_REG_DATA

UINT16
1.21 Length Length of the structure.
129 UINT8 The binary authenticatorbata structure as specified in section 6.1 in [WebAuthn] with non-empty

tbsData attestedCredentialbata field being present followed by (i.e. binary concatenation) the c1ientpatanash.

1.3 UINT16 Tag TAG_ATTESTATION_FORMAT
1.3.1 UINT16 Length of Attestation Format
Length
UINTS8][]
1.3.2 | Attestation Authenticator Attestation Format, see field "fmt" in section sctn-attestation in [WebAuthn]
Format
1.4 UINT16 Tag TAG_ATTESTATION_STATEMENT
1.4.1 UINT16 Length of Attestation Statement
Length
UINTS] . . i e . L e
1.4.2 | Attestation Authenticator Attestation Statement, see field "stmt" in section sctn-attestation in [WebAuthn]. This field
U Statement contains the signature in sub-field "sig".

3.2 Authentication Assertion

The authentication assertion is a TLV structure containing the CBOR encoded authenticatorbata object, the authenticator model
name (AAGUID), the key identifier and the signature of the authenticatornata object.

Uy Description
Structure P
1 %’;”6 TAG_WAV1CBOR_AUTH_ASSERTION
UINT16
1.1 Length Length of the structure.
12 %ET"; TAG_WAV1CBOR_SIGNED_DATA
UINT16
1.2.1 Length Length of the structure.
UINTS As described in step 11 in section 6.3.3 in [WebAuthn]: The binary authenticatorpata structure as specified in
1.2.2 section 6.1 in [WebAuthn] with empty attestedcredentialpata field being present followed by (i.e. binary
tbsData . , B
concatenatlon) the clientbatanash.
13 | YNTT6 | 1AG_AAGUID
Tag
UINT16
1.3.1 Length Length of AAGUID
1.3.2 | YINTBI | A thenticator Attestation GUID, see section 6.4.1 in [WebAuthn]
7 | AAGUID ’ o
14 | YNT16 1 1AG kEYID
Tag -
UINT16
1.4.1 Length Length of KeylD
UINTS[] . . _— . .
14.2 KeylD (binary value of) Credential ID (see definition of CredentiallD in [WebAuthn])
15 |UINT16 | 1AG SIGNATURE
Tag
UINT16 .
1.51 Length Length of Signature

1.5.2

UINTS[]

Signature Signature calculated using UAuth.priv over tbsData - not including any TAGs nor the KeylD and AAGUID.

4. Processing Rules

This section is normative.

4.1 Registration Response Processing Rules for ASM

See [UAFASM] for details of the ASM API.

Refer to [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

1.

Locate authenticator using authenticatorindex. If the authenticator cannot be located, then fail with error code
T]A?i,’%f}}ii:‘%TATI?ESi,A[]TZ{E?\ITI(?ATQRiDISC(INECTED.

. Connect to the Authenticator and call authenticatorcetnfo [FIDOCTAP]. Remember whether the authenticator supports

residentKeys (rx), c1ientrin, User Presence (up), User Verification (uv). Also remember whether the authenticator is a roaming
authenticator (r12t=ralse), or a platform authenticator (o1at=true). If the connection fails, then fail with error code

UAF ASM STATUS AUTHENTICATOR DISCONNECTED.

’

. If crientrin is the requested user verification method (see UVM extension), but step 2 indicated that clientPin is not yet set (i.e.

clientpin present but set to false), then ask user to set (enroll) clientPin.
o If neither the ASM nor the Authenticator can trigger the enroliment process, return var Aswv STATUS USER NOT ENROLLED,
o If enrollment fails, return var asv sSTATUS ACCESS DENTED

. Hash the provided rsurequest.args. finalchallenge using the authenticator-specific hash function and store the result in

FinalChallengeHash.

An authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

. for each extension included in Asvrequest .exts

o If the extension "fido.uaf.rk" is found, set parameter -« to the value of that extension and continue with the next extension.

o If the extension "fido.uaf.ac" is found, set parameter ac to the value of that extension and continue with the next
extension.

o If the extension was not handled before, create a corresponding WebAuthn/FIDO2 extension (see [WebAuthn]) extension
in extensionsceor. If no corresponding WebAuthn/FIDO2 extension is specified, ignore this extension (if fai1 if unknown
is false) or return var asu status ErrROR (if fail if unknown is true).

