fco

ALLIANCE

FIDO UAF Architectural Overview
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-overview-v1.1-ps-20170202.html
Previous version:

https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html

Editors:
Salah Machani, RSA, the Security Division of EMC
Rob Philpott, RSA, the Security Division of EMC
Sampath Srinivas, Google, Inc.
John Kemp, FIDO Alliance
Jeff Hodges, PayPal, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

The FIDO UAF strong authentication framework enables online services and websites, whether on the open Internet or within enterprises, to
transparently leverage native security features of end-user computing devices for strong user authentication and to reduce the problems
associated with creating and remembering many online credentials. The FIDO UAF Reference Architecture describes the components, protocols,
and interfaces that make up the FIDO UAF strong authentication ecosystem.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used
as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the specification
and to promote its widespread deployment.

Table of Contents

o 1. Introduction
o 1.1 Background

o 1.2 FIDO UAF Documentation
o 1.3 FIDO UAF Goals
« 2. FIDO UAF High-Level Architecture
o 2.1 FIDO UAF Client
o 2.2 FIDO UAF Server
o 2.3 FIDO UAF Protocols
o 2.4 FIDO UAF Authenticator Abstraction Layer
o 2.5 FIDO UAF Authenticator
o 2.6 FIDO UAF Authenticator Metadata Validation
« 3. FIDO UAF Usage Scenarios and Protocol Message Flows
o 3.1 FIDO UAF Authenticator Acquisition and User Enrollment
o 3.2 Authenticator Registration
o 3.3 Authentication
o 3.4 Step-up Authentication
o 3.5 Transaction Confirmation

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-overview-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
mailto:salah.machani@rsa.com
https://www.emc.com/domains/rsa/index.htm
https://www.emc.com/domains/rsa/index.htm
https://www.google.com
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

o 3.6 Authenticator Deregistration
o 3.7 Adoption of New Types of FIDO UAF Authenticators
« 4. Privacy Considerations
« 5. Relationship to Other Technologies
« 6. 0ATH, TCG, PKCS#11, and ISO 24727
o 7. Table of Figures

1. Introduction
This section is non-normative.

This document describes the FIDO Universal Authentication Framework (UAF) Reference Architecture. The target audience for this document is
decision makers and technical architects who need a high-level understanding of the FIDO UAF strong authentication solution and its relationship
to other relevant industry standards.

The FIDO UAF specifications are as follows:

« FIDO UAF Protocol

« FIDO UAF Application APl and Transport Binding
« FIDO UAF Authenticator Commands

« FIDO UAF Authenticator-Specific Module API

« FIDO UAF Registry of Predefined Values

« FIDO UAF APDU

The following additional FIDO documents provide important information relevant to the UAF specifications:

o FIDO AppID and Facets Specification
« FIDO Metadata Statements

« FIDO Metadata Service

o FIDO Registry of Predefined Values
« FIDO ECDAA Algorithm

o FIDO Security Reference

o FIDO Glossary

These documents may all be found on theFIDO Alliance website at http:/fidoalliance.org/specifications/download/
1.1 Background

This section is non-normative.

The FIDO Alliance mission is to change the nature of online strong authentication by:

« Developing technical specifications defining open, scalable, interoperable mechanisms that supplant reliance on passwords to securely
authenticate users of online services.

« Operating industry programs to help ensure successful worldwide adoption of the specifications.
« Submitting mature technical specifications to recognized standards development organization(s) for formal standardization.

The core ideas driving the FIDO Alliance's efforts are 1) ease of use, 2) privacy and security, and 3) standardization. The primary objective is to
enable online services and websites, whether on the open Internet or within enterprises, to leverage native security features of end-user computing
devices for strong user authentication and to reduce the problems associated with creating and remembering many online credentials.

There are two key protocols included in the FIDO architecture that cater to two basic options for user experience when dealing with Internet
services. The two protocols share many of underpinnings but are tuned to the specific intended use cases.

Universal Authentication Framework (UAF) Protocol

The UAF protocol allows online services to offer password-less and multi-factor security. The user registers their device to the online service by
selecting a local authentication mechanism such as swiping a finger, looking at the camera, speaking into the mic, entering a PIN, etc. The UAF
protocol allows the service to select which mechanisms are presented to the user.

Once registered, the user simply repeats the local authentication action whenever they need to authenticate to the service. The user no longer
needs to enter their password when authenticating from that device. UAF also allows experiences that combine multiple authentication
mechanisms such as fingerprint + PIN.

This document that you are reading describes the UAF reference architecture.

Universal 2nd Factor (U2F) Protocol

The U2F protocol allows online services to augment the security of their existing password infrastructure by adding a strong second factor to user
login. The user logs in with a username and password as before. The service can also prompt the user to present a second factor device at any
time it chooses. The strong second factor allows the service to simplify its passwords (e.g. 4-digit PIN) without compromising security.

During registration and authentication, the user presents the second factor by simply pressing a button on a USB device or tapping over NFC. The
user can use their FIDO U2F device across all online services that support the protocol leveraging built-in support in web browsers.

Please refer to the FIDO website for an overview and documentation set focused on the U2F protocol.

1.2 FIDO UAF Documentation
This section is non-normative.

To understand the FIDO UAF protocol, it is recommended that new audiences start by reading this architecture overview document and become
familiar with the technical terminology used in the specifications (the glossary). Then they should proceed to the individual UAF documents in the
recommended order listed below.

« FIDO UAF Overview: This document. Provides an introduction to the FIDO UAF architecture, protocols, and specifications.
« FIDO Technical Glossary: Defines the technical terms and phrases used in FIDO Alliance specifications and documents.
« Universal Authentication Framework (UAF)

http://fidoalliance.org/specifications/download/

o UAF Protocol Specification : Message formats and processing rules for all UAF protocol messages.
o UAF Application APl and Transport Binding Specification: APIs and interoperability profile for client applications to utilize FIDO
UAF.

o UAF Authenticator Commands: Low-level functionality that UAF Authenticators should implement to support the UAF protocol.
o UAF Authenticator-specific Module API: Authenticator-specific Module API provided by an ASM to the FIDO client.

o UAF Registry of Predefined Values: defines all the strings and constants reserved by UAF protocols.

o UAF APDU: defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units (APDUs).

« FIDO AppID and Facet Specification : Scope of user credentials and how a trusted computing base which supports application isolation
may make access control decisions about which keys can be used by which applications and web origins.

« FIDO Metadata Statements: Information describing form factors, characteristics, and capabilities of FIDO Authenticators used to inform
interactions with and make policy decisions about the authenticators.

« FIDO Metadata Service : Baseline method for relying parties to access the latest Metadata statements.
« FIDO ECDAA Algorithm: Defines the direct anonymous attestation algorithm for FIDO Authenticators.

« FIDO Registry of Predefined Values: defines all the strings and constants reserved by FIDO protocols with relevance to multiple FIDO
protocol families.

« FIDO Security Reference: Provides an analysis of FIDO security based on detailed analysis of security threats pertinent to the FIDO
protocols based on its goals, assumptions, and inherent security measures.

The remainder of this Overview section of the reference architecture document introduces the key drivers, goals, and principles which inform the
design of FIDO UAF.

Following the Overview, this document describes:

« A high-level look at the components, protocols, and APIs defined by the architecture
« The main FIDO UAF use cases and the protocol message flows required to implement them.
« The relationship of the FIDO protocols to other relevant industry standards.

1.3 FIDO UAF Goals
This section is non-normative.

In order to address today's strong authentication issues and develop a smoothly-functioning low-friction ecosystem, a comprehensive, open, multi-
vendor solution architecture is needed that encompasses:

« User devices, whether personally acquired, enterprise-issued, or enterprise BYOD, and the device's potential operating environment, e.g.
home, office, in the field, etc.

« Authenticators®

« Relying party applications and their deployment environments

« Meeting the needs of both end users and Relying Parties

¢ Strong focus on both browser- and native-app-based end-user experience

This solution architecture must feature:

« FIDO UAF Authenticator discovery, attestation, and provisioning

« Cross-platform strong authentication protocols leveraging FIDO UAF Authenticators
¢ A uniform cross-platform authenticator API

« Simple mechanisms for Relying Party integration

The FIDO Alliance envisions an open, multi-vendor, cross-platform reference architecture with these goals:

« Support strong, multi-factor authentication: Protect Relying Parties against unauthorized access by supporting end user authentication
using two or more strong authentication factors ("something you know", "something you have", "something you are").

« Build on, but not require, existing device capabilities: Facilitate user authentication using built-in platform authenticators or capabilities
(fingerprint sensors, cameras, microphones, embedded TPM hardware), but do not preclude the use of discrete additional authenticators.

« Enable selection of the authentication mechanism Facilitate Relying Party and user choice amongst supported authentication
mechanisms in order to mitigate risks for their particular use cases.

« Simplify integration of new authentication capabilities: Enable organizations to expand their use of strong authentication to address new
use cases, leverage new device's capabilities, and address new risks with a single authentication approach.

« Incorporate extensibility for future refinements and innovations: Design extensible protocols and APIs in order to support the future
emergence of additional types of authenticators, authentication methods, and authentication protocols, while maintaining reasonable
backwards compatibility.

« Leverage existing open standards where possible, openly innovate and extend where not: An open, standardized, royalty-free
specification suite will enable the establishment of a virtuous-circle ecosystem, and decrease the risk, complexity, and costs associated with
deploying strong authentication. Existing gaps -- notably uniform authenticator provisioning and attestation, a uniform cross-platform
authenticator API, as well as a flexible strong authentication challenge-response protocol leveraging the user's authenticators will be
addressed.

« Complement existing single sign-on, federation initiatives While industry initiatives (such as OpenID, OAuth, SAML, and others) have
created mechanisms to reduce the reliance on passwords through single sign-on or federation technologies, they do not directly address the
need for an initial strong authentication interaction between end users and Relying Parties.

« Preserve the privacy of the end user. Provide the user control over the sharing of device capability information with Relying Parties, and
mitigate the potential for collusion amongst Relying Parties.

« Unify end-User Experience: Create easy, fun, and unified end-user experiences across all platforms and across similar Authenticators.

2. FIDO UAF High-Level Architecture

This section is non-normative.

The FIDO UAF Architecture is designed to meet the FIDO goals and yield the desired ecosystem benefits. It accomplishes this by filling in the
status-quo's gaps using standardized protocols and APIs.

The following diagram summarizes the reference architecture and how its components relate to typical user devices and Relying Parties.

The FIDO-specific components of the reference architecture are described below.

_ B protocol | |T|—S"‘9}"

BROWSER / APP

Cryptographic ‘ FIDO SERVER

FIDO CLIENT authentication key
reference DB

Authentication
keys

FIDO AUTHENTICATOR

Atte station key . Update

Authenticator < FIDO METADATA SERVICE
metadata &
attestation trust

o store -] ’
% B - R T Certify
I compliance

Fig. 1 FIDO UAF High-Level Architecture

2.1 FIDO UAF Client
A FIDO UAF Client implements the client side of the FIDO UAF protocols, and is responsible for:

« Interacting with specific FIDO UAF Authenticators using the FIDO UAF Authenticator Abstraction layer via the FIDO UAF Authenticator API.

« Interacting with a user agent on the device (e.g. a mobile app, browser) using user agent-specific interfaces to communicate with the FIDO
UAF Server. For example, a FIDO-specific browser plugin would use existing browser plugin interfaces or a mobile app may use a FIDO-
specific SDK. The user agent is then responsible for communicating FIDO UAF messages to a FIDO UAF Server at a Relying Party.

The FIDO UAF architecture ensures that FIDO client software can be implemented across a range of system types, operating systems, and Web
browsers. While FIDO client software is typically platform-specific, the interactions between the components should ensure a consistent user

experience from platform to platform.

2.2 FIDO UAF Server
A FIDO UAF server implements the server side of the FIDO UAF protocols and is responsible for:

« Interacting with the Relying Party web server to communicate FIDO UAF protocol messages to a FIDO UAF Client via a device user agent.

« Validating FIDO UAF authenticator attestations against the configured authenticator metadata to ensure only trusted authenticators are
registered for use.

« Manage the association of registered FIDO UAF Authenticators to user accounts at the Relying Party.

« Evaluating user authentication and transaction confirmation responses to determine their validity.

The FIDO UAF server is conceived as being deployable as an on-premise server by Relying Parties or as being outsourced to a FIDO-enabled
third-party service provider.

2.3 FIDO UAF Protocols

The FIDO UAF protocols carry FIDO UAF messages between user devices and Relying Parties. There are protocol messages addressing:

« Authenticator Registration: The FIDO UAF registration protocol enables Relying Parties to:

o Discover the FIDO UAF Authenticators available on a user's system or device. Discovery will convey FIDO UAF Authenticator
attributes to the Relying Party thus enabling policy decisions and enforcement to take place.

o Verify attestation assertions made by the FIDO UAF Authenticators to ensure the authenticator is authentic and trusted. Verification
occurs using the attestation public key certificates distributed via authenticator metadata.

o Register the authenticator and associate it with the user's account at the Relying Party. Once an authenticator attestation has been
validated, the Relying Party can provide a unique secure identifier that is specific to the Relying Party and the FIDO UAF Authenticator.
This identifier can be used in future interactions between the pair {RP, Authenticator} and is not known to any other devices.

« User Authentication: Authentication is typically based on cryptographic challenge-response authentication protocols and will facilitate user
choice regarding which FIDO UAF Authenticators are employed in an authentication event.

« Secure Transaction Confirmation: If the user authenticator includes the capability to do so, a Relying Party can present the user with a
secure message for confirmation. The message content is determined by the Relying Party and could be used in a variety of contexts such
as confirming a financial transaction, a user agreement ,or releasing patient records.

« Authenticator Deregistration: Deregistration is typically required when the user account is removed at the Relying Party. The Relying Party
can trigger the deregistration by requesting the Authenticator to delete the associated UAF credential with the user account.

2.4 FIDO UAF Authenticator Abstraction Layer

The FIDO UAF Authenticator Abstraction Layer provides a uniform APl to FIDO Clients enabling the use of authenticator-based cryptographic
services for FIDO-supported operations. It provides a uniform lower-layer "authenticator plugin" API facilitating the deployment of multi-vendor
FIDO UAF Authenticators and their requisite drivers.

2.5 FIDO UAF Authenticator

A FIDO UAF Authenticator is a secure entity, connected to or housed within FIDO user devices, that can create key material associated to a
Relying Party. The key can then be used to participate in FIDO UAF strong authentication protocols. For example, the FIDO UAF Authenticator can
provide a response to a cryptographic challenge using the key material thus authenticating itself to the Relying Party.

In order to meet the goal of simplifying integration of trusted authentication capabilities, a FIDO UAF Authenticator will be able to attest to its
particular type (e.g., biometric) and capabilities (e.g., supported crypto algorithms), as well as to its provenance. This provides a Relying Party with
a high degree of confidence that the user being authenticated is indeed the user that originally registered with the site.

2.6 FIDO UAF Authenticator Metadata Validation

In the FIDO UAF context, attestation is how Authenticators make claims to a Relying Party during registration that the keys they generate, and/or
certain measurements they report, originate from genuine devices with certified characteristics. An attestation signature, carried in a FIDO UAF
registration protocol message is validated by the FIDO UAF Server. FIDO UAF Authenticators are created with attestation private keys used to
create the signatures and the FIDO UAF Server validates the signature using that authenticator's attestation public key certificate located in the
authenticator metadata. The metadata holding attestation certificates is shared with FIDO UAF Servers out of band.

3. FIDO UAF Usage Scenarios and Protocol Message Flows

This section is non-normative.

The FIDO UAF ecosystem supports the use cases briefly described in this section.

3.1 FIDO UAF Authenticator Acquisition and User Enroliment

It is expected that users will acquire FIDO UAF Authenticators in various ways: they purchase a new system that comes with embedded FIDO UAF
Authenticator capability; they purchase a device with an embedded FIDO UAF Authenticator, or they are given a FIDO Authenticator by their
employer or some other institution such as their bank.

After receiving a FIDO UAF Authenticator, the user must go through an authenticator-specific enroliment process, which is outside the scope of the
FIDO UAF protocols. For example, in the case of a fingerprint sensing authenticator, the user must register their fingerprint(s) with the
authenticator. Once enrollment is complete, the FIDO UAF Authenticator is ready for registration with FIDO UAF enabled online services and
websites.

