
FIDO UAF Architectural Overview

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html

Editors:
Salah Machani, RSA, the Security Division of EMC
Rob Philpott, RSA, the Security Division of EMC
Sampath Srinivas, Google, Inc.
John Kemp, FIDO Alliance
Jeff Hodges, PayPal, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

The FIDO UAF strong authentication framework enables online services and websites, whether on the open Internet or within enterprises, to
transparently leverage native security features of end-user computing devices for strong user authentication and to reduce the problems
associated with creating and remembering many online credentials. The FIDO UAF Reference Architecture describes the components, protocols,
and interfaces that make up the FIDO UAF strong authentication ecosystem.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification
solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking
permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Introduction
1.1 Background

1.2 FIDO UAF Documentation

1.3 FIDO UAF Goals

2. FIDO UAF High-Level Architecture
2.1 FIDO UAF Client

2.2 FIDO UAF Server

2.3 FIDO UAF Protocols

2.4 FIDO UAF Authenticator Abstraction Layer

2.5 FIDO UAF Authenticator

2.6 FIDO UAF Authenticator Metadata Validation

3. FIDO UAF Usage Scenarios and Protocol Message Flows
3.1 FIDO UAF Authenticator Acquisition and User Enrollment

3.2 Authenticator Registration

3.3 Authentication

3.4 Step-up Authentication

3.5 Transaction Confirmation

3.6 Authenticator Deregistration

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-overview-v1.2-rd-20171128.html
mailto:salah.machani@rsa.com
https://www.emc.com/domains/rsa/index.htm
https://www.emc.com/domains/rsa/index.htm
https://www.google.com
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.7 Adoption of New Types of FIDO UAF Authenticators

4. Privacy Considerations

5. Relationship to Other Technologies

6. OATH, TCG, PKCS#11, and ISO 24727

7. Table of Figures

1. Introduction

This section is non-normative.

This document describes the FIDO Universal Authentication Framework (UAF) Reference Architecture. The target audience for this document is
decision makers and technical architects who need a high-level understanding of the FIDO UAF strong authentication solution and its relationship
to other relevant industry standards.

The FIDO UAF specifications are as follows:

FIDO UAF Protocol

FIDO UAF Application API and Transport Binding

FIDO UAF Authenticator Commands

FIDO UAF Authenticator-Specific Module API

FIDO UAF Registry of Predefined Values

FIDO UAF APDU

The following additional FIDO documents provide important information relevant to the UAF specifications:

FIDO AppID and Facets Specification

FIDO Metadata Statements

FIDO Metadata Service

FIDO Registry of Predefined Values

FIDO ECDAA Algorithm

FIDO Security Reference

FIDO Glossary

These documents may all be found on the FIDO Alliance website at http://fidoalliance.org/specifications/download/

1.1 Background

This section is non-normative.

The FIDO Alliance mission is to change the nature of online strong authentication by:

Developing technical specifications defining open, scalable, interoperable mechanisms that supplant reliance on passwords to securely
authenticate users of online services.

Operating industry programs to help ensure successful worldwide adoption of the specifications.

Submitting mature technical specifications to recognized standards development organization(s) for formal standardization.

The core ideas driving the FIDO Alliance's efforts are 1) ease of use, 2) privacy and security, and 3) standardization. The primary objective is to
enable online services and websites, whether on the open Internet or within enterprises, to leverage native security features of end-user computing
devices for strong user authentication and to reduce the problems associated with creating and remembering many online credentials.

There are two key protocols included in the FIDO architecture that cater to two basic options for user experience when dealing with Internet
services. The two protocols share many of underpinnings but are tuned to the specific intended use cases.

Universal Authentication Framework (UAF) Protocol

The UAF protocol allows online services to offer password-less and multi-factor security. The user registers their device to the online service by
selecting a local authentication mechanism such as swiping a finger, looking at the camera, speaking into the mic, entering a PIN, etc. The UAF
protocol allows the service to select which mechanisms are presented to the user.

Once registered, the user simply repeats the local authentication action whenever they need to authenticate to the service. The user no longer
needs to enter their password when authenticating from that device. UAF also allows experiences that combine multiple authentication
mechanisms such as fingerprint + PIN.

This document that you are reading describes the UAF reference architecture.

Universal 2nd Factor (U2F) Protocol

The U2F protocol allows online services to augment the security of their existing password infrastructure by adding a strong second factor to user
login. The user logs in with a username and password as before. The service can also prompt the user to present a second factor device at any
time it chooses. The strong second factor allows the service to simplify its passwords (e.g. 4-digit PIN) without compromising security.

During registration and authentication, the user presents the second factor by simply pressing a button on a USB device or tapping over NFC. The
user can use their FIDO U2F device across all online services that support the protocol leveraging built-in support in web browsers.

Please refer to the FIDO website for an overview and documentation set focused on the U2F protocol.

1.2 FIDO UAF Documentation

This section is non-normative.

To understand the FIDO UAF protocol, it is recommended that new audiences start by reading this architecture overview document and become
familiar with the technical terminology used in the specifications (the glossary). Then they should proceed to the individual UAF documents in the
recommended order listed below.

FIDO UAF Overview: This document. Provides an introduction to the FIDO UAF architecture, protocols, and specifications.

FIDO Technical Glossary: Defines the technical terms and phrases used in FIDO Alliance specifications and documents.

Universal Authentication Framework (UAF)

UAF Protocol Specification : Message formats and processing rules for all UAF protocol messages.

http://fidoalliance.org/specifications/download/

UAF Application API and Transport Binding Specification: APIs and interoperability profile for client applications to utilize FIDO
UAF.

UAF Authenticator Commands: Low-level functionality that UAF Authenticators should implement to support the UAF protocol.

UAF Authenticator-specific Module API: Authenticator-specific Module API provided by an ASM to the FIDO client.

UAF Registry of Predefined Values: defines all the strings and constants reserved by UAF protocols.

UAF APDU: defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units (APDUs).

FIDO AppID and Facet Specification : Scope of user credentials and how a trusted computing base which supports application isolation
may make access control decisions about which keys can be used by which applications and web origins.

FIDO Metadata Statements: Information describing form factors, characteristics, and capabilities of FIDO Authenticators used to inform
interactions with and make policy decisions about the authenticators.

FIDO Metadata Service : Baseline method for relying parties to access the latest Metadata statements.

FIDO ECDAA Algorithm : Defines the direct anonymous attestation algorithm for FIDO Authenticators.

FIDO Registry of Predefined Values: defines all the strings and constants reserved by FIDO protocols with relevance to multiple FIDO
protocol families.

FIDO Security Reference: Provides an analysis of FIDO security based on detailed analysis of security threats pertinent to the FIDO
protocols based on its goals, assumptions, and inherent security measures.

The remainder of this Overview section of the reference architecture document introduces the key drivers, goals, and principles which inform the
design of FIDO UAF.

Following the Overview, this document describes:

A high-level look at the components, protocols, and APIs defined by the architecture

The main FIDO UAF use cases and the protocol message flows required to implement them.

The relationship of the FIDO protocols to other relevant industry standards.

1.3 FIDO UAF Goals

This section is non-normative.

In order to address today's strong authentication issues and develop a smoothly-functioning low-friction ecosystem, a comprehensive, open, multi-
vendor solution architecture is needed that encompasses:

User devices, whether personally acquired, enterprise-issued, or enterprise BYOD, and the device's potential operating environment, e.g.
home, office, in the field, etc.

Authenticators1

Relying party applications and their deployment environments

Meeting the needs of both end users and Relying Parties

Strong focus on both browser- and native-app-based end-user experience

This solution architecture must feature:

FIDO UAF Authenticator discovery, attestation, and provisioning

Cross-platform strong authentication protocols leveraging FIDO UAF Authenticators

A uniform cross-platform authenticator API

Simple mechanisms for Relying Party integration

The FIDO Alliance envisions an open, multi-vendor, cross-platform reference architecture with these goals:

Support strong, multi-factor authentication: Protect Relying Parties against unauthorized access by supporting end user authentication
using two or more strong authentication factors ("something you know", "something you have", "something you are").

Build on, but not require, existing device capabilities: Facilitate user authentication using built-in platform authenticators or capabilities
(fingerprint sensors, cameras, microphones, embedded TPM hardware), but do not preclude the use of discrete additional authenticators.

Enable selection of the authentication mechanism: Facilitate Relying Party and user choice amongst supported authentication
mechanisms in order to mitigate risks for their particular use cases.

Simplify integration of new authentication capabilities: Enable organizations to expand their use of strong authentication to address new
use cases, leverage new device's capabilities, and address new risks with a single authentication approach.

Incorporate extensibility for future refinements and innovations: Design extensible protocols and APIs in order to support the future
emergence of additional types of authenticators, authentication methods, and authentication protocols, while maintaining reasonable
backwards compatibility.

Leverage existing open standards where possible, openly innovate and extend where not: An open, standardized, royalty-free
specification suite will enable the establishment of a virtuous-circle ecosystem, and decrease the risk, complexity, and costs associated with
deploying strong authentication. Existing gaps -- notably uniform authenticator provisioning and attestation, a uniform cross-platform
authenticator API, as well as a flexible strong authentication challenge-response protocol leveraging the user's authenticators will be
addressed.

Complement existing single sign-on, federation initiatives: While industry initiatives (such as OpenID, OAuth, SAML, and others) have
created mechanisms to reduce the reliance on passwords through single sign-on or federation technologies, they do not directly address the
need for an initial strong authentication interaction between end users and Relying Parties.

Preserve the privacy of the end user: Provide the user control over the sharing of device capability information with Relying Parties, and
mitigate the potential for collusion amongst Relying Parties.

Unify end-User Experience: Create easy, fun, and unified end-user experiences across all platforms and across similar Authenticators.

2. FIDO UAF High-Level Architecture

This section is non-normative.

The FIDO UAF Architecture is designed to meet the FIDO goals and yield the desired ecosystem benefits. It accomplishes this by filling in the
status-quo's gaps using standardized protocols and APIs.

The following diagram summarizes the reference architecture and how its components relate to typical user devices and Relying Parties.

The FIDO-specific components of the reference architecture are described below.

Fig. 1 FIDO UAF High-Level Architecture

2.1 FIDO UAF Client

A FIDO UAF Client implements the client side of the FIDO UAF protocols, and is responsible for:

Interacting with specific FIDO UAF Authenticators using the FIDO UAF Authenticator Abstraction layer via the FIDO UAF Authenticator API.

Interacting with a user agent on the device (e.g. a mobile app, browser) using user agent-specific interfaces to communicate with the FIDO
UAF Server. For example, a FIDO-specific browser plugin would use existing browser plugin interfaces or a mobile app may use a FIDO-
specific SDK. The user agent is then responsible for communicating FIDO UAF messages to a FIDO UAF Server at a Relying Party.

The FIDO UAF architecture ensures that FIDO client software can be implemented across a range of system types, operating systems, and Web
browsers. While FIDO client software is typically platform-specific, the interactions between the components should ensure a consistent user
experience from platform to platform.

2.2 FIDO UAF Server

A FIDO UAF server implements the server side of the FIDO UAF protocols and is responsible for:

Interacting with the Relying Party web server to communicate FIDO UAF protocol messages to a FIDO UAF Client via a device user agent.

Validating FIDO UAF authenticator attestations against the configured authenticator metadata to ensure only trusted authenticators are
registered for use.

Manage the association of registered FIDO UAF Authenticators to user accounts at the Relying Party.

Evaluating user authentication and transaction confirmation responses to determine their validity.

The FIDO UAF server is conceived as being deployable as an on-premise server by Relying Parties or as being outsourced to a FIDO-enabled
third-party service provider.

2.3 FIDO UAF Protocols

The FIDO UAF protocols carry FIDO UAF messages between user devices and Relying Parties. There are protocol messages addressing:

Authenticator Registration: The FIDO UAF registration protocol enables Relying Parties to:

Discover the FIDO UAF Authenticators available on a user's system or device. Discovery will convey FIDO UAF Authenticator
attributes to the Relying Party thus enabling policy decisions and enforcement to take place.

Verify attestation assertions made by the FIDO UAF Authenticators to ensure the authenticator is authentic and trusted. Verification
occurs using the attestation public key certificates distributed via authenticator metadata.

Register the authenticator and associate it with the user's account at the Relying Party. Once an authenticator attestation has been
validated, the Relying Party can provide a unique secure identifier that is specific to the Relying Party and the FIDO UAF Authenticator.
This identifier can be used in future interactions between the pair {RP, Authenticator} and is not known to any other devices.

User Authentication: Authentication is typically based on cryptographic challenge-response authentication protocols and will facilitate user
choice regarding which FIDO UAF Authenticators are employed in an authentication event.

Secure Transaction Confirmation: If the user authenticator includes the capability to do so, a Relying Party can present the user with a
secure message for confirmation. The message content is determined by the Relying Party and could be used in a variety of contexts such
as confirming a financial transaction, a user agreement ,or releasing patient records.

Authenticator Deregistration: Deregistration is typically required when the user account is removed at the Relying Party. The Relying Party
can trigger the deregistration by requesting the Authenticator to delete the associated UAF credential with the user account.

2.4 FIDO UAF Authenticator Abstraction Layer

The FIDO UAF Authenticator Abstraction Layer provides a uniform API to FIDO Clients enabling the use of authenticator-based cryptographic
services for FIDO-supported operations. It provides a uniform lower-layer "authenticator plugin" API facilitating the deployment of multi-vendor
FIDO UAF Authenticators and their requisite drivers.

2.5 FIDO UAF Authenticator

A FIDO UAF Authenticator is a secure entity, connected to or housed within FIDO user devices, that can create key material associated to a
Relying Party. The key can then be used to participate in FIDO UAF strong authentication protocols. For example, the FIDO UAF Authenticator can
provide a response to a cryptographic challenge using the key material thus authenticating itself to the Relying Party.

In order to meet the goal of simplifying integration of trusted authentication capabilities, a FIDO UAF Authenticator will be able to attest to its
particular type (e.g., biometric) and capabilities (e.g., supported crypto algorithms), as well as to its provenance. This provides a Relying Party with
a high degree of confidence that the user being authenticated is indeed the user that originally registered with the site.

2.6 FIDO UAF Authenticator Metadata Validation

In the FIDO UAF context, attestation is how Authenticators make claims to a Relying Party during registration that the keys they generate, and/or
certain measurements they report, originate from genuine devices with certified characteristics. An attestation signature, carried in a FIDO UAF
registration protocol message is validated by the FIDO UAF Server. FIDO UAF Authenticators are created with attestation private keys used to
create the signatures and the FIDO UAF Server validates the signature using that authenticator's attestation public key certificate located in the
authenticator metadata. The metadata holding attestation certificates is shared with FIDO UAF Servers out of band.

3. FIDO UAF Usage Scenarios and Protocol Message Flows

This section is non-normative.

The FIDO UAF ecosystem supports the use cases briefly described in this section.

3.1 FIDO UAF Authenticator Acquisition and User Enrollment

It is expected that users will acquire FIDO UAF Authenticators in various ways: they purchase a new system that comes with embedded FIDO UAF
Authenticator capability; they purchase a device with an embedded FIDO UAF Authenticator, or they are given a FIDO Authenticator by their
employer or some other institution such as their bank.

After receiving a FIDO UAF Authenticator, the user must go through an authenticator-specific enrollment process, which is outside the scope of the
FIDO UAF protocols. For example, in the case of a fingerprint sensing authenticator, the user must register their fingerprint(s) with the
authenticator. Once enrollment is complete, the FIDO UAF Authenticator is ready for registration with FIDO UAF enabled online services and
websites.

3.2 Authenticator Registration

Given the FIDO UAF architecture, a Relying Party is able to transparently detect when a user begins interacting with them while possessing an
initialized FIDO UAF Authenticator. In this initial introduction phase, the website will prompt the user regarding any detected FIDO UAF
Authenticator(s), giving the user options regarding registering it with the website or not.

Fig. 2 Registration Message Flow

3.3 Authentication

Following registration, the FIDO UAF Authenticator will be subsequently employed whenever the user authenticates with the website (and the
authenticator is present). The website can implement various fallback strategies for those occasions when the FIDO Authenticator is not present.
These might range from allowing conventional login with diminished privileges to disallowing login.

Fig. 3 Authentication Message Flow

This overall scenario will vary slightly depending upon the type of FIDO UAF Authenticator being employed. Some authenticators may sample
biometric data such as a face image, fingerprint, or voice print. Others will require a PIN or local authenticator-specific passphrase entry. Still others
may simply be a hardware bearer authenticator. Note that it is permissible for a FIDO Client to interact with external services as part of the
authentication of the user to the authenticator as long as the FIDO Privacy Principles are adhered to.

3.4 Step-up Authentication

Step-up authentication is an embellishment to the basic website login use case. Often, online services and websites allow unauthenticated, and/or
only nominally authenticated use -- for informational browsing, for example. However, once users request more valuable interactions, such as
entering a members-only area, the website may request further higher-assurance authentication. This could proceed in several steps if the user
then wishes to purchase something, with higher-assurance steps with increasing transaction value.

FIDO UAF will smoothly facilitate this interaction style since the website will be able to discover which FIDO UAF Authenticators are available on
FIDO-wielding users' systems, and select incorporation of the appropriate one(s) in any particular authentication interaction. Thus online services
and websites will be able to dynamically tailor initial, as well as step-up authentication interactions according to what the user is able to wield and
the needed inputs to website's risk analysis engine given the interaction the user has requested.

3.5 Transaction Confirmation

There are various innovative use cases possible given FIDO UAF-enabled Relying Parties with end-users wielding FIDO UAF Authenticators.
Website login and step-up authentication are relatively simple examples. A somewhat more advanced use case is secure transaction processing.

Fig. 4 Confirmation Message Flow

Imagine a situation in which a Relying Party wants the end-user to confirm a transaction (e.g. financial operation, privileged operation, etc) so that
any tampering of a transaction message during its route to the end device display and back can be detected. FIDO architecture has a concept of
"secure transaction" which provides this capability. Basically if a FIDO UAF Authenticator has a transaction confirmation display capability, FIDO
UAF architecture makes sure that the system supports What You See is What You Sign mode (WYSIWYS). A number of different use cases can
derive from this capability -- mainly related to authorization of transactions (send money, perform a context specific privileged action, confirmation
of email/address, etc).

3.6 Authenticator Deregistration

There are some situations where a Relying Party may need to remove the UAF credentials associated with a specific user account in FIDO
Authenticator. For example, the user’s account is cancelled or deleted, the user’s FIDO Authenticator is lost or stolen, etc. In these situations, the
RP may request the FIDO Authenticator to delete authentication keys that are bound to user account.

Fig. 5 Deregistration Message Flow

3.7 Adoption of New Types of FIDO UAF Authenticators

Authenticators will evolve and new types are expected to appear in the future. Their adoption on the part of both users and Relying Parties is
facilitated by the FIDO architecture. In order to support a new FIDO UAF Authenticator type, Relying Parties need only to add a new entry to their

configuration describing the new authenticator, along with its FIDO Attestation Certificate. Afterwards, end users will be able to use the new FIDO
UAF Authenticator type with those Relying Parties.

4. Privacy Considerations

This section is non-normative.

User privacy is fundamental to FIDO and is supported in UAF by design. Some of the key privacy-aware design elements are summarized here:

A UAF device does not have a global identifier visible across relying parties and does not have a global identifier within a particular relying
party. If for example, a person looses their UAF device, someone finding it cannot “point it at a relying party” and discover if the original user
had any accounts with that relying party. Similarly, if two users share a UAF device and each has registered their account with the same
relying party with this device, the relying party will not be able to discern that the two accounts share a device, based on the UAF protocol
alone.

The UAF protocol generates unique asymmetric cryptographic key pairs on a per-device, per-user account, and per-relying party basis.
Cryptographic keys used with different relying parties will not allow any one party to link all the actions to the same user, hence the
unlinkability property of UAF.

The UAF protocol operations require minimal personal data collection: at most they incorporate a user's relying party username. This
personal data is only used for FIDO purposes, for example to perform user registration, user verification, or authorization. This personal data
does not leave the user’s computing environment and is only persisted locally when necessary.

In UAF, user verification is performed locally. The UAF protocol does not convey biometric data to relying parties, nor does it require the
storage of such data at relying parties.

Users explicitly approve the use of a UAF device with a specific relying party. Unique cryptographic keys are generated and bound to a
relying party during registration only after the user’s consent.

UAF authenticators can only be identified by their attestation certificates on a production batch-level or on manufacturer- and device model-
level. They cannot be identified individually. The UAF specifications require implementers to ship UAF authenticators with the same
attestation certificate and private key in batches of 100,000 or more in order to provide unlinkability.

5. Relationship to Other Technologies

This section is non-normative.

OpenID, SAML, and OAuth

FIDO protocols (both UAF and U2F) complement Federated Identity Management (FIM) frameworks, such as OpenID and SAML, as well as web
authorization protocols, such as OAuth. FIM Relying Parties can leverage an initial authentication event at an identity provider (IdP). However,
OpenID and SAML do not define specific mechanisms for direct user authentication at the IdP.

When an IdP is integrated with a FIDO-enabled authentication service, it can subsequently leverage the attributes of the strong authentication with
its Relying Parties. The following diagram illustrates this relationship. FIDO-based authentication (1) would logically occur first, and the FIM
protocols would then leverage that authentication event into single sign-on events between the identity provider and its federated Relying Parties

(2).2

Fig. 6 FIDO UAF & Federated Identity Frameworks

6. OATH, TCG, PKCS#11, and ISO 24727

These are either initiatives (OATH, Trusted Computing Group (TCG)), or industry standards (PKCS#11, ISO 24727). They all share an underlying
focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator abstractions.

TCG produces specifications for the Trusted Platform Module, as well as networked trusted computing.

OATH, the "Initiative for Open AuTHentication", focuses on defining symmetric key provisioning protocols and authentication algorithms for
hardware One-Time Password (OTP) authenticators.

The FIDO framework shares several core notions with the foregoing efforts, such as an authentication abstraction interface, authenticator
attestation, key provisioning, and authentication algorithms. FIDO's work will leverage and extend some of these specifications.

Specifically, FIDO will complement them by addressing:

Authenticator discovery

User experience

Harmonization of various authenticator types, such as biometric, OTP, simple presence, smart card, TPM, etc.

7. Table of Figures

Fig. 1 FIDO UAF High-Level Architecture

Fig. 2 Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Confirmation Message Flow

Fig. 5 Deregistration Message Flow

Fig. 6 FIDO UAF & Federated Identity Frameworks

1. Also known as: Authentication Tokens, Security Tokens, etc.↩

2. FIM protocols typically convey IdP <-> RP interactions through the browser via HTTP redirects and POSTs.↩

FIDO UAF Protocol Specification

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Eric Tiffany, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Dirk Balfanz, Google, Inc.
Brad Hill, PayPal, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

The goal of the Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication mechanism for a particular end user or
interaction, while preserving the option to leverage emerging device security capabilities in the future without requiring additional integration
effort.

This document describes the FIDO architecture in detail, it defines the flow and content of all UAF protocol messages and presents the
rationale behind the design choices.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification
solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities
seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Scope

2.2 Architecture

2.3 Protocol Conversation
2.3.1 Registration

2.3.2 Authentication

2.3.3 Transaction Confirmation

2.3.4 Deregistration

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-protocol-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
https://www.noknok.com/
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf

3. Protocol Details
3.1 Shared Structures and Types

3.1.1 Version Interface
3.1.1.1 Attributes

3.1.2 Operation enumeration

3.1.3 OperationHeader dictionary
3.1.3.1 Dictionary OperationHeader Members

3.1.4 Authenticator Attestation ID (AAID) typedef

3.1.5 KeyID typedef

3.1.6 ServerChallenge typedef

3.1.7 FinalChallengeParams dictionary
3.1.7.1 Dictionary FinalChallengeParams Members

3.1.8 ClientData dictionary

3.1.9 TLS ChannelBinding dictionary
3.1.9.1 Dictionary ChannelBinding Members

3.1.10 JwkKey dictionary
3.1.10.1 Dictionary JwkKey Members

3.1.11 Extension dictionary
3.1.11.1 Dictionary Extension Members

3.1.12 MatchCriteria dictionary
3.1.12.1 Dictionary MatchCriteria Members

3.1.13 Policy dictionary
3.1.13.1 Dictionary Policy Members

3.2 Processing Rules for the Server Policy
3.2.1 Examples

3.3 Version Negotiation

3.4 Registration Operation
3.4.1 Registration Request Message

3.4.2 RegistrationRequest dictionary
3.4.2.1 Dictionary RegistrationRequest Members

3.4.3 AuthenticatorRegistrationAssertion dictionary
3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

3.4.4 Registration Response Message

3.4.5 RegistrationResponse dictionary
3.4.5.1 Dictionary RegistrationResponse Members

3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients
3.4.6.2.1 Mapping ASM Status Codes to ErrorCode

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

3.4.6.5 Registration Response Processing Rules for FIDO Server

3.5 Authentication Operation
3.5.1 Transaction dictionary

3.5.1.1 Dictionary Transaction Members

3.5.2 Authentication Request Message

3.5.3 AuthenticationRequest dictionary
3.5.3.1 Dictionary AuthenticationRequest Members

3.5.4 AuthenticatorSignAssertion dictionary
3.5.4.1 Dictionary AuthenticatorSignAssertion Members

3.5.5 AuthenticationResponse dictionary
3.5.5.1 Dictionary AuthenticationResponse Members

3.5.6 Authentication Response Message

3.5.7 Authentication Processing Rules
3.5.7.1 Authentication Request Generation Rules for FIDO Server

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator

3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

3.5.7.5 Authentication Response Processing Rules for FIDO Server

3.6 Deregistration Operation
3.6.1 Deregistration Request Message

3.6.2 DeregisterAuthenticator dictionary
3.6.2.1 Dictionary DeregisterAuthenticator Members

3.6.3 DeregistrationRequest dictionary
3.6.3.1 Dictionary DeregistrationRequest Members

3.6.4 Deregistration Processing Rules
3.6.4.1 Deregistration Request Generation Rules for FIDO Server

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

4. Considerations

4.1 Protocol Core Design Considerations
4.1.1 Authenticator Metadata

4.1.2 Authenticator Attestation
4.1.2.1 Basic Attestation

4.1.2.1.1 Full Basic Attestation

4.1.2.1.2 Surrogate Basic Attestation

4.1.2.2 Direct Anonymous Attestation (ECDAA)

4.1.3 Error Handling

4.1.4 Assertion Schemes

4.1.5 Username in Authenticator

4.1.6 Silent Authenticators

4.1.7 TLS Protected Communication

4.2 Implementation Considerations
4.2.1 Server Challenge and Random Numbers

4.2.2 Revealing KeyIDs

4.3 Security Considerations
4.3.1 FIDO Authenticator Security

4.3.2 Cryptographic Algorithms

4.3.3 FIDO Client Trust Model
4.3.3.1 Isolation using KHAccessToken

4.3.4 TLS Binding

4.3.5 Session Management

4.3.6 Personas

4.3.7 ServerData and KeyHandle

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

4.3.9 Policy Verification

4.3.10 Replay Attack Protection

4.3.11 Protection against Cloned Authenticators

4.3.12 Anti-Fraud Signals

4.4 Interoperability Considerations

5. UAF Supported Assertion Schemes
5.1 Assertion Scheme "UAFV1TLV"

5.1.1 KeyRegistrationData

5.1.2 SignedData

6. Definitions

7. Table of Figures

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null — i.e., there are no declarations of nullable dictionary members in this specification.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-
progress. If you are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.

The goal of this Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

The design goal of the protocol is to enable Relying Parties to leverage the diverse and heterogeneous set of security capabilities available on
end users' devices via a single, unified protocol.

This approach is designed to allow the FIDO Relying Parties to choose the best available authentication mechanism for a particular end user
or interaction, while preserving the option for a relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

2.1 Scope

This document describes FIDO architecture in detail and defines the UAF protocol as a network protocol. It defines the flow and content of all
UAF messages and presents the rationale behind the design choices.

Particular application-level bindings are outside the scope of this document. This document is not intended to answer questions such as:

What does an HTTP binding look like for UAF?

How can a web application communicate to FIDO UAF Client?

How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF specifications, e.g. [UAFAppAPIAndTransport] [UAFASM] [UAFAuthnrCommands].

2.2 Architecture

The following diagram depicts the entities involved in UAF protocol.

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

FIDO Server, running on the relying party's infrastructure

FIDO UAF Client, part of the user agent and running on the FIDO user device

FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to the UAF Authenticator Metadata [FIDOMetadataStatement] describing all the
authenticators it will interact with.

2.3 Protocol Conversation

The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server.

Registration: UAF allows the relying party to register a FIDO Authenticator with the user's account at the relying party. The relying party
can specify a policy for supporting various FIDO Authenticator types. A FIDO UAF Client will only register existing authenticators in
accordance with that policy.

Authentication: UAF allows the relying party to prompt the end user to authenticate using a previously registered FIDO Authenticator.
This authentication can be invoked any time, at the relying party's discretion.

Transaction Confirmation: In addition to providing a general authentication prompt, UAF offers support for prompting the user to
confirm a specific transaction.

This prompt includes the ability to communicate additional information to the client for display to the end user, using the client's
transaction confirmation display. The goal of this additional authentication operation is to enable relying parties to ensure that the user is
confirming a specified set of the transaction details (instead of authenticating a session to the user agent).

Deregistration: The relying party can trigger the deletion of the account-related authentication key material.

Although this document defines the FIDO Server as the initiator of requests, in a real world deployment the first UAF operation will always
follow a user agent's (e.g. HTTP) request to a relying party.

The following sections give a brief overview of the protocol conversation for individual operations. More detailed descriptions can be found in
the sections Registration Operation, Authentication Operation, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for registration.

Fig. 2 UAF Registration Message Flow

2.3.2 Authentication

The following diagram depicts the message flows for the authentication operation.

Fig. 3 Authentication Message Flow

2.3.3 Transaction Confirmation

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.

The following figure depicts the transaction confirmation message flow.

Fig. 4 Transaction Confirmation Message Flow

2.3.4 Deregistration

The following diagram depicts the deregistration message flow.

Fig. 5 Deregistration Message Flow

3. Protocol Details

This section is normative.

This section provides a detailed description of operations supported by the UAF Protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

All string literals in this specification are constructed from Unicode codepoints within the set U+0000..U+007F.

Unless otherwise specified, protocol messages are transferred with a UTF-8 content encoding.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

All data used in this protocol must be exchanged using a secure transport protocol (such as TLS/HTTPS) established between the FIDO
UAF Client and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section 4.1.7 TLS
Protected Communication.

The notation string[5] reads as five unicode characters, represented as a UTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a WebIDL [WebIDL-ED] DOMString.

As the UTF-8 representation has variable length, the maximum byte length of string[5] is string[4*5].

All strings are case-sensitive unless stated otherwise.

This document uses WebIDL [WebIDL-ED] to define UAF protocol messages.

Implementations must serialize the UAF protocol messages for transmission using UTF-8 encoded JSON [RFC4627].

3.1 Shared Structures and Types

This section defines types and structures shared by various operations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.

WebIDL

interface Version {
 readonly attribute unsigned short major;
 readonly attribute unsigned short minor;
};

3.1.1.1 Attributes

major of type unsigned short, readonly
Major version.

minor of type unsigned short, readonly
Minor version.

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

WebIDL

enum Operation {
 "Reg",
 "Auth",
 "Dereg"
};

Enumeration description

Reg Registration

Auth
Authentication or Transaction
Confirmation

Dereg Deregistration

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

WebIDL

dictionary OperationHeader {
 required Version upv;
 required Operation op;
 DOMString appID;
 DOMString serverData;
 Extension[] exts;
};

3.1.3.1 Dictionary OperationHeader Members

upv of type required Version
UAF protocol version (upv). To conform with this version of the UAF spec set, the major value must be 1 and the minor value must be
2.

op of type required Operation
Name of FIDO operation (op) this message relates to.

appID of type DOMString
string[0..512].

The application identifier that the relying party would like to assert.

There are three ways to set the AppID [FIDOAppIDAndFacets]:

NOTE

"Auth" is used for both authentication and transaction confirmation.

1. If the element is missing or empty in the request, the FIDO UAF Client must set it to the FacetID of the caller.

2. If the appID present in the message is identical to the FacetID of the caller, the FIDO UAF Client must accept it.

3. If it is an URI with HTTPS protocol scheme, the FIDO UAF Client must use it to load the list of trusted facet identifiers from the
specified URI. The FIDO UAF Client must only accept the request, if the facet identifier of the caller matches one of the trusted
facet identifiers in the list returned from dereferencing this URI.

serverData of type DOMString
string[1..1536].

A session identifier created by the relying party.

exts of type array of Extension

List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

WebIDL

typedef DOMString AAID;

string[9]

Each authenticator must have an AAID to identify UAF enabled authenticator models globally. The AAID must uniquely identify a specific
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security characteristics within the model (see Security Considerations).

The AAID is a string with format "V#M", where

"#" is a separator

"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.

"M" indicates the authenticator Model Code. This code consists of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the AAID is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)

The FIDO Alliance is responsible for assigning authenticator vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators. Authenticator vendors must assign
unique AAIDs to authenticators with different security characteristics.

AAIDs are unique and each of them must relate to a distinct authentication metadata file ([FIDOMetadataStatement])

3.1.5 KeyID typedef

WebIDL

typedef DOMString KeyID;

base64url(byte[32...2048])

KeyID is a unique identifier (within the scope of an AAID) used to refer to a specific UAuth.Key. It is generated by the authenticator or ASM and
registered with a FIDO Server.

The (AAID, KeyID) tuple must uniquely identify an authenticator's registration for a relying party. Whenever a FIDO Server wants to provide
specific information to a particular authenticator it must use the (AAID, KeyID) tuple.

NOTE

The new key pair that the authenticator generates will be associated with this application identifier.

Security Relevance: The application identifier is used by the FIDO UAF Client to verify the eligibility of an application to trigger
the use of a specific UAuth.Key. See [FIDOAppIDAndFacets]

NOTE
The relying party can opaquely store things like expiration times for the registration session, protocol version used and other
useful information in serverData. This data is opaque to FIDO UAF Clients. FIDO Servers may reject a response that is
lacking this data or is containing unauthorized modifications to it.

Servers that depend on the integrity of serverData should apply appropriate security measures, as described in Registration
Request Generation Rules for FIDO Server and section ServerData and KeyHandle.

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are identical.

NOTE

Adding new firmware/software features, or changing the underlying hardware protection mechanisms will typically change the security
characteristics of an authenticator and hence would require a new AAID to be used. Refer to ([FIDOMetadataStatement]) for more details.

KeyID must be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the FIDO Server should provide the KeyID back to the authenticator for the latter
to locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage for, and cannot rely on any ASM to store, generated key handles should provide the
key handle as part of the AuthenticatorRegistrationAssertion.assertion.KeyID during the registration operation (see also section ServerData
and KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the MatchCriteria dictionary which is
part of the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

3.1.6 ServerChallenge typedef

WebIDL

typedef DOMString ServerChallenge;

base64url(byte[8...64])

ServerChallenge is a server-provided random challenge. Security Relevance: The challenge is used by the FIDO Server to verify whether an
incoming response is new, or has already been processed. See section Replay Attack Protection for more details.

The ServerChallenge should be mixed into the entropy pool of the authenticator. Security Relevance: The FIDO Server should provide a
challenge containing strong cryptographic randomness whenever possible. See section Server Challenge and Random Numbers.

3.1.7 FinalChallengeParams dictionary

WebIDL

dictionary FinalChallengeParams {
 required DOMString appID;
 required ServerChallenge challenge;
 required DOMString facetID;
 required ChannelBinding channelBinding;
};

3.1.7.1 Dictionary FinalChallengeParams Members

appID of type required DOMString
string[1..512]

The value must be taken from the appID field of the OperationHeader

challenge of type required ServerChallenge

The value must be taken from the challenge field of the request (e.g. RegistrationRequest.challenge,
AuthenticationRequest.challenge).

facetID of type required DOMString
string[1..512]

The value is determined by the FIDO UAF Client and it depends on the calling application. See [FIDOAppIDAndFacets] for more
details. Security Relevance: The facetID is determined by the FIDO UAF Client and verified against the list of trusted facets retrieved
by dereferencing the appID of the calling application.

channelBinding of type required ChannelBinding

Contains the TLS information to be sent by the FIDO Client to the FIDO Server, binding the TLS channel to the FIDO operation.

3.1.8 ClientData dictionary

ClientData is an alternative to the FinalChallengeParams structure. It is used by platforms supporting CTAP2 and Web Authentication. The
exact definition of clientData can be found in [WebAuthn].

NOTE

The exact structure and content of a KeyID is specific to the authenticator / ASM implementation.

NOTE

The minimum challenge length of 8 bytes follows the requirement in [SP800-63] and is equivalent to the 20 decimal digits as required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can be used without truncation.

NOTE

The mixing of multiple sources of randomness is recommended to improve the quality of the random numbers generated by the
authenticator, as described in [RFC4086].

3.1.9 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

Further requirements:

1. If data related to any of the channel binding methods, described here, is available to the FIDO UAF Client (i.e. included in this dictionary),
it must be used according to the relevant specification .

2. All channel binding methods described here must be supported by the FIDO Server. The FIDO Server may reject operations if the
channel binding cannot be verified successfully.

WebIDL

dictionary ChannelBinding {
 DOMString serverEndPoint;
 DOMString tlsServerCertificate;
 DOMString tlsUnique;
 DOMString cid_pubkey;
};

NOTE

WebIDL

dictionary ClientData {
 required DOMString challenge;
 required DOMString origin;
 required AlgorithmIdentifier hashAlg;
 DOMString tokenBinding;
 WebAuthnExtensions extensions;
};

Dictionary ClientData Members

challenge of type required DOMString

Contains the base64url encoding of the challenge provided by the RP.

This field plays a similar role as the challenge field in FinalChallengeParams.

origin of type required DOMString

The fully qualified origin of the requester, as provided to the authenticator by the client, in the synrax defined by [RFC6454].

This field plays a similar role as the facetID field in FinalChallengeParams.

hashAlg of type required AlgorithmIdentifier

The hash algorithm used to compute the clientDataHash, e.g. "S256", etc.

This field is relevant here as the client can freely select the hash algorithm - unlike FinalChallengeParams, where the
authenticator must use the same algorithm as for signing the assertion.

tokenBinding of type DOMString

Contains the base64url encoding of the Token Binding ID provided by the client. The syntax is equivalent to the cid_pubkey in
section ChannelBinding dictionary.

This field plays a similar role as the channelBinding field in FinalChallengeParams.

extensions of type WebAuthnExtensions

Additional parameters generated by processing of extensions passed in by the relying party.

NOTE

Security Relevance:The channel binding may be verified by the FIDO Server in order to detect and prevent MITM attacks.

At this time, the following channel binding methods are supported:

TLS ChannelID (cid_pubkey) [ChannelID]

serverEndPoint [RFC5929]

tlsServerCertificate

tlsUnique [RFC5929]

NOTE

If channel binding data is accessible to the web browser or client application, it must be relayed to the FIDO UAF Client in order to
follow the assumptions made in [FIDOSecRef].

If channel binding data is accessible to the web server, it must be relayed to the FIDO Server in order to follow the assumptions
made in [FIDOSecRef]. The FIDO Server relies on the web server to provide accurate channel binding information.

3.1.9.1 Dictionary ChannelBinding Members

serverEndPoint of type DOMString

The field serverEndPoint must be set to the base64url-encoded hash of the TLS server certificate if this is available. The hash
function must be selected as follows:

1. if the certificate's signatureAlgorithm uses a single hash function and that hash function is either MD5 [RFC1321] or SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's signatureAlgorithm uses a single hash function and that hash function is neither MD5 nor SHA-1, then use
the hash function associated with the certificate'ssignatureAlgorithm;

3. if the certificate's signatureAlgorithm uses no hash functions, or uses multiple hash functions, then this channel binding type's
channel bindings are undefined at this time (updates to this channel binding type may occur to address this issue if it ever
arises)

This field must be absent if the TLS server certificate is not available to the processing entity (e.g., the FIDO UAF Client) or the hash
function cannot be determined as described.

tlsServerCertificate of type DOMString

This field must be absent if the TLS server certificate is not available to the FIDO UAF Client.

This field must be set to the base64url-encoded, DER-encoded TLS server certificate, if this data is available to the FIDO UAF
Client.

tlsUnique of type DOMString
must be set to the base64url-encoded TLS channel Finished structure. It must, however, be absent, if this data is not available to the
FIDO UAF Client [RFC5929].

The use of the tlsUnique is deprecated as the security of the tls-unqiue channel binding type [RFC5929] is broken, see [TLSAUTH].

cid_pubkey of type DOMString

must be absent if the client TLS stack doesn't provide TLS ChannelID [ChannelID] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if TLS ChannelID information is supported by the client-side TLS stack but has not been signaled by the
TLS (web) server.

Otherwise, it must be set to the base64url-encoded serialized [RFC4627] JwkKey structure using UTF-8 encoding.

3.1.10 JwkKey dictionary

JwkKey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key [JWK].

This public key is the ChannelID public key minted by the client TLS stack for the particular relying party. [ChannelID] stipulates using only a
particular elliptic curve, and the particular coordinate type.

WebIDL

dictionary JwkKey {
 required DOMString kty = "EC";
 required DOMString crv = "P-256";
 required DOMString x;
 required DOMString y;
};

3.1.10.1 Dictionary JwkKey Members

kty of type required DOMString, defaulting to "EC"
Denotes the key type used for Channel ID. At this time only elliptic curve is supported by [ChannelID], so it must be set to "EC"
[JWA].

crv of type required DOMString, defaulting to "P-256"
Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve secp256r1 is supported by [ChannelID],
so the crv parameter must be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

3.1.11 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator commands, or in the assertion signed by
the authenticator.

Each extension has an identifier, and the namespace for extension identifiers is FIDO UAF global (i.e. doesn't depend on the message where
the extension is present).

Extensions can be defined in a way such that a processing entity which doesn't understand the meaning of a specific extension must abort
processing, or they can be specified in a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section where extensions are allowed.

Generic extensions used in various operations.

WebIDL

WebIDL

dictionary Extension {
 required DOMString id;
 required DOMString data;
 required boolean fail_if_unknown;
};

3.1.11.1 Dictionary Extension Members

id of type required DOMString
string[1..32].

Identifies the extension.

data of type required DOMString
Contains arbitrary data with a semantics agreed between server and client. Binary data is base64url-encoded.

This field may be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (true).

A value of false indicates that unknown extensions must be ignored

A value of true indicates that unknown extensions must result in an error.

3.1.12 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

The MatchCriteria object is considered to match an authenticator, if all fields in the object are considered to match (as indicated in the
particular fields).

WebIDL

dictionary MatchCriteria {
 AAID[] aaid;
 DOMString[] vendorID;
 KeyID[] keyIDs;
 unsigned long userVerification;
 unsigned short keyProtection;
 unsigned short matcherProtection;
 unsigned long attachmentHint;
 unsigned short tcDisplay;
 unsigned short[] authenticationAlgorithms;
 DOMString[] assertionSchemes;
 unsigned short[] attestationTypes;
 unsigned short authenticatorVersion;
 Extension[] exts;
};

3.1.12.1 Dictionary MatchCriteria Members

aaid of type array of AAID

List of AAIDs, causing matching to be restricted to certain AAIDs.

The field m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.

If m.aaid is not provided - both m.authenticationAlgorithms and m.assertionSchemes must be provided.

The match succeeds if at least one AAID entry in this array matches AuthenticatorInfo.aaid [UAFASM].

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be
passed through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be
passed through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and fail_if_unknown is not set). If
the FIDO authenticator doesn't understand the meaning of the extension and fail_if_unknown is set, it must generate an error (see
definition of fail_if_unknown above).

When passing through an extension to the next entity, the fail_if_unknown flag must be preserved (see [UAFASM]
[UAFAuthnrCommands]).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should
be accompanied by a related (and signed) extension in the authenticator assertion (e.g. TAG_UAFV1_REG_ASSERTION,
TAG_UAFV1_AUTH_ASSERTION). If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata
statement accepts multiple fingers but in this specific case indicates that the finger used at registration was also used for authentication)
there is no need to mark the extension as fail_if_unknown (i.e. tag 0x3E12 should be used [UAFAuthnrCommands]). If the security has
been degraded (e.g. the FIDO authenticator according to the description in the metadata statement accepts only the finger used at
registration for authentication but in this specific case indicates that a different finger was used for authentication) the extension must be
marked as fail_if_unknown (i.e. tag 0x3E11 must be used [UAFAuthnrCommands]).

NOTE

vendorID of type array of DOMString
The vendorID causing matching to be restricted to authenticator models of the given vendor. The first 4 characters of the AAID are
the vendorID (see AAID)).

The match succeeds if at least one entry in this array matches the first 4 characters of the AuthenticatorInfo.aaid [UAFASM].

keyIDs of type array of KeyID

A list of authenticator KeyIDs causing matching to be restricted to a given set of KeyID instances. (see TAG_KEYID in
[UAFRegistry]).

This match succeeds if at least one entry in this array matches.

userVerification of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the user verification method (see [FIDORegistry]).

keyProtection of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the key protections used (see [FIDORegistry]).

This match succeeds, if at least one of the bit flags matches the value of AuthenticatorInfo.keyProtection [UAFASM].

matcherProtection of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the matcher protection (see [FIDORegistry]).

The match succeeds if at least one of the bit flags matches the value of AuthenticatorInfo.matcherProtection [UAFASM].

attachmentHint of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the authenticator attachment mechanism (see

This field corresponds to MetadataStatement.aaid [FIDOMetadataStatement].

NOTE

This field corresponds to the first 4 characters of MetadataStatement.aaid [FIDOMetadataStatement].

NOTE

This field corresponds to AppRegistration.keyIDs [UAFASM].

NOTE
The match with AuthenticatorInfo.userVerification ([UAFASM]) succeeds, if the following condition holds (written in Java):

if (
 // They are equal
 (AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||

 // USER_VERIFY_ALL is not set in both of them and they have at least one common bit set
 (
 ((AuthenticatorInfo.userVerification & USER_VERIFY_ALL) == 0) &&
 ((MatchCriteria.userVerification & USER_VERIFY_ALL) == 0) &&
 ((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
)
)

NOTE
This field value can be derived from MetadataStatement.userVerificationDetails as follows:

1. if MetadataStatement.userVerificationDetails contains multiple entries, then:
1. if one or more entries MetadataStatement.userVerificationDetails[i] contain multiple entries, then: stop, direct

derivation is not possible. Must generate MatchCriteria object by providing a list of matching AAIDs.

2. if all entries MetadataStatement.userVerificationDetails[i] only contain a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification to
MetadataStatement.userVerificationDetails[N-1][0].userVerification into a single value using a bitwise OR
operation.

2. if MetadataStatement.userVerificationDetails contains a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification to
MetadataStatement.userVerificationDetails[0][N-1].userVerification into a single value using a bitwise OR
operation and (if multiple bit flags have been set) additionally set the flag USER_VERIFY_ALL.

This method doesn't allow matching authenticators implementing complex combinations of user verification methods, such as
PIN AND (Fingerprint OR Speaker Recognition) (see above derivation rules). If such specific match rules are required, they
need to be specified by providing the AAIDs of the matching authenticators.

NOTE

This field corresponds to MetadataStatement.keyProtection [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.matcherProtection metadata statement. See [FIDOMetadataStatement].

[FIDORegistry]).

This field is considered to match, if at least one of the bit flags matches the value of AuthenticatorInfo.attachmentHint [UAFASM].

tcDisplay of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the transaction confirmation display availability and type.
(see [FIDORegistry]).

This match succeeds if at least one of the bit flags matches the value of AuthenticatorInfo.tcDisplay [UAFASM].

authenticationAlgorithms of type array of unsigned short
An array containing values of supported authentication algorithm TAG values (see [FIDORegistry], prefix ALG_SIGN) if matching
should be restricted by the supported authentication algorithms. This field must be present, if field aaid is missing.

This match succeeds if at least one entry in this array matches the AuthenticatorInfo.authenticationAlgorithm [UAFASM].

assertionSchemes of type array of DOMString
A list of supported assertion schemes if matching should be restricted by the supported schemes. This field must be present, if field
aaid is missing.

See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches AuthenticatorInfo.assertionScheme [UAFASM].

attestationTypes of type array of unsigned short
An array containing the preferred attestation TAG values (see [UAFRegistry], prefix TAG_ATTESTATION). The order of items must be
preserved. The most-preferred attestation type comes first.

This match succeeds if at least one entry in this array matches one entry in AuthenticatorInfo.attestationTypes [UAFASM].

authenticatorVersion of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equal to the field AuthenticatorVersion included in TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION or a corresponding value in the case of a different assertion scheme.

The use of authenticatorVersion in the policy is deprecated since there is no standardized way for the FIDO Client to learn the
authenticatorVersion. The authenticatorVersion is included in the auhentication assertion and hence can still be evaluated in the
FIDO Server.

exts of type array of Extension

Extensions for matching policy.

3.1.13 Policy dictionary

Contains a specification of accepted authenticators and a specification of disallowed authenticators.

WebIDL

dictionary Policy {
 required MatchCriteria[][] accepted;
 MatchCriteria[] disallowed;
};

NOTE

This field corresponds to the MetadataStatement.attachmentHint metadata statement.

NOTE

This field corresponds to the MetadataStatement.tcDisplay metadata statement. See [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.authenticationAlgorithm metadata statement. See
[FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.assertionScheme metadata statement. See [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.attestationTypes metadata statement. See [FIDOMetadataStatement].

NOTE

Since the semantic of the authenticatorVersion depends on the AAID, the field authenticatorVersion should always be
combined with a single aaid in MatchCriteria.

This field corresponds to the MetadataStatement.authenticatorVersion metadata statement. See [FIDOMetadataStatement].

3.1.13.1 Dictionary Policy Members

accepted of type array of array of required MatchCriteria

This field is a two-dimensional array describing the required authenticator characteristics for the server to accept either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e. the sets) are alternatives (OR condition).

All elements within a set must be combined:

The first array index indicates OR conditions (i.e. the list). Any set of authenticator(s) satisfying these MatchCriteria in the first index
is acceptable to the server for this operation.

Sub-arrays of MatchCriteria in the second index (i.e. the set) indicate that multiple authenticators (i.e. each set element) must be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the server. Servers must put their preferred authenticators first, and
FIDO UAF Clients should respect those preferences, either by presenting authenticator options to the user in the same order, or by
offering to perform the operation using only the highest-preference authenticator(s).

disallowed of type array of MatchCriteria

Any authenticator that matches any of MatchCriteria contained in the field disallowed must be excluded from eligibility for the
operation, regardless of whether it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy

This section is normative.

The FIDO UAF Client must follow the following rules while parsing server policy:

1. During registration:
1. Policy.accepted is a list of combinations. Each combination indicates a list of criteria for authenticators that the server wants the

user to register.

2. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest priority first.

3. Choose the combination whose criteria best match the features of the currently available authenticators

4. Collect information about available authenticators

5. Ignore authenticators which match the Policy.disallowed criteria

6. Match collected information with the matching criteria imposed in the policy (see MatchCriteria dictionary for more details on
matching)

7. Guide the user to register the authenticators specified in the chosen combination

2. During authentication and transaction confirmation:

1. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest priority first.

2. Choose the combination whose criteria best match the features of the currently available authenticators

3. Collect information about available authenticators

4. Ignore authenticators which meet the Policy.disallowed criteria

5. Match collected information with the matching criteria described in the policy

6. Guide the user to authenticate with the authenticators specified in the chosen combination

7. A pending operation will be approved by the server only after all criteria of a single combination are entirely met

3.2.1 Examples

This section is non-normative.

NOTE
This list must not be empty. If the FIDO Server accepts any authenticator, it can follow the example below.

EXAMPLE 1: Example for an 'any' policy

{
 "accepted":
 [
 [{ "userVerification": 1023 }]
]
}

NOTE

1023 = 0x3ff = USER_VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... | USER_VERIFY_NONE

NOTE

Policy.accepted is a list of combinations. Each combination indicates a set of criteria which is enough to completely
authenticate the current pending operation

EXAMPLE 2: Policy matching either a FPS-, or Face Recognition-based Authenticator

{

Combining these two bit-flags and the flag USER_VERIFY_ALL (USER_VERIFY_ALL = 1024) into a single userVerification value would match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.

The next example requires two authenticators to be used:

Other criteria can be specified in addition to the userVerification:

The policy for accepting authenticators of vendor with ID 1234 only is as follows:

3.3 Version Negotiation

The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [UAFRegistry]), and the ASM version, see [UAFASM].

As a consequence the FIDO UAF Client must select the authenticators which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client must perform the following steps:

1. Create a set (FC_Version_Set) of version pairs, ASM version (asmVersion) and UAF Protocol version (upv) and add all pairs supported by
the FIDO UAF Client into FC_Version_Set

e.g. [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]

 "accepted":
 [
 [{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}],
 [{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]
]
}

EXAMPLE 3: Policy matching authenticators implementing FPS and Face Recognition as alternative combination of user verification
methods.

{
 "accepted":
 [
 [{ "userVerification": 18, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]
]
}

EXAMPLE 4: Policy matching authenticators implementing FPS and Face Recognition as mandatory combination of user verification
methods.

{
 "accepted": [[{ "userVerification": 1042, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]]
}

EXAMPLE 5: Policy matching the combination of a FPS based and a Face Recognition based authenticator

{
 "accepted":
 [
 [
 { "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]},
 { "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}
]
]
}

EXAMPLE 6: Policy requiring the combination of a bound FPS based and a bound Face Recognition based authenticator

{
 "accepted":
 [
 [
 { "userVerification": 2, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]},
 { "userVerification": 16, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}
]
]
}

EXAMPLE 7: Policy accepting all authenticators from vendor with ID 1234

{
 "accepted":
 [[{ "vendorID": "1234", "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]]
}

NOTE

The Key Registration Data and Signed Data objects have to be parsed and verified by the FIDO Server. This verification is only possible
if the FIDO Server understands their encoding and the content. Each UAF protocol version supports a set of Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

NOTE

The ASM versions are retrieved from the AuthenticatorInfo.asmVersion field. The UAF protocol version is derived from the related
AuthenticatorInfo.assertionScheme field.

2. Intersect FC_Version_Set with the set of upv included in UAF Message (i.e. keep only those pairs where the upv value is also contained in
the UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:
Construct a set (Authnr_Version_Set) of version pairs including authenticator supported asmVersion and the compatible upv(s).

e.g. [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]

Intersect Authnr_Version_Set with FC_Version_Set and select highest version pair from it.
Take the pair where the upv is highest. In all these pairs leave only the one with highest asmVersion.

Use the remaining version pair with this authenticator

3.4 Registration Operation

NOTE

Each version consists of major and minor fields. In order to compare two versions - compare the Major fields and if they are equal
compare the Minor fields.

Each UAF message contains a version field upv. UAF Protocol version negotiation is always between FIDO UAF Client and FIDO Server.

A possible implementation optimization is to have the RP web application itself preemptively convey to the FIDO Server the UAF
protocol version(s) (UPV) supported by the FIDO Client. This allows the FIDO Server to craft its UAF messages using the UAF
version most preferred by both the FIDO client and server.

NOTE

The Registration operation allows the FIDO Server and the FIDO Authenticator to agree on an authentication key.

Fig. 6 UAF Registration Sequence Diagram

The steps 11a and 11b and 12 to 13 are not always necessary as the related data could be cached.

The following diagram depicts the cryptographic data flow for the registration sequence.

3.4.1 Registration Request Message

UAF Registration request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The request is
defined as RegistrationRequest dictionary.

Fig. 7 UAF Registration Cryptographic Data Flow

The FIDO Server sends the AppID (see section AppID and FacetID Assertion), the authenticator Policy, the ServerChallenge and the
Username to the FIDO UAF Client.

The FIDO UAF Client computes the FinalChallengeParams (FCP) from the ServerChallenge and some other values and sends the AppID,
the FCH and the Username to the authenticator.

The ASM computes the finalChallengeHash (FCH) and calls the authenticator. The authenticator creates a Key Registration Data object
(e.g. TAG_UAFV1_KRD, see [UAFAuthnrCommands]) containing the hash of FCH, the newly generated user public key (UAuth.pub) and
some other values and signs it (see section Authenticator Attestation for more details). This KRD object is then cryptographically verified
by the FIDO Server.

EXAMPLE 8: UAF Registration Request

[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Reg",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "ZQ_fRGDH2ar_LvrTM8JnQcl-wfnaOutiyCmpBgmMcuE"
 },
 "challenge": "Yb39SdUhU2B0089pS5L7VBW8afdlplnvR4B1Ana5vk4",
 "username": "alice@website.org",
 "policy": {
 "accepted": [
 [{
 "aaid": ["FFFF#FC03"]
 }],
 [{
 "userVerification": 512,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 4,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 2,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1, 3]
 }],

3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
 required OperationHeader header;
 required ServerChallenge challenge;
 required DOMString username;
 required Policy policy;
};

3.4.2.1 Dictionary RegistrationRequest Members

header of type required OperationHeader
Operation header. Header.op must be "Reg"

challenge of type required ServerChallenge
Server-provided challenge value

username of type required DOMString
string[1..128]

A human-readable user name intended to allow the user to distinguish and select from among different accounts at the same relying
party.

policy of type required Policy
Describes which types of authenticators are acceptable for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion {
 required DOMString assertionScheme;
 required DOMString assertion;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 Extension[] exts;
};

3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode the assertion. See UAF Supported Assertion Schemes for details.

 [{
 "userVerification": 2,
 "keyProtection": 2,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 32,
 "keyProtection": 2,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 4,
 "keyProtection": 1,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 }]
],
 "disallowed": [
 {
 "userVerification": 512,
 "keyProtection": 16,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 256,
 "keyProtection": 16
 },
 {
 "aaid": ["FFFF#FC02"],
 "keyIDs": ["RfY_RDhsf4z5PCOhnZExMeVloZZmK0hxaSi10tkY_c4"]
 }
]
 }
}]

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertion of type required DOMString
base64url(byte[1..4096]) Contains the TAG_UAFV1_REG_ASSERTION object containing the assertion scheme specific
KeyRegistrationData (KRD) object which in turn contains the newly generated UAuth.pub and is signed by the Attestation Private
Key.

This assertion must be generated by the authenticator and it must be used only in this Registration operation. The format of this
assertion can vary from one assertion scheme to another (e.g. for "UAFV1TLV" assertion scheme it must be TAG_UAFV1_KRD).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [FIDOMetadataStatement]. For the definition of the DisplayPNGCharacteristicsDescriptor structure
See [FIDOMetadataStatement].

exts of type array of Extension

Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message

A UAF Registration response message is represented as an array of dictionaries. Each dictionary contains a registration response for a specific
protocol version. The array must not contain two dictionaries of the same protocol version. The response is defined as RegistrationResponse
dictionary.

3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.

WebIDL

dictionary RegistrationResponse {
 required OperationHeader header;
 required DOMString fcParams;
 required AuthenticatorRegistrationAssertion[] assertions;
};

3.4.5.1 Dictionary RegistrationResponse Members

header of type required OperationHeader
Header.op must be "Reg".

fcParams of type required DOMString
The base64url-encoded serialized [RFC4627] FinalChallengeParams using UTF8 encoding (see FinalChallengeParams dictionary) or
alternatively it contains the serialized ClientData object. In both cases, all parameters required for the server to verify the Final
Challenge are included.

assertions of type array of required AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules

3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by MatchCriteria). All authenticators in a specific set must be registered simultaneously in
order to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

EXAMPLE 9: Registration Response

[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Reg",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "ZQ_fRGDH2ar_LvrTM8JnQcl-wfnaOutiyCmpBgmMcuE"
 },

 "fcParams": "eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20vaW5kZXguaHRtbCIsImFwcElEIjoiaHR0cH
 M6Ly91YWYuZXhhbXBsZS5jb20vZmFjZXRzLmpzb24iLCJjaGFsbGVuZ2UiOiJZYjM5U2RVaFUyQjAwODlwUzVMN1ZCVzhhZ
 mRscGxudlI0QjFBbmE1dms0IiwiY2hhbm5lbEJpbmRpbmciOnt9fQ",

 "assertions": [{
 "assertionScheme": "UAFV1TLV",
 "assertion": "AT73AgM-sQALLgkARkZGRiNGQzAzDi4HAAEAAQIAAAEKLiAAbkZZjz4ysihP9vVgevgoH8SEV2JITk
 TxKFfsKbAiofQJLiAA2onnfjAyZ0Uc3GL4VyOEdRgIkz7qogqzmITcEPLovP0NLggAAAAAAAEAAAAMLkEABNfRNiA1Hp
 QSfrvD_9Qug55Vw2oaKmjgbC8TdiFXGZ6hjP7jYHV0GtYqO0EvrRRvsNBbnyhXUpq6P_iNq9laDGsHPj4CBi5GADBEAi
 C57WZpOHWCTil_IuAYSEfuj3zgyY6KFp_rgNw5kO5OwwIgiZbTG6ZmY3T6ZqvdeOxcA6FBgn6YLCncK-Wyk0XVY8kFLv
 ABMIIB7DCCAZKgAwIBAgIBBDAKBggqhkjOPQQDAjBwMQswCQYDVQQGEwJOWjEjMCEGA1UEAwwaRklETyBDb25mb3JtYW
 NlIFRlc3QgVG9vbHMxFjAUBgNVBAoMDUZJRE8gQWxsaWFuY2UxJDAiBgNVBAsMG0NlcnRpZmljYXRpb24gV29ya2luZy
 BHcm91cDAeFw0xNzAyMjkxNDMxMTJaFw0yMjAyMjgxNDMxMTJaMHAxCzAJBgNVBAYTAk5aMSMwIQYDVQQDDBpGSURPIE
 NvbmZvcm1hY2UgVGVzdCBUb29sczEWMBQGA1UECgwNRklETyBBbGxpYW5jZTEkMCIGA1UECwwbQ2VydGlmaWNhdGlvbi
 BXb3JraW5nIEdyb3VwMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEZaRKB92Abz8nqEZFf8Xz84ajfA7lLjt4O-i2wq
 1FnD_svIyTyEYm_QbOYJC0GUVE-L6V7OiD8K9Z4PfiBFRO-qMdMBswDAYDVR0TBAUwAwEB_zALBgNVHQ8EBAMCBsAwCg
 YIKoZIzj0EAwIDSAAwRQIgWDy1Oxu8PT6diGXycY0rxb1e16omexfQ-Iv9KOg5p9cCIQCFPPCArmDh3-EyxI_OaZFPvW
 2kG2hQBmi9PnC-bBrfYQ"
 }]
}]

NOTE

Line breaks in fcParams have been inserted for improving readability.

The FIDO Server must follow the following steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an array of MatchCriteria objects, containing the set of authenticators to be registered simultaneously that need to be
identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be registered simultaneously that can be identified by the same rule, create a
MatchCriteria object m, where

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m.aaid must not be combined with any other match criteria field.

If m.aaid is not provided - both m.authenticationAlgorithms and m.assertionSchemes must be provided

2. Add m to v, e.g. v[j+1]=m.

2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed Authenticators.
1. For each already registered AAID for the current user

1. Create a MatchCriteria object m and add AAID and corresponding KeyIDs to m.aaid and m.KeyIDs.

The FIDO Server must include already registered AAIDs and KeyIDs into field p.disallowed to hint that the client should
not register these again.

2. Create a MatchCriteria object m and add the AAIDs of all disallowed Authenticators to m.aaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [FIDOMetadataService]) of some authenticators might
be unacceptable. Such authenticators should be included in p.disallowed.

3. If needed - create MatchCriteria m for other disallowed criteria (e.g. unsupported authenticationAlgs)

4. Add all m to p.disallowed.

2. Create a RegistrationRequest object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData.

FIDO Servers that depend on the integrity of r.header.serverData should apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they should also cryptographically bind serverData to the related message, e.g. by
re-including r.challenge, see also section ServerData and KeyHandle.

2. Generate a random challenge and assign it to r.challenge

3. Assign the username of the user to be registered to r.username

4. Assign p to r.policy.

5. Append r to the array o of message with various versions (RegistrationRequest)

3. Send o to the FIDO UAF Client

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client must perform the following steps:

1. Choose the message m with upv set to the appropriate version number.

2. Parse the message m

3. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

4. Filter the available authenticators with the given policy and present the filtered authenticators to User. Make sure to not include already
registered authenticators for this user specified in RegRequest.policy.disallowed[].keyIDs

5. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation

6. Obtain TLS data if it is available

7. Create a FinalChallengeParams structure fcp and set fcp.appID, fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately.
Serialize [RFC4627] fcp using UTF8 encoding and base64url encode it.

FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see section Version Negotiation) and user agrees to register:
1. Add AppID, Username, FinalChallenge, AttestationType and all other required fields to the ASMRequest [UAFASM].

The FIDO UAF Client must follow the server policy and find the single preferred attestation type. A single attestation type must be
provided to the ASM.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the
ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.4.6.2.1 Mapping ASM Status Codes to ErrorCode

ASMs are returning a status code in their responses to the FIDO Client. The FIDO Client needs to act on those responses and also map the
status code returned the ASM [UAFASM] to an ErrorCode specified in [UAFAppAPIAndTransport].

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverData as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

The mapping of ASM status codes to ErrorCode is specified here:

ASM Status Code ErrorCode Comment

UAF_ASM_STATUS_OK NO_ERROR Pass-through success status.

UAF_ASM_STATUS_ERROR UNKNOWN Map to UNKNOWN.

UAF_ASM_STATUS_ACCESS_DENIED AUTHENTICATOR_ACCESS_DENIED Map to AUTHENTICATOR_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED USER_CANCELLED Pass-through status code.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT INVALID_TRANSACTION_CONTENT

Map to INVALID_TRANSACTION_CONTENT.
This code indicates a problem to be
resolved by the entity providing the
transaction text.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY KEY_DISAPPEARED_PERMANENTLY

Pass-through status code. It indicates
that the Uauth key disappeared
permanently and the RP App might
want to trigger re-registration of the
authenticator.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED
NO_SUITABLE_AUTHENTICATOR or
WAIT_USER_ACTION

Retry operation with other suitable
authenticators and map to
NO_SUITABLE_AUTHENTICATOR if the
problem persists. Return
WAIT_USER_ACTION if being called while
retrying.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE USER_NOT_RESPONSIVE

Pass-through status code. The RP App
might want to retry the operation once
the user pays attention to the
application again.

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES INSUFFICIENT_AUTHENTICATOR_RESOURCES
The FIDO Client shall try other
authenticators matching the policy. If
none exist, pass-through status code.

UAF_ASM_STATUS_USER_LOCKOUT USER_LOCKOUT Pass-through status code.

UAF_ASM_STATUS_USER_NOT_ENROLLED USER_NOT_ENROLLED Pass-through status code.

Any other status code UNKNOWN

Map any unknown error code to
UNKNOWN. This might happen when a
FIDO Client communicates with an
ASM implementing a newer UAF
specification than the FIDO Client.

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Register Command".

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create a RegistrationResponse message

2. Copy RegistrationRequest.header into RegistrationResponse.header

3. Set RegistrationResponse.fcParams to FinalChallenge (base64url encoded serialized and utf8 encoded FinalChallengeParams)

4. Append the response from each Authenticator into RegistrationResponse.assertions

5. Send RegistrationResponse message to FIDO Server

3.4.6.5 Registration Response Processing Rules for FIDO Server

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (RegistrationResponse.header.upv) is not supported – reject the operation

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID in this header to the facetID (see
[FIDOAppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process. Those rules are defined in the related
section in [UAFRegistry].

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

2. Verify that RegistrationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. See also
section ServerData and KeyHandle.

3. base64url decode RegistrationResponse.fcParams and convert it into an object (fcp)

4. If this fcp object is a FinalChallengeParams object, then verify each field in fcp and make sure it is valid:
1. Make sure fcp.appID corresponds to the one stored by the FIDO Server

2. Make sure fcp.facetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]

3. Make sure fcp.channelBinding is as expected (see section ChannelBinding dictionary)

4. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired

5. Reject the response if any of these checks fails

5. If this fcp object is a ClientData object, then verify each field in fcp and make sure it is valid:
1. Make sure fcp.origin is considered a legitimate origin for this registration request.

2. Make sure fcp.tokenBinding is as expected (see field cid_pubkey in section ChannelBinding dictionary)

3. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired

4. Reject the response if any of these checks fails

6. For each assertion a in RegistrationResponse.assertions
1. Parse data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and make

sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to have, verify that the assertion has a valid
syntax, and verify that the assertion doesn't include unknown fields (identified by TAGs or IDs) that belong to extensions marked as
"fail-if-unknown" set to true [FIDOMetadataStatement].

If it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

3. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

4. Verify that the AAID indeed matches the policy specified in the registration request.

If it doesn't match the policy - continue with next assertion

5. Locate authenticator-specific authentication algorithms from the authenticator metadata [FIDOMetadataStatement] using the AAID.

6. If fcp is of type FinalChallengeParams, then hash RegistrationResponse.fcParams using hashing algorithm suitable for this
authenticator type. Look up the hash algorithm in authenticator metadata, field AuthenticationAlgs. It is the hash algorithm
associated with the first entry related to a constant with prefix ALG_SIGN.

FCHash = hash(RegistrationResponse.fcParams)

7. If fcp is of type ClientData, then hash RegistrationResponse.fcParams using hashing algorithm specified in fcp.hashAlg.
FCHash = hash(RegistrationResponse.fcParams)

8. if a.assertion contains an object of type TAG_UAFV1_REG_ASSERTION, then
1. if a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_UAFV1_KRD as first element:

1. Obtain Metadata(AAID).AttestationType for the AAID and make sure that a.assertion.TAG_UAFV1_REG_ASSERTION
contains the most preferred attestation tag specified in field MatchCriteria.attestationTypes in
RegistrationRequest.policy (if this field is present).

If a.assertion.TAG_UAFV1_REG_ASSERTION doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one

2. Make sure that a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.FinalChallengeHash == FCHash
If comparison fails - continue with next assertion

3. Obtain Metadata(AAID).AuthenticatorVersion for the AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorVersion.

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID to the facetID (see
[FIDOAppIDAndFacets]). In this case, the Uauth key cannot be used by other application facets.

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

The AAID in TAG_UAFV1_KRD is contained in a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions included in
this RegistrationResponse in order to determine whether this AAID matches the policy.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), it is recommended
to assume increased risk. See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[FIDOMetadataService] for more details on this.

4. Check whether a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is acceptable, i.e. it is either not
supported (value is 0 or the field isKeyRestricted is set to 'false' in the related Metadata Statement) or it is not
exceedingly high

If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is exceedingly high, this assertion might be
skipped and processing will continue with next one

5. If a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_ATTESTATION_BASIC_FULL tag
1. If entry AttestationRootCertificates for the AAID in the metadata [FIDOMetadataStatement] contains at least

one element:
1. Obtain contents of all TAG_ATTESTATION_CERT tags from

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION_BASIC_FULL object. The occurrences are ordered
(see [UAFAuthnrCommands]) and represent the attestation certificate followed by the related certificate
chain.

2. Obtain all entries of AttestationRootCertificates for the AAID in authenticator Metadata, field
AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to the Attestation Root Certificate using
Certificate Path Validation as specified in [RFC5280]

If verification fails – continue with next assertion

4. Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ATTESTATION_BASIC_FULL.Signature using
the attestation certificate (obtained before).

If verification fails – continue with next assertion

2. If Metadata(AAID).AttestationRootCertificates for this AAID is empty - continue with next assertion

3. Mark assertion as positively verified

6. If a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type TAG_ATTESTATION_BASIC_SURROGATE
1. There is no real attestation for the AAID, so we just assume the AAID is the real one.

2. If entry AttestationRootCertificates for the AAID in the metadata is empty
Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION_BASIC_SURROGATE.Signature using
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_PUB_KEY

If verification fails – continue with next assertion

3. If entry AttestationRootCertificates for the AAID in the metadata is not empty - continue with next assertion (as
the AAID obviously is expecting a different attestation method).

4. Mark assertion as positively verified

7. If a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type TAG_ATTESTATION_ECDAA
1. If entry ecdaaTrustAnchors for the AAID in the metadata [FIDOMetadataStatement] contains at least one element:

1. For each of the ecdaaTrustAnchors entries, perform the ECDAA Verify operation as specified in
[FIDOEcdaaAlgorithm].

If verification fails – continue with next ecdaaTrustAnchors entry

2. If no ECDAA Verify operation succeeded – continue with next assertion

2. If Metadata(AAID).ecdaaTrustAnchors for this AAID is empty - continue with next assertion

3. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the AAID.

8. If a.assertion.TAG_UAFV1_REG_ASSERTION contains another TAG_ATTESTATION tag - verify the attestation by following
appropriate processing rules applicable to that attestation. Currently this document defines the processing rules for
Basic Attestation and direct anonymous attestation (ECDAA).

2. if a.assertion.TAG_UAFV1_REG_ASSERTION contains a different object than TAG_UAFV1_KRD as first element, then follow the rules
specific to that object.

3. Extract a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.PublicKey into PublicKey,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.KeyID into KeyID,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.SignCounter into SignCounter,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ASSERTION_INFO.authenticatorVersion into AuthenticatorVersion,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into AAID.

9. if a.assertion doesn't contain an object of type TAG_UAFV1_REG_ASSERTION, then skip this assertion (as in this UAF v1 only
TAG_UAFV1_REG_ASSERTION is defined).

7. For each positively verified assertion a
Store PublicKey, KeyID, SignCounter, AuthenticatorVersion, AAID and a.tcDisplayPNGCharacteristics into a record associated
with the user's identity. If an entry with the same pair of AAID and KeyID already exists then fail (should never occur).

3.5 Authentication Operation

NOTE

Fig. 8 UAF Authentication Sequence Diagram

The steps 7a and 7a and 8 to 9 are not always necessary as the related data could be cached.

The TransactionText (TranTxt) is only required in the case of Transaction Confirmation (see section 3.5.1 Transaction dictionary), it is
absent in the case of a pure Authenticate operation.

During this operation, the FIDO Server asks the FIDO UAF Client to authenticate user with server-specified authenticators, and return an
authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously shared registration.

Fig. 9 UAF Authentication Cryptographic Data Flow

Diagram of cryptographic flow:

The FIDO Server sends the AppID (see [FIDOAppIDAndFacets]), the authenticator policy and the ServerChallenge to the FIDO UAF

3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

WebIDL

dictionary Transaction {
 required DOMString contentType;
 required DOMString content;
 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.5.1.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [FIDOMetadataStatement]).

This version of the specification only supports the values text/plain or image/png.

content of type required DOMString
base64url(byte[1...])

Contains the base64url encoded transaction content according to the contentType to be shown to the user.

If contentType is "text/plain" then the content must be the base64url encoding of the UTF8 [RFC3629] encoded text with a maximum
length of 200 characters. The Authenticator shall display the default character if it doesn't know how to display the intended one.

If contentType is "image/png" then it must be base64url encoded PNG [PNG] image

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See
[FIDOMetadataStatement]. This field must be present if the contentType is "image/png".

3.5.2 Authentication Request Message

UAF Authentication request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The request is
defined as AuthenticationRequest dictionary.

Client.

The FIDO UAF Client computes the hash of the FinalChallengeParams, produced from the ServerChallenge and other values, as
described in this document, and sends the AppID and hashed FinalChallengeParams to the Authenticator.

The authenticator creates the SignedData object (see TAG_UAFV1_SIGNED_DATA in [UAFAuthnrCommands]) containing the hash of the final
challenge parameters, and some other values and signs it using the UAuth.priv key. This assertion is then cryptographically verified by
the FIDO Server.

EXAMPLE 10: UAF Authentication Request

[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
 },
 "challenge": "4D8eUxdSzQ_Rbk7Gf0SooK7Xr9O2LU-g150stOpK0go",
 "policy": {
 "accepted": [
 [{
 "aaid": ["FFFF#FC01"]
 }],
 [{
 "userVerification": 512,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 4,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 2,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1, 3]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 2,
 "authenticationAlgorithms": [2]

3.5.3 AuthenticationRequest dictionary

 }],
 [{
 "userVerification": 32,
 "keyProtection": 2,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 4,
 "keyProtection": 1,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 }]
]
 }
}]

EXAMPLE 11: UAF Authentication Request with text/plain Transaction

[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "DLbLt14MdqvuS4fESNCAPJmS8yIKPJ3Ad0xb1cMyu2Q"
 },
 "challenge": "vui9bgJ453N_kWlZbiwMz9q6uPvssjnXjkHYzk-LurY",
 "transaction": [
 {
 "contentType": "text/plain",
 "content": "VHJhbnNmZXIgMjAwMCQgdG8gRXZl"
 }
],
 "policy": {
 "accepted": [
 [{
 "aaid": ["FFFF#FC01"]
 }],
 [{
 "userVerification": 512,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1],
 "assertionSchemes": ["UAFV1TLV"]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 1,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 4,
 "tcDisplay": 1,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 4,
 "keyProtection": 2,
 "tcDisplay": 1,
 "authenticationAlgorithms": [1, 3]
 }],
 [{
 "userVerification": 2,
 "keyProtection": 2,
 "authenticationAlgorithms": [2]
 }],
 [{
 "userVerification": 32,
 "keyProtection": 2,
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 2,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 },
 {
 "userVerification": 4,
 "keyProtection": 1,
 "authenticationAlgorithms": [1, 3],
 "assertionSchemes": ["UAFV1TLV"]
 }]
]
 }
}]

Contains the UAF Authentication Request Message:

WebIDL

dictionary AuthenticationRequest {
 required OperationHeader header;
 required ServerChallenge challenge;
 Transaction[] transaction;
 required Policy policy;
};

3.5.3.1 Dictionary AuthenticationRequest Members

header of type required OperationHeader
Header.op must be "Auth"

challenge of type required ServerChallenge
Server-provided challenge value

transaction of type array of Transaction

Transaction data to be explicitly confirmed by the user.

The list contains the same transaction content in various content types and various image sizes. Refer to [FIDOMetadataStatement]
for more information about Transaction Confirmation Display characteristics.

policy of type required Policy
Server-provided policy defining what types of authenticators are acceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:

WebIDL

dictionary AuthenticatorSignAssertion {
 required DOMString assertionScheme;
 required DOMString assertion;
 Extension[] exts;
};

3.5.4.1 Dictionary AuthenticatorSignAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode assertion. See UAF Supported Assertion Schemes for details.

assertion of type required DOMString
base64url(byte[1..4096]) Contains the assertion containing a signature generated by UAuth.priv, i.e. TAG_UAFV1_AUTH_ASSERTION.

exts of type array of Extension

Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered authenticators.

WebIDL

dictionary AuthenticationResponse {
 required OperationHeader header;
 required DOMString fcParams;
 required AuthenticatorSignAssertion[] assertions;
};

3.5.5.1 Dictionary AuthenticationResponse Members

header of type required OperationHeader
Header.op must be "Auth"

fcParams of type required DOMString
The field fcParams is the base64url-encoded serialized [RFC4627] FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) or alternatively it contains the serialized ClientData object. In both cases, all parameters required
for the server to verify the Final Challenge are included.

assertions of type array of required AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. The array must contain exactly one dictionary. The response
is defined as AuthenticationResponse dictionary.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

3.5.7 Authentication Processing Rules

3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by MatchCriteria). All authenticators in a specific set must be used for authentication
simultaneously in order to match the policy. But any of those sets in the list are valid, i.e. the list elements are alternatives.

The FIDO Server must follow the steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be used for authentication simultaneously that can be identified by the same
rule, create a MatchCriteria object m, where

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m.aaid must not be combined with any other match criteria field.

If m.aaid is not provided - both m.authenticationAlgorithms and m.assertionSchemes must be provided

In case of step-up authentication (i.e. in the case where it is expected the user is already known due to a previous
authentication step) every item in Policy.accepted must include the AAID and KeyID of the authenticator registered
for this account in order to avoid ambiguities when having multiple accounts at this relying party.