. Call authenticatorMakeCredential [FIDOCTAP] (either via CTAP or via a platform proprietary API), send the required

information and receive resuit containing the error code of that operation.

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

. clientDataHash (required, byte array).

. rp (required, PublicKeyCredentialRpEntity). Identity of the relying party.

. user (required, PublicKeyCredentialUserEntity).

. pubKeyCredParams (required, CBOR array).

. excludeList (optional, sequence of PublicKeyCredentialDescriptors).

. extensions (optional, CBOR map). Parameters to influence authenticator operation.
. options (optional, sequence of authenticator options, i.e. parameters rx, uv, and up).
. pinAuth (optional, byte array).

© 0o N O OB~ WODN -

. pinProtocol (optional, unsigned integer).
The output parameters are (see [FIDOCTAP]):

1. authData (required, sequence of bytes). The authenticator data object.

2. fmt (required, String). The attestation statement format identifier.
3. attStmt (required, sequence of bytes). The attestation statement.

Use the following values for the respective parameters:
o Set rp.rpidtothe asvrequest . args.appId

o Setuser.1dtothe rido.uafr.userid extension retrieved from ASMRequest.exts; S€l user.displayName to
ASMRequest.args.username. Fail if the fido.uafr.userid extension is missing in ASMRequest.exts.

o Set clientDataHash tO0 FinalChallengeHash
o Set pubkeyCredrarans. type tO "public—key" and pubKeyCredParams.alg to the preferred algorithm, e.g. "ES256".
o Setexcluderist to an empty list
o Set extensions to the CBOR map extensionsCBOR
o Setpinauth and pinrrotocol to the respective values supported by this ASM (to the extent the underlying platform allows
specifying these values).
o Set options to an empty object and add items as follows
1. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and vvm.userverificationMethod
includes one or more of the flags user VERTFY FINGERPRINT, USER VERIFY PASSCODE, USER VERIFY VOICEPRINT,

USER VERIFY FACEPRINT, USER VERIFY LOCATION, USER VERIFY EYEPRINT, USER VERIFY PATTERN, O

USER VERIFY HANDPRINT Set options.userVerification {0 true and set options.userPresence tO true.
2. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod IS
equal to USER VERIFY CLIENTPIN set options.userverification 0 true and set options.userPresence tO false.
3. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationdethod iS
equal to USER_VERIFY PRESENCE set options.userverification tO false and set options.userPresence tO true.

4. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationdethod iS
eequal to user vErRIFY NONE Set options.userVerification to ra1se and set options.userPresence to ralse.

NOTE

If the authenticator uses clientPin but the clientPin was not set (indicated by ctar2 err p1n nOT sET), the ASM should
ask the user for the clientPin and provide it to the authenticator.

7. If resuit is not equal to crar2 ok and retry cannot fix the problem, then map the CTAP error code to a UAF ASM error code
using the table in section 5. Mapping CTAP2 error codes to ASM error codes and return the resulting error code.

8. Create a 7ac waviceor reG AsserTION Structure:
1. Copy result.AuthData concatenated with the finaichallengerasn into field Tac waviceor sicnep pata
2. Copy result.fmt into field 7ac ATTESTATION FORMAT
3. Copy result.stmt into field Tac ATTESTATTION STATEM

“N'T

9. Create a registerout Object
1. Set registerout.assertionSchene to "WAV1CBOR"
2. Encode the content of Tac wavicsor rEc asserTION in base64url format and set as registerout.assertion.
10. set asMRrResponse.responseData tO Registerout.
11. set asMresponse.statusCode to the correct status code corresponding to the resuit received earlier.
12. set asvresponse.exts to empty
13. Return 2suresponse object

4.2 Registration Response Processing Rules for FIDO Server
Instead of skipping the assertion as described in step 6.8 in section 3.4.6.5 [UAFProtocol], follow these rules:

1. if a.assertionschene == "WAV1CBOR" AND = .assertion.TAG WAVICBOR REG ASSERTION cOntains TAG WAVICBOR SIGNED DATA @S
first element:
1. extract authenticatorbata from TAG WAVICBOR SIGNED DATA.tbsData
2. read claimedaaGuID from authenticatorData.attestedCredentialData.AAGUID.