3.2 Authenticator Registration

Given the FIDO UAF architecture, a Relying Party is able to transparently detect when a user begins interacting with them while possessing an
initialized FIDO UAF Authenticator. In this initial introduction phase, the website will prompt the user regarding any detected FIDO UAF
Authenticator(s), giving the user options regarding registering it with the website or not.

User Device “ Relying Party

FIDO Client User Agent
(Windows, Mac, (App,
iOS, Android, ...) Browser, ...)

Initiate Registration

Registration Request
+ Policy

Registration Response +
Attestation + User's Public

Key
FIDO Authenticators
Validate Response
& Attestation,
Enroll User & Store User’s
Generate New Key Pair Public Key

specific to RP WebApp)

Fig. 2 Registration Message Flow

3.3 Authentication

Following registration, the FIDO UAF Authenticator will be subsequently employed whenever the user authenticates with the website (and the
authenticator is present). The website can implement various fallback strategies for those occasions when the FIDO Authenticator is not present.
These might range from allowing conventional login with diminished privileges to disallowing login.

User Device i Relying Party

FIDO Client User Agent

(Windows, Mac, .
iOS, Android, ...) (App

Browser, ...} Initiate Authentication
1

Authentication Regquest
+ Challenge + Policy

Authentication Response
Signed by User's Private Key

FIDO Authenticators

Validate Response
Using User’s
Private Key Public Key
(specific to User + RP
WebApp)

Verify User & Unlock

Fig. 3 Authentication Message Flow

This overall scenario will vary slightly depending upon the type of FIDO UAF Authenticator being employed. Some authenticators may sample
biometric data such as a face image, fingerprint, or voice print. Others will require a PIN or local authenticator-specific passphrase entry. Still others
may simply be a hardware bearer authenticator. Note that it is permissible for a FIDO Client to interact with external services as part of the
authentication of the user to the authenticator as long as the FIDO Privacy Principles are adhered to.

3.4 Step-up Authentication

Step-up authentication is an embellishment to the basic website login use case. Often, online services and websites allow unauthenticated, and/or
only nominally authenticated use -- for informational browsing, for example. However, once users request more valuable interactions, such as
entering a members-only area, the website may request further higher-assurance authentication. This could proceed in several steps if the user
then wishes to purchase something, with higher-assurance steps with increasing transaction value.

FIDO UAF will smoothly facilitate this interaction style since the website will be able to discover which FIDO UAF Authenticators are available on
FIDO-wielding users' systems, and select incorporation of the appropriate one(s) in any particular authentication interaction. Thus online services
and websites will be able to dynamically tailor initial, as well as step-up authentication interactions according to what the user is able to wield and
the needed inputs to website's risk analysis engine given the interaction the user has requested.

3.5 Transaction Confirmation

There are various innovative use cases possible given FIDO UAF-enabled Relying Parties with end-users wielding FIDO UAF Authenticators.
Website login and step-up authentication are relatively simple examples. A somewhat more advanced use case is secure transaction processing.

User Device H Relying Party

FIDO Client User Agent FIDO Server

(Windows, Mac, (App,
i0S, Android, ...) Browser, ...)

Initiate Transaction

Authentication Request
+ Transaction Text

Authentication Response +
Text Hash Signed by User's
Private Key

FIDO Authenticators

Validate Response
& Text Hash
Using User’s

Public Key

Verify User, Display Text,
& Unlock Private Key
(specific to User + RP

WebApp)

Fig. 4 Confirmation Message Flow

Imagine a situation in which a Relying Party wants the end-user to confirm a transaction (e.g. financial operation, privileged operation, etc) so that
any tampering of a transaction message during its route to the end device display and back can be detected. FIDO architecture has a concept of
"'secure transaction" which provides this capability. Basically if a FIDO UAF Authenticator has a transaction confirmation display capability, FIDO
UAF architecture makes sure that the system supports What You See is What You Sign mode (WYSIWYS). A number of different use cases can
derive from this capability -- mainly related to authorization of transactions (send money, perform a context specific privileged action, confirmation
of email/address, etc).

3.6 Authenticator Deregistration

There are some situations where a Relying Party may need to remove the UAF credentials associated with a specific user account in FIDO
Authenticator. For example, the user’s account is cancelled or deleted, the user’s FIDO Authenticator is lost or stolen, etc. In these situations, the
RP may request the FIDO Authenticator to delete authentication keys that are bound to user account.

User Device ' Relying Party

FIDO Client FIDO Server
(Windows, Mac, iOS,
Android, ...)
Contact RP _
Deregistration
Request

FIDO Authenticators

Fig. 5 Deregistration Message Flow

3.7 Adoption of New Types of FIDO UAF Authenticators

Authenticators will evolve and new types are expected to appear in the future. Their adoption on the part of both users and Relying Parties is
facilitated by the FIDO architecture. In order to support a new FIDO UAF Authenticator type, Relying Parties need only to add a new entry to their

configuration describing the new authenticator, along with its FIDO Attestation Certificate. Afterwards, end users will be able to use the new FIDO
UAF Authenticator type with those Relying Parties.

4. Privacy Considerations
This section is non-normative.
User privacy is fundamental to FIDO and is supported in UAF by design. Some of the key privacy-aware design elements are summarized here:

« A UAF device does not have a global identifier visible across relying parties and does not have a global identifier within a particular relying
party. If for example, a person looses their UAF device, someone finding it cannot “point it at a relying party” and discover if the original user
had any accounts with that relying party. Similarly, if two users share a UAF device and each has registered their account with the same
relying party with this device, the relying party will not be able to discern that the two accounts share a device, based on the UAF protocol
alone.

« The UAF protocol generates unique asymmetric cryptographic key pairs on a per-device, per-user account, and per-relying party basis.
Cryptographic keys used with different relying parties will not allow any one party to link all the actions to the same user, hence the
unlinkability property of UAF.

« The UAF protocol operations require minimal personal data collection: at most they incorporate a user's relying party username. This
personal data is only used for FIDO purposes, for example to perform user registration, user verification, or authorization. This personal data
does not leave the user’s computing environment and is only persisted locally when necessary.

« In UAF, user verification is performed locally. The UAF protocol does not convey biometric data to relying parties, nor does it require the
storage of such data at relying parties.

« Users explicitly approve the use of a UAF device with a specific relying party. Unique cryptographic keys are generated and bound to a
relying party during registration only after the user’s consent.

« UAF authenticators can only be identified by their attestation certificates on a production batch-level or on manufacturer- and device model-

level. They cannot be identified individually. The UAF specifications require implementers to ship UAF authenticators with the same
attestation certificate and private key in batches of 100,000 or more in order to provide unlinkability.

5. Relationship to Other Technologies

This section is non-normative.

OpenlD, SAML, and OAuth

FIDO protocols (both UAF and U2F) complement Federated Identity Management (FIM) frameworks, such as OpenID and SAML, as well as web
authorization protocols, such as OAuth. FIM Relying Parties can leverage an initial authentication event at an identity provider (IdP). However,
OpenlID and SAML do not define specific mechanisms for direct user authentication at the IdP.

When an IdP is integrated with a FIDO-enabled authentication service, it can subsequently leverage the attributes of the strong authentication with
its Relying Parties. The following diagram illustrates this relationship. FIDO-based authentication (1) would logically occur first, and the FIM
protocols would then leverage that authentication event into single sign-on events between the identity provider and its federated Relying Parties
(2)2

Federated Relying Party

Federated Relying Party Identity Provider and
Website Relying Party

Identity Provider Services
(2) Federated Identity
Management Protocols

(e.g. OpeniD, SAML)

Web Application

$

User Device

User Agent (Mobile App,
Browser, ...
4 0S/Server
Security
Components

1) FIDO Registration,
entication, Confirmation

FIDO Client
(Windows, Mac, iOS, Android)

Authenticator Abstraction
t t FIDO Risk & Identity
Authenticator Systems

Metadata
Validation

FIDO Authenticators

Fig. 6 i;IDO UAF & Federated Identity Fram'eworks
6. OATH, TCG, PKCS#11, and ISO 24727

These are either initiatives (OATH, Trusted Computing Group (TCG)), or industry standards (PKCS#11, ISO 24727). They all share an underlying
focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator abstractions.
TCG produces specifications for the Trusted Platform Module, as well as networked trusted computing.

OATH, the "Initiative for Open AuTHentication", focuses on defining symmetric key provisioning protocols and authentication algorithms for
hardware One-Time Password (OTP) authenticators.

The FIDO framework shares several core notions with the foregoing efforts, such as an authentication abstraction interface, authenticator
attestation, key provisioning, and authentication algorithms. FIDO's work will leverage and extend some of these specifications.

Specifically, FIDO will complement them by addressing:

« Authenticator discovery
o User experience
« Harmonization of various authenticator types, such as biometric, OTP, simple presence, smart card, TPM, etc.

7. Table of Figures

Fig. 1 FIDO UAF High-Level Architecture

Fig. 2 Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Confirmation Message Flow

Fig. 5 Deregistration Message Flow

Fig. 6 FIDO UAF & Federated Identity Frameworks

1. Also known as: Authentication Tokens, Security Tokens, etc.<.

2. FIM protocols typically convey IdP <-> RP interactions through the browser via HTTP redirects and POSTs.<.

fco

ALLIANCE

FIDO UAF Protocol Specification
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-vi1.1-ps-20170202.html
Previous version:

https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-protocol-v1.1-id-20170202.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Eric Tiffany, FIDO Alliance
Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Dirk Balfanz, Google, Inc.
Brad Hill, PayPal, Inc.
Jeff Hodges, PayPal. Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 EIDO Alliance All Rights Reserved.

Abstract

The goal of the Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication mechanism for a particular end user or
interaction, while preserving the option to leverage emerging device security capabilities in the future without requiring additional integration
effort.

This document describes the FIDO architecture in detail, it defines the flow and content of all UAF protocol messages and presents the
rationale behind the design choices.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITA(':I'ION, ANY E)é)PRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be
used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Key Words

« 2. Overview

o 2.1 Scope

o 2.2 Architecture

o 2.3 Protocol Conversation
= 2.3.1 Registration
= 2.3.2 Authentication
= 2.3.3 Transaction Confirmation
= 2.3.4 Deregistration

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-protocol-v1.1-id-20170202.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
https://www.noknok.com/
https://www.google.com/
mailto:hillbrad@gmail.com
https://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

« 3. Protocol Details
o 3.1 Shared Structures and Types
= 3.1.1 Version Interface
= 3.1.1.1 Attributes
= 3.1.2 Operation enumeration
= 3.1.3 OperationHeader dictionary
= 3.1.3.1 Dictionary operationteader Members
= 3.1.4 Authenticator Attestation ID (AAID) typedef
= 3.1.5 KeylD typedef
= 3.1.6 ServerChallenge typedef
= 3.1.7 FinalChallengeParams dictionary
= 3.1.7.1 Dictionary rinalchallengerarams Members

= 3.1.8 TLS ChannelBinding dictionary
= 3.1.8.1 Dictionary channelBinding Members

= 3.1.9 JwkKey dictionary
= 3.1.9.1 Dictionary gwkxey Members

= 3.1.10 Extension dictionary
= 3.1.10.1 Dictionary extension Members

= 3.1.11 MatchCriteria dictionary
= 3.1.11.1 Dictionary matchcriteria Members

= 3.1.12 Policy dictionary
= 3.1.12.1 Dictionary ro1icy Members

o 3.2 Processing Rules for the Server Policy
= 3.2.1 Examples
o 3.3 Version Negotiation

o 3.4 Registration Operation
= 3.4.1 Registration Request Message
= 3.4.2 RegistrationRequest dictionary
= 3.4.2.1 Dictionary registrationrequest Members

= 3.4.3 AuthenticatorRegistrationAssertion dictionary
= 3.4.3.1 Dictionary authenticatorRegistrationassertion Members
= 3.4.4 Registration Response Message
= 3.4.5 RegistrationResponse dictionary
= 3.4.5.1 Dictionary RegistrationResponse Members
= 3.4.6 Registration Processing Rules
= 3.4.6.1 Registration Request Generation Rules for FIDO Server
= 3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients
= 3.4.6.2.1 Mapping ASM Status Codes to ErrorCode
= 3.4.6.3 Registration Request Processing Rules for FIDO Authenticator
= 3.4.6.4 Registration Response Generation Rules for FIDO UAF Client
» 3.4.6.5 Registration Response Processing Rules for FIDO Server

o 3.5 Authentication Operation
= 3.5.1 Transaction dictionary
= 3.5.1.1 Dictionary Transaction Members
= 3.5.2 Authentication Request Message
= 3.5.3 AuthenticationRequest dictionary
= 3.5.3.1 Dictionary authenticationRequest Members

= 3.5.4 AuthenticatorSignAssertion dictionary
= 3.5.4.1 Dictionary authenticatorsignaAssertion Members

= 3.5.5 AuthenticationResponse dictionary
= 3.5.5.1 Dictionary authenticationrResponse Members
= 3.5.6 Authentication Response Message

= 3.5.7 Authentication Processing Rules
= 3.5.7.1 Authentication Request Generation Rules for FIDO Server

= 3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

= 3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
= 3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client
= 3.5.7.5 Authentication Response Processing Rules for FIDO Server

o 3.6 Deregistration Operation
= 3.6.1 Deregistration Request Message
= 3.6.2 DeregisterAuthenticator dictionary
= 3.6.2.1 Dictionary peregisterauthenticator Members

= 3.6.3 DeregistrationRequest dictionary
= 3.6.3.1 Dictionary DeregistrationRequest Members

= 3.6.4 Deregistration Processing Rules
= 3.6.4.1 Deregistration Request Generation Rules for FIDO Server
= 3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client
= 3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

¢ 4. Considerations
o 4.1 Protocol Core Design Considerations

= 4.1.1 Authenticator Metadata
= 4.1.2 Authenticator Attestation
= 4.1.2.1 Basic Attestation
= 4.1.2.1.1 Full Basic Attestation

» 4.1.2.1.2 Surrogate Basic Attestation
= 4.1.2.2 Direct Anonymous Attestation (ECDAA)
= 4.1.3 Error Handling
= 4.1.4 Assertion Schemes
= 4.1.5 Username in Authenticator
= 4.1.6 Silent Authenticators
= 4.1.7 TLS Protected Communication
o 4.2 Implementation Considerations
= 4.2.1 Server Challenge and Random Numbers

o 4.3 Security Considerations
= 4.3.1 FIDO Authenticator Security

= 4.3.2 Cryptographic Algorithms

» 4.3.3 FIDO Client Trust Model
= 4.3.3.1 Isolation using KHAccessToken

» 4.3.4 TLS Binding

= 4.3.5 Session Management

= 4.3.6 Personas

= 4.3.7 ServerData and KeyHandle

= 4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata
= 4.3.9 Policy Verification

= 4.3.10 Replay Attack Protection

» 4.3.11 Protection against Cloned Authenticators

= 4.3.12 Anti-Fraud Signals

o 4.4 Interoperability Considerations

« 5. UAF Supported Assertion Schemes
o 5.1 Assertion Scheme "UAFV1TLV"
= 5.1.1 KeyRegistrationData

» 5.1.2 SignedData

« 6. Definitions
« 7.Table of Figures

« A. References
o A.1 Normative references

o A.2 Informative references
1. Notation
Type names, attribute names and element names are written ascode.
String literals are enclosed in **, e.g. “UAF-TLV".
In formulas we use “I” to denote byte wise concatenation operations.
The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members must not have a value of null — i.e., there are no declarations of nullable dictionary members in this specification.
Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.
Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.
UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

NOTE
Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-

progress. If you are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119)].

2. Overview

This section is non-normative.

The goal of this Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

The design goal of the protocol is to enable Relying Parties to leverage the diverse and heterogeneous set of security capabilities available on
end users' devices via a single, unified protocol.

This approach is designed to allow the FIDO Relying Parties to choose the best available authentication mechanism for a particular end user
or interaction, while preserving the option for a relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

2.1 Scope

This document describes FIDO architecture in detail and defines the UAF protocol as a network protocol. It defines the flow and content of all
UAF messages and presents the rationale behind the design choices.

Particular application-level bindings are outside the scope of this document. This document is not intended to answer questions such as:

« What does an HTTP binding look like for UAF?
« How can a web application communicate to FIDO UAF Client?
« How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF specifications, e.g. [UAFAppAPIAndTransport] [UAFASM] [UAFAuthnrCommands].

2.2 Architecture

The following diagram depicts the entities involved in UAF protocol.