2. Add m to v, e.g. v[j+1]=m.

2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed authenticators.
1. Create a MatchCriteria object m and add AAIDs of all disallowed authenticators to m.aaid.

The status (as provided in the metadata TOC [FIDOMetadataService]) of some authenticators might be unacceptable. Such
authenticators should be included in p.disallowed.

2. If needed - create MatchCriteria m for other disallowed criteria (e.g. unsupported authenticationAlgs)

3. Add all m to p.disallowed.

2. Create an AuthenticationRequest object r with appropriate r.header for the supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData. FIDO Servers that depend on the integrity

of r.header.serverData should apply and verify a cryptographically secure Message Authentication Code (MAC) to serverData and
they should also cryptographically bind serverData to the related message, e.g. by re-including r.challenge, see also section

EXAMPLE 12: UAF Authentication Response

[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
 },

 "fcParams": "eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20vaW5kZXguaHRtbCIsImFwcElEIjoiaHR0cH
 M6Ly91YWYuZXhhbXBsZS5jb20vZmFjZXRzLmpzb24iLCJjaGFsbGVuZ2UiOiI0RDhlVXhkU3pRX1JiazdHZjBTb29LN1hyO
 U8yTFUtZzE1MHN0T3BLMGdvIiwiY2hhbm5lbEJpbmRpbmciOnt9fQ",

 "assertions": [{
 "assertionScheme": "UAFV1TLV",
 "assertion": "Aj7EAAQ-dgALLgkARkZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvCi4gAMYR1ZSqYuPLiNpYl
 omDJYGZZGQRGSlLlThqf8ZzF-k2EC4AAAkuIADaied-MDJnRRzcYvhXI4R1GAiTPuqiCrOYhNwQ8ui8_Q0uBAABAAAA
 Bi5GADBEAiDDt4-pzmEWZyakWcWGdtBQLIXSf75wL3tEjiCIry_QtQIgjw0oMlQqKOHdG2M26e1Z0bG4wGjfow_vu5z
 p-VkALFo"
 }]
}]

EXAMPLE 13: UAF Authentication Response for text/plain Transaction

[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Auth",
 "appID": "https://uaf.example.com/facets.json",
 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"
 },

 "fcParams": "eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20vaW5kZXguaHRtbCIsImFwcElEIjoiaHR0cH
 M6Ly91YWYuZXhhbXBsZS5jb20vZmFjZXRzLmpzb24iLCJjaGFsbGVuZ2UiOiI0RDhlVXhkU3pRX1JiazdHZjBTb29LN1hyO
 U8yTFUtZzE1MHN0T3BLMGdvIiwiY2hhbm5lbEJpbmRpbmciOnt9fQ",

 "assertions": [{
 "assertionScheme": "UAFV1TLV",
 "assertion": "Aj7EAAQ-dgALLgkARkZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvCi4gAMYR1ZSqYuPLiNpYl
 omDJYGZZGQRGSlLlThqf8ZzF-k2EC4AAAkuIADaied-MDJnRRzcYvhXI4R1GAiTPuqiCrOYhNwQ8ui8_Q0uBAABAAAA
 Bi5GADBEAiDDt4-pzmEWZyakWcWGdtBQLIXSf75wL3tEjiCIry_QtQIgjw0oMlQqKOHdG2M26e1Z0bG4wGjfow_vu5z
 p-VkALFo"
 }]
}]

NOTE

Line breaks in fcParams have been inserted for improving readability.

ServerData and KeyHandle.

2. Generate a random challenge and assign it to r.challenge

3. If this is a transaction confirmation operation - look up TransactionConfirmationDisplayContentTypes/
TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every participating AAID, generate a list of
corresponding transaction content and insert the list into r.transaction.

If the authenticator reported (a dynamic) AuthenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during
Registration - it must be preferred over the (static) value specified in the authenticator Metadata.

4. Set r.policy to our new policy object p created above, e.g. r.policy = p.

5. Add the authentication request message the array

3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message m with upv set to the appropriate version number.

2. Parse the message m
If a mandatory field in the UAF message is not present or a field doesn't correspond to its type and value then reject the operation

3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation

4. Filter available authenticators with the given policy and present the filtered list to User.

5. Let the user select the preferred Authenticator.

6. Obtain TLS data if its available

7. Create a FinalChallengeParams structure fcp and set fcp.AppID, fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately.
Serialize [RFC4627] fcp using UTF8 encoding and base64url encode it.

FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that supports an Authenticator Interface Version AIV compatible with message version
AuthenticationRequest.header.upv (see Version Negotiation) and user agrees to authenticate with:

1. Add AppID, FinalChallenge, Transactions (if present), and all other fields to the ASMRequest.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the
ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Sign Command".

3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create an AuthenticationResponse message

2. Copy AuthenticationRequest.header into AuthenticationResponse.header

3. Fill out AuthenticationResponse.FinalChallengeParams with appropriate fields and then stringify it

4. Append the response from each authenticator into AuthenticationResponse.assertions

5. Send AuthenticationResponse message to the FIDO Server

3.5.7.5 Authentication Response Processing Rules for FIDO Server

The FIDO Server must follow the steps:

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverData as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID in this header to the facetID (see
[FIDOAppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process. Those rules are defined in the related
section in [UAFRegistry].

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.

1. Parse the message
1. If protocol version (AuthenticationResponse.header.upv) is not supported – reject the operation

2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

2. Verify that AuthenticationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. See also
section ServerData and KeyHandle.

3. base64url decode AuthenticationResponse.fcParams and convert into an object (fcp)

4. If this fcp object is a FinalChallengeParams object, then verify each field in fcp and make sure it's valid:
1. Make sure fcp.appID corresponds to the one stored by the FIDO Server

2. Make sure fcp.facetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]

3. Make sure ChannelBinding is as expected (see section ChannelBinding dictionary)

4. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired

5. Reject the response if any of the above checks fails

5. If this fcp object is a ClientData object, then verify each field in fcp and make sure it's valid:
1. Make sure fcp.origin is considered a legitimate origin for this registration request.

2. Make sure fcp.tokenBinding is as expected (see field cid_pubkey in section ChannelBinding dictionary)

3. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired

4. Reject the response if any of the above checks fails

6. For each assertion a in AuthenticationResponse.assertions
1. Parse data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and make

sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to have, verify that the assertion has a valid
syntax, and verify that the assertion doesn't include unknown fields (identified by TAGs or IDs) that belong to extensions marked as
"fail-if-unknown" set to true [FIDOMetadataStatement].

If it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

3. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

4. Make sure that the AAID indeed matches the policy of the Authentication Request
If it doesn't meet the policy – continue with next assertion

5. if a.assertion contains an object of type TAG_UAFV1_AUTH_ASSERTION, then
1. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains TAG_UAFV1_SIGNED_DATA as first element:

1. Obtain Metadata(AAID).AuthenticatorVersion for this AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), it is recommended
to assume increased authentication risk. See "StatusReport dictionary" and "Metadata TOC object Processing
Rules" in [FIDOMetadataService] for more details on this.

2. Retrieve a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_KEYID as KeyID

3. Locate UAuth.pub public key associated with (AAID, KeyID) in the user's record.
If such record doesn't exist - continue with next assertion

4. Verify the AAID against the AAID stored in the user's record at time of Registration.
If comparison fails – continue with next assertion

5. Locate authenticator specific authentication algorithms from authenticator metadata (field AuthenticationAlgs)

6. Check the Signature Counter a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter and make
sure it is either not supported by the authenticator (i.e. the value provided and the value stored in the user's record are
both 0 or the value isKeyRestricted is set to 'false' in the related Metadata Statement) or it has been incremented
(compared to the value stored in the user's record)

If it is greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a
cloned authenticator has been used previously).

7. If fcp is of type FinalChallengeParams, then hash AuthenticationResponse.FinalChallengeParams using the hashing
algorithm suitable for this authenticator type. Look up the hash algorithm in authenticator Metadata, field
AuthenticationAlgs. It is the hash algorithm associated with the first entry related to a constant with prefix ALG_SIGN.

FCHash = hash(AuthenticationResponse.FinalChallengeParams)

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID to the facetID (see
[FIDOAppIDAndFacets]). In this case, the Uauth key cannot be used by other application facets.

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

The AAID in TAG_UAFV1_SIGNED_DATA is contained in
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_AAID.

8. If fcp is of type ClientData, then hash AuthenticationResponse.fcParams using hashing algorithm specified in
fcp.hashAlg.

FCHash = hash(AuthenticationResponse.fcParams)

9. Make sure that a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_FINAL_CHALLENGE_HASH == FCHash

If comparison fails – continue with next assertion

10. If a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.authenticationMode == 2

1. Make sure there is a transaction cached on Relying Party side.
If not – continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction)
and calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for
FinalChallenge).

For each cachedTransaction add hash(cachedTransaction) into cachedTransactionHashList

3. Make sure that a.TransactionHash is in cachedTransactionHashList
If it's not in the list – continue with next assertion

11. Use UAuth.pub key and appropriate authentication algorithm to verify
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_SIGNATURE

1. If signature verification fails – continue with next assertion

2. Update SignCounter in user's record with
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter

2. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains a different object than TAG_UAFV1_SIGNED_DATA as first element, then follow
the rules specific to that object.

6. if a.assertion doesn't contain an object of type TAG_UAFV1_AUTH_ASSERTION, then skip this assertion (as in this UAF v1 only
TAG_UAFV1_AUTH_ASSERTION is defined).

7. Treat this assertion a as positively verified.

7. Process all positively verified authentication assertions a.

3.6 Deregistration Operation

This operation allows FIDO Server to ask the FIDO Authenticator to delete keys related to the particular relying party.

The FIDO Server may explicitly enumerate the keys to be deleted, or the FIDO server may signal deregistration of all keys on all authenticators
managed by the FIDO UAF Client and relating to a given appID.

3.6.1 Deregistration Request Message

The FIDO UAF Deregistration request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The
request is defined as DeregistrationRequest dictionary.

The example above contains a deregistration request. This request will deregister the key with the specified keyID registered for the
authenticator with aaid "FFFF#FC03" for the given appID.

NOTE

The transaction hash included in this AuthenticationResponse must match the transaction content specified in the
related AuthenticationRequest. As FIDO doesn’t mandate any specific FIDO Server API, the transaction content
could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web
Application.

NOTE
There are various deregistration use cases that both FIDO Server and FIDO Client implementations should allow for. Two in particular
are:

1. FIDO Servers should trigger this operation in the event a user removes their account at the relying party.

2. FIDO Clients should ensure that relying party application facets -- e.g., mobile apps, web pages -- have means to initiate a
deregistration operation without having necessarily received a UAF protocol message with an op value of "Dereg". This allows the
relying party app facet to remove a user's keys from authenticators during events such as relying party app removal or installation.

EXAMPLE 14: UAF Deregistration Request

[{
 "header": {
 "upv": {
 "major": 1,
 "minor": 2
 },
 "op": "Dereg",
 "appID": "https://uaf.example.com/facets.json"
 },
 "authenticators": [
 {
 "keyID": "kbufhLYGoFFLJPRCUvwiUu-fr1nh3sX3IjM9i9lcOrQ",
 "aaid": "FFFF#FC03"
 }
]
}]

NOTE

There is no deregistration response object.

3.6.2 DeregisterAuthenticator dictionary

WebIDL

dictionary DeregisterAuthenticator {
 required AAID aaid;
 required KeyID keyID;
};

3.6.2.1 Dictionary DeregisterAuthenticator Members

aaid of type required AAID
AAID of the authenticator housing the UAuth.priv key to deregister, or an empty string if all keys related to the specified appID are to
be de-registered.

keyID of type required KeyID
The unique KeyID related to UAuth.priv. KeyID is assumed to be unique within the scope of an AAID only. If aaid is not an empty
string, then:

1. keyID may contain a value of type KeyID, or,

2. keyID may be an empty string.

(1) signals deletion of a particular UAuth.priv key mapped to the (AAID, KeyID) tuple.

(2) signals deletion of all KeyIDs associated with the specified aaid.

If aaid is an empty string, then keyID must also be an empty string. This signals deregistration of all keys on all authenticators that are
mapped to the specified appID.

3.6.3 DeregistrationRequest dictionary

WebIDL

dictionary DeregistrationRequest {
 required OperationHeader header;
 required DeregisterAuthenticator[] authenticators;
};

3.6.3.1 Dictionary DeregistrationRequest Members

header of type required OperationHeader
Header.op must be "Dereg".

authenticators of type array of required DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules

3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server must follow the steps:

1. Create a DeregistrationRequest message m with m.header.upv set to the appropriate version number.

2. If the FIDO Server intends to deregister all keys on all authenticators managed by the FIDO UAF Client for this appID, then:
1. create one and only one DeregisterAuthenticator object o

2. Set o.aaid and o.keyID to be empty string values

3. Append o to m.authenticators, and go to step 5

3. If the FIDO Server intends to deregister all keys on all authenticators with a given AAID managed by the FIDO UAF Client for this appID,
then:

1. create one and only one DeregisterAuthenticator object o

2. Set o.aaid to the intended AAID and set o.keyID to be an empty string.

3. Append o to m.authenticators, and go to step 5

4. Otherwise, if the FIDO Server intends to deregister specific (AAID, KeyID) tuples, then for each tuple to be deregistered:
1. create a DeregisterAuthenticator object o

2. Set o.aaid and o.keyID appropriately

3. Append o to m.authenticators

5. delete related entry (or entries) in FIDO Server's account database

6. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message m with upv set to the appropriate version number.

2. Parse the message
If a mandatory field in DeregistrationRequest message is not present or a field doesn't correspond to its type and value – reject the
operation

Empty string values for o.aaid and o.keyID must occur in the first and only DeregisterAuthenticator object o, otherwise reject the
operation

3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation

4. For each authenticator compatible with the message version DeregistrationRequest.header.upv and having an AAID matching one of
the provided AAIDs (an AAID of an authenticator matches if it is either (a) equal to one of the AAIDs in the DeregistrationRequest or if (b)
the AAID in the DeregistrationRequest is an empty string):

1. Create appropriate ASMRequest for Deregister function and send it to the ASM. If the ASM returns an error, handle that error
appropriately. The status code returned by the ASM [UAFASM] must be mapped to a status code defined in
[UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping ASM Status Codes to ErrorCode.

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

See [UAFASM] section "Deregister request".

4. Considerations

This section is non-normative.

4.1 Protocol Core Design Considerations

This section describes the important design elements used in the protocol.

4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all supported authenticators and their corresponding Metadata. Authenticator metadata
[FIDOMetadataStatement] contains information such as:

Supported Registration and Authentication Schemes

Authentication Factor, Installation type, supported content-types and other supplementary information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction, FIDO Server looks up the list of authenticator
metadata by AAID and retrieves the required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be identified with a unique authenticator Attestation ID (AAID).

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating authenticator model identity during registration. It allows Relying Parties to
cryptographically verify that the authenticator reported by FIDO UAF Client is really what it claims to be.

Using authenticator Attestation, a relying party "example-rp.com" will be able to verify that the authenticator model of the "example-
Authenticator", reported with AAID "1234#5678", is not malware running on the FIDO User Device but is really a authenticator of model
"1234#5678".

NORMATIVE

FIDO Authenticators should support "Basic Attestation" or "ECDAA" described below. New Attestation mechanisms may be added to the
protocol over time.

NORMATIVE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use the UAuth.priv key in
order to formally generate the same KeyRegistrationData object as attested authenticators. This behavior must be properly declared in the
Authenticator Metadata.

4.1.2.1 Basic Attestation

NORMATIVE

There are two different flavors of Basic Attestation:

Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).

Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key
corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not provide a cryptographic proof of
the security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 Full Basic Attestation

NOTE

FIDO Servers must have access to a trust anchor for verifying attestation public keys (i.e. Attestation Certificate trust store) in order to
follow the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation signature during the registration process for
the same reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This sharing process
shouldt be done according to [FIDOMetadataService].

In this Full Basic Attestation model, a large number of authenticators must share the same Attestation certificate and Attestation Private Key in
order to provide non-linkability (see Protocol Core Design Considerations). Authenticators can only be identified on a production batch level or
an AAID level by their Attestation Certificate, and not individually. A large number of authenticators sharing the same Attestation Certificate
provides better privacy, but also makes the related private key a more attractive attack target.

Fig. 10 Attestation Certificate Chain

4.1.2.1.2 Surrogate Basic Attestation

NORMATIVE

In this attestation method, the UAuth.priv key must be used to sign the Registration Data object. This behavior must be properly declared in
the Authenticator Metadata.

4.1.2.2 Direct Anonymous Attestation (ECDAA)

The FIDO Basic Attestation scheme uses attestation "group" keys shared across a set of authenticators with identical characteristics in order to
preserve privacy by avoiding the introduction of global correlation handles. If such an attestation key is extracted from one single authenticator,
it is possible to create a "fake" authenticator using the same key and hence indistinguishable from the original authenticators by the relying
party. Removing trust for registering new authenticators with the related key would affect the entire set of authenticators sharing the same
"group" key. Depending on the number of authenticators, this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as opposed to targeted physical attacks.

An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA [TPMv1-2-Part1]. Translated to FIDO, this
approach would require one Privacy-CA interaction for each Uauth key. This means relatively high load and high availability requirements for
the Privacy-CA. Additionally the Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This
might make the Privacy-CA an interesting attack target.

Another alternative is the Direct Anonymous Attestation [BriCamChe2004-DAA]. Direct Anonymous Attestation is a cryptographic scheme
combining privacy with security. It uses the Authenticator specific secret once to communicate with a single DAA Issuer (either at
manufacturing time or after being sold before first use) and uses the resulting DAA credential in the DAA-Sign protocol with each relying party.
The (original) DAA scheme has been adopted by the Trusted Computing Group for TPM v1.2 [TPMv1-2-Part1].

ECDAA (see [FIDOEcdaaAlgorithm] for details) is an improved DAA scheme based on elliptic curves and bilinear pairings [CheLi2013-
ECDAA]. This scheme provides significantly improved performance compared with the original DAA and it is part of the TPMv2 specification
[TPMv2-Part1].

NORMATIVE

The ECDAA attestation algorithm is used as specified in [FIDOEcdaaAlgorithm].

NOTE

The protection measures of the Authenticator's attestation private key depend on the specific authenticator model's implementation.

NOTE

The FIDO Server must load the appropriate Authenticator Attestation Root Certificate from its trust store based on the AAID provided in
KeyRegistrationData object.

NOTE

When using Full Basic Attestation: A given set of authenticators sharing the same manufacturer and essential characteristics must not
be issued a new Attestation Key before at least 100,000 devices are issued the previous shared key.

NOTE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use this attestation
method.

4.1.3 Error Handling

NORMATIVE

FIDO Authenticators must inform the FIDO UAF Client (see FIDO Interoperability Overview) about any error conditions encountered when
processing commands through the Authenticator Specific Module (ASM). See [UAFASM] and [UAFAuthnrCommands] for details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs, Fingerprint Sensors, Secure Elements, etc.) and
also future authenticators designed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

Cryptographic key provisioning (KeyRegistrationData)

Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See also UAF Supported Assertion Schemes.

The Registration Assertion defines how and in which format a cryptographic key is exchanged between the authenticator and the FIDO Server.

The Authentication Assertion defines how and in which format the authenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in [UAFRegistry].

4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e. replacing username and password). As part of the FIDO UAF
Registration, the Uauth key is registered (linked) to the related user account at the RP. The authenticator stores the username (allowing the
user to select a specific account at the RP in the case he has multiple ones). See [UAFAuthnrCommands], section "Sign Command" for details.

4.1.6 Silent Authenticators

FIDO UAF supports authenticators not requiring any types of user verification or user presence check. Such authenticators are called Silent
Authenticators.

In order to meet user's expectations, such Silent Authenticators need specific properties:

It must be possible for a user to effectively remove a Uauth key maintained by a Silent Authenticator (in order to avoid being tracked) at
the user's discretion (see [UAFAuthnrCommands]). This is not compatible with statelesss implementations storing the Uauth private key
wrapped inside a KeyHandle on the FIDO Server.

TransactionConfirmation is not supported (as it would require user input which is not intended), see [UAFAuthnrCommands].

They might not operate in first factor mode (see [UAFAuthnrCommands]) as this might violate the privacy principles.

The MetadataStatement has to truthfully reflect the Silent Authenticator, i.e. field userVerification needs to be set to USER_VERIFY_NONE.

4.1.7 TLS Protected Communication

We recommend, that the

1. TLS Client verifies and validates the server certificate chain according to [RFC5280], section 6 "Certificate Path Validation". The
certificate revocation status should be checked (e.g. using OCSP [RFC2560] or CRL based validation [RFC5280]) and the TLS server
identity should be checked as well [RFC6125].

2. TLS Client's trusted certificate root store is properly maintained and at least requires the CAs included in the root store to annually pass
Web Trust or ETSI (ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.

See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on how to use TLS.

4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

NOTE

FIDO Servers must inform the calling Relying Party Web Application Server (see FIDO Interoperability Overview) about any error
conditions encountered when generating or processing UAF messages through their proprietary API.

NOTE

In order to protect the data communication between FIDO UAF Client and FIDO Server a protected TLS channel must be used by FIDO
UAF Client (or User Agent) and the Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying Party

2. The client endpoint of the TLS connection must be either the FIDO UAF Client or the User Agent / App

3. TLS Client and Server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS v1.2 or higher are not available. The
"anon" and "null" TLS crypto suites are not allowed and must be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4,
SHA1) should be avoided [[SP 800-131A]] [RFC7525].

4. TLS Extended Master Secret Extension [RFC7627] and TLS Renegotiation Indication Extension [RFC5746] should be used to
protect against MITM attacks.

5. The use of the tls-unique method is deprecated as its security is broken, see [TLSAUTH].

4.2.2 Revealing KeyIDs

FIDO UAF uses key identifiers (KeyIDs) to identify Uauth keys registered by an authenticator to a relying party. By design (see
[UAFAuthnrCommands], section 6.2.4), KeyIDs do not reveal any secret information. However, if an attacker could provide a username to a
relying party and the relying party server would reveal the related KeyID if an account for that username exists or give an error otherwise, the
attacker would implicitly learn whether the user has an account at that relying party.

As a consequence, relying parties should reveal a KeyID only after performing some basic authentication steps, e.g. verifying the existence of
a Cookie, authentication using FIDO Silent Authenticator, etc.).

4.3 Security Considerations

There is no "one size fits all" authentication method. The FIDO goal is to decouple the user verification method from the authentication protocol
and the authentication server, and to support a broad range of user verification methods and a broad range of assurance levels. FIDO
authenticators should be able to leverage capabilities of existing computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and integrity of the user's equipment involved
and (b) on the authentication method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of authentication methods. The relying party
needs reliable information about the security relevant parts of the equipment and the authentication method itself in order to determine whether
the overall risk of an electronic authentication is acceptable in a particular business context. The FIDO Metadata Service
[FIDOMetadataService] is intended to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security relevant parts of the equipment and the
authentication method itself to the FIDO server.

The overall security is determined by the weakest link. In order to support scalable security in FIDO, the underlying UAF protocol needs to
provide a very high conceptual security level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels. The FIDO Alliance envisions a broad range of FIDO UAF Clients, FIDO
Authenticators and FIDO Servers to be offered by various vendors. Relying parties should be able to select a FIDO Server providing the
appropriate level of security. They should also be in a position to accept FIDO Authenticators meeting the security needs of the given business
context, to compensate assurance level deficits by adding appropriate implicit authentication measures, and to reject authenticators not
meeting their requirements. FIDO does not mandate a very high assurance level for FIDO Authenticators, instead it provides the basis for
authenticator and user verification method competition.

Authentication vs. Transaction Confirmation. Existing Cloud services are typically based on authentication. The user launches an
application (i.e. User Agent) assumed to be trusted and authenticates to the Cloud service in order to establish an authenticated
communication channel between the application and the Cloud service. After this authentication, the application can perform any actions to the
Cloud service using the authenticated channel. The service provider will attribute all those actions to the user. Essentially the user
authenticates all actions performed by the application in advance until the service connection or authentication times out. This is a very
convenient way as the user doesn't get distracted by manual actions required for the authentication. It is suitable for actions with low risk
consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is typically being used when non-repudiation is required. The resulting requirement for this scenario is called
What You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The technical difference is, that with
Authentication the user confirms a random challenge, where in the case of Transaction Confirmation the user also confirms a human readable
content, i.e. the contract. From a security point, in the case of authentication the application needs to be trusted as it performs any action once
the authenticated communication channel has been established. In the case of Transaction Confirmation only the transaction confirmation
display component implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in order to determine the risk associated with an authentication, it is
important to know details about some components of the user's environment. Web Browsers typically send a "User Agent" string to the web
server. Unfortunately any application could send any string as "User Agent" to the relying party. So this method doesn't provide strong security.
FIDO UAF is based on a concept of cryptographic attestation. With this concept, the component to be attested owns a cryptographic secret and
authenticates its identity with this cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation Key". The
relying party gets access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an authentication, all components performing significant
security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the "FIDO Authenticators". Security functions are:

1. Protecting the attestation key.

2. Generating and protecting the Authentication key(s), typically one per relying party and user account on relying party.

3. Verifying the user.

4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).

Some FIDO Authenticators might implement these functions in software running on the FIDO User Device, others might implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators might even be
formally evaluated and accredited to some national or international scheme. Each FIDO Authenticator model has an attestation ID (AAID),
uniquely identifying the related security characteristics. Relying parties get access to these security properties of the FIDO Authenticators and
the reference data required for verifying the attestation.

Resilience to leaks from other verifiers. One of the important issues with existing authentication solutions is a weak server side
implementation, affecting the security of authentication of typical users to other relying parties. It is the goal of the FIDO UAF protocol to
decouple the security of different relying parties.

Decoupling User Verification Method from Authentication Protocol. In order to decouple the user verification method from the
authentication protocol, FIDO UAF is based on an extensible set of cryptographic authentication algorithms. The cryptographic secret will be
unlocked after user verification by the Authenticator. This secret is then used for the authenticator-to-relying party authentication. The set of

NOTE

A ServerChallenge needs appropriate random sources in order to be effective (see [RFC4086] for more details). The (pseudo-)random
numbers used for generating the Server Challenge should successfully pass the randomness test specified in [Coron99] and they should
follow the guideline given in [SP800-90b].

cryptographic algorithms is chosen according to the capabilities of existing cryptographic hardware and computing devices. It can be extended
in order to support new cryptographic hardware.

Privacy Protection. Different regions in the world have different privacy regulations. The FIDO UAF protocol should be acceptable in all
regions and hence must support the highest level of data protection. As a consequence, FIDO UAF doesn't require transmission of biometric
data to the relying party nor does it require the storage of biometric reference data [ISOBiometrics] at the relying party. Additionally,
cryptographic secrets used for different relying parties shall not allow the parties to link actions to the same user entity. UAF supports this
concept, known as non-linkability. Consequently, the UAF protocol doesn't require a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO Authenticators on the FIDO User Device using the Discovery interface
[UAFAppAPIAndTransport]. The combination of AAIDs adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at eff.org and https://wiki.mozilla.org/Fingerprinting). In order to
minimize the entropy added by FIDO, the user can enable/disable individual authenticators – even when they are embedded in the device (see
[UAFAppAPIAndTransport], section "privacy considerations").

4.3.1 FIDO Authenticator Security

See [UAFAuthnrCommands].

4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it is suggested that implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is also supported. See
[FIDORegistry] "Authentication Algorithms" and "Public Key Representation Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random value. For effective security, this value
must be chosen randomly and uniformly from a set of modular integers, using a cryptographically secure process. Even slight biases in that
process may be turned into attacks on the signature schemes.

4.3.3 FIDO Client Trust Model

The FIDO environment on a FIDO User Device comprises 4 entities:

User Agents (a native app or a browser)

FIDO UAF Clients (a shared service potentially used by multiple User Agents)

Authenticator Specific Modules (ASMs)

Authenticators

Fig. 11 UAF Client Trust Model

The security and privacy principles that underpin mobile operating systems require certain behaviours from apps. FIDO must uphold those
principles wherever possible. This means that each of these components has to enforce specific trust relationships with the others to avoid the
risk of rogue components subverting the integrity of the solution.

NOTE

If such random values cannot be provided under all possible environmental conditions, then a deterministic version of ECDSA should be
used (see [RFC6979]).

One specific requirement on handsets is that apps originating from different vendors must not be allowed directly to view or edit each other’s
data (e.g. FIDO UAF credentials).

Given that FIDO UAF Clients are intended to provide a shared service, the principle of siloed app data has been applied to the FIDO UAF
Client, rather than individual apps. This means that if two or more FIDO UAF Clients are present on a device, then each FIDO UAF Client is
unable to access authentication keys created by another FIDO UAF Client. A given FIDO UAF Client may however provide services to multiple
User Agents, so that the same authentication key can authenticate to different facets of the same Relying Party, even if one facet is a 3rd party
browser.

This exclusive access restriction is enforced through the KHAccessToken. When a FIDO UAF Client communicates with an ASM, the ASM
reads the identity of the FIDO UAF Client caller1 and includes that Client ID in the KHAccessToken that it sends to the authenticator.
Subsequent calls to the authenticator must include the same Client ID in the KHAccessToken. Each authentication key is also bound to the
ASM that created it, by means of an ASMToken (a random unique ID for the ASM) that is also included in the KHAccessToken.

Finally, the User Agents that a FIDO UAF Client will recognise are determined by the Relying Party itself. The FIDO UAF Client requests a list
of Trusted Apps from the RP as part of the Registration and Authentication protocols. This prevents User Agents that have not been explicitly
authorized by the Relying Party from using the FIDO credentials.

In this manner, in a compliant FIDO installation, UAF credentials can only be accessed via apps that the relying party explicitly trusts and
through the same client and ASM that performed the original registration.

It should be noted that the specification allows for FIDO UAF Clients to be built directly into User Agents. However, such implementations will
restrict the ability to support multiple facets for relying party applications unless they also expose the UAF Client API for other User Agents to
consume.

4.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify the calling software entity (i.e. the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to the intended ASM. It is based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e. the ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally registered them. A malicious App on a
mobile platform won't be able to access keys by bypassing the related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the AppID, PersonaID, ASMToken and the CallerID. See [UAFASM] for more details.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g. [RFC5929] and [ChannelID]).

UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for the same AppID as the relying party and they might be able to manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and they might be able to manipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique" defined in [RFC5929] might be difficult to
implement.

2. Data centers might use SSL concentrators.

3. Data centers might implement load-balancing for TLS endpoints using different TLS certificates. As a consequence, "tls-server-end-point"
defined in [RFC5929], i.e. the hash of the TLS server certificate might be inappropriate.

4. Unfortunately, hashing of the TLS server certificate (as in "tls-server-end-point") also limits the usefulness of the channel binding in a
particular, but quite common circumstance. If the client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-
middle, your client will see a different certificate than the one the server is using. This is actually quite common on corporate or military
networks with a high security posture that want to inspect all incoming and outgoing traffic. If the FIDO Server just gets a hash value,
there's no way to distinguish this from an attack. If sending the entire certificate is acceptable from a performance perspective, the server
can examine it and determine if it is a certificate for a valid name from a non-standard issuer (likely administratively trusted) or a certificate
for a different name (which almost certainly indicates a forwarding attack).

See ChannelBinding dictionary for more details.

4.3.5 Session Management

FIDO does not define any specific session management methods. However, several FIDO functions rely on a robust session management
being implemented by the relying party's web application:

FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.

FIDO Authentication
After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).

4.3.6 Personas

NOTE

On some platforms, the ASM additionally might need special permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among applications.

FIDO supports unlinkability [AnonTerminology] of accounts at different relying parties by using relying party specific keys.

Sometimes users have multiple accounts at a particular relying party and even want to maintain unlinkability between these accounts.

Today, this is difficult and requires certain measures to be strictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various personas (e.g. "business", "personal").
This is possible as roaming authenticators typically are small and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona (e.g. "business" or "personal"). Some administrative interface (not standardized
by FIDO) of the authenticator may allow maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g. authentication keys, usernames, KeyIDs, …) related to the Persona being
active at that time.

With this concept, the User can switch to the "Personal" Persona and register new accounts. After switching back to "Business" Persona, these
accounts will not be recognized by the authenticator (until the User switches back to "Personal" Persona again).

In order to support the persona feature, the FIDO Authenticator-specific Module API [UAFASM] supports the use of a 'PersonaID' to identify
the persona in use by the authenticator. How Personas are managed or communicated with the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see Operation Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be echoed
back to the FIDO Server as part of the related UAF response message.

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

Several authenticator properties (e.g. UserVerificationMethods, KeyProtection, TransactionConfirmationDisplay, ...) are available in the
metadata [FIDOMetadataStatement] and through the FIDO UAF Application API. The properties included in the metadata are authoritative and
are provided by a trusted source. When in doubt, decisions should be based on the properties retrieved from the Metadata as opposed to the
data retrieved through the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint" what to expect from the Authenticator. Such
"hints" are well suited to drive and optimize the user experience.

4.3.9 Policy Verification

FIDO UAF Response messages do not include all parameters received in the related FIDO UAF request message into the to-be-signed object.
As a consequence, any MITM could modify such entries.

FIDO Server will detect such changes if the modified value is unacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible FIDO Authenticator. Such a change will
be detected by FIDO Server if the weakest possible FIDO Authenticator does not match the initial policy (see Registration Response
Processing Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection

The FIDO UAF protocol specifies two different methods for replay-attack protection:

1. Secure transport protocol (TLS)

2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [TLS].

Additionally, each protocol message contains some random bytes in the ServerChallenge field. The FIDO server should only accept incoming

NOTE

The FIDO Server should not assume any kind of implicit integrity protection of such data nor any implicit session binding. The FIDO
Server must explicitly bind the serverData to an active session.

NOTE

In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary places (e.g. in serverData or in the
KeyHandle). In such situations, the confidentiality and integrity of such sensitive data must be protected. This can be achieved by using
a suitable encryption algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or CTR [CTRMode]. This cipher mode needs to be used
correctly. For CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first in order to
obtain an integral number of blocks in length. The integrity protection can be achieved by adding a MAC or a digital signature on the
ciphertext, using a different key than for the encryption, e.g. using HMAC [FIPS198-1]. Alternatively, an authenticated encryption
scheme such as AES-GCM [SP800-38D] or AES-CCM [SP800-38C] could be used. Such a scheme provides both integrity and
confidentiality in a single algorithm and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by re-including the challenge value in the authenticated serverData.

FIDO UAF messages which contain a valid ServerChallenge value. This is done by verifying that the ServerChallenge value, sent by the client,
was previously generated by the FIDO server. See FinalChallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated by the FIDO server may not be unique,
and in such cases, the same ServerChallenge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security characteristics specified for the model
(identified by the AAID). The security is better when only a single authenticator with that specific UAuth.Key instance exists. Consequently
FIDO UAF specifies some protection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard as such keys cannot be extracted easily.

Secondly, UAF specifies a Signature Counter (see Authentication Response Processing Rules and [UAFAuthnrCommands]). This counter is
increased by every signature operation. If a cloned authenticator is used, then the subsequent use of the original authenticator would include a
signature counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals

There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:

1. Register the authenticator to some relying party for one account

2. Commit fraud

3. Deregister the Authenticator

4. Register the authenticator to some relying party for another account

5. Commit fraud

6. Deregister the Authenticator

7. and so on...

4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native PC Applications. Such applications are referred to as FIDO enabled
applications.

Fig. 12 FIDO Interoperability Overview

Web applications typically consist of the web application server and the related Web App. The Web App code (e.g. HTML and JavaScript) is
rendered and executed on the client side by the User Agent. The Web App code talks to the User Agent via a set of JavaScript APIs, e.g.
HTML DOM. The FIDO DOM API is defined in [UAFAppAPIAndTransport]. The protocol between the Web App and the Relying Party Web
Application Server is typically proprietary.

Mobile Apps play the role of the User Agent and the Web App (Client). The protocol between the Mobile App and the Relying Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web App (Client). Those applications are typically expected to be independent
from any particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [UAFAppAPIAndTransport].

NOTE

Authenticators might support a Registration Counter (RegCounter). The RegCounter will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios. See [UAFAuthnrCommands] for more details.

5. UAF Supported Assertion Schemes

This section is normative.

5.1 Assertion Scheme "UAFV1TLV"

This scheme is mandatory to implement for FIDO Servers. This scheme is mandatory to implement for FIDO Authenticators.

This Assertion Scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to encode registration and authentication assertions generated by
authenticators. This is the default assertion scheme for UAF protocol.

TAGs and Algorithms are defined in [UAFRegistry].

The authenticator must use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the metadata
statement [FIDOMetadataStatement] for each relying party. This key pair should be generated as part of the registration operation.

Conforming FIDO Servers must implement all authentication algorithms and key formats listed in document [FIDORegistry] unless they are
explicitly marked as optional in [FIDORegistry].

Conforming FIDO Servers must implement all attestation types (TAG_ATTESTATION_*) listed in document [UAFRegistry] unless they are explicitly
marked as optional in [UAFRegistry].

Conforming authenticators must implement (at least) one attestation type defined in [UAFRegistry], as well as one authentication algorithm and
one key format listed in [FIDORegistry].

5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

6. Definitions

See [FIDOGlossary].

7. Table of Figures

Fig. 1 The UAF Architecture

Fig. 2 UAF Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Transaction Confirmation Message Flow

Fig. 5 Deregistration Message Flow

Fig. 6 UAF Registration Sequence Diagram

Fig. 7 UAF Registration Cryptographic Data Flow

Fig. 8 UAF Authentication Sequence Diagram

Fig. 9 UAF Authentication Cryptographic Data Flow

Fig. 10 Attestation Certificate Chain

Fig. 11 UAF Client Trust Model

Fig. 12 FIDO Interoperability Overview

A. References

A.1 Normative references

[ABNF]
D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNF. January 2008. Internet Standard. URL:
https://tools.ietf.org/html/rfc5234

[ChannelID]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL: http://tools.ietf.org/html/draft-balfanz-tls-channelid

[Coron99]
J. Coron; D. Naccache. An accurate evaluation of Maurer's universal test. February 1999. URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOAppIDAndFacets]
D. Balfanz; B. Hill; R. Lindemann; D. Baghdasaryan. FIDO AppID and Facets v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-appid-and-facets-v1.2-id-20180220.html

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

[FIDOGlossary]

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO Authenticators and
have to be verified by the FIDO Server. Verification will fail if the values are modified during transport.

The ASM API [UAFASM] specifies the standardized API to access authenticator Specific Modules (ASMs) on Desktop PCs and Mobile
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API. Instead it lists the minimum data set and a specific
message format which needs to be transferred to and from the FIDO Authenticator.

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-appid-and-facets-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-appid-and-facets-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html

[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). March 2012. URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[JWA]
M. Jones. JSON Web Algorithms (JWA). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7518

[JWK]
M. Jones. JSON Web Key (JWK). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7517

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C Recommendation. URL:
https://www.w3.org/TR/PNG/

[RFC1321]
R. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). April 1992. URL: http://www.ietf.org/rfc/rfc1321.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC3629]
F. Yergeau. UTF-8, a transformation format of ISO 10646. November 2003. Internet Standard. URL: https://tools.ietf.org/html/rfc3629

[RFC4086]
D. Eastlake 3rd; J. Schiller; S. Crocker. Randomness Requirements for Security (RFC 4086). June 2005. URL:
http://www.ietf.org/rfc/rfc4086.txt

[RFC4627]
D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON). July 2006. Informational. URL:
https://tools.ietf.org/html/rfc4627

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5056]
N. Williams. On the Use of Channel Bindings to Secure Channels (RFC 5056). November 2007. URL: http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5929]
J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL: http://www.ietf.org/rfc/rfc5929.txt

[RFC6234]
D. Eastlake 3rd; T. Hansen. US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) (RFC 6234). May 2011. URL:
http://www.ietf.org/rfc/rfc6234.txt

[RFC6979]
T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)
(RFC6979). August 2013. URL: http://www.ietf.org/rfc/rfc6979.txt

[SP800-90b]
Elaine Barker; John Kelsey. NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for Random Bit
Generation. April 2016. URL: http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

[WebAuthn]
Vijay Bharadwaj; Hubert Le Van Gong; Dirk Balfanz; Alexis Czeskis; Arnar Birgisson; Jeff Hodges; Michael B. Jones; Rolf Lindemann; J.
C. Jones. Web Authentication: An API for accessing Scoped Credentials. September 2016. Draft. URL: https://www.w3.org/TR/webauthn/

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/'

A.2 Informative references

[AnonTerminology]
A. Pfitzmann; M. Hansen. Anonymity, Unlinkability, Unobservability, Pseudonymity, and Identity Management - A Consolidated Proposal
for Terminology, Version 0.34. August 2010. URL: http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

[BriCamChe2004-DAA]
Ernie Brickell; Jan Camenisch; Liqun Chen. Direct Anonymous Attestation. 2004. URL: http://eprint.iacr.org/2004/205.pdf

[CTRMode]
H. Lipmea; P. Rogaway; D. Wagner. Comments to NIST concerning AES Modes of Operation: CTR-Mode Encryption. URL:
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf

[CheLi2013-ECDAA]
Liqun Chen; Jiangtao Li. Flexible and Scalable Digital Signatures in TPM 2.0. 2013. URL: http://dx.doi.org/10.1145/2508859.2516729

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-2005.
November 2005. URL: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html

[FIPS198-1]
FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC). July 2008. URL: http://csrc.nist.gov/publications/fips/fips198-
1/FIPS-198-1_final.pdf

[ISOBiometrics]
ISO/IEC 2382-37 Harmonized Biometric Vocabulary. 15 December 2012. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip

[OWASP2013]
. 2013. OWASP Top 10 - 2013. The Ten Most Critical Web Application Security Risks. URL:
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
http://heycam.github.io/webidl/'
http://heycam.github.io/webidl/'
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2004/205.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://dx.doi.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. June 1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560

[RFC5746]
E. Rescorla; M. Ray; S. Dispensa; N. Oskov. Transport Layer Security (TLS) Renegotiation Indication Extension. February 2010.
Proposed Standard. URL: https://tools.ietf.org/html/rfc5746

[RFC6125]
P. Saint-Andre; J. Hodges. Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125). March 2011. URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6287]
D. M'Raihi; J. Rydell; S. Bajaj; S. Machani; D. Naccache. OCRA: OATH Challenge-Response Algorithm (RFC 6287). June 2011. URL:
http://www.ietf.org/rfc/rfc6287.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[RFC7525]
Y. Sheffer; R. Holz; P. Saint-Andre. Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS). May 2015. Best Current Practice. URL: https://tools.ietf.org/html/rfc7525

[RFC7627]
K. Bhargavan, Ed.; A. Delignat-Lavaud; A. Pironti; A. Langley; M. Ray. Transport Layer Security (TLS) Session Hash and Extended
Master Secret Extension. September 2015. Proposed Standard. URL: https://tools.ietf.org/html/rfc7627

[SHEFFER-TLS]
Y. Sheffer; R. Holz; P. Saint-Andre. Recommendations for Secure Use of TLS and DTLS. Internet-Draft (Work in Progress). URL:
https://tools.ietf.org/html/draft-sheffer-tls-bcp

[SP800-38C]
M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. July 2007. URL: http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-
July20_2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. November 2007 URL: https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[SP800-63]
W. Burr; D. Dodson; E. Newton; R. Perlner; W.T. Polk; S. Gupta; E. Nabbus. NIST Special Publication 800-63-2: Electronic
Authentication Guideline. August 2013. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

[TLS]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. August 2008. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5246

[TLSAUTH]
Karthikeyan Bhargavan; Antoine Delignat-Lavaud; Cédric Fournet; Alfredo Pironti; Pierre-Yves Strub. Triple Handshakes and Cookie
Cutters: Breaking and Fixing Authentication over TLS. February 2014. URL: https://secure-resumption.com/tlsauth.pdf

[TPMv1-2-Part1]
TPM 1.2 Part 1: Design Principles. URL: http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-
D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf

[TPMv2-Part1]
Trusted Platform Module Library, Part 1: Architecture. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-
1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf

[TR-03116-4]
Technische Richtlinie TR-03116-4: eCard-Projekte der Bundesregierung: Teil 4 – Vorgaben für Kommunikationsverfahren im
eGovernment. 2013. URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-
TR-03116-4.pdf

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc5746
https://tools.ietf.org/html/rfc5746
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/draft-sheffer-tls-bcp
https://tools.ietf.org/html/draft-sheffer-tls-bcp
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://secure-resumption.com/tlsauth.pdf
https://secure-resumption.com/tlsauth.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

FIDO UAF Application API and Transport Binding Specification

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-client-api-transport-v1.2-rd-20171128.html

Editor:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Bill Blanke, Nok Nok Labs, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

Describes APIs and an interoperability profile for client applications to utilize FIDO UAF. This includes methods of communicating with a FIDO UAF
Client for both Web platform and Android applications, transport requirements, and an HTTPS interoperability profile for sending FIDO UAF messages
to a compatible server.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification solely for
the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is
available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Audience

2.2 Scope

2.3 Architecture
2.3.1 Protocol Conversation

3. Common Definitions
3.1 UAF Status Codes

4. Shared Definitions
4.1 UAFMessage Dictionary

4.1.1 Dictionary UAFMessage Members

4.2 Version interface
4.2.1 Attributes

4.3 Authenticator interface
4.3.1 Attributes

4.3.2 Authenticator Interface Constants

4.4 DiscoveryData dictionary
4.4.1 Dictionary DiscoveryData Members

4.5 ErrorCode interface

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-client-api-transport-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
mailto:bblanke@noknok.com
https://www.noknok.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

4.5.1 Constants

5. DOM API
5.1 Feature Detection

5.2 uaf Interface
5.2.1 Methods

5.3 UAFResponseCallback
5.3.1 Callback UAFResponseCallback Parameters

5.4 DiscoveryCallback
5.4.1 Callback DiscoveryCallback Parameters

5.5 ErrorCallback
5.5.1 Callback ErrorCallback Parameters

5.6 Privacy Considerations for the DOM API

5.7 Security Considerations for the DOM API
5.7.1 Insecure Mixed Content

5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

5.8 Implementation Notes for Browser/Plugin Authors

6. Android Intent API
6.1 Android-specific Definitions

6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT

6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER

6.1.3 channelBindings

6.1.4 UAFIntentType enumeration

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent
6.2.1 UAFIntentType.DISCOVER

6.2.2 UAFIntentType.DISCOVER_RESULT

6.2.3 UAFIntentType.CHECK_POLICY

6.2.4 UAFIntentType.CHECK_POLICY_RESULT

6.2.5 UAFIntentType.UAF_OPERATION

6.2.6 UAFIntentType.UAF_OPERATION_RESULT

6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

6.3 Alternate Android AIDL Service UAF Client Implementation

6.4 Security Considerations for Android Implementations

7. iOS Custom URL API
7.1 iOS-specific Definitions

7.1.1 X-Callback-URL Transport

7.1.2 Secret Key Generation

7.1.3 Origin

7.1.4 channelBindings

7.1.5 UAFxType

7.2 JSON Values
7.2.1 DISCOVER

7.2.2 DISCOVER_RESULT

7.2.3 CHECK_POLICY

7.2.4 CHECK_POLICY_RESULT

7.2.5 UAF_OPERATION

7.2.6 UAF_OPERATION_RESULT

7.2.7 UAF_OPERATION_COMPLETION_STATUS

7.3 Implementation Guidelines for iOS Implementations

7.4 Security Considerations for iOS Implementations

8. Transport Binding Profile
8.1 Transport Security Requirements

8.2 TLS Security Requirements

8.3 HTTPS Transport Interoperability Profile
8.3.1 Obtaining a UAF Request message

8.3.2 Operation enum

8.3.3 GetUAFRequest dictionary
8.3.3.1 Dictionary GetUAFRequest Members

8.3.4 ReturnUAFRequest dictionary
8.3.4.1 Dictionary ReturnUAFRequest Members

8.3.5 SendUAFResponse dictionary
8.3.5.1 Dictionary SendUAFResponse Members

8.3.6 Delivering a UAF Response

8.3.7 ServerResponse Interface
8.3.7.1 Attributes

8.3.8 Token interface
8.3.8.1 Attributes

8.3.9 TokenType enum

8.3.10 Security Considerations

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document are to
be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO UAF technology replaces traditional username and password-based authentication solutions for online services, with a stronger and simpler
alternative. The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server: Registration,
Authentication, Transaction Confirmation, and Deregistration. As specified in the core protocol, these messages do not have a defined network
transport, or describe how application software that a user interfaces with can use UAF. This document describes the API surface that a client
application can use to communicate with FIDO UAF Client software, and transport patterns and security requirements for delivering UAF Protocol
messages to a remote server.

The reader should also be familiar with the FIDO Glossary of Terms [FIDOGlossary] and the UAF Protocol specification [UAFProtocol].

2.1 Audience

This document is of interest to client-side application authors that wish to utilize FIDO UAF, as well as implementers of web browsers, browser plugins
and FIDO clients, in that it describes the API surface they need to expose to application authors.

2.2 Scope

This document describes:

The local ECMAScript [ECMA-262] API exposed by a FIDO UAF-enabled web browser to client-side web applications.

The mechanisms and APIs for Android [ANDROID] applications to discover and utilize a shared FIDO UAF Client service.

The general security requirements for applications initiating and transporting UAF protocol exchanges.

An interoperability profile for transporting FIDO UAF messages over HTTPS [RFC2818].

The following are out of scope for this document:

The format and details of the underlying UAF Protocol messages

APIs for, and any details of interactions between FIDO Server software and the server-side application stack.

2.3 Architecture

The overall architecture of the UAF protocol and its various operations is described in the FIDO UAF Protocol Specification [UAFProtocol]. The
following simplified architecture diagram illustrates the interactions and actors this document is concerned with:

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the WebIDL
definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you
are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means to
ensure those fields are present.

NOTE

The goal of describing standard APIs and an interoperability profile for the transport of FIDO UAF messages here is to provide an example of
how to develop a FIDO-enabled application and to promote the ease of integrating interoperable layers from different vendors to build a complete
FIDO UAF solution. For any given application instance, these particular patterns may not be ideal and are not mandatory. Applications may use
alternate transports, bundle UAF Protocol messages with other network data, or discover and utilize alternative APIs as they see fit.

Fig. 1 UAF Application API Architecture and Transport Layers

This document describes the shaded components in Fig 1.

2.3.1 Protocol Conversation

The core UAF protocol consists of five conceptual phases:

Discovery allows the relying party server to determine the availability of FIDO capabilities at the client, including metadata about the available
authenticators.

Registration allows the client to generate and associate new key material with an account at the relying party server, subject to policy set by the
server and acceptable attestation that the authenticator and registration matches that policy.

Authentication allows a user to provide an account identifier, proof-of-possession of previously registered key material associated with that
identifier, and potentially other attested data, to the relying party server.

Transaction Confirmation allows a server to request that a FIDO client and authenticator with the appropriate capabilities display some
information to the user, request that the user authenticate locally to their FIDO authenticator to confirm it, and provide proof-of-possession of
previously registered key material and an attestation of the confirmation back to the relying party server.

Deregistration allows a relying party server to tell an authenticator to forget selected locally managed key material associated with that relying
party in case such keys are no longer considered valid by the relying party.

Discovery does not involve a protocol exchange with the FIDO Server. However, the information available through the discovery APIs might be
communicated back to the server in an application-specific manner, such as by obtaining a UAF protocol request message containing an authenticator
policy tailored to the specific capabilities of the FIDO user device.

Although the UAF protocol abstractly defines the FIDO server as the initiator of requests, UAF client applications working as described in this document
will always transport UAF protocol messages over a client-initiated request/response protocol such as HTTP.

The protocol flow from the point of view of the relying party client application for registration, authentication, and transaction confirmation is as follows:

1. The client application either explicitly contacts the server to obtain a UAF Protocol Request Message, or this message is delivered along with
other client application content.

2. The client application invokes the appropriate API to pass the UAF protocol request message asynchronously to the FIDO UAF Client, and
receives a set of callbacks.

3. The FIDO UAF Client performs any necessary interactions with the user and authenticator(s) to complete the request and uses a callback to
either notify the client application of an error, or to return a UAF response message.

4. The client application delivers the UAF response message to the server over a transport protocol such as HTTP.

5. The server optionally returns an indication of the results of the operation and additional data such as authorization tokens or a redirect.

6. The client application optionally uses the appropriate API to inform the FIDO UAF Client of the results of the operation. This allows the FIDO UAF
Client to perform “housekeeping” tasks for a better user experience, e.g. by not attempting to use again later a key that the server refused to
register.

7. The client application optionally processes additional data returned to it in an application-specific manner, e.g. processing new authorization
tokens, redirecting the user to a new resource or interpreting an error code to determine if and how it should retry a failed operation.

Deregister does not involve a UAF protocol round-trip. If the relying party server instructs the client application to perform a deregistration, the client
application simply delivers the UAF protocol Request message to the FIDO UAF Client using the appropriate API. The FIDO UAF Client does not return
the results of a deregister operation to the relying party client application or FIDO Server.

UAF protocol Messages are JSON [ECMA-404] structures, but client applications are discouraged from modifying them. These messages may contain
embedded cryptographic integrity protections and any modifications might invalidate the messages from the point of view of the FIDO UAF Client or
Server.

3. Common Definitions

This section is normative.

These elements are shared by several APIs and layers.

3.1 UAF Status Codes

This table lists UAF protocol status codes.

Code Meaning

1200 OK. Operation completed

1202
Accepted. Message accepted, but not completed at this time. The RP may need time to process the attestation, run risk scoring, etc. The
server should not send an authenticationToken with a 1202 response

1400 Bad Request. The server did not understand the message

1401 Unauthorized. The userid must be authenticated to perform this operation, or this KeyID is not associated with this UserID.

1403 Forbidden. The userid is not allowed to perform this operation. Client should not retry

1404 Not Found.

1408 Request Timeout.

1480 Unknown AAID. The server was unable to locate authoritative metadata for the AAID.

1481

Unknown KeyID. The server was unable to locate a registration for the given UserID and KeyID combination.

This error indicates that there is an invalid registration on the user's device. It is recommended that FIDO UAF Client deletes the key from
local device when this error is received.

1490 Channel Binding Refused. The server refused to service the request due to a missing or mismatched channel binding(s).

1491
Request Invalid. The server refused to service the request because the request message nonce was unknown, expired or the server has
previously serviced a message with the same nonce and user ID.

1492
Unacceptable Authenticator. The authenticator is not acceptable according to the server's policy, for example because the capability registry
used by the server reported different capabilities than client-side discovery.

1493 Revoked Authenticator. The authenticator is considered revoked by the server.

1494 Unacceptable Key. The key used is unacceptable. Perhaps it is on a list of known weak keys or uses insecure parameter choices.

1495
Unacceptable Algorithm. The server believes the authenticator to be capable of using a stronger mutually-agreeable algorithm than was
presented in the request.

1496 Unacceptable Attestation. The attestation(s) provided were not accepted by the server.

1497
Unacceptable Client Capabilities. The server was unable or unwilling to use required capabilities provided supplementally to the authenticator
by the client software.

1498 Unacceptable Content. There was a problem with the contents of the message and the server was unwilling or unable to process it.

1500 Internal Server Error

4. Shared Definitions

This section is normative.

4.1 UAFMessage Dictionary

The UAFMessage dictionary is a wrapper object that contains the raw UAF protocol Message and additional JSON data that may be used to carry
application-specific data for use by either the client application or FIDO UAF Client.

NOTE
These codes indicate the result of the UAF operation at the FIDO Server. They do not represent the HTTP [RFC7230] layer or other transport
layers. These codes are intended for consumption by both the client-side web app and FIDO UAF Client to inform application-specific error
reporting, retry and housekeeping behavior.

NOTE

This section defines a number of JSON structures, specified with WebIDL [WebIDL-ED]. These structures are shared among APIs for multiple
target platforms.

WebIDL

dictionary UAFMessage {
 required DOMString uafProtocolMessage;
 Object additionalData;
};

4.1.1 Dictionary UAFMessage Members

uafProtocolMessage of type required DOMString
This key contains the UAF protocol Message that will be processed by the FIDO UAF Client or Server. Modification by the client application
may invalidate the message. A client application may examine the contents of a message, for example, to determine if a message is still
fresh. Details of the structure of the message can be found in the UAF protocol Specification [UAFProtocol].

additionalData of type Object
This key allows the FIDO Server or client application to attach additional data for use by the FIDO UAF Client as a JSON object, or the FIDO
UAF Client or client application to attach additional data for use by the client application.

4.2 Version interface

Describes a version of the UAF protocol or FIDO UAF Client for compatibility checking.

WebIDL

interface Version {
 readonly attribute unsigned short major;
 readonly attribute unsigned short minor;
};

4.2.1 Attributes

major of type unsigned short, readonly
Major version number.

minor of type unsigned short, readonly
Minor version number.

4.3 Authenticator interface

Used by several phases of UAF, the Authenticator interface exposes a subset of both verified metadata [FIDOMetadataStatement] and transient
information about the state of an available authenticator.

WebIDL

interface Authenticator {
 readonly attribute DOMString title;
 readonly attribute AAID aaid;
 readonly attribute DOMString description;
 readonly attribute Version[] supportedUAFVersions;
 readonly attribute DOMString assertionScheme;
 readonly attribute unsigned short authenticationAlgorithm;
 readonly attribute unsigned short[] attestationTypes;
 readonly attribute unsigned long userVerification;
 readonly attribute unsigned short keyProtection;
 readonly attribute unsigned short matcherProtection;
 readonly attribute unsigned long attachmentHint;
 readonly attribute boolean isSecondFactorOnly;
 readonly attribute unsigned short tcDisplay;
 readonly attribute DOMString tcDisplayContentType;
 readonly attribute DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 readonly attribute DOMString icon;
 readonly attribute DOMString[] supportedExtensionIDs;
};

4.3.1 Attributes

title of type DOMString, readonly
A short, user-friendly name for the authenticator.

aaid of type AAID, readonly
The Authenticator Attestation ID, which identifies the type and batch of the authenticator. See [UAFProtocol] for the definition of the AAID
structure.

description of type DOMString, readonly
A user-friendly description string for the authenticator.

NOTE

This text must be localized for current locale.

If the ASM doesn't return a title in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must generate a title based on the
other fields in AuthenticatorInfo, because title must not be empty (see section 1. Notation).

NOTE

This text must be localized for current locale.

It is intended to be displayed to the user. It might deviate from the description specified in the authenticator's metadata statement
[FIDOMetadataStatement].

If the ASM doesn't return a description in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must generate a meaningful
description to the calling App based on the other fields in AuthenticatorInfo, because description must not be empty (see section 1.
Notation).

supportedUAFVersions of type array of Version, readonly
Indicates the UAF protocol Versions supported by the authenticator.

assertionScheme of type DOMString, readonly

The assertion scheme the authenticator uses for attested data and signatures.

Assertion scheme identifiers are defined in the UAF Registry of Predefined Values. [UAFRegistry]

authenticationAlgorithm of type unsigned short, readonly
Supported Authentication Algorithm. The value must be related to constants with prefix ALG_SIGN.

attestationTypes of type array of unsigned short, readonly
A list of supported attestation types. The values are defined in [UAFRegistry] by the constants with the prefix TAG_ATTESTATION.

userVerification of type unsigned long, readonly
A set of bit flags indicating the user verification methods supported by the authenticator. The values are defined by the constants with the
prefix USER_VERIFY.

keyProtection of type unsigned short, readonly
A set of bit flags indicating the key protection used by the authenticator. The values are defined by the constants with the prefix
KEY_PROTECTION.

matcherProtection of type unsigned short, readonly
A set of bit flags indicating the matcher protection used by the authenticator. The values are defined by the constants with the prefix
MATCHER_PROTECTION.

attachmentHint of type unsigned long, readonly
A set of bit flags indicating how the authenticator is currently connected to the FIDO User Device. The values are defined by the constants
with the prefix ATTACHMENT_HINT.

These values are not reflected in authenticator metadata and cannot be relied upon by the relying party, although some models of
authenticator may provide attested measurements with similar semantics as part of UAF protocol messages.

isSecondFactorOnly of type boolean, readonly
Indicates whether the authenticator can only be used as a second-factor.

tcDisplay of type unsigned short, readonly
A set of bit flags indicating the availability and type of transaction confirmation display. The values are defined by the constants with the prefix
TRANSACTION_CONFIRMATION_DISPLAY.

This value must be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString, readonly
The MIME content-type [RFC2045] supported by the transaction confirmation display, such as text/plain or image/png.

This value must be non-empty if transaction confirmation is supported (tcDisplay is non-zero).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor, readonly
The set of PNG characteristics currently supported by the transaction confirmation display (if any).

This list must be non-empty if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero and tcDisplayContentType
is image/png.

icon of type DOMString, readonly
A PNG [PNG] icon for the authenticator, encoded as a data: url [RFC2397].

supportedExtensionIDs of type array of DOMString, readonly
A list of supported UAF protocol extension identifiers. These may be vendor-specific.

4.3.2 Authenticator Interface Constants

A number of constants are defined for use with the bit flag fields userVerification, keyProtection, attachmentHint, and tcDisplay. To avoid duplication
and inconsistencies, these are defined in the FIDO Registry of Predefined Values [FIDORegistry].

4.4 DiscoveryData dictionary

WebIDL

dictionary DiscoveryData {
 required Version[] supportedUAFVersions;
 required DOMString clientVendor;
 required Version clientVersion;
 required Authenticator[] availableAuthenticators;
};

NOTE

Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used in
applying server-supplied policy to guide the user experience. This can be used to, for example, prefer a device that is connected and
ready for authenticating or confirming a low-value transaction, rather than one that is more secure but requires more user effort.

NOTE

See [FIDOMetadataStatement] for additional information on the format of this field and the definition of the
DisplayPNGCharacteristicsDescriptor structure.

NOTE

If the ASM doesn't return an icon in the AuthenticatorInfo object [UAFASM], the FIDO UAF Client must set a default icon, because
icon must not be empty (see section 1. Notation).

4.4.1 Dictionary DiscoveryData Members

supportedUAFVersions of type array of required Version
A list of the FIDO UAF protocol versions supported by the client, most-preferred first.

clientVendor of type required DOMString
The vendor of the FIDO UAF Client.

clientVersion of type required Version
The version of the FIDO UAF Client. This is a vendor-specific version for the client software, not a UAF version.

availableAuthenticators of type array of required Authenticator
An array containing Authenticator dictionaries describing the available UAF authenticators. The order is not significant. The list may be empty.

4.5 ErrorCode interface

WebIDL

interface ErrorCode {
 const short NO_ERROR = 0x0;
 const short WAIT_USER_ACTION = 0x01;
 const short INSECURE_TRANSPORT = 0x02;
 const short USER_CANCELLED = 0x03;
 const short UNSUPPORTED_VERSION = 0x04;
 const short NO_SUITABLE_AUTHENTICATOR = 0x05;
 const short PROTOCOL_ERROR = 0x06;
 const short UNTRUSTED_FACET_ID = 0x07;
 const short KEY_DISAPPEARED_PERMANENTLY = 0x09;
 const short AUTHENTICATOR_ACCESS_DENIED = 0x0c;
 const short INVALID_TRANSACTION_CONTENT = 0x0d;
 const short USER_NOT_RESPONSIVE = 0x0e;
 const short INSUFFICIENT_AUTHENTICATOR_RESOURCES = 0x0f;
 const short USER_LOCKOUT = 0x10;
 const short USER_NOT_ENROLLED = 0x11;
 const short UNKNOWN = 0xFF;
};

4.5.1 Constants

NO_ERROR of type short
The operation completed with no error condition encountered. Upon receipt of this code, an application should no longer expect an
associated UAFResponseCallback to fire.

WAIT_USER_ACTION of type short
Waiting on user action to proceed. For example, selecting an authenticator in the FIDO client user interface, performing user verification, or
completing an enrollment step with an authenticator.

INSECURE_TRANSPORT of type short
window.location.protocol is not "https" or the DOM contains insecure mixed content.

USER_CANCELLED of type short
The user declined any necessary part of the interaction to complete the registration.

UNSUPPORTED_VERSION of type short
The UAFMessage does not specify a protocol version supported by this FIDO UAF Client.

NO_SUITABLE_AUTHENTICATOR of type short
No authenticator matching the authenticator policy specified in the UAFMessage is available to service the request, or the user declined to
consent to the use of a suitable authenticator.

PROTOCOL_ERROR of type short
A violation of the UAF protocol occurred. The interaction may have timed out; the origin associated with the message may not match the
origin of the calling DOM context, or the protocol message may be malformed or tampered with.

UNTRUSTED_FACET_ID of type short
The client declined to process the operation because the caller's calculated facet identifier was not found in the trusted list for the application
identifier specified in the request message.

KEY_DISAPPEARED_PERMANENTLY of type short
The UAuth key disappeared from the authenticator and cannot be restored.

AUTHENTICATOR_ACCESS_DENIED of type short
The authenticator denied access to the resulting request.

INVALID_TRANSACTION_CONTENT of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

USER_NOT_RESPONSIVE of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

INSUFFICIENT_AUTHENTICATOR_RESOURCES of type short
Insufficient resources in the authenticator to perform the requested task.

USER_LOCKOUT of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an action to change that. For example,
an authenticator could allow the user to enter an alternative password to re-enable the use of fingerprints after too many failed finger
verification attempts. This error will be reported if such method either doesn't exist or the ASM / authenticator cannot automatically trigger it.

NOTE

The RP App might want to re-register the authenticator in this case.

NOTE

The transaction content format requirements are specified in the authenticator's metadata statement.

USER_NOT_ENROLLED of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot automatically trigger user enrollment.

UNKNOWN of type short
An error condition not described by the above-listed codes.

5. DOM API

This section is normative.

This section describes the API details exposed by a web browser or browser plugin to a client-side web application executing in a Document [DOM]
context.

5.1 Feature Detection

FIDO's UAF DOM APIs are rooted in a new fido object, a property of window.navigator code; the existence and properties of which may be used for
feature detection.

5.2 uaf Interface

The window.navigator.fido.uaf interface is the primary means of interacting with the FIDO UAF Client. All operations are asynchronous.

WebIDL

interface uaf {
 void discover (DiscoveryCallback completionCallback, ErrorCallback errorCallback);
 void checkPolicy (UAFMessage message, ErrorCallback cb);
 void processUAFOperation (UAFMessage message, UAFResponseCallback completionCallback, ErrorCallback errorCallback);
 void notifyUAFResult (int responseCode, UAFMessage uafResponse);
};

5.2.1 Methods

discover

Discover if the user's client software and devices support UAF and if authenticator capabilities are available that it may be willing to accept for
authentication.

ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription

completionCallback DiscoveryCallback ✘ ✘ The callback that receives DiscoveryData from the FIDO UAF Client.

errorCallback ErrorCallback ✘ ✘ A callback function to receive error and progress events.

Return type: void

checkPolicy

Ask the browser or browser plugin if it would be able to process the supplied request message without prompting the user.

Unlike other operations using an ErrorCallback, this operation must always trigger the callback and return NO_ERROR if it believes that the
message can be processed and a suitable authenticator matching the embedded policy is available, or the appropriateErrorCode value
otherwise.

ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription

message UAFMessage ✘ ✘ A UAFMessage containing the policy and operation to be tested.

cb ErrorCallback ✘ ✘ The callback function which receives the status of the operation.

Return type: void

processUAFOperation

Invokes the FIDO UAF Client, transferring control to prompt the user as necessary to complete the operation, and returns to the callback a
message in one of the supported protocol versions indicated by the UAFMessage.

ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription

message UAFMessage ✘ ✘ The UAFMessage to be used by the FIDO client software.

completionCallback UAFResponseCallback ✘ ✘ The callback that receives the client response UAFMessage from the FIDO
UAF Client, to be delivered to the relying party server.

errorCallback ErrorCallback ✘ ✘ A callback function to receive error and progress events from the FIDO
UAF Client.

Return type: void

notifyUAFResult

Used to indicate the status code resulting from a FIDO UAF message delivered to the remote server. Applications must make this call when
they receive a UAF status code from a server. This allows the FIDO UAF Client to perform housekeeping for a better user experience, for
example not attempting to use keys that a server refused to register.

EXAMPLE 1

<script>

if(!!window.navigator.fido.uaf) { var useUAF = true; }

</script>

NOTE

Because this call should not prompt the user, it should not incur a potentially disrupting context-switch even if the FIDO UAF Client is
implemented out-of-process.

NOTE

ParameterParameter TypeType NullableNullable OptionalOptional DescriptionDescription

responseCode int ✘ ✘ The uafResult field of a ServerResponse.

uafResponse UAFMessage ✘ ✘ The UAFMessage to which this responseCode applies.

Return type: void

5.3 UAFResponseCallback

A UAFResponseCallback is used upon successful completion of an asynchronous operation by the FIDO UAF Client to return the protocol response
message to the client application for transport to the server.

WebIDL

callback UAFResponseCallback = void (UAFMessage uafResponse);

5.3.1 Callback UAFResponseCallback Parameters

uafResponse of type UAFMessage
The message and any additional data representing the FIDO UAF Client's response to the server's request message.

5.4 DiscoveryCallback

A DiscoveryCallback is used upon successful completion of an asynchronous discover operation by the FIDO UAF Client to return the DiscoveryData to
the client application.

WebIDL

callback DiscoveryCallback = void (DiscoveryData data);

5.4.1 Callback DiscoveryCallback Parameters

data of type DiscoveryData
Describes the current state of FIDO UAF client software and authenticators available to the application.

5.5 ErrorCallback

An ErrorCallback is used to return progress and error codes from asynchronous operations performed by the FIDO UAF Client.

WebIDL

callback ErrorCallback = void (ErrorCode code);

5.5.1 Callback ErrorCallback Parameters

code of type ErrorCode
A value from the ErrorCode interface indicating the result of the operation.

For certain operations, an ErrorCallback may be called multiple times, for example with the WAIT_USER_ACTION code.

5.6 Privacy Considerations for the DOM API

This section is non-normative.

Differences in the FIDO capabilities on a user device may (among many other characteristics) allow a server to "fingerprint" a remote client and attempt
to persistently identify it, even in the absence of any explicit session state maintenance mechanism. Although it may contribute some amount of signal
to servers attempting to fingerprint clients, the attributes exposed by the Discovery API are designed to have a large anonymity set size and should
present little or no qualitatively new privacy risk. Nonetheless, an unusual configuration of FIDO Authenticators may be sufficient to uniquely identify a
user.

It is recommended that user agents expose the Discovery API to all applications without requiring explicit user consent by default, but user agents or
FIDO Client implementers should provide users with the means to opt-out of discovery if they wish to do so for privacy reasons.

5.7 Security Considerations for the DOM API

This section is non-normative.

5.7.1 Insecure Mixed Content

When FIDO UAF APIs are called and operations are performed in a Document context in a web user agent, such a context must not contain insecure
mixed content. The exact definition insecure mixed content is specific to each user agent, but generally includes any script, plugins and other "active"
content, forming part of or with access to the DOM, that was not itself loaded over HTTPS.

The UAF APIs must immediately trigger the ErrorCallback with the INSECURE_TRANSPORT code and cease any further processing if any APIs defined in
this document are invoked by a Document context that was not loaded over a secure transport and/or which contains insecure mixed content.

5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

When retrieving or transporting UAF protocol messages over HTTP, it is important to maintain consistency among the web origin of the document
context and the origin embedded in the UAF protocol message. Mismatches may cause the protocol to fail or enable attacks against the protocol.
Therefore:

If, and how, a status code is delivered by the server, is application and transport specific. A non-normative example can be found below
in the HTTPS Transport Interoperability Profile.

NOTE

This callback is also called in the case of deregistration completion, even though the response object is empty then.

FIDO UAF messages should not be transported using methods that opt-out of the Same Origin Policy [SOP], for example, using <script src=”url”> to
non-same-origin URLs or by setting the Access-Control-Allow-Origin header at the server.

When transporting FIDO UAF messages using XMLHttpRequest [XHR] the client should not follow redirects that are to URLs with a different origin than
the requesting document.

FIDO UAF messages should not be exposed in HTTP responses where the entire response body parses as valid ECMAScript. Resources exposed in
this manner may be subject to unauthorized interactions by hostile applications hosted at untrusted origins through cross-origin embedding using
<script src=”url”>.

Web applications should not share FIDO UAF messages across origins through channels such as postMessage() [webmessaging].

5.8 Implementation Notes for Browser/Plugin Authors

This section is non-normative.

Web applications utilizing UAF depend on services from the web browser as a trusted platform. The APIs for web applications do not provide a means
to assert an origin as an application identity for the purposes of FIDO operations as this will be provided to the FIDO UAF Client by the browser based
on its privileged understanding of the actual origin context.

The browser must enforce that the web origin communicated to the FIDO UAF Client as the application identity is accurate

The browser must also enforce that resource instances containing insecure mixed-content cannot utilize the UAF DOM APIs.

6. Android Intent API

This section is normative.

This section describes how an Android [ANDROID] client application can locate and communicate with a conforming FIDO Client installation operating
on the host device.

6.1 Android-specific Definitions

6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT

FIDO UAF Clients running on Android versions prior to Android 5 must declare the org.fidoalliance.uaf.permissions.FIDO_CLIENT permission and
they also must declare the related "uses-permission". See the below example of this permission expressed in an Android app manifest file
<permission/> and <uses-permission/> element [AndroidAppManifest].

FIDO UAF Clients running on Android version 5 or later must not declare this permission and they also must not declare the related "uses-permission".

6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER

Android applications requesting services from the FIDO UAF Client can do so under their own identity, or they can act as the user's agent by explicitly
declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client to
determine the caller's identity as android:apk-key-hash:<hash-of-public-key>. The FIDO UAF Client will then compare this with the list of authorized
application facets for the target AppID and proceed if it is listed as trusted.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when implementing
a full web browser) it may set its origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The application must satisfy
the necessary conditions described in Transport Security Requirements for authenticating the remote server before setting the origin.

Use of the origin parameter requires the application to declare the org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission, and the FIDO
UAF Client must verify that the calling application has this permission before processing the operation.

NOTE

As with web applications, a variety of integration patterns are possible on the Android platform. The API described here allows an app to
communicate with a shared FIDO UAF Client on the user device in a loosely-coupled fashion using Android Intents.

EXAMPLE 2

<permission
 android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"
 android:label="Act as a FIDO Client."
 android:description="This application acts as a FIDO Client. It may
 access authentication devices available on the system, create and
 delete FIDO registrations on behalf of other applications."
 android:protectionLevel="dangerous"
/>
<uses-permission android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"/>

NOTE

Since FIDO Clients perform security relevant tasks (e.g. verifying the AppID/FacetID relation and asking for user consent), users should
carefully select the FIDO Clients they use. Requiring apps acting as FIDO Clients to declare and use this permission allows them to be
identified as such to users.

There are not any FIDO Client resources needing "protection" based upon the FIDO_CLIENT permission. The reason for having FIDO
Client declare the FIDO_CLIENT permission is solely that users should be able to carefully decide which FIDO Clients to install.

Android version 5 changed the way it handles the case where multiple apps declare the same permission [Android5Changes]; it blocks the
installation of all subsequent apps declaring that permission.

The best way to flag the fact that an app may act as a FIDO Client needs to be determined for Android version 5.

NOTE

See the UAF Protocol Specification [UAFProtocol] for more information on application and facet identifiers.

EXAMPLE 3

6.1.3 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
Android application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is:

Map<String,String>

with the keys as defined for the ChannelBinding structure in the UAF Protocol Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same channel
the legitimate client is using and that messages have not been forwarded through a malicious party.

UAF defines support for the tls-unique and tls-server-end-point bindings from [RFC5929], as well as server certificate and ChannelID [ChannelID]
bindings. The client should supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.

6.1.4 UAFIntentType enumeration

This enumeration describes the type of operation for the intent implementing the Android API.

If the user selected to make different FIDO UAF Clients the default for different intents representing different phases, it could produce inconsistent
results or fail to function at all.

If the application workflow requires multiple calls to the client (and it usually does) the application should read the componentName from the intent extras it
receives from startActivityForResult() and pass it to setComponent() for subsequent intents to be sure they are explicitly resolved to the same FIDO
UAF Client.

WebIDL

enum UAFIntentType {
 "DISCOVER",
 "DISCOVER_RESULT",
 "CHECK_POLICY",
 "CHECK_POLICY_RESULT",
 "UAF_OPERATION",
 "UAF_OPERATION_RESULT",
 "UAF_OPERATION_COMPLETION_STATUS"
};

Enumeration description

DISCOVER Discovery

DISCOVER_RESULT Discovery results

CHECK_POLICY Perform a no-op check if a message could be processed.

CHECK_POLICY_RESULT Check Policy results.

UAF_OPERATION Process a Registration, Authentication, Transaction Confirmation or Deregistration message.

UAF_OPERATION_RESULT UAF Operation results.

UAF_OPERATION_COMPLETION_STATUS
Inform the FIDO UAF Client of the completion status of a Registration, Authentication, Transaction Confirmation
or Deregistration message.

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent

All interactions between a FIDO UAF Client and an application on Android takes place via a single Android intent:

org.fidoalliance.intent.FIDO_OPERATION

The specifics of the operation are carried by the MIME media type and various extra data included with the intent.

The operations described in this document are of MIME media type application/fido.uaf_client+json and this must be set as the type attribute of any
intent.

Extra Type Description

UAFIntentType String One of the UAFIntentType enumeration values describing the intent.

discoveryData String DiscoveryData JSON dictionary.

componentName String The component name of the responding FIDO UAF Client. It must be serialized using ComponentName.flattenString()

<permission
 android:name="org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER"
 android:label="Act as a browser for FIDO registrations."
 android:description="This application may act as a web browser,
 creating new and accessing existing FIDO registrations for any domain."
 android:protectionLevel="dangerous"
/>

NOTE

UAF uses only a single intent to simplify behavior in the situation even where multiple FIDO clients may be installed. In such a case, the user will
be prompted which of the installed FIDO UAF clients should be used to handle an implicit intent.

NOTE

Client applications can discover if a FIDO UAF Client (or several) is available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags) with this intent to see if any activities are available.

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)
http://developer.android.com/reference/android/content/ComponentName.html#flattenToString()

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFIntentType.

origin String
An RFC6454 Web Origin [RFC6454] string for the request, if the caller has the
org.fidoalliance.permissions.ACT_AS_WEB_BROWSER permission.

channelBindings String The JSON dictionary of channel bindings for the operation.

responseCode short The uafResult field of a ServerResponse.

Extra Type Description

The following table shows what intent extras are expected, depending on the value of the UAFIntentType extra:

UAFIntentType value discoveryData componentName errorCode message origin channelBindings responseCode

"DISCOVER"

"DISCOVER_RESULT" optional required required

"CHECK_POLICY" required optional

"CHECK_POLICY_RESULT" required required

"UAF_OPERATION" required optional required

"UAF_OPERATION_RESULT" required required optional

"UAF_OPERATION_COMPLETION_STATUS" required required

6.2.1 UAFIntentType.DISCOVER

This Android intent invokes the FIDO UAF Client to discover the available authenticators and capabilities. The FIDO UAF Client generally will not show
a UI associated with the handling of this intent, but immediately return the JSON structure. The calling application cannot depend on this however, as
the FIDO UAF Client may show a UI for privacy purposes, allowing the user to choose whether and which authenticators to disclose to the calling
application.

This intent must be invoked with startActivityForResult().

6.2.2 UAFIntentType.DISCOVER_RESULT

An intent with this type is returned by the FIDO UAF Client as an argument to onActivityResult() in response to receiving an intent of type DISCOVER.