3. Verlfy that a.assertionscheme matches Metadata (claimedAAGUID) .assertionScheme

4,

11.
12.

13.

14.

15.

. Obtain

= [f it doesn't match - continue with next assertion

Verify that the c1z2imedrzcutp indeed matches the policy specified in the registration request.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions
included in this registrationresponse in order to determine whether this AAGUID matches the policy.

= [f it doesn't match the policy - continue with next assertion
Locate authenticator-specific authentication algorithms from the authenticator metadata [FIDOMetadataStatement]
identified by claimedAAGUID (fle'd authenticat ic:’:?,igs’;).
If fcp is of type FinalChallengeParams [UAFProtocol], then hash registrationresponse. feparans using hashing algorithm
suitable for this authenticator type. Look up the hash algorithm in authenticator metadata, field authenticationaigs. Itis
the hash algorithm associated with the first entry related to a constant with prefix ALG_SIGN.

B FCHash = hash(RegistrationResponse.fcParams)

If rcp is of type CollectedClientData [UAFProtocol], then hash registrationresponse. feParams using hashing algorithm
SpeCified in fcp.hashalg.
B FCHash = hash(RegistrationResponse.fcParams)
AttestationType for the c1zaimedracuip and make sure that
srTTON contains the most preferred attestation tag specified in field

waviceor REG AsserTION doesn't contain the preferred attestation - it is RecommeNDED to skip this
assertion and continue with next one

. set tbspata to the data contained in a.zassertion. thsbata.
. set authenticatorbata to the CBOR object tnspata starts with. Use the "length” field of the CBOR object to determine its

end.
set clientpatanash to the remaining bytes of the tospata (i.e. the bytes following the CBOR object).
Make sure that c1ientpatanash == rFcHash

= |f comparison fails - continue with next assertion

Extract the up and uv bits from authenticatornata. Verify whether these bits match the uvvi extension sent in the request.
Fail if the verification result is not acceptable.

NOTE

= up=false and uv=false means silent authentication (vszr verTEy NoNE)

= up=true and uv=false means user presence check only (Ustr VERIFY PRESENCE)

= yp=false and uv=true means user verification that doesn't provide user presence check, e.g. client Pin or
some other user verification method not necessarily implemented fully inside the authenticator boundary
(USER_VERIFY CLIENTPIN)

= up=true and uv=true means user verification using a user verification method implemented inside the
authenticator boundary (e.g. USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check
(user vertry crientpin) AND user verTry preEsenc - depending on the authenticator capabilities as
declared in the related Metadata Statement.

If a uvu extension is included in the response, extract this value and compare it verify whether it matches the extension
from the request. Fail if the verification result is not acceptable.
|f a.assertion. TAG_WAV1CBOR REG ASSERTION.TAG ATTESTATION STATEMENT contains ATTESTATION BASIC FULL tag
1. Ifentry attestationrootcertificates for the claimedAAGUID in the metadata [FIDOMetadataStatement] contains
at least one element:
1. Obtain contents of al _aTTESTATION CERT tags from
a.assertion.TAG WAVICBOR REG ASSERTION.ATTESTATION BASIC rULL Object. The occurrences are ordered (see

[UAFAuthnrCommands]) and represent the attestation certificate followed by the related certificate chain.

| {3

2. Obtain all entries of rttestationrootcertificates for the claimedAAGUID in authenticator Metadata, field

AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to the Attestation Root Certificate using
Certificate Path Validation as specified in [RFC5280]

» |f verification fails — continue with next assertion

4. Verify a.assertion.TAG WAVICBOR REG ASSERTION.TAG ATTESTATION STATEMENT.sig USing the attestation
certificate (obtained before).

= [f verification fails — continue with next assertion

2. If vetadata (claimedAAGUID) .AttestationRootCertificates for this claimedAAGUID is empty - continue with next
assertion

3. Mark assertion as positively verified

ATTESTATION BASIC ¢ 2.
1. There is no real attestation for the AAGUID, so we just assume the claimedAAGUID is the real one.