. r_a}‘ - TS . ;
protocol | |T|—5"<B}'

BROWSER /APP : UAF Protocol

Cryptographic
FIDO CLIENT authentication key
reference DB

‘ FIDO SERVER

Authentication
keys

FIDO AUTHENTICATOR

k-
| Aftestation key ‘

metadata &
attestation trust

[Authenticater -~ FIDO METADATA SERVICE
‘ stare

Certify
compliance

T

T"

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

« FIDO Server, running on the relying party's infrastructure
« FIDO UAF Client, part of the user agent and running on the FIDO user device
« FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to the UAF Authenticator Metadata [FIDOMetadataStatement] describing all the
authenticators it will interact with.

2.3 Protocol Conversation

The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server.

« Registration: UAF allows the relying party to register a FIDO Authenticator with the user's account at the relying party. The relying party
can specify a policy for supporting various FIDO Authenticator types. A FIDO UAF Client will only register existing authenticators in
accordance with that policy.

« Authentication: UAF allows the relying party to prompt the end user to authenticate using a previously registered FIDO Authenticator.
This authentication can be invoked any time, at the relying party's discretion.

« Transaction Confirmation: In addition to providing a general authentication prompt, UAF offers support for prompting the user to
confirm a specific transaction.

This prompt includes the ability to communicate additional information to the client for display to the end user, using the client's
transaction confirmation display. The goal of this additional authentication operation is to enable relying parties to ensure that the user is
confirming a specified set of the transaction details (instead of authenticating a session to the user agent).

« Deregistration: The relying party can trigger the deletion of the account-related authentication key material.

Although this document defines the FIDO Server as the initiator of requests, in a real world deployment the first UAF operation will always
follow a user agent's (e.g. HTTP) request to a relying party.

The following sections give a brief overview of the protocol conversation for individual operations. More detailed descriptions can be found in
the sections Registration Operation, Authentication Operation, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for registration.

FIDO Client FIDQ Server
; Login to Relying Party ;
; Application ;

Y

If you have these Authenticators — register them

[
=t

Fingerprint Face
Authentication Authentication

| Voice |
User ! [TPM J [Authentication J !

Select an
Authenticator

'y

' Here is a proof of possession of this :
' i Authenticator type and a new key generated ;
for this account on FIDO Server '

:
; -

Fig. 2 UAF Registration Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.2 Authentication

The following diagram depicts the message flows for the authentication operation.

FIDO Client FIDO Server

' Initiate an authentication to Relying Party !

-

If you have any of these Authenticators - :
authenticate with them

[
|t

. Fingerprint Face .
! Authentication Authentication !

; Voice
User ! [TPM J [Authentication J !

L

! Authenticate to
Authenticator(s)

-

i Authentication response from each
Authenticator

' !

Fig. 3 Authentication Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.

2.3.3 Transaction Confirmation

The following figure depicts the transaction confirmation message flow.

FIDO Client FIDO Server

' Initiate a transaction with Relying Party !

-
-

If you have any of these Authenticators - :
authenticate with them

[
=t

. Fingerprint Face i
! Authentication Authentication !

5 Voice !
User ! [TPM J [Aumenﬁcaﬁon J !

Display '
Transaction Text . .

—
.

Authenticate to !
Authenticator(s)

Authentication response from each
Authenticator

' -

Fig. 4 Transaction Confirmation Message Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

2.3.4 Deregistration

The following diagram depicts the deregistration message flow.

FIDO Client FIDO Server

Login to Relying Party Application

-
-

Deregister this Authenticator

A

Delete local !
registration data ! i

Fig. 5 Deregistration Mlessage Flow

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

3. Protocol Details

This section is normative.

This section provides a detailed description of operations supported by the UAF Protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

All string literals in this specification are constructed from Unicode codepoints within the set u+0000..u+007F.

Unless otherwise specified, protocol messages are transferred with a UTF-8 content encoding.

NOTE

All data used in this protocol must be exchanged using a secure transport protocol (such as TLS/HTTPS) established between the FIDO
UAF Client and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section 4.1.7 TLS
Protected Communication.

The notation basec4url (byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

The notation string[5] reads as five unicode characters, represented as a UTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a WebIDL [WebIDL-ED] DOMString.

As the UTF-8 representation has variable length, the maximum byte length of string[5] iS string[4#5].
All strings are case-sensitive unless stated otherwise.
This document uses WebIDL [WebIDL-ED] to define UAF protocol messages.

Implementations must serialize the UAF protocol messages for transmission using UTF-8 encoded JSON [RFC4627].
3.1 Shared Structures and Types

This section defines types and structures shared by various operations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.

interface Version {
readonly attribute unsigned short major;
readonly attribute unsigned short minor;

}i

3.1.1.1 Attributes

major Of type unsigned short, readonly
Maijor version.

minor Of type unsigned short, readonly
Minor version.

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

enum Operation {
"Reg",
"Auth",
"Dereg"

}i

Enumeration description

Reg Registration

Authentication or Transaction
Confirmation

pereg Deregistration

Auth

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

dictionary OperationHeader {
required Version upv;
required Operation op;

DOMString applID;
DOMString serverData;
Extension]] exts;

3.1.83.1 Dictionary operationteader Members

upv Of type required Version
UAF protocol version (upv). To conform with this version of the UAF spec set, the major value must be 1 and the minor value must be
1
op of type required Operation
Name of FIDO operation (op) this message relates to.
NOTE

"Auth" is used for both authentication and transaction confirmation.

app1D of type DOMString
string[0..512].

The application identifier that the relying party would like to assert.

There are three ways to set theapp1p [FIDOAppIDAndFacets]:

1. If the element is missing or empty in the request, the FIDO UAF Client must set it to theracet1p of the caller.

2. If the app1D present in the message is identical to the racet1p of the caller, the FIDO UAF Client must accept it.

3. Ifitis an URI with HTTPS protocol scheme, the FIDO UAF Client must use it to load the list of trusted facet identifiers from the
specified URI. The FIDO UAF Client must only accept the request, if the facet identifier of the caller matches one of the trusted
facet identifiers in the list returned from dereferencing this URI.

NOTE
The new key pair that the authenticator generates will be associated with this application identifier.

Security Relevance: The application identifier is used by the FIDO UAF Client to verify the eligibility of an application to trigger
the use of a specific vauth.xey. See [FIDOAppIDAndFacets]

serverbata Of type DOMString
string[l..1536].

A session identifier created by the relying party.
NOTE
The relying party can opaquely store things like expiration times for the registration session, protocol version used and other
useful information in servernata. This data is opaque to FIDO UAF Clients. FIDO Servers may reject a response that is
lacking this data or is containing unauthorized modifications to it.

Servers that depend on the integrity ofserverpata should apply appropriate security measures, as described in Registration
Request Generation Rules for FIDO Server and section ServerData and KeyHandle.

exts Of type array of Extension
List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

typedef DOMString AAID;

string[9]

Each authenticator must have an aa1p to identify UAF enabled authenticator models globally. The aarp must uniquely identify a specific
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security characteristics within the model (see Security Considerations).

The aa1p is a string with format "V#M", where

"#" is a separator

"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.

"M" indicates the authenticator Model Code. This code consists of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the 2a1p is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are identical.

The FIDO Alliance is responsible for assigning authenticator vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators. Authenticator vendors must assign
unique aa1ps to authenticators with different security characteristics.

AAIDs are unique and each of them must relate to a distinct authentication metadata file ((FIDOMetadataStatement])
NOTE

Adding new firmware/software features, or changing the underlying hardware protection mechanisms will typically change the security
characteristics of an authenticator and hence would require a new 221p to be used. Refer to ([FIDOMetadataStatement]) for more details.

3.1.5 KeyID typedef

typedef DOMString KeyID;

base64url (byte[32...2048])

keyID iS a unique identifier (within the scope of anaa1p) used to refer to a specific uauth.key. It is generated by the authenticator and registered
with a FIDO Server.

The (2a1D, xey1D) tuple must uniquely identify an authenticator's registration for a relying party. Whenever a FIDO Server wants to provide
specific information to a particular authenticator it must use the (aa1p, xey1D) tuple.

key1D must be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the FIDO Server should provide the xey1p back to the authenticator for the latter
to locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage for, and cannot rely on any ASM to store, generated key handles should provide the
key handle as part of the authenticatorRegistrationAssertion.assertion.KeyID during the registration operation (see also section ServerData
and KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the matchcriteria dictionary which is
part of the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

NOTE

The exact structure and content of a xey1p is specific to the authenticator implementation.

3.1.6 ServerChallenge typedef

typedef DOMString ServerChallenge;

base64url (byte[8...64])

serverChallenge IS a server-provided random challenge. Security Relevance: The challenge is used by the FIDO Server to verify whether an
incoming response is new, or has already been processed. See section Replay Attack Protection for more details.

The serverchallenge should be mixed into the entropy pool of the authenticator. Security Relevance: The FIDO Server should provide a
challenge containing strong cryptographic randomness whenever possible. See section Server Challenge and Random Numbers.

NOTE

The minimum challenge length of 8 bytes follows the requirement in [SP800-63] and is equivalent to the 20 decimal digits as required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can be used without truncation.

NOTE

The mixing of multiple sources of randomness is recommended to improve the quality of the random numbers generated by the
authenticator, as described in [RFC4086].

3.1.7 FinalChallengeParams dictionary

dictionary FinalChallengeParams {

required DOMString appID;
required ServerChallenge challenge;
required DOMString facetID;

required ChannelBinding channelBinding;

Yi

3.1.7.1 Dictionary Finalchallengerarams Members

app1D Of type required DOMString
string[1l..512]

The value must be taken from the app1p field of the operationteader
challenge Of type required ServerChallenge

The value must be taken from the challenge field of the request (e.g. RegistrationRequest.challenge,
AuthenticationRequest.challenge).

facetID Of type required DOMString
string[1l..512]

The value is determined by the FIDO UAF Client and it depends on the calling application. See [FIDOAppIDAndFacets] for more
details. Security Relevance: The facet1p is determined by the FIDO UAF Client and verified against the list of trusted facets retrieved
by dereferencing the app1p of the calling application.

channelBinding Of type required ChannelBinding

Contains the TLS information to be sent by the FIDO Client to the FIDO Server, binding the TLS channel to the FIDO operation.
3.1.8 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

NOTE

Security Relevance:The channel binding may be verified by the FIDO Server in order to detect and prevent MITM attacks.
At this time, the following channel binding methods are supported:

e TLS ChannellD (cid_pubkey) [ChannellD]
« serverEndPoint [RFC5929]

« tlsServerCertificate

« tisUnique [RFC5929]

Further requirements:

1. If data related to any of the channel binding methods, described here, is available to the FIDO UAF Client (i.e. included in this dictionary),
it must be used according to the relevant specification .

2. All channel binding methods described here must be supported by the FIDO Server. The FIDO Servermay reject operations if the
channel binding cannot be verified successfully.

NOTE

« If channel binding data is accessible to the web browser or client application, it must be relayed to the FIDO UAF Client in order to
follow the assumptions made in [FIDOSecRef].

« If channel binding data is accessible to the web server, it must be relayed to the FIDO Server in order to follow the assumptions
made in [FIDOSecRef]. The FIDO Server relies on the web server to provide accurate channel binding information.

dictionary ChannelBinding {
DOMString serverEndPoint;
DOMString tlsServerCertificate;
DOMString tlsUnigue;
DOMString cid pubkey;

}i

3.1.8.1 Dictionary channelBinding Members

serverEndPoint Of type DOMString

The field serverendroint must be set to the base64url-encoded hash of the TLS server certificate if this is available. The hash
function must be selected as follows:

1. if the certificate's signaturealgorithm uses a single hash function and that hash function is either MD5 [RFC1321] or SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's signaturealgorithm uses a single hash function and that hash function is neither MD5 nor SHA-1, then use
the hash function associated with the certificate'ssignaturealgorithm;

3. if the certificate's signaturealgorithm uses no hash functions, or uses multiple hash functions, then this channel binding type's
channel bindings are undefined at this time (updates to this channel binding type may occur to address this issue if it ever
arises)

This field must be absent if the TLS server certificate is not available to the processing entity (e.g., the FIDO UAF Client) or the hash
function cannot be determined as described.

tlsServerCertificate Of type DOMString
This field must be absent if the TLS server certificate is not available to the FIDO UAF Client.

This field must be set to the base64url-encoded, DER-encoded TLS server certificate, if this data is available to the FIDO UAF
Client.

tlsunique Of type DOMString
must be set to the base64url-encoded TLS channel rinished structure. It must, however, be absent, if this data is not available to the
FIDO UAF Client [RFC5929].
The use of the tisUnique is deprecated as the security of thet1s-ungiue channel binding type [RFC5929] is broken, see [TLSAUTH].
cid_pubkey Of type DOMString

must be absent if the client TLS stack doesn't provide TLS ChannellD [ChannellD] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if TLS ChannellD information is supported by the client-side TLS stack but has not been signaled by the
TLS (web) server.

Otherwise, it must be set to the base64url-encoded serialized [RFC4627] swkkey structure using UTF-8 encoding.
3.1.9 JwkKey dictionary

Jwkkey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key [JWK].

This public key is the ChannellD public key minted by the client TLS stack for the particular relying party. [ChannellD] stipulates using only a
particular elliptic curve, and the particular coordinate type.

dictionary JwkKey {
required DOMString kty
required DOMString crv
required DOMString x;

"EC";
"P_256";

required DOMString y;
Yi

3.1.9.1 Dictionary swkkey Members

kty of type required DOMString, defaulting to "ec"
Denotes the key type used for Channel ID. At this time only elliptic curve is supported by [ChannellD], so it must be set to "EC"
[JWA].

crv of type required DOMString, defaulting to "p-256"
Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve secp256r1 is supported by [ChannellD],
so the crv parameter must be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

3.1.10 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator commands, or in the assertion signed by
the authenticator.

Each extension has an identifier, and the namespace for extension identifiers is FIDO UAF global (i.e. doesn't depend on the message where
the extension is present).

Extensions can be defined in a way such that a processing entity which doesn't understand the meaning of a specific extension must abort
processing, or they can be specified in a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section where extensions are allowed.

Generic extensions used in various operations.

dictionary Extension {
required DOMString id;
required DOMString data;
required boolean fail if unknown;

Yi

3.1.10.1 Dictionary extension Members

id of type required DOMString
string[l..32].

Identifies the extension.

data Of type required DOMString
Contains arbitrary data with a semantics agreed between server and client. Binary data is base64url-encoded.

This field may be empty.

fail_if_unknown Of type required boolean)
Indicates whether unknown extensions must be ignored (fa1se) or must lead to an error (true).

« Avalue of faise indicates that unknown extensions must be ignored
« A value of true indicates that unknown extensions must result in an error.

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be
passed through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be
passed through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and fai1_if unknown is not set). If
the FIDO authenticator doesn't understand the meaning of the extension and fai1 if unknown is set, it must generate an error (see
definition of fail if unknown above).

When passing through an extension to the next entity, thefai1l if unknown flag must be preserved (see [UAFASM]
[UAFAuthnrCommands)).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should
be accompanied by a related (and signed) extension in the authenticator assertion (e.g. TAc_UAFV1 REG_ASSERTION,

Tac_uarvl_auTH asserTION). If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata
statement accepts multiple fingers but in this specific case indicates that the finger used at registration was also used for authentication)
there is no need to mark the extension as fail if unknown (i.e. tag 0x3E12 should be used UAFAuthnrCommands]). If the security has
been degraded (e.g. the FIDO authenticator according to the description in the metadata statement accepts only the finger used at
registration for authentication but in this specific case indicates that a different finger was used for authentication) the extension must be
marked as fail if unknown (i.e. tag OX3E11 must be used [UAFAuthnrCommands]).

3.1.11 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

The matchcriteria Object is considered to match an authenticator, if all fields in the object are considered to match (as indicated in the
particular fields).

dictionary MatchCriteria {

AAID[] aaid;

DOMString[] vendorID;

KeyID[] keyIDs;

unsigned long userVerification;

unsigned short keyProtection;

unsigned short matcherProtection;
unsigned long attachmentHint;

unsigned short tcDisplay;

unsigned short[] authenticationAlgorithms;
DOMString|] assertionSchemes;
unsigned short[] attestationTypes;
unsigned short authenticatorVersion;
Extension]] exts;

3.1.11.1 Dictionary Matchcriteria Members

aaid of type array of AAID
List of AAIDs, causing matching to be restricted to certain AAIDs.