If the resultCode passed to onActivityResult() is RESULT_OK, and the intent extra errorCode is NO_ERROR, this intent has an extra, discoveryData,
containing a String representation of a DiscoveryData JSON dictionary with the available authenticators and capabilities.

6.2.3 UAFIntentType.CHECK_POLICY

This intent invokes the FIDO UAF Client to discover if it would be able to process the supplied message without prompting the user. The action
handling this intent should not show a UI to the user.

This intent requires the following extras:

message, containing a String representation of a UAFMessage representing the request message to test.

origin, an optional extra that allows a caller with the org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply an RFC6454
Origin [RFC6454] string to be used instead of the application's own identity.

This intent must be invoked with startActivityForResult().

6.2.4 UAFIntentType.CHECK_POLICY_RESULT

This Android intent is returned by the FIDO UAF Client as an argument to onActivityResult() in response to receiving a CHECK_POLICY intent.

In addition to the resultCode passed to onActivityResult(), this intent has an extra, errorCode, containing an ErrorCode value indicating the specific
error condition or NO_ERROR if the FIDO UAF Client could process the message.

6.2.5 UAFIntentType.UAF_OPERATION

This Android intent invokes the FIDO UAF Client to process the supplied request message and return a response message ready for delivery to the
FIDO UAF Server.

The sender should assume that the FIDO UAF Client will display a user interface allowing the user to handle this intent, for example, prompting the
user to complete their verification ceremony.

This intent requires the following extras:

message, containing a String representation of a UAFMessage representing the request message to process.

channelBindings, containing a String representation of a JSON dictionary as defined by the ChannelBinding structure in the FIDO UAF Protocol
Specification [UAFProtocol].

origin, an optional parameter that allows a caller with the org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply an
RFC6454 Origin [RFC6454] string to be used instead of the application's own identity.

This intent must be invoked with startActivityForResult().

6.2.6 UAFIntentType.UAF_OPERATION_RESULT

This intent is returned by the FIDO UAF Client as an argument to onActivityResult(), in response to receiving a UAF_OPERATION intent.

If the resultCode passed to onActivityResult() is RESULT_CANCELLED, this intent will have an extra, errorCode parameter, containing an ErrorCode value
indicating the specific error condition.

If the resultCode passed to onActivityResult() is RESULT_OK, and the errorCode is NO_ERROR, this intent has a message, containing a String
representation of a UAFMessage, being the UAF protocol response message to be delivered to the FIDO Server.

6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

This intent must be delivered to the FIDO UAF Client to indicate the processing status of a FIDO UAF message delivered to the remote server. This is
especially important as a new registration may be considered by the client to be in a pending state until it is communicated that the server accepted it.

6.3 Alternate Android AIDL Service UAF Client Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism to Android Intents. While Android
Intents work at the UI layer, Android AIDL services are performed at a lower level. This can ease integration with relying party apps, since UAF
requests can be fulfilled without interfering with existing relying party app UI and application lifecycle behavior.

The UAF Android AIDL service needs to be defined in the UAF client manifest. This is done using the <service> tag for an Android AIDL service instead
of the <activity> tag in Android Intents. Just as with Android intents, the manifest definition for the AIDL service uses an intent filter (note
org.fidoalliance.aidl.FIDO_OPERATION versus org.fidoalliance.intent.FIDO_OPERATION) to identify itself as a FIDO UAF client to the relying party
app:

Once the relying party app chooses a UAF client from the list discovered by PackageManager.queryIntentServices(), the relying party app and the FIDO
UAF client share the following AIDL interface to service UAF requests:

For consistency, the Intents for the Android AIDL service are the same as defined in the Android Intent specification in the UAF standard. In process(),
the uafRequest parameter is the Intent that would be passed to startActivityForResult(). The uafResponseListener parameter is a listener interface
that receives the result. The following AIDL defines this interface:

In the listener, the uafResponse parameter is the Intent that would be passed to onActivityResult.

6.4 Security Considerations for Android Implementations

This section is non-normative.

Android applications may choose to implement the user-interactive portion of FIDO in at least two ways:

by authoring an Android Activity using Android-native user interface components, or

with an HTML-based experience by loading an Android WebView and injecting the UAF DOM APIs with addJavaScriptInterface().

An application that chooses to inject the UAF interface into a WebView must follow all appropriate security considerations that apply to usage of the
DOM APIs, and those that apply to user agent implementers.

In particular, the content of a WebView into which an API will be injected must be loaded only from trusted local content or over a secure channel as
specified in Transport Security Requirements and must not contain insecure mixed-content.

Applications should not declare the ACT_AS_WEB_BROWSER permission unless they need to act as the user's agent for an un-predetermined number of third
party applications. Where an Android application has an explicit relationship with a relying party application(s), the preferred method of access control is
for those applications to list the Android application's identity as a trusted facet. See the UAF Protocol Specification [UAFProtocol] for more information
on application and facet identifiers.

To protect against a malicious application registering itself as a FIDO UAF Client, relying party applications can obtain the identity of the responding
application, and utilize it in risk management decisions around the authentication or transaction events.

For example, a relying party might maintain a list of application identities known to belong to malware and refuse to accept operations completed with
such clients, or a list of application identities of known-good clients that receive preferred risk-scoring.

Relying party applications running on Android versions prior to Android 5 must make sure that a FIDO UAF Client has the "uses-permission" for
org.fidoalliance.uaf.permissions.FIDO_CLIENT. Relying party applications running on Android 5 should not implement this check.

EXAMPLE 4

<service android:name="foo" >
<intent-filter>
<action android:name="org.fidoalliance.aidl.FIDO_OPERATION" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="application/fido.uaf_client+json" />
</intent-filter>
</service>

EXAMPLE 5

package org.fidoalliance.aidl

oneway interface IUAFOperation
{
 void process(in Intent uafRequest, in IUAFResponseListener uafResponseListener);
}

NOTE

Android AIDL services use Binder.getCallingUid() instead of Activity.getCallingActivity() with Android Intents to identify the caller and
obtain FacetID information.

EXAMPLE 6

package org.fidoalliance.aidl

interface IUAFResponseListener
{
 void onResult(in Intent uafResponse);
}

NOTE

Relying party applications should implement the check on Android prior to 5 by using the package manager to verify that the FIDO Client indeed
declared the org.fidoalliance.uaf.permissions.FIDO_CLIENT permission (see example below). Relying party applications should not use a
"uses-permission" for FIDO_CLIENT.

Relying party applications which use the AIDL service implementation of the UAF Client Intent API must use an explicit intent to bind to the AIDL
service. Failing to do so may result in binding to an unexpected and possibly malicious service, because intent filter resolution depends on application
installation order and intent filter priority. Android 5.0 and later will throw a SecurityException if an implicit intent is used, but earlier versions do not
enforce this behavior.

7. iOS Custom URL API

This section is normative.

This section describes how an iOS relying party application can locate and communicate with a conforming FIDO UAF Client installed on the host
device.

7.1 iOS-specific Definitions

7.1.1 X-Callback-URL Transport

When the relying party application communicates with the FIDO UAF Client, it sends a URL with the standard x-callback-url format (see x-callback-
url.com):

FidoUAFClient1 is the iOS custom URL scheme used by FIDO UAF Clients. As specified in the x-callback-url standard, version information for
the transport layer is encoded in the URL scheme itself (in this case, FidoUAFClient1). This is so other applications can check for support for the
1.0 version by using the canOpenURL call.

[UAFxRequestType] is the type that should be used for request operations, which are described later in this document.

[RelyingPartyURL] is the URL that the relying party app has registered in order to receive the response. According to the x-callback-url
standard, this is defined using the x-success parameter.

[UAFxResponseType] is the type that should be used for response operations, which are described later in this document.

[SecretKey] is a base64url-encoded, without padding, random key generated for each request by the calling application.

The response from the FIDO UAF Client will be encrypted with this key in order to prevent rogue applications from obtaining information by
spoofing the return URL.

[STATE] is data that can be used to match the request with the response.

Finally [Base64URLEncodedJSON] contains the message to be sent to the FIDO UAF Client.

Items are stored in JSON format and then base64url-encoded without padding.

For FIDO UAF Clients, the custom URL scheme handler entrypoint is the openURL() function:

Objective-C

SWIFT

EXAMPLE 7

boolean checkFIDOClientPermission(String packageName)
 throws NameNotFoundException {
 for (String requestedPermission :
 getPackageManager().getPackageInfo(packageName,
 PackageManager.GET_PERMISSIONS).requestedPermissions) {
 if (requestedPermission.matches(
 "org.fidoalliance.uaf.permissions.FIDO_CLIENT"))
 return true;
 }
 return false;
}

NOTE

Because of sandboxing and no true multitasking support, the iOS operating system offers very limited ways to do interprocess communication
(IPC).

Any IPC solution for a FIDO UAF Client must be able to:

1. Identify the calling app in order to provide FacetID approval.

2. Allow transition to another app without user intervention

Currently the only IPC method on iOS that satisfies both of these requirements is custom URL handlers.

Custom URL handlers use the iOS operating system to handle URL requests from the sender, launch the receiving app, and then pass the
request to the receiving app for processing. By enabling custom URL handlers for two different applications, it is possible to achieve bidirectional
IPC between them--one custom URL handler to send data from app A to app B and another custom URL handler to send data from app B to app
A.

Because iOS has no true multitasking, there must be an app transition to process each request and response. Too many app transitions can
negatively affect the user experience, so relying party applications must carefully choose when it is necessary to query the FIDO UAF Client.

EXAMPLE 8

FidoUAFClient1://x-callback-url/[UAFxRequestType]?x-success=[RelyingPartyURL]://x-callback-url/
 [UAFxResponseType]&
 key=[SecretKey]&
 state=[STATE]&
 json=[Base64URLEncodedJSON]

EXAMPLE 9

(BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(NSString *)sourceApplication annotation:(id)annotation

EXAMPLE 10

func application(_ application: UIApplication, open url: URL, sourceApplication: String?, annotation: Any) -> Bool {
 ...

http://x-callback-url.com

Here, the URL above is received via the url parameter. For security considerations, the sourceApplication parameter contains the iOS bundle ID of the
relying party application. This bundle ID must be used to verify the application FacetID.

Conversely, when the FIDO UAF Client responds to the request, it sends the following URL back in standard x-callback-url format:

The parameters in the response are similar to those of the request, except that the [Base64URLEncodedEncryptedJSON] parameter is encrypted with the
public key before being base64url-encoded without padding. [STATE] is the same STATE as was sent in the request--it is echoed back to the sender to
verify the matched response.

In the relying party application's openURL() handler, the url parameter will be the URL listed above and the sourceApplication parameter will be the iOS
bundle ID for the FIDO client application.

7.1.2 Secret Key Generation

A new secret encryption key must be generated by the calling application every time it sends a request to FIDO UAF Client. The FIDO UAF Client must
then use this key to encrypt the response message before responding to the caller.

JSON Web Encryption (JWE), JSON Serialization (JWE Section 7.2) format must be used to represent the encrypted response message.

The encryption algorithm is that specified in "A128CBC-HS256" where the JWE "Key Management Mode" employed is "Direct Encryption" and the JWE
"Content Encryption Key (CEK)" is the secret key generated by the calling application and passed to the FIDO UAF Client in the key parameter of the
request.

7.1.3 Origin

iOS applications requesting services from the FIDO Client can do so under their own identity, or they can act as the user's agent by explicitly declaring
an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client to
determine the caller's identity as "ios:bundle-id". The FIDO UAF Client will then compare this with the list of authorized application facets for the target
AppID and proceed if it is listed as trusted.

See the UAF Protocol Specification [UAFProtocol] for more information on application and facet identifiers.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when implementing
a full web browser) it may set origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The application must satisfy
the necessary conditions described in Transport Security Requirements for authenticating the remote server before setting origin.

7.1.4 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an iOS
application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is Map<String,String> with the keys as defined for the ChannelBinding structure in the FIDO UAF Protocol
Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same channel
the legitimate client is using and that messages have not been forwarded through a malicious party. UAF defines support for the tls-unique and tls-
server-end-point bindings from [RFC5929], as well as server certificate and ChannelID [ChannelID] bindings. The client should supply all channel
binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.

7.1.5 UAFxType

This value describes the type of operation for the x-callback-url operations implementing the iOS API.

WebIDL

enum UAFxType {
 "DISCOVER",
 "DISCOVER_RESULT",
 "CHECK_POLICY",
 "CHECK_POLICY_RESULT",
 "UAF_OPERATION",
 "UAF_OPERATION_RESULT",
 "UAF_OPERATION_COMPLETION_STATUS"
};

Enumeration description

DISCOVER Discovery

DISCOVER_RESULT Discovery results

CHECK_POLICY Perform a no-op check if a message could be processed.

CHECK_POLICY_RESULT Check Policy results.

}

EXAMPLE 11

[RelyingPartyURL]://x-callback-url/
 [UAFxResponseType]?
 state=[STATE]&
 json=[Base64URLEncodedJWE]

EXAMPLE 12

{
 "unprotected": {"alg": "dir", "enc": "A128CBC-HS256"},
 "iv": "...",
 "ciphertext": "...",
 "tag": "..."
}

http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#section-7.2
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#appendix-B

UAF_OPERATION The UAF message operation type (for example Registration).
UAF_OPERATION_RESULT UAF Operation results.

UAF_OPERATION_COMPLETION_STATUS
Inform the FIDO UAF Client of the completion status of a UAF operation (such as
Registration.

7.2 JSON Values

The specifics of the UAFxType operation are carried by various JSON values encoded in the json x-callback-url parameter.

JSON value Type Description

discoveryData String DiscoveryData JSON dictionary.

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFxType.

origin String An RFC6454 Web Origin [RFC6454] string for the request.

channelBindings String The channel bindings JSON dictionary for the operation.

responseCode short The uafResult field of a ServerResponse.

The following table shows what JSON values are expected, depending on the value of the UAFxType x-callback-url operation:

UAFxType operation discoveryData errorCode message origin channelBindings responseCode

"DISCOVER"

"DISCOVER_RESULT" optional required

"CHECK_POLICY" required optional

"CHECK_POLICY_RESULT" required

"UAF_OPERATION" required optional required

"UAF_OPERATION_RESULT" required optional

"UAF_OPERATION_COMPLETION_STATUS" required required

7.2.1 DISCOVER

This operation invokes the FIDO UAF Client to discover the available authenticators and capabilities. The FIDO UAF Client generally will not show a
user interface associated with the handling of this operation, but will simply return the resulting JSON structure.

The calling application cannot depend on this however, as the client may show a user interface for privacy purposes, allowing the user to choose
whether and which authenticators to disclose to the calling application.

7.2.2 DISCOVER_RESULT

An operation with this type is returned by the FIDO UAF Client in response to receiving an x-callback-url operation of type DISCOVER.

If x-callback-url JSON value errorCode is NO_ERROR, this x-callback-url operation has a JSON value, discoveryData, containing a String
representation of a DiscoveryData JSON dictionary listing the available authenticators and their capabilities.

7.2.3 CHECK_POLICY

This operation invokes the FIDO UAF Client to discover if the client would be able to process the supplied message, without prompting the user.

The related Action handling this operation should not show an interface to the user.

This x-callback-url operation requires the following JSON values:

message, containing a String representation of a UAFMessage representing the request message to test.

origin, an optional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's own
identity.

7.2.4 CHECK_POLICY_RESULT

This operation is returned by the FIDO UAF Client in response to receiving a CHECK_POLICY x-callback-url operation.

The x-callback-url JSON value errorCode containing an ErrorCode value indicating the specific error condition or NO_ERROR if the FIDO Client could
process the message.

7.2.5 UAF_OPERATION

This operation invokes the FIDO UAF Client to process the supplied request message and return a result message ready for delivery to the FIDO UAF
Server. The sender should assume that the FIDO UAF Client will display a UI to the user to handle this x-callback-url operation, e.g. prompting the user
to complete their verification ceremony.

This x-callback-url operation requires the following JSON values:

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no user interface is displayed.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no UI is displayed.

message, containing a String representation of a UAFMessage representing the request message to process.

channelBindings, containing a String representation of a JSON dictionary as defined by the ChannelBinding structure in the UAF Protocol
Specification [UAFProtocol].

origin, an optional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's own
identity.

7.2.6 UAF_OPERATION_RESULT

This x-callback-url operation is returned by the FIDO UAF Client in response to receiving a UAF_OPERATION x-callback-url operation.

The x-callback-url JSON value errorCode containing an ErrorCodevalue indicating the specific error condition.

If x-callback-url JSON value errorCode is NO_ERROR, this x-callback-url operation has a JSON value, message, containing a String representation of a
UAFMessage, being the UAF protocol response message to be delivered to the FIDO Server.

7.2.7 UAF_OPERATION_COMPLETION_STATUS

This x-callback-url operation must be delivered to the FIDO UAF Client to indicate the completion status of a FIDO UAF message delivered to the
remote server. This is especially important as, e.g. a new registration may be considered in a pending status until it is known the server accepted it.

7.3 Implementation Guidelines for iOS Implementations

Each iOS Custom URL based request results in a human-noticeable context switch between the App and FIDO UAF Client and vice versa. This will be
most noticeable when invoking DISCOVER and CHECK_POLICY requests since typically these requests will be invoked automatically, without user's
involvement. Such a context switch impacts the User Experience and therefore it's recommended to avoid making these two requests and integrate
FIDO without using them.

7.4 Security Considerations for iOS Implementations

This section is non-normative.

A security concern with custom URLs under iOS is that any app can register any custom URL. If multiple applications register the same custom URL,
the behavior for handling the URL call in iOS is undefined.

On the FIDO UAF Client side, this issue with custom URL scheme handlers is solved by using the sourceApplication parameter which provides the
bundle ID of the URL originator. This is effective as long as the device has not been jailbroken and as long as Apple has done due diligence vetting
submissions to the app store for malware with faked bundle IDs. The sourceApplication parameter can be matched with the FacetID list to ensure that
the calling app is approved to use the credentials for the relying party.

On the relying party app side, encryption is used to prevent a rogue app from spoofing the relying party app's response URL. The relying party app
generates a random encryption key on every request and sends it to the FIDO client. The FIDO client then encrypts the response to this key. In this
manner, only the relying party app can decrypt the response. Even in the event that malware is able to spoof the relying party app's URL and intercept
the response, it would not be able to decode it.

To protect against potentially malicious applications registering themselves to handle the FIDO UAF Client custom URL scheme, relying party
Applications can obtain the bundle-id of the responding app and utilize it in risk management decisions around the authentication or transaction events.
For example, a relying party might maintain a list of bundle-ids known to belong to malware and refuse to accept operations completed with such
clients, or a list of bundle-ids of known-good clients that receive preferred risk-scoring.

8. Transport Binding Profile

This section is normative.

This section describes general normative security requirements for how a client application transports FIDO UAF protocol messages, gives specific
requirements for Transport Layer Security (TLS), and describes an interoperability profile for using HTTP over TLS [RFC2818] with the FIDO UAF
protocol.

8.1 Transport Security Requirements

This section is non-normative.

The UAF protocol contains no inherent means of identifying a relying party server, or for end-to-end protection of UAF protocol messages. To perform a
secure UAF protocol exchange, the following abstract requirements apply:

1. The client application must securely authenticate the server endpoint as authorized, from that client's viewpoint, to represent the Web origin
[RFC6454] (scheme:host:port tuple) reported to the FIDO UAF Client by the client application. Most typically this will be done by using TLS and
verifying the server's certificate is valid, asserts the correct DNS name, and chains up to a root trusted by the client platform. Clients may also
utilize other means to authenticate a server, such as via a pre-provisioned certificate or key that is distributed with an application, or alternative
network authentication protocols such as Kerberos [RFC4120].

2. The transport mechanism for UAF protocol messages must provide confidentiality for the message, to prevent disclosure of their contents to
unauthorized third parties. These protections should be cryptographically bound to proof of the server's identity as described above.

3. The transport mechanism for UAF protocol messages must protect the integrity of the message from tampering by unauthorized third parties.
These protections should be cryptographically bound to proof of the server's identity in as described above.

8.2 TLS Security Requirements

This section is non-normative.

If using HTTP over TLS ([RFC2246] [RFC4346], [RFC5246] or [TLS13draft02]) to transport an UAF protocol exchange, the following specific
requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any other error level with the TLS connection, the HTTP client must terminate the
connection without prompting the user. For example, this includes any errors found in certificate validity checking that HTTP clients employ, such
as via TLS server identity checking [RFC6125], Certificate Revocation Lists (CRLs) [RFC5280], or via the Online Certificate Status Protocol
(OCSP) [RFC2560].

2. Whenever comparisons are made between the presented TLS server identity (as presented during the TLS handshake, typically within the server
certificate) and the intended source TLS server identity (e.g., as entered by a user, or embedded in a link), [RFC6125] server identity checking
must be employed. The client must terminate the connection without prompting the user upon any error condition.

3. The TLS server certificate must either be provisioned explicitly out-of-band (e.g. packaged with an app as a "pinned certificate") or be trusted by
chaining to a root included in the certificate store of the operating system or a major browser by virtue of being currently in compliance with their
root store program requirements. The client must terminate the connection without user recourse if there are any error conditions when building
the chain of trust.

4. The "anon" and "null" crypto suites are not allowed and insecure cryptographic algorithms in TLS (e.g. MD4, RC4, SHA1) should be avoided (see
NIST SP800-131A [SP800-131A]).

5. The client and server should use the latest practicable TLS version.

6. The client should supply, and the server should verify whatever practicable channel binding information is available, including a ChannelID
[ChannelID] public key, the tls-unique and tls-server-end-point bindings [RFC5929], and TLS server certificate binding [UAFProtocol]. This
information provides protection against certain classes of network attackers and the forwarding of protocol messages, and a server may reject a
message that lacks or has channel binding data that does not verify correctly.

8.3 HTTPS Transport Interoperability Profile

This section is normative.

Conforming applications may support this profile.

Complex and highly-optimized applications utilizing UAF will often transport UAF protocol messages in-line with other application protocol messages.
The profile defined here for transporting UAF protocol messages over HTTPS is intended to:

Provide an interoperability profile to enable easier composition of client-side application libraries and server-side implementations for FIDO UAF-
enabled products from different vendors.

Provide detailed illustration of specific necessary security properties for the transport layer and HTTP interfaces, especially as they may interact
with a browser-hosted application.

This profile is also utilized in the examples that constitute the appendices of this document. This profile is optional to implement. RFC 2119 key
words are used in this section to indicate necessary security and other properties for implementations that intend to use this profile to interoperate
[RFC2119].

8.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request messages as part of a response body containing other application content, e.g. in a
script block as such:

However, request messages have a limited lifetime, and an installed application cannot be delivered with a request, so client applications generally
need the ability to retrieve a fresh request.

When sending a request message over HTTPS with XMLHttpRequest [XHR] or another HTTP API:

1. The URI of the server endpoint, and how it is communicated to the client, is application-specific.

2. The client must set the HTTP method to POST. [RFC7231]

3. The client should set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-8”. [RFC7231]

4. The client should include “application/fido+uaf” as a media type in the HTTP “Accept” header [RFC7231]. Conforming servers must accept
“application/fido+uaf” as media type.

5. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific manner, their
authorization to perform a request.

6. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the GetUAFRequest dictionary.

7. The server's response should set the HTTP “Content-Type” to “application/fido+uaf; charset=utf-8”

8. The client should decode the response byte string as UTF-8 with error handling. [HTML5]

9. The decoded body of the response must consist entirely of a JSON structure described by the ReturnUAFRequest interface.

8.3.2 Operation enum

Describes the operation type of a FIDO UAF message or request for a message.

WebIDL

enum Operation {
 "Reg",
 "Auth",
 "Dereg"
};

Enumeration description

Reg Registration

Auth
Authentication or Transaction
Confirmation

Dereg Deregistration

8.3.3 GetUAFRequest dictionary

WebIDL

dictionary GetUAFRequest {
 Operation op;

NOTE

Certain FIDO UAF operations, in particular, transaction confirmation, will always require an application-specific implementation. This
interoperability profile only provides a skeleton framework suitable for replacing username/password authentication.

EXAMPLE 13

...

<script type=”application/json”>
{
“initialRequest”: {
// initial request message here
},

“lifetimeMillis”: 60000; // hint: this initial request is valid for 60 seconds
}
</script>

...

 DOMString previousRequest;
 DOMString context;
};

8.3.3.1 Dictionary GetUAFRequest Members

op of type Operation

The type of the UAF request message desired. Allowable string values are defined by the Operation enum. This field is optional but must be
set if the operation is not known to the server through other context, e.g. an operation-specific URL endpoint.

previousRequest of type DOMString
If the application is requesting a new UAF request message because a previous one has expired, this optional key can include the previous
one to assist the server in locating any state that should be re-associated with a new request message, should one be issued.

context of type DOMString
Any additional contextual information that may be useful or necessary for the server to generate the correct request message. This key is
optional and the format and nature of this data is application-specific.

8.3.4 ReturnUAFRequest dictionary

WebIDL

dictionary ReturnUAFRequest {
 required unsigned long statusCode;
 DOMString uafRequest;
 Operation op;
 long lifetimeMillis;
};

8.3.4.1 Dictionary ReturnUAFRequest Members

statusCode of type required unsigned long
The UAF Status Code for the operation (see section 3.1 UAF Status Codes).

uafRequest of type DOMString
The new UAF Request Message, optional, if the server decided to issue one.

op of type Operation

An optional hint to the client of the operation type of the message, useful if the server might return a different type than was requested. For
example, a server might return a deregister message if an authentication request referred to a key it no longer considers valid. Allowable
string values are defined by the Operation enum.

lifetimeMillis of type long
If the server returned a uafRequest, this is an optional hint informing the client application of the lifetime of the message in milliseconds.

8.3.5 SendUAFResponse dictionary

WebIDL

dictionary SendUAFResponse {
 required DOMString uafResponse;
 DOMString context;
};

8.3.5.1 Dictionary SendUAFResponse Members

uafResponse of type required DOMString
The UAF Response Message. It must be set to UAFMessage.uafProtocolMessage returned by FIDO UAF Client.

context of type DOMString
Any additional contextual information that may be useful or necessary for the server to process the response message. This key is optional
and the format and nature of this data is application-specific.

8.3.6 Delivering a UAF Response

Although it is not the only pattern possible, an asynchronous HTTP request is a useful way of delivering a UAF Response to the remote server for either
web applications or standalone applications.

When delivering a response message over HTTPS with XMLHttpRequest [XHR] or another API:

1. The URI of the server endpoint and how it is communicated to the client is application-specific.

2. The client must set the HTTP method to POST. [RFC7231]

3. The client must set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-8” . [RFC7231]

4. The client should include “application/fido+uaf” as a media type in the HTTP “Accept” header. [RFC7231]

5. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific manner, their
authorization to perform an operation.

6. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the SendUAFResponse.

7. The server's response should set the “Content-Type” to “application/fido+uaf; charset=utf-8” and the body of the response must consist
entirely of a JSON structure described by the ServerResponse interface.

8.3.7 ServerResponse Interface

The ServerResponse interface represents the completion status and additional application-specific additional data that results from successful
processing of a Register, Authenticate, or Transaction Confirmation operation. This message is not formally part of the UAF protocol, but the
statusCode should be posted to the FIDO UAF Client, for housekeeping, using the notifyUAFResult() operation.

WebIDL

interface ServerResponse {
 readonly attribute int statusCode;
 [Optional]

 readonly attribute DOMString description;
 [Optional]
 readonly attribute Token[] additionalTokens;
 [Optional]
 readonly attribute DOMString location;
 [Optional]
 readonly attribute DOMString postData;
 [Optional]
 readonly attribute DOMString newUAFRequest;
};

8.3.7.1 Attributes

statusCode of type int, readonly
The FIDO UAF response status code. Note that this status code describes the result of processing the tunneled UAF operation, not the status
code for the outer HTTP transport.

description of type DOMString, readonly
A detailed message describing the status code or providing additional information to the user.

additionalTokens of type array of Token, readonly
This key contains new authentication or authorization token(s) for the client that are not natively handled by the HTTP transport. Tokens
should be processed prior to processing of location.

location of type DOMString, readonly
If present, indicates to the client web application that it should navigate the Document context to the URI contained on this field after
processing any tokens.

postData of type DOMString, readonly
If present in combination with location, indicates that the client should POST the contents to the specified location after processing any
tokens.

newUAFRequest of type DOMString, readonly
The server may use this to return a new UAF protocol message. This might be used to supply a fresh request to retry an operation in
response to a transient failure, to request additional confirmation for a transaction, or to send a deregistration message in response to a
permanent failure.

8.3.8 Token interface

WebIDL

interface Token {
 readonly attribute TokenType type;
 readonly attribute DOMString value;
};

8.3.8.1 Attributes

type of type TokenType, readonly
The type of the additional authentication / authorization token.

value of type DOMString, readonly
The string value of the additional authentication / authorization token.

8.3.9 TokenType enum

WebIDL

enum TokenType {
 "HTTP_COOKIE",
 "OAUTH",
 "OAUTH2",
 "SAML1_1",
 "SAML2",
 "JWT",
 "OPENID_CONNECT"
};

Enumeration description

HTTP_COOKIE

If the user agent is a standard web browser or other HTTP native client with a cookie store, this TokenType should not be used.
Cookies should be set directly with the Set-Cookie HTTP header for processing by the user agent. For non-HTTP or non-browser
contexts this indicates a token intended to be set as an HTTP cookie. [RFC6265] For example, a native VPN client that
authenticates with UAF might use this TokenType to automatically add a cookie to the browser cookie jar.

OAUTH Indicates that the token is of type OAUTH. [RFC5849].

OAUTH2 Indicates that the token is of type OAUTH2. [RFC6749].

SAML1_1 Indicates that the token is of type SAML 1.1. [SAML11].

SAML2 Indicates that the token is of type SAML 2.0. [SAML2-CORE]

JWT Indicates that the token is of type JSON Web Token (JWT). [JWT]

OPENID_CONNECT Indicates that the token is an OpenID Connect “id_token”. [OpenIDConnect]

8.3.10 Security Considerations

This section is non-normative.

NOTE

The UAF Server is not responsible for creating additional tokens returned as part of a UAF response. Such tokens exist to provide a means for
the relying party application to update the authentication/authorization state of the client in response to a successful UAF operation. For example,
these fields could be used to allow UAF to serve as the initial authentication leg of a federation protocol, but the scope and details of any such
federation are outside of the scope of UAF.

It is important that the client set, and the server require, the method be POST and the “Content-Type” HTTP header be the correct values. Because the
response body is valid ECMAScript, to protect against unauthorized cross-origin access, a server must not respond to the type of request that can be
generated by a script tag, e.g. <script src=”https://example.com/fido/uaf/getRequest”>. The request a user agent generates with this kind of
embedding cannot set custom headers.

Likewise, by requiring a custom “Content-Type” header, cross-origin requests cannot be made with an XMLHttpRequest [XHR] without triggering a
CORS preflight access check. [CORS]

As FIDO UAF messages are only valid when used same-origin, servers should not supply an “Access-Control-Allow-Origin” [CORS] header with
responses that would allow them to be read by non-same-origin content.

To protect from some classes of cross-origin, browser-based, distributed denial-of-service attacks, request endpoints should ignore, without performing
additional processing, all requests with an “Access-Control-Request-Method” [CORS] HTTP header or an incorrect “Content-Type” HTTP header.

If a server chooses to respond to requests made with the GET method and without the custom “Content-Type” header, it should apply a prefix string
such as “while(1);” or “&&&BEGIN_UAF_RESPONSE&&&” to the body of all replies and so prevent their being read through cross-origin <script> tag
embedding. Legitimate same-origin callers will need to (and alone be able to) strip this prefix string before parsing the JSON content.

A. References

A.1 Normative references

[AndroidAppManifest]
Android App Manifest. Work in Progress. URL: http://developer.android.com/guide/topics/manifest/manifest-intro.html

[ChannelID]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL: http://tools.ietf.org/html/draft-balfanz-tls-channelid

[DOM]
Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL: https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-
20180220/fido-metadata-statement-v1.2-id-20180220.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-registry-v1.2-id-20180220.html

[HTML5]
I. Hickson; R.Berjon; S. Faulkner; T. Leithead; E. D. Navara; E. O'Connor; S. Pfeiffer. HTML5: A vocabulary and associated APIs for HTML and
XHTML. 28 October 2014. W3C Recommendation. URL: http://www.w3.org/TR/html5/

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. RFC. URL: https://tools.ietf.org/html/rfc7519

[OpenIDConnect]
OpenID Connect. Work in Progress. URL: http://openid.net/connect/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C Recommendation. URL:
https://www.w3.org/TR/PNG/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[RFC2818]
E. Rescorla. HTTP Over TLS. May 2000. Informational. URL: https://tools.ietf.org/html/rfc2818

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5849]
E. Hammer-Lahav. The OAuth 1.0 Protocol (RFC 5849). April 2010. URL: http://www.ietf.org/rfc/rfc5849.txt

[RFC5929]
J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL: http://www.ietf.org/rfc/rfc5929.txt

[RFC6125]
P. Saint-Andre; J. Hodges. Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure
Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125). March 2011. URL: http://www.ietf.org/rfc/rfc6125.txt

[RFC6265]
A. Barth. HTTP State Management Mechanism. April 2011. Proposed Standard. URL: https://tools.ietf.org/html/rfc6265

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[RFC6749]
D. Hardt, Ed.. The OAuth 2.0 Authorization Framework (RFC 6749). October 2012. URL: http://www.ietf.org/rfc/rfc6749.txt

[RFC7230]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. June 2014. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7230

[RFC7231]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. June 2014. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7231

[SAML11]
E. Maler; P. Mishra; R. Philpott. The Security Assertion Markup Language (SAML) v1.1. October 2003. URL: https://www.oasis-
open.org/standards#samlv1.1

[SAML2-CORE]
Scott Cantor; John Kemp; Rob Philpott; Eve Maler. Assertions and Protocols for SAML V2.0 15 March 2005. URL: http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL: https://fidoalliance.org/specs/fido-
uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/'

A.2 Informative references

[ANDROID]
The Android™ Operating System. URL: http://developer.android.com/

[Android5Changes]
Android 5.0 Behavior Changes. Work in progress. URL: http://developer.android.com/about/versions/android-5.0-changes.html

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://openid.net/connect/
http://openid.net/connect/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
http://heycam.github.io/webidl/'
http://heycam.github.io/webidl/'
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/about/versions/android-5.0-changes.html
http://developer.android.com/about/versions/android-5.0-changes.html

[CORS]
Anne van Kesteren. Cross-Origin Resource Sharing. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/cors/

[RFC2045]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. November 1996. Draft
Standard. URL: https://tools.ietf.org/html/rfc2045

[RFC2246]
T. Dierks; E. Rescorla. The TLS Protocol Version 1.0. January 1999. URL: http://www.ietf.org/rfc/rfc2246.txt

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. June
1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560

[RFC4120]
C. Neuman; T. Yu; S. Hartman; K. Raeburn. The Kerberos Network Authentication Protocol (V5) (RFC 4120). July 2005. URL:
http://www.ietf.org/rfc/rfc4120.txt

[RFC4346]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. April 2006. URL: http://www.ietf.org/rfc/rfc4346.txt

[RFC5246]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol. August 2008. URL: http://www.ietf.org/rfc/rfc5246.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[SOP]
Same Origin Policy for JavaScript. January 2014. URL: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript

[SP800-131A]
E. Barker; A. Roginsky. NIST Special Publication 800-131A: Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths. January 2011. URL: http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

[TLS13draft02]
T. Dierks; E. Rescorla. The Transport Layer Security (TLD) Protocol Version 1.3 (draft 02). July 2014. URL: https://tools.ietf.org/html/draft-ietf-tls-
tls13-02

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

[XHR]
Anne van Kesteren. XMLHttpRequest Standard. Living Standard. URL: https://xhr.spec.whatwg.org/

[webmessaging]
Ian Hickson. HTML5 Web Messaging. 19 May 2015. W3C Recommendation. URL: https://www.w3.org/TR/webmessaging/

https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/webmessaging/
https://www.w3.org/TR/webmessaging/

FIDO UAF Authenticator-Specific Module API

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-20171128.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Roni Sasson, Discretix, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific
Module (ASM) is a software interface on top of UAF authenticators which gives a standardized way for FIDO UAF Clients to detect and access the
functionality of UAF authenticators and hides internal communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs, defines the UAF ASM API and explains how FIDO UAF Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO FIDO UAF Client vendors.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification solely for
the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is
available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Code Example format

3. ASM Requests and Responses
3.1 Request enum

3.2 StatusCode Interface
3.2.1 Constants

3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

3.3 ASMRequest Dictionary
3.3.1 Dictionary ASMRequest Members

3.4 ASMResponse Dictionary
3.4.1 Dictionary ASMResponse Members

3.5 GetInfo Request
3.5.1 GetInfoOut Dictionary

3.5.1.1 Dictionary GetInfoOut Members

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-asm-api-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.5.2 AuthenticatorInfo Dictionary
3.5.2.1 Dictionary AuthenticatorInfo Members

3.6 Register Request
3.6.1 RegisterIn Object

3.6.1.1 Dictionary RegisterIn Members

3.6.2 RegisterOut Object
3.6.2.1 Dictionary RegisterOut Members

3.6.3 Detailed Description for Processing the Register Request

3.7 Authenticate Request
3.7.1 AuthenticateIn Object

3.7.1.1 Dictionary AuthenticateIn Members

3.7.2 Transaction Object
3.7.2.1 Dictionary Transaction Members

3.7.3 AuthenticateOut Object
3.7.3.1 Dictionary AuthenticateOut Members

3.7.4 Detailed Description for Processing the Authenticate Request

3.8 Deregister Request
3.8.1 DeregisterIn Object

3.8.1.1 Dictionary DeregisterIn Members

3.8.2 Detailed Description for Processing the Deregister Request

3.9 GetRegistrations Request
3.9.1 GetRegistrationsOut Object

3.9.1.1 Dictionary GetRegistrationsOut Members

3.9.2 AppRegistration Object
3.9.2.1 Dictionary AppRegistration Members

3.9.3 Detailed Description for Processing the GetRegistrations Request

3.10 OpenSettings Request

4. Using ASM API

5. ASM APIs for various platforms
5.1 Android ASM Intent API

5.1.1 Discovering ASMs

5.1.2 Alternate Android AIDL Service ASM Implementation

5.2 Java ASM API for Android

5.3 C++ ASM API for iOS

5.4 Windows ASM API

6. CTAP2 Interface
6.1 authenticatorMakeCredential

6.1.1 Processing rules for authenticatorMakeCredential

6.2 authenticatorGetAssertion
6.2.1 Processing rules for authenticatorGetAssertion

6.3 authenticatorGetNextAssertion

6.4 authenticatorCancel

6.5 authenticatorReset

6.6 authenticatorGetInfo
6.6.1 Processing rules for authenticatorGetInfo

7. Security and Privacy Guidelines
7.1 KHAccessToken

7.2 Access Control for ASM APIs

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the WebIDL
definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you
are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means to

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document are to
be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc.). The UAF Authenticator-Specific
module (ASM) is a software interface on top of UAF authenticators which gives a standardized way for FIDO UAF Clients to detect and access the
functionality of UAF authenticators, and hides internal communication complexity from clients.

The ASM is a platform-specific software component offering an API to FIDO UAF Clients, enabling them to discover and communicate with one or more
available authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and FIDO UAF Client vendors.

The FIDO UAF protocol and its various operations is described in the FIDO UAF Protocol Specification [UAFProtocol]. The following simplified
architecture diagram illustrates the interactions and actors this document is concerned with:

Fig. 1 UAF ASM API Architecture

2.1 Code Example format

ASM requests and responses are presented in WebIDL format.

3. ASM Requests and Responses

This section is normative.

The ASM API is defined in terms of JSON-formatted [ECMA-404] request and reply messages. In order to send a request to an ASM, a FIDO UAF
Client creates an appropriate object (e.g., in ECMAscript), "stringifies" it (also known as serialization) into a JSON-formated string, and sends it to the
ASM. The ASM de-serializes the JSON-formatted string, processes the request, constructs a response, stringifies it, returning it as a JSON-formatted
string.

Authenticator implementers may create custom authenticator command interfaces other than the one defined in [UAFAuthnrCommands]. Such
implementations are not required to implement the exact message-specific processing steps described in this section. However,

1. the command interfaces must present the ASM with external behavior equivalent to that described below in order for the ASM to properly respond
to the client request messages (e.g. returning appropriate UAF status codes for specific conditions).

2. all authenticator implementations must support an assertion scheme as defined [UAFRegistry] and must return the related objects, i.e.

ensure those fields are present.

NOTE

Platform vendors might choose to not expose the ASM API defined in this document to applications. They might instead choose to expose ASM
functionality through some other API (such as, for example, the Android KeyStore API, or iOS KeyChain API). In these cases it's important to
make sure that the underlying ASM communicates with the FIDO UAF authenticator in a manner defined in this document.

NOTE

The ASM request processing rules in this document explicitly assume that the underlying authenticator implements the "UAFV1TLV" assertion
scheme (e.g. references to TLVs and tags) as described in [UAFProtocol]. If an authenticator supports a different assertion scheme then the
corresponding processing rules must be replaced with appropriate assertion scheme-specific rules.

TAG_UAFV1_REG_ASSERTION and TAG_UAFV1_AUTH_ASSERTION as defined in [UAFAuthnrCommands].

3.1 Request enum

WebIDL

enum Request {
 "GetInfo",
 "Register",
 "Authenticate",
 "Deregister",
 "GetRegistrations",
 "OpenSettings"
};

Enumeration description

GetInfo GetInfo

Register Register

Authenticate Authenticate

Deregister Deregister

GetRegistrations GetRegistrations

OpenSettings OpenSettings

3.2 StatusCode Interface

If the ASM needs to return an error received from the authenticator, it shall map the status code received from the authenticator to the appropriate ASM
status code as specified here.

If the ASM doesn't understand the authenticator's status code, it shall treat it as UAF_CMD_STATUS_ERR_UNKNOWN and map it to UAF_ASM_STATUS_ERROR if it
cannot be handled otherwise.

If the caller of the ASM interface (i.e. the FIDO Client) doesn't understand a status code returned by the ASM, it shall treat it as UAF_ASM_STATUS_ERROR.
This might occur when new error codes are introduced.

WebIDL

interface StatusCode {
 const short UAF_ASM_STATUS_OK = 0x00;
 const short UAF_ASM_STATUS_ERROR = 0x01;
 const short UAF_ASM_STATUS_ACCESS_DENIED = 0x02;
 const short UAF_ASM_STATUS_USER_CANCELLED = 0x03;
 const short UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT = 0x04;
 const short UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY = 0x09;
 const short UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED = 0x0b;
 const short UAF_ASM_STATUS_USER_NOT_RESPONSIVE = 0x0e;
 const short UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES = 0x0f;
 const short UAF_ASM_STATUS_USER_LOCKOUT = 0x10;
 const short UAF_ASM_STATUS_USER_NOT_ENROLLED = 0x11;
};

3.2.1 Constants

UAF_ASM_STATUS_OK of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR of type short
An unknown error has been encountered during the processing.

UAF_ASM_STATUS_ACCESS_DENIED of type short
Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED of type short
Indicates that user explicitly canceled the request.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY of type short
Indicates that the UAuth key disappeared from the authenticator and canot be restored.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED of type short
Indicates that the authenticator is no longer connected to the ASM.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES of type short
Insufficient resources in the authenticator to perform the requested task.

UAF_ASM_STATUS_USER_LOCKOUT of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an action to change that. Typically the
user would have to enter an alternative password (formally: undergo some other alternative user verification method) to re-enable the use of
the main user verification method.

UAF_ASM_STATUS_USER_NOT_ENROLLED of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot automatically trigger user enrollment.

NOTE

Any method the user can use to (re-) enable the main user verification method is considered an alternative user verification method
and must be properly declared as such. For example, if the user can enter an alternative password to re-enable the use of fingerprints
or to add additional fingers, the authenticator obviously supports fingerprint or password based user verification.

3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

Authenticators are returning a status code in their responses to the ASM. The ASM needs to act on those responses and also map the status code
returned by the authenticator to an ASM status code.

The mapping of authenticator status codes to ASM status codes is specified here:

Authenticator Status Code ASM Status Code Comment

UAF_CMD_STATUS_OK UAF_ASM_STATUS_OK Pass-through success status.

UAF_CMD_STATUS_ERR_UNKNOWN UAF_ASM_STATUS_ERROR Pass-through unspecific error status.

UAF_CMD_STATUS_ACCESS_DENIED UAF_ASM_STATUS_ACCESS_DENIED Pass-through status code.

UAF_CMD_STATUS_USER_NOT_ENROLLED
UAF_ASM_STATUS_USER_NOT_ENROLLED (or
UAF_ASM_STATUS_ACCESS_DENIED in some situations)

According to [UAFAuthnrCommands], this
might occur at the Sign command or at the
Register command if the authenticator cannot
automatically trigger user enrollment. The
mapping depends on the command as follows.

In the case of "Register" command, the error is
mapped to
UAF_ASM_STATUS_USER_NOT_ENROLLED
in order to tell the calling FIDO Client the there
is an authenticator present but the user
enrollment needs to be triggered outside the
authenticator.

In the case of the "Sign" command, the Uauth
key needs to be protected by one of the
authenticator's user verification methods at all
times. So if this error occurs it is considered an
internal error and hence mapped to
UAF_ASM_STATUS_ACCESS_DENIED.

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT
Pass-through status code as it indicates a
problem to be resolved by the entity providing
the transaction text.

UAF_CMD_STATUS_USER_CANCELLED UAF_ASM_STATUS_USER_CANCELLED Map to UAF_ASM_STATUS_USER_CANCELLED

UAF_CMD_STATUS_CMD_NOT_SUPPORTED UAF_ASM_STATUS_OK or UAF_ASM_STATUS_ERROR

If the ASM is able to handle that command on
behalf of the authenticator (e.g. removing the
key handle in the case of Dereg command for a
bound authenticator), the UAF_ASM_STATUS_OK
must be returned. Map the status code
UAF_ASM_STATUS_ERROR otherwise.

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM has
obviously not requested one of the supported
attestation types indicated in the authenticator's
response to the GetInfo command.

UAF_CMD_STATUS_PARAMS_INVALID UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM has
obviously not provided the correct parameters
to the authenticator when sending the
command.

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY

Pass-through status code. It indicates that the
Uauth key disappeared permanently and the
RP App might want to trigger re-registration of
the authenticator.

UAF_STATUS_CMD_TIMEOUT UAF_ASM_STATUS_ERROR
Retry operation and map to
UAF_ASM_STATUS_ERROR if the problem persists.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE UAF_ASM_STATUS_USER_NOT_RESPONSIVE
Pass-through status code. The RP App might
want to retry the operation once the user
attention to the application again.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES Pass-through status code.

UAF_CMD_STATUS_USER_LOCKOUT UAF_ASM_STATUS_USER_LOCKOUT Pass-through status code.

Any other status code UAF_ASM_STATUS_ERROR

Map any unknown error code to
UAF_ASM_STATUS_ERROR. This might happen when
an ASM communicates with an authenticator
implementing a newer UAF specification than
the ASM.

3.3 ASMRequest Dictionary

All ASM requests are represented as ASMRequest objects.

WebIDL

dictionary ASMRequest {
 required Request requestType;
 Version asmVersion;
 unsigned short authenticatorIndex;
 object args;
 Extension[] exts;
};

3.3.1 Dictionary ASMRequest Members

requestType of type required Request
Request type

asmVersion of type Version
ASM message version to be used with this request. For the definition of the Version dictionary see [UAFProtocol]. The asmVersion must be
1.2 (i.e. major version is 1 and minor version is 2) for this version of the specification.

authenticatorIndex of type unsigned short
Refer to the GetInfo request for more details. Field authenticatorIndex must not be set for GetInfo request.

args of type object
Request-specific arguments. If set, this attribute may take one of the following types:

RegisterIn

AuthenticateIn

DeregisterIn

exts of type array of Extension
List of UAF extensions. For the definition of the Extension dictionary see [UAFProtocol].

3.4 ASMResponse Dictionary

All ASM responses are represented as ASMResponse objects.

WebIDL

dictionary ASMResponse {
 required short statusCode;
 object responseData;
 Extension[] exts;
};

3.4.1 Dictionary ASMResponse Members

statusCode of type required short
must contain one of the values defined in the StatusCode interface

responseData of type object
Request-specific response data. This attribute must have one of the following types:

GetInfoOut

RegisterOut

AuthenticateOut

GetRegistrationOut

exts of type array of Extension
List of UAF extensions. For the definition of the Extension dictionary see [UAFProtocol].

3.5 GetInfo Request

Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports

2. Collect information about all of them

3. Assign indices to them (authenticatorIndex)

4. Return the information to the caller

For a GetInfo request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to GetInfo

For a GetInfo response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values

UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

ASMResponse.responseData must be an object of type GetInfoOut. In the case of an error the values of the fields might be empty (e.g. array with no
members).

See section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for details on the mapping of authenticator status codes to ASM status
codes.

3.5.1 GetInfoOut Dictionary

WebIDL

NOTE

Where possible, an authenticatorIndex should be a persistent identifier that uniquely identifies an authenticator over time, even if it is repeatedly
disconnected and reconnected. This avoids possible confusion if the set of available authenticators changes between a GetInfo request and
subsequent ASM requests, and allows a FIDO client to perform caching of information about removable authenticators for a better user
experience.

NOTE

It is up to the ASM to decide whether authenticators which are disconnected temporarily will be reported or not. However, if disconnected
authenticators are reported, the FIDO Client might trigger an operation via the ASM on those. The ASM will have to notify the user to connect the
authenticator and report an appropriate error if the authenticator isn't connected in time.

WebIDL

dictionary GetInfoOut {
 required AuthenticatorInfo[] Authenticators;
};

3.5.1.1 Dictionary GetInfoOut Members

Authenticators of type array of required AuthenticatorInfo
List of authenticators reported by the current ASM. may be empty an empty list.

3.5.2 AuthenticatorInfo Dictionary

WebIDL

dictionary AuthenticatorInfo {
 required unsigned short authenticatorIndex;
 required Version[] asmVersions;
 required boolean isUserEnrolled;
 required boolean hasSettings;
 required AAID aaid;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 required unsigned short[] attestationTypes;
 required unsigned long userVerification;
 required unsigned short keyProtection;
 required unsigned short matcherProtection;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required boolean isRoamingAuthenticator;
 required DOMString[] supportedExtensionIDs;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 DOMString title;
 DOMString description;
 DOMString icon;
};

3.5.2.1 Dictionary AuthenticatorInfo Members

authenticatorIndex of type required unsigned short
Authenticator index. Unique, within the scope of all authenticators reported by the ASM, index referring to an authenticator. This index is used
by the UAF Client to refer to the appropriate authenticator in further requests.

asmVersions of type array of required Version
A list of ASM Versions that this authenticator can be used with. For the definition of the Version dictionary see [UAFProtocol].

isUserEnrolled of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators which don't have user verification technology must always return
true. Bound authenticators which support different profiles per operating system (OS) user must report enrollment status for the current OS
user.

hasSettings of type required boolean
A boolean value indicating whether the authenticator has its own settings. If so, then a FIDO UAF Client can launch these settings by sending
a OpenSettings request.

aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and batch of the authenticator. See [UAFProtocol] for the definition of the
AAID structure.

assertionScheme of type required DOMString
The assertion scheme the authenticator uses for attested data and signatures.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].

authenticationAlgorithm of type required unsigned short
Indicates the authentication algorithm that the authenticator uses. Authentication algorithm identifiers are defined in are defined in
[FIDORegistry] with ALG_ prefix.

attestationTypes of type array of required unsigned short
Indicates attestation types supported by the authenticator. Attestation type TAGs are defined in [UAFRegistry] with TAG_ATTESTATION prefix

userVerification of type required unsigned long
A set of bit flags indicating the user verification method(s) supported by the authenticator. The values are defined by the USER_VERIFY
constants in [FIDORegistry].

keyProtection of type required unsigned short
A set of bit flags indicating the key protections used by the authenticator. The values are defined by the KEY_PROTECTION constants in
[FIDORegistry].

matcherProtection of type required unsigned short
A set of bit flags indicating the matcher protections used by the authenticator. The values are defined by the MATCHER_PROTECTION constants in
[FIDORegistry].

attachmentHint of type required unsigned long
A set of bit flags indicating how the authenticator is currently connected to the system hosting the FIDO UAF Client software. The values are
defined by the ATTACHMENT_HINT constants defined in [FIDORegistry].

NOTE

Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used by
server-supplied policy to guide the user experience, e.g. to prefer a device that is connected and ready for authenticating or confirming
a low-value transaction, rather than one that is more secure but requires more user effort. These values are not reflected in
authenticator metadata and cannot be relied on by the relying party, although some models of authenticator may provide attested
measurements with similar semantics as part of UAF protocol messages.

isSecondFactorOnly of type required boolean
Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs of type array of required DOMString
List of supported UAF extension IDs. may be an empty list.

tcDisplay of type required unsigned short
A set of bit flags indicating the availability and type of the authenticator's transaction confirmation display. The values are defined by the
TRANSACTION_CONFIRMATION_DISPLAY constants in [FIDORegistry].

This value must be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString
Supported transaction content type [FIDOMetadataStatement].

This value must be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction Portable Network Graphic (PNG) type [FIDOMetadataStatement]. For the definition of the
DisplayPNGCharacteristicsDescriptor structure see [FIDOMetadataStatement].

This list must be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero and tcDisplayContentType is
image/png.

title of type DOMString
A human-readable short title for the authenticator. It should be localized for the current locale.

description of type DOMString
Human-readable longer description of what the authenticator represents.

icon of type DOMString
Portable Network Graphic (PNG) format image file representing the icon encoded as a data: url [RFC2397].

3.6 Register Request

Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Register

ASMRequest.asmVersion must be set to the desired version

ASMRequest.authenticatorIndex must be set to the target authenticator index

ASMRequest.args must be set to an object of type RegisterIn

ASMRequest.exts may include some extensions to be processed by the ASM or the by Authenticator.

For a Register response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

UAF_ASM_STATUS_USER_LOCKOUT

UAF_ASM_STATUS_USER_NOT_ENROLLED

ASMResponse.responseData must be an object of type RegisterOut. In the case of an error the values of the fields might be empty (e.g. empty
strings).

3.6.1 RegisterIn Object

WebIDL

NOTE

If the ASM doesn't return a title, the FIDO UAF Client must provide a title to the calling App. See section "Authenticator interface" in
[UAFAppAPIAndTransport].

NOTE

This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from the description specified in the metadata statement for the
authenticator [FIDOMetadataStatement].

If the ASM doesn't return a description, the FIDO UAF Client will provide a description to the calling application. See section
"Authenticator interface" in [UAFAppAPIAndTransport].

NOTE

If the ASM doesn't return an icon, the FIDO UAF Client will provide a default icon to the calling application. See section "Authenticator
interface" in [UAFAppAPIAndTransport].

WebIDL

dictionary RegisterIn {
 required DOMString appID;
 required DOMString username;
 required DOMString finalChallenge;
 required unsigned short attestationType;
};

3.6.1.1 Dictionary RegisterIn Members

appID of type required DOMString
The FIDO server Application Identity.

username of type required DOMString
Human-readable user account name

finalChallenge of type required DOMString
base64url-encoded challenge data [RFC4648]

attestationType of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

WebIDL

dictionary RegisterOut {
 required DOMString assertion;
 required DOMString assertionScheme;
};

3.6.2.1 Dictionary RegisterOut Members

assertion of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionScheme of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].

3.6.3 Detailed Description for Processing the Register Request

Refer to [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then fail with UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If a user is already enrolled with this authenticator (such as biometric enrollment, PIN setup, etc. for example) then the ASM must request that the
authenticator verifies the user.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger unblocking, return
UAF_ASM_STATUS_USER_LOCKOUT.

If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

3. If the user is not enrolled with the authenticator then take the user through the enrollment process.
If neither the ASM nor the Authenticator can trigger the enrollment process, return UAF_ASM_STATUS_USER_NOT_ENROLLED.

If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)

5. Hash the provided RegisterIn.finalChallenge using the authenticator-specific hash function (FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm defined in the AuthenticatorInfo.authenticationAlgorithm field.

6. Create a TAG_UAFV1_REGISTER_CMD structure and pass it to the authenticator
1. Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username, UserVerificationToken, RegisterIn.AppID, RegisterIn.AttestationType

1. Depending on AuthenticatorType some arguments may be optional. Refer to [UAFAuthnrCommands] for more information on
authenticator types and their required arguments.

2. Add the extensions from the ASMRequest.exts dictionary appropriately to the TAG_UAFV1_REGISTER_CMD as TAG_EXTENSION object.

7. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the
authenticator error code to the the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for
details).

8. Parse TAG_UAFV1_REGISTER_CMD_RESP
1. Parse the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_REG_ASSERTION) and extract TAG_KEYID

9. If the authenticator is a bound authenticator
1. Store CallerID, AppID, TAG_KEYHANDLE, TAG_KEYID and CurrentTimestamp in the ASM's database.

NOTE

If the authenticator supports UserVerificationToken (see [UAFAuthnrCommands]), then the ASM must obtain this token in order to later
include it with the Register command.

NOTE

What data an ASM will store at this stage depends on underlying authenticator's architecture. For example some authenticators might
store AppID, KeyHandle, KeyID inside their own secure storage. In this case ASM doesn't have to store these data in its database.

10. Create a RegisterOut object
1. Set RegisterOut.assertionScheme according to AuthenticatorInfo.assertionScheme

2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_REG_ASSERTION) in base64url format and set as RegisterOut.assertion.

3. Return RegisterOut object

3.7 Authenticate Request

Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be
omitted:

ASMRequest.requestType must be set to Authenticate.

ASMRequest.asmVersion must be set to the desired version.

ASMRequest.authenticatorIndex must be set to the target authenticator index.

ASMRequest.args must be set to an object of type AuthenticateIn

ASMRequest.exts may include some extensions to be processed by the ASM or the by Authenticator.

For an Authenticate response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

UAF_ASM_STATUS_USER_LOCKOUT

UAF_ASM_STATUS_USER_NOT_ENROLLED

ASMResponse.responseData must be an object of type AuthenticateOut. In the case of an error the values of the fields might be empty (e.g. empty
strings).

3.7.1 AuthenticateIn Object

WebIDL

dictionary AuthenticateIn {
 required DOMString appID;
 DOMString[] keyIDs;
 required DOMString finalChallenge;
 Transaction[] transaction;
};

3.7.1.1 Dictionary AuthenticateIn Members

appID of type required DOMString
appID string

keyIDs of type array of DOMString
base64url [RFC4648] encoded keyIDs

finalChallenge of type required DOMString
base64url [RFC4648] encoded final challenge

transaction of type array of Transaction

An array of transaction data to be confirmed by user. If multiple transactions are provided, then the ASM must select the one that best
matches the current display characteristics.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
 required DOMString contentType;
 required DOMString content;
 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.7.2.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to its metadata statement (see [FIDOMetadataStatement])

content of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to the contentType to be shown to the user.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See
[FIDOMetadataStatement].

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the moment of transaction.

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {
 required DOMString assertion;
 required DOMString assertionScheme;
};

3.7.3.1 Dictionary AuthenticateOut Members

assertion of type required DOMString
Authenticator UAF authentication assertion.

assertionScheme of type required DOMString
Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex. If the authenticator cannot be located, then fail with
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If no user is enrolled with this authenticator (such as biometric enrollment, PIN setup, etc.), return UAF_ASM_STATUS_ACCESS_DENIED

3. The ASM must request the authenticator to verify the user.
If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger unblocking, return
UAF_ASM_STATUS_USER_LOCKOUT.

If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)

5. Hash the provided AuthenticateIn.finalChallenge using an authenticator-specific hash function (FinalChallengeHash).

The authenticator's preferred hash function information must meet the algorithm defined in the AuthenticatorInfo.authenticationAlgorithm field.

6. If this is a Second Factor authenticator and AuthenticateIn.keyIDs is empty, then return UAF_ASM_STATUS_ACCESS_DENIED

7. If AuthenticateIn.keyIDs is not empty,
1. If this is a bound authenticator, then look up ASM's database with AuthenticateIn.appID and AuthenticateIn.keyIDs and obtain the

KeyHandles associated with it.
Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the related key disappeared permanently from the authenticator.

Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found.

2. If this is a roaming authenticator, then treat AuthenticateIn.keyIDs as KeyHandles

8. Create TAG_UAFV1_SIGN_CMD structure and pass it to the authenticator.
1. Copy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not empty), FinalChallengeHash, KHAccessToken,

UserVerificationToken, KeyHandles
Depending on AuthenticatorType some arguments may be optional. Refer to [UAFAuthnrCommands] for more information on
authenticator types and their required arguments.

If multiple transactions are provided, select the one that best matches the current display characteristics.

Decode the base64url encoded AuthenticateIn.Transaction.content before passing it to the authenticator

2. Add the extensions from the ASMRequest.exts dictionary appropriately to the TAG_UAFV1_REGISTER_CMD as TAG_EXTENSION object.

9. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the
authenticator error code to the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for
details).

10. Parse TAG_UAFV1_SIGN_CMD_RESP
If it's a first-factor authenticator and the response includes TAG_USERNAME_AND_KEYHANDLE, then

1. Extract usernames from TAG_USERNAME_AND_KEYHANDLE fields

2. If two or more equal usernames are found, then choose the one which has registered most recently

3. Show remaining distinct usernames and ask the user to choose a single username

4. Set TAG_UAFV1_SIGN_CMD.KeyHandles to the single KeyHandle associated with the selected username.

5. Go to step #8 and send a new TAG_UAFV1_SIGN_CMD command

11. Create the AuthenticateOut object
1. Set AuthenticateOut.assertionScheme as AuthenticatorInfo.assertionScheme

2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_AUTH_ASSERTION) in base64url format and set as

NOTE

If the authenticator supports UserVerificationToken (see [UAFAuthnrCommands]), the ASM must obtain this token in order to later
pass to Sign command.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the moment of transaction.

NOTE

After this step, a first-factor bound authenticator which stores KeyHandles inside the ASM's database may delete the redundant
KeyHandles from the ASM's database. This avoids having unusable (old) private key in the authenticator which (surprisingly)
might become active after deregistering the newly generated one.

AuthenticateOut.assertion

3. Return the AuthenticateOut object

The authenticator metadata statement must truly indicate the type of transaction confirmation display implementation. Typically the "Transaction
Confirmation Display" flag will be set to TRANSACTION_CONFIRMATION_DISPLAY_ANY (bitwise) or TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

3.8 Deregister Request

Delete registered UAF record from the authenticator.

For a Deregister request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Deregister

ASMRequest.asmVersion must be set to the desired version

ASMRequest.authenticatorIndex must be set to the target authenticator index

ASMRequest.args must be set to an object of type DeregisterIn

For a Deregister response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

3.8.1 DeregisterIn Object

WebIDL

dictionary DeregisterIn {
 required DOMString appID;
 required DOMString keyID;
};

3.8.1.1 Dictionary DeregisterIn Members

appID of type required DOMString
FIDO Server Application Identity

keyID of type required DOMString
Base64url-encoded [RFC4648] key identifier of the authenticator to be de-registered. The keyID can be an empty string. In this case all keyIDs
related to this appID must be deregistered.

3.8.2 Detailed Description for Processing the Deregister Request

Refer to [UAFAuthnrCommands] for more information about the TAGs and structures mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex

2. Construct KHAccessToken (see section KHAccessToken for more details).

3. If this is a bound authenticator, then
If the value of DeregisterIn.keyID is an empty string, then lookup all pairs of this appID and any keyID mapped to this authenticatorIndex
and delete them. Go to step 4.

Otherwise, lookup the authenticator related data in the ASM database and delete the record associated with DeregisterIn.appID and
DeregisterIn.keyID. Go to step 4.

4. Create the TAG_UAFV1_DEREGISTER_CMD structure, copy KHAccessToken and DeregisterIn.keyID and pass it to the authenticator.

5. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the
authenticator error code to the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for
details). Return proper ASMResponse.

3.9 GetRegistrations Request

Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be
omitted:

ASMRequest.requestType must be set to GetRegistrations

ASMRequest.asmVersion must be set to the desired version

NOTE

Some authenticators might support "Transaction Confirmation Display" functionality not inside the authenticator but within the boundaries of the
ASM. Typically these are software based Transaction Confirmation Displays. When processing the Sign command with a given transaction such
ASM should show transaction content in its own UI and after user confirms it -- pass the content to authenticator so that the authenticator
includes it in the final assertion.

See [FIDORegistry] for flags describing Transaction Confirmation Display type.

NOTE

In the case of roaming authenticators, the keyID passed to the authenticator might be an empty string. The authenticator is supposed to
deregister all keys related to this appID in this case.

ASMRequest.authenticatorIndex must be set to corresponding ID

For a GetRegistrations response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should
be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

The ASMResponse.responseData must be an object of type GetRegistrationsOut. In the case of an error the values of the fields might be empty
(e.g. empty strings).

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut {
 required AppRegistration[] appRegs;
};

3.9.1.1 Dictionary GetRegistrationsOut Members

appRegs of type array of required AppRegistration
List of registrations associated with an appID (see AppRegistration below). may be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration {
 required DOMString appID;
 required DOMString[] keyIDs;
};

3.9.2.1 Dictionary AppRegistration Members

appID of type required DOMString
FIDO Server Application Identity.

keyIDs of type array of required DOMString
List of key identifiers associated with the appID

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator using authenticatorIndex

2. If this is bound authenticator, then
Lookup the registrations associated with CallerID and AppID in the ASM database and construct a list of AppRegistration objects

3. If this is not a bound authenticator, then set the list to empty.

4. Create GetRegistrationsOut object and return

3.10 OpenSettings Request

Display the authenticator-specific settings interface. If the authenticator has its own built-in user interface, then the ASM must invoke
TAG_UAFV1_OPEN_SETTINGS_CMD to display it.

For an OpenSettings request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be
omitted:

ASMRequest.requestType must be set to OpenSettings

ASMRequest.asmVersion must be set to the desired version

ASMRequest.authenticatorIndex must be set to the target authenticator index

For an OpenSettings response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

4. Using ASM API

This section is non-normative.

In a typical implementation, the FIDO UAF Client will call GetInfo during initialization and obtain information about the authenticators. Once the
information is obtained it will typically be used during FIDO UAF message processing to find a match for given FIDO UAF policy. Once a match is found
the FIDO UAF Client will send the appropriate request (Register/Authenticate/Deregister...) to this ASM.

The FIDO UAF Client may use the information obtained from a GetInfo response to display relevant information about an authenticator to the user.

5. ASM APIs for various platforms

NOTE

Some ASMs might not store this information inside their own database. Instead it might have been stored inside the authenticator's
secure storage area. In this case the ASM must send a proprietary command to obtain the necessary data.

This section is normative.

5.1 Android ASM Intent API

On Android systems FIDO UAF ASMs may be implemented as a separate APK-packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions between the FIDO UAF Client and an ASM on Android takes place
through the following intent identifier:

org.fidoalliance.intent.FIDO_OPERATION

To carry messages described in this document, an intent must also have its type attribute set to application/fido.uaf_asm+json.

ASMs must register that intent in their manifest file and implement a handler for it.

FIDO UAF Clients must append an extra, message, containing a String representation of a ASMRequest, before invoking the intent.

FIDO UAF Clients must invoke ASMs by calling startActivityForResult()

FIDO UAF Clients should assume that ASMs will display an interface to the user in order to handle this intent, e.g. prompting the user to complete the
verification ceremony. However, the ASM should not display any user interface when processing a GetInfo request.

After processing is complete the ASM will return the response intent as an argument to onActivityResult(). The response intent will have an extra,
message, containing a String representation of a ASMResponse.

5.1.1 Discovering ASMs

FIDO UAF Clients can discover the ASMs available on the system by using PackageManager.queryIntentActivities(Intent intent, int flags) with
the FIDO Intent described above to see if any activities are available.

A typical FIDO UAF Client will enumerate all ASM applications using this function and will invoke the GetInfo operation for each one discovered.

5.1.2 Alternate Android AIDL Service ASM Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism to Android Intents. Please see
Android Intent API section [UAFAppAPIAndTransport] for differences between the Android AIDL service and Android Intent implementation.

This API should be used if the ASM itself doesn't implement any user interface.

5.2 Java ASM API for Android

public interface IASM {
 enum Event {
 PLUGGED, /** Indicates that the authenticator was Plugged to system */
 UNPLUGGED /** Indicates that the authenticator was Unplugged from system */
 }

 public interface IEnumeratorListener {
 /**
 This function is called when an authenticator is plugged or
 unplugged.
 @param eventType event type (plugged/unplugged)
 @param serialized AuthenticatorInfo JSON based GetInfoResponse object
 */
 void onNotify(Event eventType, String authenticatorInfo);
 }

 public interface IResponseReceiver {
 /**
 This function is called when ASM's response is ready.

 @param response serialized response JSON based event data
 @param exchangeData for ASM if it needs some
 data back right after calling the callback function.
 onResponse will set the exchangeData to the data to
 be returned to the ASM.
 */
 void onResponse(String response, StringBuilder exchangeData);
 }

 /**
 Initializes the ASM. This is the first function to
 be called.
 @param ctx the Android Application context of the calling application (or null)
 @param enumeratorListener caller provided Enumerator
 @return ASM StatusCode value
 */
 short init(Context ctx, IEnumeratorListener enumeratorListener);

 /**
 Process given JSON request and returns JSON response.
 If the caller wants to execute a function defined in ASM JSON
 schema then this is the function that must be called.
 @param act the calling Android Activity or null
 @param inData input JSON data
 @param ProcessListener event listener for receiving events from ASM
 @return ASM StatusCode value
 */
 short process(Activity act, String inData, IResponseReceiver responseReceiver);

 /**
 Uninitializes (shut's down) the ASM.
 @return ASM StatusCode value
 */
 short uninit();
}

NOTE

The advantage of this AIDL Server based API is that it doesn't cause a focus lose on the caller App.

NOTE

The Java ASM API is useful for ASMs for KeyStore based authenticators. In this case the platform limits key use-access to the application
generating the key. The ASM runs in the process scope of the RP App.

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)

5.3 C++ ASM API for iOS

#include
namespace FIDO_UAF {

class IASM {
 public:

 typedef enum {
 PLUGGED, /** Indicates that the authenticator was Plugged to system */
 UNPLUGGED /** Indicates that the authenticator was Unplugged from system */
 } Event;

 class IEnumeratorListener {
 virtual ~IEnumeratorListener() {}
 /**
 This function is called when an authenticator is plugged or
 unplugged.
 @param eventType event type (plugged/unplugged)
 @param serialized AuthenticatorInfo JSON based GetInfoResponse object
 */
 virtual void onNotify(Event eventType, const std::string& authenticatorInfo) {};
 };

 class IResponseReceiver {
 virtual ~IResponseReceiver() {}
 /**
 This function is called when ASM's response is ready.

 @param response serialized JSON based event data
 @param exchangeData for ASM if it needs some
 data back right after calling the callback function.
 */
 virtual void onResponse(const std::string& response, std::string &exchangeData) {};
 };

 /**
 Initializes the ASM. This is the first function to
 be called.
 @param unc the platform UINavigationController or one of the derived classes
 (e.g. UINavigationController) in order to allow smooth UI integration of the ASM.
 @param EnumerationListener caller provided Enumerator
 @return ASM StatusCode value
 */
 virtual short int init(UINavigationController unc, IEnumerator EnumerationListener)=0;

 /**
 Process given JSON request and returns JSON response.
 If the caller wants to execute a function defined in ASM JSON
 schema then this is the function that must be called.
 @param unc the platform UINavigationController or one of the derived classes
 (e.g. UINavigationController) in order to allow smooth UI integration of the ASM
 @param InData input JSON data
 @param ProcessListener event listener for receiving events from ASM
 @return ASM StatusCode value
 */
 virtual short int process(UINavigationController unc, const std::string& InData, ICallback ProcessListener)=0;

 /**
 Uninitializes (shut's down) the ASM.
 @return ASM StatusCode value
 */
 virtual short int uninit()=0;
};

}

5.4 Windows ASM API

On Windows, an ASM is implemented in the form of a Dynamic Link Library (DLL). The following is an example asmplugin.h header file defining a
Windows ASM API:

NOTE

The C++ ASM API is useful for ASMs for KeyChain based authenticators. In this case the platform limits key use-access to the application
generating the key. The ASM runs in the process scope of the RP App.

EXAMPLE 1

/*! @file asm.h
*/

#ifndef __ASMH_
#define __ASMH_
#ifdef _WIN32
#define ASM_API __declspec(dllexport)
#endif

#ifdef _WIN32
#pragma warning (disable : 4251)
#endif

#define ASM_FUNC extern "C" ASM_API
#define ASM_NULL 0

/*! \brief Error codes returned by ASM Plugin API.
* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.
*/

enum asmResult_t
{
 Success = 0, /**< Success */
 Failure /**< Generic failure */
};

/*! \brief Generic structure containing JSON string in UTF-8
* format.
* This structure is used throughout functions to pass and receives
* JSON data.
*/

struct asmJSONData_t
{
 int length; /**< JSON data length */
 char *pData; /**< JSON data */

A Windows-based FIDO UAF Client must look for ASM DLLs in the following registry paths:

HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The FIDO UAF Client iterates over all keys under this path and looks for "path" field:

[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE_PATH_TO_ASM>.dll"

path must point to the absolute location of the ASM DLL.

6. CTAP2 Interface

This section is normative.

ASMs can (optionally) provide a FIDO CTAP 2 interface in order to allow the authenticator being used as external authenticator from a FIDO2 or Web
Authentication enabled platform supporting the CTAP 2 protocol [FIDOCTAP].

In this case the CTAP2 enabled ASM provides the CTAP2 interface upstream through one or more of the transport protocols defined in [FIDOCTAP]
(e.g. USB, NFC, BLE). Note that the CTAP2 interface is the connection to the FIDO Client / FIDO enabled platform.

In the following section we specify how the ASM needs to map the parameters received via the FIDO CTAP2 interface to FIDO UAF Authenticator
Commands [UAFAuthnrCommands].

6.1 authenticatorMakeCredential

This section is normative.

};

/*! \brief Enumeration event types for authenticators.
These events will be fired when an authenticator becomes
 available (plugged) or unavailable (unplugged).
*/

enum asmEnumerationType_t
{
 Plugged = 0, /**< Indicates that authenticator Plugged to system */
 Unplugged /**< Indicates that authenticator Unplugged from system */
};

namespace ASM
{
 /*! \brief Callback listener.
 FIDO UAF Client must pass an object implementating this interface to
 Authenticator::Process function. This interface is used to provide
 ASM JSON based response data.*/
 class ICallback
 {
 public
 virtual ~ICallback() {}
 /**
 This function is called when ASM's response is ready.
 *
 @param response JSON based event data
 @param exchangeData must be provided by ASM if it needs some
 data back right after calling the callback function.
 The lifecycle of this parameter must be managed by ASM. ASM must
 allocate enough memory for getting the data back.
 */

 virtual void Callback(const asmJSONData_t &response,
 asmJSONData_t &exchangeData) = 0;
 };

 /*! \brief Authenticator Enumerator.
 FIDO UAF Client must provide an object implementing this
 interface. It will be invoked when a new authenticator is plugged or
 when an authenticator has been unplugged. */

 class IEnumerator
 {
 public
 virtual ~IEnumerator() {}
 /**
 This function is called when an authenticator is plugged or
 unplugged.
 * @param eventType event type (plugged/unplugged)
 @param AuthenticatorInfo JSON based GetInfoResponse object
 */

 virtual void Notify(const asmEnumerationType_t eventType, const
 asmJSONData_t &AuthenticatorInfo) = 0;
 };
}

/**
Initializes ASM plugin. This is the first function to be
 called.
*
@param pEnumerationListener caller provided Enumerator
*/

ASM_FUNC asmResult_t asmInit(ASM::IEnumerator
 *pEnumerationListener);
/**
Process given JSON request and returns JSON response.
*
If the caller wants to execute a function defined in ASM JSON
 schema then this is the function that must be called.
*
@param pInData input JSON data
@param pListener event listener for receiving events from ASM
*/
ASM_FUNC asmResult_t asmProcess(const asmJSONData_t *pInData,
 ASM::ICallback *pListener);
/**
Uninitializes ASM plugin.
*
*/
ASM_FUNC asmResult_t asmUninit();
#endif // __ASMPLUGINH_

6.1.1 Processing rules for authenticatorMakeCredential

This section is normative.

1. invoke Register command for UAF authenticator as described in [UAFAuthnrCommands] section 6.2.4 using the following field mapping
instructions:

authenticatorIndex set appropriately, e.g. 1.

If webauthn_appid is present, then
1. Verify that the effective domain of AppID is identical to the effective domain of rp.id.

2. Set AppID to the value of extension webauthn_appid (see [WebAuthn]).

If webauthn_appid is not present, then set AppID to rp.id (see [WebAuthn]).

FinalChallengeHash set to clientDataHash.

Username set to user.displayName (see [WebAuthn]). This string will be displayed to the user in order to select a specific account if the user
has multiple accounts at that relying party.

attestationType set to the attestation supported by that authenticator, e.g. TAG_ATTESTATION_BASIC_FULL or TAG_ATTESTATION_ECDAA.

KHAccessToken set to some persistent identifier used for this authenticator. If the authenticator is bound to the platform this ASM is running
on, it needs to be a secret identifier only known to this ASM instance. If the authenticator is a "roaming authenticator", i.e. external to the
platform this ASM is running on, the identifier can have value 0.

Add the fido.uaf.userid extension with value user.id to the Register command.

Use the pinAuth and pinProtocol parameters appropriately when communicating with the authenticator (if supported).

2. If this is a bound authenticator and the Authenticator doesn't support the fido.uaf.userid, let the ASM remember the user.id value related to the
generated UAuth key pair.

3. If the command was successful, create the result object as follows
set authData to a freshly generated authenticator data object, containing the corresponding values taken from the assertion geenrated by the
authenticator. That means:

set authData.rpID to the SHA256 hash of AppID.

initialize authData with 0 and then set set flag authData.AT to 1 and set authData.UP to 1 if the authenticator is not a silent authenticator.
Set flag authData.uv to 1 if the authenticator is not a silent authenticator. The flags authData.UP and authData.UV need to be 0 if it is a
silent authenticator. Set authData.ED to 1 if the authenticator added extensions to the assertion. In this case add the individual
extensions to the CBOR map appropriately.

set authData.signCount to the uafAssertion.signCounter.

set authData.attestationData.AAGUID to the AAID of this authenticator. Setting the remaining bytes to 0.

set authData.attestationData.CredentialID to uafAssertion.keyHandle and set the length L of the Credential ID to the size of the
keyHandle.

set authData.attestationData.pubKey to uafAssertion.publicKey with appropriate encoding conversion

set fmt to the "fido-uaf".

set attStmt to the AUTHENTICATOR_ASSERTION element of the TAG_UAFV1_REGISTER_CMD_RESPONSE returned by the authenticator.

4. Return authData, fmt and attStmt.

6.2 authenticatorGetAssertion

This section is normative.

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

1. clientDataHash (required, byte array).

2. rp (required, PublicKeyCredentialEntity). Identity of the relying party.

3. user (required, PublicKeyCredentialUserEntity).

4. pubKeyCredParams (required, CBOR array).

5. excludeList (optional, sequence of PublicKeyCredentialDescriptors).

6. extensions (optional, CBOR map). Parameters to influence authenticator operation.

7. options (optional, sequence of authenticator options, i.e. "rk" and "uv"). Parameters to influence authenticator operation.

8. pinAuth (optional, byte array).

9. pinProtocol (optional, unsigned integer).

The output parameters are (see [FIDOCTAP]):

1. authData (required, sequence of bytes). The authenticator data object.

2. fmt (required, String). The attestation statement format identifier.