2. If entry AttestationRootCertificates for the claimedAAGUID in the metadata is not empty - continue with next
assertion (as the AAGUID obviously is expecting a different attestation method).

3. Verify that extension "fido.uaf.android.key_attestation" is present and check whether it is positively verified
according to its server processing rules as specified [UAFRegistry].

n [f verification fails — continue with next assertion
4. Mark assertion as positively verified

17. If a.assertion.TAG WAVICBOR REG ASSERTION contains an object of type attesTarion ECDAA
1. If entry ecdaatrustanchors for the claimedAAGUID in the metadata [FIDOMetadataStatement] contains at least one
element:

1. For each of the ccdaaTrustanchors entries, perform the ECDAA Verify operation as specified in
[FIDOEcdaaAlgorithm].

n |f verification fails — continue with next ccdzatrustanchors entry
2. If no ECDAA Verify operation succeeded — continue with next assertion

2. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the claimedAAGUID.

3. If vetadata(claimedanTD) .ecdaaTrustanchors for this claimedAAGUID is empty - continue with next assertion

4. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the claimedAAGUID.
18. If a.assertion.Tac UAFVI REG AsserTION contains another tac arrestaTron tag - verify the attestation by following

appropriate processing rules épplicable to that attestation. Currently this document defines the processing rules for Basic
Attestation and direct anonymous attestation (ECDAA).

19. Extract authenticatorbata.attestedCredentialData. credentialPubKey into PuinCKey,
lentiallD into KeyID, authenticatorData.counter iNto SignCounter,
110 into AAGUID.

20. Set AuthenticatorVersion to O (as it is not included in the message).

uthentic

torData. tedCredentialData.

authenticatorData.attestedCredentialData.

4.3 Authentication Response Generation Rules for ASM
See [UAFASM)] for details of the ASM API.

1. Locate the authenticator using authenticatorindex. If the authenticator cannot be located, then fail with
UAF ASMiST}LTUSiAUTZ{EZ\ITICATORiDISCCI\'NECTED.

2. if this is a bound authenticator, verify ca11<rid against the one stored at registration time and return
uar_nsM sTATUS access penteD if it doesn't match.

3. Hash the provided ruthenticateTn. finalChallenge using the preferred authenticator-specific hash function
(f‘lna;ChallengeHagh).

The authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

4. Create an empty list key1precords of KeylD, related KeyHandle and related username
5. If authenticateTn.keyIDs iS NOt empty,
1. If this is a bound authenticator, then look up ASM's database with ruthenticatein.appip and Authenticateln.keyiDs and
matching entry into xeyIbrecords
m Return var asm status kev prsappeared PERMANENTLY if the related key disappeared permanently from the

6.

7.

10.

authenticator.
m Return var asu status access penTeD if no entry has been found.
2. If this is a roaming authenticator, then for each entry in authenticatein. keyids add an entry in keyibrecords with
entry.KeyID and ent ry.KeyHandle Set to the respective keyID in AuthenticatelIn. keyIDs. Set entry.userName tO empty
If authenticateln. keyIDs is empty, |00kup all KeyHandles matching this request and add an entry in KeyIDRecords with
entry.KeyID and entry.KeyHandle Set to the respective KeyHandles. Set entry.userName the related userName.

If keyTDRecords containes multiple entries, show the related distinct usernames and ask the user to choose a single username.
Remember the xeyrandie and the related xey 1D to this key.

. If authenticatern. transaction is NOT empty then select the entry » with the content type best matching the authenticator

capabilities.
1. if AuthenticateIn.transaction [n] .contentType == "text/plain“

then create a corresponding txauthsimple extension in extensionsCBOR.
2. if AuthenticatelIn.transaction [n] .contentType 1= "text/plain"

then create a corresponding txauthGeneric extension in extensionsCBOR.

. for each extension included in 2svrequest .exts

create a corresponding WebAuthn/FIDO2 extension (see [WebAuthn]) extension in extensionsceor. If no corrsponding
WebAuthn/FIDO2 extension is specified, ignore this extension.