The field m.aaid may be combined with (one or more of)m. key1Ds, m.attachmentHint, m.authenticatorversion, and m.exts, but
m.aaid must not be combined with any other match criteria field.

If m.2aid is not provided - atleast m.authenticationAlgorithms and m.assertionSchemes Must be provided.

The match succeeds if at least one AAID entry in this array matches authenticatorinfo.aaid [UAFASM].

NOTE

This field corresponds tovetadatastatement.aaid [FIDOMetadataStatement].

vendorIp Of type array ofDOMString
The vendorID causing matching to be restricted to authenticator models of the given vendor. The first 4 characters of the AAID are
the vendorID (see aa1p)).

The match succeeds if at least one entry in this array matches the first 4 characters of the authenticatorinfo.aaid [UAFASM].

NOTE

This field corresponds to the first 4 characters of vetadatastatement.aaid [FIDOMetadataStatement].
key1ps Of type array of Key/D

A list of authenticator KeyIDs causing matching to be restricted to a given set of key1p instances. (see TAG_KEYID in
[UAFRegistry]).

This match succeeds if at least one entry in this array matches.

NOTE

This field corresponds toappregistration.keyids [UAFASM].

userVerification Of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the user verification method (see [FIDORegistry]).

NOTE
The match with authenticatorinfo.userverification ((UAFASM]) succeeds, if the following condition holds (written in Java):
if (
// They are equal
(AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||
// USER_VERIFY ALL is not set in both of them and they have at least one common bit set
((AuthenticatorInfo.userVerification & USER VERIFY ALL) == 0) &&
((MatchCriteria.userVerification & USER_VERIFY ALL) == 0) &&
((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
)
)
NOTE

This field value can be derived from retadatastatement.uservVerificationbetails as follows:

1. if MetadataStatement.userverificationDetails contains multiple entries, then:
1. if one or more entriesretadatastatement.userverificationbetails([i] contain multiple entries, then: stop, direct
derivation is not possible. Must generate matchcriteria object by providing a list of matching AAIDs.
2. if all entries Metadatastatement.userverificationbDetails[i] only contain a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification 10
MetadataStatement.userVerificationDetails[N-1][0].userVerification into a single value using a bitwise OR

operation.

2. if MetadataStatement.userVerificationDetails contains a single entry, then: combine all entries
MetadataStatement.userVerificationDetails[0][0].userVerification tO
MetadataStatement.userVerificationDetails[0][N-1].userVerification into a single value using a bitwise OR
operation and (if multiple bit flags have been set) additionally set the flag user_veriry arr.

This method doesn't allow matching authenticators implementing complex combinations of user verification methods, such as

PIN AND (Fingerprint OR Speaker Recognition) (See above derivation rules). If such specific match rules are required, they
need to be specified by providing the AAIDs of the matching authenticators.

keyProtection Of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the key protections used (see [FIDORegistry]).

This match succeeds, if at least one of the bit flags matches the value of authenticatorinfo.keypProtection [UAFASM].

NOTE

This field corresponds t0 Metadatastatement.keyProtection [FIDOMetadataStatement].

matcherProtection Of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the matcher protection (see [FIDORegistry]).

The match succeeds if at least one of the bit flags matches the value of authenticatorinfo.matcherprotection [UAFASM].

NOTE

This field corresponds to the Metadatastatement.matcherProtection metadata statement. See [FIDOMetadataStatement].

attachmentHint Of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the authenticator attachment mechanism (see
[FIDORegistry]).

This field is considered to match, if at least one of the bit flags matches the value of Authenticatorinfo.attachmenttint [UAFASM].

NOTE

This field corresponds to the Metadatastatement.attachmentHint metadata statement.

tcbisplay Of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the transaction confirmation display availability and type.
(see [FIDORegistry]).

This match succeeds if at least one of the bit flags matches the value of authenticatorinfo.tcpisplay [UAFASM].

NOTE

This field corresponds to the Metadatastatement. tcDisplay metadata statement. See [FIDOMetadataStatement].

authenticationAlgorithms Of type array ofunsigned short
An array containing values of supported authentication algorithm TAG values (see [FIDORegistry], prefix arc_szcn) if matching
should be restricted by the supported authentication algorithms. This field must be present, if field aaid is missing.

This match succeeds if at least one entry in this array matches the authenticatorinfo.authenticationalgorithm [UAFASM].

NOTE

This field corresponds to the MetadataStatement.authenticationAlgorithm metadata statement. See
[FIDOMetadataStatement].

assertionSchemes Of type array of DOMString
A list of supported assertion schemes if matching should be restricted by the supported schemes. This field must be present, if field
aaid is missing.
See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches authenticatorinfo.assertionscheme [UAFASM].

NOTE

This field corresponds to the metadatastatement.assertionscheme metadata statement. See [FIDOMetadataStatement].

attestationTypes Of type array ofunsigned short
An array containing the preferred attestation TAG values (see [UAFRegistry], prefix tac_arrestarron). The order of items must be
preserved. The most-preferred attestation type comes first.

This match succeeds if at least one entry in this array matches one entry in authenticatorInfo.attestationTypes [UAFASM].

NOTE

This field corresponds to the metadatastatement.attestationTypes metadata statement. See [FIDOMetadataStatement].

authenticatorvVersion Of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equalto the field authenticatorversion included in TAG_UAFV1 REG ASSERTION OF
TAG_UAFV1_AUTH ASSERTION Of a corresponding value in the case of a different assertion scheme.
NOTE

Since the semantic of theauthenticatorversion depends on the AAID, the field authenticatorversion should always be
combined with a single aaid in Matchcriteria.

This field corresponds to the MetadataStatement.authenticatorversion metadata statement. See [FIDOMetadataStatement].

The use of authenticatorVersion in the policy is deprecated since there is no standardized way for the FIDO Client to learn the
authenticatorVersion. The authenticatorVersion is included in the auhentication assertion and hence can still be evaluated in the
FIDO Server.

exts Of type array of Extension
Extensions for matching policy.

3.1.12 Policy dictionary

Contains a specification of accepted authenticators and a specification of disallowed authenticators.

dictionary Policy {
required MatchCriteria[][] accepted;
MatchCriterial] disallowed;

}i

3.1.12.1 Dictionary po1icy Members

accepted Of type array of array ofrequired MatchCriteria

This field is a two-dimensional array describing the required authenticator characteristics for the server to accept either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e. the sets) are alternatives (OR condition).
All elements within a set must be combined:

The first array index indicates OR conditions (i.e. the list). Any set of authenticator(s) satisfying these mMatchcriteria in the first index
is acceptable to the server for this operation.

Sub-arrays of MatchCiriteria in the second index (i.e. the set) indicate that multiple authenticators (i.e. each set element) must be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the server. Servers must put their preferred authenticators first, and

FIDO UAF Clients should respect those preferences, either by presenting authenticator options to the user in the same order, or by
offering to perform the operation using only the highest-preference authenticator(s).

NOTE
This list must not be empty. If the FIDO Server accepts any authenticator, it can follow the example below.

"accepted":

[

[{ "userVerification": 1023 }]
]

}

NOTE
1023 = 0x3ff = USER_VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... | USER_VERIFY_NONE

disallowed Of type array of MatchCriteria
Any authenticator that matches any of MatchCriteria contained in the field disallowed must be excluded from eligibility for the
operation, regardless of whether it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy

This section is normative.

The FIDO UAF Client must follow the following rules while parsing server policy:
1. During registration:

1. policy.accepted is a list of combinations. Each combination indicates a list of criteria for authenticators that the server wants the
user to register.

2. Follow the priority of items inpolicy.accepted[][]. The lists are ordered with highest priority first.

(o206 I SN V]

matching)
7.

2. During authentication and transaction confirmation:

NOTE

Guide the user to register the authenticators specified in the chosen combination

. Choose the combination whose criteria best match the features of the currently available authenticators
. Collect information about available authenticators
. Ignore authenticators which match therolicy.disallowed criteria
. Match collected information with the matching criteria imposed in the policy (see MatchCriteria dictionary for more details on

policy.accepted is a list of combinations. Each combination indicates a set of criteria which is enough to completely

authenticate the cu

NOoO o~ WON =

3.2.1 Examples

This section is non-normative.

rrent pending operation

"accepted":
[£ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 61,
[{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5,
) 1
"accepted":
[£ "userVerification": 18, "authenticationAlgorithms": [1, 2, 5, 6],

]
}

61,

"assertionSchemes":

"assertionSchemes":
"assertionSchemes":

. Follow the priority of items inrolicy.accepted[][]. The lists are ordered with highest priority first.

. Choose the combination whose criteria best match the features of the currently available authenticators
. Collect information about available authenticators
. Ignore authenticators which meet therolicy.disallowed criteria
. Match collected information with the matching criteria described in the policy
. Guide the user to authenticate with the authenticators specified in the chosen combination

. A pending operation will be approved by the server only after all criteria of a single combination are entirely met

["UAFVITLV"]}],

["UAFVITLV"]}]

["UAFVITLV"]}]

Combining these two bit-flags and the flag user_veriry_arr (USER_VERIFY_ALL = 1024) into a single userverification value would match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.

"accepted": [

[{
}

"userVerification":

1042,

The next example requires two authenticators to be used:

"accepted":

[
{
{
1

1
}

"userVerification"

2
"userVerification": 1

"authenticationAlgorithms":

'
6, "authenticationAlgorithms":

Other criteria can be specified in addition to the userverification:

{
"accepted":
[
[
{ "uservVerification": 2
{ "userVerification": 1
]
]
}

"attachmentHint":

' 1,
6, "attachmentHint":

1,

[i,
[i,

2,
2,

5,

The policy for accepting authenticators of vendor with ID1234 only is as follows:

6

"authenticationAlgorithms":

1
61,

"authenticationAlgorithms":
"authenticationAlgorithms":

[i,

"assertionSchemes":

2, 5,

61,

"assertionSchemes" :

"assertionSchemes":

[i,
[i,

2

5
2, 5,

6

1,
61,

["UAFVITLV"]},

["UAFVITLV"]}

"assertionSchemes" :
"assertionSchemes":

["UAFVITLV"]}]]

["UAFVITLV"]},
["UAFVITLV"]}

{
"accepted":
[[{ "vendorID": "1234", "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFVITLV"]}]]

3.3 Version Negotiation
The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [UAFRegistry]), and the ASM version, see [UAFASM].

NOTE

The Key Registration Data and Signed Data objects have to be parsed and verified by the FIDO Server. This verification is only possible

if the FIDO Server understands their encoding and the content. Each UAF protocol version supports a set of Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

As a consequence the FIDO UAF Client must select the authenticators which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client must perform the following steps:

1. Create a set (Fc_version_set) of version pairs, ASM version (asmversion) and UAF Protocol version (upv) and add all pairs supported by
the FIDO UAF Client into FC_Version_Set

o €.¢g. [{upvl, asmVersionl}, {upv2, asmVersionl}, ...]

NOTE

The ASM versions are retrieved from the authenticatorinfo.asmversion field. The UAF protocol version is derived from the related
AuthenticatorInfo.assertionScheme field.

2. Intersect rc_version_set with the set ofupv included in UAF Message (i.e. keep only those pairs where the upv value is also contained in
the UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:
o Construct a set (authnr_version set) of version pairs including authenticator supported asmversion and the compatible upv (s).
s €.0. [{upvl, asmVersionl}, {upv2, asmVersionl}, ...]

o Intersect authnr version set Withrc_version set and select highest version pair from it.
= Take the pair where the upv is highest. In all these pairs leave only the one with highest asmversion.

o Use the remaining version pair with this authenticator

NOTE

Each version consists of major and minor fields. In order to compare two versions - compare the Major fields and if they are equal
compare the Minor fields.

Each UAF message contains a version field upv. UAF Protocol version negotiation is always between FIDO UAF Client and FIDO Server.

A possible implementation optimization is to have the RP web application itself preemptively convey to the FIDO Server the UAF
protocol version(s) (UPV) supported by the FIDO Client. This allows the FIDO Server to craft its UAF messages using the UAF
version most preferred by both the FIDO client and server.

3.4 Registration Operation

NOTE

The Registration operation allows the FIDO Server and the FIDO Authenticator to agree on an authentication key.

Authenticator
{AAID, attestation key pair:
att.priv, Certlatt put])

User

1
|
1. User clicks on or enters URL: hitpsweba

FIDO Client |

|User Agent

pp

3a. Render legacy log

in form

2a. HTTP GET hitps:/webapp

v

RP Web App FIDO Server
& Web Server \—J

L

| 3b. User enters
usemame + legacy
paseword and
clicks [Submit]

12a. Getinfo cmd

13a. Getinfo resp

12a. Getinfo req.
P isaan i

17. Register cmd.
PRR R A it et

18a. Trigger Local
User Verification

13b. Getinfo resp.

4. HTTP POST legacy login form

2b. HTTP OK + legacy login form

- + legacy password

5. Verfy usemame

S HTTP OK + UAF Reg. request+
webapp JS + webapp sezsion binding
Pt

10. UAF Reg. request
+ ApplD + TLS binding

11a. Fetch list o fFacetlD= identified by ApplD (LRI}

§. Signal initiation of UAF
Registration Operation

8. UAF Reg. Reguest

+ authnr policy)

F 7. Generate
g e e

authenticator
policy

15. Register req.

st A e
18. Generate KHAcces

for this ApplD

i

19. User Verified

J

sToken

11b. return FacetlD list

14. Seledt authenticator(s}
according to policy

Eb. Userinteracts

Generate both a Uauth Key Pair
(zpecificto ApplD and Usemame), and a
KRD object: [Cert[Aft. pub], Uauth.pub,
AAID, etc] zigned by Attpriv.

24 Verfy KRD
signature, verfy
attestation,

with Authenticator:
swipes finger, or

20a. Registerresp,

20b. Register resp,

21 return UAF Reg.
» response(contains KRD)

speaks, or
enters PIN, etc

Fig. 6 UAF Registration Sequence

Diagram

and store new

23. send UAF Reg. Uauth.pub key

o 22 return UAF Reg. response

» response

on behalfof user

i e] !

‘_26. send content for completed ragistra_tigni 25. return verification result

The steps 11a and 11b and 12 to 13 are not always necessary as the related data could be cached.

The following diagram depicts the cryptographic data flow for the registration sequence.

Registration

Authenticator.

1stF eAuthnr

Note: This represents a FIDO UAF 1stF Embedded

ASM + FIDO Client
+ Browser

Relying
Party

(mycorp.com)

generate:
key kpub

key kpm
handle h

select Authenticator according to palicy;

username, policy,

check ApplD, get tisData (i e. channel id, etc.); «
generate APIKey random, compute access key IAPPDu challenge
ak := hash(ApplD|APIKey|PersonalD|CalleriD) —y—
fep = {a, challenge, facetlD, tlsData} a
P username u, ak; hash(fcp)
fc
aaid, kpub, fc, h, attestation cert, reg-cntr, cntr,
signature(aaid fc,reg-cntr.entrk)
. aaid, kpub, fc, h, attestation cert,
s reg-cntr, cntr, s store:
key kpub
handle h

Fig. 7 UAF Registration Cryptographic Data Flow

The FIDO Server sends the app1p (see section AppID and FacetlD Assertion), the authenticator Policy, the serverchallenge and the
username to the FIDO UAF Client.

The FIDO UAF Client computes the Finalchallengerarams (FCH) from the serverchalienge and some other values and sends the 2pp1p,
the rcu and the username to the authenticator.

The authenticator creates a Key Registration Data object (e.g. Tac_varvi_krp, see [UAFAuthnrCommands]) containing the hash of rcx,
the newly generated user public key (UAuth.pub) and some other values and signs it (see section Authenticator Attestation for more
details). This KRD object is then cryptographically verified by the FIDO Server.

3.4.1 Registration Request Message

UAF Registration request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The request is
defined as RegistrationRequest dictionary.