3. attStmt (required, sequence of bytes). The attestation statement.

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

1. rpId (required, String). Identity of the relying party.

2. clientDataHash (required, byte array).

3. allowList (optional, sequence of PublicKeyCredentialDescriptors).

4. extensions (optional, CBOR map).

5. options (optional, sequence of authenticator options, i.e. "up" and "uv").

The output parameters are (see [FIDOCTAP]):

1. credential (optional, PublicKeyCredentialDescriptor).

2. authData (required, byte array).

3. signature (required, byte array).

4. user (required, PublicKeyCredentialUserEntity).

5. numberOfCredentials (optional, integer).

https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain

6.2.1 Processing rules for authenticatorGetAssertion

This section is normative.

1. invoke Sign command for UAF authenticator as described in [UAFAuthnrCommands] section 6.3.4 using the following field mapping instructions
authenticatorIndex set appropriately, e.g. 1.

If webauthn_appid is present, then
1. Verify that the effective domain of AppID is identical to the effective domain of rpId.

2. Set AppID to the value of extension webauthn_appid (see [WebAuthn]).

If webauthn_appid is not present, then set AppID to rpId (see [WebAuthn]).

FinalChallengeHash set to clientDataHash.

TransactionContent set to value of extension webauthn_txAuthGeneric or webauthn_txAuthsimple (see [WebAuthn]) depending on which
extension is present and supported by this authenticator. If the authenticator doesn't natively support transactionConfirmation, the hash of
the value included in either of the webauthn_tx* extensions can be computed by the ASM and passed to the authenticator in
TransactionContentHash. See [UAFAuthnrCommands] section 6.3.1 for details.

KHAccessToken set to the persistent identifier used for this authenticator (at authenticatorMakeCredential).

If allowList is present then add the .id field of each element as KeyHandle element to the command.

Use the pinAuth and pinProtocol parameters appropriately when communicating with the authenticator (if supported).

2. If the command was successful (with potential ambiguities of RawKeyHandles resolved), create the result object as follows
set credential.id to the keyHandle returned by the authenticator command. Set credential.type to "public-key-uaf" and set
credential.transports to the transport currently being used by this authenticator (e.g. "usb").

set authData to the UAFV1_SIGNED_DATA element included in the AUTHENTICATOR_ASSERTION element.

set signature to the SIGNATURE element included in the AUTHENTICATOR_ASSERTION element.

If the authenticator returned the fido.uaf.userid extension, then set user.id to the value of the fido.uaf.userid extension as returned by
the authenticator.

If the authenticator did not return the fido.uaf.userid extension but the ASM remembered the user ID, then set user.id to the value of the
user ID remembered by the ASM.

3. Return credential, authData, signature, user.

6.3 authenticatorGetNextAssertion

This section is normative.

Not supported. This interface will always return a single assertion.

6.4 authenticatorCancel

This section is normative.

Cancel the existing authenticator command if it is still pending.

6.5 authenticatorReset

This section is normative.

Reset the authenticator back to factory default state. In order to prevent accidental trigger of this mechanism, some form of user approval may be
performed by the authenticator itself.

6.6 authenticatorGetInfo

This section is normative.

This interface has no input parameters.

6.6.1 Processing rules for authenticatorGetInfo

This section is normative.

This interface is expected to report a single authenticator only.

1. Invoke the GetInfo command [UAFAuthnrCommands] for the connected authenticator.
authenticatorIndex set appropriately, e.g. 1.

2. If the command was successful, create the result object as follows
set versions to "FIDO_2_0" as this is the only version supported by CTAP2 at this time.

set extensions to the list of extensions returned by the authenticator (one entry per field SupportedExtensionID).

set aaguid to the AAID returned by the authenticator, setting all remaining bytes to 0.

set options appropriately.

set maxMsgSize to the maximum message size supported by the authenticator - if known

set pinProtocols to the list of supported pin protocols (if any).

3. Return versions, extensions, aaguid, options, mxMsgSize (if known) and pinProtocols (if any).

NOTE

Output parameters are (see [FIDOCTAP]):

1. versions (required, sequence of strings). List of FIDO protocol versions supported by the authenticator.

2. extensions (optional, sequence of strings). List of extensions supported by the authenticator.

3. aaguid (optional, string). The AAGUID claimed by the authenticator.

4. options (optional, map). Map of "plat", "rk", "clientPin", "up", "uv"

5. maxMsgSize (optional, unsignd integer). The maximum message size accepted by the authenticator.

6. pinProtocols (optional, array of unsigned integers).

https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-effective-domain

7. Security and Privacy Guidelines

This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs must follow these security guidelines:

ASMs must implement a mechanism for isolating UAF credentials registered by two different FIDO UAF Clients from one another. One FIDO UAF
Client must not have access to FIDO UAF credentials that have been registered via a different FIDO UAF Client. This prevents malware from
exercising credentials associated with a legitimate FIDO Client.

An ASM designed specifically for bound authenticators must ensure that FIDO UAF credentials registered with one ASM cannot be accessed by
another ASM. This is to prevent an application pretending to be an ASM from exercising legitimate UAF credentials.

Using a KHAccessToken offers such a mechanism.

An ASM must implement platform-provided security best practices for protecting UAF-related stored data.

ASMs must not store any sensitive FIDO UAF data in its local storage, except the following:

CallerID, ASMToken, PersonaID, KeyID, KeyHandle, AppID

ASMs should ensure that applications cannot use silent authenticators for tracking purposes. ASMs implementing support for a silent
authenticator must show, during every registration, a user interface which explains what a silent authenticator is, asking for the users consent for
the registration. Also, it is recommended that ASMs designed to support roaming silent authenticators either

Run with a special permission/privilege on the system, or

Have a built-in binding with the authenticator which ensures that other applications cannot directly communicate with the authenticator by
bypassing this ASM.

7.1 KHAccessToken

KHAccessToken is an access control mechanism for protecting an authenticator's FIDO UAF credentials from unauthorized use. It is created by the ASM
by mixing various sources of information together. Typically, a KHAccessToken contains the following four data items in it: AppID, PersonaID, ASMToken and
CallerID.

AppID is provided by the FIDO Server and is contained in every FIDO UAF message.

PersonaID is obtained by the ASM from the operational environment. Typically a different PersonaID is assigned to every operating system user account.

ASMToken is a randomly generated secret which is maintained and protected by the ASM.

CallerID is the ID the platform has assigned to the calling FIDO UAF Client (e.g. "bundle ID" for iOS). On different platforms the CallerID can be
obtained differently.

The ASM uses the KHAccessToken to establish a link between the ASM and the key handle that is created by authenticator on behalf of this ASM.

The ASM provides the KHAccessToken to the authenticator with every command which works with key handles.

NOTE

ASMs must properly protect their sensitive data against malware using platform-provided isolation capabilities in order to follow the
assumptions made in [FIDOSecRef]. Malware with root access to the system or direct physical attack on the device are out of scope for this
requirement.

NOTE

The following are examples for achieving this:

If an ASM is bundled with a FIDO UAF Client, this isolation mechanism is already built-in.

If the ASM and FIDO UAF Client are implemented by the same vendor, the vendor may implement proprietary mechanisms to bind its
ASM exclusively to its own FIDO UAF Client.

On some platforms ASMs and the FIDO UAF Clients may be assigned with a special privilege or permissions which regular
applications don't have. ASMs built for such platforms may avoid supporting isolation of UAF credentials per FIDO UAF Clients since
all FIDO UAF Clients will be considered equally trusted.

NOTE

An ASM, for example, must never store a username provided by a FIDO Server in its local storage in a form other than being decryptable
exclusively by the authenticator.

NOTE

In a typical implementation an ASM will randomly generate an ASMToken when it is launched the first time and will maintain this secret until the
ASM is uninstalled.

NOTE

For example on Android platform ASM can use the hash of the caller's apk-signing-cert.

NOTE

Bound authenticators must support a mechanism for binding generated key handles to ASMs. The binding mechanism must have at least the same
security characteristics as mechanism for protcting KHAccessToken described above. As a consequence it is recommended to securely derive
KHAccessToken from AppID, ASMToken, PersonaID and the CallerID.

Alternative methods for binding key handles to ASMs can be used if their security level is equal or better.

From a security perspective, the KHAccessToken method relies on the OS/platform to:

1. allow the ASM keeping the ASMToken secret

2. and let the ASM determine the CalledID correctly

3. and let the FIDO Client verify the AppID/FacetID correctly

If an ASM for roaming authenticators doesn't use a KHAccessToken which is different for each AppID, the ASM must include the AppID in the command for
a deregister request containing an empty KeyID.

7.2 Access Control for ASM APIs

The following table summarizes the access control requirements for each API call.

ASMs must implement the access control requirements defined below. ASM vendors may implement additional security mechanisms.

Terms used in the table:

NoAuth -- no access control

CallerID -- FIDO UAF Client's platform-assigned ID is verified

UserVerify -- user must be explicitly verified

KeyIDList -- must be known to the caller

Commands
First-factor bound

authenticator
Second-factor bound

authenticator
First-factor roaming

authenticator
Second-factor roaming

authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Authenticate

UserVerify
AppID
CallerID
PersonaID

UserVerify
AppID
KeyIDList
CallerID
PersonaID

UserVerify
AppID

UserVerify
AppiD
KeyIDList

GetRegistrations*
CallerID
PersonaID

CallerID
PersonaID

X X

Deregister

AppID
KeyID
PersonaID
CallerID

AppID
KeyID
PersonaID
CallerID

AppID
KeyID

AppID
KeyID

A. References

A.1 Normative references

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

The following example describes how the ASM constructs and uses KHAccessToken.

During a Register request
Set KHAccessToken to a secret value only known to the ASM. This value will always be the same for this ASM.

Append AppID
KHAccessToken = AppID

If a bound authenticator, append ASMToken, PersonaID and CallerID
KHAccessToken |= ASMToken | PersonaID | CallerID

Hash KHAccessToken
Hash KHAccessToken using the authenticator's hashing algorithm. The reason of using authenticator specific hash function is to
make sure of interoperability between ASMs. If interoperability is not required, an ASM can use any other secure hash function it
wants.

KHAccessToken=hash(KHAccessToken)

Provide KHAccessToken to the authenticator

The authenticator puts the KHAccessToken into RawKeyHandle (see [UAFAuthnrCommands] for more details)

During other commands which require KHAccessToken as input argument
The ASM computes KHAccessToken the same way as during the Register request and provides it to the authenticator along with other
arguments.

The authenticator unwraps the provided key handle(s) and proceeds with the command only if RawKeyHandle.KHAccessToken is equal
to the provided KHAccessToken.

NOTE

It is recommended for roaming authenticators that the KHAccessToken contains only the AppID since otherwise users won't be able to use them on
different machines (PersonaID, ASMToken and CallerID are platform specific). If the authenticator vendor decides to do that in order to address a
specific use case, however, it is allowed.

Including PersonaID in the KHAccessToken is optional for all types of authenticators. However an authenticator designed for multi-user systems will
likely have to support it.

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/

[FIDOCTAP]
FIDO 2.0: Client To Authenticator Protocol. URL: fido-client-to-authenticator-protocol.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-
20180220/fido-metadata-statement-v1.2-id-20180220.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-registry-v1.2-id-20180220.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL: https://fidoalliance.org/specs/fido-
uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/'

A.2 Informative references

[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL: https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-
20180220/fido-security-ref-v1.2-id-20180220.html

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html

[WebAuthn]
Vijay Bharadwaj; Hubert Le Van Gong; Dirk Balfanz; Alexis Czeskis; Arnar Birgisson; Jeff Hodges; Michael B. Jones; Rolf Lindemann; J. C.
Jones. Web Authentication: An API for accessing Scoped Credentials. September 2016. Draft. URL: https://www.w3.org/TR/webauthn/

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

file:///tmp/uaf-specs/release/fido-uaf-v1.2-id-20180220/fido-client-to-authenticator-protocol.html
file:///tmp/uaf-specs/release/fido-uaf-v1.2-id-20180220/fido-client-to-authenticator-protocol.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
http://heycam.github.io/webidl/'
http://heycam.github.io/webidl/'
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

FIDO UAF Authenticator Commands

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Roni Sasson, Discretix
Brad Hill, PayPal, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

UAF Authenticators may take different forms. Implementations may range from a secure application running inside tamper-
resistant hardware to software-only solutions on consumer devices.

This document defines normative aspects of UAF Authenticators and offers security and implementation guidelines for
authenticator implementors.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO
Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO
Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use
the Specification solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works
of this Specification. Entities seeking permission to reproduce portions of this Specification for other uses must contact the
FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such third
party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Conformance

2. Overview

3. UAF Authenticator

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-authnr-cmds-v1.2-rd-20171128.html
mailto:rlindemann@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.1 Types of Authenticators

4. Tags
4.1 Command Tags

4.2 Tags used only in Authenticator Commands

4.3 Tags used in UAF Protocol

4.4 Status Codes

5. Structures
5.1 RawKeyHandle

5.2 Structures to be parsed by FIDO Server
5.2.1 TAG_UAFV1_REG_ASSERTION

5.2.2 TAG_UAFV1_AUTH_ASSERTION

5.3 UserVerificationToken

6. Commands
6.1 GetInfo Command

6.1.1 Command Description

6.1.2 Command Structure

6.1.3 Command Response

6.1.4 Status Codes

6.2 Register Command
6.2.1 Command Structure

6.2.2 Command Response

6.2.3 Status Codes

6.2.4 Command Description

6.3 Sign Command
6.3.1 Command Structure

6.3.2 Command Response

6.3.3 Status Codes

6.3.4 Command Description

6.4 Deregister Command
6.4.1 Command Structure

6.4.2 Command Response

6.4.3 Status Codes

6.4.4 Command Description

6.5 OpenSettings Command
6.5.1 Command Structure

6.5.2 Command Response

6.5.3 Status Codes

7. KeyIDs and key handles
7.1 first-factor Bound Authenticator

7.2 2ndF Bound Authenticator

7.3 first-factor Roaming Authenticator

7.4 2ndF Roaming Authenticator

8. Access Control for Commands

9. Considerations
9.1 Algorithms and Key Sizes

9.2 Indicating the Authenticator Model

10. Relationship to other standards
10.1 TEE

10.2 Secure Elements

10.3 TPM

10.4 Unreliable Transports

A. Security Guidelines

B. Table of Figures

C. References
C.1 Normative references

C.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in "", e.g. "UAF-TLV".

In formulas we use "|" to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

Unless otherwise specified all data described in this document must be encoded in little-endian format.

All TLV structures can be parsed using a "recursive-descent" parsing approach. In some cases multiple occurrences of a
single tag may be allowed within a structure, in which case all values must be preserved.

All fields in TLV structures are mandatory, unless explicitly mentioned as otherwise.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be
interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document specifies low-level functionality which UAF Authenticators should implement in order to support the UAF
protocol. It has the following goals:

Define normative aspects of UAF Authenticator implementations

Define a set of commands implementing UAF functionality that may be implemented by different types of authenticators

Define UAFV1TLV assertion scheme-specific structures which will be parsed by a FIDO Server

The overall architecture of the UAF protocol and its various operations is described in [UAFProtocol]. The following simplified
architecture diagram illustrates the interactions and actors this document is concerned with:

Fig. 1 UAF Authenticator Commands

3. UAF Authenticator

NOTE

The UAF Protocol supports various assertion schemes. Commands and structures defined in this document assume
that an authenticator supports the UAFV1TLV assertion scheme. Authenticators implementing a different assertion
scheme do not have to follow requirements specified in this document.

This section is non-normative.

The UAF Authenticator is an authentication component that meets the UAF protocol requirements as described in
[UAFProtocol]. The main functions to be provided by UAF Authenticators are:

1. [Mandatory] Verifying the user or the user's presence with the verification mechanism built into the authenticator. The
verification technology can vary, from biometric verification to simply verifying physical presence, or no user verification
at all (the so-called Silent Authenticator).

2. [Mandatory] Performing the cryptographic operations defined in [UAFProtocol]

3. [Mandatory] Creating data structures that can be parsed by FIDO Server.

4. [Mandatory] Attesting itself to the FIDO Server if there is a built-in support for attestation

5. [Optional] Displaying the transaction content to the user using the transaction confirmation display

Fig. 2 FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

A fingerprint sensor built into a mobile device

PIN authenticator implemented inside a secure element

A mobile phone acting as an authenticator to a different device

A USB token with built-in user presence verification

A voice or face verification technology built into a device

3.1 Types of Authenticators

There are four types of authenticators defined in this document. These definitions are not normative (unless otherwise stated)
and are provided merely for simplifying some of the descriptions.

NOTE

The following is the rationale for considering only these 4 types of authenticators:

Bound authenticators are typically embedded into a user's computing device and thus can utilize the host's
storage for their needs. It makes more sense from an economic perspective to utilize the host's storage rather
than have embedded storage. Trusted Execution Environments (TEE), Secure Elements and Trusted Platform
Modules (TPM) are typically designed in this manner.

First-factor roaming authenticators must have an internal storage for key handles.

Second-factor roaming authenticators can store their key handles on an associated server, in order to avoid the
need for internal storage.

Defining such constraints makes the specification simpler and clearer for defining the mainstream use-cases.

First-factor Bound Authenticator

These authenticators have an internal matcher. The matcher is able to verify an already enrolled user. If there is
more than one user enrolled - the matcher can also identify a user.

There is a logical binding between this authenticator and the device it is attached to (the binding is expressed
through a concept called KeyHandleAccessToken). This authenticator cannot be bound with more than one
device.

These authenticators do not store key handles in their own internal storage. They always return the key handle to
the ASM and the latter stores it in its local database.

Authenticators of this type may also work as a second factor.

Examples

A fingerprint sensor built into a laptop, phone or tablet

Embedded secure element in a mobile device

Voice verification built into a device

Second-factor (2ndF) Bound Authenticator

This type of authenticator is similar to first-factor bound authenticators, except that it can operate only as the
second-factor in a multi-factor authentication

Examples

USB dongle with a built-in capacitive touch device for verifying user presence

A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

First Factor (1stF) Roaming Authenticator

These authenticators are not bound to any device. User can use them with any number of devices.

It is assumed that these authenticators have an internal matcher. The matcher is able to verify an already enrolled
user. If there is more than one user enrolled - the matcher can also identify a user.

It is assumed that these authenticators are designed to store key handles in their own internal secure storage and
not expose externally.

These authenticators may also work as a second factor.

Examples

A Bluetooth LE based hardware token with built-in fingerprint sensor

PIN protected USB hardware token

A first-factor bound authenticator acting as a roaming authenticator for a different device on the user's behalf

Second-factor Roaming Authenticator

These authenticators are not bound to any device. A user may use them with any number of devices.

These authenticators may have an internal matcher. The matcher is able to verify an already enrolled user. If there
is more than one user enrolled then the matcher can also identify a particular specific user.

It is assumed that these authenticators do not store key handles in their own internal storage. Instead they push
key handles to the FIDO Server and receive them back during the authentication operation.

These authenticators can only work as second factors.

Examples

USB dongle with a built-in capacitive touch device for verifying user presence

A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

Throughout the document there will be special conditions applying to these types of authenticators.

NORMATIVE

In some deployments, the combination of ASM and a bound authenticator can act as a roaming authenticator (for example
when an ASM with an embedded authenticator on a mobile device acts as a roaming authenticator for another device).
When this happens such an authenticator must follow the requirements applying to bound authenticators within the
boundary of the system the authenticator is bound to, and follow the requirements that apply to roaming authenticators in
any other system it connects to externally.

Conforming authenticators must implement at least one attestation type defined in [UAFRegistry], as well as one
authentication algorithm and one key format listed in [FIDORegistry].

Vendors, however, are not limited to these constraints. For example a bound authenticator which has internal storage
for storing key handles is possible. Vendors are free to design and implement such authenticators as long as their
design follows the normative requirements described in this document.

NOTE

As stated above, the bound authenticator does not store key handles and roaming authenticators do store them. In the
example above the ASM would store the key handles of the bound authenticator and hence meets these assumptions.

4. Tags

This section is normative.

In this document UAF Authenticators use "Tag-Length-Value" (TLV) format to communicate with the outside world. All
requests and response data must be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by appending other TLV tags (custom or predefined).

Refer to [UAFRegistry] for information about predefined TLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g. a UINT32[4] will have length 16.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the
limitations of some hardware platforms.

Arrays are implicit. The description of some structures indicates where multiple values are permitted, and in these cases, if
same tag appears more than once, all values are signifanct and should be treated as an array.

For convenience in decoding TLV-formatted messages, all composite tags - those with values that must be parsed by
recursive descent - have the 13th bit (0x1000) set.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it
cannot process that tag.

Since UAF Authenticators may have extremely constrained processing environments, an ASM must follow a normative
ordering of structures when sending commands.

It is assumed that ASM and Server have sufficient resources to handle parsing tags in any order so structures send from
authenticator may use tags in any order.

4.1 Command Tags

Name Value Description

TAG_UAFV1_GETINFO_CMD 0x3401 Tag for GetInfo command.

TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 Tag for GetInfo command response.

TAG_UAFV1_REGISTER_CMD 0x3402 Tag for Register command.

TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 Tag for Register command response.

TAG_UAFV1_SIGN_CMD 0x3403 Tag for Sign command.

TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 Tag for Sign command response.

TAG_UAFV1_DEREGISTER_CMD 0x3404 Tag for Deregister command.

TAG_UAFV1_DEREGISTER_CMD_RESPONSE 0x3604 Tag for Deregister command response.

TAG_UAFV1_OPEN_SETTINGS_CMD 0x3406 Tag for OpenSettings command.

TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE 0x3606 Tag for OpenSettings command response.

Table 4.1.1: UAF Authenticator Command TLV tags (0x3400 - 0x34FF, 0x3600-0x36FF)

4.2 Tags used only in Authenticator Commands

Name Value Description

TAG_KEYHANDLE 0x2801

Represents key handle.

Refer to [FIDOGlossary] for more information about key
handle.

TAG_USERNAME_AND_KEYHANDLE 0x3802

Represents an associated Username and key handle.

This is a composite tag that contains a TAG_USERNAME
and TAG_KEYHANDLE that identify a registration valid oin
the authenticator.

Refer to [FIDOGlossary] for more information about
username.

TAG_USERVERIFY_TOKEN 0x2803

Represents a User Verification Token.

Refer to [FIDOGlossary] for more information about user
verification tokens.

TAG_APPID 0x2804

A full AppID as a UINT8[] encoding of a UTF-8 string.

Refer to [FIDOGlossary] for more information about AppID.

TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 Represents a key handle Access Token.

TAG_USERNAME 0x2806 A Username as a UINT8[] encoding of a UTF-8 string.

TAG_ATTESTATION_TYPE 0x2807 Represents an Attestation Type.

TAG_STATUS_CODE 0x2808 Represents a Status Code.

TAG_AUTHENTICATOR_METADATA 0x2809 Represents a more detailed set of authenticator information.

TAG_ASSERTION_SCHEME 0x280A
A UINT8[] containing the UTF8-encoded Assertion Scheme
as defined in [UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS 0x280B

If an authenticator contains a PNG-capable transaction
confirmation display that is not implemented by a higher-level
layer, this tag is describing this display. See
[FIDOMetadataStatement] for additional information on the
format of this field.

TAG_TC_DISPLAY_CONTENT_TYPE 0x280C
A UINT8[] containing the UTF-8-encoded transaction display
content type as defined in [FIDOMetadataStatement].
("image/png")

TAG_AUTHENTICATOR_INDEX 0x280D Authenticator Index

TAG_API_VERSION 0x280E API Version

TAG_AUTHENTICATOR_ASSERTION 0x280F

The content of this TLV tag is an assertion generated by the
authenticator. Since authenticators may generate assertions
in different formats - the content format may vary from
authenticator to authenticator.

TAG_TRANSACTION_CONTENT 0x2810 Represents transaction content sent to the authenticator.

TAG_AUTHENTICATOR_INFO 0x3811
Includes detailed information about authenticator's
capabilities.

TAG_SUPPORTED_EXTENSION_ID 0x2812 Represents extension ID supported by authenticator.

TAG_TRANSACTIONCONFIRMATION_TOKEN 0x2813

Represents a token for transaction confirmation. It might be
returned by the authenticator to the ASM and given back to
the authenticator at a later stage. The meaning of it is similar
to TAG_USERVERIFY_TOKEN, except that it is used for the
user's approval of a displayed transaction text.

Name Value Description

Table 4.2.1: Non-Command Tags (0x2800 - 0x28FF, 0x3800 - 0x38FF)

4.3 Tags used in UAF Protocol

Name Value Description

TAG_UAFV1_REG_ASSERTION 0x3E01 Authenticator response to Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02 Authenticator response to Sign command.

TAG_UAFV1_KRD 0x3E03 Key Registration Data

TAG_UAFV1_SIGNED_DATA 0x3E04 Data signed by authenticator with the UAuth.priv key

TAG_ATTESTATION_CERT 0x2E05

Each entry contains a single X.509 DER-encoded [ITU-X690-
2008] certificate. Multiple occurrences are allowed and form the
attestation certificate chain. Multiple occurrences must be
ordered. The attestation certificate itself must occur first. Each
subsequent occurrence (if exists) must be the issuing certificate
of the previous occurrence.

TAG_SIGNATURE 0x2E06 A cryptographic signature

TAG_ATTESTATION_BASIC_FULL 0x3E07 Full Basic Attestation as defined in [UAFProtocol]

TAG_ATTESTATION_BASIC_SURROGATE 0x3E08 Surrogate Basic Attestation as defined in [UAFProtocol]

TAG_ATTESTATION_ECDAA 0x3E09
Elliptic curve based direct anonymous attestation as defined in
[UAFProtocol]. In this case the signature in TAG_SIGNATURE is
a ECDAA signature as specified in [FIDOEcdaaAlgorithm].

TAG_KEYID 0x2E09 Represents a KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A

Represents a Hash of the Final Challenge.

Refer to [UAFASM] for more information about the Final
Challenge Hash.

TAG_AAID 0x2E0B

Represents an authenticator Attestation ID.

Refer to [UAFProtocol] for more information about the AAID.

TAG_PUB_KEY 0x2E0C Represents a Public Key.

TAG_COUNTERS 0x2E0D Represents a use counters for the authenticator.

TAG_ASSERTION_INFO 0x2E0E
Represents assertion information necessary for message
processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10 Represents a hash of transaction content.

TAG_EXTENSION
0x3E11,
0x3E12

This is a composite tag indicating that the content is an
extension.

If the tag is 0x3E11 - it's a critical extension and if the recipient
does not understand the contents of this tag, it must abort
processing of the entire message.

This tag has two embedded tags - TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more information about UAF
extensions refer to [UAFProtocol]

TAG_EXTENSION_ID 0x2E13
Represents extension ID. Content of this tag is a UINT8[]
encoding of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14
Represents extension data. Content of this tag is a UINT8[] byte
array.

Name Value Description

Table 4.3.1: Tags used in the UAF Protocol (0x2E00 - 0x2EFF, 0x3E00 - 0x3EFF). Normatively defined in [UAFRegistry]

4.4 Status Codes

Name Value Description

UAF_CMD_STATUS_OK 0x00 Success.

UAF_CMD_STATUS_ERR_UNKNOWN 0x01 An unknown error.

UAF_CMD_STATUS_ACCESS_DENIED 0x02 Access to this operation is denied.

UAF_CMD_STATUS_USER_NOT_ENROLLED 0x03
User is not enrolled with the
authenticator and the authenticator
cannot automatically trigger enrollment.

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT 0x04
Transaction content cannot be
rendered.

UAF_CMD_STATUS_USER_CANCELLED 0x05 User has cancelled the operation.

UAF_CMD_STATUS_CMD_NOT_SUPPORTED 0x06 Command not supported.

NOTE

This tag can be appended to any command and
response.

Using tag 0x3E11 (as opposed to tag 0x3E12) has the
same meaning as the flag fail_if_unknown in
[UAFProtocol].

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED 0x07 Required attestation not supported.

UAF_CMD_STATUS_PARAMS_INVALID 0x08
The parameters for the command
received by the authenticator are
malformed/invalid.

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY 0x09

The UAuth key which is relevant for this
command disappeared from the
authenticator and cannot be restored.
On some authenticators this error
occurs when the user verification
reference data set was modified (e.g.
new fingerprint template added).

UAF_CMD_STATUS_TIMEOUT 0x0a
The operation in the authenticator took
longer than expected (due to technical
issues) and it was finally aborted.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE 0x0e
The user took too long to follow an
instruction, e.g. didn't swipe the finger
within the accepted time.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES 0x0f
Insufficient resources in the
authenticator to perform the requested
task.

UAF_CMD_STATUS_USER_LOCKOUT 0x10

The operation failed because the user
is locked out and the authenticator
cannot automatically trigger an action
to change that. Typically the user would
have to enter an alternative password
(formally: undergo some other
alternative user verification method) to
re-enable the use of the main user
verification method.

Name Value Description

Table 4.4.1: UAF Authenticator Status Codes (0x00 - 0xFF)

5. Structures

This section is normative.

5.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the authenticator. Authenticators may define RawKeyHandle in
different ways and the internal structure is relevant only to the specific authenticator implementation.

RawKeyHandle for a typical first-factor bound authenticator has the following structure.

Depends on hashing
algorithm (e.g. 32 bytes)

Depends on key type.
(e.g. 32 bytes)

Username Size
(1 byte)

Max 128 bytes

KHAccessToken UAuth.priv Size Username

Table 5.1: RawKeyHandle Structure

First Factor authenticators must store Usernames in the authenticator and they must link the Username to the related key.
This may be achieved by storing the Username inside the RawKeyHandle. Second Factor authenticators must not store the
Username.

The ability to support Usernames is a key difference between first-, and second-factor authenticators.

NOTE

Any method the user can use to
(re-) enable the main user
verification method is considered
an alternative user verification
method and must be properly
declared as such. For example, if
the user can enter an alternative
password to re-enable the use of
fingerprints or to add additional
fingers, the authenticator
obviously supports fingerprint or
password based user
verification.

The RawKeyHandle must be cryptographically wrapped before leaving the authenticator boundary since it typically contains
sensitive information, e.g. the user authentication private key (UAuth.priv).

5.2 Structures to be parsed by FIDO Server

The structures defined in this section are created by UAF Authenticators and parsed by FIDO Servers.

Authenticators must generate these structures if they implement "UAFV1TLV" assertion scheme.

The nesting structure must be preserved, but the order of tags within a composite tag is not normative. FIDO Servers must
be prepared to handle tags appearing in any order.

5.2.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the authenticator during processing of a Register command. It is then delivered
to FIDO Server intact, and parsed by the server. The structure embeds a TAG_UAFV1_KRD tag which among other data
contains the newly generated UAuth.pub.

If the authenticator wants to append custom data to TAG_UAFV1_KRD structure (and thus sign with Attestation Key) - this
data must be included as TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as
TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_REG_ASSERTION and not inside
TAG_UAFV1_KRD.

Currently this document only specifies TAG_ATTESTATION_BASIC_FULL, TAG_ATTESTATION_BASIC_SURROGATE
and TAG_ATTESTATION_ECDAA. In case if the authenticator is required to perform "Some_Other_Attestation" on
TAG_UAFV1_KRD - it must use the TLV tag and content defined for "Some_Other_Attestation" (defined in [UAFRegistry]).

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REG_ASSERTION

1.1 UINT16 Length Length of the structure

1.2 UINT16 Tag TAG_UAFV1_KRD

1.2.1 UINT16 Length Length of the structure

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2
UINT16
AuthenticatorVersion

Vendor assigned authenticator version

1.2.3.3
UINT8
AuthenticationMode

For Registration this must be 0x01 indicating that the user has explicitly verified the
action.

1.2.3.4
UINT16
SignatureAlgAndEncoding

Signature Algorithm and Encoding of the attestation signature.

Refer to [FIDORegistry] for information on supported algorithms and their values.

1.2.3.5
UINT16
PublicKeyAlgAndEncoding

Public Key algorithm and encoding of the newly generated UAuth.pub key.

Refer to [FIDORegistry] for information on supported algorithms and their values.

1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.4.1 UINT16 Length Final Challenge Hash length

1.2.4.2
UINT8[]
FinalChallengeHash (binary value of) Final Challenge Hash provided in the Command

1.2.5 UINT16 Tag TAG_KEYID

NOTE

"UAFV1TLV" assertion scheme assumes that the authenticator has exclusive control over all data included inside
TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.

1.2.5.1 UINT16 Length Length of KeyID

1.2.5.2 UINT8[] KeyID (binary value of) KeyID for the key generated by the Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 UINT16 Length Length of Counters

1.2.6.2 UINT32 SignCounter

Signature Counter.

Indicates how many times this authenticator has performed signatures in the past.

1.2.6.3 UINT32 RegCounter

Registration Counter.

Indicates how many times this authenticator has performed registrations in the
past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 UINT16 Length Length of UAuth.pub

1.2.7.2 UINT8[] PublicKey User authentication public key (UAuth.pub) newly generated by authenticator

1.3
(choice
1)

UINT16 Tag TAG_ATTESTATION_BASIC_FULL

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with Basic Attestation Private Key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content, including the tag and it's length field, must
be included during signature computation.

1.3.3 UINT16 Tag

TAG_ATTESTATION_CERT (multiple occurrences possible)

Multiple occurrences must be ordered. The attestation certificate must occur first.
Each subsequent occurrence (if exists) must be the issuing certificate of the
previous occurrence. The last occurence must be chained to one of the certificates
included in field attestationRootCertificate in the related Metadata Statement
[FIDOMetadataStatement].

1.3.3.1 UINT16 Length Length of Attestation Cert

1.3.3.2 UINT8[] Certificate
Single X.509 DER-encoded [ITU-X690-2008] Attestation Certificate or a single
certificate from the attestation certificate chain (see description above).

1.3
(choice
2)

UINT16 Tag TAG_ATTESTATION_BASIC_SURROGATE

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with newly generated UAuth.priv key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content, including the tag and it's length field, must
be included during signature computation.

1.3
(choice
3)

UINT16 Tag TAG_ATTESTATION_ECDAA

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

TLV Structure Description

1.3.2.2 UINT8[] Signature The binary ECDAA signature as specified in [FIDOEcdaaAlgorithm].TLV Structure Description

5.2.2 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an authenticator during processing of a Sign command. It is then delivered to
FIDO Server intact and parsed by the server. The structure embeds a TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom data to TAG_UAFV1_SIGNED_DATA structure (and thus sign with Attestation
Key) - this data must be included as an additional tag inside TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as an
additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside TAG_UAFV1_SIGNED_DATA.

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION

1.1 UINT16 Length Length of the structure.

1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA

1.2.1 UINT16 Length Length of the structure.

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2
UINT16
AuthenticatorVersion

Vendor assigned authenticator version.

1.2.3.3
UINT8
AuthenticationMode

Authentication Mode indicating whether user explicitly verified or not and indicating if
there is a transaction content or not.

0x01 means that user has been explicitly verified

0x02 means that transaction content has been shown on the display and user
confirmed it by explicitly verifying with authenticator

1.2.3.4
UINT16
SignatureAlgAndEncoding

Signature algorithm and encoding format.

Refer to [FIDORegistry] for information on supported algorithms and their values.

1.2.4 UINT16 Tag TAG_AUTHENTICATOR_NONCE

1.2.4.1 UINT16 Length
Length of authenticator Nonce - must be at least 8 bytes, and NOT longer than 64
bytes.

1.2.4.2 UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by Authenticator

1.2.5 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.5.1 UINT16 Length Length of Final Challenge Hash

1.2.5.2
UINT8[]
FinalChallengeHash

(binary value of) Final Challenge Hash provided in the Command

1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH

1.2.6.1 UINT16 Length
Length of Transaction Content Hash. This length is 0 if AuthenticationMode == 0x01,
i.e. authentication, not transaction confirmation.

1.2.6.2 UINT8[] TCHash (binary value of) Transaction Content Hash

1.2.7 UINT16 Tag TAG_KEYID

1.2.7.1 UINT16 Length Length of KeyID

1.2.7.2 UINT8[] KeyID (binary value of) KeyID

1.2.8 UINT16 Tag TAG_COUNTERS

1.2.8.1 UINT16 Length Length of Counters

Signature Counter.

1.2.8.2 UINT32 SignCounter Indicates how many times this authenticator has performed signatures in the past.

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Length Length of Signature

1.3.2 UINT8[] Signature

Signature calculated using UAuth.priv over TAG_UAFV1_SIGNED_DATA structure.

The entire TAG_UAFV1_SIGNED_DATA content, including the tag and it's length
field, must be included during signature computation.

TLV Structure Description

5.3 UserVerificationToken

This specification doesn't specify how exactly user verification must be performed inside the authenticator. Verification is
considered to be an authenticator, and vendor, specific operation.

This document provides an example on how the "vendor_specific_UserVerify" command (a command which verifies the user
using Authenticator's built-in technology) could be securely bound to UAF Register and Sign commands. This binding is done
through a concept called UserVerificationToken. Such a binding allows decoupling "vendor_specific_UserVerify" and "UAF
Register/Sign" commands from each other.

Here is how it is defined:

The ASM invokes the "vendor_specific_UserVerify" command. The authenticator verifies the user and returns a
UserVerificationToken back.

The ASM invokes UAF.Register/Sign command and passes UserVerificationToken to it. The authenticator verifies the
validity of UserVerificationToken and performs the FIDO operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement this binding in a very
different way. For example an authenticator vendor may decide to append a UAF Register request directly to their
"vendor_specific_UserVerify" command and process both as a single command.

If UserVerificationToken binding is implemented, it should either meet one of the following criteria or implement a mechanism
providing similar, or better security:

UserVerificationToken must allow performing only a single UAF Register or UAF Sign operation.

UserVerificationToken must be time bound, and allow performing multiple UAF operations within the specified time.

6. Commands

This section is non-normative.

NORMATIVE

UAF Authenticators which are designed to be interoperable with ASMs from different vendors must implement the
command interface defined in this section. Examples of such authenticators:

Bound Authenticators in which the core authenticator functionality is developed by one vendor, and the ASM is
developed by another vendor

Roaming Authenticators

NORMATIVE

UAF Authenticators which are tightly integrated with a custom ASM (typically bound authenticators) may implement a
different command interface.

All UAF Authenticator commands and responses are semantically similar - they are all represented as TLV-encoded blobs.
The first 2 bytes of each command is the command code. After receiving a command, the authenticator must parse the first
TLV tag and figure out which command is being issued.

6.1 GetInfo Command

6.1.1 Command Description

NOTE

Examples of such different command interface include native key store or key chain APIs. It is important to declare
whether the Uauth keys are restricted to sign valid FIDO UAF assertions only. See [FIDOMetadataStatement] entry
"isKeyRestricted".

This command returns information about the connected authenticators. It may return 0 or more authenticators. Each
authenticator has an assigned authenticatorIndex which is used in other commands as an authenticator reference.

6.1.2 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length - must be 0 for this command

6.1.3 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1 UINT16 Length Response length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status Code returned by Authenticator

1.3 UINT16 Tag TAG_API_VERSION

1.3.1 UINT16 Length Length of API Version (must be 0x0001)

1.3.2 UINT8 Version
Authenticator API Version (must be 0x01). This version indicates the types of
commands, and formatting associated with them, that are supported by the
authenticator.

1.4 UINT16 Tag TAG_AUTHENTICATOR_INFO (multiple occurrences possible)

1.4.1 UINT16 Length Length of Authenticator Info

1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.4.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.4.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.4.3 UINT16 Tag TAG_AAID

1.4.3.1 UINT16 Length Length of AAID

1.4.3.2 UINT8[] AAID Vendor assigned AAID

1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA

1.4.4.1 UINT16 Length Length of Authenticator Metadata

1.4.4.2 UINT16 AuthenticatorType

Indicates whether the authenticator is bound or roaming, and whether it is first-,
or second-factor only. The ASM must use this information to understand how to
work with the authenticator.

Predefined values:

0x0001 - Indicates second-factor authenticator (first-factor when the flag
is not set)

0x0002 - Indicates roaming authenticator (bound authenticator when the
flag is not set)

0x0004 - Key handles will be stored inside authenticator and won't be
returned to ASM

0x0008 - Authenticator has a built-in UI for enrollment and verification.
ASM should not show its custom UI

0x0010 - Authenticator has a built-in UI for settings, and supports
OpenSettings command.

0x0020 - Authenticator expects TAG_APPID to be passed as an
argument to commands where it is defined as an optional argument

0x0040 - At least one user is enrolled in the authenticator. Authenticators
which don't support the concept of user enrollment (e.g.
USER_VERIFY_NONE, USER_VERIFY_PRESENCE) must always have
this bit set.

0x0080 - Authenticator supports user verification tokens (UVTs) as
described in this document. See section 5.3 UserVerificationToken.

0x0100 - Authenticator only accepts TAG_TRANSACTION_TEXT_HASH
in Sign command. This flag may ONLY be set if

TransactionConfirmationDisplay is set to 0x0003 (see section 6.3 Sign
Command).

1.4.4.3 UINT8 MaxKeyHandles
Indicates maximum number of key handles this authenticator can receive and
process in a single command. This information will be used by the ASM when
invoking SIGN command with multiple key handles.

1.4.4.4 UINT32 UserVerification User Verification method (as defined in [FIDORegistry])

1.4.4.5 UINT16 KeyProtection Key Protection type (as defined in [FIDORegistry]).

1.4.4.6 UINT16 MatcherProtection Matcher Protection type (as defined in [FIDORegistry]).

1.4.4.7
UINT16
TransactionConfirmationDisplay

Transaction Confirmation type (as defined in [FIDORegistry]).

1.4.4.8 UINT16 AuthenticationAlg Authentication Algorithm (as defined in [FIDORegistry]).

1.4.5 UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)

1.4.5.1 UINT16 Length Length of content type.

1.4.5.2 UINT8[] ContentType
Transaction Confirmation Display Content Type. See
[FIDOMetadataStatement] for additional information on the format of this field.

1.4.6 UINT16 Tag
TAG_TC_DISPLAY_PNG_CHARACTERISTICS (optional,multiple occurrences
permitted)

1.4.6.1 UINT16 Length Length of display characteristics information.

1.4.6.2 UINT32 Width See [FIDOMetadataStatement] for additional information.

1.4.6.3 UINT32 Height See [FIDOMetadataStatement] for additional information.

1.4.6.4 UINT8 BitDepth See [FIDOMetadataStatement] for additional information.

1.4.6.5 UINT8 ColorType See [FIDOMetadataStatement] for additional information.

1.4.6.6 UINT8 Compression See [FIDOMetadataStatement] for additional information.

1.4.6.7 UINT8 Filter See [FIDOMetadataStatement] for additional information.

1.4.6.8 UINT8 Interlace See [FIDOMetadataStatement] for additional information.

1.4.6.9 UINT8[] PLTE

A PLTE packet descriptor, defined by 3 byte word.

Offset Length Mnemonic Description

0 1 R Red channel value

1 1 G Green channel value

2 1 B Blue channel value

See [FIDOMetadataStatement] for additional information.

1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME

1.4.7.1 UINT16 Length Length of Assertion Scheme

1.4.7.2 UINT8[] AssertionScheme Assertion Scheme (as defined in [UAFRegistry])

1.4.8 UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)

1.4.8.1 UINT16 Length Length of AttestationType

1.4.8.2 UINT16 AttestationType
Attestation Type values are defined in [UAFRegistry] by the constants with the
prefix TAG_ATTESTATION.

1.4.9 UINT16 Tag TAG_SUPPORTED_EXTENSION_ID (optional, multiple occurrences possible)

1.4.9.1 UINT16 Length Length of SupportedExtensionID

1.4.9.2 UINT8[] SupportedExtensionID SupportedExtensionID as a UINT8[] encoding of a UTF-8 string

TLV Structure Description

NOTE
If Authenticator doesn't support Transaction Confirmation - this value
must be set to 0.

6.1.4 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_PARAMS_INVALID

6.2 Register Command

This command generates a UAF registration assertion. This assertion can be used to register the authenticator with a FIDO
Server.

6.2.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.4.1 UINT16 Length Final Challenge Hash Length

1.4.2 UINT8[] FinalChallengeHash Final Challenge Hash provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_USERNAME

1.5.1 UINT16 Length Length of Username

1.5.2 UINT8[] Username Username provided by ASM (max 128 bytes)

1.6 UINT16 Tag TAG_ATTESTATION_TYPE

1.6.1 UINT16 Length Length of AttestationType

1.6.2 UINT16 AttestationType Attestation Type to be used

1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.7.1 UINT16 Length Length of KHAccessToken

1.7.2 UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)

1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.8.1 UINT16 Length Length of VerificationToken

1.8.2 UINT8[] VerificationToken User verification token

6.2.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD_RESPONSE

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status code returned by Authenticator

1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION

1.3.1 UINT16 Length Length of Assertion

1.3.2 UINT8[] Assertion Registration Assertion (see section TAG_UAFV1_REG_ASSERTION).

1.4 UINT16 Tag TAG_KEYHANDLE (optional)

1.4.1 UINT16 Length Length of key handle

1.4.2 UINT8[] Value (binary value of) key handle

TLV Structure Description

6.2.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_USER_NOT_ENROLLED

UAF_CMD_STATUS_USER_CANCELLED

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

UAF_CMD_STATUS_TIMEOUT

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES

UAF_CMD_STATUS_USER_LOCKOUT

6.2.4 Command Description

The authenticator must perform the following steps (see below table for command structure):

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation display and is able to display AppID, then make sure
Command.TAG_APPID is provided, and show its content on the display when verifying the user. Return
UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID is not provided in such case. Update Command.KHAccessToken with
TAG_APPID:

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function
is a cryptographic hash function.

For example: Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If the user is already enrolled with this authenticator (via biometric enrollment, PIN setup or similar mechanism) - verify
the user. If the verification has been already done in a previous command - make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger
unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

1. If the user doesn't respond to the request to get verified - return UAF_CMD_STATUS_USER_NOT_RESPONSIVE

2. If verification fails - return UAF_CMD_STATUS_ACCESS_DENIED

3. If user explicitly cancels the operation - return UAF_CMD_STATUS_USER_CANCELLED

3. If the user is not enrolled with the authenticator then take the user through the enrollment process. If the enrollment
process cannot be triggered by the authenticator, return UAF_CMD_STATUS_USER_NOT_ENROLLED.

1. If the authenticator can trigger enrollment, but the user doesn't respond to the request to enroll - return
UAF_CMD_STATUS_USER_NOT_RESPONSIVE

2. If the authenticator can trigger enrollment, but enrollment fails - return UAF_CMD_STATUS_ACCESS_DENIED

3. If the authenticator can trigger enrollment, but the user explicitly cancels the enrollment operation - return
UAF_CMD_STATUS_USER_CANCELLED

4. Make sure that Command.TAG_ATTESTATION_TYPE is supported. If not - return
UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv) If the process takes longer than accepted - return
UAF_CMD_STATUS_TIMEOUT

6. Create a RawKeyHandle, for example as follows
1. Add UAuth.priv to RawKeyHandle

2. Add Command.KHAccessToken to RawKeyHandle

3. If a first-factor authenticator, then add Command.Username to RawKeyHandle
If there are not enough resources in the authenticator to perform this task - return
UAF_CMD_STATUS_INSUFFICIENT_RESOURCES.

7. Wrap RawKeyHandle with Wrap.sym key

8. Create TAG_UAFV1_KRD structure

NOTE

This method allows us to avoid storing the AppID separately in the RawKeyHandle.

1. If this is a second-factor roaming authenticator - place key handle inside TAG_KEYID. Otherwise generate a
KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section TAG_UAFV1_REG_ASSERTION)

9. Perform attestation on TAG_UAFV1_KRD based on provided Command.AttestationType.

10. Create TAG_AUTHENTICATOR_ASSERTION
1. Create TAG_UAFV1_REG_ASSERTION

1. Copy all the mandatory fields (see section TAG_UAFV1_REG_ASSERTION)

2. If this is a first-factor roaming authenticator - add KeyID and key handle into internal storage

3. If this is a bound authenticator - return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

11. Return TAG_UAFV1_REGISTER_CMD_RESPONSE
1. Use UAF_CMD_STATUS_OK as status code

2. Add TAG_AUTHENTICATOR_ASSERTION

3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

NORMATIVE

The authenticator must not process a Register command without verifying the user (or enrolling the user, if this is the first
time the user has used the authenticator).

The authenticator must generate a unique UAuth key pair each time the Register command is called.

The authenticator should either store key handle in its internal secure storage or cryptographically wrap it and export it to
the ASM.

For silent authenticators, the key handle must never be stored on a FIDO Server, otherwise this would enable tracking of
users without providing the ability for users to clear key handles from the local device.

If KeyID is not the key handle itself (e.g. such as in case of a second-factor roaming authenticator) - it must be a unique
and unguessable byte array with a maximum length of 32 bytes. It must be unique within the scope of the AAID.

In the case of bound authenticators implementing a different command interface, the ASM could generate a temporary
KeyID and provide it as input to the authenticator in a Register command and change it to the final KeyID (e.g. derived
from the public key) when the authenticator has completed the Register command execution.

If the authenticator doesn't support SignCounter or RegCounter it must set these to 0 in TAG_UAFV1_KRD. The
RegCounter must be set to 0 when a factory reset for the authenticator is performed. The SignCounter must be set to 0
when a factory reset for the authenticator is performed.

6.3 Sign Command

This command generates a UAF assertion. This assertion can be further verified by a FIDO Server which has a prior
registration with this authenticator.

6.3.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_SIGN_CMD

1.1 UINT16 Length Length of Command

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2
UINT8
AuthenticatorIndex

Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

NOTE

If the KeyID is generated randomly (instead of, for example, being derived from a key handle or the public key) - it
should be stored inside RawKeyHandle so that it can be accessed by the authenticator while processing the Sign
command.

1.4.1 UINT16 Length Length of Final Challenge Hash

1.4.2
UINT8[]
FinalChallengeHash

(binary value of) Final Challenge Hash provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)

1.5.1 UINT16 Length Length of Transaction Content

1.5.2
UINT8[]
TransactionContent

(binary value of) Transaction Content provided by the ASM

1.5 UINT16 Tag

TAG_TRANSACTION_CONTENT_HASH (optional and mutually exclusive with
TAG_TRANSACTION_CONTENT). This TAG is only allowed for authenticators not able
to display the transaction text, i.e. authenticator with tcDisplay=0x0003 (i.e. flags
TRANSACTION_CONFIRMATION_DISPLAY_ANY and
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE are set).

1.5.1 UINT16 Length Length of Transaction Content Hash

1.5.2
UINT8[]
TransactionContentHash

(binary value of) Transaction Content Hash provided by the ASM

1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.6.1 UINT16 Length Length of KHAccessToken

1.6.2
UINT8[]
KHAccessToken

(binary value of) KHAccessToken provided by ASM (max 32 bytes)

1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.7.1 UINT16 Length Length of the User Verification Token

1.7.2
UINT8[]
VerificationToken

User Verification Token

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)

1.8.1 UINT16 Length Length of KeyHandle

1.8.2 UINT8[] KeyHandle (binary value of) key handle

TLV Structure Description

6.3.2 Command Response

TLV
Structure

Description

1
UINT16
Tag

TAG_UAFV1_SIGN_CMD_RESPONSE

1.1
UINT16
Length

Entire Length of Command Response

1.2
UINT16
Tag

TAG_STATUS_CODE

1.2.1
UINT16
Length

Status Code Length

1.2.2
UINT16
Value

Status code returned by authenticator

1.3
(choice
1)

UINT16
Tag

TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)

This TLV tag can be used to convey multiple (>=1) {Username, Keyhandle} entries. Each
occurance of TAG_USERNAME_AND_KEYHANDLE contains one pair.

If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present

1.3.1
UINT16
Length

Length of the structure

1.3.2
UINT16
Tag

TAG_USERNAME

1.3.2.1
UINT16
Length

Length of Username

1.3.2.2
UINT8[]
Username

Username

1.3.3
UINT16
Tag

TAG_KEYHANDLE

1.3.3.1
UINT16
Length

Length of KeyHandle

1.3.3.2
UINT8[]
KeyHandle

(binary value of) key handle

1.3
(choice
2)

UINT16
Tag

TAG_AUTHENTICATOR_ASSERTION (optional)

If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present

1.3.1
UINT16
Length

Assertion Length

1.3.2
UINT8[]
Assertion

Authentication assertion generated by the authenticator (see section
TAG_UAFV1_AUTH_ASSERTION).

TLV
Structure

Description

6.3.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_USER_NOT_ENROLLED

UAF_CMD_STATUS_USER_CANCELLED

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

UAF_CMD_STATUS_PARAMS_INVALID

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

UAF_CMD_STATUS_TIMEOUT

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

UAF_CMD_STATUS_USER_LOCKOUT

6.3.4 Command Description

Authenticators must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation display, and is able to display the AppID - make sure
Command.TAG_APPID is provided, and show it on the display when verifying the user. Return
UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID is not provided in such case.

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such a mixing
function is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If the user is already enrolled with the authenticator (such as biometric enrollment, PIN setup, etc.) then verify the user.
If the verification has already been done in one of the previous commands, make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger
unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

1. If the user doesn't respond to the request to get verified - return UAF_CMD_STATUS_USER_NOT_RESPONSIVE

2. If verification fails - return UAF_CMD_STATUS_ACCESS_DENIED

3. If the user explicitly cancels the operation - return UAF_CMD_STATUS_USER_CANCELLED

NOTE

First-factor authenticators should implement this command in two stages.

1. The first stage will be executed only if the authenticator finds out that there are multiple key handles after filtering
with the KHAccessToken. In this stage, the authenticator must return a list of usernames along with
corresponding key handles

2. In the second stage, after the user selects a username, this command will be called with a single key handle and
will return a UAF assertion based on this key handle

If a second-factor authenticator is presented with more than one valid key handles, it must exercise only the first one
and ignore the rest.

The command is implemented in two stages to ensure that only one assertion can be generated for each command
invocation.

3. If the user is not enrolled then return UAF_CMD_STATUS_USER_NOT_ENROLLED

4. Unwrap all provided key handles from Command.TAG_KEYHANDLE values using Wrap.sym
1. If this is a first-factor roaming authenticator:

If Command.TAG_KEYHANDLE are provided, then the items in this list are KeyIDs. Use these KeyIDs to
locate key handles stored in internal storage

If no Command.TAG_KEYHANDLE are provided - unwrap all key handles stored in internal storage

If no RawKeyHandles are found - return UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.

5. Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken ==
Command.KHAccessToken)

6. If the number of remaining RawKeyHandles is 0, then fail with UAF_CMD_STATUS_ACCESS_DENIED

7. If number of remaining RawKeyHandles is > 1
1. If this authenticator has a user interface and wants to use it for this purpose: Ask the user which of the usernames

he wants to use for this operation. Select the related RawKeyHandle and jump to step #8.

2. If this is a second-factor authenticator, then choose the first RawKeyHandle only and jump to step #8.

3. Copy {Command.KeyHandle, RawKeyHandle.username} for all remaining RawKeyHandles into
TAG_USERNAME_AND_KEYHANDLE tag.

If this is a first-factor roaming authenticator, then the returned TAG_USERNAME_AND_KEYHANDLEs must
be ordered by the key handle registration date (the latest-registered key handle must come the latest).

4. Copy TAG_USERNAME_AND_KEYHANDLE into TAG_UAFV1_SIGN_CMD_RESPONSE and return

8. If number of remaining RawKeyHandles is 1
1. If the Uauth key related to the RawKeyHandle cannot be used or disappeared and cannot be restored - return

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.

2. Create TAG_UAFV1_SIGNED_DATA and set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01

3. If TransactionContent is not empty
If this is a silent authenticator, then return UAF_CMD_STATUS_ACCESS_DENIED

If the authenticator doesn't support transaction confirmation (it has set TransactionConfirmationDisplay to 0
in the response to a GetInfo Command), then return UAF_CMD_STATUS_ACCESS_DENIED

If the authenticator has a built-in transaction confirmation display, then show Command.TransactionContent
and Command.TAG_APPID (optional) on display and wait for the user to confirm it:

Return UAF_CMD_STATUS_USER_NOT_RESPONSIVE if the user doesn't respond.

Return UAF_CMD_STATUS_USER_CANCELLED if the user cancels the transaction.

Return UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if the provided transaction content cannot
be rendered.

Compute hash of TransactionContent

TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)

Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

4. If TransactionContent is not set, but TransactionContentHash is not empty
If this is a silent authenticator, then return UAF_CMD_STATUS_ACCESS_DENIED

If the conditions for receiving TransactionContentHash are not satisfied (if the authenticator's
TransactionConfirmationDisplay is NOT set to 0x0003 in the response to a GetInfo Command), then return
UAF_CMD_STATUS_PARAMS_INVALID

TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
Command.TransactionContentHash

Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

5. Create TAG_UAFV1_AUTH_ASSERTION
Fill in the rest of TAG_UAFV1_SIGNED_DATA fields

Increment SignCounter and put into TAG_UAFV1_SIGNED_DATA

NOTE

This should not occur as the Uauth key must be protected by the authenticator's user verification method. If the
authenticator supports alternative user verification methods (e.g. alternative password and finger print verification
and the alternative password must be provided before enrolling a finger and only the finger print is verified as part
of the Register or Sign operation, then the authenticator should automatically and implicitly ask the user to enroll
the modality required in the operation (instead of just returning an error).

NOTE

If two or more key handles with the same username are found, a first-factor roaming authenticator
may only keep the one that is registered most recently and delete the rest. This avoids having
unusable (old) private key in the authenticator which (surprisingly) might become active after
deregistering the newly generated one.

Copy all the mandatory fields (see section TAG_UAFV1_AUTH_ASSERTION)

If TAG_UAFV1_SIGNED_DATA.AuthenticationMode == 0x01 - set
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Length to 0

Sign TAG_UAFV1_SIGNED_DATA with UAuth.priv
If these steps take longer than expected by the authenticator - return UAF_CMD_STATUS_TIMEOUT.

6. Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

7. Copy TAG_AUTHENTICATOR_ASSERTION into TAG_UAFV1_SIGN_CMD_RESPONSE and return

NORMATIVE

Authenticator must not process Sign command without verifying the user first.

Authenticator must not reveal Username without verifying the user first.

Bound authenticators must not process Sign command without validating KHAccessToken first.

Bound authenticators implementing a different command interface, may implement a different method for binding keys to a
specific AppID, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App). See [UAFASM] section "KHAccessToken" for more details.

UAuth.priv keys must never leave Authenticator's security boundary in plaintext form. UAuth.priv protection boundary is
specified in Metadata.keyProtection field in Metadata [FIDOMetadataStatement]).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display - it must display provided
transaction content in this display and include the hash of content inside TAG_UAFV1_SIGNED_DATA structure.

Silent Authenticators must not operate in first-factor mode in order to follow the assumptions made in [FIDOSecRef].
However, a native App or web page could "cache" the keyHandle or a Cookie and hence would be considered a first-
factor that could be combined with a Silent Authenticator (when doing do).

If Authenticator doesn't support SignCounter, then it must set it to 0 in TAG_UAFV1_SIGNED_DATA. The SignCounter
must be set to 0 when a factory reset for the Authenticator is performed, in order to follow the assumptions made in
[FIDOSecRef].

Some Authenticators might support Transaction Confirmation display functionality not inside the Authenticator but within
the boundaries of ASM. Typically these are software based Transaction Confirmation displays. When processing the Sign
command with a given transaction such Authenticators should assume that they do have a builtin Transaction
Confirmation display and should include the hash of transaction content in the final assertion without displaying anything
to the user. Also, such Authenticator's Metadata file must clearly indicate the type of Transaction Confirmation display.
Typically the flag of Transaction Confirmation display will be TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE. See [FIDORegistry] for flags describing
Transaction Confirmation Display type.

6.4 Deregister Command

This command deletes a registered UAF credential from Authenticator.

6.4.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 UINT16 Length Length of KeyID

1.4.2 UINT8[] KeyID (binary value of) KeyID provided by ASM

1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.5.1 UINT16 Length Length of KeyHandle Access Token

1.5.2 UINT8[] KHAccessToken (binary value of) KeyHandle Access Token provided by ASM (max 32 bytes)

TLV Structure Description

6.4.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.4.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

6.4.4 Command Description

Authenticator must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a Transaction Confirmation display and is able to display AppID, then make sure
Command.TAG_APPID is provided. Return UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID is not provided in
such case.

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function
is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If this Authenticator doesn't store key handles internally, then return UAF_CMD_STATUS_CMD_NOT_SUPPORTED

3. If the length of TAG_KEYID is zero (i.e., 0000 Hex), then
if TAG_APPID is provided, then

for each KeyHandle that maps to TAG_APPID do
1. if RawKeyHandle.KHAccessToken == Command.KHAccessToken, then delete KeyHandle from

internal storage, otherwise, note an error occured

if an error occured, then return UAF_CMD_STATUS_ACCESS_DENIED

if TAG_APPID is not provided, then delete all KeyHandles from internal storage where
RawKeyHandle.KHAccessToken == Command.KHAccessToken

Go to step 5

4. If the length of TAG_KEYID is NOT zero, then
Find KeyHandle that matches Command.KeyID

Ensure that RawKeyHandle.KHAccessToken == Command.KHAccessToken
If not, then return UAF_CMD_STATUS_ACCESS_DENIED

Delete this KeyHandle from internal storage

5. Return UAF_CMD_STATUS_OK

NORMATIVE

Bound authenticators must not process Deregister command without validating KHAccessToken first.

Bound authenticators implementing a different command interface, may implement a different method for binding keys to a
specific AppID, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App). See [UAFASM] section "KHAccessToken" for more details.

Deregister command should not explicitly reveal whether the provided keyID was registered or not.

NOTE

The authenticator must unwrap the relevant KeyHandles using Wrap.sym as needed.

NOTE
This command never returns UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY as this could reveal the keyID registration

6.5 OpenSettings Command

This command instructs the Authenticator to open its built-in settings UI (e.g. change PIN, enroll new fingerprint, etc).

The Authenticator must return UAF_CMD_STATUS_CMD_NOT_SUPPORTED if it doesn't support such functionality.

If the command structure is invalid (e.g. cannot be parsed correctly), the authenticator must return
UAF_CMD_STATUS_PARAMS_INVALID.

6.5.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

6.5.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.5.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

7. KeyIDs and key handles

This section is non-normative.

There are 4 types of Authenticators defined in this document and due to their specifics they behave differently while
processing commands. One of the main differences between them is how they store and process key handles. This section
tries to clarify it by describing the behavior of every type of Authenticator during the processing of relevant command.

7.1 first-factor Bound Authenticator

Register
Command

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).

Sign
Command

When there is no user session (no cookies, a clear machine) the Server doesn't provide any KeyID (since it
doesn't know which KeyIDs to provide). In this scenario the ASM selects all key handles and passes them to
Authenticator.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs. ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.

Deregister
Command

Since Authenticator doesn't store key handles, then there is nothing to delete inside Authenticator.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

status.

7.2 2ndF Bound Authenticator

Register
Command

Authenticator might not store key handles. Instead the KeyHandle might be returned to the ASM and stored in
the ASM database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
user session (no cookies, a clear machine); unless, for example, the user identifies their account and the
server is then able to provide a KeyID.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs. ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.

Deregister
Command

If the Authenticator doesn't store key handles, then there is nothing to delete inside it.

The ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.3 first-factor Roaming Authenticator

Register
Command

Authenticator stores key handles inside its internal storage. KeyHandle is never returned back to ASM.

KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle)

Sign
Command

When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID (since it
doesn't know which KeyIDs to provide). In this scenario Authenticator uses all key handles that correspond to
the provided AppID.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs. Authenticator
selects key handles that correspond to provided KeyIDs and uses them.

Deregister
Command

Authenticator finds the right KeyHandle and deletes it from its storage.

7.4 2ndF Roaming Authenticator

Register
Command

Typically neither the Authenticator nor the ASM store key handles. Instead the KeyHandle is sent to the
Server (in place of KeyID) and stored in User's record. From Server's perspective it's a KeyID. In fact the
KeyID is identical to the KeyHandle.

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
user session (no cookies, a clear machine).

During step-up authentication Server provides KeyIDs which are in fact key handles. Authenticator finds the
right KeyHandle and uses it.

Deregister
Command

Since Authenticator and ASM don't store key handles, then there is nothing to delete on client side.

8. Access Control for Commands

This section is normative.

FIDO Authenticators may implement various mechanisms to guard access to privileged commands.

The following table summarizes the access control requirements for each command.

All UAF Authenticators must satisfy the access control requirements defined below.

Authenticator vendors may offer additional security mechanisms.

Terms used in the table:

NoAuth - no access control

UserVerify - explicit user verification

KHAccessToken - must be known to the caller (or alternative method with similar security level must be used)

KeyHandleList - must be known to the caller

KeyID - must be known to the caller

Command
First-factor Bound

Authenticator
2ndF Bound

Authenticator
First-factor Roaming

Authenticator
2ndF Roaming
Authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Sign
UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken

UserVerify
KHAccessToken
KeyHandleList

Deregister
KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

Table 1: Access Control for Commands

9. Considerations

This section is non-normative.

9.1 Algorithms and Key Sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

9.2 Indicating the Authenticator Model

Some authenticators (e.g. TPMv2) do not have the ability to include their model identifier (i.e. vendor ID and model name) in
attested messages (i.e. the to-be-signed part of the registration assertion). The TPM's endorsement key certificate typically
contains that information directly or at least it allows the model to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator model (i.e. AAID).

If the authenticator cannot securely include its model (i.e. AAID) in the registration assertion (i.e. in the KRD object), we
require the ECDAA-Issuers public key (ipkk) to be dedicated to one single authenticator model (identified by its AAID).

Using this method, the issuer public key is uniquely related to one entry in the Metadata Statement and can be used by the
FIDO server to get a cryptographic proof of the Authenticator model.

10. Relationship to other standards

This section is non-normative.

The existing standard specifications most relevant to UAF authenticator are [TPM], [TEE] and [SecureElement].

Hardware modules implementing these standards may be extended to incorporate UAF functionality through their
extensibility mechanisms such as by loading secure applications (trustlets, applets, etc) into them. Modules which do not
support such extensibility mechanisms cannot be fully leveraged within UAF framework.

10.1 TEE

In order to support UAF inside TEE a special Trustlet (trusted application running inside TEE) may be designed which
implements UAF Authenticator functionality specified in this document and also implements some kind of user verification
technology (biometric verification, PIN or anything else).

An additional ASM must be created which knows how to work with the Trustlet.

10.2 Secure Elements

In order to support UAF inside Secure Element (SE) a special Applet (trusted application running inside SE) may be designed
which implements UAF Authenticator functionality specified in this document and also implements some kind of user
verification technology (biometric verification, PIN or similar mechanisms).

An additional ASM must be created which knows how to work the Applet.

10.3 TPM

TPMs typically have a built-in attestation capability however the attestation model supported in TPMs is currently incompatible
with UAF's basic attestation model. The future enhancements of UAF may include compatible attestation schemes.

Typically TPMs also have a built-in PIN verification functionality which may be leveraged for UAF. In order to support UAF
with an existing TPM module, the vendor should write an ASM which:

Translates UAF data to TPM data by calling TPM APIs

Creates assertions using TPMs API

Reports itself as a valid UAF authenticator to FIDO UAF Client

A special AssertionScheme, designed for TPMs, must be also created (see [FIDOMetadataStatement]) and published by
FIDO Alliance. When FIDO Server receives an assertion with this AssertionScheme it will treat the received data as TPM-
generated data and will parse/validate it accordingly.

10.4 Unreliable Transports

The command structures described in this document assume a reliable transport and provide no support at the application-
layer to detect or correct for issues such as unreliable ordering, duplication, dropping or modification of messages. If the
transport layer(s) between the ASM and Authenticator are not reliable, the non-normative private contract between the ASM
and Authenticator may need to provide a means to detect and correct such errors.

A. Security Guidelines

This section is non-normative.

Category Guidelines

AppIDs and
KeyIDs

Registered AppIDs and KeyIDs must not be returned by an authenticator in plaintext, without first
performing user verification.

If an attacker gets physical access to a roaming authenticator, then it should not be easy to read out
AppIDs and KeyIDs.

Attestation
Private Key

Authenticators must protect the attestation private key as a very sensitive asset. The overall security of
the authenticator depends on the protection level of this key.

It is highly recommended to store and operate this key inside a tamper-resistant hardware module, e.g.
[SecureElement].

It is assumed by registration assertion schemes, that the authenticator has exclusive control over the data
being signed with the attestation key.

FIDO Authenticators must ensure that the attestation private key:

1. is only used to attest authentication keys generated and protected by the authenticator, using the
FIDO-defined data structures, KeyRegistrationData.

2. is never accessible outside the security boundary of the authenticator.

Attestation must be implemented in a way such that two different relying parties cannot link registrations,
authentications or other transactions (see [UAFProtocol]).

Certifications
Vendors should strive to pass common security standard certifications with authenticators, such as
[FIPS140-2], [CommonCriteria] and similar. Passing such certifications will positively impact the UAF
implementation of the authenticator.

Cryptographic
(Crypto)
Kernel

The crypto kernel is a module of the authenticator implementing cryptographic functions (key generation,
signing, wrapping, etc) necessary for UAF, and having access to UAuth.priv, Attestation Private Key and
Wrap.sym.

For optimal security, this module should reside within the same security boundary as the UAuth.priv,
Att.priv and Wrap.sym keys. If it resides within a different security boundary, then the implementation
must guarantee the same level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted execution environment
[TEE].

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

Software-based authenticators must make sure to use state of the art code protection and obfuscation
techniques to protect this module, and whitebox encryption techniques to protect the associated keys.

Authenticators need good random number generators using a high quality entropy source, for:

1. generating authentication keys

2. generating signatures

3. computing authenticator-generated challenges

The authenticator's random number generator (RNG) should be such that it cannot be disabled or
controlled in a way that may cause it to generate predictable outputs.

If the authenticator doesn't have sufficient entropy for generating strong random numbers, it should fail

safely.

See the section of this table regarding random numbers

KeyHandle
It is highly recommended to use authenticated encryption while wrapping key handles with Wrap.sym.
Algorithms such as AES-GCM and AES-CCM are most suitable for this operation.

Liveness
Detection /
Presentation
Attack
Detection

The user verification method should include liveness detection [NSTCBiometrics], i.e. a technique to
ensure that the sample submitted is actually from a (live) user.

In the case of PIN-based matching, this could be implemented using [TEESecureDisplay] in order to
ensure that malware can't emulate PIN entry.

Matcher

By definition, the matcher component is part of the authenticator. This does not impose any restrictions
on the authenticator implementation, but implementers need to make sure that there is a proper security
boundary binding the matcher and the other parts of the authenticator together.

Tampering with the matcher module may have significant security consequences. It is highly
recommended for this module to reside within the integrity boundaries of the authenticator, and be
capable of detecting tampering.

It is highly recommended to run this module inside a trusted execution environment [TEE] or inside a
secure element [SecureElement].

Authenticators which have separated matcher and CryptoKernel modules should implement mechanisms
which would allow the CryptoKernel to securely receive assertions from the matcher module indicating
the user's local verification status.

Software based Authenticators (if not in trusted execution environment) must make sure to use state of
the art code protection and obfuscation techniques to protect this module.

When an Authenticator receives an invalid UserVerificationToken it should treat this as an attack, and
invalidate the cached UserVerificationToken.

A UserVerificationToken should have a lifetime not exceeding 10 seconds.

Authenticators must implement anti-hammering protections for their matchers.

Biometrics based authenticators must protect the captured biometrics data (such as fingerprints) as well
as the reference data (templates), and make sure that the biometric data never leaves the security
boundaries of authenticators.

Matchers must only accept verification reference data enrolled by the user, i.e. they must not include any
default PINs or default biometric reference data.

Private Keys
(UAuth.priv
and
Attestation
Private Key)

This document requires (a) the attestation key to be used for attestation purposes only and (b) the
authentication keys to be used for FIDO authentication purposes only. The related to-be-signed objects
(i.e. Key Registration Data and SignData) are designed to reduce the likelihood of such attacks:

1. They start with a tag marking them as specific FIDO objects

2. They include an authenticator-generated random value. As a consequence all to-be-signed objects
are unique with a very high probability.

3. They have a structure allowing only very few fields containing uncontrolled values, i.e. values which
are neither generated nor verified by the authenticator

Random
Numbers

The FIDO Authenticator uses its random number generator to generate authentication key pairs, client
side challenges, and potentially for creating ECDSA signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the FIDO Authenticator to work with good random
numbers only.

The (pseudo-)random numbers used by authenticators should successfully pass the randomness test
specified in [Coron99] and they should follow the guidelines given in [SP800-90b].

Additionally, authenticators may choose to incorporate entropy provided by the FIDO Server via the
ServerChallenge sent in requests (see [UAFProtocol]).

When mixing multiple entropy sources, a suitable mixing function should be used, such as those
described in [RFC4086].

The RegCounter provides an anti-fraud signal to the relying parties. Using the RegCounter, the relying party
can detect authenticators which have been excessively registered.

Category Guidelines

RegCounter

If the RegCounter is implemented: ensure that

1. it is increased by any registration operation and

2. it cannot be manipulated/modified otherwise (e.g. via API calls, etc.)

A registration counter should be implemented as a global counter, i.e. one covering registrations to all
AppIDs. This global counter should be increased by 1 upon any registration operation.

Note: The RegCounter value should not be decreased by Deregistration operations.

SignCounter

When an attacker is able to extract a Uauth.priv key from a registered authenticator, this key can be used
independently from the original authenticator. This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent cloning authenticators. In
some situations the protection measures might not be sufficient.

If the Authenticator maintains a signature counter SignCounter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If the SignCounter is implemented: ensure that

1. It is increased by any authentication / transaction confirmation operation and

2. it cannot be manipulated/modified otherwise (e.g. API calls, etc.)

Signature counters should be implemented that are dedicated for each private key in order to preserve
the user's privacy.

A per-key SignCounter should be increased by 1, whenever the corresponding UAuth.priv key signs an
assertion.

A per-key SignCounter should be deleted whenever the corresponding UAuth key is deleted.

If the authenticator is not able to handle many different signature counters, then a global signature
counter covering all private keys should be implemented. A global SignCounter should be increased by a
random positive integer value whenever any of the UAuth.priv keys is used to sign an assertion.

Transaction
Confirmation
Display

A transaction confirmation display must ensure that the user is presented with the provided transaction
content, e.g. not overlaid by other display elements and clearly recognizable. See [CLICKJACKING] for
some examples of threats and potential counter-measures

For more guidelines refer to [TEESecureDisplay].

UAuth.priv

An authenticator must protect all UAuth.priv keys as its most sensitive assets. The overall security of the
authenticator depends significantly on the protection level of these keys.

It is highly recommended that this key is generated, stored and operated inside a trusted execution
environment.

In situations where physical attacks and side channel attacks are considered within the threat model, it is
highly recommended to use a tamper-resistant hardware module.

FIDO Authenticators must ensure that UAuth.priv keys:

1. are specific to the particular account at one relying party (relying party is identified by an AppID)

2. are generated based on good random numbers with sufficient entropy. The challenge provided by
the FIDO Server during registration and authentication operations should be mixed into the entropy
pool in order to provide additional entropy.

3. are never directly revealed, i.e. always remain in exclusive control of the FIDO Authenticator

4. are only being used for the defined authentication modes, i.e.
1. authenticating to the application (as identified by the AppID) they have been generated for, or

2. confirming transactions to the application (as identified by AppID) they have been generated
for, or

3. are only being used to create the FIDO defined data structures, i.e. KRD, SignData.

Username
A username must not be returned in plaintext in any condition other than the conditions described for the

Category Guidelines

NOTE

There are multiple reasons why the SignCounter value could be 0 in a registration response. A
SignCounter value of 0 in an authentication response indicates that the authenticator doesn't
support the SignCounter concept.

SIGN command. In all other conditions usernames must be stored within a KeyHandle.

Verification
Reference
Data

The verification reference data, such as fingerprint templates or the reference value of a PIN, are by
definition part of the authenticator. This does not impose any particular restrictions on the authenticator
implementation, but implementers need to make sure that there is a proper security boundary binding all
parts of the authenticator together.

Wrap.sym

If the authenticator has a wrapping key (Wrap.sym), then the authenticator must protect this key as its
most sensitive asset. The overall security of the authenticator depends on the protection of this key.

Wrap.sym key strength must be equal or higher than the strength of secrets stored in a RawKeyHandle.
Refer to [SP800-57] and [SP800-38F] publications for more information about choosing the right wrapping
algorithm and implementing it correctly.

It is highly recommended to generate, store and operate this key inside a trusted execution environment.

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

If the authenticator uses Wrap.sym, it must ensure that unwrapping corrupted KeyHandle and unwrapping
data which has invalid contents (e.g. KeyHandle from invalid origin) are indistinguishable to the caller.

Category Guidelines

B. Table of Figures

Fig. 1 UAF Authenticator Commands

Fig. 2 FIDO Authenticator Logical Sub-Components

C. References

C.1 Normative references

[Coron99]
J. Coron; D. Naccache. An accurate evaluation of Maurer's universal test. February 1999. URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-
20180220.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[SP800-90b]
Elaine Barker; John Kelsey. NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for
Random Bit Generation. April 2016. URL: http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0.
Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-
20180220.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

C.2 Informative references

[CLICKJACKING]
D. Lin-Shung Huang; C. Jackson; A. Moshchuk; H. Wang, S. Schlechter. Clickjacking: Attacks and Defenses. July 2012.
URL: https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf

[CommonCriteria]
CCRA Members. Common Criteria Publications. Work in Progress. URL: http://www.commoncriteriaportal.org/cc/

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:

http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
[NSTCBiometrics]

Biometrics Glossary. 14 September 2006. URL: http://biometrics.gov/Documents/Glossary.pdf
[RFC4086]

D. Eastlake 3rd; J. Schiller; S. Crocker. Randomness Requirements for Security (RFC 4086). June 2005. URL:
http://www.ietf.org/rfc/rfc4086.txt

[SP800-38F]
M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-57]
Recommendation for Key Management – Part 1: General (Revision 3). SP800-57. July 2012. U.S. Department of
Commerce/National Institute of Standards and Technology. URL: https://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57_part1_rev3_general.pdf

[SecureElement]
GlobalPlatform Card Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEE]
GlobalPlatform Trusted Execution Environment Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications. URL: https://www.globalplatform.org/specifications.asp

[TPM]
TPM Main Specification. URL: http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-
20180220.html

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

FIDO UAF APDU

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-apdu-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-apdu-v1.2-rd-20171128.html

Editor:
Naama Bak, Morpho

Contributors:
Virginie Galindo, Gemalto
Rolf Lindemann, Nok Nok Labs, Inc.
Ullrich Martini, Giesecke & Devrient
Chris Edwards, Intercede
Jeff Hodges, Paypal

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

This specification defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units (APDUs) thus facilitating UAF
authenticators based on Secure Elements.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification
solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking
permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Introduction

3. SE-based Authenticator Implementation Use Cases
3.1 Hybrid SE Authenticator

3.1.1 Architecture of the Hybrid SE Authenticator

3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

4. FIDO UAF Applet and APDU commands
4.1 UAF Applet in the Authenticator

4.1.1 Application Identifier

4.1.2 User Verification

4.1.3 Cryptographic operations

4.2 APDU Commands for FIDO UAF
4.2.1 Class byte coding

4.2.2 APDU command "UAF"
4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

4.2.2.2 Response message and status conditions of an "UAF" APDU command

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-apdu-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-apdu-v1.2-rd-20171128.html
mailto:naama.bak@morpho.com
https://www.morpho.com/
mailto:Virginie.Galindo@gemalto.com
https://www.gemalto.com/
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:Ullrich.Martini@gi-de.com
https://www.gi-de.com/
mailto:Chris.Edwards@intercede.com
https://www.intercede.com/
mailto:jeff.hodges@paypal.com
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

4.2.3 APDU Command "SELECT"

4.2.4 APDU Command "VERIFY"
4.2.4.1 Command structure

4.2.4.2 Response message and status conditions

4.3 Managing Long APDU Commands and Responses
4.3.1 ISO Variant

4.3.2 Proprietary Variant

5. Security considerations

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

All TLV structures defined in this document must be encoded in little-endian format.