Call authenticatorGetAssertion (either via CTAP or via a platform proprietary API), send the require information and receive the
expected result containing the error code of that operation.

NOTE

authenticatorGetAssertion has the following input parameters (see [FIDOCTAP]):

. rpld (required, String). Identity of the relying party.

. clientDataHash (required, byte array).

. allowList (optional, sequence of PublicKeyCredentialDescriptors).

. extensions (optional, CBOR map).

. options (optional, sequence of authenticator options, i.e. up for user presence and uv for user verification).
. pinAuth (optional, byte array).

. pinProtocol (optional, unsigned integer).

N O oA WON -~

The output parameters are (see [FIDOCTAP]):

. credential (optional, PublicKeyCredentialDescriptor).
. authData (required, byte array).

. signature (required, byte array).

. user (required, PublicKeyCredentialUserEntity).

a B~ WON =

. numberOfCredentials (optional, integer).

Use the following values for the respective parameters:
o Set rpId to the 2s

MRequest.args.AppID

o Setclientbat

ash t0 Fina ChallengeHash

o SetallowList to the keyHandle remembered earlier

o Set extensions to the CBOR map extensionsCBOR

o Setpinauth and pinprotocol to the respective values supported by this ASM (to the extent the underlying platform allows
specifying these values).

o Set options to an empty object and add items as follows

1. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod
includes one or more of the flags user VERTFY FINGERPRINT, USER VERIFY PASSCODE, Ut

USER VERIFY FACEPRINT, USER VERIFY LOCATION, USER VERIFY EYEPRINT, USER VERIFY PATTERN, OF
USER _VERIFY HANDPRINT set options.uv 1O true and set options.up tO true.

2. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod IS
equal to user VERTIFY CLIENTPIN St options.uv tO true and set options.up to false. Remember to provide the
clientPIN to the authenticator.

3. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod IS
equal to user vERIFY PRESENCE S€t options.uv 10 false and set options.up O true.

4. If extension "UVM" (userVerificationMethod, see [UAFRengtry]) is present and uvm.uservVerificationMethod iS
equal to user VERTFY NONE S€t options.uv 1O false and set options.up tO false.

NOTE

If the authenticator uses clientPin but the clientPin was not set (indicated by ctar2 err p1n nOT seT), the ASM should
ask the user for the clientPin and provide it to the authenticator.

11. If resuit is not equal to ctar2 ox and retry cannot fix the problem, then map the CTAP error code to a UAF ASM error code
using the table in section 5. Mapping CTAP2 error codes to ASM error codes and return the resulting error code.

12. If the numberofcredentials in the response is > 1, then follow the rules in section "Client Logic" [FIDOCTAP] to receive and
process the remaining (r‘umber()ﬂ?redenti al 55-1) responses (see authenticatorGetNextAssertion in [F|DOCTAP])

13. Create 1ac wavicsor auTH AsserTION Structure.
1. Copy 22cu1p (if known) into the respective TLV fields. Otherwise set the field to an empty value (zero length).

NOTE

In the case of a platform authenticator, the 2zcutp value can be remembered at registration time. In the case of a
roaming authenticator, it might be possible to call authenticatorcetinfo [FIDOCTAP] which provides the zzcutp in
the response.

2. Copy the remembered xey 10 into the respective TLV field.
3. Copy result.authbata into the value of the Tac waviceor sicnep pata field.
4, Copy result.signature into the value of the Tac stenature field.
14. Create the ruthenticateout object
1. Set authenticateout.assertionschene to "WAV1CBOR"
2. Encode the content of 7ac waviceor auTH asserTiON in baseB4url format and set as authenticateout.assertion
15. set asMrResponse. responseData {0 Authenticateout object.
16. set asMresponse.statusCode to the correct status code corresponding to the resuit received earlier.
17. set rsMresponse.exts 10 empty
18. Return 231

Response ObjeCt

4.4 Authentication Response Processing Rules for FIDO Server

Instead of skipping the assertion according to step 6.5. in section 3.5.7.5 [UAFProtocol], follow these rules:

1. if a.assertionscheme == "WAV1CBOR" AND = .assertion starts with a valid structure as defined in section 3.2 Authentication
Assertion, then
1. set tbspata to the data contained in a.assertion.tbspata.
2. set authenticatorbata to the CBOR object tnspata starts with. Use the "length” field of the CBOR object to determine its
end.
set clientpatanash to the remaining bytes of the tospata (i.e. the bytes following the CBOR object).

read claimedaacuin from a. tion.aacUTD (Note that it might be empty).

read claimedkeyiD from a.assertion.KeyID.