[{
"header": {
"apv": {
"major": 1,
"minor": 1
T
"op": "Reg",
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"serverData": "IjycjPZYiWMaQltKLrJROiXQHmMYGOtSSYGjP5mgjsDaM17RQgq0
d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12567v5VmQHj4eWVseLulHdpk2v_ hHtKSvv_DFQL4n
2IiUY6XZWVbOnvg"
3
"challenge": "H9iW9yA9aAXF lelQoi_DhUk514Ad8Tqgv0zCnCgKDpo",
"username": "apa",
"policy": {
"accepted": [
[
{

"userVerification": 512,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
1

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
1

1r

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
2

]

"userVerification": 2,

"keyProtection": 4,

"tcDisplay": 1,

"authenticationAlgorithms": [
2

]

"userVerification": 4,
"keyProtection": 2,
"tcDisplay": 1,
"authenticationAlgorithms": [
1,
3

"userVerification": 2,

"keyProtection": 2,

"authenticationAlgorithms": [
2

]

"userVerification": 32,

"keyProtection": 2,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 2,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,

"assertionSchemes": [
"UAFV1TLV"
]

"userVerification": 4,

"keyProtection": 1,

"authenticationAlgorithms": [
1,
3

1,

"assertionSchemes": [
"UAFV1TLV"

]

}
]

1,
"disallowed": [

"userVerification": 512,

"keyProtection": 16,

"assertionSchemes": [
"UAFV1TLV"

]

"userVerification": 256,
"keyProtection": 16

"aaid": [
"ABCD#ABCD"

1s
"keyIDs":
"RfY_RDhsf4z5PCOhnZExMeV1oZZmKOhxasilOtky c4"
1
}
1
}
H

3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
required OperationHeader header;
required ServerChallenge challenge;
required DOMString username;
required Policy policy;

3.4.2.1 Dictionary RegistrationRequest Members

header Of type required OperationHeader
Operation header. Header.op must be "Reg"

challenge Of type required ServerChallenge
Server-provided challenge value

username Of type required DOMString
string[1l..128]

A human-readable user name intended to allow the user to distinguish and select from among different accounts at the same relying
party.

policy of type required Policy
Describes which types of authenticators are acceptable for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion {

required DOMString assertionScheme;

required DOMString assertion;
DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
Extension]] exts;

3.4.3.1 Dictionary authenticatorRegistrationAssertion Members

assertionscheme Of type required DOMString
The name of the Assertion Scheme used to encode theassertion. See UAF Supported Assertion Schemes for details.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.

assertion Of type required DOMString
base64url (byte[1..4096]) Contains the Tac uarvi rec_asserrion Object containing the assertion scheme specific

KeyRegistrationData (KRD) object which in turn contains the newly generated vauth.pub and is signed by the Attestation Private
Key.

This assertion must be generated by the authenticator and it must be used only in this Registration operation. The format of this
assertion can vary from one assertion scheme to another (e.g. for "UAFV1TLV" assertion scheme it must be tac_varvi_ xrp).

tcDisplayPNGCharacteristics Of type array ofDisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [FIDOMetadataStatement]. For the definition of the DisplayPNGCharacteristicsDescriptor structure
See [FIDOMetadataStatement].

exts Of type array of Extension
Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message

A UAF Registration response message is represented as an array of dictionaries. Each dictionary contains a registration response for a specific
protocol version. The array must not contain two dictionaries of the same protocol version. The response is defined as RegistrationResponse
dictionary.

[{

"assertions": [

"assertion": "AT7uAgM-sQALLgkAQUJDRCNBQKNEDi4HAAABAQEAAAEKLiAA9t
BzZC64ecgVQOBGSQOb5QtEIPC8-Vav4HsHLZDf1LaugJLiAAZMCPn92yHv1Ip-iCiBb61i4ADg6
ZOV569KFQCVYSJfNgNLggAAQAAAAEAAAAMLKEABISVEtUsVKh7tmYHhJ2FBm3kHU-OCAWiUY
VijgYa81MfkjQlz6UiHbKP9_nRzIN9anprHgDGcR6q7020q_yctZAHPjUCBi5AACV8L7Y1RM
x10gPnszGO6rLFqZFmmRkhtVOTIWuWqYxd1jOO0wxam7i5qdEal9u4sfpHFZ9RGI_WHXINKH8
FEVAWFLUOBMIIB6TCCAY8CAQEWCQYHK0OZIZjOEATB7MQOSwCQYDVQQOGEwWIJVUZELMAKGALIUECA
WCQOExCzAJBgNVBACMA1BBMRAWDgYDVQQKDAJOTkws SW5 jMQOwCwYDVQQLDAREQU4 XMRMWEQ
YDVQODDApOTkwsSW5jIENBMRwwGgYJKoZ IhveNAQkBFglubmxAZ21lhaWwuY29tMB4XDTEOMD
gyODIxMzUOMFOXDTE3MDUyNDIxMzUOMFOowgYYxXCzAJBgNVBAYTAIVTMQOsSwCQYDVQQIDAJDQT
EWMBQGA1UEBwWWNU2FuUIEZyYW5JjaXNjbzEQMA4GA1UECgwHTKk5MLE1uYZENMASGA1UECWWERE
FOMTETMBEGA1UEAWwWKTk5MLE1uYyBDQTECMBOGCSQGSIb3DQEJARYNbm5sQGAtYWlsLmNvbT
BZMBMGBygGSM4 9AgEGCCUGSM4 9AWEHAOIABCGBt3CIjnDowzSiF68C2aErYXnDUsWXOYxXgIP
im0OOWg9FFdUYCabAgKjnlRI9Ek2d803sGKROivnavmdVH-SnEwWCQYHKoZIzjOEAQNJADBGAL
EAzAQujXnSS9AIAh61Gz6ydypLVTsTnBzqGJ4ypIqy qUCIQCFsuOEGCRV-04GHPBph_ VMrG
3NpYh2GKPjsAim cSNmQ",

"assertionScheme": "UAFVITLV"

}

1,

"fcParams": "eyJhcHBJRCI6ImhOdHBzOi8vdWFmMLXR1c30QtMS5ub2tub2t0ZXNOLmMN
VbTo4NDQzL1NhbXBSZUFwcC91YWYVZmMFjZXRzIiwiY2hhbGx1lbmd1lIjoiSD1pVz15QT1hQVh
GX2x1bFFvavV9EaFVrNTEOQWQ4VHF 2MHpDbkNxXSORwbyIsImNoYW5uzZWxCaWw5kaw5nIjp7fSw
1ZmFjZXRIRCI6IMNvbS5ub2tub2suYW5kecm9pzC5zYWlwbGVhcHALIfQ",

"header": {

"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",

"op": "Reg",

"serverData": "IjycjPZYiWMaQltKLrJROiXQHmMYGOtSSYGjP5mgjsDaM17RQgq0
d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12567v5VmQH]j4eWVseLulHdpk2v_hHtKSvv_DFQL4n
2IiUY6XZWVbOnvg",

"upv": {

"major"

1,
"minor": 1

}
}
i3

NOTE

Line breaks in fcParams have been inserted for improving readability.

3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.

dictionary RegistrationResponse {
required OperationHeader header;
required DOMString fcParams;
required AuthenticatorRegistrationAssertion[] assertions;

3.4.5.1 Dictionary RegistrationResponse Members

header Of type required OperationHeader
Header .op Must be "Reg".

fcParams Of type required DOMString
The base64url-encoded serialized [RFC4627] FinalchallengeParams Using UTF8 encoding (see FinalChallengeParams dictionary)
which contains all parameters required for the server to verify the Final Challenge.

assertions Of type array ofrequired AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules
3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed matchcriteria (See Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by matchcriteria). All authenticators in a specific set must be registered simultaneously in
order to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

The FIDO Server must follow the following steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an array of MatchCriteria objects, containing the set of authenticators to be registered simultaneously that need to be
identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be registered simultaneously that can be identified by the same rule, create a
MatchCriteria object n, where

= m.aaid Mmay be combined with (one or more Of)m.keyIDs, m.attachmentHint, m.authenticatorversion, and m.exts,
but m.aaid must not be combined with any other match criteria field.

» [fm.aaid is not provided - atleast m.authenticationAlgorithms @and m.assertionSchemes Must be provided
2. Addntov, e.g.v[j+l]=m
2. Add v to p.allowed, €.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed Authenticators.
1. For each already registered AAID for the current user
1. Create a MatchCriteria objectm and add AAID and corresponding KeyIDs t0 m.aaid and m.KeyIDs.

The FIDO Server must include already registered AAIDs and KeyIDs into field p.disallowed to hint that the client should
not register these again.

2. Create a MatchCriteria object m and add the AAIDs of all disallowed Authenticators to m.zaaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [FIDOMetadataService]) of some authenticators might
be unacceptable. Such authenticators should be included in p.disallowed.

3. If needed - create MatchCriterian for other disallowed criteria (e.g. unsupported authenticationAlgs)
4. Add alln to p.disallowed.

2. Create a registrationRrequest Object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverpata.

FIDO Servers that depend on the integrity of r.header.serverpata should apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they should also cryptographically bind serverData to the related message, e.g. by
re-including r.challenge, see also section ServerData and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat r.header.servernata as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

. Generate a random challenge and assign it to r.challenge
. Assign the username of the user to be registered to r.username
. Assign pto r.policy.
5. Append r to the array o of message with various versions (rRegistrationRequest)
3. Send o to the FIDO UAF Client

A WOWDN

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client must perform the following steps:

. Choose the message n with upv set to the appropriate version number.
. Parse the message n
. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

. Filter the available authenticators with the given policy and present the filtered authenticators to User. Make sure to not include already
registered authenticators for this user specified in Regrequest.policy.disallowed]].keyIDs

5. Obtain racet1p of the requesting Application. If thepp1p is missing or empty, set the app1p to the Facetin.

A ON =

Verify that the racet1p is authorized for the app1p according to the algorithms in [FIDOAppIDAndFacets].

o If the racet1p Of the requesting Application is not authorized, reject the operation

6. Obtain TLS data if it is available

7. Create a FinalchallengeParams Structure fcp and set fcp.appIb, fcp.challenge, fep.facetID, @and fcp.channelBinding appropriately.
Serialize [RFC4627] fcp using UTF8 encoding and base64url encode it.

o FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see section Version Negotiation) and user agrees to register:
1. Add 2pp1D, Username, FinalChallenge, AttestationType and all other required fields to the ASMRequest [UAFASM].

The FIDO UAF Client must follow the server policy and find the single preferred attestation type. A single attestation type must be
provided to the ASM.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the
ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.4.6.2.1 Mapping ASM Status Codes to ErrorCode

ASMs are returning a status code in their responses to the FIDO Client. The FIDO Client needs to act on those responses and also map the
status code returned the ASM [UAFASM] to an ErrorCode specified in [UAFAppAPIAndTransport].

The mapping of ASM status codes to ErrorCode is specified here:

ASM Status Code

UAF_ASM_STATUS_OK

ErrorCode

NO_ERROR

Comment
Pass-through success status.

UAF_ASM STATUS_ERROR

UNKNOWN

Map to unknowy.

UAF_ASM_STATUS_ACCESS_DENIED

AUTHENTICATOR_ACCESS_ DENIED

Map t0 AUTHENTICATOR ACCESS DENIED

UAF_ASM_STATUS_ USER_CANCELLED

USER_CANCELLED

Pass-through status code.

UAF_ASM_STATUS_CANNOT RENDER TRANSACTION_CONTENT

INVALID TRANSACTION_CONTENT

Map to INVALID TRANSACTION CONTENT.
This code indicates a problem to be
resolved by the entity providing the
transaction text.

UAF_ASM_STATUS_KEY DISAPPEARED PERMANENTLY

KEY DISAPPEARED_ PERMANENTLY

Pass-through status code. It indicates
that the Uauth key disappeared
permanently and the RP App might
want to trigger re-registration of the
authenticator.

UAF_ASM_ STATUS_AUTHENTICATOR DISCONNECTED

NO_SUITABLE_AUTHENTICATOR Or
WAIT USER_ACTION

Retry operation with other suitable
authenticators and map to
NO_SUITABLE AUTHENTICATOR if the
problem persists. Return

watT user acrron if being called while
retrying.

UAF_ASM_STATUS_USER_NOT RESPONSIVE

USER_NOT RESPONSIVE

Pass-through status code. The RP App
might want to retry the operation once
the user pays attention to the
application again.

UAF_ASM STATUS_INSUFFICIENT AUTHENTICATOR RESOURCES

INSUFFICIENT_ AUTHENTICATOR_RESOURCES

The FIDO Client shall try other
authenticators matching the policy. If
none exist, pass-through status code.

UAF_ASM_STATUS_ USER_LOCKOUT

USER_LOCKOUT

Pass-through status code.

UAF_ASM_STATUS_USER_NOT ENROLLED

USER_NOT_ ENROLLED

Pass-through status code.

Any other status code

UNKNOWN

Map any unknown error code to
unkNowN. This might happen when a
FIDO Client communicates with an
ASM implementing a newer UAF
specification than the FIDO Client.

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Register Command".

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create a RegistrationResponse Message

2. COpy RegistrationRequest.header iNtO RegistrationResponse.header

NOTE

When the app1p provided in the request was empty, the FIDO Client must set the app1p in this header to the facetID (see

[FIDOAppIDANndFacets])).

3. SetregistrationResponse.fcParams t0 Finalchallenge (base64url encoded serialized and utf8 encoded FinalChallengeParams)
4. Append the response from each Authenticator into registrationResponse.assertions

5. Send registrationresponse message to FIDO Server

3.4.6.5 Registration Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with

corresponding processing rules.

The FIDO Server must follow the steps:

1. Parse the message

1. If protocol version (registrationrResponse.header.upv) is not supported — reject the operation
2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

2. Verify that registrationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. See also

section ServerData and KeyHandle.
3. base64url decode registrationResponse.fcparams and convert it into an object (£cp)
4. Verify each field in fcp and make sure it is valid:
1. Make sure fcp.app1D corresponds to the one stored by the FIDO Server

NOTE

When the app1D provided in the request was empty, the FIDO Client must set the app1p to the facetID (see
[FIDOAppIDANndFacets]). In this case, the Uauth key cannot be used by other application facets.

2. Make sure fcp.facet1D is in the list of trusted FacetIDs FIDOAppIDAndFacets]
3. Make sure fcp.channelBinding iS as expected (see section ChannelBinding dictionary)

NOTE
There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

4. Reject the response if any of these checks fails
5. Make sure tcp.challenge has really been generated by the FIDO Server for this operation and it is not expired

5. For each assertion a inrRegistrationResponse.assertions
1. Parse TLV data froma.assertion assuming it is encoded according to the suspected assertion scheme a.assertionscheme and
make sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to have and has a valid syntax.
= [f it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

NOTE

The AAID intac_uarvi_krp is contained in a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID.

3. Verify that a.assertionscheme matches vetadata (AAID) .assertionScheme
= Ifit doesn't match - continue with next assertion

4. Verify that the AAID indeed matches the policy specified in the registration request.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions included in
this registrationresponse in order to determine whether this AAID matches the policy.

= [f it doesn't match the policy - continue with next assertion
5. Locate authenticator-specific authentication algorithms from the authenticator metadata [FIDOMetadataStatement] using the AAID.
6. Hash registrationresponse.fcparams Using hashing algorithm suitable for this authenticator type. Look up the hash algorithm in
authenticator metadata, field authenticationalgs. It is the hash algorithm associated with the first entry related to a constant with
prefix ALG_SIGN.

m FCHash = hash(RegistrationResponse.fcParams)

7. if a.assertion contains an object of type Tac_uarvi RrREG AsserTION, then
1. if a.assertion.TAG UAFV1 REG ASSERTION contains tac uarvi xrp as first element:

1. Obtain Metadata(AAID).AttestationType for the AAID and make sure that a.assertion.TAG UAFVI REG ASSERTION
contains the most preferred attestation tag specified in field vatchcriteria.attestationTypes in
RegistrationRequest.policy (if this field is present).

s Ifa.assertion.Tac uarvi rEG assertrON doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one

2. Make sure that a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.FinalChallengeHash == FCHash
= |f comparison fails - continue with next assertion

3. Obtain vetadata(AAID).Authenticatorversion for the AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorVersion.
s [f Metadata(aa1D).Authenticatorversion is higher (i.e. the authenticator firmware is outdated), it is recommended
to assume increased risk. See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[FIDOMetadataService] for more details on this.

4. Check whether a.assertion.TAG UAFV1_REG ASSERTION.TAG UAFV1 KRD.RegCounter iS acceptable, i.e. it is either not
supported (value is 0 or the field isKeyRestricted is set to 'false' in the related Metadata Statement) or it is not
exceedingly high

» [fa.assertion.TAG UAFV1_REG ASSERTION.TAG_UAFV1_ KRD.RegCounter IS exceedingly high, this assertion might be
skipped and processing will continue with next one

5. If a.assertion.TAG UAFV1 REG ASSERTION CONtaiNs TAG ATTESTATION BASIC FULL tag
1. If entry attestationrootcertificates for the AAID in the metadata [FIDOMetadataStatement] contains at least
one element:

1. Obtain contents of alltac_arrestarion cert tags from
a.assertion.TAG UAFV1 REG ASSERTION.TAG ATTESTATION BASIC FULL Object. The occurrences are ordered
(see [UAFAuthnrCommands]) and represent the attestation certificate followed by the related certificate
chain.