All APDU defined in this document must be encoded as defined in [ISOIEC-7816-4-2013].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Introduction

This section is non-normative.

This specification defines the interface between the FIDO UAF Authenticator Specific Module (ASM) [UAFASM] and authenticators based upon
"Secure Element" technology. The applicable secure element form factors are UICC (SIM card), embedded Secure Element (eSE), µSD, NFC
card, and USB token. Their common characteristic is they communicate using Application Programming Data Units (APDU) in compliance with
[ISOIEC-7816-4-2013].

Implementation of this specification is optional in the UAF framework, however, products claiming to implement the transport of UAF messages
over APDUs should implement it.

This specification first describes the various fashions in which Secure Elements can be incorporated into UAF authenticator implementations —
known as SE-based authenticators or just SE authenticators — and which components are responsible for handling user verification as well as
cryptographic operations. The specification then describes the overall architecture of an SE-based authenticator stack from the ASM down to the
secure element, the role of the "UAF Applet" running in the secure element, and outlines the nominal communication flow between the ASM and
the SE. It then defines the mapping of UAF Authenticator commands to APDUs, as well as the FIDO-specific variants of the VERIFY APDU
command.

3. SE-based Authenticator Implementation Use Cases

This section is non-normative.

Secure elements can be leveraged in different scenarios in the UAF technology. It can support user gestures (used to unlock access to FIDO
credentials) or it can be involved in the actual cryptographic operations related to FIDO authentication. In this specification, we will be considering
the following SE-based authenticator implementation use cases:

1. The Secure Element (SE) is the (silent) Authenticator.

2. The SE is part of the Authenticator which is composed of a Trusted Application (TEE) based User Verification component, potentially a
TEE based transaction confirmation display and the crypto kernel inside the SE (Hybrid SE Authenticator).

3. The authenticator (Hybrid SE Authenticator) consists of
the SE implementing the matcher and the crypto kernel

and a specific software module (e.g. running on the FIDO User Device) to capture the user verification data (e.g. PIN, Face,
Fingerprint).

3.1 Hybrid SE Authenticator

In FIDO UAF, the access to credentials for performing the actual authentication can be protected by a user verification step. This user verification
step can be based on a PIN, a biometric or other methods. The authenticator functionality might be implemented in different components,
including combinations such as TEE and SE, or fingerprint sensor and SE. In that case the SE implements only a part of the authenticator
functionality.

NOTE

This specification does not define how an SE-based authenticator stack may be implemented, e.g., its integration with TEE or biometric
sensors. However, SE-based authenticator vendors should reflect such implementation characteristics in the authenticator metadata such
that FIDO Relying Parties wishing to be informed of said characteristics may have access to it.

Examples of Hybrid SE authenticators are:

1. User PIN code capture and verification are implemented entirely in a TEE relying on Trusted User Interface and secure storage capabilities
of the TEE and, once the PIN code is verified, the FIDO UAF crypto operations are performed in the SE.

2. User fingerprint is captured via a fingerprint sensor, the fingerprint match is performed in the TEE, relying on matching algorithms. Once
the fingerprint has been positively checked, the cryptographic operations are executed in the Secure Element.

3. The user verification is implemented as match-on-chip in separate hardware and FIDO UAF cryptographic operations are implemented in
the SE.

In all those cases, the hybrid nature of the authenticator will be managed by the software-based host, regardless of its nature (TEE, SW,
Biometric sensor..). There are a number of possible interactions between the ASM and the SE actually implementing the verification and the
cryptographic operations to consider within those use cases.

1. PIN user verification where the user interaction for the PIN entry is performed externally to the SE. The PIN may then be passed within a
VERIFY command to the SE, followed by the actual cryptographic operations (such as the Register and Sign UAF authenticator
commands).

2. Biometric user verification where the sample capture and matching is performed externally to the SE (e.g. in TEE or in a match-on-chip FP
sensor). This would then only need to send to the SE the actual cryptographic operation needed in this session (such as the Register and
Sign UAF authenticator commands).

3. User verification sample (Faceprint, Fingerprint..) capture is performed externally to the SE. The sample is then sent to a match-on-card
applet in the SE that behaves as a global PIN to enable access to the cryptographic operation required within this session.

3.1.1 Architecture of the Hybrid SE Authenticator

In order to support an Hybrid SE Authenticator, a dedicated software-based host must be created which knows how the SE applet works. The
communication between the SE applet and the host is defined based on [ISOIEC-7816-4-2013]. Whether a PC or mobile device the architecture
is still the same, as defined below:

Application Layer : This component is responsible for acquiring the user verification sample and mapping UAF commands to APDU
commands.

Communication layer : This is the [ISOIEC-7816-4-2013] APDUs interface, which provides methods to list and select readers, connect to a
Secure Element and interact with it.

SE Access OS APIs : OMA, PC/SC, NFC API, CCID…

Secure Element : UICC, micro SD, eSE, Dual Interface card…

Fig. 1 Architecture of Hybrid SE Authenticator

APDU command-response paire are handled as indicated in [ISOIEC-7816-4-2013].

NOTE

The reason for using such hybrid configuration is that Secure Elements do not have any user interface and hence cannot directly
distinguish physical user interaction from programmatic communication (e.g. by malware). The ability to require a physical user interaction
that cannot be emulated by malware is essential for protecting against scalable attacks (see [FIDOSecRef]). On the other hand, TEEs (or
biometric sensors implemented in separate hardware) which can provide a trusted user interface typically do not offer the same level of
key protection as Secure Elements.

Strictly spoken, a Hybrid SE Authenticator (voluntarily) uses the Authenticator Command interface [UAFAuthnrCommands] inside the
authenticator, e.g. between the crypto kernel and the user verification component.

3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

The host is the entity communicating with the SE and which knows how the SE and the applet running in the SE can be accessed. The host
could be a Trusted Application (TA) which runs inside a TEE or simply an application which runs in the normal world.

The following diagram illustrates how the Host of the Hybrid SE Authenticator may map the UAF commands to APDU commands. In this
diagram, the User Verification Module is considered inside the SE applet.

Fig. 2 Communication flow between the ASM and the Hybrid SE Authenticator

4. FIDO UAF Applet and APDU commands

This section is normative.

4.1 UAF Applet in the Authenticator

4.1.1 Application Identifier

The FIDO UAF AID is defined in [UAFRegistry].

4.1.2 User Verification

The User verification is based on the submission of a PIN/password (i.e., knowledge based) or a biometric template (i.e., biometric based).

In this document, the envisaged user verification methods are PIN and biometric based.

4.1.3 Cryptographic operations

The SE applet must be able to perform a set of cryptographic operations, such as key generation and signature computation. The cryptographic
operations are defined in [UAFAuthnrCommands]. The SE applet must be able also to create data structures that can be parsed by FIDO
Server. The SE applet shall use the cryptographic algorithms indicated in [UAFRegistry].

4.2 APDU Commands for FIDO UAF

NOTE

If the User Verification Module is inside the Host, for example in the context of the TEE, the UserVerificationToken shall be generated in
the Host and not in the SE. As a result step 6 (Figure 2) should be executed in the Host instead of the SE.

4.2.1 Class byte coding

CLA indicates the class of the command.

Table 1: Class byte coding

Commands CLA

SELECT, VERIFY (ISO Version), GET RESPONSE (ISO Version) 0x00

VERIFY, UAF, GET RESPONSE 0x80

4.2.2 APDU command "UAF"

4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

This section describes the mapping between FIDO UAF authenticator commands and APDU commands.

The mapping consists of encapsulating the entire UAF Authenticator Command in the payload of the APDU command, and the UAF
Authenticator Command response in the payload of the APDU Response.

The host shall set the INS byte to “0x36” for all UAF commands The SE shall read the UAF command number and data from the payload in the
data part of the command.

The payload of the APDU command is encoded according to [UAFAuthnrCommands], the first 2 bytes of each command are the UAF command
number. Upon command reception, the SE applet must parse the first TLV tag (2 bytes) and figure out which UAF command is being issued.
The SE applet shall parse the rest of the FIDO Authenticator Command payload according to [UAFAuthnrCommands].

The mapping of UAF Authenticator Commands to APDU commands is defined in the following table:

Table 2: UAF APDU command

CLA INS P1 P2 Lc Data In Le

Proprietary(See Table
1)

0x36 0x00 0x00 Variable
UAF Authenticator Command
structure

None

The UAF Authenticator Command structures are defined in part 6.2 of [UAFAuthnrCommands].

4.2.2.2 Response message and status conditions of an "UAF" APDU command

The status word of an "UAF" APDU response is handled at the Host level; the host must interpret and map the status word based on the table
below.

If the status word is equals to “9000”, the host shall return back to the ASM the entire data field of the APDU response. It the status word is
“61xx”, the host shall issue GET RESPONSE (see below) until no more data is available, concatenate these response parts and then return the
entire response. Otherwise, the host has to build an UAF TLV response with the mapped status codes TAG_STATUS_CODE, using the following
table.

For example, if the status word returned by the Applet is “6A88”, the host shall put UAF_CMD_STATUS_USER_NOT_ENROLLED in the status codes of the
UAF TLV response.

APDU
STATUS

CODE

FIDO UAF
STATUS

CODE
NAME DESCRIPTION

9000 0x00 UAF_CMD_STATUS_OK Success.

61xx 0x00 UAF_CMD_STATUS_OK
Success, xx bytes available for GET
RESPONSE.

6982 0x02 UAF_CMD_STATUS_ACCESS_DENIED Access to this operation is denied.

6A88 0x03 UAF_CMD_STATUS_USER_NOT_ENROLLED
User is not enrolled with the
authenticator.

N/A 0x04 UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT
Transaction content cannot be
rendered.

N/A 0x05 UAF_CMD_STATUS_USER_CANCELLED User has cancelled the operation.

6400 0x06 UAF_CMD_STATUS_CMD_NOT_SUPPORTED Command not supported.

6A81 0x07 UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED Required attestation not supported.

6A80 0x08 UAF_CMD_STATUS_PARAMS_INVALID
The request was rejected due to an
incorrect data field.

The UAuth key which is relevant for

NOTE

If the payload of an APDU command is longer than 255 bytes, command chaining as described in [ISOIEC-7816-4-2013] should be used,
even though CLA is proprietary.

NOTE

If the UserVerificationToken is supported, The ASM must set the TAG_USERVERIFY_TOKEN flag in the value of the UserVerificationToken,
received previously contained in either a Register or Sign command. Please refer to the FIG 1 in Use-Case section.

Table 3: Mapping between APDU Status Codes and FIDO Status Codes [UAFAuthnrCommands]

6983 0x09 UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY
this command disappeared from the
authenticator and cannot be
restored.

N/A 0x0a UAF_CMD_STATUS_TIMEOUT
The operation in the authenticator
took longer than expected.

N/A 0x0e UAF_CMD_STATUS_USER_NOT_RESPONSIVE
The user took too long to follow an
instruction.

6A84 0x0f UAF_CMD_STATUS_INSUFFICIENT_RESOURCES
Insufficient resources in the
authenticator to perform the
requested task.

63C0 0x10 UAF_CMD_STATUS_USER_LOCKOUT

The operation failed because the
user is locked out and the
authenticator cannot automatically
trigger an action to change that.

All other
codes

0x01 UAF_CMD_STATUS_ERR_UNKNOWN An unknown error

The response message of an UAF APDU command is defined in the following table :

Table 4: Response message of an "UAF" APDU command

Data field SW1 - SW2

not present

“6982” – The request was rejected due to user verification being required.

“6A80” – The request was rejected due to an incorrect data field.

“6A81” – Required attestation not supported

“6A88” – The user is not enrolled with the SE

“6400” – Execution error, undefined UAF command

“6983” – Authentication data not usable, Auth key disappeared

UAF Authenticator Command response [UAFAuthnrCommands]
“61xx” – Success, xx bytes available for GET RESPONSE.

“9000” – Success

4.2.3 APDU Command "SELECT"

A successful SELECT AID allows the host to know that the applet is active in the SE, and to open a logical channel with this end.

In Android smartphones apps are not allowed to use the basic channel to the SIM because this channel is reserved for the baseband processor
and the GSM/UMTS/LTE activities. In this case the app must select the applet in a logical channel.

The host must send a SELECT APDU command to the SE applet before any others commands.

As a result, the command for selecting the applet using the FIDO UAF AID is :

Table 5: SELECT AID command

CLA INS P1 P2 Lc Data In Le

0x00 0xA4 0x04 0x0C 0x08 0xA000000647AF0001
No response data is requested if the SELECT command's "Le" field is absent.
Otherwise, if the "Le" field is present, vendor-proprietary data is being
requested.

4.2.4 APDU Command "VERIFY"

This command is used to request access rights using a PIN or Biometric sample. The SE applet shall verify the sample data given by the Host
against the reference PIN or Biometric held in the SE.

Please refer to [ISOIEC-7816-4-2013] and [ISOIEC-19794] for Personal verification through biometric methods.

If the verification is successful and UserVerificationToken is supported by the SE applet, a token shall be generated and sent to the Host.
Without having this token, the Host cannot invoke special UAF commands such as Register or Sign.

The support of UserVerificationToken can be checked by examining the contents of the GetInfo response in the AuthenticatorType TAG or the
response of SELECT APDU command [UAFAuthnrCommands].

Refer to [FIDOGlossary] for more information about UserVerificationToken.

4.2.4.1 Command structure

Table 6: VERIFY command encoding for PIN verification

CLA INS P1 P2 Lc Data In Le

ISO or Proprietary: see [ISOIEC-
7816-4-2013]

0x20 (for PIN) or 0x21 (for
biometry)

0x00 0x00 Variable
Verification
data

None or expected Le for
UserVerificationToken

4.2.4.2 Response message and status conditions

Table 7: Response message and status conditions

Data Out SW1 - SW2

Absent (ISO-Variant) or UserVerificationToken (proprietary) See [ISOIEC-7816-4-2013]

4.3 Managing Long APDU Commands and Responses

If a Secure Element is able to send a complete response (e.g. extended length APDU, block chaining), GET RESPONSE APDU command shall be
used, as defined in ISO Variant section. Otherwise, the proprietary solution shall be used, as defined in section Proprietary Variant.

4.3.1 ISO Variant

The [ISOIEC-7816-4-2013] GET RESPONSE command is used in order to retrieve big data returned by APDU command "UAF".

4.3.2 Proprietary Variant

In order to avoid using Get Response APDU command which is not supported by all devices and terminals, a propriatry method is defined for
managing the long data answers at application level.

When using the proprietary variant, the response to the UAF APDU command shall include the Tag "0x2813", that specifies the length of the
response.

Response Data Out description

Tag
0x2813

Length
variable (2 bytes)

Value
Expected data length (2 bytes)

In the case where the data does not fit into a single Data Out message, the host shall repeat the "UAF" command with P2 = 1 value mentioning
this is a repetition of the incoming APDU to get all the data. This process shall be repeated until the entire data are collected by the host.

Here is an example of an APDU Response which contains more than 255 bytes in the payload.

NOTE

An SE applet that does not support UserVerificationToken, may use the [ISOIEC-7816-4-2013] VERIFY command. In this case, the
VERIFY command must be securely bound to Register and Sign commands, so a secure bound method shall be implemented in the SE
applet, such as Secure Messaging.

Fig. 3 Long APDU management using the defined proprietary method

5. Security considerations

This section is non-normative.

Guaranteeing trust and security in a fragmented architecture such as the one levering on SE is a challenge that the Host has to address
regardless of its nature (TEE or Software based), which results in different challenges from a security and architecture perspective. One could
list the following ones:

use of a trusted user interface to enter a PIN on the device,

secure transmission of PIN or fingerprint minutiae,

minutiae extraction format,

integrity of data transmitted between a Host and a SE.

Hence, we will only consider here, security challenges affecting the interface between the Host and the SE.

A possible way to maintain the integrity and confidentiality when APDUs commands are exchanged is to enable a secure channel between the
Host and the SE. While this is left to implementation, there are several technologies allowing to build a secure channel between a SE and a
devices, that may be implemented.

Secure channel between a trusted application in a TEE and an applet in a SE [GlobalPlatform-TEE-SE].

Secure channel between a device and an applet in a secure element [GlobalPlatform-Card].

Secure channel between a device and a SE [ETSI-Secure-Channel].

A. References

NOTE

The host shall support both versions of Get Response APDU command, and figure out which command must be sent to the Applet by
parsing the response of the UAF APDU command. If the UAF APDU command response contains the Tag "0x2813", the host must send
a proprietary Get Response APDU command, otherwise the host must send the ISO variant of Get Response APDU command.

A.1 Normative references

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

A.2 Informative references

[ETSI-Secure-Channel]
ETSI TS 102 484 Smart Cards; Secure channel between a UICC and an end-point terminal. URL:

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-
id-20180220/fido-security-ref-v1.2-id-20180220.html

[GlobalPlatform-Card]
Secure Channel Protocol 03 – GlobalPlatform Card Specification v.2.2 – Amendment D. URL:

[GlobalPlatform-TEE-SE]
TEE Secure Element API Specification v1.0 | GPD_SPE_024. URL:

[ISOIEC-19794]
ISO 19794: Information technology - Biometric data interchange formats. URL:

[ISOIEC-7816-4-2013]
ISO 7816-4: Identification cards – Integrated circuit cards; Part 4 : Organization, security and commands for interchange. URL:

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

FIDO UAF Registry of Predefined Values

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html

Editor:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are referenced by various UAF
specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification solely for
the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is
available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview

3. Authenticator Characteristics
3.1 Assertion Schemes

4. Predefined Tags
4.1 Tags used in the protocol

5. Predefined Extensions
5.1 User Verification Method Extension

5.2 User ID Extension

5.3 Android SafetyNet Extension

5.4 Android Key Attestation

5.5 User Verification Caching
5.5.1 UVC Request

5.5.2 UVC Response

5.5.3 Privacy Considerations

5.5.4 Security Considerations

6. Other Identifiers specific to FIDO UAF
6.1 FIDO UAF Application Identifier (AID)

A. References
A.1 Normative references

A.2 Informative references

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-uaf-reg-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document are to
be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of UAF-specific constants that are used and referenced in various UAF specifications. It is expected that, over time,
new constants will be added to this registry. For example new authentication algorithms and new types of authenticator characteristics will require new
constants to be defined for use within the specifications.

FIDO-specific constants that are common to multiple protocol families are defined in [FIDORegistry].

3. Authenticator Characteristics

This section is normative.

3.1 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”

This assertion scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the
authenticator. The authenticator must generate a key pair (UAuth.pub/UAuth.priv) to be used with algorithm suites listed in [FIDORegistry]
section "Authentication Algorithms" (with prefix ALG_). This assertion scheme is using a compact Tag Length Value (TLV) encoding for the KRD
and SignData messages generated by the authenticators. This is the default assertion scheme for the UAF protocol.

4. Predefined Tags

This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence. The tag is a 2-byte unique unsigned value describing
the type of field the data represents, the length is a 2-byte unsigned value indicating the size of the value in bytes, and the value is the variable-sized
series of bytes which contain data for this item in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the limitations of some hardware
platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message if it cannot process that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1_REG_ASSERTION 0x3E01
The content of this tag is the authenticator response to a Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02
The content of this tag is the authenticator response to a Sign command.

TAG_UAFV1_KRD 0x3E03
Indicates Key Registration Data.

TAG_UAFV1_SIGNED_DATA 0x3E04
Indicates data signed by the authenticator using UAuth.priv key.

TAG_ATTESTATION_CERT 0x2E05
Indicates DER encoded attestation certificate.

TAG_SIGNATURE 0x2E06
Indicates a cryptographic signature.

TAG_ATTESTATION_BASIC_FULL 0x3E07
Indicates full basic attestation as defined in [UAFProtocol].

TAG_ATTESTATION_BASIC_SURROGATE 0x3E08
Indicates surrogate basic attestation as defined in [UAFProtocol].

TAG_ATTESTATION_ECDAA 0x3E09
Indicates use of elliptic curve based direct anonymous attestation as defined in [FIDOEcdaaAlgorithm]. Support for this attestation type is
optional at this time. It might be required by FIDO Certification.

TAG_KEYID 0x2E09
Represents a generated KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A
Represents a generated final challenge hash as defined in [UAFProtocol].

TAG_AAID 0x2E0B
Represents an Authenticator Attestation ID as defined in [UAFProtocol].

TAG_PUB_KEY 0x2E0C
Represents a generated public key.

TAG_COUNTERS 0x2E0D
Represents the use counters for an authenticator.

TAG_ASSERTION_INFO 0x2E0E
Represents authenticator information necessary for message processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F
Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10
Represents a hash of the transaction content sent to the authenticator.

TAG_EXTENSION 0x3E11, 0x3E12
This is a composite tag indicating that the content is an extension.

TAG_EXTENSION_ID 0x2E13
Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14
Represents extension data. Content of this tag is a UINT8[] byte array.

TAG_RAW_USER_VERIFICATION_INDEX 0x0103
This is the raw UVI as it might be used internally by authenticators. This TAG shall not appear in assertions leaving the authenticator boundary as
it could be used as global correlation handle.

TAG_USER_VERIFICATION_INDEX 0x0104
The user verification index (UVI) is a value uniquely identifying a user verification data record.

Each UVI value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes guessing
impractical. UVI values must not be reused by the Authenticator (for other biometric data or users).

The UVI data can be used by FIDO Servers to understand whether an authentication was authorized by the exact same biometric data as the
initial key generation. This allows the detection and prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)), where the rawUVI reflects (a) the biometric reference data,
(b) the related OS level user ID and (c) an identifier which changes whenever a factory reset is performed for the device, e.g. rawUVI =
biometricReferenceData | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVI extensions must support a length of up to 32 bytes for the UVI value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 04 01 -- TAG_USER_VERIFICATION_INDEX (0x0104)
 20 -- length of UVI
 00 43 B8 E3 BE 27 95 8C -- the UVI value itself
 28 D5 74 BF 46 8A 85 CF
 46 9A 14 F0 E5 16 69 31
 DA 4B CF FF C1 BB 11 32
 82
 ...

TAG_RAW_USER_VERIFICATION_STATE 0x0105
This is the raw UVS as it might be used internally by authenticators. This TAG shall not appear in assertions leaving the authenticator boundary
as it could be used as global correlation handle.

TAG_USER_VERIFICATION_STATE 0x0106
The user verification state (UVS) is a value uniquely identifying the set of active user verification data records.

Each UVS value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient entropy that makes guessing
impractical. UVS values must not be reused by the Authenticator (for other biometric data sets or users).

The UVS data can be used by FIDO Servers to understand whether an authentication was authorized by one of the biometric data records
already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)), where the rawUVS reflects (a) the biometric reference data
sets, (b) the related OS level user ID and (c) an identifier which changes whenever a factory reset is performed for the device, e.g. rawUVS =
biometricReferenceDataSet | OSLevelUserID | FactoryResetCounter.

FIDO Servers supporting UVS extensions must support a length of up to 32 bytes for the UVS value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 06 01 -- TAG_USER_VERIFICATION_STATE (0x0106)
 20 -- length of UVS
 00 18 C3 47 81 73 2B 65 -- the UVS value itself
 83 E7 43 31 46 8A 85 CF
 93 6C 36 F0 AF 16 69 14
 DA 4B 1D 43 FE C7 43 24
 45
 ...

TAG_USER_VERIFICATION_CACHING 0x0108
This extension allows an app to specify such user verification caching time, i.e. the time for which the user verification status can be "cached" by
the authenticator.

The value of this extension is defined as follows:

TLV
Structure

Description

1 UINT16 Tag TAG_USER_VERIFICATION_CACHING

1.1
UINT16
Length

Length of UVC structure in bytes

1.2 UINT16 maxUVC in seconds

1.3 UINT8
(optional) verifyIfExceeded. If 0(=:false): return error if maxUVC exceeded. If non-zero (=:true): verify user if maxUVC
exceeded.

Example of the TLV encoded UVC extension (contained in an authentication request)

 ...
 08 01 -- TAG_USER_VERIFICATION_CACHING (0x0108)
 05 -- length of UVC
 2c 01 00 00 -- the UVC value itself: maxUVC = 0x012c (300 secs),
 01 -- followd by verifyIfExceeded = 1 (true)
 ...

TAG_RESERVED_5 0x0201
Reserved for future use. Name of the tag will change, value is fixed.

5. Predefined Extensions

This section is normative.

5.1 User Verification Method Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to ask the authenticator for using a specific user
verification method and confirm that in the related response extension.

by FIDO Clients to the ASM Request object (request extension) in order to ask the authenticator for using a specific user verification method and
confirm that in the related response extension.

by ASMs to the authenticator command (request extension) in order to ask the authenticator for using a specific user verification method and
confirm that in the related response extension.

by Authenticators to the assertion generated in response to a request in order to confirm a specifc user verification method that was used for the
action.

Extension identifier
fido.uaf.uvm

When present in a request (request extension)
Same as described in Authenticator argument.

FIDO Client processing

The client should pass the (request) extension through to the Authenticator.

Authenticator argument

The payload of this extension is an array of:

 UINT32 userVerificationMethod

The array can have multiple entries. Each entry shall have a single bit flag set. In this case the authenticator shall verify the user using all
(multiple) methods as indicated.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in [FIDORegistry], "User Verification
Methods" section.

Authenticator processing
The authenticator supporting this extension

1. should limit the user verification methods selectable by the user to the user verification method(s) specified in the request extension.

2. shall truthfully report the selected user verification method(s) back in the related response extension added to the assertion.

Authenticator data

The payload of this extension is an array of the following structure:

 UINT32 userVerificationMethod
 UINT16 keyProtection
 UINT16 matcherProtection

The array can have multiple entries describing all user verification methods used.

The semantics of the fields are as follows:

userVerificationMethod
The authentication method used by the authenticator to verify the user. Available values are defined in [FIDORegistry], "User Verification
Methods" section.

keyProtection
The method used by the authenticator to protect the FIDO registration private key material. Available values are defined in [FIDORegistry],
"Key Protection Types" section. This value has no meaning in the request extension.

matcherProtection
The method used by the authenticator to protect the matcher that performs user verification. Available values are defined in [FIDORegistry],
"Matcher Protection Types" section.

Server processing
If the FIDO Server requested the UVM extension,

1. it should verify that a proper response is provided (if client side support can be assumed), and

2. it should verify that the UVM response extension specifies one or more acceptable user verification method(s).

5.2 User ID Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader.

by FIDO Clients to the ASM Request object (request extension).

by ASMs to the TAG_UAFV1_REGISTER_CMD object using TAG_EXTENSION (request extension).

by Authenticators to the registration or authentication assertion using TAG_EXTENSION (response extension).

The main purpose of this extension is to allow relying parties finding the related user record by an existing index (i.e. the user ID). This user ID is not
intended to be displayed.

Authenticators should truthfully indicate support for this extension in their Metadata Statement.

Extension identifier
fido.uaf.userid

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value
Content of this tag is the UINT8[] encoding of the user ID as UTF-8 string.

5.3 Android SafetyNet Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger generation of the related response
extension.

by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related response extension.

by the ASM to the respective exts array in the ASMResponse object (response extension).

by the FIDO Client to the respective exts array in either the OperationHeader, or the AuthenticatorRegistrationAssertion, or the
AuthenticatorSignAssertion of the UAF Response object (response extension).

Extension identifier
fido.uaf.safetynet

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value in order to trigger the generation
of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value is set to the JSON Web Signature attestation response as
returned by the call to com.google.android.gms.safetynet.SafetyNetApi.AttestationResponse.

If the FIDO Client or the ASM support this extension, but the underlying Android platform does not support it (e.g. Google Play
Services is not installed), the data value is set to the string "p" (i.e. platform issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value is set to the string "a" (i.e. availability issue).

FIDO Client processing

FIDO Clients running on Android should support processing of this extension.

If the FIDO Client finds this (request) extension with empty data value in the UAF Request and it supports processing this extension, then the
FIDO Client

1. must call the Android API SafetyNet.SafetyNetApi.attest(mGoogleApiClient, nonce) (see SafetyNet online documentation) and add the
response (or an error code as described above) as extension to the response object.

2. must not copy the (request) extension to the ASM Request object (deviating from the general rule in [UAFProtocol], section 3.4.6.2 and
3.5.7.2).

If the FIDO Client does not support this extension it must copy this extension from the UAF Request to the ASM Request object (according to the
general rule in [UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it must call the SafetyNet API (see above) and add the response as extension to the ASM Response object.
The FIDO Client must copy the extension in the ASM Response to the UAF Response object (according to sections 3.4.6.4. and 3.5.7.4 step 4 in
[UAFProtocol]).

When calling the Android API, the nonce parameter must be set to the serialized JSON object with the following structure:

{
 "hashAlg": "S256", // the hash algorithm
 "fcHash": "..." // the finalChallengeHash
}

Where

hashAlg identifies the hash algorithm according to [FIDOSignatureFormat], section IANA Considerations.

fcHash is the base64url encoded hash value of FinalChallenge (see section 3.6.3 and 3.7.4 in [UAFASM] for details on how to compute
finalChallengeHash).
We use this method to bind this SafetyNet extension to the respective FIDO UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [FIDORegistry] shall be used (e.g. SHA256 because it
belongs to ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW).

Authenticator argument
N/A

Authenticator processing
N/A. This extension is related to the Android platform in general and not to the authenticator in particular. As a consequence there is no need for
an authenticator to receive the (request) extension nor to process it.

Authenticator data
N/A

Server processing
If the FIDO Server requested the SafetyNet extension,

EXAMPLE 1: SafetyNet Request Extension

"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail_if_unknown": false}]

EXAMPLE 2: SafetyNet Response Extension - not supported by platform

"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail_if_unknown": false}]

EXAMPLE 3: SafetyNet Response Extension - temporarily unavailable

"exts": [{"id": "fido.uaf.safetynet", "data": "a", "fail_if_unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResponse
https://developer.android.com/training/safetynet/index.html#compat-check-response

1. it should verify that a proper response is provided (if client side support can be assumed), and

2. it should verify the SafetyNet AttestationResponse (see SafetyNet online documentation).

5.4 Android Key Attestation

This extension can be added

by FIDO Servers to the UAF Registration Request object (request extension) in the OperationHeader in order to trigger generation of the related
response extension.

by FIDO Clients to the ASM Registration Request object (request extension) in order to trigger generation of the related response extension.

by the ASM to the respective exts array in the ASMResponse object related to a registration response (response extension).

by the FIDO Client to the respective exts array in either the OperationHeader, or the AuthenticatorRegistrationAssertion of the UAF Registration
Response object (response extension).

Extension identifier
fido.uaf.android.key_attestation

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value in order to trigger the generation
of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value is set to a JSON array containing the base64 encoded entries of
the array returned by the call to the KeyStore API function getCertificateChain.

NOTE

The package name in AttestationResponse might relate to either the FIDO Client or the ASM.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker would remove the
response extension, the FIDO server might not be able to distinguish this from the "SafetyNet extension not supported by FIDO
Client/ASM" case.

EXAMPLE 4: Android KeyAttestation Request Extension

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "", "fail_if_unknown": false}]

EXAMPLE 5: Retrieve KeyAttestation and add it as extension

Calendar notBefore = Calendar.getInstance();
Calendar notAfter = Calendar.getInstance();
notAfter.add(Calendar.YEAR, 10);

KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_EC, "AndroidKeyStore");
kpGenerator.initialize(
 new KeyGenParameterSpec.Builder(keyUUID, KeyProperties.PURPOSE_SIGN)
 .setDigests(KeyProperties.DIGEST_SHA256)
 .setAlgorithmParameterSpec(new ECGenParameterSpec("prime256v1"))
 .setCertificateSubject(
 new X500Principal(String.format("CN=%s, OU=%s",
 keyUUID, aContext.getPackageName())))
 .setCertificateSerialNumber(BigInteger.ONE)
 .setKeyValidityStart(notBefore.getTime())
 .setKeyValidityEnd(notAfter.getTime())
 .setUserAuthenticationRequired(true)
 .setAttestationChallenge(fcHash) -- bind to Final Challenge
 .build());

kpGenerator.generateKeyPair(); // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain(keyUUID);
String certArray[]=new String[certarray.length];
int i=0;
for (Certificate cert : certarray) {
 byte[] buf = cert.getEncoded();
 certArray[i] = new String(Base64.encode(buf, Base64.DEFAULT))
 .replace("\n", "");
 i++;
}

JSONArray jarray=new JSONArray(certArray);
String key_attestation_data=jarray.toString();

EXAMPLE 6: Example of successfull key attestation extension response

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "[\"MIIClDCCAjugAwIBAgIBATAKBggqhkjOPQQD
AjCBiDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlmb3JuaWExFTATBgNVBAoMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5k
cm9pZDE7MDkGA1UEAwwyQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZSBBdHRlc3RhdGlvbiBJbnRlcm1lZGlhdGUwIBcNNzAwMTAx
MDAwMDAwWhgPMjEwNjAyMDcwNjI4MTVaMB8xHTAbBgNVBAMMFEFuZHJvaWQgS2V5c3RvcmUgS2V5MFkwEwYHKoZIzj0CAQYIKoZI
zj0DAQcDQgAEJ/As4L+Kgbcxwcx+5LPQi35quIxg981k/TeWr2IPBLh8+NJ+buDBhQ9O5ln6B7JjbJc4Fvko1Pdz7spKTQdWpKOB
+zCB+DALBgNVHQ8EBAMCB4AwgccGCisGAQQB1nkCAREEgbgwgbUCAQIKAQACAQEKAQEEBkZDSEFTSAQAMGm/hT0IAgYBXtPjz6C/
hUVZBFcwVTEvMC0EKGNvbS5hbmRyb2lkLmtleXN0b3JlLmFuZHJvaWRrZXlzdG9yZWRlbW8CAQExIgQgdM/LUHSI9SkQhZHHpQWR
nzJ3MvvB2ANSauqYAAbS2JgwMqEFMQMCAQKiAwIBA6MEAgIBAKUFMQMCAQSqAwIBAb+DeAMCAQK/hT4DAgEAv4U/AgUAMB8GA1Ud
IwQYMBaAFD/8rNYasTqegSC41SUcxWW7HpGpMAoGCCqGSM49BAMCA0cAMEQCICgYLmk24alwS9Lm06y2lLiqWDddrWh4gmUUv4+A
5k2TAiAEttheSBBaNbQJGQCh3mY92v8nP5obU60IKjpPetRswQ==\",\"MIICeDCCAh6gAwIBAgICEAEwCgYIKoZIzj0EAwIwgZg
xCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRYwFAYDVQQHDA1Nb3VudGFpbiBWaWV3MRUwEwYDVQQKDAxHb29nbGU
sIEluYy4xEDAOBgNVBAsMB0FuZHJvaWQxMzAxBgNVBAMMKkFuZHJvaWQgS2V5c3RvcmUgU29mdHdhcmUgQXR0ZXN0YXRpb24gUm9
vdDAeFw0xNjAxMTEwMDQ2MDlaFw0yNjAxMDgwMDQ2MDlaMIGIMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEVMBM
GA1UECgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMTswOQYDVQQDDDJBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF
0dGVzdGF0aW9uIEludGVybWVkaWF0ZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOueefhCY1msyyqRTImGzHCtkGaTgqlzJhP
+rMv4ISdMIXSXSir+pblNf2bU4GUQZjW8U7ego6ZxWD7bPhGuEBSjZjBkMB0GA1UdDgQWBBQ//KzWGrE6noEguNUlHMVlux6RqTA

https://developer.android.com/training/safetynet/index.html#compat-check-response

If the FIDO Client or the ASM support this extension, but the underlying Android platform does not support it (e.g. Android version
doesn't yet support it), the data value is set to the string "p" (i.e. platform issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but the functionality is
temporarily unavailable (e.g. Google servers are unreachable), the data value is set to the string "a".

FIDO Client processing

FIDO Clients running on Android must pass this (request) extension with empty data value to the ASM.

If the ASM supports this extension it must call the KeyStore API (see above) and add the response as extension to the ASM Response object.
The FIDO Client must copy the extension in the ASM Response to the UAF Response object (according to section 3.4.6.4 step 4 in
[UAFProtocol]).

More details on Android key attestation can be found at:

https://developer.android.com/training/articles/keystore.html

https://developer.android.com/preview/api-overview.html#key_attestation

https://source.android.com/security/keystore/

https://source.android.com/security/keystore/implementer-ref.html

Authenticator argument
N/A

Authenticator processing
The authenticator generates the attestation response. The call keyStore.getCertificateChain is finally processed by the authenticator.

Authenticator data
N/A

Server processing
If the FIDO Server requested the key attestation extension,

1. it must follow the registration response processing rules (see FIDO UAF Protocol, section 3.4.6.5) before processing this extension

2. it must verify the syntax of the key attestation extension and it must perform RFC5280 compliant chain validation of the entries in the array
to one attestationRootCertificate specified in the Metadata Statement - accepting that that the keyCertSign bit in the key usage
extension of the certificate issuing the leaf certificate is NOT set (which is a deviation from RFC5280).

3. it must determine the leaf certificate from that chain, and it must perform the following checks on this leaf certificate
1. Verify that KeyDescripion.attestationChallenge == FCHash (see FIDO UAF Protocol, section 3.4.6.5 Step 6.)

2. Verify that the public key included in the leaf certificate is identical to the public key included in the FIDO UAF Surrogate attestation
block

3. If the related Metadata Statement claims keyProtection KEY_PROTECTION_TEE, then refer to KeyDescription.teeEnforced using
"authzList". If the related Metadata Statement claims keyProtection KEY_PROTECTION_SOFTWARE, then refer to
KeyDescription.softwareEnforced using "authzList".

4. Verify that
1. authzList.origin == KM_TAG_GENERATED

2. authzList.purpose == KM_PURPOSE_SIGN

3. authzList.keySize is acceptable, i.e. =2048 (bit) RSA or =256 (bit) ECDSA.

4. authzList.digest == KM_DIGEST_SHA_2_256.

5. authzList.userAuthType only contains acceptable user verification methods.

6. authzList.authTimeout == 0 (or not present).

7. authzList.noAuthRequired is not present (unless the Metadata Statement marks this authenticator as silent authenticator, i.e.
userVerificaton set to USER_VERIFY_NONE).

8. authzList.allApplications is not present, since FIDO Uauth keys must be bound to the generating app (AppID).

fBgNVHSMEGDAWgBTIrel3TEXDo88NFhDkeUM6IVowzzASBgNVHRMBAf8ECDAGAQH/AgEAMA4GA1UdDwEB/wQEAwIChDAKBggqhkj
OPQQDAgNIADBFAiBLipt77oK8wDOHri/AiZi03cONqycqRZ9pDMfDktQPjgIhAO7aAV229DLp1IQ7YkyUBO86fMy9Xvsiu+f+uXc
/WT/7\",\"MIICizCCAjKgAwIBAgIJAKIFntEOQ1tXMAoGCCqGSM49BAMCMIGYMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaW
Zvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzEVMBMGA1UECgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMTMwMQ
YDVQQDDCpBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF0dGVzdGF0aW9uIFJvb3QwHhcNMTYwMTExMDA0MzUwWhcNMzYwMTA2MD
A0MzUwWjCBmDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlmb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFTATBgNVBA
oMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5kcm9pZDEzMDEGA1UEAwwqQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZSBBdHRlc3
RhdGlvbiBSb290MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE7l1ex+HA220Dpn7mthvsTWpdamguD/9/SQ59dx9EIm29sa/6Fs
vHrcV30lacqrewLVQBXT5DKyqO107sSHVBpKNjMGEwHQYDVR0OBBYEFMit6XdMRcOjzw0WEOR5QzohWjDPMB8GA1UdIwQYMBaAFM
it6XdMRcOjzw0WEOR5QzohWjDPMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgKEMAoGCCqGSM49BAMCA0cAMEQCIDUho+
+LNEYenNVg8x1YiSBq3KNlQfYNns6KGYxmSGB7AiBNC/NR2TB8fVvaNTQdqEcbY6WFZTytTySn502vQX3xvw==\"]", "fail_if_unknown": false}]

NOTE

Line-breaks been added for readibility.

EXAMPLE 7: KeyAttestation Response Extension - not supported by platform

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "p", "fail_if_unknown": false}]

EXAMPLE 8: KeyAttestation Response Extension - temporarily unavailable

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "a", "fail_if_unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response object.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or MITB attacker would remove the
response extension, the FIDO server might not be able to distinguish this from the "KeyAttestation extension not supported by

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/preview/api-overview.html#key_attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

ExtensionDescriptor data value (for Metadata Statement)
In the case of extension id="fido.uaf.android.key_attestation", the data field of the ExtensionDescriptor as included in the Metadata Statement will
contain a dictionary containing the following data fields

DOMString attestationRootCertificates[]
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is valid for this authenticator model. Multiple certificates
might be used for different batches of the same model. The array does not represent a certificate chain, but only the trust anchor of that
chain.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX certificate value.

An example for the supportedExtensions field in the Metadata Statement could look as follows (with line breaks to improve readability):

5.5 User Verification Caching

In several cases it is good enough for the relying party to know whether the user was verified by the authenticator "some time" ago. This extension
allows an app to specify such user verification caching time, i.e. the time for which the user verification status can be "cached" by the authenticator.

For example: Do not ask the user for a fresh user verification to authorize a payment of 4€ if the user was verified by this authenticator within the past
300 seconds.

This extension allows the authenticator to bridge the gap between a "silent" authenticator, i.e. an authenticator never verifying the user and a
"traditional" authenticator, i.e. an authenticator always asking for fresh user verification.

We formally define one extension for the request and a separate extension for the response as the request extension can be safely ignored, but the
response extension cannot.

Authenticator supporting this extension must truthfully specify both, the UVC Request and UVC Response extension in the supportedExtensions list of
the related Metadata Statement [FIDOMetadataStatement]. The TAG of the UVC Response extension must be specified in that list.

5.5.1 UVC Request

This extension can be added by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger generation of
the related response extension.

Extension Identifier
fido.uaf.uvc-req

Extension fail-if-unknown flag
false, i.e. the request extension can safely be ignored by all entities.

UVC Extension data value
A (base64url-encoded) TLV object as defined in the description of TAG_USER_VERIFICATION_CACHING. In the UVC Extension provided through the
DOM API [UAFAppAPIAndTransport], the field verifyIfExceeded may NOT be present. The FIDO Client may add the field verifyIfExceeded in
order to improve processing.

FIDO Client processing

In a registration request: Simple pass-through to the platform preferred authenticator.

In a sign request: Simple pass-through to an authenticator which would not require fresh user verification and still meets all other
authentication selection criteria (if such authenticator exists). If this is not possible, then use the preferred authenticator (as normal) but
pass-through this extension.

Authenticator argument

Same TLV object as defined in "Extension data value", but as binary object included in the Registration / Authentication command.

Authenticator processing

In a registration request:
The Authenticator must always freshly verify the user and create a key marked with the maximum user verification caching time as
specified (referred to as regMaxUVC), i.e. in signAssertion the acceptable maximum user verification time can never exceed this value.
The field (verifyIfExceeded) is not allowed in a registration request.

ASM/Authenticator" case.

NOTE

A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE

The field data is specified with type DOMString in [FIDOMetadataStatement] and hence will contain the serialized object as described
above.

EXAMPLE 9: Example of a supportedExtensions field in Metadata Statement

"supportedExtensions": [{
 "id": "fido.uaf.android.key_attestation",
 "data": "{ \"attestationRootCertificates\": [
\"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
lQ==\"] }",
 "fail_if_unknown": false
 }]

In a sign request:
If the authenticator supports specifying user verification caching time in a sign request:

1. compute maxUVC = min(maxUVC, regMaxUVC)

2. compute elapsedTime, i.e. the time since last user verification.

3. If (elapsedTime > maxUVC) AND verifyIfExceeded==false then return error

4. If (elapsedTime > maxUVC) AND ((verifyIfExceeded==true)OR(verifyIfExceeded is NOT PRESENT)) then verify user

5. If (elapsedTime ≤ maxUVC) then Sign the assertion as normal

6. Add the UVC Response extension to the assertion.

If the authenticator does not support specifying user verification caching time in a sign request, this extension will be ignored by the
authenticator. This will be detected by the server since no extension output will be generated by the authenticator.

Authenticator data
N/A

Server processing
N/A

5.5.2 UVC Response

This extension can be added by the Authenticator to the AuthenticatorRegistrationAssertion, or the AuthenticatorSignAssertion of the UAF
Response object (response extension).

Extension Identifier
fido.uaf.uvc-resp (TAG_USER_VERIFICATION_CACHING)

Extension fail-if-unknown flag
true, i.e. the response extension (included in the UAF assertion) may NOT be ignored if unknown. If the server is not prepared to process the
UVC response extension, it must fail.

Extension data value
N/A

FIDO Client processing
N/A

Authenticator argument
N/A

Authenticator processing
N/A

Authenticator data
If the extension is supported and the request extension was received and evaluated during the respective call, then the binary TLV object as
described in the description of TAG_USER_VERIFICATION_CACHING will be included in the assertion generated by the Authenticator.

Where the field maxUVC contains an upper bound of trueUVC and where the field verifyIfExceeded will not be present.

The upper bound value is to be computed as follows:

1. Compute the elapsed seconds since last user verification (=:trueUVC).

2. Compute some upper bound of trueUVC, must not exceed min(command.maxUVC, regMaxUVC).

Where command.maxUVC refers to the maxUVC value of the related UVC Request.

Where regMaxUVC is the maxUVC value specified in the related registration call (see above) or 0 if no such value was provided at
registration time.

For example, use min(maxUVC, createMaxUVC) or min(round trueUVC to 5 seconds, maxUVC, createMaxUVC).

Server processing
If the FIDO Server requested the UVC extension,

1. Verify that the Metadata Statement related to this Authenticator indicates support for this extension in the field supportedExtensions

2. Verify that assertion.maxUVC is less or equal to request.maxUVC, fail if it isn't.

3. Verify that assertion.maxUVC is acceptable, fail if it isn't.

If the FIDO Server did not request the UVC extension (but encounters it in the response) or if the server doesn't understand the UVC response
extension, it must fail.

5.5.3 Privacy Considerations

Using the UVC Request extension with verifyIfExceeded set to FALSE might allow the caller to triage the last time the user was verified without
requiring any input from the user and without notifying the user. We do not allow this field to be set through the DOM API (i.e. by web pages).
However, native applications can use this field and hence could be able to determine the last time the user was verified. Native applications have
substantially more permissions and hence can have more detailed knowledge about the user's behavior than web pages (e.g. track whether the device
is used by evaluating accelerometers).

In the UVC Response extension the Authenticator can provide an upper bound of the trueUVC value in order to prevent disclosure of exact time of user
verification.

5.5.4 Security Considerations

FIDO Servers not expecting user verification being used, might expect a fresh user verification and an explicit user consent being provided.
Authenticators supporting this extension shall only use it when they are asked for that (i.e. UVC Request extension is present). Additionally the
authenticator must indicate if the user was not freshly verified using the UVC Response extension. This response extension is marked with "fail-if-
unknown" set to true, to make sure that servers receiving this extension know that the user might not have been freshly verified.

6. Other Identifiers specific to FIDO UAF

6.1 FIDO UAF Application Identifier (AID)

This AID [ISOIEC-7816-5] is used to identify FIDO UAF authenticator applications in a Secure Element.

The FIDO UAF AID consists of the following fields:

Field RID AC AX

Value 0xA000000647 0xAF 0x0001

Table 1: FIDO UAF Applet AID

A. References

A.1 Normative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-
20180220/fido-metadata-statement-v1.2-id-20180220.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-registry-v1.2-id-20180220.html

[ISOIEC-7816-5]
ISO 7816-5: Identification cards - Integrated circuit cards - Part 5: Registration of application providers. URL:

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references

[FIDOSignatureFormat]
FIDO 2.0: Signature format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL: http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding Specification. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

FIDO AppID and Facet Specification

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-appid-and-facets-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-appid-and-facets-v1.2-rd-20171128.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Brad Hill, PayPal, Inc.
Dirk Balfanz, Google, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

The FIDO family of protocols introduce a new security concept, Application Facets, to describe the scope of user credentials and how a trusted
computing base which supports application isolation may make access control decisions about which keys can be used by which applications
and web origins.

This document describes the motivations for and requirements for implementing the Application Facet concept and how it applies to the FIDO
protocols.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification
solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking
permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate
license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Overview
2.1 Motivation

2.2 Avoiding App-Phishing

2.3 Comparison to OAuth and OAuth2

2.4 Non-Goals

3. The AppID and FacetID Assertions
3.1 Processing Rules for AppID and FacetID Assertions

3.1.1 Determining the FacetID of a Calling Application

3.1.2 Determining if a Caller's FacetID is Authorized for an AppID

3.1.3 TrustedFacet List and Structure
3.1.3.1 Dictionary TrustedFacetList Members

3.1.3.2 Dictionary TrustedFacets Members

3.1.4 AppID Example 1

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-appid-and-facets-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-appid-and-facets-v1.2-rd-20171128.html
mailto://rolf@noknok.com
https://www.noknok.com/
mailto://hillbrad@gmail.com
https://www.paypal.com
https://www.google.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact

3.1.5 AppID Example 2

3.1.6 Obtaining FacetID of Android Native App

3.1.7 Additional Security Considerations
3.1.7.1 Wildcards in TrustedFacet identifiers

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

This document applies to both the U2F protocol and the UAF protocol. UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

Modern networked applications typically present several ways that a user can interact with them. This document introduces the concept of an
Application Facet to describe the identities of a single logical application across various platforms. For example, the application MyBank may
have an Android app, an iOS app, and a Web app accessible from a browser. These are all facets of the MyBank application.

The FIDO architecture provides for simpler and stronger authentication than traditional username and password approaches while avoiding
many of the shortfalls of alternative authentication schemes. At the core of the FIDO protocols are challenge and response operations
performed with a public/private keypair that serves as a user's credential.

To minimize frequently-encountered issues around privacy, entanglements with concepts of "identity", and the necessity for trusted third
parties, keys in FIDO are tightly scoped and dynamically provisioned between the user and each Relying Party and only optionally associated
with a server-assigned username. This approach contrasts with, for example, traditional PKIX client certificates as used in TLS, which introduce
a trusted third party, mix in their implementation details identity assertions with holder-of-key cryptographic proofs, lack audience restrictions,
and may even be sent in the cleartext portion of a protocol handshake without the user's notification or consent.

While the FIDO approach is preferable for many reasons, it introduces several challenges.

What set of Web origins and native applications (facets) make up a single logical application and how can they be reliably identified?

How can we avoid making the user register a new key for each web browser or application on their device that accesses services
controlled by the same target entity?

How can access to registered keys be shared without violating the security guarantees around application isolation and protection from
malicious code that users expect on their devices?

How can a user roam credentials between multiple devices, each with a user-friendly Trusted Computing Base for FIDO?

This document describes how FIDO addresses these goals (where adequate platform mechanisms exist for enforcement) by allowing an
application to declare a credential scope that crosses all the various facets it presents to the user.

2.1 Motivation

FIDO conceptually sets a scope for registered keys to the tuple of (Username, Authenticator, Relying Party). But what constitutes a Relying
Party? It is quite common for a user to access the same set of services from a Relying Party, on the same device, in one or more web browsers
as well as one or more dedicated apps. As the Relying Party may require the user to perform a costly ceremony in order to prove her identity
and register a new FIDO key, it is undesirable that the user should have to repeat this ceremony multiple times on the same device, once for
each browser or app.

2.2 Avoiding App-Phishing

FIDO provides for user-friendly verification ceremonies to allow access to registered keys, such as entering a simple PIN code and touching a
device, or scanning a finger. It should not matter for security purposes if the user re-uses the same verification inputs across Relying Parties,
and in the case of a biometric, she may have no choice.

Modern operating systems that use an "app store" distribution model often make a promise to the user that it is "safe to try" any app. They do
this by providing strong isolation between applications, so that they may not read each others' data or mutually interfere, and by requiring
explicit user permission to access shared system resources.

If a user were to download a maliciously constructed game that instructs her to activate her FIDO authenticator in order to "save your progress"
but actually unlocks her banking credential and takes over her account, FIDO has failed, because the risk of phishing has only been moved
from the password to an app download. FIDO must not violate a platform's promise that any app is "safe to try" by keeping good custody of the
high-value shared state that a registered key represents.

2.3 Comparison to OAuth and OAuth2

The OAuth and OAuth2 of protocols were designed for a server-to-server security model with the assumption that each application instance can
be issued, and keep, an "application secret". This approach is ill-suited to the "app store" security model. Although it is common for services to
provision an OAuth-style application secret into their apps in an attempt to allow only authorized/official apps to connect, any such "secret" is in
fact shared among everyone with access to the app store and can be trivially recovered thorough basic reverse engineering.

In contrast, FIDO's facet concept is designed for the "app store" model from the start. It relies on client-side platform isolation features to make
sure that a key registered by a user with a member of a well-behaved "trusted club" stays within that trusted club, even if the user later installs a

malicious app, and does not require any secrets hard-coded into a shared package to do so. The user must, however, still make good
decisions about which apps and browsers they are willing to preform a registration ceremony with. App store policing can assist here by
removing applications which solicit users to register FIDO keys to for Relying Parties in order to make illegitmate or fraudulent use of them.

2.4 Non-Goals

The Application Facet concept does not attempt to strongly identify the calling application to a service across a network. Remote attestation of
an application identity is an explicit non-goal.

If an unauthorized app can convince a user to provide all the information to it required to register a new FIDO key, the Relying Party cannot use
FIDO protocols or the Facet concept to recognize as unauthorized, or deny such an application from performing FIDO operations, and an
application that a user has chosen to trust in such a manner can also share access to a key outside of the mechanisms described in this
document.

The facet mechanism provides a way for registered keys to maintain their proper scope when created and accessed from a Trusted Computing
Base (TCB) that provides isolation of malicious apps. A user can also roam their credentials between multiple devices with user-friendly TCBs
and credentials will retain their proper scope if this mechanism is correctly implemented by each. However, no guarantees can be made in
environments where the TCB is user-hostile, such as a device with malicious code operating with "root" level permissions. On environments
that do not provide application isolation but run all code with the privileges of the user, (e.g. traditional desktop operating systems) an intact
TCB, including web browsers, may successfully enforce scoping of credentials for web origins only, but cannot meaningfully enforce application
scoping.

3. The AppID and FacetID Assertions

When a user performs a Registration operation [UAFArchOverview] a new private key is created by their authenticator, and the public key is
sent to the Relying Party. As part of this process, each key is associated with an AppID. The AppID is a URL carried as part of the protocol
message sent by the server and indicates the target for this credential. By default, the audience of the credential is restricted to the Same
Origin of the AppID. In some circumstances, a Relying Party may desire to apply a larger scope to a key. If that AppID URL has the https
scheme, a FIDO client may be able to dereference and process it as a TrustedFacetList that designates a scope or audience restriction that
includes multiple facets, such as other web origins within the same DNS zone of control of the AppID's origin, or URLs indicating the identity of
other types of trusted facets such as mobile apps.

3.1 Processing Rules for AppID and FacetID Assertions

3.1.1 Determining the FacetID of a Calling Application

In the Web case, the FacetID must be the Web Origin [RFC6454] of the web page triggering the FIDO operation, written as a URI with an
empty path. Default ports are omitted and any path component is ignored.

An example FacetID is shown below:

https://login.mycorp.com/

In the Android [ANDROID] case, the FacetID must be a URI derived from the Base64 encoded SHA-256 (or SHA-1) hash of the APK signing
certificate [APK-Signing]:

android:apk-key-hash-sha256:<base64_encoded_sha256_hash-of-apk-signing-cert>

android:apk-key-hash:<base64_encoded_sha1_hash-of-apk-signing-cert>

The SHA-1 hash can be computed as follows:

The Base64 encoding is the the "Base 64 Encoding" from Section 4 in [RFC4648], with padding characters removed.

In the iOS [iOS] case, the FacetID must be the BundleID [BundleID] URI of the application:

NOTE

Users may also register multiple keys on a single authenticator for an AppID, such as for cases where they have multiple accounts. Such
registrations may have a Relying Party assigned username or local nicknames associated to allow them to be distinguished by the user,
or they may not (e.g. for 2nd factor use cases, the user account associated with a key may be communicated out-of-band to what is
specified by FIDO protocols). All registrations that share an AppID, also share these same audience restriction.

EXAMPLE 1: Computing an APK signing certificate SHA256 hash

Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
 -alias <alias-of-entry> \
 -keystore <path-to-apk-signing-keystore> &>2 /dev/null | \
 openssl sha256 -binary | \
 openssl base64 | \
 sed 's/=//g'

EXAMPLE 2: Computing an APK signing certificate SHA1 hash

Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
 -alias <alias-of-entry> \
 -keystore <path-to-apk-signing-keystore> &>2 /dev/null | \
 openssl sha1 -binary | \
 openssl base64 | \
 sed 's/=//g'

NOTE

If compatibility with older versions of FIDO Clients (i.e. the ones not yet supporting SHA-256 for FacetIDs) is required, both entries
should be specified.

ios:bundle-id:<ios-bundle-id-of-app>

3.1.2 Determining if a Caller's FacetID is Authorized for an AppID

1. If the AppID is not an HTTPS URL, and matches the FacetID of the caller, no additional processing is necessary and the operation may
proceed.

2. If the AppID is null or empty, the client must set the AppID to be the FacetID of the caller, and the operation may proceed without
additional processing.

3. If the caller's FacetID is an https:// Origin sharing the same host as the AppID, (e.g. if an application hosted at
https://fido.example.com/myApp set an AppID of https://fido.example.com/myAppId), no additional processing is necessary and the
operation may proceed. This algorithm may be continued asynchronously for purposes of caching the TrustedFacetList, if desired.

4. Begin to fetch the TrustedFacetList using the HTTP GET method. The location must be identified with an HTTPS URL.

5. The URL must be dereferenced with an anonymous fetch. That is, the HTTP GET must include no cookies, authentication, Origin or
Referer headers, and present no TLS certificates or other forms of credentials.

6. The response must set a MIME Content-Type of "application/fido.trusted-apps+json".

7. The caching related HTTP header fields in the HTTP response (e.g. “Expires”) should be respected when fetching a TrustedFacetList.

8. The server hosting the TrustedFacetList must respond uniformly to all clients. That is, it must not vary the contents of the response body
based on any credential material, including ambient authority such as originating IP address, supplied with the request.

9. If the server returns an HTTP redirect (status code 3xx) the server must also send the HTTP header FIDO-AppID-Redirect-Authorized:
true and the client must verify the presence of such a header before following the redirect. This protects against abuse of open
redirectors within the target domain by unauthorized parties. If this check has passed, restart this algorithm from step 4.

10. A TrustedFacetList may contain an unlimited number of entries, but clients may truncate or decline to process large responses.

11. From among the objects in the trustedFacet array, select the one with the version matching that of the protocol message version. With
"matching" we mean: the highest version that appears in the TrustedFacetList that is smaller or equal to the actual protocol version being
used.

12. The scheme of URLs in ids must identify either an application identity (e.g. using the apk:, ios: or similar scheme) or an https: Web
Origin [RFC6454].

13. Entries in ids using the https:// scheme must contain only scheme, host and port components, with an optional trailing /. Any path, query
string, username/password, or fragment information must be discarded.

14. All Web Origins listed must have host names under the scope of the same least-specific private label in the DNS, using the following
algorithm:

1. Obtain the list of public DNS suffixes from https://publicsuffix.org/list/effective_tld_names.dat (the client may cache such data), or
equivalent functionality as available on the platform.

2. Extract the host portion of the original AppID URL, before following any redirects.

3. The least-specific private label is the portion of the host portion of the AppID URL that matches a most-specific public suffix plus one
additional label to the left (also known as 'effective top-level domain'+1 or eTLD+1).

4. For each Web Origin in the TrustedFacetList, the calculation of the least-specific private label in the DNS must be a case-
insensitive match of that of the AppID URL itself. Entries that do not match must be discarded.

15. If the TrustedFacetList cannot be retrieved and successfully parsed according to these rules, the client must abort processing of the
requested FIDO operation.

16. After processing the trustedFacets entry of the correct version and removing any invalid entries, if the caller's FacetID matches one listed
in ids, the operation is allowed.

3.1.3 TrustedFacet List and Structure

The Trusted Facets JSON resource is a serialized TrustedFacetList hosted at the AppID URL. It consists of a dictionary containing a single
member, trustedFacets which is an array of TrustedFacets dictionaries.

WebIDL

dictionary TrustedFacetList {
 TrustedFacets[] trustedFacets;
};

3.1.3.1 Dictionary TrustedFacetList Members

trustedFacets of type array of TrustedFacets

An array of TrustedFacets.

WebIDL

dictionary TrustedFacets {
 Version version;
 DOMString[] ids;
};

3.1.3.2 Dictionary TrustedFacets Members

version of type Version
The protocol version to which this set of trusted facets applies. See [UAFProtocol] for the definition of the version structure.

ids of type array of DOMString
An array of URLs identifying authorized facets for this AppID.

3.1.4 AppID Example 1

".com" is a public suffix. "https://www.example.com/appID" is provided as an AppID. The body of the resource at this location contains:

EXAMPLE 3

{
 "trustedFacets" : [{
 "version": { "major": 1, "minor" : 0 },
 "ids": [

http://www.whatwg.org/specs/web-apps/current-work/multipage/fetching-resources.html#attr-crossorigin-anonymous
https://publicsuffix.org/list/effective_tld_names.dat

For this policy, "https://www.example.com" and "https://register.example.com" would have access to the keys registered for this AppID, and
"https://user1.example.com" would not.

3.1.5 AppID Example 2

"hosting.example.com" is a public suffix, operated under "example.com" and used to provide hosted cloud services for many companies.
"https://companyA.hosting.example.com/appID" is provided as an AppID. The body of the resource at this location contains:

For this policy, "https://fido.companyA.hosting.example.com" would have access to the keys registered for this AppID, and
"https://register.example.com" and "https://companyB.hosting.example.com" would not as a public-suffix exists between these DNS names and
the AppID's.

3.1.6 Obtaining FacetID of Android Native App

This section is non-normative.

The following code demonstrates how a FIDO Client can obtain and construct the FacetID of a calling Android native application.

 "https://register.example.com", // VALID, shares "example.com" label
 "https://fido.example.com", // VALID, shares "example.com" label
 "http://www.example.com", // DISCARD, scheme is not https:
 "http://www.example-test.com", // DISCARD, "example-test.com" does not match
 "https://www.example.com:444" // VALID, port is not significant
]
 }]
}

EXAMPLE 4

{
 "trustedFacets" : [{
 "version": { "major": 1, "minor" : 0 },
 "ids": [
 "https://register.example.com", // DISCARD, does not share "companyA.hosting.example.com" label
 "https://fido.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
 "https://xyz.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
 "https://companyB.hosting.example.com" // DISCARD, "companyB.hosting.example.com" does not match
]
 }]
}

EXAMPLE 5: AndroidFacetID SHA256

private String getFacetID(Context aContext, int callingUid) {

 String packageNames[] = aContext.getPackageManager().getPackagesForUid(callingUid);

 if (packageNames == null) {
 return null;
 }

 try {
 PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_SIGNATURES);

 byte[] cert = info.signatures[0].toByteArray();
 InputStream input = new ByteArrayInputStream(cert);

 CertificateFactory cf = CertificateFactory.getInstance("X509");
 X509Certificate c = (X509Certificate) cf.generateCertificate(input);

 MessageDigest md = MessageDigest.getInstance("SHA256");

 return "android:apk-key-hash-sha256:" +
 Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);
 }
 catch (PackageManager.NameNotFoundException e) {
 e.printStackTrace();
 }
 catch (CertificateException e) {
 e.printStackTrace();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (CertificateEncodingException e) {
 e.printStackTrace();
 }

 return null;
}

EXAMPLE 6: AndroidFacetID SHA1

private String getFacetID(Context aContext, int callingUid) {

 String packageNames[] = aContext.getPackageManager().getPackagesForUid(callingUid);

 if (packageNames == null) {
 return null;
 }

 try {
 PackageInfo info = aContext.getPackageManager().getPackageInfo(packageNames[0], PackageManager.GET_SIGNATURES);

 byte[] cert = info.signatures[0].toByteArray();
 InputStream input = new ByteArrayInputStream(cert);

 CertificateFactory cf = CertificateFactory.getInstance("X509");
 X509Certificate c = (X509Certificate) cf.generateCertificate(input);

 MessageDigest md = MessageDigest.getInstance("SHA1");

 return "android:apk-key-hash:" +
 Base64.encodeToString(md.digest(c.getEncoded()), Base64.DEFAULT | Base64.NO_WRAP | Base64.NO_PADDING);
 }

3.1.7 Additional Security Considerations

The UAF protocol supports passing FacetID to the FIDO Server and including the FacetID in the computation of the authentication response.

Trusting a web origin facet implicitly trusts all subdomains under the named entity because web user agents do not provide a security barrier
between such origins. So, in AppID Example 1, although not explicitly listed, "https://foobar.register.example.com" would still have effective
access to credentials registered for the AppID "https://www.example.com/appID" because it can effectively act as
"https://register.example.com".

The component implementing the controls described here must reliably identify callers to securely enforce the mechanisms. Platform inter-
process communication mechanisms which allow such identification should be used when available.

It is unlikely that the component implementing the controls described here can verify the integrity and intent of the entries on a
TrustedFacetList. If a trusted facet can be compromised or enlisted as a confused deputy [FIDOGlossary] by a malicious party, it may be
possible to trick a user into completing an authentication ceremony under the control of that malicious party.

3.1.7.1 Wildcards in TrustedFacet identifiers

This section is non-normative.

Wildcards are not supported in TrustedFacet identifiers. This follows the advice of RFC6125 [RFC6125], section 7.2.

FacetIDs are URIs that uniquely identify specific security principals that are trusted to interact with a given registered credential. Wildcards
introduce undesirable ambiguitiy in the defintion of the principal, as there is no consensus syntax for what wildcards mean, how they are
expanded and where they can occur across different applications and protocols in common use. For schemes indicating application identities, it
is not clear that wildcarding is appropriate in any fashion. For Web Origins, it broadly increases the scope of the credential to potentially include
rogue or buggy hosts.

Taken together, these ambiguities might introduce exploitable differences in identity checking behavior among client implementations and
would necessitate overly complex and inefficient identity checking algorithms.

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL: http://www.ietf.org/rfc/rfc4648.txt

[RFC6125]
P. Saint-Andre; J. Hodges. Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125). March 2011. URL:
http://www.ietf.org/rfc/rfc6125.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL: http://www.ietf.org/rfc/rfc6454.txt

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

A.2 Informative references

[ANDROID]
The Android™ Operating System. URL: http://developer.android.com/

[APK-Signing]
Signing Your Applications. URL: http://developer.android.com/tools/publishing/app-signing.html

[BundleID]
Configuring your Xcode Project for Distribution. URL:
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html

[UAFArchOverview]
S. Machani; R. Philpott; S. Srinivas; J. Kemp; J. Hodges. FIDO UAF Architectural Overview. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html

[iOS]
iOS Dev Center. URL: https://developer.apple.com/devcenter/ios/index.action

 catch (PackageManager.NameNotFoundException e) {
 e.printStackTrace();
 }
 catch (CertificateException e) {
 e.printStackTrace();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (CertificateEncodingException e) {
 e.printStackTrace();
 }

 return null;
}

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-overview-v1.2-id-20180220.html
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action

FIDO Metadata Statements

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-metadata-statement-v1.2-rd-20171128.html

Editors:
Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

FIDO authenticators may have many different form factors, characteristics and capabilities. This document defines a
standard means to describe the relevant pieces of information about an authenticator in order to interoperate with it, or to
make risk-based policy decisions about transactions involving a particular authenticator.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a
FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All
comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to
use the Specification solely for the purpose of implementing the Specification. No rights are granted to prepare derivative
works of this Specification. Entities seeking permission to reproduce portions of this Specification for other uses must
contact the FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Conformance

2. Overview
2.1 Scope

2.2 Audience

2.3 Architecture

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-metadata-statement-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3. Types
3.1 Authenticator Attestation GUID (AAGUID) typedef

3.2 CodeAccuracyDescriptor dictionary
3.2.1 Dictionary CodeAccuracyDescriptor Members

3.3 BiometricAccuracyDescriptor dictionary
3.3.1 Dictionary BiometricAccuracyDescriptor Members

3.4 PatternAccuracyDescriptor dictionary
3.4.1 Dictionary PatternAccuracyDescriptor Members

3.5 VerificationMethodDescriptor dictionary
3.5.1 Dictionary VerificationMethodDescriptor Members

3.6 verificationMethodANDCombinations typedef

3.7 rgbPaletteEntry dictionary
3.7.1 Dictionary rgbPaletteEntry Members

3.8 DisplayPNGCharacteristicsDescriptor dictionary
3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

3.9 EcdaaTrustAnchor dictionary
3.9.1 Dictionary EcdaaTrustAnchor Members

3.10 ExtensionDescriptor dictionary
3.10.1 Dictionary ExtensionDescriptor Members

3.11 AlternativeDescriptions dictionary
3.11.1 Dictionary AlternativeDescriptions Members

4. Metadata Keys
4.1 Dictionary MetadataStatement Members

5. Metadata Statement Format
5.1 UAF Example

5.2 U2F Example

6. Additional Considerations
6.1 Field updates and metadata

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

All diagrams, examples, notes in this specification are non-normative.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be
interpreted as described in [RFC2119].

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members
are marked in the WebIDL definitions found in this document, as required. The keyword required has been
introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which implements
[WebIDL], then you may remove the keyword required from your WebIDL and use other means to ensure those
fields are present.

2. Overview

This section is non-normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety of different
devices in a competitive marketplace. Much of the complexity behind this variety is hidden from Relying Party applications,
but in order to accomplish the goals of FIDO, Relying Parties must have some means of discovering and verifying various
characteristics of authenticators. Relying Parties can learn a subset of verifiable information for authenticators certified by
the FIDO Alliance with an Authenticator Metadata statement. The URL to access that Metadata statement is provided by
the Metadata TOC file accessible through the Metadata Service [FIDOMetadataService].

For definitions of terms, please refer to the FIDO Glossary [FIDOGlossary].

2.1 Scope

This document describes the format of and information contained in Authenticator Metadata statements. For a definitive list
of possible values for the various types of information, refer to the FIDO Registry of Predefined Values [FIDORegistry].

The description of the processes and methods by which authenticator metadata statements are distributed and the
methods how these statements can be verified are described in the Metadata Service Specification
[FIDOMetadataService].

2.2 Audience

The intended audience for this document includes:

FIDO authenticator vendors who wish to produce metadata statements for their products.

FIDO server implementers who need to consume metadata statements to verify characteristics of authenticators and
attestation statements, make proper algorithm choices for protocol messages, create policy statements or tailor
various other modes of operation to authenticator-specific characteristics.

FIDO relying parties who wish to
create custom policy statements about which authenticators they will accept

risk score authenticators based on their characteristics

verify attested authenticator IDs for cross-referencing with
third party metadata

2.3 Architecture

Fig. 1 The FIDO Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the information contained in
the authoritative statement is used in several other places. How a server obtains these metadata statements is described in
[FIDOMetadataService].

The workflow around an authenticator metadata statement is as follows:

1. The authenticator vendor produces a metadata statement, that is UTF-8 encoded, describing the characteristics of an
authenticator.

2. The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification process. The FIDO
Alliance distributes the metadata as described in [FIDOMetadataService].

3. A FIDO relying party configures its registration policy to allow authenticators matching certain characteristics to be
registered.

4. The FIDO server sends a registration challenge message. This message can contain such policy statement.

5. Depending on the FIDO protocol being used, either the relying party application or the FIDO UAF Client receives the
policy statement as part of the challenge message and processes it. It queries available authenticators for their self-
reported characteristics and (with the user's input) selects an authenticator that matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message contains a reference to
the authenticator model and, optionally, a signature made with the private key corresponding to the public key in the
authenticator's attestation certificate.

7. The FIDO Server looks up the metadata statement for the particular authenticator model. If the metadata statement
lists an attestation certificate(s), it verifies that an attestation signature is present, and made with the private key
corresponding to either (a) one of the certificates listed in this metadata statement or (b) corrsponding to the public
key in a certificate that chains to one of the issuer certificates listed in the authenticator's metadata statement.

8. The FIDO Server next verifies that the authenticator meets the originally supplied registration policy based on its
authoritative metadata statement. This prevents the registration of unexpected authenticator models.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the authenticator,
based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested authenticator model with other metadata databases
published by third parties. Such third-party metadata might, for example, inform the FIDO Server if an authenticator
has achieved certifications relevant to certain markets or industry verticals, or whether it meets application-specific
regulatory requirements.

3. Types

This section is normative.

3.1 Authenticator Attestation GUID (AAGUID) typedef

WebIDL

typedef DOMString AAGUID;

string[36]

Some authenticators have an AAGUID, which is a 128-bit identifier that indicates the type (e.g. make and model) of the
authenticator. The AAGUID must be chosen by the manufacturer to be identical across all substantially identical

authenticators made by that manufacturer, and different (with probability 1-2-128 or greater) from the AAGUIDs of all other
types of authenticators.

The AAGUID is represented as a string (e.g. "7a98c250-6808-11cf-b73b-00aa00b677a7") consisting of 5 hex strings
separated by a dash ("-"), see [RFC4122].

3.2 CodeAccuracyDescriptor dictionary

The CodeAccuracyDescriptor describes the relevant accuracy/complexity aspects of passcode user verification methods.

WebIDL

dictionary CodeAccuracyDescriptor {
 required unsigned short base;
 required unsigned short minLength;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.2.1 Dictionary CodeAccuracyDescriptor Members

base of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4 digits.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means this
user verification method will be blocked, either permanently or until an alternative user verification method
method succeeded. All alternative user verification methods must be specified appropriately in the Metadata in
userVerificationDetails.

3.3 BiometricAccuracyDescriptor dictionary

The BiometricAccuracyDescriptor describes relevant accuracy/complexity aspects in the case of a biometric user
verification method.

At least one of the values must be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.baDesc must be omitted.

NOTE

One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral system base (radix) and minLen, instead of the number of potential combinations since
there is sufficient evidence [iPhonePasscodes] [MoreTopWorstPasswords] that users don't select their code evenly
distributed at random. So software might take into account the various probability distributions for different bases.
This essentially means that in practice, passcodes are not as secure as they could be if randomly chosen.

NOTE

The False Acceptance Rate (FAR) and False Rejection Rate (FRR) values typically are interdependent via the
Receiver Operator Characteristic (ROC) curve.

The False Artefact Acceptance Rate (FAAR) value reflects the capability of detecting presentation attacks, such as
the detection of rubber finger presentation.

The FAR, FRR, and FAAR values given here must reflect the actual configuration of the authenticators (as opposed
to being theoretical best case values).

WebIDL

dictionary BiometricAccuracyDescriptor {
 double FAR;
 double FRR;
 double EER;
 double FAAR;
 unsigned short maxReferenceDataSets;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.3.1 Dictionary BiometricAccuracyDescriptor Members

FAR of type double
The false acceptance rate [ISO19795-1] for a single reference data set, i.e. the percentage of non-matching data
sets that are accepted as valid ones. For example a FAR of 0.002% would be encoded as 0.00002.

FRR of type double
The false rejection rate for a single reference data set, i.e. the percentage of presented valid data sets that lead
to a (false) non-acceptance. For example a FRR of 10% would be encoded as 0.1.

EER of type double
The equal error rate for a single reference data set.

FAAR of type double
The false artefact acceptance rate [ISO30107-1], i.e. the percentage of artefacts that are incorrectly accepted by
the system. For example a FAAR of 0.1% would be encoded as 0.001.

maxReferenceDataSets of type unsigned short
Maximum number of alternative reference data sets, e.g. 3 if the user is allowed to enroll 3 different fingers to a
fingerprint based authenticator.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means that
this user verification method will be blocked either permanently or until an alternative user verification method
succeeded. All alternative user verification methods must be specified appropriately in the metadata in
userVerificationDetails.

3.4 PatternAccuracyDescriptor dictionary

The PatternAccuracyDescriptor describes relevant accuracy/complexity aspects in the case that a pattern is used as the
user verification method.

NOTE

Typical fingerprint sensor characteristics can be found in Google Android 6.0 Compatibility Definition and Apple iOS
Security Guide.

NOTE

The resulting FAR when all reference data sets are used is maxReferenceDataSets * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

NOTE

The false rejection rate is relevant for the convenience. Lower false acceptance rates mean better
convenience.

NOTE

The false artefact acceptance rate is relevant for the security of the system. Lower false artefact
acceptance rates imply better security.

https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://www.apple.com/business/docs/iOS_Security_Guide.pdf

WebIDL

dictionary PatternAccuracyDescriptor {
 required unsigned long minComplexity;
 unsigned short maxRetries;
 unsigned short blockSlowdown;
};

3.4.1 Dictionary PatternAccuracyDescriptor Members

minComplexity of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the right one, i.e.
1/probability in the case of equal distribution.

maxRetries of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this method (at least
temporarily). 0 means it will never block.

blockSlowdown of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar mechanism). 0
means this user verification method will be blocked, either permanently or until an alternative user verification
method method succeeded. All alternative user verification methods must be specified appropriately in the
metadata under userVerificationDetails.

3.5 VerificationMethodDescriptor dictionary

A descriptor for a specific base user verification method as implemented by the authenticator.

A base user verification method must be chosen from the list of those described in [FIDORegistry]

The specification of the related AccuracyDescriptor is optional, but recommended.

WebIDL

dictionary VerificationMethodDescriptor {
 required unsigned long userVerification;
 CodeAccuracyDescriptor caDesc;
 BiometricAccuracyDescriptor baDesc;
 PatternAccuracyDescriptor paDesc;
};

3.5.1 Dictionary VerificationMethodDescriptor Members

userVerification of type required unsigned long
a single USER_VERIFY constant (see [FIDORegistry]), not a bit flag combination. This value must be non-zero.

caDesc of type CodeAccuracyDescriptor

May optionally be used in the case of method USER_VERIFY_PASSCODE.

baDesc of type BiometricAccuracyDescriptor

May optionally be used in the case of method USER_VERIFY_FINGERPRINT, USER_VERIFY_VOICEPRINT,
USER_VERIFY_FACEPRINT, USER_VERIFY_EYEPRINT, or USER_VERIFY_HANDPRINT.

paDesc of type PatternAccuracyDescriptor

May optionally be used in case of method USER_VERIFY_PATTERN.

3.6 verificationMethodANDCombinations typedef

WebIDL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations must be non-empty. It is a list containing the base user verification methods which

NOTE

One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern] screen unlock. The
minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN, the minimum allowed for this
mechanism.

NOTE

In reality, several of the methods described above might be combined. For example, a fingerprint based user
verification can be combined with an alternative password.

must be passed as part of a successful user verification.

This list will contain only a single entry if using a single user verification method is sufficient.

If this list contains multiple entries, then all of the listed user verification methods must be passed as part of the user
verification process.