. Locate vautn.pub associated with (c1ained2acutn, claimedrey1d) in the user's record. If c1zainedracuTn is empty, search
for a matching ciaimedrey1p.

10.

11.
12.

13.

14.

15.

16.

17.

= |f such record doesn't exist - continue with next assertion
= |f multiple records match the search criteria - use the first one

if claimednncurp is empty, set it to the ancurp stored along with vauth. pub

. Verlfy that a.zssertionscheme matches Metadata (claimedARGUID) .assertionSchene

= [f it doesn't match - continue with next assertion

. Verify whether the c12imeannrcurop indeed matches the policy of the Authentication Request.

= [f it doesn't meet the policy — continue with next assertion

Check the Signature Counter authenticatorbata.signcounter and make sure it is either not supported by the
authenticator (i.e. the value prowded and the value stored in the user's record are both 0 or the value isKeyRestricted is
set to 'false’ in the related Metadata Statement) or it has been incremented (compared to the value stored in the user's
record)
= [fitis greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a cloned
authenticator has been used previously).

Locate authenticator specific authentication algorithms from authenticator metadata (field AuthenticationAlgs)

If rcp is of type FinalChallengeParams, then hash ruthenticationResponse.FinalChallengeparans Using the hashing
algorithm suitable for this authenticator type. Look up the hash algorithm in authenhcator Metadata field
authenticationalgs. It is the hash algorithm associated with the first entry related to a constant with prefix ALG_SIGN.

B FCHash = hash(AuthenticationResponse.FinalChallengeParams)
If rcp is of type CollectedClientData [UAFProtocol], then hash authenticationRresponse. feparams Using hashing algorithm
SpeCified in fcp.hashalg.

B FCHash = hash (AuthenticationRespo . fcParams)
Make sure that c1ientpataiash == rFcHash

= |f comparison fails — continue with next assertion

Extract the up and uv bits from authenticatornata. Verify whether these bits match the v extension sent in the request.
Fail if the verification result is not acceptable.

NOTE
= up=false and uv=false means silent authentication (uszr vertry None)
= up=true and uv=false means user presence check only (User VERTFY PRESENCE)
= up=false and uv=true means user verification that doesn't provide user presence, e.g. client Pin or some other

user verification method not necessarily implemented fully inside the authenticator boundary
(USER_VERIFY CLIENTPIN)

= up=true and uv=true means user verification using a user verification method implemented inside the
authenticator boundary (e.g. USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check
(user vertry crienTPIn) AND User veErTFY prESENCE - depending on the authenticator capabilities as
declared in the related Metadata Statement.

If a uvu extension is included in the response, extract this value and compare it verify whether it matches the extension
from the request Fail if the verification result is not acceptable.

If authenticatorpata contains "txAuthSimple" (see section 10.2 [WebAuthn]) or "txAuthGeneric" (see section 10.3
[WebAuthn]) extensmn(s)

NOTE

The transaction/transaction hash included in this 2uthenticationresponse must match the transaction content
SpeCiﬁed in the related authenticationrequest. As FIDO doesn’t mandate any SpeCiﬁC FIDO Server API, the
transaction content could be cached by any relying party software component, e.g. the FIDO Server or the relying
party Web Application.

1. Make sure there is a transaction cached on Relying Party side.
= |f not — continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction) and
calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for

FinalChallenge).

m Foreach cachedrransaction add hash (cachedTransaction) iNtO cachedTransactionHashList

3. Make sure that the transaction ("txAuthSimple") or the transaction hash ("txAuthGeneric") included in the extension

18. Use the vauth.pub key found in step 1.9 and the appropriate authentication algorithm to verify the signature

iS iNn cachedTransactionHashList

= [fit's not in the list — continue with next assertion

a.assertion.Signature Of the to-be-signed object tbsData.
1. If signature verification fails — continue with next assertion

2. Update SignCounter in user's record with authenticatorbata.si gnCounter.

NOTE

The values of c1ainedancurp and claimedkeyd are now confirmed since the public key we looked up using those

values was the correct one.