2. Obtain all entries of attestationrootcertificates for the AAID in authenticator Metadata, field
AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to the Attestation Root Certificate using
Certificate Path Validation as specified in [RFC5280]

= [f verification fails — continue with next assertion
4. Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ATTESTATION BASIC_ FULL.Signature USINg
the attestation certificate (obtained before).
= [f verification fails — continue with next assertion

2. If Metadata(AAID).AttestationRootCertificates for this AAID is empty - continue with next assertion
3. Mark assertion as positively verified

6. If a.assertion.TAG UAFV1 REG ASSERTION cONtains an object of type Tac ATTESTATION BASIC SURROGATE
1. There is no real attestation for the AAID, so we just assume the AAID is the real one.
2. If entry attestationrootcertificates for the AAID in the metadata is empty

» Verify a.assertion.TAG UAFV1 REG_ASSERTION.TAG ATTESTATION BASIC SURROGATE.Signature USiNg
a.assertion.TAG _UAFV1 REG_ASSERTION.TAG UAFV1_KRD.TAG_PUB_KEY

= If verification fails — continue with next assertion

3. If entry attestationrootcertificates for the AAID in the metadata is not empty - continue with next assertion (as
the AAID obviously is expecting a different attestation method).

4. Mark assertion as positively verified

7. If a.assertion.TAG_UAFV1_REG_ASSERTION cOntains an object of type Tac ATTESTATION ECDAA
1. If entry ecdaatrustanchors for the AAID in the metadata [FIDOMetadataStatement] contains at least one element:

1. For each of the ecdaatrustanchors entries, perform the ECDAA Verify operation as specified in
[FIDOEcdaaAlgorithm].

= [f verification fails — continue with nextecdaarrustanchors entry
2. If no ECDAA Verify operation succeeded — continue with next assertion

2. If Metadata(AAID).ecdaaTrustanchors for this AAID is empty - continue with next assertion
3. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the AAID.

8. If a.assertion.TAG UAFV1 REG_ASSERTION contains another Tac_arTestaTIoN tag - verify the attestation by following
appropriate processing rules applicable to that attestation. Currently this document defines the processing rules for
Basic Attestation and direct anonymous attestation (ECDAA).

2. ifa.assertion.TAG UAFV1_REG_AsserTION contains a different object than tac varvi_xrp as first element, then follow the rules
specific to that object.

3. Extract a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.Publickey into PublicKey,
a.assertion.TAG UAFV1 REG_ASSERTION.TAG_UAFV1_KRD.KeyID into KeylD,
a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.SignCounter into SignCounter,
a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.TAG ASSERTION INFO.authenticatorVersion into AuthenticatorVersion,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into AAID.

8. if a.assertion doesn't contain an object of typerac_uarvi_rec asserrron, then skip this assertion (as in this UAF v1 only
TAG UAFV1 REG AsserTION iS defined).

6. For each positively verified assertion a
o Store PublicKey, KeylD, SignCounter, AuthenticatorVersion, AAID and a.tcbisplayPnccharacteristics into a record associated
with the user's identity. If an entry with the same pair of AAID and KeyID already exists then fail (should never occur).

3.5 Authentication Operation

NOTE
User| |Authenticator ASM| [FIDO Client |~ |User Agent RP Web App | |FIDO Server
{AAID, stiestation key pair:
L==.|1't.p(i'\:. Cert[att pub], ulsex's & WED Sewer
private keys: Uauth.privi
1a. User is interacing with a web application, dicks on “purchase”. hitps//vwebapp 1b. HTTP GET hitps:/fvebapp/?purchase 2. generate UAF
» Authn request
6. UAF Auth request Et thurr:_UAFrfu.lllthn req.
(incl. ApplD, challenge, Incl. policy, challenge,
policy, TranTxt) E:. HTTP OK + UAF Authn E.equest X TranT)
TLS'b' di ! (incl. ApplD, challenge, policy, TranTxt) | - -
;___E_m_g _______ - - 3. Generate
hall
7a. Fetch list of FacetiDs identified by ApplD (URI) A el
| policy,
22, Getino 7b. return FacetiD list Transaction
2. Getinfocmd Lo oo Text
Ba. Gatinfo resp.
a b8 P 9b. Getinfo resp.
10. Select authenticaton(s)
accordin g to policy
11. Authenticate reg.
+ ApplD + challenge + TranTxt
T EETE -
X 12. Look up KHAccessToken
13. Sign cmd. for this FIDO Client
(incl. KHAcCcessToken, T 'en
challenge, TranTxt)
14a. Trigger T [
|l ser Verification
L)
> = 15. User Verified
yal Unlock Uauth.priv (spedific to ApplD
” . and Usemame), generate both a nonce and the
1;:;"?;’ ||:_tent1ct§ SignData object: [nonce, challenge, TranTxt, etc.]
LS STEEEET signed by Uauth.priv.
swipes finger, or
speaks, or
enters PIN, etc. 16a. Sign cmd resp.
16b Authenticate resp. 17 retum UAF
> . retum ;
Authenticate response ‘ZSIIJgnVSgg
(contains SignData) 18. return UAF Authn response contents and
(containg SignData) -
» 19 send UAF Authn | Signature
response (contains (using)
SignData) Uauth.pub)

L, FEIA CUILEIL + SEEEU W 21, return vernncation resuft
—————— T

- ——— — —

Fig. 8 UAF Authentication Sequence Diagram
The steps 7a and 7a and 8 to 9 are not always necessary as the related data could be cached.

The TransactionText (TranTxt) is only required in the case of Transaction Confirmation (see section 3.5.1 Transaction dictionary), it is
absent in the case of a pure Authenticate operation.

During this operation, the FIDO Server asks the FIDO UAF Client to authenticate user with server-specified authenticators, and return an
authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously shared registration.

Authentication
_ Relying
ASM + FIDO Client Party
1stF eAuthnr + Browser {mycorp.com)
select Authenticator according to policy; -« policy, .AppIDI, challenge
check AppiD, get tisData (i.e. channel id, etc.); ——
check: ak lookup key handle h and access key ak; a
o fep = {a, challenge, facetlD, tisData)}

retrieve: .

key kpriv < h, ak; hash(fcp)

from h; Y

cntr++ fc

generate

Authnr .

fc t t fc t
Noce , h, entr, ?lgna ure(fe,n,cn r) > lookup kpub
v from DB
s fcp, n, cntr, s o check:

policy +
signature
using
key kpub

Fig. 9 UAF Authentication Cryptographic Data Flow
Diagram of cryptographic flow:

The FIDO Server sends the app1p (see [FIDOAppIDAndFacets]), the authenticator policy and the serverchallenge to the FIDO UAF
Client.

The FIDO UAF Client computes the hash of the Finalchallengerarams, produced from the serverchallenge and other values, as
described in this document, and sends the 2pp1p and hashed Finalchallengerarams to the Authenticator.

The authenticator creates the signedpata object (see Tac_varvi_sicnep para in [UAFAuthnrCommands]) containing the hash of the final
challenge parameters, and some other values and signs it using the vauth.priv key. This assertion is then cryptographically verified by
the FIDO Server.

3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

dictionary Transaction {
required DOMString contentType;
required DOMString content;
DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;

Yi

3.5.1.1 Dictionary Transaction Members

contentType Of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [FIDOMetadataStatement]).

This version of the specification only supports the values text/plain Or image/png.

content Of type required DOMString
base64url (byte[l...])

Contains the base64-url encoded transaction content according to the contentType to be shown to the user.

If contentType is "text/plain” then the contentmust be the base64-url encoding of the ASCII encoded text with a maximum of 200
characters.

tcDisplayPNGCharacteristics Of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See

[FIDOMetadataStatement]. This field must be present if the contentType is "image/png".
3.5.2 Authentication Request Message

UAF Authentication request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The request is
defined as AuthenticationRequest dictionary.

"header": {
"upv': {
r

"op": "Auth",
"appID": "https://uaf-test-1l.noknoktest.com:8443/SampleApp/uaf/facets",
"serverData": "5s7n8-7_LDAtRIKKYgbAtTTOezVKCjl2mPorYzbpxRrZ-_3wWro
MXsF_pLYJjNVm_17bplAx4bkEwK6ibil9EHGEdfK0Q1q0tyEkNJFOggdjVmLioroxgThlj8Is
tpt7q"

'
"challenge": "HQ1VKTUQC1NJDOo600Wdxewrb9i5WthjfKIehFxpeuU",
"policy": {
"accepted": [
[
{

"userVerification": 512,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [

1
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
1
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 2,
"keyProtection": 4,
"tcDisplay": 1,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 2,
"tcDisplay": 1,
"authenticationAlgorithms": [
1,
3
]
}
1,
[
{
"userVerification": 2,
"keyProtection": 2,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 32,
"keyProtection": 2,
"assertionSchemes": [
"UAFV1TLV"
]
}
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1TLV"
]
}
{

"userVerification": 2,
"authenticationAlgorithms": [

1,

3

'
"assertionSchemes": [

"UAFVITLV"
1
I
{

"userVerification": 4,

"keyProtection": 1,

"authenticationAlgorithms": [
1,
3

1r

"assertionSchemes": [
"UAFV1TLV"

1

}
1

|
"éisallowed": [

"userVerification": 512,

"keyProtection": 16,

"assertionSchemes": [
"UAFV1TLV"

1

"userVerification": 256,
"keyProtection": 16

3.5.3 AuthenticationRequest dictionary

Contains the UAF Authentication Request Message:

dictionary AuthenticationRequest {
required OperationHeader header;
required ServerChallenge challenge;
Transaction|] transaction;
required Policy policy;

3.5.83.1 Dictionary authenticationrequest Members

header Of type required OperationHeader
Header.op must be "Auth"

challenge Of type required ServerChallenge
Server-provided challenge value

transaction Of type array of Transaction
Transaction data to be explicitly confirmed by the user.

The list contains the same transaction content in various content types and various image sizes. Refer to [FIDOMetadataStatement]
for more information about Transaction Confirmation Display characteristics.

policy Of typerequired Policy
Server-provided policy defining what types of authenticators are acceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:

dictionary AuthenticatorSignAssertion {
required DOMString assertionScheme;
required DOMString assertion;
Extension[] exts;

3.5.4.1 Dictionary authenticatorsignassertion Members

assertionScheme Of type required DOMString
The name of the Assertion Scheme used to encodeassertion. See UAF Supported Assertion Schemes for details.

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.
assertion Of type required DOMString
base64url (byte[1..4096]) Contains the assertion containing a signature generated by vauth.priv, i.e. TAG_UAFV1_AUTH_ASSERTION.

exts Of type array of Extension
Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered authenticators.

dictionary AuthenticationResponse {
required OperationHeader header;
required DOMString fcParams;
required AuthenticatorSignAssertion[] assertions;

3.5.5.1 Dictionary authenticationrResponse Members

header Of type required OperationHeader
Header.op must be "Auth"

fcparams Of type required DOMString

The field fcParams is the base64url-encoded serialized [RFC4627] FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) which contains all parameters required for the server to verify the Final Challenge.

assertions Of type array ofrequired AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. The array must contain exactly one dictionary. The response
is defined as AuthenticationResponse dictionary.

[{

"assertions": [

"assertion": "AJj7WAAQ-jgALLgkAQUJIDRCNBQKNEDi4FAAABAQEADy4gAHWYJA
EX8t1b2wOxbaKOC5ZL7ACgbLo_TtiQfK3DzDsHCi4gAFwCUz-dOuafXKXJLbkUrIzjAU60oDb
P8B9iLORMCE58fEC4AAAkuIABkwI-f3bIe Uin6IKIFvgLgAOrpk6 nr0oVAK9hI182A0uBA
ACAAAABiS5AADWDOCBVPS1X2bRNy4SvFhAwhEAOBSGUitgMUNChgUSMxss3K3ukekglpaG7Fv
1v5mBmDCZVPt2NCTnjUxrjTpd",

"assertionScheme": "UAFVITLV"

’

"fcParams": "eyJhcHBJRCI6ImMhOdHBzOi8vdWFmMLXR1c3QtMS5ub2tub2t0ZXNOLmN
vbT04NDQzL1NhbXBsZUFwcCI1YWYVZmFjZXRzIiwiY2hhbGx1lbmd1lIjoiSFEXVmtUVVFDMUS
KRE9VNk9PV2R4ZXdyYjlpNvd0aGpmS011aEZ4cGV1VSIsImNoYW5uzWxCaWws5kaw5snIjp7£Sw
iZmFJjZXRIRCI6IMNVbS5ub2tub2suYW5kem9pZC5zYWlwbGVhcHALIfQ",

"header": {

"appID": "https://uaf-test-1l.noknoktest.com:8443/SampleApp/uaf/facets",
"op": "Auth",

"serverData": "5s7n8-7_LDAtRIKKYgbAtTTOezVKCjl2mPorYzbpxRrZ-_3wWro
MXsSF_pLYJjNVm_17bplAx4bkEwK6ibil9EHGEdfKOQ1q0tyEkKNIJFOggdjVmLioroxgThlj8Is
tpt7q",

"upv": {

"major": 1,
"minor": 1
}
}
]
NOTE

Line breaks in fcParams have been inserted for improving readability.

3.5.7 Authentication Processing Rules

3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by MatchCriteria). All authenticators in a specific set must be used for authentication
simultaneously in order to match the policy. But any of those sets in the list are valid, i.e. the list elements are alternatives.

The FIDO Server must follow the steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be used for authentication simultaneously that can be identified by the same
rule, create a MatchCriteria objectn, where

= m.aaid may be combined with (one or more Of)m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m.aaid must not be combined with any other match criteria field.

s Ifm.aaid is not provided - at least m.authenticationalgorithms and m.assertionschemes must be provided

= In case of step-up authentication (i.e. in the case where it is expected the user is already known due to a previous
authentication step) every item in rolicy.accepted must include the aa1p and xey1p of the authenticator registered
for this account in order to avoid ambiguities when having multiple accounts at this relying party.

2. Addntov, e.g.v[j+1]=m
2. Add v top.allowed, €.9. p.allowed[i+1]=v

2. Create MatchCriteria objects n for all disallowed authenticators.
1. Create a MatchCriteria object m and add AAIDs of all disallowed authenticators to m.aaid.

The status (as provided in the metadata TOC FIDOMetadataService]) of some authenticators might be unacceptable. Such
authenticators should be included in p.disallowed.

2. If needed - create MatchCriterian for other disallowed criteria (e.g. unsupported authenticationAlgs)
3. Add alln to p.disallowed.

2. Create an AuthenticationRequest object - with appropriate r.neader for the supported version, and

1. FIDO Servers should not assume any implicit integrity protection of r.header.serverpata. FIDO Servers that depend on the integrity
of r.header.servernata should apply and verify a cryptographically secure Message Authentication Code (MAC) to serverData and
they should also cryptographically bind serverData to the related message, e.g. by re-including r.challenge, See also section

ServerData and KeyHandle.

NOTE

All other FIDO components (except the FIDO server) will treat r.header.servernata as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

2. Generate a random challenge and assign it tor.challenge

3. If this is a transaction confirmation operation - look up TransactionConfirmationDisplayContentTypes/
TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every participating AAID, generate a list of
corresponding transaction content and insert the list into r. transaction.

= If the authenticator reported (a dynamic) authenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during
Registration - it must be preferred over the (static) value specified in the authenticator Metadata.

4. Set r.policy to our new policy objectp created above, e.g. r.policy = p.
5. Add the authentication request message the array
3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message n with upv set to the appropriate version number.
2. Parse the message n
o If a mandatory field in the UAF message is not present or a field doesn't correspond to its type and value then reject the operation

3. Obtain racet1p of the requesting Application. If the app1p is missing or empty, set the app1p to the Facet1p.

Verify that the racet1p is authorized for the app1p according to the algorithms in [FIDOAppIDAndFacets].

o If the racet1D Of the requesting Application is not authorized, reject the operation
. Filter available authenticators with the given policy and present the filtered list to User.
. Let the user select the preferred Authenticator.
. Obtain TLS data if its available

. Create a FinalChallengeParams structure fcp and set fcp.appID, fcp.challenge, fcp. facetID, and fcp.channelBinding appropriately.
Serialize [RFC4627] tcp using UTF8 encoding and base64url encode it.

o FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that supports an Authenticator Interface Version AlV compatible with message version
AuthenticationRequest.header.upv (See Version Negotiation) and user agrees to authenticate with:
1. Add 2pp1p, FinalChallenge, Transactions (if present), and all other fields to the ASMRequest.
2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the

ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

N o oA

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator
See [UAFAuthnrCommands], section "Sign Command".
3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:
1. Create an AuthenticationResponse message
2. Copy authenticationRequest.header iNtO AuthenticationResponse.header

NOTE

When the app1p provided in the request was empty, the FIDO Client must set the app1p in this header to the facetID (see
[FIDOAppIDANndFacets)).