3.7 rgbPaletteEntry dictionary

The rgbPaletteEntry is an RGB three-sample tuple palette entry

WebIDL

dictionary rgbPaletteEntry {
 required unsigned short r;
 required unsigned short g;
 required unsigned short b;
};

3.7.1 Dictionary rgbPaletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.8 DisplayPNGCharacteristicsDescriptor dictionary

The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG [PNG] spec for
IHDR (image header) and PLTE (palette table)

WebIDL

dictionary DisplayPNGCharacteristicsDescriptor {
 required unsigned long width;
 required unsigned long height;
 required octet bitDepth;
 required octet colorType;
 required octet compression;
 required octet filter;
 required octet interlace;
 rgbPaletteEntry[] plte;
};

3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

width of type required unsigned long
image width

height of type required unsigned long
image height

bitDepth of type required octet
Bit depth - bits per sample or per palette index.

colorType of type required octet
Color type defines the PNG image type.

compression of type required octet
Compression method used to compress the image data.

filter of type required octet
Filter method is the preprocessing method applied to the image data before compression.

interlace of type required octet
Interlace method is the transmission order of the image data.

plte of type array of rgbPaletteEntry

1 to 256 palette entries

3.9 EcdaaTrustAnchor dictionary

In the case of ECDAA attestation, the ECDAA-Issuer's trust anchor must be specified in this field.

WebIDL

WebIDL

dictionary EcdaaTrustAnchor {
 required DOMString X;
 required DOMString Y;
 required DOMString c;
 required DOMString sx;
 required DOMString sy;
 required DOMString G1Curve;
};

3.9.1 Dictionary EcdaaTrustAnchor Members

X of type required DOMString

base64url encoding of the result of ECPoint2ToB of the ECPoint2 X = Px
2
. See [FIDOEcdaaAlgorithm] for

the definition of ECPoint2ToB.

Y of type required DOMString

base64url encoding of the result of ECPoint2ToB of the ECPoint2 Y = Py
2
. See [FIDOEcdaaAlgorithm] for

the definition of ECPoint2ToB.

c of type required DOMString
base64url encoding of the result of BigNumberToB(c). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of c. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sx of type required DOMString
base64url encoding of the result of BigNumberToB(sx). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of sx. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sy of type required DOMString
base64url encoding of the result of BigNumberToB(sy). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of sy. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

G1Curve of type required DOMString
Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256", and "BN_ISOP512"
are supported. See section "Supported Curves for ECDAA" in [FIDOEcdaaAlgorithm] for details.

3.10 ExtensionDescriptor dictionary

This descriptor contains an extension supported by the authenticator.

WebIDL

dictionary ExtensionDescriptor {
 required DOMString id;
 unsigned short tag;
 DOMString data;
 required boolean fail_if_unknown;
};

3.10.1 Dictionary ExtensionDescriptor Members

id of type required DOMString

Identifies the extension.

tag of type unsigned short

The TAG of the extension if this was assigned. TAGs are assigned to extensions if they could appear in an
assertion.

data of type DOMString
Contains arbitrary data further describing the extension and/or data needed to correctly process the extension.

This field may be missing or it may be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (true) when the
extension is to be processed by the FIDO Server, FIDO Client, ASM, or FIDO Authenticator.

A value of false indicates that unknown extensions must be ignored

X = Px2

Y = P
y

2

c
c

sx
sx

sy
sy

NOTE

Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly generated by
verifying s, sx, sy. See [FIDOEcdaaAlgorithm] for details.s, sx, sy

A value of true indicates that unknown extensions must result in an error.

3.11 AlternativeDescriptions dictionary

This descriptor contains description in alternative languages.

WebIDL

dictionary AlternativeDescriptions {
 DOMString *IETFLanguageCodes-members...;
};

3.11.1 Dictionary AlternativeDescriptions Members

*IETFLanguageCodes-members... of type DOMString

IETF language codes ([RFC5646]), defined by a primary language subtag, followed by a region subtag based on
a two-letter country code from [ISO3166] alpha-2 (usually written in upper case), e.g: Austrian-German - "de-AT".
In case of absence of the specific territorial language definition, vendor should fallback to the more general
language option, e.g: If "de" is given, but "de-AT" is missing, the use "de" entry instead.

Description values can contain any UTF-8 characters.

For example: { "ru-RU": "Пример U2F аутентификатора от FIDO Alliance", "fr-FR": "Exemple U2F
authenticator de FIDO Alliance" }

Each description shall not exceed a maximum length of 200 characters.

4. Metadata Keys

This section is normative.

WebIDL

dictionary MetadataStatement {
 DOMString legalHeader;
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 required DOMString description;
 AlternativeDescriptions alternativeDescriptions;
 required unsigned short authenticatorVersion;
 DOMString protocolFamily;
 required Version[] upv;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 unsigned short[] authenticationAlgorithms;
 required unsigned short publicKeyAlgAndEncoding;
 unsigned short[] publicKeyAlgAndEncodings;
 required unsigned short[] attestationTypes;
 required VerificationMethodANDCombinations[] userVerificationDetails;
 required unsigned short keyProtection;
 boolean isKeyRestricted;
 boolean isFreshUserVerificationRequired;
 required unsigned short matcherProtection;
 unsigned short cryptoStrength;
 DOMString operatingEnv;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 required DOMString[] attestationRootCertificates;
 EcdaaTrustAnchor[] ecdaaTrustAnchors;
 DOMString icon;
 ExtensionDescriptor supportedExtensions[];
};

4.1 Dictionary MetadataStatement Members

legalHeader of type DOMString
The legalHeader, if present, contains a legal guide for accessing and using metadata, which itself may contain
URL(s) pointing to further information, such as a full Terms and Conditions statement.

aaid of type AAID
The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure. This field must be
set if the authenticator implements FIDO UAF.

NOTE

aaguid of type AAGUID

The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure. This
field must be set if the authenticator implements FIDO 2.

attestationCertificateKeyIdentifiers of type array of DOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value must be calculated
according to method 1 for computing the keyIdentifier as defined in [RFC5280] section 4.2.1.2. The hex string
must not contain any non-hex characters (e.g. spaces). All hex letters must be lower case. This field must be set
if neither aaid nor aaguid are set. Setting this field implies that the attestation certificate(s) are dedicated to a
single authenticator model.

All attestationCertificateKeyIdentifier values should be unique within the scope of the Metadata Service.

description of type required DOMString
A human-readable, short description of the authenticator, in English.

This description must be in English, and only contain ASCII [ECMA-262] characters.

This description shall not exceed a maximum length of 200 characters.

alternativeDescriptions of type AlternativeDescriptions

A list of human-readable short descriptions of the authenticator in different languages.

authenticatorVersion of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorVersion meeting the requirements specified in this metadata
statement.

Adding new StatusReport entries with status UPDATE_AVAILABLE to the metadata TOC object
[FIDOMetadataService] must also change this authenticatorVersion if the update fixes severe security issues,
e.g. the ones reported by preceding StatusReport entries with status code USER_VERIFICATION_BYPASS,
ATTESTATION_KEY_COMPROMISE, USER_KEY_REMOTE_COMPROMISE, USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

It is recommended to assume increased risk if this version is higher (newer) than the firmware version present in
an authenticator. For example, if a StatusReport entry with status USER_VERIFICATION_BYPASS or
USER_KEY_REMOTE_COMPROMISE precedes the UPDATE_AVAILABLE entry, than any firmware version lower (older) than
the one specified in the metadata statement is assumed to be vulnerable.

protocolFamily of type DOMString
The FIDO protocol family. The values "uaf", "u2f", and "fido2" are supported. If this field is missing, the assumed
protocol family is "uaf". Metadata Statements for U2F authenticators must set the value of protocolFamily to "u2f"
and FIDO 2.0/WebAuthentication Authenticator implementations must set the value of protocolFamily to "fido2".

upv of type array of required Version
The FIDO unified protocol version(s) (related to the specific protocol family) supported by this authenticator. See
[UAFProtocol] for the definition of the Version structure.

assertionScheme of type required DOMString
The assertion scheme supported by the authenticator. Must be set to one of the enumerated strings defined in
the FIDO UAF Registry of Predefined Values [UAFRegistry], or to "U2FV1BIN" in the case of the U2F raw
message format, or to "FIDOV2" in the case of the FIDO 2/WebAuthentication assertion scheme.

authenticationAlgorithm of type required unsigned short
The preferred authentication algorithm supported by the authenticator. Must be set to one of the ALG_ constants
defined in the FIDO Registry of Predefined Values [FIDORegistry]. This value must be non-zero.

authenticationAlgorithms of type array of unsigned short

FIDO UAF Authenticators support AAID, but they don't support AAGUID.

NOTE

FIDO 2 Authenticators support AAGUID, but they don't support AAID.

NOTE

FIDO U2F Authenticators typically do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

NOTE

This description should help an administrator configuring authenticator policies. This description might
deviate from the description returned by the ASM for that authenticator.

This description should contain the public authenticator trade name and the publicly known vendor name.

The list of authentication algorithms supported by the authenticator. Must be set to the complete list of the
supported ALG_ constants defined in the FIDO Registry of Predefined Values [FIDORegistry] if the authenticator
supports multiple algorithms. Each value must be non-zero.

publicKeyAlgAndEncoding of type required unsigned short
The preferred public key format used by the authenticator during registration operations. Must be set to one of
the ALG_KEY constants defined in the FIDO Registry of Predefined Values [FIDORegistry]. Because this
information is not present in APIs related to authenticator discovery or policy, a FIDO server must be prepared to
accept and process any and all key representations defined for any public key algorithm it supports. This value
must be non-zero.

publicKeyAlgAndEncodings of type array of unsigned short
The list of public key formats supported by the authenticator during registration operations. Must be set to the
complete list of the supported ALG_KEY constants defined in the FIDO Registry of Predefined Values
[FIDORegistry] if the authenticator model supports multiple encodings. Because this information is not present in
APIs related to authenticator discovery or policy, a FIDO server must be prepared to accept and process any and
all key representations defined for any public key algorithm it supports. Each value must be non-zero.

attestationTypes of type array of required unsigned short
The supported attestation type(s). (e.g. TAG_ATTESTATION_BASIC_FULL(0x3E07),
TAG_ATTESTATION_BASIC_SURROGATE(0x3E08)).
See section 4.1 of FIDO UAF Registry [UAFRegistry], section 5.2.1 of FIDO UAF Authenticator Commands
specification [UAFAuthnrCommands], and section 4.1.2 of FIDO UAF Protocol specification [UAFProtocol] for
details.

userVerificationDetails of type array of required VerificationMethodANDCombinations
A list of alternative VerificationMethodANDCombinations. Each of these entries is one alternative user
verification method. Each of these alternative user verification methods might itself be an "AND" combination of
multiple modalities.

All effectively available alternative user verification methods must be properly specified here. A user verification
method is considered effectively available if this method can be used to either:

enroll new verification reference data to one of the user verification methods

or

unlock the UAuth key directly after successful user verification

keyProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the KEY_PROTECTION constants in the FIDO Registry of
Predefined Values [FIDORegistry].

This value must be non-zero.

NOTE

FIDO UAF Authenticators
For verification purposes, the field SignatureAlgAndEncoding in the FIDO UAF authentication
assertion [UAFAuthnrCommands] should be used to determine the actual signature algorithm and
encoding.

FIDO U2F Authenticators
FIDO U2F only supports one signature algorithm and encoding:
ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW [FIDORegistry].

NOTE

FIDO UAF Authenticators
For verification purposes, the field PublicKeyAlgAndEncoding in the FIDO UAF registration assertion
[UAFAuthnrCommands] should be used to determine the actual encoding of the public key.

FIDO U2F Authenticators
FIDO U2F only supports one public key encoding: ALG_KEY_ECC_X962_RAW [FIDORegistry].

NOTE

Even though these tags are defined in FIDO UAF protocol specifications, the attestation types apply to
authenticators of all protocol families (e.g. UAF, U2F, ...).

NOTE

The keyProtection specified here denotes the effective security of the attestation key and Uauth private
key and the effective trustworthiness of the attested attributes in the “sign assertion”. Effective security

isKeyRestricted of type boolean

This entry is set to true, if the Uauth private key is restricted by the authenticator to only sign valid FIDO
signature assertions.

This entry is set to false, if the authenticator doesn't restrict the Uauth key to only sign valid FIDO signature
assertions. In this case, the calling application could potentially get any hash value signed by the authenticator.

If this field is missing, the assumed value is isKeyRestricted=true

.

isFreshUserVerificationRequired of type boolean

This entry is set to true, if Uauth key usage always requires a fresh user verification.

If this field is missing, the assumed value is isFreshUserVerificationRequired=true.

This entry is set to false, if the Uauth key can be used without requiring a fresh user verification, e.g. without any
additional user interaction, if the user was verified a (potentially configurable) caching time ago.

In the case of isFreshUserVerificationRequired=false, the FIDO server must verify the registration response
and/or authentication response and verify that the (maximum) caching time (sometimes also called
"authTimeout") is acceptable.

This entry solely refers to the user verification. In the case of transaction confirmation, the authenticator must
always ask the user to authorize the specific transaction.

matcherProtection of type required unsigned short
A 16-bit number representing the bit fields defined by the MATCHER_PROTECTION constants in the FIDO Registry of
Predefined Values [FIDORegistry].

This value must be non-zero.

cryptoStrength of type unsigned short
The authenticator's overall claimed cryptographic strength in bits (sometimes also called security strength or
security level). This is the minimum of the cryptographic strength of all involved cryptographic methods (e.g.
RNG, underlying hash, key wrapping algorithm, signing algorithm, attestation algorithm), e.g. see [FIPS180-4],
[FIPS186-4], [FIPS198-1], [SP800-38B], [SP800-38C], [SP800-38D], [SP800-38F], [SP800-90C], [SP800-90ar1],
[FIPS140-2] etc.

If this value is absent, the cryptographic strength is unknown. If the cryptographic strength of one of the involved
cryptographic methods is unknown the overall claimed cryptographic strength is also unknown.

operatingEnv of type DOMString
Description of the particular operating environment that is used for the Authenticator. These are specified in
[FIDORestrictedOperatingEnv].

attachmentHint of type required unsigned long

means that key extraction or injecting malicious attested attributes is only possible if the specified
protection method is compromised. For example, if keyProtection=TEE is stated, it shall be impossible to
extract the attestation key or the Uauth private key or to inject any malicious attested attributes without
breaking the TEE.

NOTE

Note that only in the case of isKeyRestricted=true, the FIDO server can trust a signature counter or
transaction text to have been correctly processed/controlled by the authenticator.

NOTE

Note that in the case of isFreshUserVerificationRequired=false, the calling App could trigger use of the
key without user involvement. In this case it is the responsibility of the App to ask for user consent.

NOTE

If multiple matchers are implemented, then this value must reflect the weakest implementation of all
matchers.

The matcherProtection specified here denotes the effective security of the FIDO authenticator’s user
verification. This means that a false positive user verification implies breach of the stated method. For
example, if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key
when bypassing the user verification without breaking the TEE.

A 32-bit number representing the bit fields defined by the ATTACHMENT_HINT constants in the FIDO Registry of
Predefined Values [FIDORegistry].

isSecondFactorOnly of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some other
authentication method as a first factor (e.g. username+password).

tcDisplay of type required unsigned short
A 16-bit number representing a combination of the bit flags defined by the TRANSACTION_CONFIRMATION_DISPLAY
constants in the FIDO Registry of Predefined Values [FIDORegistry].

This value must be 0, if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString
Supported MIME content type [RFC2049] for the transaction confirmation display, such as text/plain or
image/png.

This value must be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor

A list of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative of supported
image characteristics for displaying a PNG image.

This list must be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero
and tcDisplayContentType is image/png.

attestationRootCertificates of type array of required DOMString
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is a valid trust anchor for this
authenticator model. Multiple certificates might be used for different batches of the same model. The array does
not represent a certificate chain, but only the trust anchor of that chain. A trust anchor can be a root certificate,
an intermediate CA certificate or even the attestation certificate itself.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value. Each element must be dedicated for authenticator attestation.

Either

1. the manufacturer attestation trust anchor

or

2. the trust anchor dedicated to a specific authenticator model

must be specified.

In the case (1), the trust anchor certificate might cover multiple authenticator models. In this case, it must be
possible to uniquely derive the authenticator model from the Attestation Certificate. When using AAID or
AAGUID, this can be achieved by either specifying the AAID or AAGUID in the attestation certificate using the
extension id-fido-gen-ce-aaid { 1 3 6 1 4 1 45724 1 1 1 } or id-fido-gen-ce-aaguid { 1 3 6 1 4 1 45724 1 1 4 } or -
when neither AAID nor AAGUID are defined - by using the attestationCertificateKeyIdentifier method.

In the case (2) this is not required as the trust anchor only covers a single authenticator model.

NOTE

The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set ATTACHMENT_HINT_EXTERNAL but not
ATTACHMENT_HINT_INTERNAL.

NOTE

The tcDisplay specified here denotes the effective security of the authenticator’s transaction confirmation
display. This means that only a breach of the stated method allows an attacker to inject transaction text to
be included in the signature assertion which hasn't been displayed and confirmed by the user.

NOTE

A certificate listed here is a trust anchor. It might be the actual certificate presented by the authenticator,
or it might be an issuing authority certificate from the vendor that the actual certificate in the authenticator
chains to.

In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain are
included in the registration assertion (see [UAFAuthnrCommands]).

When supporting surrogate basic attestation only (see [UAFProtocol], section "Surrogate Basic Attestation"), no
attestation trust anchor is required/used. So this array must be empty in that case.

ecdaaTrustAnchors of type array of EcdaaTrustAnchor

A list of trust anchors used for ECDAA attestation. This entry must be present if and only if attestationType
includes TAG_ATTESTATION_ECDAA. The entries in attestationRootCertificates have no relevance for
ECDAA attestation. Each ecdaaTrustAnchor must be dedicated to a single authenticator model (e.g as identified
by its AAID/AAGUID).

icon of type DOMString
A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

supportedExtensions[] of type ExtensionDescriptor

List of extensions supported by the authenticator.

5. Metadata Statement Format

This section is non-normative.

NORMATIVE

A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary MetadataStatement.

5.1 UAF Example

Example of the metadata statement for an UAF authenticator with:

authenticatorVersion 2.

Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance rate of 0.002% and rate
limiting attempts for 30 seconds after 5 false trials.

Authenticator is embedded with the FIDO User device.

The authentication keys are protected by TEE and are restricted to sign valid FIDO sign assertions only.

The (fingerprint) matcher is implemented in TEE.

The Transaction Confirmation Display is implemented in a TEE.

The Transaction Confirmation Display supports display of "image/png" objects only.

Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color (=Color Type
2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) and no interlacing support
(interlace method=0).

The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.

It supports the "UAFV1TLV" assertion scheme.

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.

It uses the ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).

It only implements the TAG_ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).

It implements UAF protocol version (upv) 1.0 and 1.1.

EXAMPLE 1: MetadataStatement for UAF Authenticator

{
 "aaid": "1234#5678",
 "description": "FIDO Alliance Sample UAF Authenticator",
 "alternativeDescriptions": {
 "ru-RU": "Пример UAF аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple UAF authenticator de FIDO Alliance"
 },
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 0 },
 { "major": 1, "minor": 1 }
],
 "assertionScheme": "UAFV1TLV",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15879],
 "userVerificationDetails": [
 [{
 "userVerification": 2,
 "baDesc": {
 "FAR": 0.00002,
 "maxRetries": 5,
 "blockSlowdown": 30,
 "maxReferenceDataSets": 5
 }
 }]
],
 "keyProtection": 6,
 "isKeyRestricted": true,
 "matcherProtection": 2,
 "cryptoStrength": 128,
 "operatingEnv": "TEEs based on ARM TrustZone HW",
 "attachmentHint": 1,
 "isSecondFactorOnly": "false",
 "tcDisplay": 5,

Example of an User Verification Methods entry for an authenticator with:

Fingerprint based user verification method, with:

the ability for the user to enroll up to 5 fingers (reference data sets) with

a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01% (0.0001).

The fingerprint verification will be blocked after 5 unsuccessful attempts.

A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification method. Entering the
PIN into the authenticator will be required to re-activate fingerprint based user verification after it has been blocked.

5.2 U2F Example

Example of the metadata statement for an U2F authenticator with:

authenticatorVersion 2.

Touch based user presence check.

Authenticator is a USB pluggable hardware token.

The authentication keys are protected by a secure element.

The user presence check is implemented in the chip.

The Authentiator is a pure second factor authenticator.

It supports the "U2FV1BIN" assertion scheme.

 "tcDisplayContentType": "image/png",
 "tcDisplayPNGCharacteristics": [{
 "width": 320,
 "height": 480,
 "bitDepth": 16,
 "colorType": 2,
 "compression": 0,
 "filter": 0,
 "interlace": 0
 }],
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

EXAMPLE 2: User Verification Methods Entry

[
 [{ "userVerification": 2, "baDesc": { "FAR": 0.00002, "maxReferenceDataSets": 5,
 "maxRetries": 5, "blockSlowdown": 0} }],
 [{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } }]
]

It uses the ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW authentication algorithm.

It uses the ALG_KEY_ECC_X962_RAW public key format (0x100=256 decimal).

It only implements the TAG_ATTESTATION_BASIC_FULL method (0x3E07=15879 decimal).

It implements U2F protocol version 1.0 only.

6. Additional Considerations

This section is non-normative.

6.1 Field updates and metadata

Metadata statements are intended to be stable once they have been published. When authenticators are updated in the
field, such updates are expected to improve the authenticator security (for example, improve FRR or FAR). The
authenticatorVersion must be updated if firmware updates fixing severe security issues (e.g. as reported previously) are

EXAMPLE 3: MetadataStatement for U2F Authenticator

{
 "description": "FIDO Alliance Sample U2F Authenticator",
 "alternativeDescriptions": {
 "ru-RU": "Пример U2F аутентификатора от FIDO Alliance",
 "fr-FR": "Exemple U2F authenticator de FIDO Alliance",
 "zh-CN": "來⾃FIDO Alliance的示例U2F身份驗證器"
 },
 "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
 "protocolFamily": "u2f",
 "authenticatorVersion": 2,
 "upv": [
 { "major": 1, "minor": 0 }
],
 "assertionScheme": "U2FV1BIN",
 "authenticationAlgorithm": 1,
 "publicKeyAlgAndEncoding": 256,
 "attestationTypes": [15879],
 "userVerificationDetails": [
 [{ "userVerification": 1 }]
],
 "keyProtection": 10,
 "matcherProtection": 4,
 "cryptoStrength": 128,
 "operatingEnv": "Secure Element (SE)",
 "attachmentHint": 2,
 "isSecondFactorOnly": "true",
 "tcDisplay": 0,
 "attestationRootCertificates": [
 "MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
 F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
 MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
 DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
 WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
 RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
 QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
 aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
 C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
 A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
 lQ=="
],
 "icon": "data:image/png;base64,
 iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
 jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9KzTB8AM/YEhE2W7p
 QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwgggJBiRiMhFc/4wy8
 884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX9R05Sk19
 bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2XMq
 Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWveo506q227
 dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceOGbYk7
 MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8yaUZQNG64i
 XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW7rWpZcPc+
 0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUqhu
 7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6ouaYvEe
 nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHu6V
 8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
 8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVVT68rT
 JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjVv++uyGUxV
 dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMWXefJdO
 Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgKaXLsEJp5
 rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVhq7T
 WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v6lK
 9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1knSw
 ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x8kwyj8nw
 b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
 E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0rn/ALX2
 32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCa4ri
 XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9EzgnpvHBFUy
 iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGvA6DGu
 eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31hPJOfcUhr
 U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpoHfPs8
 h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
 z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKaxzuCdE0i
 sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56mSZt5WWSy
 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="
}

available.

NORMATIVE

Significant changes in authenticator functionality are not anticipated in firmware updates. For example, if an
authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a user verification
method, the vendor must assign a new AAID to this authenticator.

NORMATIVE

A single authenticator implementation could report itself as two "virtual" authenticators using different AAIDs. Such
implementations must properly (i.e. according to the security characteristics claimed in the metadata) protect UAuth keys
and other sensitive data from the other "virtual" authenticator - just as a normal authenticator would do.

A. References

A.1 Normative references

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

[FIDORestrictedOperatingEnv]
Laurence Lundblade; Meagan Karlsson. FIDO Authenticator Allowed Restricted Operating Environments List. August
2016. Draft. URL: https://github.com/fido-alliance/security-requirements/blob/master/fido-authenticator-allowed-
restricted-operating-environments-list.html

[ISO19795-1]
ISO/IEC JTC 1/SC 37 Information Technology - Biometric peformance testing and reporting - Part 1: Principles and
framework. URL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447

[ISO30107-1]
ISO/IEC JTC 1/SC 37 Information Technology - Biometrics - Presentation attack detection - Part 1: Framework. URL:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227

[RFC2049]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and
Examples (RFC 2049). November 1996. URL: http://www.ietf.org/rfc/rfc2049.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[RFC4122]
P. Leach. A Universally Unique IDentifier (UUID) URN Namespace. July 2005. URL: https://tools.ietf.org/html/rfc4122

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0.
Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-
20180220.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/'

A.2 Informative references

[AndroidUnlockPattern]
Android Unlock Pattern Security Analysis. Published. URL: http://www.sinustrom.info/2012/05/21/android-unlock-
pattern-security-analysis/

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm.

NOTE

The metadata statement is assumed to relate to all authenticators having the same AAID.

NOTE

The FIDO Server is recommended to assume increased risk if the authenticatorVersion specified in the metadata
statement is newer (higher) than the one present in the authenticator.

NOTE

Authentication keys (UAuth.pub) registered for one AAID cannot be used by authenticators reporting a different AAID
- even when running on the same hardware (see section "Authentication Response Processing Rules for FIDO
Server" in [UAFProtocol]).

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://github.com/fido-alliance/security-requirements/blob/master/fido-authenticator-allowed-restricted-operating-environments-list.html
https://github.com/fido-alliance/security-requirements/blob/master/fido-authenticator-allowed-restricted-operating-environments-list.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-reg-v1.2-id-20180220.html
http://heycam.github.io/webidl/'
http://heycam.github.io/webidl/'
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-
20180220.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOKeyAttestation]
FIDO 2.0: Key attestation format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-
ps-20150904.html

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html

[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS). March 2012. URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-
180-4.pdf

[FIPS186-4]
FIPS PUB 186-4: Digital Signature Standard (DSS). July 2013. URL:
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[FIPS198-1]
FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC). July 2008. URL:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[ISO3166]
ISO 3166: Codes for the representation of names of countries and their subdivisions – Part 1: Country codes.
November 2013. Published. URL: https://www.iso.org/standard/63545.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
http://www.itu.int/rec/T-REC-X.690-200811-I/en

[MoreTopWorstPasswords]
Mark Burnett. 10000 Top Passwords. URL: https://xato.net/passwords/more-top-worst-passwords/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C
Recommendation. URL: https://www.w3.org/TR/PNG/

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5646]
A. Phillips, Ed.; M. Davis, Ed.. Tags for Identifying Languages. September 2009. Best Current Practice. URL:
https://tools.ietf.org/html/rfc5646

[SP800-38B]
M. Dworkin. NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. May 2005. URL: http://dx.doi.org/10.6028/NIST.SP.800-38B

[SP800-38C]
M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. July 2007. URL: http://csrc.nist.gov/publications/nistpubs/800-
38C/SP800-38C_updated-July20_2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. November 2007 URL: https://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf

[SP800-38F]
M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-90C]
Elaine Barker; John Kelsey. NIST Special Publication 800-90C: Recommendation for Random Bit Generator (RBG)
Constructions. August 2012. URL: http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf

[SP800-90ar1]
Elaine Barker; John Kelsey. NIST Special Publication 800-90a: Recommendation for Random Number Generation
Using Deterministic Random Bit Generators. August 2012. URL: http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-
20180220.html

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

[iPhonePasscodes]
Daniel Amitay. Most Common iPhone Passcodes. URL: http://danielamitay.com/blog/2011/6/13/most-common-
iphone-passcodes

Processing math: 100%

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://www.iso.org/standard/63545.html
https://www.iso.org/standard/63545.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800_90c_second_draft.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

FIDO Metadata Service

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-metadata-service-v1.2-rd-20171128.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

The FIDO Authenticator Metadata Specification defines so-called "Authenticator Metadata" statements. The
metadata statements contain the "Trust Anchor" required to validate the attestation object, and they also describe
several other important characteristics of the authenticator.

The metadata service described in this document defines a baseline method for relying parties to access the latest
metadata statements.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found
in the FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become
a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please Contact Us. All
comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby
granted to use the Specification solely for the purpose of implementing the Specification. No rights are granted to
prepare derivative works of this Specification. Entities seeking permission to reproduce portions of this Specification
for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property
rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors
to the Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any
or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-metadata-service-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2. Overview
2.1 Scope

2.2 Detailed Architecture

3. Metadata Service Details
3.1 Metadata TOC Format

3.1.1 Metadata TOC Payload Entry dictionary
3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

3.1.2 StatusReport dictionary
3.1.2.1 Dictionary StatusReport Members

3.1.3 AuthenticatorStatus enum

3.1.4 RogueListEntry dictionary
3.1.4.1 Dictionary RogueListEntry Members

3.1.5 Metadata TOC Payload dictionary
3.1.5.1 Dictionary MetadataTOCPayload Members

3.1.6 Metadata TOC
3.1.6.1 Examples

3.1.7 Metadata TOC object processing rules

4. Considerations

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with
URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

[FIDOMetadataStatement] defines authenticator metadata statements.

These metadata statements contain the trust anchor required to verify the attestation object (more specifically the
KeyRegistrationData object), and they also describe several other important characteristics of the authenticator,
including supported authentication and registration assertion schemes, and key protection flags.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this document, as required. The keyword required
has been introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which
implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means
to ensure those fields are present.

These characteristics can be used when defining policies about which authenticators are acceptable for registration
or authentication.

The metadata service described in this document defines a baseline method for relying parties to access the latest
metadata statements.

Fig. 1 FIDO Metadata Service Architecture Overview

2.1 Scope

This document describes the FIDO Metadata Service architecture in detail and it defines the structure and interface
to access this service. It also defines the flow of the metadata related messages and presents the rationale behind
the design choices.

2.2 Detailed Architecture

The metadata "table-of-contents" (TOC) file contains a list of metadata statements related to the authenticators
known to the FIDO Alliance (FIDO Authenticators).

The FIDO Server downloads the metadata TOC file from a well-known FIDO URL and caches it locally.

The FIDO Server verifies the integrity and authenticity of this metadata TOC file using the digital signature. It then
iterates through the individual entries and loads the metadata statements related to authenticator AAIDs relevant to
the relying party.

Individual metadata statements will be downloaded from the URL specified in the entry of the metadata TOC file,
and may be cached by the FIDO Server as required.

The integrity of the metadata statements will be verified by the FIDO Server using the hash value included in the
related entry of the metadata TOC file.

Fig. 2 FIDO Metadata Service Architecture

3. Metadata Service Details

This section is normative.

The relying party could also obtain metadata directly from authenticator vendors or other trusted sources.

3.1 Metadata TOC Format

NOTE

The single arrow indicates the direction of the network connection, the double arrow indicates the direction of
the data flow.

NOTE

The metadata TOC file is accessible at a well-known URL published by the FIDO Alliance.

NOTE

The relying party decides how frequently the metadata service is accessed to check for metadata TOC
updates.

NOTE

The relying party can decide whether it wants to use the metadata service and whether or not it wants to
accept certain authenticators for registration or authentication.

NOTE

The metadata service makes the metadata TOC object (see Metadata TOC) accessible to FIDO Servers.

This object is a "table-of-contents" for metadata, as it includes the AAID, the download URL and the hash
value of the individual metadata statements. The TOC object contains one signature.

3.1.1 Metadata TOC Payload Entry dictionary

Represents the MetadataTOCPayloadEntry

WebIDL

dictionary MetadataTOCPayloadEntry {
 AAID aaid;
 AAGUID aaguid;
 DOMString[] attestationCertificateKeyIdentifiers;
 DOMString hash;
 DOMString url;
 required StatusReport[] statusReports;
 required DOMString timeOfLastStatusChange;
 DOMString rogueListURL;
 DOMString rogueListHash;
};

3.1.1.1 Dictionary MetadataTOCPayloadEntry Members

aaid of type AAID
The AAID of the authenticator this metadata TOC payload entry relates to. See [UAFProtocol] for the
definition of the AAID structure. This field must be set if the authenticator implements FIDO UAF.

aaguid of type AAGUID
The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure.
This field must be set if the authenticator implements FIDO 2.

attestationCertificateKeyIdentifiers of type array of DOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value must be
calculated according to method 1 for computing the keyIdentifier as defined in [RFC5280] section 4.2.1.2.
The hex string must not contain any non-hex characters (e.g. spaces). All hex letters must be lower case.
This field must be set if neither aaid nor aaguid are set. Setting this field implies that the attestation
certificate(s) are dedicated to a single authenticator model.

hash of type DOMString
base64url(string[1..512])

The hash value computed over the base64url encoding of the UTF-8 representation of the JSON encoded
metadata statement available at url and as defined in [FIDOMetadataStatement]. The hash algorithm
related to the signature algorithm specified in the JWTHeader (see Metadata TOC) must be used.

If this field is missing, the metadata statement has not been published.

url of type DOMString
Uniform resource locator (URL) of the encoded metadata statement for this authenticator model (identified
by its AAID, AAGUID or attestationCertificateKeyIdentifier). This URL must point to the base64url
encoding of the UTF-8 representation of the JSON encoded metadata statement as defined in
[FIDOMetadataStatement].

NOTE

FIDO UAF authenticators support AAID, but they don't support AAGUID.

NOTE

FIDO 2 authenticators support AAGUID, but they don't support AAID.

NOTE

FIDO U2F authenticators do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

NOTE

This method of base64url encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

If this field is missing, the metadata statement has not been published.

encodedMetadataStatement = base64url(utf8(JSONMetadataStatement))

statusReports of type array of required StatusReport
An array of status reports applicable to this authenticator.

timeOfLastStatusChange of type required DOMString
ISO-8601 formatted date since when the status report array was set to the current value.

rogueListURL of type DOMString
URL of a list of rogue (i.e. untrusted) individual authenticators.

rogueListHash of type DOMString
base64url(string[1..512])

The hash value computed over the Base64url encoding of the UTF-8 representation of the JSON encoded
rogueList available at rogueListURL (with type rogueListEntry[]). The hash algorithm related to the
signature algorithm specified in the JWTHeader (see Metadata TOC) must be used.

This hash value must be present and non-empty whenever rogueListURL is present.

3.1.2 StatusReport dictionary

NOTE

This method of the base64url encoding the UTF-8 representation is also used by JWT [JWT] to
avoid encoding ambiguities.

NOTE

This method of base64url-encoding the UTF-8 representation is also used by JWT [JWT] to avoid
encoding ambiguities.

EXAMPLE 1: UAF Metadata TOC Payload

{ "no": 1234, "nextUpdate": "2014-03-31",
 "entries": [
 { "aaid": "1234#5678",
 "hash": "90da8da6de23248abb34da0d4861f4b30a793e198a8d5baa7f98f260db71acd4",
 "url": "https://fidoalliance.org/metadata/1234%x23abcd",
 "rogueListHash": "b5079cf40fd7ed174c645cc04df1e72b7f1229590585d16df62dd20b9541c6b5",
 "rogueListURL": "https://fidoalliance.org/metadata/1234%x23abcd.rl",
 "statusReports": [
 { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-04"}
],
 "timeOfLastStatusChange": "2014-01-04"
 },
 { "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
 "hash": "785d16df640fd7b50ed174cb5645cc0f1e72b7f19cf22959052dd20b9541c64d",
 "url": "https://authnr-vendor-a.com/metadata/9876%x234321",
 "statusReports": [
 { status: "FIDO_CERTIFIED", effectiveDate: "2014-01-07"},
 { status: "UPDATE_AVAILABLE", effectiveDate: "2014-02-19",
 url: "https://example.com/update1234" }
],
 "timeOfLastStatusChange": "2014-02-19"
 }
]
}

NOTE

The character # is a reserved character and not allowed in URLs [RFC3986]. As a consequence it has been
replaced by its hex value %x23.

The authenticator vendors can decide to let the metadata service publish its metadata statements or to
publish metadata statements themselves. Authenticator vendors can restrict access to the metadata
statements they publish themselves.

NOTE

Contains an AuthenticatorStatus and additional data associated with it, if any.

The latest StatusReport entry must reflect the "current" status. For example, if the latest entry has status
USER_VERIFICATION_BYPASS, then it is recommended assuming an increased risk associated with all authenticators of
this AAID; if the latest entry has status UPDATE_AVAILABLE, then the update is intended to address at least all previous
issues reported in this StatusReport dictionary.

WebIDL

dictionary StatusReport {
 required AuthenticatorStatus status;
 DOMString effectiveDate;
 DOMString certificate;
 DOMString url;
 DOMString certificationDescriptor;
 DOMString certificateNumber;
 DOMString certificationPolicyVersion;
 DOMString certificationRequirementsVersion;
};

3.1.2.1 Dictionary StatusReport Members

status of type required AuthenticatorStatus
Status of the authenticator. Additional fields may be set depending on this value.

effectiveDate of type DOMString
ISO-8601 formatted date since when the status code was set, if applicable. If no date is given, the status
is assumed to be effective while present.

certificate of type DOMString
Base64-encoded [RFC4648] (not base64url!) DER [ITU-X690-2008] PKIX certificate value related to the
current status, if applicable.

url of type DOMString
HTTPS URL where additional information may be found related to the current status, if applicable.

certificationDescriptor of type DOMString
Describes the externally visible aspects of the Authenticator Certification evaluation.

certificateNumber of type DOMString
The unique identifier for the issued Certification

certificationPolicyVersion of type DOMString
The version of the Authenticator Certification Policy the implementation is Certified to, e.g. "1.0.0".

certificationRequirementsVersion of type DOMString
The version of the Authenticator Security Requirements the implementation is Certified to, e.g. "1.0.0".

3.1.3 AuthenticatorStatus enum

This enumeration describes the status of an authenticator model as identified by its AAID and potentially some
additional information (such as a specific attestation key).

WebIDL

enum AuthenticatorStatus {
 "NOT_FIDO_CERTIFIED",
 "FIDO_CERTIFIED",
 "USER_VERIFICATION_BYPASS",

New StatusReport entries will be added to report known issues present in firmware updates.

NOTE

As an example, this could be an Attestation Root Certificate (see [FIDOMetadataStatement]) related
to a set of compromised authenticators (ATTESTATION_KEY_COMPROMISE).

NOTE

For example a link to a web page describing an available firmware update in the case of status
UPDATE_AVAILABLE, or a link to a description of an identified issue in the case of status
USER_VERIFICATION_BYPASS.

 "ATTESTATION_KEY_COMPROMISE",
 "USER_KEY_REMOTE_COMPROMISE",
 "USER_KEY_PHYSICAL_COMPROMISE",
 "UPDATE_AVAILABLE",
 "REVOKED",
 "SELF_ASSERTION_SUBMITTED",
 "FIDO_CERTIFIED_L1",
 "FIDO_CERTIFIED_L2",
 "FIDO_CERTIFIED_L3",
 "FIDO_CERTIFIED_L4",
 "FIDO_CERTIFIED_L5"
};

Enumeration description

NOT_FIDO_CERTIFIED This authenticator is not FIDO certified.

FIDO_CERTIFIED
This authenticator has passed FIDO functional certification. This certification
scheme is phased out and will be replaced by FIDO_CERTIFIED_L1.

USER_VERIFICATION_BYPASS
Indicates that malware is able to bypass the user verification. This means that
the authenticator could be used without the user's consent and potentially even
without the user's knowledge.

ATTESTATION_KEY_COMPROMISE
Indicates that an attestation key for this authenticator is known to be
compromised. Additional data should be supplied, including the key identifier
and the date of compromise, if known.

USER_KEY_REMOTE_COMPROMISE

This authenticator has identified weaknesses that allow registered keys to be
compromised and should not be trusted. This would include both, e.g. weak
entropy that causes predictable keys to be generated or side channels that
allow keys or signatures to be forged, guessed or extracted.

USER_KEY_PHYSICAL_COMPROMISE
This authenticator has known weaknesses in its key protection mechanism(s)
that allow user keys to be extracted by an adversary in physical possession of
the device.

UPDATE_AVAILABLE

A software or firmware update is available for the device. Additional data should
be supplied including a URL where users can obtain an update and the date the
update was published.

When this code is used, then the field authenticatorVersion in the metadata
Statement [FIDOMetadataStatement] must be updated, if the update fixes
severe security issues, e.g. the ones reported by preceding StatusReport
entries with status code USER_VERIFICATION_BYPASS,
ATTESTATION_KEY_COMPROMISE, USER_KEY_REMOTE_COMPROMISE,
USER_KEY_PHYSICAL_COMPROMISE, REVOKED.

REVOKED
The FIDO Alliance has determined that this authenticator should not be trusted
for any reason, for example if it is known to be a fraudulent product or contain a
deliberate backdoor.

SELF_ASSERTION_SUBMITTED
The authenticator vendor has completed and submitted the self-certification
checklist to the FIDO Alliance. If this completed checklist is publicly available,
the URL will be specified in StatusReport.url.

FIDO_CERTIFIED_L1
The authenticator has passed FIDO Authenticator certification at level 1. This
level is the more strict successor of FIDO_CERTIFIED.

FIDO_CERTIFIED_L2
The authenticator has passed FIDO Authenticator certification at level 2. This
level is more strict than level 1.

FIDO_CERTIFIED_L3
The authenticator has passed FIDO Authenticator certification at level 3. This
level is more strict than level 2.

FIDO_CERTIFIED_L4
The authenticator has passed FIDO Authenticator certification at level 4. This
level is more strict than level 3.

FIDO_CERTIFIED_L5
The authenticator has passed FIDO Authenticator certification at level 5. This
level is more strict than level 4.

More values might be added in the future. FIDO Servers must silently ignore all unknown AuthenticatorStatus
values.

3.1.4 RogueListEntry dictionary

NOTE

Relying parties might want to inform users about available firmware
updates.

WebIDL

dictionary RogueListEntry {
 required DOMString sk;
 required DOMString date;
};

3.1.4.1 Dictionary RogueListEntry Members

sk of type required DOMString
Base64url encoding of the rogue authenticator's secret key (sk value, see [FIDOEcdaaAlgorithm], section
ECDAA Attestation).

date of type required DOMString
ISO-8601 formatted date since when this entry is effective.

3.1.5 Metadata TOC Payload dictionary

Represents the MetadataTOCPayload

WebIDL

dictionary MetadataTOCPayload {
 DOMString legalHeader;
 required Number no;
 required DOMString nextUpdate;
 required MetadataTOCPayloadEntry[] entries;
};

3.1.5.1 Dictionary MetadataTOCPayload Members

legalHeader of type DOMString
The legalHeader, if present, contains a legal guide for accessing and using metadata, which itself may
contain URL(s) pointing to further information, such as a full Terms and Conditions statement.

no of type required Number
The serial number of this UAF Metadata TOC Payload. Serial numbers must be consecutive and strictly
monotonic, i.e. the successor TOC will have a no value exactly incremented by one.

nextUpdate of type required DOMString
ISO-8601 formatted date when the next update will be provided at latest.

entries of type array of required MetadataTOCPayloadEntry
List of zero or more MetadataTOCPayloadEntry objects.

3.1.6 Metadata TOC

NOTE

Contains a list of individual authenticators known to be rogue.

New RogueListEntry entries will be added to report new individual authenticators known to be rogue.

Old RogueListEntry entries will be removed if the individual authenticator is known to not be rogue any longer.

NOTE

In order to revoke an individual authenticator, its secret key (sk) must be known.

EXAMPLE 2: RogueListEntry[] example

[
 { "sk": "30efa86aa6de25249acb35da0d4861f4b30a793e198a8d5baa7e96f240da51f3",
 "date": "2016-06-07"},
 { "sk": "93de8da6de23248abb34da0d4861f4b30a793e153a8d5bb27f98f260db71acd4",
 "date": "2016-06-09"},
]

The metadata table of contents (TOC) is a JSON Web Token (see [JWT] and [JWS]).

It consists of three elements:

The base64url encoding, without padding, of the UTF-8 encoded JWT Header (see example below),

the base64url encoding, without padding, of the UTF-8 encoded UAF Metadata TOC Payload (see example at
the beginning of section Metadata TOC Format),

and the base64url-encoded, also without padding, JWS Signature [JWS] computed over the to-be-signed
payload using the Metadata TOC signing key, i.e.

tbsPayload = EncodedJWTHeader | "." | EncodedMetadataTOCPayload

All three elements of the TOC are concatenated by a period ("."):

MetadataTOC = EncodedJWTHeader | "." | EncodedMetadataTOCPayload | "." | EncodedJWSSignature

The hash algorithm related to the signing algorithm specified in the JWT Header (e.g. SHA256 in the case of
"ES256") must also be used to compute the hash of the metadata statements (see section Metadata TOC Payload
Entry Dictionary).

3.1.6.1 Examples

This section is non-normative.

EXAMPLE 3: Encoded Metadata Statement

eyAiQUFJRCI6ICIxMjM0IzU2NzgiLA0KICAiQXR0ZXN0YXRpb25Sb290Q2VydGlmaWNhdGUiOiAi
TUlJQ1BUQ0NBZU9nQXdJQkFnSUpBT3VleHZVM095MndNQW9HQ0NxR1NNNDlCQU1DTUhzeElEQWVC
Z05WQkFNTQ0KRjFOaGJYQnNaU0JCZEhSbGMzUmhkR2x2YmlCU2IyOTBNUll3RkFZRFZRUUtEQTFH
U1VSUElFRnNiR2xoYm1ObA0KTVJFd0R3WURWUVFMREFoVlFVWWdWRmRITERFU01CQUdBMVVFQnd3
SlVHRnNieUJCYkhSdk1Rc3dDUVlEVlFRSQ0KREFKRFFURUxNQWtHQTFVRUJoTUNWVk13SGhjTk1U
UXdOakU0TVRNek16TXlXaGNOTkRFeE1UQXpNVE16TXpNeQ0KV2pCN01TQXdIZ1lEVlFRRERCZFRZ
VzF3YkdVZ1FYUjBaWE4wWVhScGIyNGdVbTl2ZERFV01CUUdBMVVFQ2d3Tg0KUmtsRVR5QkJiR3hw
WVc1alpURVJNQThHQTFVRUN3d0lWVUZHSUZSWFJ5d3hFakFRQmdOVkJBY01DVkJoYkc4Zw0KUVd4
MGJ6RUxNQWtHQTFVRUNBd0NRMEV4Q3pBSkJnTlZCQVlUQWxWVE1Ga3dFd1lIS29aSXpqMENBUVlJ
S29aSQ0KemowREFRY0RRZ0FFSDhodjJEMEhYYTU5L0JtcFE3UlplaEwvRk1HekZkMVFCZzl2QVVw
T1ozYWpudVE5NFBSNw0KYU16SDMzblVTQnI4ZkhZRHJxT0JiNThweEdxSEpSeVgvNk5RTUU0d0hR
WURWUjBPQkJZRUZQb0hBM0NMaHhGYg0KQzBJdDd6RTR3OGhrNUVKL01COEdBMVVkSXdRWU1CYUFG
UG9IQTNDTGh4RmJDMEl0N3pFNHc4aGs1RUovTUF3Rw0KQTFVZEV3UUZNQU1CQWY4d0NnWUlLb1pJ
emowRUF3SURTQUF3UlFJaEFKMDZRU1h0OWloSWJFS1lLSWpzUGtyaQ0KVmRMSWd0ZnNiRFN1N0Vy
SmZ6cjRBaUJxb1lDWmYwK3pJNTVhUWVBSGpJekE5WG02M3JydUF4Qlo5cHM5ejJYTg0KbFE9PSIs
DQogICJEZXNjcmlwdGlvbiI6ICJGSURPIEFsbGlhbmNlIFNhbXBsZSBVQUYgQXV0aGVudGljYXRv
ciIsDQogICJVc2VyVmVyaWZpY2F0aW9uTWV0aG9kcyI6IDIsDQogICJWYWxpZEF0dGFjaG1lbnRU
eXBlcyI6IDEsDQogICJLZXlQcm90ZWN0aW9uIjogNiwNCiAgIk1hdGNoZXJQcm90ZWN0aW9uIjog
MiwNCiAgIlNlY3VyZURpc3BsYXkiOiA0LA0KICAiU2VjdXJlRGlzcGxheUNvbnRlbnRUeXBlcyI6
IFsiaW1hZ2UvcG5nIl0sDQogICJTZWN1cmVEaXNwbGF5UE5HQ2hhcmFjdGVyaXN0aWNzIjogW1sw
LDAsMSw2NCwwLDAsMSwyMjQsMTYsMiwwLDAsMF1dLA0KICAiaXNTZWNvbmRGYWN0b3JPbmx5Ijog
ImZhbHNlIiwNCiAgIkljb24iOiAiZGF0YTppbWFnZS9wbmc7YmFzZTY0LGlWQk9SdzBLR2dvQUFB
QU5TVWhFVWdBQUFFOEFBQUF2Q0FZQUFBQ2l3SmZjQUFBQUFYTlNSMElBcnM0YzZRQUFBQVJuUVUx
QkFBQ3gNCmp3djhZUVVBQUFBSmNFaFpjd0FBRHNNQUFBN0RBY2R2cUdRQUFBYWhTVVJCVkdoRDda
cjVieFJsR01mOUt6VEI4QU0vWUVoRTJXN3ANClFaY1dLS0JjbFNwSEFUbEVMQVJFN2tORUNDQTNG
a1dLMENLS1NDRklzS0JjZ1ZDRFdHTkVTZEFZaWR3Z2dnSkJpUmlNaEZjLzR3eTgNCjg4NHp1OU5k
bG5HVGZaSlAybjNuTysrODg5MzNmdmVCQngrUHFDekprVFV2QmJMbXBVRFd2QlRJbXBjQ1NadlhM
Q2RYOVIwNVNrMTkNCmJiNWF0ZjU5OWZHKy9lckE1NDFxNDdhUDFMTFZhOVNJeVZOVWk4SWk4ZDVr
R1RzaTMwTkZ2N2FpOW43UVpQTXdiZHlzMmVyVTJYTXENClVkeTgrWmNhTm1HaW1FOHlYTjNSVWQz
YTE4bkYwZlVsb3ZaKzBDVHpXcGQyVmorZU9tMWJFeXk2RHg0aTVwVU1HV3ZlbzUwNnEyMjcNCmR0
dVdCSXVmZnI2b1dwVjBGUE5MaG93MTc1MU5tMjFMdlBIM3JWdFdqZno2NkxmcWw4dFg3RlJsOVlG
U1hzbVNzZWI5Y2VPR2JZazcNCk1OVWNHUGc4WnNiTWU5cmZRVWFhVi9KTVg5c3FkekRDU3ZwMGta
SG1UWmc5eDdiTEhjTW5UaGIxNmVKK21WZlFxOHlhVVpRTkc2NGkNClhaKzAva3E2dU9aRk8wUXRh
dGRXS2ZYblJROTlCajkxUjVPSUZuazU0ak4wbWtVaXFsTzNYRFcrTWwrOThtS0I2dFc3cldwWmNQ
YysNCjB6ZzR0THJZbFVjODZFNmVHRGpJTXViVnBjdXNlYXJmZ0lZR1JrNmJyaFpWci9KY0h6b29M
NzU1MGplZExFeG9wV2NBcGkyWlVxaHUNCjdKTHZyVnNRVTgxemt6T1BlZW1NUll2VnVRc1g3UGJp
RFFZNUp2Wm9uZnRLKzFWWThIOXV0eDUzMGgwb2Iram1SWXFqNm91YVl2RWUNCm5XL1dsWWpwOGN3
Yk1tNjgydFB3cVcxUjR0ai8yU0gxM0lSSllsNG1vWnZYcGlTcURyN2RYdFFIeGEvUEszLytCV3NL
MWRUZ0h1NlYNCjh0UUozYndGa3dwRnJVT1E1MHMxcjNsZXZtOHpaY3ExNytCQmF3N0s4bEVLNXF6
a1llYXJrOUE4cDdQM0d6REsrbmQzRFFvdys2VUMNCjhTVk44Mml1djM4aW03TnRhWHRWMUNWcTZS
Z3c0cGtzbWJkaTNidTJEZTdZZmFCQnhjcWZ2cVByVWpGUU5UUTIybGZkVVZWVDY4clQNCkpLRjVE
blNtVWpnZHFnNG1TUzlwbXNmREpSM0c2VG9IMGlXOWFWN0xXTEhZWEtsbFREdDBMVEF0a1lJYWFt
cDFRalZ2Kyt1eUdVeFYNCmRKMEROVlhTbStiMXFSeHBsODRkZGZYMUxwMU8vZDY5dHNvZDB2czVo
R3JlOXh1OG8rZnBMUjFjR2hOVEQ2WjU3QzlLTVdYZWZKZE8NClo5NGJiOW9xZDFST25TN3FJVFR6
SGltTXFpdmJPM2cwRGRWeWszV1FCaEJ6dEszNVlLTmRPbmM4TzNhY1M2ZkRaRmdLYVhMc0VKcDUN
CnJkcmxpQnFwODljSmNzL203VHZzMHJrakdmTjRiMGtQb1puM1VKdUlPcm5aMjJ5UDFmbXZVeCtP
NWdTcWViVjFtK3pTdVlOVmhxN1QNCldiRGlMVnZsanBsTGxvcDZDTFhQKzJxdHZHTElMLzF2aW1J
U2RNQmd6U29GWnl1NlRxZCtqenhnc1BhVjlCQ3FlZS9OallrNnY2bEsNCjljd2lVYy9TVHRmMUhE
cE0zYjU5Mnk3aDNUaHg1b3pLNjlITHBZV3VBd2FxUzVjdjI2cTdjZWI4ZWZWWWFSZVAzaUZVOHpq
MWtuU3cNClpYSE1tbkNqWTBPZ2FsbzdVUWZTQ00zcVFRcjJIL1hGUDdzc1h4NDVZbDkxQnllQ2Vw
NG1vWm9IKzFmRzN4RDR0VDd4OGt3eWo4bncNCmI5ZXYyNlYwQjZkKzdINHpLdnVkQUg1MzdGanF5
ek9IZEpuSEV1em1YcS9XanhPYnZOTWJ2N25oeXdzWDJhVnNXdEM4KzQ4YUxlYXANCkU3cDV3S1pp
MEEyQVFSVjVudlI0RSt1SmMrYjYxa0FwcUlueEJnbWQvNFY1UVAvbXQxOEhEQzdzUkhmdG1ldTVs
bWhWMHJuL0FMWDINCjMyYnFkNEJGbkR4N1ZpMWNXUzJ1ZmYwSWJCNDdxZXh4bVVqOVF1dFlqdXBk
M3RZRDZhYldCQk1yaCthcE5iT0tyTkYxK3VnQ2E0cmkNClhHZndNUFB0VmlhdmhVM1lNT0FBbnVV
Yi9SMDdMMHlPU2VPYWRFODhBcHNYRkdmZjMweW5obEpnTTUxQ1U2dk45RXpnbnB2SEJGVXkNCmlW
cmFlUGl3SjUzREY1WlRabm9tRU5nODVrTlVkMm9KaTJXcHI0T21ta2ZONHg0ekhmaVZGYzhEdjhO
enVoTnFPaWRpbEd2QTZER3UNCmVad083OEFBUW42Y2lFazYrcnc1VmN2anZxTkRZUE9vSVV3YUtT
aHJ4QXVYTGxrSDRhWXVHZk1ZRGMxMFdGNVRhMzFoUEpPZmNVaHINClUvSmxJTmk2YzZlbFJZZEJw
bzYrK1lmang2MWxHTmZSbTRNRDVySjFqM0ZvR0huakRTQk5hcllVZ01MeU1zektwYjd0WHBvSGZQ
czgNCmgzV3AxTHpOZk5rNTRYeEMxd0RHVW1ZelhZZWZoNnovY0t0Vm00RUJ4YTlWUUdEellyM0xy

In order to produce the tbsPayload, we first need the base64url-encoded (without padding) JWT Header:

then we have to append a period (".") and the base64url encoding of the EncodedMetadataTOCPayload (taken from the
example in section Metadata TOC Format):

and finally we have to append another period (".") followed by the base64url-encoded signature.

The signature in the example above was computed with the following ECDSA key

3.1.7 Metadata TOC object processing rules

VU1SakhFS2trN3phRktZUUEyaEdRVTENCnorODVORldwWERya3ozdngxMEdxeFE2QnplTmJvQms1
bjhrNG5lYlJoK2sxaFdmeFRGMEQxRXlXVXM1bnYrZGdRcUtheHp1Q2RFMGkNCnNIbDAyTlE4YWgw
bVhyMTJMYTNtMGY5d2lrOSt3TE5UTVkvODZNUG84eWkzMU9meG1UNlBXb3FHOStEWnVrWW5hNTZt
U1p0NVdXU3kNCjVxVkExcndVeUpxWEFsbnpraWFpL2dIU0Q3UmtUeWlob2dBQUFBQkpSVTVFcmtK
Z2dnPT0iLA0KICAiQXNzZXJ0aW9uU2NoZW1lIjogIlVBRlYxVExWIiwNCiAgIkF1dGhlbnRpY2F0
aW9uQWxnb3JpdGhtIjogMSwNCiAgIkF0dGVzdGF0aW9uVHlwZXMiOiBbMTYzOTFdLA0KICAiVVBW
IjogW1sxLDBdXQ0KfQ0K

EXAMPLE 4: JWT Header

{"typ":"JWT",
 "alg":"ES256"
 "x5t#S256":"7231962210d2933ec993a77b4a7203898ab74cdf974ff02d2de3f1ec7cb9de68"}

EXAMPLE 5: Encoded JWT Header

eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ

EXAMPLE 6: tbsPayload

eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo

EXAMPLE 7: JWT

eyJ0eXAiOiJKV1QiLAogImFsZyI6IkVTMjU2IiwKICJ4NXQjUzI1NiI6IjcyMzE5NjIyMTBkMjkz
M2VjOTkzYTc3YjRhNzIwMzg5OGFiNzRjZGY5NzRmZjAyZDJkZTNmMWVjN2NiOWRlNjgifQ.
eyAibm8iOiAxMjM0LCAibmV4dC11cGRhdGUiOiAiMzEtMDMtMjAxNCIsDQogICJlbnRyaWVzIjog
Ww0KICAgeyAiYWFpZCI6ICIxMjM0IzU2NzgiLCANCiAgICAgImhhc2giOiAiOTBkYThkYTZkZTIz
MjQ4YWJiMzRkYTBkNDg2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y5OGYyNjBkYjcxYWNkNCIsIA0K
ICAgICAidXJsIjogImh0dHBzOi8vZmlkb2FsbGlhbmNlLm9yZy9tZXRhZGF0YS8xMjM0JXgyM2Fi
Y2QiLCANCiAgICAgInN0YXR1cyI6ICJmaWRvQ2VydGlmaWVkIg0KICAgICAidGltZU9mTGFzdFN0
YXR1c0NoYW5nZSI6ICIiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAiMjAxNC0wMS0wNCIg
fSwNCiAgIHsgImFhaWQiOiAiOTg3NiM0MzIxIiwgDQogICAgICJoYXNoIjogIjc4NWQxNmRmNjQw
ZmQ3YjUwZWQxNzRjYjU2NDVjYzBmMWU3MmI3ZjE5Y2YyMjk1OTA1MmRkMjBiOTU0MWM2NGQiLA0K
ICAgICAidXJsIjogImh0dHBzOi8vYXV0aG5yLXZlbmRvci1hLmNvbS9tZXRhZGF0YS85ODc2JXgy
MzQzMjEiLA0KICAgICAic3RhdHVzIjogImZpZG9DZXJ0aWZpZWQiDQogICAgICJ0aW1lT2ZMYXN0
U3RhdHVzQ2hhbmdlIjogIjIwMTQtMDItMTkiLA0KICAgICAiY2VydGlmaWNhdGlvbkRhdGUiOiAi
MjAxNC0wMS0wNyIgfQ0KICBdDQp9DQo.
AP-qoJ3VPzj7L6lCE1UzHzJYQnszFQ8d2hJz51sPASgyABK5VXOFnAHzBTQRRkgwGqULy6PtTyUV
zKxM0HrvoyZq

NOTE

The line breaks are for display purposes only.

EXAMPLE 8: ECDSA Key used for signature computation

x: d4166ba8843d1731813f46f1af32174b5c2f6013831fb16f12c9c0b18af3a9b4
y: 861bc2f803a2241f4939bd0d8ecd34e468e42f7fdccd424edb1c3ce7c4dd04e
d: 3744c426764f331f153e182d24f133190b6393cea480a8eec1c722fce161fe2d

The FIDO Server must follow these processing rules:

1. The FIDO Server must be able to download the latest metadata TOC object from the well-known URL, when
appropriate. The nextUpdate field of the Metadata TOC specifies a date when the download should occur at
latest.

2. If the x5u attribute is present in the JWT Header, then:

1. The FIDO Server must verify that the URL specified by the x5u attribute has the same web-origin as the
URL used to download the metadata TOC from. The FIDO Server should ignore the file if the web-origin
differs (in order to prevent loading objects from arbitrary sites).

2. The FIDO Server must download the certificate (chain) from the URL specified by the x5u attribute [JWS].
The certificate chain must be verified to properly chain to the metadata TOC signing trust anchor
according to [RFC5280]. All certificates in the chain must be checked for revocation according to
[RFC5280].

3. The FIDO Server should ignore the file if the chain cannot be verified or if one of the chain certificates is
revoked.

3. If the x5u attribute is missing, the chain should be retrieved from the x5c attribute. If that attribute is missing as
well, Metadata TOC signing trust anchor is considered the TOC signing certificate chain.

4. Verify the signature of the Metadata TOC object using the TOC signing certificate chain (as determined by the
steps above). The FIDO Server should ignore the file if the signature is invalid. It should also ignore the file if its
number (no) is less or equal to the number of the last Metadata TOC object cached locally.

5. Write the verified object to a local cache as required.

6. Iterate through the individual entries (of type MetadataTOCPayloadEntry). For each entry:

1. Ignore the entry if the AAID, AAGUID or attestationCertificateKeyIdentifiers is not relevant to the relying
party (e.g. not acceptable by any policy)

2. Download the metadata statement from the URL specified by the field url. Some authenticator vendors
might require authentication in order to provide access to the data. Conforming FIDO Servers should
support the HTTP Basic, and HTTP Digest authentication schemes, as defined in [RFC2617].

3. Check whether the status report of the authenticator model has changed compared to the cached entry
by looking at the fields timeOfLastStatusChange and statusReport. Update the status of the cached entry.
It is up to the relying party to specify behavior for authenticators with status reports that indicate a lack of
certification, or known security issues. However, the status REVOKED indicates significant security issues
related to such authenticators.

4. Compute the hash value of the (base64url encoding without padding of the UTF-8 encoded) metadata
statement downloaded from the URL and verify the hash value to the hash specified in the field hash of
the metadata TOC object. Ignore the downloaded metadata statement if the hash value doesn't match.

5. Update the cached metadata statement according to the dowloaded one.

4. Considerations

This section is non-normative.

This section describes the key considerations for designing this metadata service.

Need for Authenticator Metadata When defining policies for acceptable authenticators, it is often better to describe
the required authenticator characteristics in a generic way than to list individual authenticator AAIDs. The metadata
statements provide such information. Authenticator metadata also provides the trust anchor required to verify
attestation objects.

The metadata service provides a standardized method to access such metadata statements.

Integrity and Authenticity Metadata statements include information relevant for the security. Some business
verticals might even have the need to document authenticator policies and trust anchors used for verifying
attestation objects for auditing purposes.

It is important to have a strong method to verify and proof integrity and authenticity and the freshness of metadata
statements. We are using a single digital signature to protect the integrity and authenticity of the Metadata TOC
object and we protect the integrity and authenticity of the individual metadata statements by including their
cryptographic hash values into the Metadata TOC object. This allows for flexible distribution of the metadata
statements and the Metadata TOC object using standard content distribution networks.

Organizational Impact Authenticator vendors can delegate the publication of metadata statements to the metadata
service in its entirety. Even if authenticator vendors choose to publish metadata statements themselves, the effort is
very limited as the metadata statement can be published like a normal document on a website. The FIDO Alliance
has control over the FIDO certification process and receives the metadata as part of that process anyway. With this

NOTE

Authenticators with an unacceptable status should be marked accordingly. This information is
required for building registration and authentication policies included in the registration request and
the authentication request [UAFProtocol].

metadata service, the list of known authenticators needs to be updated, signed and published regularly. A single
signature needs to be generated in order to protect the integrity and authenticity of the metadata TOC object.

Performance Impact Metadata TOC objects and metadata statements can be cached by the FIDO Server.

The update policy can be specified by the relying party.

The metadata TOC object includes a date for the next scheduled update. As a result there is no additional impact to
the FIDO Server during FIDO Authentication or FIDO Registration operations.

Updating the Metadata TOC object and metadata statements can be performed asynchronously. This reduces the
availability requirements for the metadata service and the load for the FIDO Server.

The metadata TOC object itself is relatively small as it does not contain the individual metadata statements. So
downloading the metadata TOC object does not generate excessive data traffic.

Individual metadata statements are expected to change less frequently than the metadata TOC object. Only the
modified metadata statements need be downloaded by the FIDO Server.

Non-public Metadata Statements Some authenticator vendors might want to provide access to metadata
statements only to their subscribed customers.

They can publish the metadata statements on access protected URLs. The access URL and the cryptographic hash
of the metadata statement is included in the metadata TOC object.

High Security Environments Some high security environments might only trust internal policy authorities. FIDO
Servers in such environments could be restricted to use metadata TOC objects from a proprietary trusted source
only. The metadata service is the baseline for most relying parties.

Extended Authenticator Information Some relying parties might want additional information about authenticators
before accepting them. The policy configuration is under control of the relying party, so it is possible to only accept
authenticators for which additional data is available and meets the requirements.

A. References

A.1 Normative references

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html

[JWS]
M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS). May 2015. RFC. URL:
https://tools.ietf.org/html/rfc7515

[JWT]
M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. RFC. URL:
https://tools.ietf.org/html/rfc7519

[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. May 2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[WebIDL-ED]
Cameron McCormack. Web IDL. 13 November 2014. Editor's Draft. URL: http://heycam.github.io/webidl/'

A.2 Informative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-
id-20180220.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOKeyAttestation]
FIDO 2.0: Key attestation format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-
attestation-v2.0-ps-20150904.html

[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811).
November 2008. URL: http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

[RFC2617]
J. Franks; P. Hallam-Baker; J. Hostetler; S. Lawrence; P. Leach; A. Luotonen; L. Stewart. HTTP
Authentication: Basic and Digest Access Authentication. June 1999. Draft Standard. URL:

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-statement-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://heycam.github.io/webidl/'
http://heycam.github.io/webidl/'
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2617

https://tools.ietf.org/html/rfc2617
[RFC3986]

T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax. January 2005.
Internet Standard. URL: https://tools.ietf.org/html/rfc3986

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification
v1.0. Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-
id-20180220.html

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/

https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

FIDO ECDAA Algorithm

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-ecdaa-algorithm-v1.2-rd-20171128.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Jan Camenisch, IBM
Manu Drijvers, IBM
Alec Edgington, Trustonic
Anja Lehmann, IBM
Rainer Urian, Infineon

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

The FIDO Basic Attestation scheme uses attestation "group" keys shared across a set of authenticators with identical characteristics in order to
preserve privacy by avoiding the introduction of global correlation handles. If such an attestation key is extracted from one single authenticator, it is
possible to create a "fake" authenticator using the same key and hence indistinguishable from the original authenticators by the relying party. Removing
trust for registering new authenticators with the related key would affect the entire set of authenticators sharing the same "group" key. Depending on the
number of authenticators, this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as opposed to targeted physical attacks.

An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA [TPMv1-2-Part1]. Translated to FIDO, this approach
would require one Privacy-CA interaction for each Uauth key. This means relatively high load and high availability requirements for the Privacy-CA.
Additionally the Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This might make the Privacy-CA
an interesting attack target.

Another alternative is the Direct Anonymous Attestation [BriCamChe2004-DAA]. Direct Anonymous Attestation is a cryptographic scheme combining
privacy with security. It uses the authenticator specific secret once to communicate with a single DAA Issuer and uses the resulting DAA credential in
the DAA-Sign protocol with each relying party. The DAA scheme has been adopted by the Trusted Computing Group for TPM v1.2 [TPMv1-2-Part1].

In this document, we specify the use of an improved DAA scheme [FIDO-DAA-Security-Proof] based on elliptic curves and bilinear pairings largely
compatible with [CheLi2013-ECDAA] called ECDAA. This scheme provides significantly improved performance compared with the original DAA and
basic building blocks for its implementation are part of the TPMv2 specification [TPMv2-Part1].

The improvements over [CheLi2013-ECDAA] mainly consist of security fixes (see [ANZ-2013] and [XYZF-2014]) when splitting the sign operation into
two parts.

This specification includes the fixes of the issue regarding (1) the Diffie-Hellman oracle w.r.t. the secret key of the TPM and (2) regarding the potential
privacy violations by fraudulent TPMs as proposed in [CCDLNU2017-DAA].

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification solely for
the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is
available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Conformance

2. Overview

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-ecdaa-algorithm-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:jca@zurich.ibm.com
https://www.ibm.com/
mailto:mdr@zurich.ibm.com
https://www.ibm.com/
mailto:alec.edgington@trustonic.com
https://www.trustonic.com/
mailto:anj@zurich.ibm.com
https://www.ibm.com/
mailto:rainer.urian@infineon.com
https://www.infineon.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2.1 Scope

2.2 Architecture Overview

3. FIDO ECDAA Attestation
3.1 Object Encodings

3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)

3.1.2 Encoding ECPoint values as byte strings (ECPointToB)

3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

3.2 Global ECDAA System Parameters

3.3 Issuer Specific ECDAA Parameters

3.4 ECDAA-Join
3.4.1 ECDAA-Join Algorithm

3.4.2 ECDAA-Join Split between Authenticator and ASM

3.4.3 ECDAA-Join Split between TPM and ASM

3.5 ECDAA-Sign
3.5.1 ECDAA-Sign Algorithm

3.5.2 ECDAA-Sign Split between Authenticator and ASM

3.5.3 ECDAA-Sign Split between TPM and ASM

3.6 ECDAA-Verify Operation

4. FIDO ECDAA Object Formats and Algorithm Details
4.1 Supported Curves for ECDAA

4.2 ECDAA Algorithm Names

4.3 ecdaaSignature object

5. Considerations
5.1 Algorithms and Key Sizes

5.2 Indicating the Authenticator Model

5.3 Revocation

5.4 Pairing Algorithm

5.5 Performance

5.6 Binary Concatentation

5.7 IANA Considerations

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “ED256”.

In formulas we use “|” to denote byte wise concatenation operations.

X = P denotes scalar multiplication (with scalar x) of a (elliptic) curve point P.

RAND(x) denotes generation of a random number between 0 and x-1.

RAND(G) denotes generation of a random number belonging to Group G.

Specific terminology used in this document is defined in [FIDOGlossary].

The type BigNumber denotes an arbitrary length integer value.

The type ECPoint denotes an elliptic curve point with its affine coordinates x and y.

The type ECPoint2 denotes a point on the sextic twist of a BN elliptic curve over F(q). The ECPoint2 has two affine coordinates each having two
components of type BigNumber

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative.
Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be interpreted as described in
[RFC2119].

2. Overview

This section is non-normative.

FIDO uses the concept of attestation to provide a cryptographic proof of the authenticator [FIDOGlossary] model to the relying party. When the
authenticator is registered to the relying party (RP), it generates a new authentication key pair and includes the public key in the attestation message
(also known as key registration data object, KRD). When using the ECDAA algorithm, the KRD object is signed using 3.5 ECDAA-Sign.

For privacy reasons, the authentication key pair is dedicated to one RP (to an application identifier AppID [FIDOGlossary] to be more specific).
Consequently the attestation method needs to provide the same level of unlinkability. This is the reason why the FIDO ECDAA Algorithm doesn't use a
basename (bsn) often found in other direct anonymous attestation algorithms, e.g. [BriCamChe2004-DAA] or [BFGSW-2011].

The authenticator encapsulates all user verification operations and cryptographic functions. An authenticator specific module (ASM) [FIDOGlossary] is
used to provide a standardized communication interface for authenticators. The authenticator might be implemented in separate hardware or trusted
execution environments. The ASM is assumed to run in the normal operating system (e.g. Android, Windows, ...).

2.1 Scope

This document describes the FIDO ECDAA attestation algorithm in detail.

x

2

2.2 Architecture Overview

ECDAA attestation defines global system parameters and ECDAA Issuer specific parameters. Both parameter sets need to be installed on the host, in
the authenticator and in the FIDO Server. The ECDAA method consists of two steps:

ECDAA-Join between the authenticator and the ECDAA Issuer to be performed before the first FIDO Registration. The ECDAA Issuer represents
the authenticator vendor as it provides the credentials to attest the authenticator model.

(n, B, sc, yc) = GetNonceFromECDAAIssuer()

(D=Q, c1, s1) = EcdaaJoin1(X, Y, B, sc, yc, n)

(A, B, C, D) = EcdaaIssuerJoin(Q, c1, s1)

EcdaaJoin2(A, C) // store cre=(A, B, C, D)

and the pair of ECDAA-Sign performed by the authenticator and ECDAA-Verify performed by the FIDO Server of the relying party as part of the
FIDO Registration.

Client: Attestation = (signature, KRD) = EcdaaSign(AppID)

Server: success=EcdaaVerify(signature, KRD, AppID)

The technical implementation details of the ECDAA-Join step are out-of-scope for FIDO. In this document we normatively specify the general algorithm
to the extent required for interoperability and we outline examples of some possible implementations for this step.

The ECDAA-Sign and ECDAA-Verify steps and the encoding of the related ECDAA Signature are normatively specified in this document. The
generation and encoding of the KRD object is defined in other FIDO specifications.

The algorithm and terminology are inspired by [BFGSW-2011]. The algorithm was modified in order to fix security weaknesses (e.g. as mentioned by
[ANZ-2013] and [XYZF-2014]). Our algorithm proposes an improved task split for the sign operation while still being compatible to TPMv2 (without fixing
the TPMv2 weaknesses in such case).

3. FIDO ECDAA Attestation

This section is normative.

3.1 Object Encodings

We need to convert BigNumber and ECPoint objects to byte strings using the following encoding functions:

3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)

We use the I2OSP algorithm as defined in [RFC3447] for converting big numbers to byte arrays. The bytes from the big endian encoded (non-negative)
number n will be copied right-aligned into the buffer area b. The unused bytes will be set to 0. Negative values will not occur due to the construction of
the algorithms.

The algorithm implemented in Java looks like this:

3.1.2 Encoding ECPoint values as byte strings (ECPointToB)

We use the ANSI X9.62 Point-to-Octet-String [ECDSA-ANSI] conversion using the expanded format, i.e. the format where the compression byte (i.e.
0x04 for expanded) is followed by the encoding of the affine x coordinate, followed by the encoding of the affine y coordinate.

3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

The type ECPoint2 denotes a point on the sextic twist of a BN elliptic curve over F(q), see section 4.1 Supported Curves for ECDAA. Each ECPoint2 is

represented by a pair (a, b) of elements of F(q).

The group zero element is always encoded (using the encoding rules as described below) as a an element having all components set to zero (i.e.
cx.a=0, cx.b=0, cy.a=0, cy.b=0).

We always assume normalized (non-zero) ECPoint2 values (i.e. cz = 1) before encoding them. Non-zero values are encoded using the expanded
format (i.e. 0x04 for expanded) followed by the cx followed by the cy value. This leads to the concatenation of 0x04 followed by the first element (cx.a)
and second element (cx.b) of the pair of cx followed by the first element (cy.a) and second element (cy.b) of the pair of cy. All individual numbers are
padded to the same length (i.e. the maximum byte length of all relevant 4 numbers).

EXAMPLE 1: Converting BigNumber n to byte string b

b0 b1 b2 b3 b4 b5 b6 b7
 0 0 n0 n1 n2 n3 n4 n5

EXAMPLE 2: Algorithm for converting BigNumber to byte strings

ByteArray BigNumberToB(
 BigNumber inVal, // IN: number to convert
 int size // IN: size of the output.
)
{
 ByteArray buffer = new ByteArray(size);
 int oversize = size - inVal.length;
 if (oversize < 0)
 return null;
 for (int i=overvize; i > 0; i--)
 buffer[i] = 0;
 ByteCopy(inVal.bytes, &buffer[oversize], inVal.length);
 return buffer;
}

EXAMPLE 3: Converting ECPoint P to byte string

(x, y) = ECPointGetAffineCoordinates(P)
len = G1.byteLength
byte string = 0x04 | BigIntegerToB(x,len) | BigIntegerToB(y,len)

2

EXAMPLE 4: Converting ECPoint2 P2 to byte string

(cx, cy) = ECPointGetAffineCoordinates(P2)
len = G2.byteLength
byte string = 0x04 | BigIntegerToB(cx.a,len) | BigIntegerToB(cx.b,len)

3.2 Global ECDAA System Parameters

1. Groups G , G and G , of sufficiently large prime order p

2. Two generators P and P , such that G = ⟨P ⟩ and G = ⟨P ⟩

3. A bilinear pairing e : G ×G → G . We propose the use of "ate" pairing (see [BarNae-2006]). For example source code on this topic, see
BNPairings.

4. Hash function H with H : {0, 1} → Z .

5. Hash function H with H : {0, 1} → G .

6. (G ,P ,p,H,H) are installed in all authenticators implementing FIDO ECDAA attestation.

Definition of G ,G ,G , Pairings, hash function H and H

See section 4.1 Supported Curves for ECDAA.

3.3 Issuer Specific ECDAA Parameters

ECDAA Issuer Parameters parI

1. Randomly generated ECDAA Issuer private key isk = (x,y) with [x,y = RAND(p)].

2. ECDAA Issuer public key (X,Y), with X = P and Y = P .

3. A proof that the ECDAA Issuer key was correctly computed

1. BigInteger r = RAND(p)

2. BigInteger r = RAND(p)

3. ECPoint2 U = P

4. ECPoint2 U = P

5. BigInteger c = H(U ∣U ∣P ∣X∣Y)

6. BigInteger s = r + c ⋅ x (mod p)

7. BigInteger s = r + c ⋅ y (mod p)

4. ipk = X,Y , c, s , s

Whenever a party uses ipk for the first time, it must first verify that it was correctly generated:

H(P ⋅X ∣P ⋅ Y ∣P ∣X∣Y) c

The ECDAA Issuer public key ipk must be dedicated to a single authenticator model.

We use the element c of ipk as an identifier for the ECDAA Issuer public key (called ECDAA Issuer public key identifier).

3.4 ECDAA-Join

In order to use ECDAA, the authenticator must first receive ECDAA credentials from an ECDAA Issuer. This is done by the ECDAA-Join operation. This
operation needs to be performed a single time (before the first credential registration can take place). After the ECDAA-Join, the authenticator will use
the ECDAA-Sign operation as part of each FIDO Registration. The ECDAA Issuer is not involved in this step. ECDAA plays no role in FIDO
Authentication / Transaction Confirmation operations.

In order to use ECDAA, (at least) one ECDAA Issuer is needed. The approach specified in this document easily scales to multiple ECDAA Issuers, e.g.
one per authenticator vendor. FIDO lets the authenticator vendor choose any ECDAA Issuer (similar to his current freedom for selecting any PKI
infrastructure/service provider to issuing attestation certificates required for FIDO Basic Attestation).

All ECDAA-Join operations (of the related authenticators) are performed with one of the ECDAA Issuer entities.

Each ECDAA Issuer has a set of public parameters, i.e. ECDAA public key material. The related Attestation Trust Anchor is contained in the
metadata of each authenticator model identified by its AAGUID.