5. Mapping CTAP2 error codes to ASM error codes

In many cases the status code returned via [FIDOCTAP] needs to be processed and handled by the ASM. If the communication to

the authenticator via [FIDOCTAPI] finally failed with an error, the following error code mapping rules apply:

cgg;z CTAP2 Name ASM Error Name
0x00 CTAP1_ERR_SUCCESS, CTAP2_OK UAF_ASM_STATUS_OK

0x01 CTAP1_ERR_INVALID_COMMAND UAF_ASM_STATUS_ERROR

0x02 CTAP1_ERR_INVALID_PARAMETER UAF_ASM_STATUS_ERROR

0x03 CTAP1_ERR_INVALID_LENGTH UAF_ASM_STATUS_ERROR

0x04 CTAP1_ERR_INVALID_SEQ UAF_ASM_STATUS_ERROR

0x05 CTAP1_ERR_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE
0x06 CTAP1_ERR_CHANNEL_BUSY UAF_ASM_STATUS_ERROR

0x0A CTAP1_ERR_LOCK_REQUIRED UAF_ASM_STATUS_ERROR

0x0B CTAP1_ERR_INVALID_CHANNEL UAF_ASM_STATUS_ERROR

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE | UAF_ASM_STATUS_ERROR

0x12 CTAP2_ERR_INVALID_CBOR UAF_ASM_STATUS_ERROR

0x14 CTAP2_ERR_MISSING_PARAMETER UAF_ASM_STATUS_ERROR

0x15 CTAP2_ERR_LIMIT_EXCEEDED UAF_ASM_STATUS_ERROR

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION | UAF_ASM_STATUS_ERROR

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED UAF_ASM_STATUS_ERROR

0x21 CTAP2_ERR_PROCESSING UAF_ASM_STATUS_ERROR

0x22 CTAP2_ERR_INVALID_CREDENTIAL UAF_ASM_STATUS_ERROR

0x23 CTAP2_ERR_USER_ACTION_PENDING UAF_ASM_STATUS_USER_NOT_RESPONSIVE
0x24 CTAP2_ERR_OPERATION_PENDING UAF_ASM_STATUS_ERROR