3. Fill out authenticationrResponse.FinalChallengeParams With appropriate fields and then stringify it
4. Append the response from each authenticator intoauthenticationResponse.assertions
5. Send AuthenticationResponse message to the FIDO Server

3.5.7.5 Authentication Response Processing Rules for FIDO Server

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with

corresponding processing rules.

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (authenticationResponse.header.upv) iS NOt supported — reject the operation
2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation
2. Verify that authenticationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. See also
section ServerData and KeyHandle.
3. base64url decode authenticationResponse.fcparams and convert into an object (fcp)

4. Verify each field in fcp and make sure it's valid:
1. Make sure fcp.appID corresponds to the one stored by the FIDO Server

NOTE

When the app1p provided in the request was empty, the FIDO Client must set the app1p to the facetlD (see
[FIDOAppIDAndFacets]). In this case, the Uauth key cannot be used by other application facets.

2. Make sure fcp.facet1n is in the list of trusted FacetIDs FIDOAppIDAndFacets]
3. Make sure channelBinding is as expected (see section ChannelBinding dictionary)

NOTE
There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

4. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
5. Reject the response if any of the above checks fails

5. For each assertion a in authenticationResponse.assertions

1. Parse TLV data froma.assertion assuming it is encoded according to the suspected assertion scheme a.assertionscheme and
make sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to have and has a valid syntax.
= [f it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

NOTE

The AAID intac_uarvi_sIenep DaTa is contained in
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_ DATA.TAG_AAID.

3. Verify that a.assertionscheme matches Metadata(AAID).assertionScheme
= If it doesn't match - continue with next assertion

4. Make sure that the AAID indeed matches the policy of the Authentication Request
» [f it doesn't meet the policy — continue with next assertion

5. if a.assertion contains an object of type Tac_uarvi aAuTH AsserTION, then
1. if a.assertion.TAG UAFVI AUTH ASSERTION cOntains tac uarvi steNED DATA as first element:

1. Obtain vetadata(AAID).Authenticatorversion for this AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.AuthenticatorVersion.

s If Metadata(aa1D).Authenticatorversion is higher (i.e. the authenticator firmware is outdated), it is recommended
to assume increased authentication risk. See "StatusReport dictionary" and "Metadata TOC object Processing
Rules" in [FIDOMetadataService] for more details on this.
2. Retrieve a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.TAG KeEYID as KeylD

3. Locate vauth.pub public key associated with (AAID, KeyID) in the user's record.
= If such record doesn't exist - continue with next assertion

4. Verify the AAID against the AAID stored in the user's record at time of Registration.
= If comparison fails — continue with next assertion
5. Locate authenticator specific authentication algorithms from authenticator metadata (field ruthenticationalgs)

6. Check the Signature Counter a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.SignCounter and make
sure it is either not supported by the authenticator (i.e. the value provided and the value stored in the user's record are
both 0 or the value isKeyRestricted is set to 'false' in the related Metadata Statement) or it has been incremented
(compared to the value stored in the user's record)

= If it is greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a
cloned authenticator has been used previously).

7. Hash authenticationResponse.FinalChallengeParams USIinNG the hashing algorithm suitable for this authenticator type.
Look up the hash algorithm in authenticator Metadata, field ruthenticationalgs. It is the hash algorithm associated with
the first entry related to a constant with prefix ALG_SIGN.

m FCHash = hash(AuthenticationResponse.FinalChallengeParams)

8. Make sure that a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1_ SIGNED DATA.TAG FINAL CHALLENGE HASH == FCHash
= |f comparison fails — continue with next assertion
9. If a.assertion.TAG UAFV1_AUTH ASSERTION.TAG UAFV1 SIGNED DATA.TAG ASSERTION INFO.authenticationMode == 2

NOTE

The transaction hash included in this authenticationresponse must match the transaction content specified in the
related authenticationrequest. As FIDO doesn’t mandate any specific FIDO Server API, the transaction content

could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web
Application.

1. Make sure there is a transaction cached on Relying Party side.
= If not — continue with next assertion
2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction)
and calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for
FinalChallenge).

» For each cachedTransaction add hash(cachedTransaction) into cachedTransactionHashList

3. Make sure that a.Transactiontash iS in cachedTransactionHashList
« Ifit's not in the list — continue with next assertion

10. Use vauth.pub key and appropriate authentication algorithm to verify
a.assertion.TAG UAFV1_AUTH ASSERTION.TAG_ SIGNATURE

1. If signature verification fails — continue with next assertion
2. Update signcounter in user's record with
a.assertion.TAG_UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.SignCounter
2. ifa.assertion.TAac UAFV1 AUTH asserTION contains a different object than tac varvi steuep para as first element, then follow
the rules specific to that object.

6. if a.assertion doesn't contain an object of typeTac _uarvi aura asserrION, then skip this assertion (as in this UAF v1 only
TAG_UAFV1_AUTH AsserTION is defined).

7. Treat this assertion a as positively verified.
6. Process all positively verified authentication assertions a.

3.6 Deregistration Operation
This operation allows FIDO Server to ask the FIDO Authenticator to delete keys related to the particular relying party.

The FIDO Server may explicitly enumerate the keys to be deleted, or the FIDO server may signal deregistration of all keys on all authenticators
managed by the FIDO UAF Client and relating to a given applD.

NOTE
There are various deregistration use cases that both FIDO Server and FIDO Client implementations should allow for. Two in particular
are:

1. FIDO Servers should trigger this operation in the event a user removes their account at the relying party.

2. FIDO Clients should ensure that relying party application facets -- e.g., mobile apps, web pages -- have means to initiate a
deregistration operation without having necessarily received a UAF protocol message with an op value of "Dereg". This allows the
relying party app facet to remove a user's keys from authenticators during events such as relying party app removal or installation.

3.6.1 Deregistration Request Message

The FIDO UAF Deregistration request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The
request is defined as DeregistrationRequest dictionary.

"header": {
"op": "Dereg",
"apv': {
"major": 1,
"minor": 1
I
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets"
'
"authenticators": [
{
"aaid": "ABCD#ABCD",
"keyID": ""

1
H

The example above contains a version 1.1 deregistration request. This request will deregister all keys registered in authenticator with aaia
"ABCD#ABCD" for the given app1p.

NOTE

There is no deregistration response object.

3.6.2 DeregisterAuthenticator dictionary

dictionary DeregisterAuthenticator {
required AAID aaid;
required KeyID keyID;

bi

3.6.2.1 Dictionary DeregisterAuthenticator Members

aaid of type required AAID
AAID of the authenticator housing theuauth.priv key to deregister, or an empty string if all keys related to the specified app1p are to
be de-registered.

key1D Of type required KeyID

The unique KeyID related to uauth.priv. KeylD is assumed to be unique within the scope of an AAID only. If zaid is not an empty
string, then:

1. xeyID may contain a value of type KeyID, or,
2. keyIp may be an empty string.

(1) signals deletion of a particular vauth.priv key mapped to the (aa1p, key1D) tuple.
(2) signals deletion of all KeylDs associated with the specified aaid.

If aaid is an empty string, then key1p must also be an empty string. This signals deregistration of all keys on all authenticators that are
mapped to the specified app1p.

3.6.3 DeregistrationRequest dictionary

dictionary DeregistrationRequest {
required OperationHeader header;
required DeregisterAuthenticator[] authenticators;

}i

3.6.3.1 Dictionary DeregistrationRequest Members

header Of type required OperationHeader
Header.op must be "Dereg".

authenticators Of type array ofrequired DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules
3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server must follow the steps:

1. Create aperegistrationRequest message m with m.header.upv set to the appropriate version number.

2. If the FIDO Server intends to deregister all keys on all authenticators managed by the FIDO UAF Client for this app1p, then:
1. create one and onIy ON€é peregisterAuthenticator object o

2. Seto.aaid and o.key1D to be empty string values
3. Append o tOm.authenticators, and gotostep 5

3. If the FIDO Server intends to deregister all keys on all authenticators with a given AAID managed by the FIDO UAF Client for this app1p,
then:

1. create one and onIy ON€é peregisterAuthenticator object o
2. Seto.aaid to the intended AAID and set o.xey1D to be an empty string.
3. Append o tom.authenticators, and gotostep 5
4. Otherwise, if the FIDO Server intends to deregister specific (2210, xey1D) tuples, then for each tuple to be deregistered:
1. create aperegisterAuthenticator object o
2. Seto.aaid and o.key1D appropriately
3. Append o tOm.authenticators
5. delete related entry (or entries) in FIDO Server's account database
6. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message n with upv set to the appropriate version number.
2. Parse the message

o If a mandatory field inperegistrationrequest message is not present or a field doesn't correspond to its type and value — reject the
operation

o Empty string values foro.aaid and o.key1p must occur in the first and only DeregisterAuthenticator object o, otherwise reject the
operation

3. Obtain racet1p of the requesting Application. If the app1p is missing or empty, set the app1p to the Facet1n.

Verify that the racet1p is authorized for the app1p according to the algorithms in [FIDOAppIDAndFacets].

o If the racet1D Of the requesting Application is not authorized, reject the operation

4. For each authenticator compatible with the message version peregistrationRequest.header.upv and having an AAID matching one of
the provided aa1ps (an AAID of an authenticator matches if it is either (a) equal to one of the aa1ps in the beregistrationrequest or if (b)
the aa1p in the beregistrationrequest is an empty string):

1. Create appropriate asmrequest for Deregister function and send it to the ASM. If the ASM returns an error, handle that error
appropriately. The status code returned by the ASM [UAFASM] must be mapped to a status code defined in
[UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping ASM Status Codes to ErrorCode

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator

See [UAFASM] section "Deregister request".

4. Considerations

This section is non-normative.

4.1 Protocol Core Design Considerations

This section describes the important design elements used in the protocol.
4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all supported authenticators and their corresponding Metadata. Authenticator metadata
[FIDOMetadataStatement] contains information such as:

« Supported Registration and Authentication Schemes
« Authentication Factor, Installation type, supported content-types and other supplementary information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction, FIDO Server looks up the list of authenticator
metadata by AAID and retrieves the required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be identified with a unique authenticator Attestation ID (AAID).

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating authenticator model identity during registration. It allows Relying Parties to
cryptographically verify that the authenticator reported by FIDO UAF Client is really what it claims to be.

Using authenticator Attestation, a relying party "example-rp.com" will be able to verify that the authenticator model of the "example-

Authenticator", reported with AAID "1234#5678", is not malware running on the FIDO User Device but is really a authenticator of model
"1234#5678".

NORMATIVE

FIDO Authenticators should support "Basic Attestation" or "ECDAA" described below. New Attestation mechanisms may be added to the
protocol over time.

NORMATIVE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use the UAuth.priv key in

order to formally generate the same KeyRegistrationData object as attested authenticators. This behavior must be properly declared in the
Authenticator Metadata.

4.1.2.1 Basic Attestation

NORMATIVE
There are two different flavors of Basic Attestation:
Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).
Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key

corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not provide a cryptographic proof of
the security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 Full Basic Attestation

NOTE
FIDO Servers must have access to a trust anchor for verifying attestation public keys (i.e. Attestation Certificate trust store) in order to
follow the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation signature during the registration process for

the same reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This sharing process
shouldt be done according to [FIDOMetadataService].

NOTE

The protection measures of the Authenticator's attestation private key depend on the specific authenticator model's implementation.

NOTE

The FIDO Server must load the appropriate Authenticator Attestation Root Certificate from its trust store based on the AAID provided in
KeyRegistrationData object.

In this Full Basic Attestation model, a large number of authenticators must share the same Attestation certificate and Attestation Private Key in

order to provide non-linkability (see Protocol Core Design Considerations). Authenticators can only be identified on a production batch level or
an AAID level by their Attestation Certificate, and not individually. A large number of authenticators sharing the same Attestation Certificate
provides better privacy, but also makes the related private key a more attractive attack target.

NOTE

When using Full Basic Attestation: A given set of authenticators sharing the same manufacturer and essential characteristics must not
be issued a new Attestation Key before at least 100,000 devices are issued the previous shared key.

Manufacturer Attestation Root

Intermediate Attestation Certificates

Intermediate Attestation Certificates

Attestation Certificate, AAID in commonName

Fig. 10 Attestation Certificate Chain

4.1.2.1.2 Surrogate Basic Attestation

NORMATIVE

In this attestation method, the UAuth.priv key must be used to sign the Registration Data object. This behavior must be properly declared in
the Authenticator Metadata.

NOTE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use this attestation
method.

4.1.2.2 Direct Anonymous Attestation (ECDAA)

The FIDO Basic Attestation scheme uses attestation "group" keys shared across a set of authenticators with identical characteristics in order to
preserve privacy by avoiding the introduction of global correlation handles. If such an attestation key is extracted from one single authenticator,
it is possible to create a "fake" authenticator using the same key and hence indistinguishable from the original authenticators by the relying
party. Removing trust for registering new authenticators with the related key would affect the entire set of authenticators sharing the same
"group" key. Depending on the number of authenticators, this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as opposed to targeted physical attacks.

An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA [TPMv1-2-Part1]. Translated to FIDO, this
approach would require one Privacy-CA interaction for each Uauth key. This means relatively high load and high availability requirements for
the Privacy-CA. Additionally the Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This
might make the Privacy-CA an interesting attack target.

Another alternative is the Direct Anonymous Attestation BriCamChe2004-DAA]. Direct Anonymous Attestation is a cryptographic scheme
combining privacy with security. It uses the Authenticator specific secret once to communicate with a single DAA Issuer (either at
manufacturing time or after being sold before first use) and uses the resulting DAA credential in the DAA-Sign protocol with each relying party.
The (original) DAA scheme has been adopted by the Trusted Computing Group for TPM v1.2 [TPMv1-2-Part1].

ECDAA (see [FIDOEcdaaAlgorithm] for details) is an improved DAA scheme based on elliptic curves and bilinear pairings [CheLi2013-

ECDAA]. This scheme provides significantly improved performance compared with the original DAA and it is part of the TPMv2 specification
[TPMv2-Parti].

NORMATIVE
The ECDAA attestation algorithm is used as specified in [FIDOEcdaaAlgorithm].

4.1.3 Error Handling

NOTE

FIDO Servers must inform the calling Relying Party Web Application Server (see FIDO Interoperability Overview) about any error
conditions encountered when generating or processing UAF messages through their proprietary API.

I NORMATIVE

FIDO Authenticators must inform the FIDO UAF Client (seeFIDO Interoperability Overview) about any error conditions encountered when

I processing commands through the Authenticator Specific Module (ASM). See [UAFASM] and [UAFAuthnrCommands] for details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs, Fingerprint Sensors, Secure Elements, etc.) and
also future authenticators designed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

« Cryptographic key provisioning (KeyRegistrationData)
« Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See also UAF Supported Assertion Schemes.

The Registration Assertion defines how and in which format a cryptographic key is exchanged between the authenticator and the FIDO Server.
The Authentication Assertion defines how and in which format the authenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in [UAFRegistry].
4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e. replacing username and password). As part of the FIDO UAF
Registration, the Uauth key is registered (linked) to the related user account at the RP. The authenticator stores the username (allowing the
user to select a specific account at the RP in the case he has multiple ones). See [UAFAuthnrCommands], section "Sign Command" for details.

4.1.6 Silent Authenticators

FIDO UAF supports authenticators not requiring any types of user verification or user presence check. Such authenticators are called Silent
Authenticators.

In order to meet user's expectations, such Silent Authenticators need specific properties:

« It must be possible for a user to effectively remove a Uauth key maintained by a Silent Authenticator (in order to avoid being tracked) at
the user's discretion (see [UAFAuthnrCommands]). This is not compatible with statelesss implementations storing the Uauth private key
wrapped inside a KeyHandle on the FIDO Server.