There are two different implementation options relevant for the authenticator vendors (the authenticator vendor can freely choose them):

1. In-Factory ECDAA-Join

2. Remote ECDAA-Join and

In the first case, physical proximity is used to locally establish the trust between the ECDAA Issuer and the authenticator (e.g. using a key provisioning

 | BigIntegerToB(cy.a,len) | BigIntegerToB(cy.b,len)

1 2 T

1 2 1 1 2 2

1 2 T

∗
p

G1
∗

1

1 1 G1

1 2 T G1

2
x

2
y

x

y

x 2
rx

y 2
ry

x y 2

x x

y y

x y

2
sx −c

2
sy −c

2 =
?
​

NOTE

P ⋅X = P ⋅ P = P = U

P ⋅ Y = P ⋅ P = P = U

2
sx −c

2
r +cxx

2
−cx

2
rx

x

2
sy −c

2
r +cyy

2
−cy

2
ry

y

NOTE

One ECDAA-Join operation is required once in the lifetime of an authenticator prior to the first registration of a credential.

https://code.google.com/p/bnpairings/

station in a production line). There is no requirement for the ECDAA Issuer to operate an online web service.

In the second case, some credential is required to remotely establish the trust between the ECDAA Issuer and the authenticator. As this operation is
performed once and only with a single ECDAA Issuer, privacy is preserved and an authenticator specific credential can and should be used.

Not all ECDAA authenticators might be able to add their authenticator model IDs (e.g. AAGUID) to the registration assertion (e.g. TPMs). In all cases,
the ECDAA Issuer will be able to derive the exact the authenticator model from either the credential or the physically proximiate authenticator. So the
ECDAA Issuer root key must be dedicated to a single authenticator model.

3.4.1 ECDAA-Join Algorithm

This section is normative.

1. The authenticator asks the ECDAA Issuer for the B value of the credential.

2. The ECDAA Issuer chooses a nonce BigInteger m = RAND(p).

3. The ECDAA Issuer computes the B value of the credential as B = H (m) and sends (sc,yc)=HG1_pre(m) to the authenticator.

4. The authenticator chooses and stores the ECDAA private key BigInteger sk = RAND(p)

5. The authenticator re-computes B = (H(sc),yc)

6. The authenticator computes its ECDAA public key ECPoint Q = B

7. The authenticator proves knowledge of sk as follows

1. BigInteger r = RAND(p)

2. ECPoint U = B

3. BigInteger c = H(U ∣P ∣Q∣m)

4. BigInteger n = RAND(p)

5. BigInteger c = H(n∣c)

6. BigInteger s = r + c ⋅ sk

8. The authenticator sends Q, c , s ,n via the ASM to the ECDAA Issuer

9. The ECDAA Issuer verifies that the authenticator is "authentic" and that Q was indeed generated by the authenticator. In the case of an in-factory
Join, this might be trivial; in the case of a remote Join this typically requires the use of other cryptographic methods. Since ECDAA-Join is a one-
time operation, unlinkability is not a concern for that.

10. The ECDAA Issuer verifies that Q ∈ G and verifies H(n∣H(B ⋅Q ∣P ∣Q∣m)) c (check proof-of-possession of private key).

11. The ECDAA Issuer creates credential (A,B,C,D) as follows

1. ECPoint A = B

2. ECPoint B as computed in the beginning.

3. ECPoint C = (A ⋅Q)

4. ECPoint D = Q

12. The ECDAA Issuer sends A,C to the authenticator. The authenticator still knows B and D

13. The authenticator checks that A,C ∈ G and A ≠ 1

14. The authenticator checks e(A,Y) e(B,P)

15. and the authenticator checks e(C,P) e(A ⋅D,X)

16. The authenticator stores credential A,B,C,D

3.4.2 ECDAA-Join Split between Authenticator and ASM

NOTE

If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving this value, the ECDAA Issuer must verify that
this authenticator did not join before.

G1

sk

1

1
r1

2 1 1

1 2

1 1 1

1 1

1
s1 −c1

1 =
?
​ 1

NOTE

B ⋅Q = B ⋅Q = B ⋅B = B = U
s1 −c1 r +c sk1 1 −c1 r +c sk1 1 −c sk1 r1

1

1/y

x

1 G1

=
?
​ 2

NOTE

e(A,Y) = e(B ,P) = e(B,P) = e(B,P);
1/y

2
y

2
y/y

2

2 =
?
​

NOTE

e(C,P) = e((A ⋅Q) ,P); e(A ⋅D,X) = e(A ⋅Q,P) = e((A ⋅Q) ,P)2
x

2 2
x x

2

This section is non-normative.

1. The ASM asks the ECDAA Issuer for the B value of the credential.

2. The ECDAA Issuer chooses a nonce BigInteger m = RAND(p)

3. The ECDAA Issuer computes the B value of the credential as B = H (m)

4. The ECDAA Issuer sends (sc,yc)=HG1_pre(m) to the ASM.

5. The ASM forwards (sc,yc) to the authenticator

6. The authenticator chooses and stores the private key BigInteger sk = RAND(p)

7. The authenticator re-computes B = (H(sc),yc)

8. The authenticator computes its ECDAA public key ECPoint Q = B

9. The authenticator proves knowledge of sk as follows

1. BigInteger r = RAND(p)

2. ECPoint U = B

3. BigInteger c = H(U ∣P ∣Q∣m)

4. BigInteger n = RAND(p)

5. BigInteger c = H(n∣c)

6. BigInteger s = r + c ⋅ sk

10. The authenticator sends Q, c , s ,n to the ASM, who forwards it to the ECDAA Issuer.

11. The ECDAA Issuer verifies that the authenticator is "authentic" and that Q was indeed generated by the authenticator. In the case of an in-factory
Join, this might be trivial; in the case of a remote Join this typically requires the use of other cryptographic methods. Since ECDAA-Join is a one-
time operation, unlinkability is not a concern for that.

12. The ECDAA Issuer verifies that Q ∈ G and verifies H(n∣H(B ⋅Q ∣P ∣Q∣m)) c .

13. The ECDAA Issuer creates credential (A,B,C,D) as follows

1. ECPoint A = B

2. ECPoint B as computed in the beginning.

3. ECPoint C = (A ⋅Q)

4. ECPoint D = Q

14. The ECDAA Issuer sends A,C to the ASM. The ASM remembered B and D = Q from an earlier step.

15. The ASM checks that A,B,C,D ∈ G and A ≠ 1

16. The ASM checks e(A,Y) e(B,P)

17. and the ASM checks that e(C,P) e(A ⋅D,X)

18. The ASM stores A,B,C,D and sends A,C to the authenticator. The authenticator still knows B and D.

19. The authenticator stores B,D and ignores further join requests.

3.4.3 ECDAA-Join Split between TPM and ASM

This section is non-normative.

This description is based on the principles described in [TPMv2-Part1] section 24 and [Arthur-Challener-2015], page 109 ("Activating a Credential").

1. The ASM asks the ECDAA Issuer for the B value of the credential.

2. The ECDAA Issuer chooses a nonce BigInteger m = RAND(p).

3. The ECDAA Issuer computes the B value of the credential as B = H (m)

4. The ECDAA Issuer sends (sc,yc)=HG1_pre(m) to the ASM.

5. The ASM
1. instructs the TPM to create a restricted key by calling TPM2_Create, giving the public key template TPMT_PUBLIC [TPMv2-Part2] (including the

public key P in field unique) to the ASM.

2. re-computes B = (H(sc),yc)

NOTE

If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving this value, the ECDAA Issuer must verify that
this authenticator did not join before.

G1

sk

1

1
r1

2 1 1

1 2

1 1 1

1 1

1
s1 −c1

1 =
?
​ 1

1/y

x

1 G1

=
?
​ 2

2 =
?
​

NOTE

These values belong to the ECDAA secret key sk. They should persist even in the case of a factory reset.

NOTE

The Endorsement key credential (EK-C) and TPM2_ActivateCredentials are used for supporting the remote Join.

G1

1

3. retrieves TPM Endorsement Key Certificate (EK-C) from the TPM

4. calls TPM2_Commit(keyhandle, P1) where keyhandle is the handle of the restricted key generated before (see above), P1 is set to

(B.x,B.y), and s2 and y2 are set to B.x and B.y respectively. This call returns K, E, and ctr; where K = B = Q, E = B is used as U
value.

5. computes BigInteger c = H(U ∣P ∣Q∣m)

6. calls TPM2_Sign(c , ctr), returning s ,n.

7. computes BigInteger c = H(n∣c2)

8. sends EK-C, TPMT_PUBLIC (including Q in field unique), c , s ,n to the ECDAA Issuer.

6. The ECDAA Issuer
1. verifies EK-C and its certificate chain. As a result the ECDAA Issuer knows the TPM model related to EK-C.

2. verifies that this EK-C was not used in a (successful) Join before

3. Verifies that the objectAttributes in TPMT_PUBLIC [TPMv2-Part2] matches the following flags: fixedTPM = 1; fixedParent = 1;
sensitiveDataOrigin = 1; encryptedDuplication = 0; restricted = 1; decrypt = 0; sign = 1.

4. examines the public key Q, i.e. it verifies that Q ∈ G

5. checks H(n∣H(B ⋅Q ∣P ∣Q∣m)) c

6. generates the ECDAA credential (A,B,C,D) as follows

1. ECPoint A = B

2. ECPoint B as computed in the beginning.

3. ECPoint C = (A ⋅Q)

4. ECPoint D = Q

7. generates a secret (derived from a seed) and wraps the credential A,B,C,D using that secret.

8. encrypts the seed using the public key included in EK-C.

9. uses seed and name in KDFa (see [TPMv2-Part2] section 24.4) to derive HMAC and symmetric encryption key. Wrap the secret in
symmetric encryption key and protect it with the HMAC key.

10. sends the wrapped object including the credential from previous step to the ASM.

7. The ASM instructs the TPM (by calling TPM2_ActivateCredential) to
1. decrypt the seed using the TPM Endorsement key

2. compute the name (for the ECDAA attestation key)

3. use the seed in KDFa (with name) to derive the HMAC key and the symmetric encryption key.

4. use the symmetric encryption key to unwrap the secret.

8. The ASM

1. unwraps the credential A,B,C,D using the secret received from the TPM.

2. checks that A,B,C,D ∈ G and A ≠ 1

3. checks e(A,Y) e(B,P) and e(C,P) e(A ⋅D,X)

4. stores A,B,C,D

3.5 ECDAA-Sign

3.5.1 ECDAA-Sign Algorithm

This section is normative.

(signature, KRD) = EcdaaSign(String AppID)

Parameters

p: System parameter prime order of group G1 (global constant)

AppID: FIDO AppID (i.e. https-URL of TrustedFacets object)

Algorithm outline

1. KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here

2. BigNumber l = RAND(p)

3. ECPoint R = A ;

4. ECPoint S = B ;

5. ECPoint T = C ;

6. ECPoint W = D ;

sk r1
1

2 1 1

2 1

1

1 1

1

s1 −c1
1 =

?
​ 1

1/y

x

NOTE

The parameter name in KDFa is derived from TPMT_PUBLIC, see [TPMv2-Part1], section 16.

1 G1

=
?
​ 2 2 =

?
​

NOTE

One ECDAA-Sign operation is required for the client-side environment whenever a new credential is being registered at a relying party.

l

l

l

l

7. BigInteger r = RAND(p)

8. ECPoint U = S

9. BigInteger c2 = H(U ∣S∣W ∣AppID∣H(KRD))

10. BigInteger n = RAND(p)

11. c = H(n | c2)

12. BigInteger s = r+ c ⋅ sk (mod p)

13. signature = (c, s, R, S, T, W, n)

14. return (signature, KRD)

3.5.2 ECDAA-Sign Split between Authenticator and ASM

This section is non-normative.

Algorithm outline

1. The ASM randomizes the credential

1. BigNumber l = RAND(p)

2. ECPoint R = A ;

3. ECPoint S = B ;

4. ECPoint T = C ;

5. ECPoint W = D ;

2. The ASM sends l,AppID to the authenticator

3. The authenticator performs the following tasks
1. KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here

2. ECPoint S = B

3. ECPoint W = D

4. BigInteger r = RAND(p)

5. ECPoint U = S

6. BigInteger c2 = H(U ∣S ∣W ∣AppID∣H(KRD))

7. BigInteger n = RAND(p)

8. c = H(n | c2)

9. BigInteger s = r+ c ⋅ sk (mod p)

10. Send c, s,KRD,n to the ASM

4. The ASM sets signature = (c, s, R, S, T, W, n) and outputs (signature, KRD)

3.5.3 ECDAA-Sign Split between TPM and ASM

This section is non-normative.

Algorithm outline

1. The ASM randomizes the credential

1. BigNumber l = RAND(p)

2. ECPoint R = A ;

3. ECPoint S = B ;

4. ECPoint T = C ;

5. ECPoint W = D ;

2. The ASM calls TPM2_Commit() with P1 set to S and s2,y2 empty buffers. The ASM receives the result values K,L,E = S = U and ctr. K

and L are empty since s2,y2 are empty buffers.

3. The ASM calls TPM2_Create to generate the new authentication key pair. The related private key might need to be protected with appropriate
access control mechanisms, e.g. see section 8 of [UAFAuthnrCommands].

4. The ASM calls TPM2_Certify() on the newly created key with ctr from the TPM2_Commit and E = U ,S,W ,AppID as qualifying data. The

ASM receives signature value s and related nonce n and attestation block KRD (i.e. TPMS_ATTEST structure in this case).

5. BigInteger c2 = H(E∣S∣W ∣AppID∣H(KRD)), using KRD as returned by the previous step.

6. The ASM computes: c = H(n | c2)

r

NOTE

This split requires both the authenticator and ASM to be honest to achieve anonymity. Only the authenticator must be trusted for unforgeability.
The communication between ASM and authenticator must be secure.

l

l

l

l

′ l

′ l

r

′ ′

NOTE

This algorithm is for the special case of a TPMv2 as authenticator. This case requires both the TPM and ASM to be honest for anonymity. Only
the TPM must be trusted for unforgeability (see [CCDLNU2017-DAA]).

l

l

l

l

r

7. The ASM sets signature = (c, s, R, S, T, W, n) and outputs (signature, KRD)

3.6 ECDAA-Verify Operation

This section is normative.

boolean EcdaaVerify(signature, AppID, KRD, ModelName)

Parameters

p: System parameter prime order of group G (global constant)

P : System parameter generator of group G (global constant)

signature: (c, s,R,S,T ,W ,n)

AppID: FIDO AppID

KRD: Attestation Data object as defined in other specifications.

ModelName: the claimed FIDO authenticator model (i.e. either AAID or AAGUID)

Algorithm outline

1. Based on the claimed ModelName, look up X,Y from trusted source

2. Check that R,S,T ,W ∈ G , R ≠ 1 , and S ≠ 1 .

3. H(n∣H(S ⋅W ∣S∣W ∣AppID∣H(KRD))) c; fail if not equal

4. e(R,Y) e(S,P); fail if not equal

5. e(T ,P) e(R ⋅W ,X); fail if not equal

6. for (all sk' on RogueList) do if W S fail;

7. // perform all other processing steps for new credential registration

8. return true;

4. FIDO ECDAA Object Formats and Algorithm Details

This section is normative.

4.1 Supported Curves for ECDAA

Definition of G1

NOTE

One ECDAA-Verify operation is required for the FIDO Server as part of each FIDO Registration.

1

2 2

1 G1 G1

s −c =
?
​

NOTE

B = A = P

D = Q = P = B

S = B and W = D

U = S

S ⋅W = S ⋅W = U ⋅ S ⋅W

= U ⋅B ⋅D = U ⋅B ⋅B = U

y
1
ly

l yJ
1
skl yJ sk

l l

r

s −c r+csk −c csk −c

lcsk −lc lcsk −lcsk

=
?
​ 2

NOTE

e(R,Y) = e(A ,P); e(S,P) = e(B ,P) = e(A ,P)
l

2
y

2
l

2
ly

2

2 =
?
​

NOTE

e(T ,P) = e(C ,P) = e(A ⋅Q ,P); e(A ⋅D ,X) = e(A ⋅Q ,P)2
l

2
xl xlylJ

2
l l l lylJ

2
x

=
?
​

sk
′

NOTE
In the case of a TPMv2, i.e. KRD is a TPMS_ATTEST object. In this case the verifier must check whether the TPMS_ATTEST object starts with
TPM_GENERATED magic number and whether its field objectAttributes contains the flag fixedTPM=1 (indicating that the key was generated by
the TPM).

2 3

G1 is an elliptic curve group E : y = x + ax+ b over F(q) with a = 0.

Definition of G2

G2 is the p-torsion subgroup of E (F) where E' is a sextic twist of E. With E' : y = x + b .

An element of F(q) is represented by a pair (a,b) where a + bX is an element of F(q)[X]/ < X + 1 >. We use angle brackets < Y > to signify
the ideal generated by the enclosed value.

Definition of GT

GT is an order-p subgroup of F .

Pairings

We propose the use of Ate pairings as they are efficient (more efficient than Tate pairings) on Barreto-Naehrig curves [DevScoDah2007].

Supported BN curves

We use pairing-friendly Barreto-Naehrig [BarNae-2006] [ISO15946-5] elliptic curves. The curves TPM_ECC_BN_P256 and TPM_ECC_BN_P638 curves are
defined in [TPMv2-Part4].

BN curves have a Modulus q = 36 ⋅ u + 36 ⋅ u + 24 ⋅ u + 6 ⋅ u+ 1 [ISO15946-5] and a related order of the group

p = 36 ⋅ u + 36 ⋅ u + 18 ⋅ u + 6 ⋅ u+ 1 [ISO15946-5].

TPM_ECC_BN_P256 is a curve of form E(F(q)), where q is the field modulus [TPMv2-Part4] [BarNae-2006]. This curve is identical to the P256 curve
defined in [ISO15946-5] section C.3.5.

The values have been generated using u=-7 530 851 732 716 300 289.

Modulus q = 115 792 089 237 314 936 872 688 561 244 471 742 058 375 878 355 761 205 198 700 409 522 629 664 518 163

Group order p = 115 792 089 237 314 936 872 688 561 244 471 742 058 035 595 988 840 268 584 488 757 999 429 535 617 037

p and q have length of 256 bit each.

b = 3

P _256 = (x=1, y=2)

b = (a=3, b=3)

P _256 = (x,y), with

P _256.x = (a=114 909 019 869 825 495 805 094 438 766 505 779 201 460 871 441 403 689 227 802 685 522 624 680 861 435,
b=35 574 363 727 580 634 541 930 638 464 681 913 209 705 880 605 623 913 174 726 536 241 706 071 648 811)

P _256.y = (a=65 076 021 719 150 302 283 757 931 701 622 350 436 355 986 716 727 896 397 520 706 509 932 529 649 684,
b=113 380 538 053 789 372 416 298 017 450 764 517 685 681 349 483 061 506 360 354 665 554 452 649 749 368)

TPM_ECC_BN_P638 [TPMv2-Part4] uses
The values have been generated using u=365 375 408 992 443 362 629 982 744 420 548 242 302 862 098 433

Modulus q = 641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356 871 360 716 989 515 584 497 239 494 051 781
991 794 253 619 096 481 315 470 262 367 432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740 457 083 469 793
717 125 223

The related order of the group is p = 641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356 871 360 716 989 515
584 497 239 494 051 781 991 794 252 818 101 344 337 098 690 003 906 272 221 387 599 391 201 666 378 807 960 583 525 233 832 645
565 592 955 122 034 352 630 792 289

p and q have length of 638 bit each.

b = 257

P _638 = (x=641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238 356 871 360 716 989 515 584 497 239 494 051 781
991 794 253 619 096 481 315 470 262 367 432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740 457 083 469 793
717 125 222, y=16)

b = (a=771, b=1542)

P _638 = (x, y), with

P _638.x = (a=192 492 098 325 059 629 927 844 609 092 536 807 849 769 208 589 403 233 289 748 474 758 010 838 876 457 636
072 173 883 771 602 089 605 233 264 992 910 618 494 201 909 695 576 234 119 413 319 303 931 909 848 663 554 062 144 113
485 982 076 866 968 711 247, b=166 614 418 891 499 184 781 285 132 766 747 495 170 152 701 259 472 324 679 873 541 478 330
301 406 623 174 002 502 345 930 325 474 988 134 317 071 869 554 535 111 092 924 719 466 650 228 182 095 841 246 668 361
451 788 368 418 036 777 197 454 618 413 255)

P _638.y = (a=622 964 952 935 200 827 531 506 751 874 167 806 262 407 152 244 280 323 674 626 687 789 202 660 794 092 633
841 098 984 322 671 973 226 667 873 503 889 270 602 870 064 426 165 592 237 410 681 318 519 893 784 898 821 343 051 339
820 566 224 981 344 169 470, b=514 285 963 827 225 043 076 463 721 426 569 583 576 029 220 880 138 564 906 219 230 942 887
639 456 599 654 554 743 732 087 558 187 149 207 036 952 474 092 411 405 629 612 957 921 369 286 372 038 525 830 610 755
207 588 843 864 366 759 521 090 861 911 494)

ECC_BN_DSD_P256 [DevScoDah2007] section 3 uses
The values have been generated using u=6 917 529 027 641 089 837

Modulus q = 82434016654300679721217353503190038836571781811386228921167322412819029493183

The related order of the group is p = 82434016654300679721217353503190038836284668564296686430114510052556401373769

p and q have length of 256 bit each.

b = 3

2 3

′
q2

′2 ′3 ′

2 2

NOTE

In the literature the pair (a,b) is sometimes also written as a complex number a+ b ∗ i.

q12

4 3 2

4 3 2

1

′

2

2

2

1

′

2

2

2

P _DSD_P256 = (1, 2)

b = (a=3, b=6)

P _DSD_P256 = (x, y), with

P _DSD_P256.x = (a=73 481 346 555 305 118 071 940 904 527 347 990 526 214 212 698 180 576 973 201 374 397 013 567 073
039, b=28 955 468 426 222 256 383 171 634 927 293 329 392 145 263 879 318 611 908 127 165 887 947 997 417 463)

P _DSD_P256.y = (a=3 632 491 054 685 712 358 616 318 558 909 408 435 559 591 759 282 597 787 781 393 534 962 445 630 353,
b=60 960 585 579 560 783 681 258 978 162 498 088 639 544 584 959 644 221 094 447 372 720 880 177 666 763)

ECC_BN_ISOP512 [ISO15946-5] section C.3.7 uses
The values have been generated using u=138 919 694 570 470 098 040 331 481 282 401 523 727

Modulus q = 13 407 807 929 942 597 099 574 024 998 205 830 437 246 153 344 875 111 580 494 527 427 714 590 099 881 795 845 981
157 516 604 994 291 639 750 834 285 779 043 186 149 750 164 319 950 153 126 044 364 566 323

The related order of the group is p = 13 407 807 929 942 597 099 574 024 998 205 830 437 246 153 344 875 111 580 494 527 427 714 590
099 881 680 053 891 920 200 409 570 720 654 742 146 445 677 939 306 408 461 754 626 647 833 262 056 300 743 149

p and q have length of 512 bit each.

b = 3

P _ISO_P512 = (x=1,y=2)

b = (a=3, b=3)

P _ISO_P512 = (x, y), with

P _ISO_P512.x = (a=3 094 648 157 539 090 131 026 477 120 117 259 896 222 920 557 994 037 039 545 437 079 729 804 516 315
481 514 566 156 984 245 473 190 248 967 907 724 153 072 490 467 902 779 495 072 074 156 718 085 785 269, b=3 776 690 234
788 102 103 015 760 376 468 067 863 580 475 949 014 286 077 855 600 384 033 870 546 339 773 119 295 555 161 718 985 244
561 452 474 412 673 836 012 873 126 926 524 076 966 265 127 900 471 529)

P _ISO_P512.y = (a=7 593 872 605 334 070 150 001 723 245 210 278 735 800 573 263 881 411 015 285 406 372 548 542 328 752
430 917 597 485 450 360 707 892 769 159 214 115 916 255 816 324 924 295 339 525 686 777 569 132 644 242, b=9 131 995 053
349 122 285 871 305 684 665 648 028 094 505 015 281 268 488 257 987 110 193 875 868 585 868 792 041 571 666 587 093 146
239 570 057 934 816 183 220 992 460 187 617 700 670 514 736 173 834 408)

Hash Algorithm H

Depending on the curve, we use H(x) = SHA256(x) mod p or H(x) = SHA512(x) mod p as hash algorithm H:{0, 1} → Z .

The argument of the hash function must always be converted to a byte string using the appropriate encoding function specific in section 3.1 Object
Encodings, e.g. according to section 3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB) in the case of ECPoint2 points.

Hash Algorithm H

Definition of H (taken from [CheLi2013-ECDAA]):

H : {0, 1}* → G , where G is an elliptic curve group E : y^2 = x^3 + b over GF(q) with cofactor = 1. Given a message m ∈ {0, 1}*,

H can be computed as follows:

ECPoint p = HG1(String m)

1. Set i = 0 be a 32-bit unsigned integer.

2. Compute x = H(BigNumberToB(i,4) | m)

3. Compute z = x^3 + b mod q

4. Compute y =sqrt(z) mod q. If y does not exist, set i = i+1, repeat step 2 if i < 232, otherwise, report failure.

5. Set y = min(y, q − y).

6. return ECPoint(x, y)

(String sc, BigNumber yc) = HG1_pre(String m)

1. Set i = 0 be a 32-bit unsigned integer.

2. Compute x = H(BigNumberToB(i,4) | m)

3. Compute z = x^3 + b mod q

4. Compute y =sqrt(z) mod q. If y does not exist, set i = i+1, repeat step 2 if i < 232, otherwise, report failure.

5. Set y = min(y, q − y).

6. Set sc to BigNumberToB(i,4) | m.

7. Set yc to y.

8. return (sc, yc)

The ASM on the FIDO User device platform can help the authenticator compute HG1(m), yet the authenticator verifies the computation as follows:
Given m, the ASM runs the above algorithm. For a successful execution, let sc = (istr | m) and yc be the y value in the last step. The ASM sends sc and

1

′

2

2

2

1

′

2

2

2

NOTE

Spaces are used inside numbers to improve readability.

∗
p

NOTE

We don't use IEEE P1363.3 section 6.1.1 IHF1-SHA with security parameter t (e.g. t=128 or 256) as it is more complex and not supported by
TPMv2.

G1

G1

G1 1 1

G1

http://grouper.ieee.org/groups/1363/IBC/material/P1363.3-D1-200805.pdf

yc to the authenticator. The authenticator computes HG1(m) = (H(sc), yc).

Given the value sc, the original message m can be recomputed by skipping the first 4 bytes.

4.2 ECDAA Algorithm Names

We define the following JWS-style algorithm names (see [RFC7515]):

ED256
TPM_ECC_BN_P256 curve, using SHA256 as hash algorithm H.

ED256-2
ECC_BN_DSD_P256 curve, using SHA256 as hash algorithm H.

ED512
ECC_BN_ISOP512 curve, using SHA512 as hash algorithm H.

ED638
TPM_ECC_BN_P638 curve, using SHA512 as hash algorithm H.

4.3 ecdaaSignature object

The fields c and s both have length N. The fields R, S, T, W have equal length (2*N+1 each).

In the case of BN_P256 curve (with key length N=32 bytes), the fields R, S, T, W have length 2*32+1=65 bytes. The fields c and s have length N=32
each.

The ecdaaSignature object is a binary object generated as the concatenation of the binary fields in the order described below (total length of 356 bytes
for 256bit curves):

Value
Length (in

Bytes)
Description

UINT8[]
ECDAA_Signature_c

N

The c value, c = H(n | c2) as returned by EcdaaSign encoded as byte string according to BigNumberToB.

Where

c2=H(U | S | W | KRD | AppID)

U = S , with r = RAND(p) computed by the signer.

KRD is the the entire to-be-signed object (e.g. TAG_UAFV1_KRD in the case of FIDO UAF).

S = B , with l = RAND(p) computed by the signer and B = A computed in the ECDAA-Join

UINT8[]
ECDAA_Signature_s

N

The s value, s=r + c * sk (mod p), as returned by EcdaaSign encoded as byte string according to
BigNumberToB.

Where

r = RAND(p), computed by the signer at FIDO registration (see 3.5.2 ECDAA-Sign Split between
Authenticator and ASM)

p is the group order of G1

sk: is the authenticator's attestation secret key, see above

UINT8[]
ECDAA_Signature_n

N The Nonce value n, as returned by EcdaaSign encoded as byte string according to BigNumberToB.

UINT8[]
ECDAA_Signature_R

2*N+1

R = A ; computed by the ASM or the authenticator at FIDO registration; encoded as byte string
according to ECPointToB. Where

l = RAND(p), i.e. random number 0≤l≤p. Computed by the ASM or the authenticator at FIDO
registration.

And where R = A denotes the scalar multiplication (of scalar l) of a curve point A.

Where A has been provided by the ECDAA Issuer as part of ECDAA-Join: A = B , see 3.4.1
ECDAA-Join Algorithm.

Where p is a system value, injected into the authenticator and y is part of the ECDAA Issuer private
key isk=(x,y).

UINT8[]
ECDAA_Signature_S

2*N+1

S = B ; computed by the ASM or the authenticator at FIDO registration encoded as byte string
according to ECPointToB.

Where B has been provided by the ECDAA Issuer on Join: B = HG1(m) = (H(sc),yc), see 3.4.1
ECDAA-Join Algorithm.

UINT8[]
ECDAA_Signature_T

2*N+1

T = C ; computed by the ASM or the authenticator at FIDO registration encoded as byte string
according to ECPointToB. Where

C = (A ⋅Q) , provided by the ECDAA Issuer on Join

x is a components of the ECDAA Issuer private key, isk=(x,y).

Q is the authenticator public key

UINT8[]
ECDAA_Signature_W

2*N+1

W = D ; computed by the ASM or the authenticator at FIDO registration encoded as byte string
according to ECPointToB.

Where D = Q is computed by the ECDAA Issuer at Join (see 3.4.1 ECDAA-Join Algorithm).

r

l y

l

l

1/y

l

l

x

l

Value
Length (in

Bytes)
Description

5. Considerations

This section is non-normative.

A detailed security analysis of this algorithm can be found in [FIDO-DAA-Security-Proof].

5.1 Algorithms and Key Sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

5.2 Indicating the Authenticator Model

Some authenticators (e.g. TPMv2) do not have the ability to include their model (i.e. vendor ID and model name) in attested messages (i.e. the to-be-
signed part of the registration assertion). The TPM's endorsement key certificate typically contains that information directly or at least it allows the
model to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator model.

We require the ECDAA Issuers public key (ipk=(X,Y,c,sx,sy)) to be dedicated to one single authenticator model (e.g. as identified by AAID or AAGUID).

5.3 Revocation

If the private ECDAA attestation key sk of an authenticator has been leaked, it can be revoked by adding its value to a RogueList.

The ECDAA-Verifier (i.e. FIDO Server) check for such revocations. See section 3.6 ECDAA-Verify Operation.

The ECDAA Issuer is expected to check revocation by other means:

1. if ECDAA-Join is done in-factory, it is assumed that produced devices are known to be uncompomised (at time of production).

2. if a remote ECDAA-Join is performed, the (remote) ECDAA Issuer already must use a different method to remotely authenticate the authenticator
(e.g. using some endorsement key). We expect the ECDAA Issuer to perform a revocation check based on that information. This is even more

flexible as it does not require access to the authenticator ECDAA private key sk.

5.4 Pairing Algorithm

The pairing algorithm e needs to be used by the ASM as part of the Join process and by the verifier (i.e. FIDO relying party) as part of the verification
(i.e. FIDO registration) process.

The result of such a pairing operation is only compared to the result of another pairing operation computed by the same entity. As a consequence, it
doesn't matter whether the ASM and the verifier use the exact same pairings or not (as long as they both use valid pairings).

5.5 Performance

For performance reasons the calculation of Sig2=(R,S,T ,W) may be performed by the ASM running on the FIDO user device (as opposed to inside
the authenticator). See section 3.5.2 ECDAA-Sign Split between Authenticator and ASM.

The cryptographic computations to be performed inside the authenticator are limited to G1. The ECDAA Issuer has to perform two G2 point
multiplications for computing the public key. The Verifier (i.e. FIDO relying party) has to perform G1 operations and two pairing operations.

5.6 Binary Concatentation

We use a simple byte-wise concatenation function for the different parameters, i.e. H(a,b) = H(a | b).

This approach is as secure as the underlying hash algorithm since the authenticator controls the length of the (fixed-length) values (e.g. U, S, W). The
AppID is provided externally and has unverified structure and length. However, it is only followed by a fixed length entry - the (system defined) hash of
KRD. As a consequence, no parts of the AppID would ever be confused with the fixed length value.

5.7 IANA Considerations

This specification registers the algorithm names "ED256", "ED512", and "ED638" defined in section 4. FIDO ECDAA Object Formats and Algorithm
Details with the IANA JSON Web Algorithms registry as defined in section "Cryptographic Algorithms for Digital Signatures and MACs" in [RFC7518].

Algorithm Name "ED256"

Algorithm Description FIDO ECDAA algorithm based on TPM_ECC_BN_P256 [TPMv2-Part4] curve using SHA256 hash algorithm.

Algorithm Usage Location(s) "alg", i.e. used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller FIDO Alliance, Contact Us

Specification Documents
Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats and Algorithm Details of
[FIDOEcdaaAlgorithm].

Algorithm Analysis Document(s) [FIDO-DAA-Security-Proof]

Algorithm Name "ED512"

Algorithm Description ECDAA algorithm based on ECC_BN_ISOP512 [ISO15946-5] curve using SHA512 algorithm.

Algorithm Usage Location(s) "alg", i.e. used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller FIDO Alliance, Contact Us

https://fidoalliance.org/contact/
https://fidoalliance.org/contact/

Specification Documents Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats and Algorithm Details of
[FIDOEcdaaAlgorithm].

Algorithm Analysis Document(s) [FIDO-DAA-Security-Proof]

Algorithm Name "ED638"

Algorithm Description ECDAA algorithm based on TPM_ECC_BN_P638 [TPMv2-Part4] curve using SHA512 algorithm.

Algorithm Usage Location(s) "alg", i.e. used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller FIDO Alliance, Contact Us

Specification Documents
Sections 3. FIDO ECDAA Attestation and 4. FIDO ECDAA Object Formats and Algorithm Details of
[FIDOEcdaaAlgorithm].

Algorithm Analysis Document(s) [FIDO-DAA-Security-Proof]

A. References

A.1 Normative references

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-2005.
November 2005. URL: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1. February 2003.
Informational. URL: https://tools.ietf.org/html/rfc3447

[TPMv2-Part4]
Trusted Platform Module Library, Part 4: Supporting Routines. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-
1A4B-B294-D0DA8CE1B452CAB4/TPM%20Rev%202.0%20Part%204%20-%20Supporting%20Routines%2001.16-code.pdf

A.2 Informative references

[ANZ-2013]
Tolga Acar; Lan Nguyen; Greg Zaverucha. A TPM Diffie-Hellman Oracle. October 18, 2013. URL: http://eprint.iacr.org/2013/667.pdf

[Arthur-Challener-2015]
Will Arthur; David Challener; Kenneth Goldman. A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security.
2014. URL: http://www.apress.com/9781430265832

[BFGSW-2011]
D. Bernhard; G. Fuchsbauer; E. Ghadafi; N. P. Smart; B. Warinschi. Anonymous Attestation with User-controlled Linkability. 2011. URL:
http://eprint.iacr.org/2011/658.pdf

[BarNae-2006]
Paulo S. L. M. Barreto; Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. 2006. URL:
http://research.microsoft.com/pubs/118425/pfcpo.pdf

[BriCamChe2004-DAA]
Ernie Brickell; Jan Camenisch; Liqun Chen. Direct Anonymous Attestation. 2004. URL: http://eprint.iacr.org/2004/205.pdf

[CCDLNU2017-DAA]
Jan Camenisch; Liqun Chen; Anja Lehmann; David Novick; Rainer Urian. One TPM to Bind Them All: Fixing TPM 2.0 for Provably Secure
Anonymous Attestation. March 2017. URL:
https://www.researchgate.net/publication/317914407_One_TPM_to_Bind_Them_All_Fixing_TPM_20_for_Provably_Secure_Anonymous_Attestation

[CheLi2013-ECDAA]
Liqun Chen; Jiangtao Li. Flexible and Scalable Digital Signatures in TPM 2.0. 2013. URL: http://dx.doi.org/10.1145/2508859.2516729

[DevScoDah2007]
Augusto Jun Devegili; Michael Scott; Ricardo Dahab. Implementing Cryptographic Pairings over Barreto-Naehrig Curves. 2007. URL:
https://eprint.iacr.org/2007/390.pdf

[FIDO-DAA-Security-Proof]
Jan Camenisch; Manu Drijvers; Anja Lehmann. Universally Composable Direct Anonymous Attestation. 2015. URL:
https://eprint.iacr.org/2015/1246

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[ISO15946-5]
ISO/IEC 15946-5 Information Technology - Security Techniques - Cryptographic techniques based on elliptic curves - Part 5: Elliptic curve
generation. URL: https://webstore.iec.ch/publication/10468

[RFC7515]
M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS) (RFC7515). May 2015. URL: http://www.ietf.org/rfc/rfc7515.txt

[RFC7518]
M. Jones. JSON Web Algorithms (JWA). May 2015. Proposed Standard. URL: https://tools.ietf.org/html/rfc7518

[TPMv1-2-Part1]
TPM 1.2 Part 1: Design Principles. URL: http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-
D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf

[TPMv2-Part1]
Trusted Platform Module Library, Part 1: Architecture. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-
D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf

[TPMv2-Part2]
Trusted Platform Module Library, Part 2: Structures. URL: http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-
D0469592DB10A6CD/TPM%20Rev%202.0%20Part%202%20-%20Structures%2001.16.pdf

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator Commands v1.0. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

[XYZF-2014]
Li Xi; Kang Yang; Zhenfeng Zhang; Dengguo Feng. DAA-Related APIs in TPM 2.0 Revisited, in T. Holz and S. Ioannidis (Eds.). 2014. URL:

https://fidoalliance.org/contact/
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM Rev 2.0 Part 4 - Supporting Routines 01.16-code.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM Rev 2.0 Part 4 - Supporting Routines 01.16-code.pdf
http://eprint.iacr.org/2013/667.pdf
http://eprint.iacr.org/2013/667.pdf
http://www.apress.com/9781430265832
http://www.apress.com/9781430265832
http://eprint.iacr.org/2011/658.pdf
http://eprint.iacr.org/2011/658.pdf
http://research.microsoft.com/pubs/118425/pfcpo.pdf
http://research.microsoft.com/pubs/118425/pfcpo.pdf
http://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2004/205.pdf
https://www.researchgate.net/publication/317914407_One_TPM_to_Bind_Them_All_Fixing_TPM_20_for_Provably_Secure_Anonymous_Attestation
https://www.researchgate.net/publication/317914407_One_TPM_to_Bind_Them_All_Fixing_TPM_20_for_Provably_Secure_Anonymous_Attestation
http://dx.doi.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
https://eprint.iacr.org/2007/390.pdf
https://eprint.iacr.org/2007/390.pdf
https://eprint.iacr.org/2015/1246
https://eprint.iacr.org/2015/1246
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://webstore.iec.ch/publication/10468
https://webstore.iec.ch/publication/10468
http://www.ietf.org/rfc/rfc7515.txt
http://www.ietf.org/rfc/rfc7515.txt
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM Rev 2.0 Part 2 - Structures 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM Rev 2.0 Part 2 - Structures 01.16.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

FIDO Security Reference

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-security-ref-v1.2-rd-20171128.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Dr. Joshua E. Hill, InfoGard Laboratories
Douglas Biggs, InfoGard Laboratories

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

This document analyzes the security properties of the FIDO UAF and U2F families of protocols.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This document is intended to become a FIDO Alliance Proposed
Standard. If you wish to make comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc. Permission is hereby granted to use the Specification
solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking
permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license
for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Introduction
2.1 Intended Audience

3. Attack Classification

4. FIDO Security Goals
4.1 Assets to be Protected

5. FIDO Security Measures
5.1 Relation between Measures and Goals

6. FIDO Security Assumptions
6.1 Discussion

7. Threat Analysis
7.1 Threats to Client Side

7.1.1 Exploiting User’s pattern matching weaknesses

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications

7.1.3 Creating a Fake Client

7.1.4 Threats to FIDO Authenticator

7.1.5 Threats to Relying Party
7.1.5.1 Threats to FIDO Server Data

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-security-ref-v1.2-rd-20171128.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
mailto:jhill@infogard.com
https://infogard.com/
mailto:dbiggs@infogard.com
https://infogard.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https:/fidoalliance.org/
https://fidoalliance.org/contact

7.1.6 Threats to the Secure Channel between Client and Relying Party
7.1.6.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

7.1.7 Threats to the Infrastructure
7.1.7.1 Threats to FIDO Authenticator Manufacturers

7.1.7.2 Threats to FIDO Server Vendors

7.1.7.3 Threats to FIDO Metadata Service Operators

7.1.8 Threats Specific to Second Factor Authenicators (UAF / U2F)

7.2 Acknowledgements

A. References
A.1 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Introduction

This document analyzes the security properties of the FIDO UAF and U2F families of protocols. Although a brief architectural summary is
provided below, readers should familiarize themselves with the the FIDO Glossary of Terms [FIDOGlossary] for definitions of terms used
throughout. For technical details of various aspects of the architecture, readers should refer to the FIDO Alliance specifications in the
Bibliography.

Fig. 1 FIDO Reference Architecture

Conceptually, FIDO involves a conversation between a computing environment controlled by a Relying Party and one controlled by the user to
be authenticated. The Relying Party's environment consists conceptually of at least a web server and the server-side portions of a web
application, plus a FIDO Server. The FIDO Server has a trust store, containing the (public) trust anchors for the attestation of FIDO
Authenticators. The users' environment, referred to as the FIDO user device, consists of one or more FIDO Authenticators, a piece of software
called the FIDO Client that is the endpoint for UAF and U2F conversations, and User Agent software. The User Agent software may be a
browser hosting a web application delivered by the Relying Party, or it may be a standalone application delivered by the Relying Party. In either
case, the FIDO Client, while a conceptually distinct entity, may actually be implemented in whole or part within the boundaries of the User Agent.

2.1 Intended Audience

This document assumes a technical audience that is proficient with security analysis of computing systems and network protocols as well as the
specifics of the FIDO architecture and protocol families. It discusses the security goals, security measures, security assumptions and a series of
threats to FIDO systems, including the users' computing environment, the Relying Party's computing environment, and the supply chain,
including the vendors of FIDO components.

3. Attack Classification

The following attacks all result in user impersonation if successful. However, they have distinguishing characteristics which we use as the basis
for attack classification:

1. Automated attacks not focused on the users systems, which affect the user.

2. Automated attacks which are focused on the users' device and which are performed once and lead to the ability to impersonate the user on

an on-going basis without involving him or his device directly.

3. Automated attacks which involve the user or his device for each successful impersonation.

4. Automated attacks to sessions authenticated by the user.

5. Not automatable attacks to the user or his device which are performed once and lead to the ability to impersonate the user on an on-going
basis without involving him or his device directly.

6. Not automatable attacks to the user or his device which involve the user or his device for each successful impersonation.

Fig. 2 Attack Classes

The first four attack classes are considered scalable as they are nominally automatable. The attack classes 5 and 6 are not automatable; they
involve some kind of manual/physical interaction of the attacker with the user or his device. We will attribute the threats analyzed in this
document with the related attack class (AC1 – AC6).

Attack Classes

We define the term scalable attack as any attack where the marginal cost of adding an additional target is near zero and which leads to violations
of the FIDO security goals.

AC1
Attacks not focused on the users' devices and which lead to violations of FIDO security goals. (e.g., compromise of a Relying Party FIDO
database and successful decryption of wrapped keys within the database, phishing, MITM attacks, etc.).

AC2

NOTE

1. FIDO uses asymmetric cryptography to protect against AC1. This gives control back to the user, i.e. when using good random
numbers, the user’s authenticator can make breaking the key as hard as the underlying factoring (in the case of RSA) or discrete
logarithm (in the case of DSA or ECDSA) problem.

2. Once counter-measures for this kind of attack are commonly in place, attackers will likely focus on another attack class.

3. The numbers at the attack classes do not imply a feasibility ranking of the related attacks, e.g. it is not necessarily more difficult to
perform (AC4) than it is to perform (AC3).

4. The user has almost no influence on the feasibility of attack class (AC1). This makes this attack class really bad.

5. The concept of physical security (i.e. “protect your Authenticator from being stolen”), related to attack classes (AC5) and (AC6) is
much better internalized by users than the concept of logical security, related to attack classes (AC2), (AC3) and (AC4).

6. In order to protect against misuse of authenticated sessions (e.g. MITB attacks), the FIDO Authenticator must support the concept of
transaction confirmation and the relying party must use it.

7. For an attacker to succeed in impersonating the user, any attack class is sufficient.

NOTE

The first four attack classes (AC1, AC2, AC3, and AC4) are considered scalable. The last two attack classes (AC5 and AC6) are not
scalable and are performed as one-off user/Relying Party style compromises. We will attribute the threats analyzed in this document with
the related attack class (AC1 – AC6).

Scalable attacks involving the Authenticator which, once performed, lead to the ability to violate FIDO security goals on an ongoing basis
without later involving the users or their devices directly (e.g., a scalable attack on FIDO Authenticators that recovers the user private keys,
allowing the attacker to impersonate the users on an ongoing basis).

AC3
Scalable attacks which involve the user or his device for each instance where the FIDO security goals are violated (e.g., a scalable attack
that requires the Authenticator for each successful impersonation).

AC4
Scalable attacks on sessions authenticated by the user which violate FIDO security goals.

AC5
Non-scalable attacks involving the Authenticator which, once performed, lead to the ability to violate FIDO security goals on an ongoing
basis without later involving the users or their devices directly (e.g., a non-scalable attack on FIDO Authenticators that recovers the user
private keys, allowing the attacker to impersonate the users on an ongoing basis).

AC6
Non-scalable attacks which involve the user or his device for each instance where the FIDO security goals are violated (e.g., a non-
scalable attack that requires the Authenticator for each successful impersonation).

4. FIDO Security Goals

In this section the specific security goals of FIDO are described. The FIDO UAF protocol [UAFProtocol] and U2F protocol [U2FOverview] support
a variety of different FIDO Authenticators. Even though the security of those authenticators varies, the UAF protocol and the FIDO Server should
provide a very high level of security - at least on a conceptual level. In reality it might require a FIDO Authenticator with a high security level in
order to fully leverage the FIDO security strength.

The FIDO U2F protocol [U2FOverview] supports a more constrained set of Authenticator capabilities. It shares the same security goals as UAF,
with the exception of [SG-14] Transaction Non- Repudiation.

The FIDO protocols have the following security goals:

[SG-1]
Strong User Authentication: Authenticate (i.e. recognize) a user and/or a device to a relying party with high (cryptographic) strength.

[SG-2]
Credential Guessing Resilience: Provide robust protection against eavesdroppers, e.g. be resilient to physical observation, resilient to
targeted impersonation, resilient to throttled and unthrottled guessing.

[SG-3]
Credential Disclosure Resilience: Be resilient to phishing attacks and real-time phishing attack, including resilience to online attacks by
adversaries able to actively manipulate network traffic.

[SG-4]
Unlinkablity: Protect the protocol conversation such that any two relying parties cannot link the conversation to one user (i.e. be unlinkable).

[SG-5]
Verifier Leak Resilience: Be resilient to leaks from other relying parties. I.e., nothing that a verifier could possibly leak can help an attacker
impersonate the user to another relying party.

[SG-6]
Authenticator Leak Resilience: Be resilient to leaks from other FIDO Authenticators. I.e., nothing that a particular FIDO Authenticator could
possibly leak can help an attacker to impersonate any other user to any relying party.

[SG-7]
User Consent: Notify the user before a relationship to a new relying party is being established (requiring explicit consent).

[SG-8]
Limited PII: Limit the amount of personal identifiable information (PII) exposed to the relying party to the absolute minimum.

[SG-9]
Attestable Properties: Relying Party must be able to verify FIDO Authenticator model/type (in order to calculate the associated risk).

[SG-10]
DoS Resistance: Be resilient to Denial of Service Attacks. I.e. prevent attackers from inserting invalid registration information for a
legitimate user for the next login phase. Afterward, the legitimate user will not be able to login successfully anymore.

[SG-11]
Forgery Resistance: Be resilient to Forgery Attacks (Impersonation Attacks). I.e. prevent attackers from attempting to modify intercepted
communications in order to masquerade as the legitimate user and login to the system.

[SG-12]
Parallel Session Resistance: Be resilient to Parallel Session Attacks. Without knowing a user’s authentication credential, an attacker can
masquerade as the legitimate user by creating a valid authentication message out of some eavesdropped communication between the user
and the server.

[SG-13]
Forwarding Resistance: Be resilient to Forwarding and Replay Attacks. Having intercepted previous communications, an attacker can
impersonate the legal user to authenticate to the system. The attacker can replay or forward the intercepted messages.

[SG-14] (not covered by U2F)
Transaction Non-Repudiation: Provide strong cryptographic non-repudiation for secure transactions.

[SG-15]
Respect for Operating Environment Security Boundaries: Ensure that registrations and private key material as a shared system resource is
appropriately protected according to the operating environment privilege boundaries in place on the FIDO user device.

[SG-16]
Assessable Level of Security: Ensure that the design and implementation of the Authenticator allows for the testing laboratory / FIDO
Alliance to assess the level of security provided by the Authenticator.

4.1 Assets to be Protected

Independent of any particular implementation, the FIDO protocols assume some assets to be present and to be protected.

NOTE

At this time we are not explicitly addressing classes of physical attacks on the authenticator that may lead to reduced security if the
legitimate user uses the authenticator after the attacker having physical access to it.

NOTE

In certain environments the overall security of the explicit authentication (as provided by FIDO) is less important, as it might be
supplemented with a high degree of implicit authentication or the application doesn’t even require a high level of authentication strength.

NOTE

For a definition of the phrases printed in italics, refer to [QuestToReplacePasswords] and to [PasswordAuthSchemesKeyIssues]

1. Cryptographic Authentication Private Key. Typically, private keys in FIDO are unique for each tuple of (relying party, user account,
authenticator).

2. Cryptographic Authentication Key Reference. This is the cryptographic material stored at the relying party and used to uniquely verify the
Cryptographic Authentication Key, typically the public key corresponding to the authentication private key.

3. Authenticator Attestation Key (as stored in each authenticator). This should only be usable to attest a Cryptographic Authentication Key
and the type/model and manufacturing batch of an Authenticator. Attestation keys are either ECDAA keys [FIDOEcdaaAlgorithm] or the
attestation keys and certificates are shared by a large number of authenticators in a device class from a given vendor in order to prevent
their becoming a linkable identifier across relying parties. Authenticator attestation certificates may be self-signed, or signed by an
authority key controlled by the vendor.

4. Authenticator Attestation Authority Key. An authenticator vendor may elect to sign authenticator attestation certificates with a per-vendor
certificate authority key.

5. Authenticator Attestation Authority Certificate. Contained in the initial/default trust store as part of the FIDO Server and contained in the
active trust store maintained by each relying party.

6. Active Trust Store. Contains all trusted attestation root certificates for a given FIDO server.

7. All data items suitable for uniquely identifying the authenticator across relying parties. An attack on those would break the non-linkability
security goal.

8. Private key of Relying Party TLS server certificate.

9. TLS root certificate trust store for the users' browser/app.

5. FIDO Security Measures

[SM-1] (U2F + UAF)
Key Protection: Authentication key is protected against misuse. Misuse means any use violating the FIDO specification or the details given
in the Metadata Statement. Before a key can be used, it requires the User to unlock it using the user verification method specified in the
Authenticator Metadata Statement (Silent Authenticators do not require any user verification method).

[SM-2] (U2F + UAF)
Unique Authentication Keys: Cryptographic authentication key is specific and unique to the tuple of (FIDO Authenticator, User, Relying
Party).

[SM-3] (U2F + UAF)
Authenticator Class Attestation: Hardware-based FIDO Authenticators support authenticator attestation using an attestation key using one
of the FIDO specified attestation types and algorithms. Each relying party receives regular updates of the trust store (through the FIDO
Metadata service).

[SM-4] (UAF)
Authenticator Status Checking: Relying Parties can download latest known status of authenticators included in the FIDO Metadata Service.
The FIDO Server should take this information into account. Authenticator manufacturers should notify the FIDO Alliance about
compromised authenticators. In the case of FIDO certified authenticators, such notification might even be mandatory.

[SM-5] (UAF)
User Consent: FIDO Client implements a user interface for getting user’s consent on any actions (except authentication with silent
authenticator) and displaying RP name (derived from server URL).

[SM-6] (U2F + UAF)
Cryptographically Secure Verifier Database: The relying party stores only the public portion of an asymmetric key pair, or an encrypted key
handle, as a cryptographic authentication key reference.

[SM-7] (U2F + UAF)
Secure Channel with Server Authentication: The TLS protocol with server authentication or a transport with equivalent properties is used as
transport protocol for UAF. The use of https is enforced by a browser or Relying Party application.

[SM-8] (UAF)
Protocol Nonces: Both server and client supplied nonces are used for UAF registration and authentication. U2F requires server supplied
nonces.

[SM-9] (U2F + UAF)
Authenticator Certification: The FIDO Metadata Service includes the Authenticator certification status.

[SM-10] (UAF)
Transaction Confirmation (WYSIWYS): Secure Display (WYSIWYS) (optionally) implemented by the FIDO Authenticators is used by FIDO
Client for displaying relying party name and transaction data to be confirmed by the user.

[SM-11] (U2F + UAF)
Round Trip Integrity: FIDO server verifies that the transaction data related to the server challenge received in the UAF message from the
FIDO client is identical to the transaction data and server challenge delivered as part of the UAF request message.

[SM-12] (U2F + UAF)
Channel Binding: Relying Party servers may verify the continuity of a secure channel with a client application.

[SM-13] (UAF)
Key Handle Access Token: Authenticators not intended to roam between untrusted systems are able to constrain the use of registration
keys within the privilege boundaries defined by the operating environment of the user device (per-user, or per application, or per-user +
per-application as appropriate).

[SM-14] (U2F + UAF)
AppID Separation: A Relying Party can declare the application identities allowed to access its registered keys, for operating environments
on user devices that support this concept.

[SM-15] (U2F + UAF)
Signature Counter: Authenticators send a monotonically increasing signature counter that a Relying Party can check to possibly detect
cloned authenticators.

[SM-16] (U2F + UAF)
Use of strong, modern Cryptographic Primitives: The FIDO specifications stipulate the use of strong, modern cryptographic primitives
helping to ensure the overall security of conformant FIDO implementations. The FIDO Authenticator certification program defines the
"Allowed Cryptography List" for allowed cryptographic primitives to be used in FIDO certified authenticators.

[SM-17] (U2F + UAF)
Resistance to Side Channel Attacks.

[SM-18] (U2F + UAF)
Resistance to Injected Faults in Cryptographic Functions. This security measure purely deals with the cryptographic functions, as
compared to the much more general [SM-28].

NOTE

Particular implementations of FIDO Clients, Authenticators, Servers and participating applications may not implement all of these security
measures (e.g. Secure Display, [SM-10] Transaction Confirmation) and they also might (and should) implement add itional security
measures.

NOTE

The U2F protocol lacks support for [SM-5] Secure Display, [SM-10] Transaction Confirmation, has only server-supplied [SM-8] Protocol
Nonces, and [SM-3] Authenticator Class Attestation is implicit as there is only a single class of device.

[SM-19] (UAF)
Bounded Probability of a Birthday Collision. For randomly generated nonces, the total number of nonces that can be generated is limited to
bound the probability of a birthday collision of generated values.

[SM-20] (U2F + UAF)
Individual authenticators are indistinguishable provided authenticators sharing attestation keys are manufactured in sufficiently large (e.g. >
100000) per-model batches.

[SM-21] (U2F + UAF)
Authentication and replay-resistance (freshness assurance) of externally-stored protected information.

[SM-22] (U2F + UAF)
Certified FIDO Authenticators fully described by the vendor, and tested to verify that it functions as specified.

[SM-23] (U2F + UAF)
Key Handles containing a key are cryptographically linked with the Authenticator that produced the Key Handle and with the Relying Party
associated with the Key Handle.

[SM-24] (U2F + UAF)
Design, implementation and manufacture of certified FIDO Authenticators supports Authenticator security.

[SM-25] (U2F + UAF)
Depending on the certification level, certified authenticators are required to implement a Trusted Path for all user / Authenticator direct
interactions.

[SM-26] (U2F + UAF)
Input Data Validation: Malformed or maliciously crafted input data does not result in unexpected Authenticator behavior.

[SM-27] (U2F + UAF)
Protection of user verification reference data and biometric data.

[SM-28] (U2F + UAF)
Resistance to Fault Injection Attacks.

[SM-29] (U2F + UAF)
Resistance to Remote Timing Attacks: No leakage of secret information to remote entities via variation of operation execution time.

5.1 Relation between Measures and Goals

Security Goal Supporting Security Measures

[SG-1] Strong User Authentication

[SM-1] Key Protection

[SM-12] Channel Binding

[SM-14] AppID Separation

[SM-15] Signature Counter

[SM-16] Allowed Crypto Primitives

[SM-17] Resistance to Side Channel Attacks

[SM-21] Authentication and replay-resistance

[SM-23] Key Handles cryptographically linked with the Authenticator

[SM-25] Trusted path for all user interactions

[SM-29] Resistance to Remote Timing Attacks

[SG-2] Credential Guessing Resilience

[SM-1] Key Protection

[SM-6] Cryptographically Secure Verifier Database

[SM-16] Allowed Crypto Primitives

[SG-3] Credential Disclosure Resilience

[SM-1] Key Protection

[SM-9] Authenticator Certification

[SM-15] Signature Counter

[SM-17] Resistance to Side Channel Attacks

[SM-29] Resistance to Remote Timing Attacks

[SG-4] Unlinkability

[SM-2] Unique Authentication Keys

[SM-3] Authenticator Class Attestation

[SM-20] No Identifying Information

[SG-5] Verifier Leak Resilience

[SM-2] Unique Authentication Keys

[SM-6] Cryptographically Secure Verifier Database

[SM-16] Allowed Crypto Primitives

[SG-6] Authenticator Leak Resilience

[SM-9] Authenticator Certification

[SM-15] Signature Counter

[SM-16] Allowed Crypto Primitives

[SG-7] User Consent

[SM-1] Key Protection

[SM-5] User Consent

[SM-7] Secure Channel with Server Authentication

[SM-10] Transaction Confirmation (WYSIWYS)

[SM-25] Trusted path for all user interactions

[SG-8] Limited PII
[SM-2] Unique Authentication Keys

[SM-20] No Identifying Information

[SG-9] Attestable Properties

[SM-3] Authenticator Class Attestation

[SM-4] Authenticator Status Checking

[SM-9] Authenticator Certification

[SG-10] DoS Resistance [SM-8] Protocol Nonces

[SG-11] Forgery Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-17] Resistance to Side Channel Attacks

[SM-23] Key Handles cryptographically linked with the Authenticator

[SM-29] Resistance to Remote Timing Attacks

[SG-12] Parallel Session Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-13] Forwarding Resistance

[SM-7] Secure Channel with Server Authentication

[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-14] Transaction Non-Repudiation

[SM-1] Key Protection

[SM-2] Unique Authentication Keys

[SM-8] Protocol Nonces

[SM-9] Authenticator Certification

[SM-10] Transaction Confirmation (WYSIWYS)

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-25] Trusted path for all user interactions

[SG-15] Respect for Operating Environment Security Boundaries
[SM-13] Key Handle Access Token

[SM-14] AppID Separation

Security Goal Supporting Security Measures

6. FIDO Security Assumptions

In this section, we enumerate the assumptions we are making regarding the security characteristics of the operating environment components
on which a FIDO implementation depends.

[SA-1]
The Authenticator and its cryptographic algorithms and parameters (key size, mode, output length, etc.) in use are not subject to unknown
weaknesses that make them unfit for their purpose in encrypting, digitally signing, and authenticating messages.

[SA-2]
Operating system privilege separation mechanisms relied up on by the software modules involved in a FIDO operation on the user device
perform as advertised. E.g. boundaries between user and kernel mode, between user accounts, and between applications (where
applicable) are securely enforced and security principals can be mutually, securely identifiable.

[SA-3]
Applications on the user device are able to establish secure channels that provide trustworthy server authentication, and confidentiality and
integrity for messages (e.g., through TLS).

[SA-4]
The computing environment on the FIDO user device and the and applications involved in a FIDO operation act as trustworthy agents of
the user.

[SA-5]
The inherent value of a cryptographic key resides in the confidence it imparts, and this commodity decays with the passage of time,
irrespective of any compromise event. As a result the effective assurance level of authenticators will be reduced over time.

[SA-6]
The computing resources at the Relying Party involved in processing a FIDO operation act as trustworthy agents of the Relying Party.

6.1 Discussion

With regard to [SA-4] and malicious computation on the FIDO user device, only very limited guarantees can be made within the scope of these
assumptions. Malicious code privileged at the level of the trusted computing base can always violate [SA-2] and [SA- 3]. Malicious code
privileged at the level of the users' account in traditional multi-user environments will also likely be able to violate [SA-3].

FIDO can also provide only limited protections when a user chooses to deliberately violate [SA-4], e.g. by roaming a USB authenticator to an
untrusted system like a kiosk, or by granting permissions to access all authentication keys to a malicious app in a mobile environment.
Transaction Confirmation can be used as a method to protect against compromised FIDO user devices.

In to components such as the FIDO Client, Server, Authenticators and the mix of software and hardware modules they are comprised of, the
end-to-end security goals also depend on correct implementation and adherence to FIDO security guidance by other participating components,
including web browsers and relying party applications. Some configurations and uses may not be able to meet all security goals. For example,
authenticators may lack a secure display, they may be composed only of unattestable software components, they may be deliberately designed
to roam between untrusted operating environments, and some operating environments may not provide all necessary security primitives (e.g.,
secure IPC, application isolation, modern TLS implementations, etc.)

7. Threat Analysis

In the following tables describing threats, we mention the relevant attack class(es) in the left column if the threat might lead to user
impersonation.

7.1 Threats to Client Side

7.1.1 Exploiting User’s pattern matching weaknesses

T-
1.1.1

Homograph Mis-Registration Violates

AC3

The user registers a FIDO authentication key with a fraudulent web site instead of the genuine Relying Party.

Consequences: The fraudulent site may convince the user to disclose a set of non-FIDO credentials sufficient to allow the
attacker to register a FIDO Authenticator under its own control, at the genuine Relying Party, on the users' behalf, violating
[SG-1] Strong User Authentication.

Mitigations: Disclosure of non-FIDO credentials is outside of the scope of the FIDO security measures, but Relying Parties
should be aware that the initial strength of an authentication key is no better than the identity-proofing applied as part of the
registration process.

SG-1

T-
1.1.2

Homograph Mis-Authentication Violates

AC3

The user accidentally browses to a fraudulent web site. The attacker tries to act as man-in-the-middle (MITM) and requests
the user to authenticate. In the case of username/password based authentication this is a typical phishing attack.

Consequences: The FIDO subsystem will determine that either (a) no FIDO authenticator has been registered with the
fraudulent site or (b) it will use the FIDO Uauth key registered to the fraudulent site - which is different from the Uauth key
for the relying party's site.

Mitigations: FIDO inherently ties keys to the relying party (formally identified by the AppID, and authenticated by TLS and
the CA infrastructure).

SG-1,
SG-4

7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications

T-
1.2.1

FIDO Client Corrpution Violates

AC3

Attacker gains ability to execute code in the security context of the FIDO Client.

Consequences: Violation of [SA-4].

Mitigations: When the operating environment on the FIDO user device allows, the FIDO Client should operate in a
privileged and isolated context under [SA-2] to protect itself from malicious modification by anything outside of the Trusted
Computing Base.

SA-4

T-
1.2.2

Logical/Physical User Device Attack Violates

Attacker gains physical access to the FIDO user device but not the FIDO Authenticator.

Consequences: Possible violation of [SA-4] by installing malicious software or otherwise tampering with the FIDO user
device.

AC3
/
AC5

Mitigations: [SM-1] Key Protection prevents the disclosure of authentication keys or other assets during a transient
compromise of the FIDO user device.

A persistent compromise of the FIDO user device can lead to a violation of [SA-4] unless additional protection measures
outside the scope of FIDO are applied to the FIDO user device. (e.g. whole disk encryption and boot-chain integrity).

SA-4T-
1.2.2

Logical/Physical User Device Attack Violates

T-
1.2.3

User Device Account Access Violates

AC3
/
AC4

Attacker gains access to a user's login credentials on the FIDO user device.

Consequences: Authenticators might be remotely abused, or weakly-verifying authenticators might be locally abused,
violating [SG-1] Strong User Authentication and [SG-13] Transaction Non-Repudiation.

Possible violation of [SA-4] by the installation of malicious software.

Mitigations: Relying Parties can use [SM-9] Authenticator Certification and [SM-3] Authenticator Class Attestation to
determine the nature of authenticators and not rely on weak, or weakly-verifying authenticators for high value operations.

SG-1,
SG-13;
SA-4

T-
1.2.4

App Server Verification Error Violates

AC3

A client application fails to properly validate the remote sever identity, accepts forged or stolen credentials for a remote
server, or allows weak or missing cryptographic protections for the secure channel.

Consequences: An active network adversary can modify the Relying Party's authenticator policy and downgrade the
client's choice of authenticator to make it easier to attack.

An active network adversary can intercept or view FIDO messages intended for the Relying Party. It may be able to use this
ability to violate [SG-12] Parallel Session Resistance, [SG-11] Forgery Resistance or [SG-13] Forwarding Resistance.

Mitigations: The server can verify [SM-8] Protocol Nonces to detect replayed messages and protect from an adversary that
can read but not modify traffic in a secure channel.

The server can mandate a channel with strong cryptographic protections to prevent message forgery and can verify a [SM-
12] Channel Binding to detect forwarded messages.

SG-11,
SG-12,
SG-13

T-
1.2.5

RP App Corruption Violates

An attacker is able to obtain malicious execution in the security context of the Relying Party client application (e.g. via
Cross-Site Scripting (XSS)) or abuse the secure channel or session identifier after the user has successfully authenticated.
This is a client side attack.

Consequences: The attacker is able to control the users' session, violating [SG-14] Transaction Non-Repudiation.

Mitigations: The server can employ [SM-10] Transaction Confirmation to gain additional assurance for high value
operations.

SG-14

T-
1.2.6

Fingerprinting Authenticators Violates

A remote adversary is able to uniquely identify a FIDO user device using the fingerprint of discoverable configuration of its
FIDO Authenticators.

Consequences: The exposed information violates [SG-8] Limited PII, allowing an adversary to violate [SG-7] User Consent
by strongly identfying the user without their knowledge and [SG-4] Unlinkablity by sharing that fingerprint.

Mitigations: [SM-3] Authenticator Class Attestation ensures that the fingerprint of an Authenticator will not be unique.

For web browsing situations where this threat is most prominent, user agents may provide additional user controls around
the discoverability of FIDO Authenticators.

SG-4,
SG7,
SG-8

T-
1.2.7

App to FIDO Client full MITM attack Violates

AC3

Malicious software on the FIDO user device is able to read, tamper with, or spoof the endpoint of inter-process
communication channels between the FIDO Client and browser or Relying Party application.

Consequences: Adversary is able to subvert [SA-2].

Mitigations: On platforms where [SA-2] is not strong the security of the system may depend on preventing malicious
applications from being loaded onto the FIDO user device. Such protections, e.g. app store policing, are outside the scope
of FIDO.

When using [SM-10] Transaction Confirmation, the user will be presented with the relevant AppID and transaction text and
will be able to evaluate whether or not to consent to the transaction.

SA-2

T-
1.2.8

Authenticator to App Read-Only MITM attack Violates

AC3

An adversary is able to obtain an authenticator's signed protocol response message.

Consequences: The attacker attempts to replay the message to authenticate as the user, violating [SG-1] Strong User
Authentication, [SG-13] Forwarding Resistance and [SG-12] Parallel Session Resistance.

Mitigations: The server can use [SM-8] Protocol Nonces to detect replay of messages and verify [SM-11] Round Trip
Integrity to detect modified messages.

SG-1,
SG-12,
SG-13

T-
1.2.9

Malicious App Violates

AC3

A user installs an application that represents itself as being associated with to one Relying Party application but actually
initiates a protocol conversation with a different Relying Party and attempts to abuse previously registered authentication
keys at that Relying Party.

Consequences: Adversary is able to violate [SG-7] User Consent by misrepresenting the target of authentication.

Other consequences equivalent to [T-1.2.5]

Mitigations: If a [SM-5] Transaction Confirmation Display is present, the user may be able to verify the true target of an
operation.

If the malicious application attempts to communicate directly with an Authenticator that uses [SM-13]
KeyHandleAccessToken, it should not be able to access keys registered by other FIDO Clients.

If the operating environment on the FIDO user device supports it, the FIDO client may be able to determine the
application's identity and verify if it is authorized to target that Relying Party using a [SM-14] AppID Separation.

SG-7

T-
1.2.10

Phishing Attack Violates

AC2

A Phisher convinces the user to enter his PIN used for user verification into an application / web site disclosing the PIN to
the Phisher. In the traditional username/password world this enables the attacker to successfully impersonate the user (to
the relying party).

Consequences: None as the phisher additionally would need access to the Authenticator in order to pass user verification
[SM-1]. In FIDO, the user verification PIN (if user verification is done via PIN) is not known to the relying party and hence
isn't sufficient for user impersonation. If user verification is done using an alternative user verification method, this applies
accordingly.

Mitigations: In FIDO, the Uauth.priv key is used to sign a relying party supplied challenge. without (use) access to that
key, no impersonation is possible.

SG-1

7.1.3 Creating a Fake Client

T-
1.3.1

Malicious FIDO Client Violates

AC3

Attacker convinces users to install and use a malicious FIDO Client.

Consequences: Violation of [SA-4]

Mitigations: Mitigating malicious software installation is outside the scope of FIDO.

If an authenticator implements [SM-1] Key Protection, the user may be able to recover full control of their registered
authentication keys by removing the malicious software from their user device.

When using [SM-10] Transaction Confirmation, the user sees the real AppIDs and transaction text and can decide to accept
or reject the action.

SA-4

7.1.4 Threats to FIDO Authenticator

T-
1.4.1

Malicious Authenticator Violates

AC2,
AC3

Attacker convinces users to use a maliciously implemented authenticator.

Consequences: The fake authenticator does not implement any appropriate security measures and is able to violate all
security goals of FIDO.

Mitigations: A user may be unable to distinguish a malicious authenticator, but a Relying Party can use [SM-3]
Authenticator Class Attestation to identify and only allow registration of reliable authenticators that have passed [SM-9]
Authenticator Certification.

A Relying Party can additionally rely on [SM-4] Authenticator Status Checking to check if an attestation presented by a
malicious authenticator has been marked as compromised.

SG-1

T-
1.4.2

Uauth.priv Key Compromise Violates

AC2

Attacker succeeds in extracting a user's cryptographic authentication private key for use in a different context.

Consequences: The attacker could impersonate the user with a cloned authenticator that does not do trustworthy user
verification, violating [SG-1].

Mitigations: [SM-1] Key Protection measures are intended to prevent this.

Each authentication private key is only used for one relying party.

Relying Parties can check [SM-9] Authenticator Certification attributes to determine the type of key protection in use by a
given authenticator class.

Relying Parties can additionally verify the [SM-15] Signature Counter and detect that an authenticator has been cloned if it
ever fails to advance relative to the prior operation.

SG-1

T-
1.4.3

User Verification By-Pass Violates

AC3,
AC5

Attacker could use the cryptographic authentication key (inside the authenticator) either with or without being noticed by the
legitimate user.

Consequences: Attacker could impersonate user, violating [SG-1].

Mitigations: A user can only register and a Relying Party only allow authenticators that perform [SM-1] Key Protection with
an appropriately secure user verification process.

Does not apply to Silent Authenticators (see [FIDOGlossary]).

SG-1

T-
1.4.3

User Verification By-Pass Violates

T-
1.4.4

Physical Authenticator Attack Violates

AC2,
AC5,
AC6

Attacker could get physical access to FIDO Authenticator (e.g. by stealing it).

Consequences: Attacker could bring the authenticator in a lab in order to use the authentication key (e.g. by-passing user
verification and knowing the RP related to this key). If this physical attack succeeds, the attacker could successfully
impersonate the user, violating [SG-1] Strong User Authentication.

Attacker can introduce a low entropy situation to recover an ECDSA signature key (or optherwise extract the Uauth.priv
key), violating [SG-9] Attestable Properties if the attestation key is targeted or [SG-1] Strong User Authentication if a user
key is targeted.

Mitigations: [SM-1] Key Protection includes requirements to implement strong protections for key material, including
resiliance to offline attacks and low entropy situations.

Relying Parties should use [SM-3] Authenticator Class Attestation to only accept Authenticators implementing a sufficiently
strong user verification method.

SG-1

T-
1.4.6

Fake Authenticator Violates

AC2

Attacker is able to extract the authenticator attestation key from an authenticator, e.g. by neutralizing physical
countermeasures in a laboratory setting.

Consequences: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or software device that
represents itself as a legitimate one.

Mitigations: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-compromised keys.
Identification of such compromise is outside the strict scope of the FIDO protocols.

SG-9

T-
1.4.7

Transaction Confirmation Display Overlay Attack Violates

AC6

Attacker is able to subvert [SM-5] Secure Display functionality (WYSIWYS), perhaps by overlaying the display with false
information.

Consequences: Violation of [SG-14] Transaction Non-Repudiation.

Mitigations: Authenticator implementations must take care to protect in their implementation of a secure display, e.g. by
implementing a distinct hardware display or employing appropriate privileges in the operating environment of the user
device to protect against spoofing and tampering.

[SM-9] Authenticator Certification will provide Relying Parties with metadata about the nature of a transaction confirmation
display information that can be used to assess whether it matches the assurance level and risk tolerance of the Relying
Party for that particular transaction.

SG-14

T-
1.4.8

Signature Algorithm Attack Violates

AC1,
AC2,
AC3,
AC5

A cryptographic attack is discovered against the public key cryptography system used to sign data by the FIDO
authenticator. See also T-1.4.10.

Consequences: Attacker is able to use messages generated by the client to violate [SG-2] Credential Guessing
Resistance.

Mitigations: [SM-8] Protocol Nonces, including client-generated entropy, limit the amount of control any adversary has over
the internal structure of an authenticator.

[SM-1] Key Protection for non-silent authenticators requires user interaction to authorize any operation performed with the
authentication key, severely limiting the rate at which an adversary can perform adaptive cryptographic attacks.

SG-2

T-
1.4.9

Abuse Functionality Violates

AC2,
AC3,
AC5,
AC6

It might be possible for an attacker to abuse the Authenticator functionality by sending commands with invalid parameters or
invalid commands to the Authenticator.

Consequences: This might lead to e.g., user verification by-pass or potential key extraction.

Mitigations: Proper robustness (e.g. due to testing) of the Authenticator firmware.

SG-1

T-
1.4.10

Random Number prediction Violates

AC2,
AC3,
AC5,

It might be possible for an attacker to get access to information allowing the prediction of RNG data.

Consequences: This might lead to key compromise situation [T-1.4.2] when using ECDSA (if the k value is used multiple
times or if it is predictable). SG-1

AC6 Mitigations: Proper robustness of the Authenticator's RNG and verification of the relevant operating environment
parameters (e.g. temperature, ...).

T-
1.4.10

Random Number prediction Violates

T-
1.4.11

Firmware Rollback Violates

Attacker might be able to install a previous and potentially buggy version of the firmware.

Consequences: This might lead to successful attacks, e.g. T-1.4.9.

Mitigations: Proper robustness firmware update and verification method.

SG-1

T-
1.4.12

User Verification Data Injection Violates

AC3,
AC6

Attacker might be able to inject pre-captured user verification data into the Authenticator. For example, if a password is
used as user verification method, the attacker could capture the password entered by the user and then send the correct
password to the Authenticator (by-passing the expected keyboard/PIN pad). Passwords could be captured ahead of the
attack e.g. by convincing the user to enter the password into a malicious app (“phishing”) or by spying directly or indirectly
the password data.

In another example, some malware could play an audio stream which would be recorded by the microphone and used by a
Speaker-Recognition based Authenticator.

Consequences: This might lead to successful user impersonation (if the attacker has access to valid user verification
data).

Mitigations: Use a physically secured user verification input method, e.g. Fingerprint Sensor or Trusted-User-Interface for
PIN entry which cannot be by-passed by malware.

SG-1

T-
1.4.13

Verification Reference Data Modification Violates

AC3,
AC6

An attacker gains logical or physical access to the Authenticator and modifies Verification Reference Data (e.g. hashed
PIN value, fingerprint templates) stored in the Authenticator and adds reference data known to or reproducible by the
attacker.

Consequences: The attacker would be recognized as the legitimate User and could impersonate the user.

Mitigations: [SM-27] Proper protection of the the verification reference data and biometric data in the Authenticator.

SG-1

T-
1.4.14

Read access to captured user verification data Violates

AC3,
AC6

The Attacker gained read access to the captured user verification data (e.g. PIN, fingerprint image, ...).

Consequences: The attacker gets access to PII and could disclose it violating [SG-8].

Mitigations: Limiting access to the user verification data to the Authenticator exclusively.

SG-8

T-
1.4.15

Compromised the internal PRNG state and the entropy source Violates

AC1,
AC2,
AC5

In this threat, an attacker compromises the entropy source prior to the Authenticator initially seeding the PRNG during
initialization or otherwise compromises the internal PRNG state, and the attacker is able to know or specify all future
entropy inputs to the PRNG. No PRNG is able to recover to a secure status under this threat, but it serves as a useful point
for comparison.

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14].

Mitigations: This constitutes a complete compromise of the RNG, with no ability to recover, so mitigation for this threat
involves reducing the impact of a compromised RNG. This is partially mitigated by using an allowed random number
generator that allows secure integration of additional input [SM-16] and introduction of data derived from the RP challenge
additional input to the PRNG, which can help so long as the attacker has not additionally compromised the TLS session or
the ASM / Authenticator link. Using the deterministic signature generation methods (e.g., RFC 6979) can reduce the risk of
compromise of existing keys during the signature process, as can using the private key and hash of the signed message
as additional input to the PRNG during signature generation. Prevention of non-scalable versions of this style of attack is at
least partially addressed by [SM-17] and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.16

Compromised entropy source after successful seeding during initialization Violates

AC1,
AC2,
AC5

In this threat, an attacker gains the ability to influence the Authenticator’s entropy source, but only after the initial seeding
has been conducted (e.g., if initial seeding occurred prior to the attack and / or as per-Authenticator factory injection of
entropy).

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by using an allowed PRNG which retains PRNG state between power cycles; i.e., which
conserves PRNG state even when being reseeded [SM-16]. Prevention of non-scalable versions of this style of attack is at
least partially addressed by [SM-17] and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.17

Compromised the internal PRNG state, but not the entropy source Violates

In this threat, an attacker compromises the entropy source prior to seeding the PRNG or otherwise compromises the
internal PRNG state, but then at some point, the attacker no longer can access / control the entropy source.

AC1,
AC2,
AC5

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-11], [SG-14]

Mitigations: This can be mitigated by Authenticators reseeding periodically from an internal entropy source [SM-16]. As a
note, this imposes a total number of random number generator requests prior to a required reseed event; in the event that
the Authenticator does not have an entropy source internally, this may act as a hard limit on the number of registrations /
authentications that such an Authenticator can perform. Prevention of non-scalable versions of this style of attack is at
least partially addressed by [SM-17] and [SM-18].