0x25 CTAP2_ERR_NO_OPERATIONS UAF_ASM_STATUS_ERROR

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM

UAF_ASM_STATUS_ERROR

0x27 CTAP2_ERR_OPERATION_DENIED

UAF_ASM_STATUS_ACCESS_DENIED

0x28 | CTAP2_ERR_KEY_STORE_FULL

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

0x2A | CTAP2_ERR_NO_OPERATION_PENDING

UAF_ASM_STATUS_ERROR

0x2B CTAP2_ERR_UNSUPPORTED_OPTION

UAF_ASM_STATUS_ERROR

0x2C CTAP2_ERR_INVALID_OPTION

UAF_ASM_STATUS_ERROR

0x2D CTAP2_ERR_KEEPALIVE_CANCEL

UAF_ASM_STATUS_ERROR

0x2E CTAP2_ERR_NO_CREDENTIALS

UAF_ASM_STATUS_ERROR

0x2F | CTAP2_ERR_USER_ACTION_TIMEOUT

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x30 | CTAP2_ERR_NOT_ALLOWED

UAF_ASM_STATUS_ERROR

0x31 CTAP2_ERR_PIN_INVALID

UAF_ASM_STATUS_ACCESS_DENIED

0x32 | CTAP2_ERR_PIN_BLOCKED

UAF_ASM_STATUS_USER_LOCKOUT

0x33 | CTAP2_ERR_PIN_AUTH_INVALID

UAF_ASM_STATUS_ACCESS_DENIED

0x34 | CTAP2_ERR_PIN_AUTH_BLOCKED

UAF_ASM_STATUS_ USER_LOCKOUT

0x35 | CTAP2_ERR_PIN_NOT_SET

UAF_ASM_STATUS_USER_NOT_ENROLLED

0x36 | CTAP2_ERR_PIN_REQUIRED

UAF_ASM_STATUS_ACCESS_DENIED

0x37 | CTAP2_ERR_PIN_POLICY_VIOLATION

UAF_ASM_STATUS_ACCESS_DENIED

0x38 | CTAP2_ERR_PIN_TOKEN_EXPIRED

UAF_ASM_STATUS_ACCESS_DENIED

0x39 | CTAP2_ERR_REQUEST TOO_LARGE

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

0x3A CTAP2_ERR_ACTION_TIMEOUT

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x3B | CTAP2_ERR_UP_REQUIRED

UAF_ASM_STATUS_ACCESS_DENIED

Ox7F CTAP1_ERR_OTHER

UAF_ASM_STATUS_ERROR

OxDF CTAP2_ERR_SPEC_LAST

UAF_ASM_STATUS_ERROR

OxEOQ CTAP2_ERR_EXTENSION_FIRST

UAF_ASM_STATUS_ERROR

OxEF CTAP2_ERR_EXTENSION_LAST

UAF_ASM_STATUS_ERROR

0xFO CTAP2_ERR_VENDOR_FIRST

UAF_ASM_STATUS_ERROR

OxFF CTAP2_ERR_VENDOR_LAST

UAF_ASM_STATUS_ERROR

A. References

A.1 Normative references

[FIDOCTAP]

C. Brand; A. Czeskis; J. Ehrensvard; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. EIDO 2.0: Client To
Authenticator Protocol. 30 January 2019. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-

protocol-v2.0-ps-20190130.html
[FIDOEcdaaAlgorithm]

R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. EIDO ECDAA Algorithm. 28 November 2017.

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
[FIDOGlossary]
R. Llndemann D. Baghdasaryan B. H|II J. Hodges. FIDO Technical Glossag(Review Draft. URL:

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. EIDO Metadata Statements. Review Draft. URL: https:/fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-statement-v2.0-id-20180227 .html

[RFC2119]
S. Bradner. Key words for use in RFECs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc211
[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and
ifi Revi jon Li RL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280
[UAFASM]
D. Baghdasaryan J Kemp, R. L|ndemann B. Hill; R. Sasson. E AF Authenticator- ific Module API. Review Draft.
: /i . . -uaf- -api- .

[UAFAuthanommands]
D. Baghdasaryan; J. Kemp; R. Lmdemann R. Sasson B. Hill; J. Hodges K. Yang EIDO UAF Authenticator Comman
Review Draft. URL: https://fidoallia a/sy Jo-ua af-au] ,

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang AF Pr / ification v1.2.
Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2- - .
[UAFRegistry]

R. Lmdemann D. Baghdasaryan B. H|II EIDO UAE Reglgtrzg Qdefmed Values. Review Draft. URL:

[WebAuthn]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael B. Jones; Akshay Kumar; Angelo Liao; Rolf Lindemann; Emil

Lundberg. Web Authentication: An API for accessing Public Key Credentials Level 1. March 2019. TR. URL:
https://www.w3.org/TR/w! thn

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/

	fido-uaf-apccbor-v1.2-ps-20201020
	Local Disk
	FIDO UAF Android Protected Confirmation Assertion Format

	fido-uaf-apdu-v1.2-ps-20201020
	Local Disk
	FIDO UAF APDU

	fido-uaf-asm-api-v1.2-ps-20201020
	Local Disk
	FIDO UAF Authenticator-Specific Module API

	fido-uaf-authnr-cmds-v1.2-ps-20201020
	Local Disk
	FIDO UAF Authenticator Commands

	fido-uaf-client-api-transport-v1.2-ps-20201020
	Local Disk
	FIDO UAF Application API and Transport Binding Specification

	fido-uaf-overview-v1.2-ps-20201020
	Local Disk
	FIDO UAF Architectural Overview

	fido-uaf-protocol-v1.2-ps-20201020
	Local Disk
	FIDO UAF Protocol Specification

	fido-uaf-reg-v1.2-ps-20201020
	Local Disk
	FIDO UAF Registry of Predefined Values

	fido-uaf-webauthn-v1.2-ps-20201020
	Local Disk
	FIDO UAF WebAuthentication Assertion Format