SG-1,
SG-2,
SG-3,
SG-4,
SG-11,
SG-14

T-
1.4.17

Compromised the internal PRNG state, but not the entropy source Violates

T-
1.4.18

Bad Key Generation Violates

AC1,
AC2,
AC5

In this threat, random chance or active attack causes the key generated to be cryptographically flawed; e.g., an RSA key
that can be factored using the Pollard p-1 algorithm more quickly than with the General Number Field Sieve. See also T-
1.4.21.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14]

Mitigations: This is mitigated by requiring use of an allowed random number generator (in the case of certified
authenticators), requiring that keys be generated in the way required in the relevant standard specified in the Allowed
Cryptography List [SM-16], and making the key generation process resistant to tampering by the attacker [SM-18].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

T-1.4.19 Local external side channel attacks Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker with possession of the Authenticator may be able to extract keys using timing, power, RF,
or near-field analysis. The impact depends on the key or secret recovered.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by the side channel resistance security measure [SM-17].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

T-1.4.20 Internal side channel attacks Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker controlling a process running on the same hardware environment as the Authenticator may
be able to recover keys by using information leaked by hardware or operating system characteristics (e.g., how often
the attacker’s process is scheduled, the state of the L1, L2 caches, etc.).

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by the side channel resistance security measure [SM-17].

SG-1,
SG-4,
SG-11,
SG-14

T-1.4.21 Error injection during key or signature generation Violates

AC2
(associated
with shared
keys), AC5

In this threat, an attacker is able to inject an error in the key or signature generation process that leaks part or all of
the private key.

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Mitigations: This is mitigated by [SM-18] and [SM-28].

SG-1,
SG-4,
SG-11,
SG-14

T-
1.4.22

Birthday Paradox Collision Violates

AC3,
AC6

In this threat, a set of randomly generated parameters collide. The probability of this occurrence can be bounded using
analysis similar to that associated with the classical Birthday Paradox.

Consequences: May undermine [SG-1], [SG-11], [SG-14].

Mitigations: Establishing a bounded number of allowable outputs based on the size of the randomly generated value [SM-
19].

SG-1,
SG-11,
SG-14

T-
1.4.23

Privacy Reduction Violates

AC1

In this threat, a small number of Authenticators share an attestation key which leaks information about the user across
Relying Parties.

Consequences: May undermine [SG-4].

Mitigations: This is mitigated by [SM-20].

SG-4

T-
1.4.24

Covert Channel Violates

AC1

In this threat, an Authenticator is malicious (either by design, or after having been independently compromised) and it is
configured to leak secret or identifying data within apparently normal exchanges, or to other processes on the same
hardware platform as the Authenticator.

Consequences: May undermine [SG-1], [SG-4], [SG-5], [SG-6], [SG-8], [SG-11], [SG-14].

Mitigations: Note: This is an interesting thought experiment; use of random nonces and other non-deterministic elements
make protection against this threat problematic.

SG-1,
SG-4,
SG-5,
SG-6,
SG-8,
SG-11,
SG-14

T-
1.4.25

Subsitution of Protected Information Violates

In this threat, an attacker substitutes protected information, either by modifying it piecemeal, or by completely substituting it
with another value. (Some encryption modes allow an attacker to target bit-level changes to the plaintext. Authenticated

AC1,
AC3,
AC5,
AC6

data may also have been replaced with data that had previously been authenticated in the same way.)

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Mitigations: This threat is mitigated by [SM-1], [SM-16], [SM-21].

SG-1,
SG-4,
SG-11,
SG-14

T-
1.4.25

Subsitution of Protected Information Violates

T-
1.4.26

Compromise of Protected Information Violates

AC1,
AC2,
AC5,
AC6

In this threat, an attacker recovers data that should be protected by the Authenticator.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-5], [SG-7], [SG-8], [SG-11], [SG-14].

Mitigations: This threat is mitigated by using allowed cryptographic primitives [SM-1], [SM-16].

SG-1,
SG-2,
SG-4,
SG-5,
SG-7,
SG-8,
SG-11,
SG-14

T-
1.4.27

Signature or registration counter non-monotonicity Violates

AC1

In this threat, an attacker may be able to cause these counters to be reset, to roll over, or otherwise to decrease in value.

Consequences: May undermine [SG-1], [SG-12], [SG-14].

Mitigations: This threat is mitigated by [SM-15].

SG-1,
SG-12,
SG-14

T-
1.4.28

Hostile ASM / Client Violates

AC3,
AC5,
AC6

In this threat, the Authenticator support infrastructure is hostile, and can feed arbitrary data to the Authenticator.

Consequences: May undermine [SG-4], [SG-5], [SG-7], [SG-8].

Mitigations: This threat is mitigated by [SM-10], [SM-13].

SG-4,
SG-5,
SG-7,
SG-8

T-1.4.29 Debug Interface Violates

AC2
(associated
with shared
keys), AC3
(associated
with shared
keys), AC5,
AC6

In this threat, the Authenticator has a hardware or software debugging interface that is not completely disabled prior
to distribution of the Authenticator (e.g., pads for a JTAG port).

Consequences: May undermine [SG-1], [SG-4], [SG-5], [SG-6], [SG-8], [SG-11], [SG-14].

Mitigations: This threat is mitigated by [SM-18], [SM-22], and [SM-28].

SG-1,
SG-4,
SG-5,
SG-6,
SG-8,
SG-11,
SG-14

T-
1.4.30

Fault induced by malformed input Violates

AC2,
AC3,
AC5,
AC6

In this threat, the Authenticator behaves in an unexpected fashion due to an error in processing malformed input. The
result of this style of attack is poorly controllable, absent strong internal segmentation of the Authenticator.

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-6], [SG-7], [SG-8], [SG-11], [SG-14], [SG-16].

Mitigations: This threat is mitigated by [SM-1], [SM-2], [SM-4], [SM-5], [SM-10], [SM-5], [SM-23], [SM-13], [SM-26].

SG-1,
SG-2,
SG-3,
SG-4,
SG-6,
SG-7,
SG-8,
SG-11,
SG-14,
SG-16

T-1.4.31 Fault Injection Attack Violates

AC2
(associated
with shared
keys), AC5,
AC6

In this threat, an attacker subjects the Authenticator to conditions that induce hardware faults (e.g., exposure to
photons or charged particles, inducing variations in supply voltage or external clock, altering the temperature, etc.) in
an attempt to subvert some logical or physical protection. The result of this style of attack is poorly controllable,
absent active detection and response functionality within the Authenticator. This is related to T-1.4.21, but applies
more broadly.

Consequences: May undermine [SG-1], [SG-2], [SG-3], [SG-4], [SG-6], [SG-7], [SG-8], [SG-11], [SG-14], [SG-16].

Mitigations: Mitigated by [SM-1], [SM-2], [SM-4], [SM-5], [SM-10], [SM-5], [SM-18], [SM-23], [SM-13], [SM-26], [SM-
28].

SG-1,
SG-2,
SG-3,
SG-4,
SG-6,
SG-7,
SG-8,
SG-11,
SG-14,
SG-16

T-
1.4.32

Remote Timing Attacks Violates

AC2,
AC5

In this threat, an attacker may be able to extract keys using a timing attack from a remote location. The impact depends on
the key or secret recovered.

Consequences: May undermine [SG-1], [SG-2], [SG-4], [SG-11], [SG-14].

Mitigations: This threat is mitigated by the remote timing attack resistance security measure [SM-29].

SG-1,
SG-2,
SG-4,
SG-11,
SG-14

7.1.5 Threats to Relying Party

7.1.5.1 Threats to FIDO Server Data

T-
2.1.1 FIDO Server DB Read Attack Violates

Attacker could obtains read-access to FIDO Server registration database.

Consequences:Attacker can access all cryptographic key handles and authenticator characteristics associated with a
username. If an authenticator or combination of authenticators is unique, they might use this to try to violate [SG-2]
Unlinkability.

Attacker attempts to perform factorization of public keys by virtue of having access to a large corpus of data, violating [SG-
5] Verifier Leak Resiliance and [SG-2] Credential Guessing Resilience.

Mitigations: [SM-2] Unique Authentication Keys help prevent disclosed key material from being useful against any other
Relying Party, even if successfully attacked.

The use of an [SM-6] Cryptographically Secure Verifier Database helps assure that it is infeasible to attack any leaked
verifier keys.

[SM-9] Authenticator Certification along with [SM-16] should help prevent authenticators with poor entropy from entering the
market, reducing the likelihood that even a large corpus of key material will be useful in mounting attacks.

SG-2,
SG-5

T-
2.1.2

FIDO Server DB Modification Attack Violates

AC1

Attacker gains write-access to the FIDO Server registration database.

Consequences: Violation of [SA-6]

The attacker may inject a key registration under its control, violating [SG-1] Strong User Authentication.

Mitigations: Mitigating such attacks is outside the scope of the FIDO specifications. The Relying Party must maintain the
integrity of any information it relies up on to identify a user as part of [SA-6].

SA-6

T-
2.2.1

Web App Malware Violates

Attacker gains ability to execute code in the security context of the Relying Party web application or FIDO Server.

Consequences: Attacker is able to violate [SG-1], [SG-10], [SG-9] and any other Relying Party controls.

Mitigations: The consequences of such an incident are limited to the relationship between the user and that particular
Relying Party by [SM-1], [SM-2], and [SM-5].

Even within the Relying Party to user relationship, a user can be protected by [SM-10] Transaction Confirmation if the
compromise does not include the users' computing environment.

SG-1,
SG-9,
SG-10

T-
2.2.2

Linking through compromised Relying Party database Violates

AC1

In this threat, a Relying Party is able to access another Relying Party’s database (either because the Relying Parties are
collaborating or because of the compromise of another Relying Party’s database). The malicious party then sends Key
Handles (which may contain a wrapped private key) from the other Relying Party’s database in an attempt to link the two
separate accounts to the same Authenticator (thus user).

Consequences: May undermine [SG-1], [SG-4].

Mitigations: This threat is mitigated by [SM-1], [SM-2], [SM-5], [SM-23].

SG-1,
SG-4

7.1.6 Threats to the Secure Channel between Client and Relying Party

7.1.6.1 Exploiting Weaknesses in the Secure Transport of FIDO Messages

FIDO takes as a base assumption that [SA-3] applications on the user device are able to establish secure channels that provide trustworthy
server authentication, and confidentiality and integrity for messages. e.g. through TLS. [T-1.2.4] Discusses some consequences of violations of
this assumption due to implementation errors in a browser or client application, but other threats exist in different layers.

T-
3.1.1

TLS Proxy Violates

AC3

The FIDO user device is administratively configured to connect through a proxy that terminates TLS connections. The client
trusts this device, but the connection between the user and FIDO server is no longer end-to-end secure.

Consequences: Any such proxies introduce a new party into the protocol. If this party is untrustworthy, consequences may
be as for [T-1.2.4].

Mitigations: Mitigations for [T-1.2.4] apply, except that the proxy is considered trusted by the client, so certain methods of
[SM-12] Channel Binding may indicate a compromised channel even in the absence of an attack. Servers should use
multiple methods and adjust their risk scoring appropriately. A trustworthy client that reports a server certificate that is
unknown to the server and does not chain to a public root may indicate a client behind such a proxy. A client reporting a
server certificate that is unknown to the server but validates for the server's identity according to commonly used public trust
roots is more likely to indicate [T-3.1.2].

SG-11,
SG-12,
SG-13

T-
3.1.2

Fraudulent TLS Server Certificate Violates

AC3

An attacker is able to obtain control of a certificate credential for a Relying Party, perhaps from a compromised Certification
Authority or poor protection practices by the Relying Party.

Consequences:As for [T-1.2.4].
SG-11,
SG-12,
SG-13

Mitigations:As for [T-1.2.4].T-
3.1.2

Fraudulent TLS Server Certificate Violates

T-
3.1.3

Protocol level real-time MITM attack Violates

AC3

An adversary can intercept and manipulate network packets sent from the relying party to the client. The adversary uses
this capability to (a) terminate the underlying TLS session from the client at the adversary and to (b) simultaneously use
another TLS session from the adversary to the relying party. In the traditional username/password world, this allows the
adversary to intercept the username and the password and then successfully impersonate the user at the relying party.

Consequences: None if FIDO channelBinding [SM-12] or transaction confirmation [SM-10] are used.

Mitigations: In the case of channelBinding [SM-12], the FIDO server will detect the MITM in the TLS channel by comparing
the channel binding information provided by the client and the channel binding information retrieved locally by the server.

In the case of transaction confirmation [SM-10], the user verifies and approves a particular transaction. The adversary could
modify the transaction before approval. This would lead to rejection by the user. Alternatively, the adversary could modify
the transaction after approval. This will break the signature in the transaction confirmation response. The FIDO Server will
not accept it as a consequence.

HTTP Public Key Pinning (RFC7469) can also be used to mitigate this attack (outside the FIDO stack).

SG-11,
SG-12,
SG-13

7.1.7 Threats to the Infrastructure

7.1.7.1 Threats to FIDO Authenticator Manufacturers

T-
4.1.1

Manufacturer Level Attestation Key Compromise Violates

AC2

Attacker obtains control of an attestation key or attestation key issuing key.

Consequences: Same as [T-1.4.6]: Attacker can violate [SG-9] Attestable Properties by creating a malicious hardware or
software device that represents itself as a legitimate one.

Mitigations: Same as [T-1.4.6]: Relying Parties can use [SM-4] Authenticator Status Checking to identify known-
compromised keys. Identification of such compromise is outside the strict scope of the FIDO protocols.

SG-9

T-
4.1.2

Malicious Authenticator HW Violates

AC1,
AC2,
AC3,
AC5,
AC6

FIDO Authenticator manufacturer relies on hardware or software components that generate weak cryptographic
authentication key material or contain backdoors.

Consequences: Effective violation of [SA-1] in the context of such an Authenticator.

Mitigations: The process of [SM-9] Authenticator Certification may reveal a subset of such threats, but it is not possible that
all such can be revealed with black box testing and white box examination may be is economically infeasible. Users and
Relying Parties with special concerns about this class of threat must exercise their own necessary caution about the
trustworthiness and verifiability of their vendors and supply chain. [SM-24] builds confidence that an Authenticator is not
malicious or poorly implemented.

SA-1

7.1.7.2 Threats to FIDO Server Vendors

T-
4.2.1

Vendor Level Trust Anchor Injection Attack Violates

Attacker adds malicious trust anchors to the trust list shipped by a FIDO Server vendor.

Consequences: Attacker can deploy fake Authenticators which Relying Parties cannot detect as such, which do not
implement any appropriate security measures, and is able to violate all security goals of FIDO.

Mitigations: This type of supply chain threat is outside the strict scope of the FIDO protocols and violates [SA-6]. Relying
Parties can verify their trust list against the data published by the FIDO Alliance Metadata Service [FIDOMetadataService]
(see https://fidoalliance.org/mds).

SA-6

7.1.7.3 Threats to FIDO Metadata Service Operators

T-
4.3.1

Metadata Service Signing Key Compromise Violates

The attacker gets access to the private Metadata TOC signing key.

Consequences: The attacker could sign invalid Metadata. The attacker could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).

make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)

inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchor
and the cross-signed original attestation root certificate. This malicious trust anchors could be used to sign attestation
certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but not
protecting their keys as stated in the metadata.

Mitigations: The Metadata Service operator should protect the Metadata signing key appropriately, e.g. using a hardware
protected key storage.

Relying parties could use out-of-band methods to cross-check Metadata Statements with the respective vendors and cross-
check the revocation state of the Metadata signing key with the provider of the Metadata Service.

SG-9

T-
4.3.1

Metadata Service Signing Key Compromise Violates

T-
4.3.2

Metadata Statement Data Injection Violates

An attacker injects malicious Authenticator data into the Metadata Statement.

Consequences: The attacker could make the Metadata Service operator sign invalid Metadata Statements. The attacker
could

make trustworthy authenticators look less trustworthy (e.g. by increasing FAR).

make weak authenticators look strong (e.g. by changing the key protection method to a more secure one)

inject malicious attestation trust anchors, e.g. root certificates which cross-signed the original attestation trust anchor
and the cross-signed original attestation root certificate. This malicious trust anchors could be used to sign attestation
certificates for fraudulent authenticators, e.g. authenticators using the AAID of trustworthy authenticators but not
protecting their keys as stated in the metadata.

Mitigations: The Metadata Service operator could carefully review the delta between the old and the new Metadata
Statements. Authenticator vendors could verify the published Metadata Statements related to their Authenticators.

SG-9

7.1.8 Threats Specific to Second Factor Authenicators (UAF / U2F)

T-
5.1.1

Error Status Side Channel Violates

Relying parties issues an authentication challenge to an authenticator and can infer from error status if it is already
registered.

Consequences: UAF Silent authenticators / U2F authenticators not requiring user interaction for generating a signed
response may be used to track users without their consent by issuing a pre-authentication challenge to them, revealing the
identity of an otherwise anonymous user. Users would be identifiable by relying parties without their knowledge, violating
[SG-7].

Mitigations: The U2F specification recommends that browsers prompt users whether to allow this operation using
mechanisms similar to those defined for other privacy sensitive operations like Geolocation.

SG-7

T-
5.1.2

Malicious RP Violates

AC1

Malicious relying party mounts a cryptographic attack on a key handle it is storing.

Consequences: If the Relying Party is able to recover the contents of the key handle, it might forge logs of protocol
exchanges to associate the user with actions he or she did not perform.

If the Relying Party is able to recover the key used to wrap a key handle, that key is likely used for all key handles, and
hence might be used to decrypt key handles stored with other Relying Parties and violate [SG-1] Strong User
Authentication.

Mitigations: None. U2F depends on [SA-1] to hold for key wrapping operations.

SG-1

T-
5.1.3

Physical Attack on a User Presence Authenticator Violates

AC5

Attacker gains physical access to U2F authenticator or a UAF authenticator with only user presence check (e.g., by stealing
it).

Consequences: Same as for [T-1.4.4].

Such authenticators have weak local user verification. If the attacker can guess the username and password/PIN, they can
impersonate the user, violating [SG-1] Strong User Authentication.

Mitigations: Relying Parties can use strong additional factors.

Relying Parties should provide users a means to revoke keys associated with a lost device.

SG-1

T-5.1.4 Physical Attack Violates

AC2
(associated
with shared
keys), AC5

In this threat, keys or other sensitive information is read out by directly accessing it from the authenticator that the
attacker has physically compromised.

Consequences: May undermine [SG-1], [SG-4], [SG-11], [SG-14].

Authenticator with user presence check have weak local user verification. If the attacker can guess the username and
password/PIN, they can impersonate the user, violating [SG-1] Strong User Authentication.

Mitigations: Mitigated by resistance to injected faults [SM-18] and [SM-28].

SG-1,
SG-4,
SG-11,
SG-14

7.2 Acknowledgements

We thank iSECpartners for their review of, and contributions to, this document.

A. References

A.1 Informative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. Implementation Draft. URL:

https://www.isecpartners.com
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
[FIDOGlossary]

R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Implementation Draft. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html

[PasswordAuthSchemesKeyIssues]
Chwei-Shyong Tsai; Cheng-Chi Lee; Min-Shiang Hwang. Password Authentication Schemes: Current Status and Key Issues. September
2006. URL: http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf

[QuestToReplacePasswords]
Joseph Bonneau; Cormac Herley; Paul C. van Oorschot; Frank Stajano. The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes. March 2012. URL: http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[U2FOverview]
S. Srinivas; D. Balfanz; E. Tiffany. FIDO U2F Overview v1.0. Draft. URL: http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-
20140209.pdf

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF Protocol Specification v1.0. Proposed Standard.
URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-metadata-service-v1.2-id-20180220.html
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

FIDO Registry of Predefined Values

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-
20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-registry-v1.2-rd-
20171128.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by FIDO protocols. The values
defined in this document are referenced by various FIDO specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance specifications index
at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to make
comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of implementing
the Specification. No rights are granted to prepare derivative works of this Specification.
Entities seeking permission to reproduce portions of this Specification for other uses must
contact the FIDO Alliance to determine whether an appropriate license for such use is

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-registry-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-registry-v1.2-rd-20171128.html
mailto://rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

available.

Implementation of certain elements of this Specification may require licenses under third
party intellectual property rights, including without limitation, patent rights. The FIDO Alliance,
Inc. and its Members and any other contributors to the Specification are not, and shall not be
held, responsible in any manner for identifying or failing to identify any or all such third party
intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Conformance

2. Overview

3. Authenticator Characteristics
3.1 User Verification Methods

3.2 Key Protection Types

3.3 Matcher Protection Types

3.4 Authenticator Attachment Hints

3.5 Transaction Confirmation Display Types

3.6 Tags used for crypto algorithms and types
3.6.1 Authentication Algorithms

3.6.2 Public Key Representation Formats

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

FIDO specific terminology used in this document is defined in [FIDOGlossary].

Some entries are marked as "(optional)" in this spec. The meaning of this is defined in other
FIDO specifications referring to this document.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
and notes in this specification are non-normative. Everything else in this specification is
normative.

The key words must, must not, required, should, should not, recommended, may, and optional
in this specification are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of FIDO-specific constants common to multiple FIDO
protocol families. It is expected that, over time, new constants will be added to this registry.
For example new authentication algorithms and new types of authenticator characteristics will
require new constants to be defined for use within the specifications.

3. Authenticator Characteristics

This section is normative.

3.1 User Verification Methods

The USER_VERIFY constants are flags in a bitfield represented as a 32 bit long integer. They
describe the methods and capabilities of an UAF authenticator for locally verifying a user. The
operational details of these methods are opaque to the server. These constants are used in
the authoritative metadata for an authenticator, reported and queried through the UAF
Discovery APIs, and used to form authenticator policies in UAF protocol messages.

All user verification methods must be performed locally by the authenticator in order to meet
FIDO privacy principles.

USER_VERIFY_PRESENCE 0x00000001
This flag must be set if the authenticator is able to confirm user presence in any
fashion. If this flag and no other is set for user verification, the guarantee is only that the
authenticator cannot be operated without some human intervention, not necessarily that
the sensing of "presence" provides any level of user verification (e.g. a device that
requires a button press to activate).

USER_VERIFY_FINGERPRINT 0x00000002
This flag must be set if the authenticator uses any type of measurement of a fingerprint
for user verification.

USER_VERIFY_PASSCODE 0x00000004
This flag must be set if the authenticator uses a local-only passcode (i.e. a passcode
not known by the server) for user verification.

USER_VERIFY_VOICEPRINT 0x00000008
This flag must be set if the authenticator uses a voiceprint (also known as speaker
recognition) for user verification.

USER_VERIFY_FACEPRINT 0x00000010
This flag must be set if the authenticator uses any manner of face recognition to verify
the user.

USER_VERIFY_LOCATION 0x00000020
This flag must be set if the authenticator uses any form of location sensor or
measurement for user verification.

USER_VERIFY_EYEPRINT 0x00000040
This flag must be set if the authenticator uses any form of eye biometrics for user
verification.

USER_VERIFY_PATTERN 0x00000080
This flag must be set if the authenticator uses a drawn pattern for user verification.

USER_VERIFY_HANDPRINT 0x00000100
This flag must be set if the authenticator uses any measurement of a full hand
(including palm-print, hand geometry or vein geometry) for user verification.

USER_VERIFY_NONE 0x00000200
This flag must be set if the authenticator will respond without any user interaction (e.g.
Silent Authenticator).

USER_VERIFY_ALL 0x00000400
If an authenticator sets multiple flags for user verification types, it may also set this flag
to indicate that all verification methods will be enforced (e.g. faceprint AND voiceprint).
If flags for multiple user verification methods are set and this flag is not set, verification
with only one is necessary (e.g. fingerprint OR passcode).

3.2 Key Protection Types

The KEY_PROTECTION constants are flags in a bit field represented as a 16 bit long integer.
They describe the method an authenticator uses to protect the private key material for FIDO

registrations. Refer to [UAFAuthnrCommands] for more details on the relevance of keys and
key protection. These constants are used in the authoritative metadata for an authenticator,
reported and queried through the UAF Discovery APIs, and used to form authenticator
policies in UAF protocol messages.

When used in metadata describing an authenticator, several of these flags are exclusive of
others (i.e. can not be combined) - the certified metadata may have at most one of the
mutually exclusive bits set to 1. When used in authenticator policy, any bit may be set to 1,
e.g. to indicate that a server is willing to accept authenticators using either
KEY_PROTECTION_SOFTWARE or KEY_PROTECTION_HARDWARE.

KEY_PROTECTION_SOFTWARE 0x0001
This flag must be set if the authenticator uses software-based key management.
Exclusive in authenticator metadata with KEY_PROTECTION_HARDWARE,
KEY_PROTECTION_TEE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_HARDWARE 0x0002
This flag should be set if the authenticator uses hardware-based key management.
Exclusive in authenticator metadata with KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_TEE 0x0004
This flag should be set if the authenticator uses the Trusted Execution Environment
[TEE] for key management. In authenticator metadata, this flag should be set in
conjunction with KEY_PROTECTION_HARDWARE. Mutually exclusive in authenticator metadata
with KEY_PROTECTION_SOFTWARE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_SECURE_ELEMENT 0x0008
This flag should be set if the authenticator uses a Secure Element [SecureElement] for
key management. In authenticator metadata, this flag should be set in conjunction with
KEY_PROTECTION_HARDWARE. Mutually exclusive in authenticator metadata with
KEY_PROTECTION_TEE, KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_REMOTE_HANDLE 0x0010
This flag must be set if the authenticator does not store (wrapped) UAuth keys at the
client, but relies on a server-provided key handle. This flag must be set in conjunction
with one of the other KEY_PROTECTION flags to indicate how the local key handle
wrapping key and operations are protected. Servers may unset this flag in authenticator
policy if they are not prepared to store and return key handles, for example, if they have
a requirement to respond indistinguishably to authentication attempts against userIDs
that do and do not exist. Refer to [UAFProtocol] for more details.

3.3 Matcher Protection Types

The MATCHER_PROTECTION constants are flags in a bit field represented as a 16 bit long integer.
They describe the method an authenticator uses to protect the matcher that performs user
verification. These constants are used in the authoritative metadata for an authenticator,
reported and queried through the UAF Discovery APIs, and used to form authenticator
policies in UAF protocol messages. Refer to [UAFAuthnrCommands] for more details on the
matcher component.

NOTE

These flags must be set according to the effective security of the keys, in order to
follow the assumptions made in [FIDOSecRef]. For example, if a key is stored in a
secure element but software running on the FIDO User Device could call a function in
the secure element to export the key either in the clear or using an arbitrary wrapping
key, then the effective security is KEY_PROTECTION_SOFTWARE and not
KEY_PROTECTION_SECURE_ELEMENT.

NOTE

These flags must be set according to the effective security of the matcher, in order to
follow the assumptions made in [FIDOSecRef]. For example, if a passcode based
matcher is implemented in a secure element, but the passcode is expected to be

MATCHER_PROTECTION_SOFTWARE 0x0001
This flag must be set if the authenticator's matcher is running in software. Exclusive in
authenticator metadata with MATCHER_PROTECTION_TEE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_TEE 0x0002
This flag should be set if the authenticator's matcher is running inside the Trusted
Execution Environment [TEE]. Mutually exclusive in authenticator metadata with
MATCHER_PROTECTION_SOFTWARE, MATCHER_PROTECTION_ON_CHIP

MATCHER_PROTECTION_ON_CHIP 0x0004
This flag should be set if the authenticator's matcher is running on the chip. Mutually
exclusive in authenticator metadata with MATCHER_PROTECTION_TEE,
MATCHER_PROTECTION_SOFTWARE

3.4 Authenticator Attachment Hints

The ATTACHMENT_HINT constants are flags in a bit field represented as a 32 bit long. They
describe the method an authenticator uses to communicate with the FIDO User Device.
These constants are reported and queried through the UAF Discovery APIs
[UAFAppAPIAndTransport], and used to form Authenticator policies in UAF protocol
messages. Because the connection state and topology of an authenticator may be transient,
these values are only hints that can be used by server-supplied policy to guide the user
experience, e.g. to prefer a device that is connected and ready for authenticating or
confirming a low-value transaction, rather than one that is more secure but requires more
user effort.

ATTACHMENT_HINT_INTERNAL 0x0001
This flag may be set to indicate that the authenticator is permanently attached to the
FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able to be
used both locally and remotely. In such a case, the FIDO client must filter and
exclusively report only the relevant bit during Discovery and when performing policy
matching.

This flag cannot be combined with any other ATTACHMENT_HINT flags.

ATTACHMENT_HINT_EXTERNAL 0x0002
This flag may be set to indicate, for a hardware-based authenticator, that it is removable
or remote from the FIDO User Device.

A device such as a smartphone may have authenticator functionality that is able to be
used both locally and remotely. In such a case, the FIDO UAF Client must filter and
exclusively report only the relevant bit during discovery and when performing policy
matching.
This flag must be combined with one or more other ATTACHMENT_HINT flag(s).

ATTACHMENT_HINT_WIRED 0x0004
This flag may be set to indicate that an external authenticator currently has an exclusive
wired connection, e.g. through USB, Firewire or similar, to the FIDO User Device.

ATTACHMENT_HINT_WIRELESS 0x0008
This flag may be set to indicate that an external authenticator communicates with the
FIDO User Device through a personal area or otherwise non-routed wireless protocol,
such as Bluetooth or NFC.

provided as unauthenticated parameter, then the effective security is
MATCHER_PROTECTION_SOFTWARE and not MATCHER_PROTECTION_ON_CHIP.

NOTE

These flags are not a mandatory part of authenticator metadata and, when present,
only indicate possible states that may be reported during authenticator discovery.

ATTACHMENT_HINT_NFC 0x0010
This flag may be set to indicate that an external authenticator is able to communicate
by NFC to the FIDO User Device. As part of authenticator metadata, or when reporting
characteristics through discovery, if this flag is set, the ATTACHMENT_HINT_WIRELESS flag
should also be set as well.

ATTACHMENT_HINT_BLUETOOTH 0x0020
This flag may be set to indicate that an external authenticator is able to communicate
using Bluetooth with the FIDO User Device. As part of authenticator metadata, or when
reporting characteristics through discovery, if this flag is set, the
ATTACHMENT_HINT_WIRELESS flag should also be set.

ATTACHMENT_HINT_NETWORK 0x0040
This flag may be set to indicate that the authenticator is connected to the FIDO User
Device over a non-exclusive network (e.g. over a TCP/IP LAN or WAN, as opposed to a
PAN or point-to-point connection).

ATTACHMENT_HINT_READY 0x0080
This flag may be set to indicate that an external authenticator is in a "ready" state. This
flag is set by the ASM at its discretion.

ATTACHMENT_HINT_WIFI_DIRECT 0x0100
This flag may be set to indicate that an external authenticator is able to communicate
using WiFi Direct with the FIDO User Device. As part of authenticator metadata and
when reporting characteristics through discovery, if this flag is set, the
ATTACHMENT_HINT_WIRELESS flag should also be set.

3.5 Transaction Confirmation Display Types

The TRANSACTION_CONFIRMATION_DISPLAY constants are flags in a bit field represented as a 16
bit long integer. They describe the availability and implementation of a transaction
confirmation display capability required for the transaction confirmation operation. These
constants are used in the authoritative metadata for an authenticator, reported and queried
through the UAF Discovery APIs, and used to form authenticator policies in UAF protocol
messages. Refer to [UAFAuthnrCommands] for more details on the security aspects of
TransactionConfirmation Display.

TRANSACTION_CONFIRMATION_DISPLAY_ANY 0x0001
This flag must be set to indicate that a transaction confirmation display, of any type, is
available on this authenticator. Other TRANSACTION_CONFIRMATION_DISPLAY flags may also
be set if this flag is set. If the authenticator does not support a transaction confirmation
display, then the value of TRANSACTION_CONFIRMATION_DISPLAY must be set to 0.

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE 0x0002
This flag must be set to indicate, that a software-based transaction confirmation display
operating in a privileged context is available on this authenticator.

A FIDO client that is capable of providing this capability may set this bit (in conjunction
with TRANSACTION_CONFIRMATION_DISPLAY_ANY) for all authenticators of type
ATTACHMENT_HINT_INTERNAL, even if the authoritative metadata for the authenticator does
not indicate this capability.

NOTE

Generally this should indicate that the device is immediately available to perform
user verification without additional actions such as connecting the device or
creating a new biometric profile enrollment, but the exact meaning may vary for
different types of devices. For example, a USB authenticator may only report
itself as ready when it is plugged in, or a Bluetooth authenticator when it is paired
and connected, but an NFC-based authenticator may always report itself as
ready.

NOTE

This flag is mutually exclusive with TRANSACTION_CONFIRMATION_DISPLAY_TEE and
TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_TEE 0x0004
This flag should be set to indicate that the authenticator implements a transaction
confirmation display in a Trusted Execution Environment ([TEE], [TEESecureDisplay]).
This flag is mutually exclusive with
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and
TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE.

TRANSACTION_CONFIRMATION_DISPLAY_HARDWARE 0x0008
This flag should be set to indicate that a transaction confirmation display based on
hardware assisted capabilities is available on this authenticator. This flag is mutually
exclusive with TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE and
TRANSACTION_CONFIRMATION_DISPLAY_TEE.

TRANSACTION_CONFIRMATION_DISPLAY_REMOTE 0x0010
This flag should be set to indicate that the transaction confirmation display is provided
on a distinct device from the FIDO User Device. This flag can be combined with any
other flag.

3.6 Tags used for crypto algorithms and types

These tags indicate the specific authentication algorithms, public key formats and other
crypto relevant data.

3.6.1 Authentication Algorithms

The ALG_SIGN constants are 16 bit long integers indicating the specific signature algorithm
and encoding.

ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW 0x0001
An ECDSA signature on the NIST secp256r1 curve which must have raw R and S
buffers, encoded in big-endian order. This is the signature encoding as specified in
[ECDSA-ANSI].

I.e. [R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_SECP256R1_ECDSA_SHA256_DER 0x0002
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the NIST secp256r1
curve.

I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation
formats:

Software based transaction confirmation displays might be implemented within
the boundaries of the ASM rather than by the authenticator itself [UAFASM].

NOTE

FIDO UAF supports RAW and DER signature encodings in order to allow small
footprint authenticator implementations.

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_RSASSA_PSS_SHA256_RAW 0x0003
RSASSA-PSS [RFC3447] signature must have raw S buffers, encoded in big-endian
order [RFC4055] [RFC4056]. The default parameters as specified in [RFC4055] must
be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256

Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

Trailer Field value of 1, which represents the trailer field with hexadecimal value
0xBC.

I.e. [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

ALG_SIGN_RSASSA_PSS_SHA256_DER 0x0004
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the
RSASSA-PSS [RFC3447] signature [RFC4055] [RFC4056]. The default parameters as
specified in [RFC4055] must be assumed, i.e.

Mask Generation Algorithm MGF1 with SHA256

Salt Length of 32 bytes, i.e. the length of a SHA256 hash value.

Trailer Field value of 1, which represents the trailer field with hexadecimal value
0xBC.

I.e. a DER encoded OCTET STRING (including its tag and length bytes).

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

ALG_SIGN_SECP256K1_ECDSA_SHA256_RAW 0x0005
An ECDSA signature on the secp256k1 curve which must have raw R and S buffers,
encoded in big-endian order.

I.e.[R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_SECP256K1_ECDSA_SHA256_DER 0x0006
DER [ITU-X690-2008] encoded ECDSA signature [RFC5480] on the secp256k1 curve.

I.e. a DER encoded SEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_ECC_X962_RAW

ALG_KEY_ECC_X962_DER

ALG_SIGN_SM2_SM3_RAW 0x0007 (optional)
Chinese SM2 elliptic curve based signature algorithm combined with SM3 hash
algorithm [OSCCA-SM2][OSCCA-SM3]. We use the 256bit curve [OSCCA-SM2-curve-
param].

This algorithm is suitable for authenticators using the following key representation
format: ALG_KEY_ECC_X962_RAW.

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_RAW 0x0008
This is the EMSA-PKCS1-v1_5 signature as defined in [RFC3447]. This means that the
encoded message EM will be the input to the cryptographic signing algorithm RSASP1
as defined in [RFC3447]. The result s of RSASP1 is then encoded using function
I2OSP to produce the raw signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T

with the padding string PS with length=emLen - tLen - 3 octets having the value
0xff for each octet, e.g. (0x) ff ff ff ff ff ff ff ff

with the DER [ITU-X690-2008] encoded DigestInfo value T: (0x)30 31 30 0d 06
09 60 86 48 01 65 03 04 02 01 05 00 04 20 | H, where H denotes the bytes of
the SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

ALG_SIGN_RSA_EMSA_PKCS1_SHA256_DER 0x0009
DER [ITU-X690-2008] encoded OCTET STRING (not BIT STRING!) containing the
EMSA-PKCS1-v1_5 signature as defined in [RFC3447]. This means that the encoded
message EM will be the input to the cryptographic signing algorithm RSASP1 as
defined in [RFC3447]. The result s of RSASP1 is then encoded using function I2OSP to
produce the raw signature. The raw signature is DER [ITU-X690-2008] encoded as an
OCTET STRING to produce the final signature octets.

EM = 0x00 | 0x01 | PS | 0x00 | T

with the padding string PS with length=emLen - tLen - 3 octets having the value
0xff for each octet, e.g. (0x) ff ff ff ff ff ff ff ff

with the DER encoded DigestInfo value T: (0x)30 31 30 0d 06 09 60 86 48 01 65
03 04 02 01 05 00 04 20 | H, where H denotes the bytes of the SHA256 hash
value.

This algorithm is suitable for authenticators using the following key representation
formats:

ALG_KEY_RSA_2048_RAW

ALG_KEY_RSA_2048_DER

NOTE

Implementers should verify that their implementation of the PKCS#1 V1.5
signature follows the recommendations in [RFC3218] to protect against adaptive
chosen-ciphertext attacks such as Bleichenbacher.

3.6.2 Public Key Representation Formats

The ALG_KEY constants are 16 bit long integers indicating the specific Public Key algorithm
and encoding.

ALG_KEY_ECC_X962_RAW 0x0100
Raw ANSI X9.62 formatted Elliptic Curve public key [SEC1].

I.e. [0x04, X (32 bytes), Y (32 bytes)] . Where the byte 0x04 denotes the
uncompressed point compression method.

ALG_KEY_ECC_X962_DER 0x0101
DER [ITU-X690-2008] encoded ANSI X.9.62 formatted SubjectPublicKeyInfo
[RFC5480] specifying an elliptic curve public key.

I.e. a DER encoded SubjectPublicKeyInfo as defined in [RFC5480].

Authenticator implementations must generate namedCurve in the ECParameters object
which is included in the AlgorithmIdentifier. A FIDO UAF Server must accept
namedCurve in the ECParameters object which is included in the AlgorithmIdentifier.

ALG_KEY_RSA_2048_RAW 0x0102
Raw encoded 2048-bit RSA public key [RFC3447].

That is, [n (256 bytes), e (N-256 bytes)] . Where N is the total length of the field.

This total length should be taken from the object containing this key, e.g. the TLV
encoded field.

ALG_KEY_RSA_2048_DER 0x0103
ASN.1 DER [ITU-X690-2008] encoded 2048-bit RSA [RFC3447] public key [RFC4055].

That is a DER encoded SEQUENCE { n INTEGER, e INTEGER } .

ALG_KEY_COSE 0x0104

COSE_Key format, as defined in Section 7 of [RFC8152]. This encoding includes its
own field for indicating the public key algorithm.

A. References

A.1 Normative references

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary.
Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-

NOTE

Implementers should verify that their implementation of the PKCS#1 V1.5
signature follows the recommendations in [RFC3218] to protect against adaptive
chosen-ciphertext attacks such as Bleichenbacher.

NOTE

FIDO UAF supports RAW and DER encodings in order to allow small footprint
authenticator implementations. By definition, the authenticator must encode the public
key as part of the registration assertion.

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html

20180220/fido-glossary-v1.2-id-20180220.html
[ITU-X690-2008]

X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER), (T-REC-X.690-200811). November 2008. URL: http://www.itu.int/rec/T-REC-
X.690-200811-I/en

[OSCCA-SM2]
SM2: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves: Part 1:
General. December 2010. URL:
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

[OSCCA-SM2-curve-param]
SM2: Elliptic Curve Public-Key Cryptography Algorithm: Recommended Curve
Parameters. December 2010. URL:
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf

[OSCCA-SM3]
SM3 Cryptographic Hash Algorithm. December 2010. URL:
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3447]
J. Jonsson; B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. February 2003. Informational. URL:
https://tools.ietf.org/html/rfc3447

[RFC4055]
J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSA
Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. June 2005. Proposed Standard. URL:
https://tools.ietf.org/html/rfc4055

[RFC4056]
J. Schaad. Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message
Syntax (CMS). June 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc4056

[RFC5480]
S. Turner; D. Brown; K. Yiu; R. Housley; T. Polk. Elliptic Curve Cryptography Subject
Public Key Information. March 2009. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5480

[RFC8152]
J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed
Standard. URL: https://tools.ietf.org/html/rfc8152

[SEC1]
SEC1: Elliptic Curve Cryptography, Version 2.0. September 2000. URL:
http://secg.org/download/aid-780/sec1-v2.pdf

A.2 Informative references

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA), ANSI X9.62-2005. November 2005. URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Security Reference. Implementation
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-
v1.2-id-20180220.html

[RFC3218]
E. Rescorla. Preventing the Million Message Attack on Cryptographic Message Syntax.
January 2002. Informational. URL: https://tools.ietf.org/html/rfc3218

[SecureElement]
GlobalPlatform Card Specifications. URL:
https://www.globalplatform.org/specifications.asp

[TEE]
GlobalPlatform Trusted Execution Environment Specifications. URL:
https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications. URL:

http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc4056
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-security-ref-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc3218
https://tools.ietf.org/html/rfc3218
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp

https://www.globalplatform.org/specifications.asp
[UAFASM]

D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-
Specific Module API. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html

[UAFAppAPIAndTransport]
B. Hill; D. Baghdasaryan; B. Blanke. FIDO UAF Application API and Transport Binding
Specification. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-id-
20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html

[UAFAuthnrCommands]
D. Baghdasaryan; J. Kemp; R. Lindemann; R. Sasson; B. Hill. FIDO UAF Authenticator
Commands v1.0. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges. FIDO UAF
Protocol Specification v1.0. Proposed Standard. URL:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-
20180220.html

https://www.globalplatform.org/specifications.asp
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-asm-api-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-client-api-transport-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-protocol-v1.2-id-20180220.html

FIDO Technical Glossary

FIDO Alliance Implementation Draft 20 February 2018

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-
20180220.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-glossary-v1.2-rd-
20171128.html

Editor:
Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal
Jeff Hodges, PayPal

Copyright © 2013-2018 FIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values
defined in this document are referenced by various UAF specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO Alliance specifications index
at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to make
comments regarding this document, please Contact Us. All comments are welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc.
Permission is hereby granted to use the Specification solely for the purpose of implementing
the Specification. No rights are granted to prepare derivative works of this Specification.
Entities seeking permission to reproduce portions of this Specification for other uses must

IM
PLEM

EN
TA

TIO
N
 D

R
A
FT

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-glossary-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-rd-20171128/fido-glossary-v1.2-rd-20171128.html
mailto://rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
mailto://jeff.hodges@kingsmountain.com
https://www.paypal.com/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

contact the FIDO Alliance to determine whether an appropriate license for such use is
available.

Implementation of certain elements of this Specification may require licenses under third
party intellectual property rights, including without limitation, patent rights. The FIDO Alliance,
Inc. and its Members and any other contributors to the Specification are not, and shall not be
held, responsible in any manner for identifying or failing to identify any or all such third party
intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR
IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Introduction

3. Definitions

A. References
A.1 Normative references

A.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
“recommended”, “may”, and “optional” in this document are to be interpreted as described in
[RFC2119].

2. Introduction

This document is the FIDO Alliance glossary of normative technical terms.

This document is not an exhaustive compendium of all FIDO technical terminology because
the FIDO terminology is built upon existing terminology. Thus many terms that are commonly
used within this context are not listed. They may be found in the
glossaries/documents/specifications referenced in the bibliography. Terms defined here that
are not attributed to other glossaries/documents/specifications are being defined here.

This glossary is expected to evolve along with the FIDO Alliance specifications and
documents.

3. Definitions

AAID

Authenticator Attestation ID. See Attestation ID.

Application

A set of functionality provided by a common entity (the application owner, aka the
Relying Party), and perceived by the user as belonging together.

Application Facet

An (application) facet is how an application is implemented on various platforms. For
example, the application MyBank may have an Android app, an iOS app, and a Web
app. These are all facets of the MyBank application.

Application Facet ID

A platform-specific identifier (URI) for an application facet.

For Web applications, the facet id is the RFC6454 origin [RFC6454].

For Android applications, the facet id is the URI android:apk-key-hash:<hash-of-
apk-signing-cert>

For iOS, the facet id is the URI ios:bundle-id:<ios-bundle-id-of-app>

AppID

The AppID is an identifier for a set of different Facets of a relying party's application.
The AppID is a URL pointing to the TrustedFacets, i.e. list of FacetIDs related to this
AppID.

Attestation

In the FIDO context, attestation is how Authenticators make claims to a Relying Party
that the keys they generate, and/or certain measurements they report, originate from
genuine devices with certified characteristics.

Attestation Certificate

A public key certificate related to an Attestation Key.

Authenticator Attestation ID / AAID

A unique identifier assigned to a model, class or batch of FIDO Authenticators that all
share the same characteristics, and which a Relying Party can use to look up an
Attestation Public Key and Authenticator Metadata for the device.

Attestation [Public / Private] Key

A key used for FIDO Authenticator attestation.

Attestation Root Certificate

A root certificate explicitly trusted by the FIDO Alliance, to which Attestation Certificates
chain to.

Authentication

Authentication is the process in which user employs their FIDO Authenticator to prove
possession of a registered key to a relying party.

Authentication Algorithm

The combination of signature and hash algorithms used for authenticator-to-relying
party authentication.

Authentication Scheme

The combination of an Authentication Algorithm with a message syntax or framing that
is used by an Authenticator when constructing a response.

Authenticator, Authnr

See FIDO Authenticator.

Authenticator, 1stF / First Factor

A FIDO Authenticator that transactionally provides a username and at least two
authentication factors: cryptographic key material (something you have) plus user
verification (something you know / something you are) and so can be used by itself to
complete an authentication.

It is assumed that these authenticators have an internal matcher. The matcher is able
to verify an already enrolled user. If there is more than one user enrolled – the matcher
is also able to identify the right user.

Examples of such authenticator is a biometric sensor or a PIN based verification.
Authenticators which only verify presence, such as a physical button, or perform no
verification at all, cannot act as a first-factor authenticator.

Authenticator, 2ndF / Second Factor
A FIDO Authenticator which acts only as a second factor. Second-factor authenticators
always require a single key handle to be provided before responding to a Sign
command. They might or might not have a user verification method. It is assumed that
these authenticators may or may not have an internal matcher.

Authenticator Attestation
The process of communicating a cryptographic assertion to a relying party that a key
presented during authenticator registration was created and protected by a genuine
authenticator with verified characteristics.

Authenticator Metadata

Verified information about the characteristics of a certified authenticator, associated
with an AAID and available from the FIDO Alliance. FIDO Servers are expected to have
access to up-to-date metadata to be able to interact with a given authenticator.

Authenticator Policy

A JSON data structure that allows a relying party to communicate to a FIDO Client the
capabilities or specific authenticators that are allowed or disallowed for use in a given
operation.

ASM / Authenticator Specific Module

Software associated with a FIDO Authenticator that provides a uniform interface
between the hardware and FIDO Client software.

AV

ASM Version

Bound Authenticator

A FIDO Authenticator or combination of authenticator and ASM, which uses an access
control mechanism to restrict the use of registered keys to trusted FIDO Clients and/or
trusted FIDO User Devices. Compare to a Roaming Authenticator.

Certificate

An X.509v3 certificate defined by the profile specified in [RFC5280] and its successors.

Channel Binding

See: [RFC5056], [RFC5929] and [ChannelID]. A channel binding allows applications to
establish that the two end-points of a secure channel at one network layer are the same
as at a higher layer by binding authentication to the higher layer to the channel at the

lower layer.

Client

This term is used “in context”, and may refer to a FIDO UAF Client or some other type
of client, e.g. a TLS client. See FIDO Client.

Confused Deputy Problem

A confused deputy is a computer program that is innocently fooled by some other party
into misusing its authority. It is a specific type of privilege escalation.

Correlation Handle

Any piece of information that may allow, in the context of FIDO protocols, implicit or
explicit association and or attribution of multiple actions, believed by the user to be
distinct and unrelated, back to a single unique entity. An example of a correlation
handle outside of the FIDO context is a client certificate used in traditional TLS mutual
authentication: because it sends the same data to multiple Relying Parties, they can
therefore collude to uniquely identify and track the user across unrelated activities.
[AnonTerminology]

Deregistration

A phase of a FIDO protocol in which a Relying Party tells a FIDO Authenticator to forget
a specified piece of (or all) locally managed key material associated with a specific
Relying Party account, in case such keys are no longer considered valid by the Relying
Party.

Discovery

A phase of a FIDO protocol in which a Relying Party is able to determine the availability
of FIDO capabilities at the client’s device, including metadata about the available
authenticators.

E(K,D)

Denotes the Encryption of data D with key K

ECDAA

Elliptic Curve based Direct Anonymous Attestation. ECDAA is an attestation scheme
alternative to FIDO Basic Attestation. It is an improved Direct Anonymous Attestation
scheme based on elliptic curves and bilinear pairings. Direct Anonymous Attestation
schemes use individual private keys in the Authenticator while avoiding global
correlation handles. ECDAA provides significantly improved performance compared
with the original DAA scheme. FIDO ECDAA [FIDOEcdaaAlgorithm] defines object
encodings, pairing friendly curves etc. in order to lead to interoperable ECDAA
implementations across different FIDO Servers and FIDO Authenticators.

ECDSA

Elliptic Curve Digital Signature Algorithm, as defined by ANSI X9.62 [ECDSA-ANSI].

Enrollment

The process of making a user known to an authenticator. This might be a biometric
enrollment as defined in [NSTCBiometrics] or involve processes such as taking
ownership of, and setting a PIN or password for, a non-biometric cryptographic storage
device. Enrollment may happen as part of a FIDO protocol ceremony, or it may happen
outside of the FIDO context for multi-purpose authenticators.

Facet

See Application Facet

Facet ID

See Application Facet ID

FIDO Authenticator

An authentication entity that meets the FIDO Alliance’s requirements and which has
related metadata.

A FIDO Authenticator is responsible for user verification, and maintaining the
cryptographic material required for the relying party authentication.

It is important to note that a FIDO Authenticator is only considered such for, and in
relation to, its participation in FIDO Alliance protocols. Because the FIDO Alliance aims
to utilize a diversity of existing and future hardware, many devices used for FIDO may
have other primary or secondary uses. To the extent that a device is used for non-FIDO
purposes such as local operating system login or network login with non-FIDO
protocols, it is not considered a FIDO Authenticator and its operation in such modes is
not subject to FIDO Alliance guidelines or restrictions, including those related to security
and privacy.

A FIDO Authenticator may be referred to as simply an authenticator or abbreviated as
“authnr”. Important distinctions in an authenticator’s capabilities and user experience
may be experienced depending on whether it is a roaming or bound authenticator, and
whether it is a first-factor, or second-factor authenticator.

It is assumed by registration assertion schemes that the authenticator has exclusive
control over the data being signed by the attestation key.

Authenticators specify in the Metadata Statement whether they have exclusive control
over the data being signed by the Uauth key.

FIDO Client

This is the software entity processing the UAF or U2F protocol messages on the FIDO
User Device. FIDO Clients may take one of two forms:

A software component implemented in a user agent (either web browser or native
application).

A standalone piece of software shared by several user agents. (web browsers or
native applications).

FIDO Data / FIDO Information

Any information gathered or created as part of completing a FIDO transaction. This
includes but is not limited to, biometric measurements of or reference data for the user
and FIDO transaction history.

FIDO Server

Server software typically deployed in the relying party’s infrastructure that meets UAF
protocol server requirements.

FIDO UAF Client

See FIDO Client.

FIDO User Device

The computing device where the FIDO Client operates, and from which the user
initiates an action that utilizes FIDO.

Key Identifier (KeyID)

The KeyID is an opaque identifier for a key registered by an authenticator with a FIDO
Server, for first-factor authenticators. It is used in concert with an AAID to identify a
particular authenticator that holds the necessary key. Thus key identifiers must be
unique within the scope of an AAID.

One possible implementation is that the KeyID is the SHA256 hash of the KeyHandle
managed by the ASM.

KeyHandle

A key container created by a FIDO Authenticator, containing a private key and
(optionally) other data (such as Username). A key handle may be wrapped (encrypted
with a key known only to the authenticator) or unwrapped. In the unwrapped form it is
referred to as a raw key handle. Second-factor authenticators must retrieve their key
handles from the relying party to function. First-factor authenticators manage the
storage of their own key handles, either internally (for roaming authenticators) or via the
associated ASM (for bound authenticators).

Key Registration

The process of securely establishing a key between FIDO Server and FIDO
Authenticator.

KeyRegistrationData (KRD)

A KeyRegistrationData object is created and returned by an authenticator as the result
of the authenticator's Register command. The KRD object contains items such as the
authenticator's AAID, the newly generated UAuth.pub key, as well as other
authenticator-specific information such as algorithms used by the authenticator for
performing cryptographic operations, and counter values. The KRD object is signed
using the authenticator's attestation private key.

KHAccessToken

A secret value that acts as a guard for authenticator commands. KHAccessTokens are
generated and provided by an ASM.

Matcher

A component of a FIDO Authenticator which is able to perform (local) user verification,
e.g. biometric comparison [ISOBiometrics], PIN verification, etc.

Matcher Protections
The security mechanisms that an authenticator may use to protect the matcher
component.

Persona

All relevant data stored in an authenticator (e.g. cryptographic keys) are related to a
single "persona" (e.g. “business” or “personal” persona). Some administrative interface
(not standardized by FIDO) provided by the authenticator may allow maintenance and
switching of personas.

The user can switch to the “Personal” Persona and register new accounts. After
switching back to the “Business” Persona, these accounts will not be recognized by the
authenticator (until the User switches back to “Personal” Persona again).

This mechanism may be used to provide an additional measure of privacy to the user,
where the user wishes to use the same authenticator in multiple contexts, without
allowing correlation via the authenticator across those contexts.

PersonaID

An identifier provided by an ASM, PersonaID is used to associate different
registrations. It can be used to create virtual identities on a single authenticator, for
example to differentiate “personal” and “business” accounts. PersonaIDs can be used to
manage privacy settings on the authenticator.

Reference Data

A (biometric) reference data (also called template) is a digital reference of distinct
characteristics that have been extracted from a biometric sample. Biometric reference
data is used during the biometric user verification process [ISOBiometrics]. Non-
biometric reference data is used in conjunction with PIN-based user verification.

Registration

A FIDO protocol operation in which a user generates and associates new key material
with an account at the Relying Party, subject to policy set by the server, and acceptable
attestation that the authenticator and registration matches that policy.

Registration Scheme

The registration scheme defines how the authentication key is being exchanged
between the FIDO Server and the FIDO Authenticator.

Relying Party

A web site or other entity that uses a FIDO protocol to directly authenticate users (i.e.,
performs peer-entity authentication). Note that if FIDO is composed with federated
identity management protocols (e.g., SAML, OpenID Connect, etc.), the identity
provider will also be playing the role of a FIDO Relying Party.

Roaming Authenticator

A FIDO Authenticator configured to move between different FIDO Clients and FIDO
User Devices lacking an established trust relationship by:

1. Using only its own internal storage for registrations

2. Allowing registered keys to be employed without access control mechanisms at
the API layer. (Roaming authenticators still may perform user verification.)

Compare to Bound Authenticator.

S(K, D)

Signing of data D with key K

Server Challenge

A random value provided by the FIDO Server in the UAF protocol requests.

Sign Counter

A monotonically increasing counter maintained by the Authenticator. It is increased on
every use of the UAuth.priv key. This value can be used by the FIDO Server to detect
cloned authenticators.

SignedData

A SignedData object is created and returned by an authenticator as the result of the
authenticator's Sign command. The to-be-signed data input to the signature operation is
represented in the returned SignedData object as intact values or as hashed values.
The SignedData object also contains general information about the authenticator and
its mode, a nonce, information about authenticator-specific cryptographic algorithms,
and a use counter. The SignedData object is signed using a relying party-specific

UAuth.priv key.

Silent Authenticator

FIDO Authenticator that does not prompt the user or perform any user verification.

Step-up Authentication

An authentication which is performed on top of an already authenticated session.

Example: The user authenticates the session initially using a username and password,
and the web site later requests a FIDO authentication on top of this authenticated
session.

One reason for requesting step-up authenication could be a request for a high value
resource.

FIDO U2F is always used as a step-up authentication. FIDO UAF could be used as
step-up authentication, but it could also be used as an initial authentication mechanism.

Note: In general, there is no implication that the step-up authentication method itself is
"stronger" than the initial authentication. Since the step-up authentication is performed
on top of an existing authentication, the resulting combined authentication strength will
increase most likely, but it will never decrease.

Template

See reference data.

Test of User Presence

See User Presence Check

TLS

Transport Layer Security

Token

In FIDO U2F, the term Token is often used to mean what is called an authenticator in
UAF. Also, note that other uses of “token”, e.g. KHAccessToken, User Verification
Token, etc., are separately distinct. If they are not explicitly defined, their meaning
needs to be determined from context.

Transaction Confirmation

An operation in the FIDO protocol that allows a relying party to request that a FIDO
Client, and authenticator with the appropriate capabilities, display some information to
the user, request that the user authenticate locally to their FIDO Authenticator to
confirm the information, and provide proof-of-possession of previously registered key
material and an attestation of the confirmation back to the relying party.

Transaction Confirmation Display

This is a feature of FIDO Authenticators able to show content of a message to a user,
and protect the integrity of this message. It could be implemented using the
GlobalPlatform specified TrustedUI [TEESecureDisplay].

TrustedFacets

The data structure holding a list of trusted FacetIDs. The AppID is used to retrieve this
data structure.

TTEXT

Transaction Text, i.e. text to be confirmed in the case of transaction confirmation.

Type-length-value/tag-length-value (TLV)

A mechanism for encoding data such that the type, length and value of the data are
given. Typically, the type and length data fields are of a fixed size. This format offers
some advantages over other data encoding mechanisms, that make it suitable for some
of the FIDO UAF protocols.

Universal Second Factor (U2F)

The FIDO protocol and family of authenticators which enable a cloud service to offer its
users the options of using an easy–to–use, strongly–secure open standards–based
second-factor device for authentication. The protocol relies on the server to know the
(expected) user before triggering the authentication.

Universal Authentication Framework (UAF)

. The FIDO Protocol and family of authenticators which enable a service to offer its
users flexible and interoperable authentication. This protocol allows triggering the
authentication before the server knows the user.

UAF Client

See FIDO Client.

UAuth.pub / UAuth.priv / UAuth.key

User authentication keys generated by FIDO Authenticator. UAuth.pub is the public part
of key pair. UAuth.priv is the private part of the key. UAuth.key is the more generic
notation to refer to UAuth.priv.

UINT8

An 8 bit (1 byte) unsigned integer.

UINT16

A 16 bit (2 bytes) unsigned integer.

UINT32

A 32 bit (4 bytes) unsigned integer.

UPV

UAF Protocol Version

User

Relying party’s user, and owner of the FIDO Authenticator.

User Agent

The user agent is a client application that is acting on behalf of a user in a client-server
system. Examples of user agents include web browsers and mobile apps.

User Presence Check

The User Presence check in the authenticator verifies that some user is present at the
authenticator and agrees with a generic authentication operation.

User Verification

The process by which a FIDO Authenticator locally authorizes use of key material, for
example through a touch, pin code, fingerprint match or other biometric.

User Verification Token

The user verification token is generated by Authenticator and handed to the ASM after
successful user verification. Without having this token, the ASM cannot invoke special
commands such as Register or Sign.

The lifecycle of the user verification token is managed by the authenticator. The
concrete techniques for generating such a token and managing its lifecycle are vendor-
specific and non-normative.

Username

A human-readable string identifying a user’s account at a relying party.

Verification Factor

The specific means by which local user verification is accomplished. e.g. fingerprint,
voiceprint, or PIN.

This is also known as modality.

Web Application, Client-Side

The portion of a relying party application built on the "Open Web Platform" which
executes in the context of the user agent. When the term “Web Application” appears
unqualified or without specific context in FIDO documents, it generally refers to either
the client-side portion or the combination of both client-side and server-side pieces of
such an application.

Web Application, Server-Side

The portion of a relying party application that executes on the web server, and
responds to HTTP requests. When the term “Web Application” appears unqualified or
without specific context in FIDO documents, it generally refers to either the client-side
portion or the combination of both client-side and server-side pieces of such an
application.

A. References

A.1 Normative references

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO
ECDAA Algorithm. Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-
v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

A.2 Informative references

[AnonTerminology]
A. Pfitzmann; M. Hansen. Anonymity, Unlinkability, Unobservability, Pseudonymity, and
Identity Management - A Consolidated Proposal for Terminology, Version 0.34. August
2010. URL: http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

[ChannelID]
D. Balfanz. Transport Layer Security (TLS) Channel IDs. Work In Progress. URL:
http://tools.ietf.org/html/draft-balfanz-tls-channelid

[ECDSA-ANSI]
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital

https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-ecdaa-algorithm-v1.2-id-20180220.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid

Signature Algorithm (ECDSA), ANSI X9.62-2005. November 2005. URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

[ISOBiometrics]
ISO/IEC 2382-37 Harmonized Biometric Vocabulary. 15 December 2012. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-
37_2012.zip

[NSTCBiometrics]
Biometrics Glossary. 14 September 2006. URL:
http://biometrics.gov/Documents/Glossary.pdf

[RFC5056]
N. Williams. On the Use of Channel Bindings to Secure Channels (RFC 5056).
November 2007. URL: http://www.ietf.org/rfc/rfc5056.txt

[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S.Boeyen; R. Housley; W. Polk. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. May
2008. URL: http://www.ietf.org/rfc/rfc5280.txt

[RFC5929]
J. Altman; N. Williams; L. Zhu. Channel Bindings for TLS (RFC 5929). July 2010. URL:
http://www.ietf.org/rfc/rfc5929.txt

[RFC6454]
A. Barth. The Web Origin Concept (RFC 6454). June 2011. URL:
http://www.ietf.org/rfc/rfc6454.txt

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications. URL:
https://www.globalplatform.org/specifications.asp

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp

	FIDO UAF Architectural Overview
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	1.1 Background
	1.2 FIDO UAF Documentation
	1.3 FIDO UAF Goals

	2. FIDO UAF High-Level Architecture
	2.1 FIDO UAF Client
	2.2 FIDO UAF Server
	2.3 FIDO UAF Protocols
	2.4 FIDO UAF Authenticator Abstraction Layer
	2.5 FIDO UAF Authenticator
	2.6 FIDO UAF Authenticator Metadata Validation

	3. FIDO UAF Usage Scenarios and Protocol Message Flows
	3.1 FIDO UAF Authenticator Acquisition and User Enrollment
	3.2 Authenticator Registration
	3.3 Authentication
	3.4 Step-up Authentication
	3.5 Transaction Confirmation
	3.6 Authenticator Deregistration
	3.7 Adoption of New Types of FIDO UAF Authenticators

	4. Privacy Considerations
	5. Relationship to Other Technologies
	OpenID, SAML, and OAuth
	6. OATH, TCG, PKCS#11, and ISO 24727
	7. Table of Figures

	FIDO UAF Protocol Specification
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Architecture
	2.3 Protocol Conversation
	2.3.1 Registration
	2.3.2 Authentication
	2.3.3 Transaction Confirmation
	2.3.4 Deregistration

	3. Protocol Details
	3.1 Shared Structures and Types
	3.1.1 Version Interface
	3.1.2 Operation enumeration
	3.1.3 OperationHeader dictionary
	3.1.4 Authenticator Attestation ID (AAID) typedef
	3.1.5 KeyID typedef
	3.1.6 ServerChallenge typedef
	3.1.7 FinalChallengeParams dictionary
	3.1.8 ClientData dictionary
	3.1.9 TLS ChannelBinding dictionary
	3.1.10 JwkKey dictionary
	3.1.11 Extension dictionary
	3.1.12 MatchCriteria dictionary
	3.1.13 Policy dictionary

	3.2 Processing Rules for the Server Policy
	3.2.1 Examples

	3.3 Version Negotiation
	3.4 Registration Operation
	3.4.1 Registration Request Message
	3.4.2 RegistrationRequest dictionary
	3.4.3 AuthenticatorRegistrationAssertion dictionary
	3.4.4 Registration Response Message
	3.4.5 RegistrationResponse dictionary
	3.4.6 Registration Processing Rules

	3.5 Authentication Operation
	3.5.1 Transaction dictionary
	3.5.2 Authentication Request Message
	3.5.3 AuthenticationRequest dictionary
	3.5.4 AuthenticatorSignAssertion dictionary
	3.5.5 AuthenticationResponse dictionary
	3.5.6 Authentication Response Message
	3.5.7 Authentication Processing Rules

	3.6 Deregistration Operation
	3.6.1 Deregistration Request Message
	3.6.2 DeregisterAuthenticator dictionary
	3.6.3 DeregistrationRequest dictionary
	3.6.4 Deregistration Processing Rules

	4. Considerations
	4.1 Protocol Core Design Considerations
	4.1.1 Authenticator Metadata
	4.1.2 Authenticator Attestation
	4.1.3 Error Handling
	4.1.4 Assertion Schemes
	4.1.5 Username in Authenticator
	4.1.6 Silent Authenticators
	4.1.7 TLS Protected Communication

	4.2 Implementation Considerations
	4.2.1 Server Challenge and Random Numbers
	4.2.2 Revealing KeyIDs

	4.3 Security Considerations
	4.3.1 FIDO Authenticator Security
	4.3.2 Cryptographic Algorithms
	4.3.3 FIDO Client Trust Model
	4.3.4 TLS Binding
	4.3.5 Session Management
	4.3.6 Personas
	4.3.7 ServerData and KeyHandle
	4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata
	4.3.9 Policy Verification
	4.3.10 Replay Attack Protection
	4.3.11 Protection against Cloned Authenticators
	4.3.12 Anti-Fraud Signals

	4.4 Interoperability Considerations

	5. UAF Supported Assertion Schemes
	5.1 Assertion Scheme "UAFV1TLV"
	5.1.1 KeyRegistrationData
	5.1.2 SignedData

	6. Definitions
	7. Table of Figures
	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Application API and Transport Binding Specification
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Audience
	2.2 Scope
	2.3 Architecture
	2.3.1 Protocol Conversation

	3. Common Definitions
	3.1 UAF Status Codes

	4. Shared Definitions
	4.1 UAFMessage Dictionary
	4.1.1 Dictionary UAFMessage Members

	4.2 Version interface
	4.2.1 Attributes

	4.3 Authenticator interface
	4.3.1 Attributes
	4.3.2 Authenticator Interface Constants

	4.4 DiscoveryData dictionary
	4.4.1 Dictionary DiscoveryData Members

	4.5 ErrorCode interface
	4.5.1 Constants

	5. DOM API
	5.1 Feature Detection
	5.2 uaf Interface
	5.2.1 Methods

	5.3 UAFResponseCallback
	5.3.1 Callback UAFResponseCallback Parameters

	5.4 DiscoveryCallback
	5.4.1 Callback DiscoveryCallback Parameters

	5.5 ErrorCallback
	5.5.1 Callback ErrorCallback Parameters

	5.6 Privacy Considerations for the DOM API
	5.7 Security Considerations for the DOM API
	5.7.1 Insecure Mixed Content
	5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

	5.8 Implementation Notes for Browser/Plugin Authors

	6. Android Intent API
	6.1 Android-specific Definitions
	6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT
	6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
	6.1.3 channelBindings
	6.1.4 UAFIntentType enumeration

	6.2 org.fidoalliance.intent.FIDO_OPERATION Intent
	6.2.1 UAFIntentType.DISCOVER
	6.2.2 UAFIntentType.DISCOVER_RESULT
	6.2.3 UAFIntentType.CHECK_POLICY
	6.2.4 UAFIntentType.CHECK_POLICY_RESULT
	6.2.5 UAFIntentType.UAF_OPERATION
	6.2.6 UAFIntentType.UAF_OPERATION_RESULT
	6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

	6.3 Alternate Android AIDL Service UAF Client Implementation
	6.4 Security Considerations for Android Implementations

	7. iOS Custom URL API
	7.1 iOS-specific Definitions
	7.1.1 X-Callback-URL Transport
	7.1.2 Secret Key Generation
	7.1.3 Origin
	7.1.4 channelBindings
	7.1.5 UAFxType

	7.2 JSON Values
	7.2.1 DISCOVER
	7.2.2 DISCOVER_RESULT
	7.2.3 CHECK_POLICY
	7.2.4 CHECK_POLICY_RESULT
	7.2.5 UAF_OPERATION
	7.2.6 UAF_OPERATION_RESULT
	7.2.7 UAF_OPERATION_COMPLETION_STATUS

	7.3 Implementation Guidelines for iOS Implementations
	7.4 Security Considerations for iOS Implementations

	8. Transport Binding Profile
	8.1 Transport Security Requirements
	8.2 TLS Security Requirements
	8.3 HTTPS Transport Interoperability Profile
	8.3.1 Obtaining a UAF Request message
	8.3.2 Operation enum
	8.3.3 GetUAFRequest dictionary
	8.3.4 ReturnUAFRequest dictionary
	8.3.5 SendUAFResponse dictionary
	8.3.6 Delivering a UAF Response
	8.3.7 ServerResponse Interface
	8.3.8 Token interface
	8.3.9 TokenType enum
	8.3.10 Security Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Authenticator-Specific Module API
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Code Example format

	3. ASM Requests and Responses
	3.1 Request enum
	3.2 StatusCode Interface
	3.2.1 Constants
	3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

	3.3 ASMRequest Dictionary
	3.3.1 Dictionary ASMRequest Members

	3.4 ASMResponse Dictionary
	3.4.1 Dictionary ASMResponse Members

	3.5 GetInfo Request
	3.5.1 GetInfoOut Dictionary
	3.5.2 AuthenticatorInfo Dictionary

	3.6 Register Request
	3.6.1 RegisterIn Object
	3.6.2 RegisterOut Object
	3.6.3 Detailed Description for Processing the Register Request

	3.7 Authenticate Request
	3.7.1 AuthenticateIn Object
	3.7.2 Transaction Object
	3.7.3 AuthenticateOut Object
	3.7.4 Detailed Description for Processing the Authenticate Request

	3.8 Deregister Request
	3.8.1 DeregisterIn Object
	3.8.2 Detailed Description for Processing the Deregister Request

	3.9 GetRegistrations Request
	3.9.1 GetRegistrationsOut Object
	3.9.2 AppRegistration Object
	3.9.3 Detailed Description for Processing the GetRegistrations Request

	3.10 OpenSettings Request

	4. Using ASM API
	5. ASM APIs for various platforms
	5.1 Android ASM Intent API
	5.1.1 Discovering ASMs
	5.1.2 Alternate Android AIDL Service ASM Implementation

	5.2 Java ASM API for Android
	5.3 C++ ASM API for iOS
	5.4 Windows ASM API

	6. CTAP2 Interface
	6.1 authenticatorMakeCredential
	6.1.1 Processing rules for authenticatorMakeCredential

	6.2 authenticatorGetAssertion
	6.2.1 Processing rules for authenticatorGetAssertion

	6.3 authenticatorGetNextAssertion
	6.4 authenticatorCancel
	6.5 authenticatorReset
	6.6 authenticatorGetInfo
	6.6.1 Processing rules for authenticatorGetInfo

	7. Security and Privacy Guidelines
	7.1 KHAccessToken
	7.2 Access Control for ASM APIs

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Authenticator Commands
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	3. UAF Authenticator
	3.1 Types of Authenticators

	4. Tags
	4.1 Command Tags
	4.2 Tags used only in Authenticator Commands
	4.3 Tags used in UAF Protocol
	4.4 Status Codes

	5. Structures
	5.1 RawKeyHandle
	5.2 Structures to be parsed by FIDO Server
	5.2.1 TAG_UAFV1_REG_ASSERTION
	5.2.2 TAG_UAFV1_AUTH_ASSERTION

	5.3 UserVerificationToken

	6. Commands
	6.1 GetInfo Command
	6.1.1 Command Description
	6.1.2 Command Structure
	6.1.3 Command Response
	6.1.4 Status Codes

	6.2 Register Command
	6.2.1 Command Structure
	6.2.2 Command Response
	6.2.3 Status Codes
	6.2.4 Command Description

	6.3 Sign Command
	6.3.1 Command Structure
	6.3.2 Command Response
	6.3.3 Status Codes
	6.3.4 Command Description

	6.4 Deregister Command
	6.4.1 Command Structure
	6.4.2 Command Response
	6.4.3 Status Codes
	6.4.4 Command Description

	6.5 OpenSettings Command
	6.5.1 Command Structure
	6.5.2 Command Response
	6.5.3 Status Codes

	7. KeyIDs and key handles
	7.1 first-factor Bound Authenticator
	7.2 2ndF Bound Authenticator
	7.3 first-factor Roaming Authenticator
	7.4 2ndF Roaming Authenticator

	8. Access Control for Commands
	9. Considerations
	9.1 Algorithms and Key Sizes
	9.2 Indicating the Authenticator Model

	10. Relationship to other standards
	10.1 TEE
	10.2 Secure Elements
	10.3 TPM
	10.4 Unreliable Transports

	A. Security Guidelines
	B. Table of Figures
	C. References
	C.1 Normative references
	C.2 Informative references

	FIDO UAF APDU
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	3. SE-based Authenticator Implementation Use Cases
	3.1 Hybrid SE Authenticator
	3.1.1 Architecture of the Hybrid SE Authenticator
	3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

	4. FIDO UAF Applet and APDU commands
	4.1 UAF Applet in the Authenticator
	4.1.1 Application Identifier
	4.1.2 User Verification
	4.1.3 Cryptographic operations

	4.2 APDU Commands for FIDO UAF
	4.2.1 Class byte coding
	4.2.2 APDU command "UAF"
	4.2.3 APDU Command "SELECT"
	4.2.4 APDU Command "VERIFY"

	4.3 Managing Long APDU Commands and Responses
	4.3.1 ISO Variant
	4.3.2 Proprietary Variant

	5. Security considerations
	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO UAF Registry of Predefined Values
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	3. Authenticator Characteristics
	3.1 Assertion Schemes

	4. Predefined Tags
	4.1 Tags used in the protocol

	5. Predefined Extensions
	5.1 User Verification Method Extension
	5.2 User ID Extension
	5.3 Android SafetyNet Extension
	5.4 Android Key Attestation
	5.5 User Verification Caching
	5.5.1 UVC Request
	5.5.2 UVC Response
	5.5.3 Privacy Considerations
	5.5.4 Security Considerations

	6. Other Identifiers specific to FIDO UAF
	6.1 FIDO UAF Application Identifier (AID)

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO AppID and Facet Specification
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Motivation
	2.2 Avoiding App-Phishing
	2.3 Comparison to OAuth and OAuth2
	2.4 Non-Goals

	3. The AppID and FacetID Assertions
	3.1 Processing Rules for AppID and FacetID Assertions
	3.1.1 Determining the FacetID of a Calling Application
	3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
	3.1.3 TrustedFacet List and Structure
	3.1.4 AppID Example 1
	3.1.5 AppID Example 2
	3.1.6 Obtaining FacetID of Android Native App
	3.1.7 Additional Security Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Metadata Statements
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 Authenticator Attestation GUID (AAGUID) typedef
	3.2 CodeAccuracyDescriptor dictionary
	3.2.1 Dictionary CodeAccuracyDescriptor Members

	3.3 BiometricAccuracyDescriptor dictionary
	3.3.1 Dictionary BiometricAccuracyDescriptor Members

	3.4 PatternAccuracyDescriptor dictionary
	3.4.1 Dictionary PatternAccuracyDescriptor Members

	3.5 VerificationMethodDescriptor dictionary
	3.5.1 Dictionary VerificationMethodDescriptor Members

	3.6 verificationMethodANDCombinations typedef
	3.7 rgbPaletteEntry dictionary
	3.7.1 Dictionary rgbPaletteEntry Members

	3.8 DisplayPNGCharacteristicsDescriptor dictionary
	3.8.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

	3.9 EcdaaTrustAnchor dictionary
	3.9.1 Dictionary EcdaaTrustAnchor Members

	3.10 ExtensionDescriptor dictionary
	3.10.1 Dictionary ExtensionDescriptor Members

	3.11 AlternativeDescriptions dictionary
	3.11.1 Dictionary AlternativeDescriptions Members

	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	5.1 UAF Example
	5.2 U2F Example

	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Metadata Service
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Scope
	2.2 Detailed Architecture

	3. Metadata Service Details
	3.1 Metadata TOC Format
	3.1.1 Metadata TOC Payload Entry dictionary
	3.1.2 StatusReport dictionary
	3.1.3 AuthenticatorStatus enum
	3.1.4 RogueListEntry dictionary
	3.1.5 Metadata TOC Payload dictionary
	3.1.6 Metadata TOC
	3.1.7 Metadata TOC object processing rules

	4. Considerations
	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO ECDAA Algorithm
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Architecture Overview

	3. FIDO ECDAA Attestation
	3.1 Object Encodings
	3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)
	3.1.2 Encoding ECPoint values as byte strings (ECPointToB)
	3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

	3.2 Global ECDAA System Parameters
	3.3 Issuer Specific ECDAA Parameters
	3.4 ECDAA-Join
	3.4.1 ECDAA-Join Algorithm
	3.4.2 ECDAA-Join Split between Authenticator and ASM
	3.4.3 ECDAA-Join Split between TPM and ASM

	3.5 ECDAA-Sign
	3.5.1 ECDAA-Sign Algorithm
	3.5.2 ECDAA-Sign Split between Authenticator and ASM
	3.5.3 ECDAA-Sign Split between TPM and ASM

	3.6 ECDAA-Verify Operation

	4. FIDO ECDAA Object Formats and Algorithm Details
	4.1 Supported Curves for ECDAA
	4.2 ECDAA Algorithm Names
	4.3 ecdaaSignature object

	5. Considerations
	5.1 Algorithms and Key Sizes
	5.2 Indicating the Authenticator Model
	5.3 Revocation
	5.4 Pairing Algorithm
	5.5 Performance
	5.6 Binary Concatentation
	5.7 IANA Considerations

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Security Reference
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	2.1 Intended Audience

	3. Attack Classification
	Attack Classes
	4. FIDO Security Goals
	4.1 Assets to be Protected

	5. FIDO Security Measures
	5.1 Relation between Measures and Goals

	6. FIDO Security Assumptions
	6.1 Discussion

	7. Threat Analysis
	7.1 Threats to Client Side
	7.1.1 Exploiting User’s pattern matching weaknesses
	7.1.2 Threats to the User Device, FIDO Client and Relying Party Client Applications
	7.1.3 Creating a Fake Client
	7.1.4 Threats to FIDO Authenticator
	7.1.5 Threats to Relying Party
	7.1.6 Threats to the Secure Channel between Client and Relying Party
	7.1.7 Threats to the Infrastructure
	7.1.8 Threats Specific to Second Factor Authenicators (UAF / U2F)

	7.2 Acknowledgements

	A. References
	A.1 Informative references

	FIDO Registry of Predefined Values
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	3. Authenticator Characteristics
	3.1 User Verification Methods
	3.2 Key Protection Types
	3.3 Matcher Protection Types
	3.4 Authenticator Attachment Hints
	3.5 Transaction Confirmation Display Types
	3.6 Tags used for crypto algorithms and types
	3.6.1 Authentication Algorithms
	3.6.2 Public Key Representation Formats

	A. References
	A.1 Normative references
	A.2 Informative references

	FIDO Technical Glossary
	FIDO Alliance Implementation Draft 20 February 2018
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Introduction
	3. Definitions
	A. References
	A.1 Normative references
	A.2 Informative references