« TransactionConfirmation is not supported (as it would require user input which is not intended), see [UAFAuthnrCommands].
« They might not operate in first factor mode (see JAFAuthnrCommands]) as this might violate the privacy principles.

The MetadataStatement has to truthfully reflect the Silent Authenticator, i.e. field userVerification needs to be set to USER_VERIFY_NONE.

4.1.7 TLS Protected Communication

NOTE

In order to protect the data communication between FIDO UAF Client and FIDO Server a protected TLS channel must be used by FIDO
UAF Client (or User Agent) and the Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying Party
2. The client endpoint of the TLS connection must be either the FIDO UAF Client or the User Agent / App

3. TLS Client and Server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS v1.2 or higher are not available. The
"anon" and "null" TLS crypto suites are not allowed and must be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4,
SHAT1) should be avoided [[SP 800-131A]] [RFC7525].

4. TLS Extended Master Secret Extension RFC7627] and TLS Renegotiation Indication Extension [RFC5746] should be used to
protect against MITM attacks.

5. The use of the tls-unique method is deprecated as its security is broken, see TLSAUTH].

We recommend, that the

1. TLS Client verifies and validates the server certificate chain according to [RFC5280], section 6 "Certificate Path Validation". The
certificate revocation status should be checked (e.g. using OCSP [RFC2560] or CRL based validation [RFC5280]) and the TLS server
identity should be checked as well [RFC6125].

2. TLS Client's trusted certificate root store is properly maintained and at least requires the CAs included in the root store to annually pass
Web Trust or ETSI (ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.
See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on how to use TLS.
4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

NOTE

A serverchallenge Needs appropriate random sources in order to be effective (see [RFC4086] for more details). The (pseudo-)random
numbers used for generating the Server Challenge should successfully pass the randomness test specified in [Coron99] and they should
follow the guideline given in [SP800-90b].

4.3 Security Considerations

There is no "one size fits all" authentication method. The FIDO goal is to decouple the user verification method from the authentication protocol

and the authentication server, and to support a broad range of user verification methods and a broad range of assurance levels. FIDO
authenticators should be able to leverage capabilities of existing computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and integrity of the user's equipment involved
and (b) on the authentication method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of authentication methods. The relying party
needs reliable information about the security relevant parts of the equipment and the authentication method itself in order to determine whether
the overall risk of an electronic authentication is acceptable in a particular business context. The FIDO Metadata Service
[FIDOMetadataService] is intended to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security relevant parts of the equipment and the
authentication method itself to the FIDO server.

The overall security is determined by the weakest link. In order to support scalable security in FIDO, the underlying UAF protocol needs to
provide a very high conceptual security level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels. The FIDO Alliance envisions a broad range of FIDO UAF Clients, FIDO
Authenticators and FIDO Servers to be offered by various vendors. Relying parties should be able to select a FIDO Server providing the
appropriate level of security. They should also be in a position to accept FIDO Authenticators meeting the security needs of the given business
context, to compensate assurance level deficits by adding appropriate implicit authentication measures, and to reject authenticators not
meeting their requirements. FIDO does not mandate a very high assurance level for FIDO Authenticators, instead it provides the basis for
authenticator and user verification method competition.

Authentication vs. Transaction Confirmation. Existing Cloud services are typically based on authentication. The user launches an
application (i.e. User Agent) assumed to be trusted and authenticates to the Cloud service in order to establish an authenticated
communication channel between the application and the Cloud service. After this authentication, the application can perform any actions to the
Cloud service using the authenticated channel. The service provider will attribute all those actions to the user. Essentially the user
authenticates all actions performed by the application in advance until the service connection or authentication times out. This is a very
convenient way as the user doesn't get distracted by manual actions required for the authentication. It is suitable for actions with low risk
consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is typically being used when non-repudiation is required. The resulting requirement for this scenario is called
What You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The technical difference is, that with
Authentication the user confirms a random challenge, where in the case of Transaction Confirmation the user also confirms a human readable
content, i.e. the contract. From a security point, in the case of authentication the application needs to be trusted as it performs any action once
the authenticated communication channel has been established. In the case of Transaction Confirmation only the transaction confirmation
display component implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in order to determine the risk associated with an authentication, it is

important to know details about some components of the user's environment. Web Browsers typically send a "User Agent" string to the web
server. Unfortunately any application could send any string as "User Agent" to the relying party. So this method doesn't provide strong security.
FIDO UAF is based on a concept of cryptographic attestation. With this concept, the component to be attested owns a cryptographic secret and
authenticates its identity with this cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation Key". The
relying party gets access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an authentication, all components performing significant
security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the "FIDO Authenticators". Security functions are:

. Protecting the attestation key.

. Generating and protecting the Authentication key(s), typically one per relying party and user account on relying party.
. Verifying the user.

. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).

A ON =

Some FIDO Authenticators might implement these functions in software running on the FIDO User Device, others might implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators might even be
formally evaluated and accredited to some national or international scheme. Each FIDO Authenticator model has an attestation ID (AAID),
uniquely identifying the related security characteristics. Relying parties get access to these security properties of the FIDO Authenticators and
the reference data required for verifying the attestation.

Resilience to leaks from other verifiers. One of the important issues with existing authentication solutions is a weak server side
implementation, affecting the security of authentication of typical users to other relying parties. It is the goal of the FIDO UAF protocol to
decouple the security of different relying parties.

Decoupling User Verification Method from Authentication Protocol. In order to decouple the user verification method from the
authentication protocol, FIDO UAF is based on an extensible set of cryptographic authentication algorithms. The cryptographic secret will be
unlocked after user verification by the Authenticator. This secret is then used for the authenticator-to-relying party authentication. The set of
cryptographic algorithms is chosen according to the capabilities of existing cryptographic hardware and computing devices. It can be extended
in order to support new cryptographic hardware.

Privacy Protection. Different regions in the world have different privacy regulations. The FIDO UAF protocol should be acceptable in all
regions and hence must support the highest level of data protection. As a consequence, FIDO UAF doesn't require transmission of biometric
data to the relying party nor does it require the storage of biometric reference data [ISOBiometrics] at the relying party. Additionally,
cryptographic secrets used for different relying parties shall not allow the parties to link actions to the same user entity. UAF supports this
concept, known as non-linkability. Consequently, the UAF protocol doesn't require a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO Authenticators on the FIDO User Device using the Discovery interface
[UAFAppAPIAndTransport]. The combination of AAIDs adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at eff.org and https://wiki.mozilla.org/Fingerprinting). In order to

minimize the entropy added by FIDO, the user can enable/disable individual authenticators — even when they are embedded in the device (see
[UAFAppAPIAndTransport], section "privacy considerations").

4.3.1 FIDO Authenticator Security
See [UAFAuthnrCommands].

4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it is suggested that implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is also supported. See
[FIDORegistry] "Authentication Algorithms" and "Public Key Representation Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random value. For effective security, this value
must be chosen randomly and uniformly from a set of modular integers, using a cryptographically secure process. Even slight biases in that
process may be turned into attacks on the signature schemes.

NOTE

If such random values cannot be provided under all possible environmental conditions, then a deterministic version of ECDSA should be
used (see [RFC6979)).

4.3.3 FIDO Client Trust Model
The FIDO environment on a FIDO User Device comprises 4 entities:

« User Agents (a native app or a browser)

« FIDO UAF Clients (a shared service potentially used by multiple User Agents)
« Authenticator Specific Modules (ASMs)

« Authenticators

Relying Party

| TLS with server
_—— authentication

Platform specific

determination of —
FacetlD

FIDO User Device

Platform specific
determinationof _____
CallerlD

Authenticator specific
~ User Verification

Fig. 11 UAF Client Trust Model

The security and privacy principles that underpin mobile operating systems require certain behaviours from apps. FIDO must uphold those
principles wherever possible. This means that each of these components has to enforce specific trust relationships with the others to avoid the
risk of rogue components subverting the integrity of the solution.

One specific requirement on handsets is that apps originating from different vendors must not be allowed directly to view or edit each other’s
data (e.g. FIDO UAF credentials).

Given that FIDO UAF Clients are intended to provide a shared service, the principle of siloed app data has been applied to the FIDO UAF

Client, rather than individual apps. This means that if two or more FIDO UAF Clients are present on a device, then each FIDO UAF Client is

unable to access authentication keys created by another FIDO UAF Client. A given FIDO UAF Client may however provide services to multiple

gser Agents, so that the same authentication key can authenticate to different facets of the same Relying Party, even if one facet is a 3rd party
rowser.

This exclusive access restriction is enforced through the KHAccessToken. When a FIDO UAF Client communicates with an ASM, the ASM
reads the identity of the FIDO UAF Client caller1 and includes that Client ID in the KHAccessToken that it sends to the authenticator.
Subsequent calls to the authenticator must include the same Client ID in the KHAccessToken. Each authentication key is also bound to the
ASM that created it, by means of an ASMToken (a random unique ID for the ASM) that is also included in the KHAccessToken.

Finally, the User Agents that a FIDO UAF Client will recognise are determined by the Relying Party itself. The FIDO UAF Client requests a list
of Trusted Apps from the RP as part of the Registration and Authentication protocols. This prevents User Agents that have not been explicitly
authorized by the Relying Party from using the FIDO credentials.

In this manner, in a compliant FIDO installation, UAF credentials can only be accessed via apps that the relying party explicitly trusts and
through the same client and ASM that performed the original registration.

It should be noted that the specification allows for FIDO UAF Clients to be built directly into User Agents. However, such implementations will

restrict the ability to support multiple facets for relying party applications unless they also expose the UAF Client API for other User Agents to
consume.

4.3.3.1 Isolation using KHAccess Token

Authenticators might be implemented in dedicated hardware and hence might not be able to verify the calling software entity (i.e. the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to the intended ASM. It is based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e. the ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally registered them. A malicious App on a
mobile platform won't be able to access keys by bypassing the related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the AppID, PersonalD, ASMToken and the CallerlD. See [UAFASM] for more details.

NOTE

On some platforms, the ASM additionally might need special permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among applications.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g. [RFC5929] and [ChannellD]).

UAF relies on TLS server authentication for binding authentication keys to ApplDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for the same AppID as the relying party and they might be able to manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and they might be able to manipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tIs-unique" defined in [RFC5929] might be difficult to
implement.

2. Data centers might use SSL concentrators.

3. Data centers might implement load-balancing for TLS endpoints using different TLS certificates. As a consequence, "tls-server-end-point"
defined in [RFC5929], i.e. the hash of the TLS server certificate might be inappropriate.

4. Unfortunately, hashing of the TLS server certificate (as in "tls-server-end-point") also limits the usefulness of the channel binding in a
particular, but quite common circumstance. If the client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-
middle, your client will see a different certificate than the one the server is using. This is actually quite common on corporate or military
networks with a high security posture that want to inspect all incoming and outgoing traffic. If the FIDO Server just gets a hash value,
there's no way to distinguish this from an attack. If sending the entire certificate is acceptable from a performance perspective, the server
can examine it and determine if it is a certificate for a valid name from a non-standard issuer (likely administratively trusted) or a certificate
for a different name (which almost certainly indicates a forwarding attack).

See ChannelBinding dictionary for more details.
4.3.5 Session Management

FIDO does not define any specific session management methods. However, several FIDO functions rely on a robust session management
being implemented by the relying party's web application:

FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.

FIDO Authentication
After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).
4.3.6 Personas

FIDO supports unlinkability [AnonTerminology] of accounts at different relying parties by using relying party specific keys.

Sometimes users have multiple accounts at a particular relying party and even want to maintain unlinkability between these accounts.
Today, this is difficult and requires certain measures to be strictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various personas (e.g. "business", "personal").
This is possible as roaming authenticators typically are small and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona (e.g. "business" or "personal"). Some administrative interface (not standardized
by FIDO) of the authenticator may allow maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g. authentication keys, usernames, KeyIDs, ...) related to the Persona being
active at that time.

With this concept, the User can switch to the "Personal" Persona and register new accounts. After switching back to "Business" Persona, these
accounts will not be recognized by the authenticator (until the User switches back to "Personal" Persona again).

In order to support the persona feature, the FIDO Authenticator-specific Module APl [UAFASM] supports the use of a 'PersonalD' to identify
the persona in use by the authenticator. How Personas are managed or communicated with the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see Operation Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be echoed
back to the FIDO Server as part of the related UAF response message.
NOTE

The FIDO Server should not assume any kind of implicit integrity protection of such data nor any implicit session binding. The FIDO
Server must explicitly bind the serverData to an active session.

NOTE

In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary places (e.g. in serverData or in the
KeyHandle). In such situations, the confidentiality and integrity of such sensitive data must be protected. This can be achieved by using
a suitable encryption algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or CTR [CTRMode]. This cipher mode needs to be used
correctly. For CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first in order to
obtain an integral number of blocks in length. The integrity protection can be achieved by adding a MAC or a digital signature on the
ciphertext, using a different key than for the encryption, e.g. using HMAC [FIPS198-1]. Alternatively, an authenticated encryption
scheme such as AES-GCM [SP800-38D] or AES-CCM [BP800-38C] could be used. Such a scheme provides both integrity and
confidentiality in a single algorithm and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by re-including the challenge value in the authenticated serverData.

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

Several authenticator properties (e.g. UserVerificationMethods, KeyProtection, TransactionConfirmationDisplay, ...) are available in the
metadata [FIDOMetadataStatement] and through the FIDO UAF Application API. The properties included in the metadata are authoritative and
are provided by a trusted source. When in doubt, decisions should be based on the properties retrieved from the Metadata as opposed to the
data retrieved through the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint" what to expect from the Authenticator. Such
"hints" are well suited to drive and optimize the user experience.

4.3.9 Policy Verification

FIDO UAF Response messages do not include all parameters received in the related FIDO UAF request message into the to-be-signed object.
As a consequence, any MITM could modify such entries.

FIDO Server will detect such changes if the modified value is unacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible FIDO Authenticator. Such a change will
be detected by FIDO Server if the weakest possible FIDO Authenticator does not match the initial policy (see Registration Response
Processing Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection
The FIDO UAF protocol specifies two different methods for replay-attack protection:

1. Secure transport protocol (TLS)
2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [TLS].

Additionally, each protocol message contains some random bytes in the serverchallenge field. The FIDO server should only accept incoming
FIDO UAF messages which contain a valid serverchallenge value. This is done by verifying that the serverchallenge value, sent by the client,
was previously generated by the FIDO server. See rinalchallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated by the FIDO server may not be unique,
and in such cases, the same serverchallenge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security characteristics specified for the model
(identified by the AAID). The security is better when only a single authenticator with that specific UAuth.Key instance exists. Consequently
FIDO UAF specifies some protection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard as such keys cannot be extracted easily.
Secondly, UAF specifies a Signature Counter (see Authentication Response Processing Rules and [UAFAuthnrCommands]). This counter is

increased by every signature operation. If a cloned authenticator is used, then the subsequent use of the original authenticator would include a
signature counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals

There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:

. Register the authenticator to some relying party for one account

. Commit fraud

. Deregister the Authenticator

. Register the authenticator to some relying party for another account
. Commit fraud

. Deregister the Authenticator

. and so on...

NOoO o~ WN =

NOTE

Authenticators might support a Registration Counter (regcounter). The regcounter Will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios. See [UAFAuthnrCommands] for more details.

4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native PC Applications. Such applications are referred to as FIDO enabled
applications.

_— UAF Client API

-

Relying Party Application

—_—
A
i _ UAF
“~— Protocol
Specification

"\ UAF Client API

FIDO Client

..

“—— UAF ASM API

.,

“___ UAF Authenticator FIDO Server
FIDO Authenticator Commands

Fig. 12 FIDO Interoperability Overview

Web applications typically consist of the web application server and the related Web App. The Web App code (e.g. HTML and JavaScript) is
rendered and executed on the client side by the User Agent. The Web App code talks to the User Agent via a set of JavaScript APls, e.g.
HTML DOM. The FIDO DOM API is defined in [UAFAppAPIAndTransport]. The protocol between the Web App and the Relying Party Web
Application Server is typically proprietary.

Mobile Apps play the role of the User Agent and the Web App (Client). The protocol between the Mobile App and the Relying Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web App (Client). Those applications are typically expected to be independent
from any particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [UAFAppAPIAndTransport].

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO Authenticators and
have to be verified by the FIDO Server. Verification will fail if the values are modified during transport.

The ASM API [UAFASM] specifies the standardized API to access authenticator Specific Modules (ASMs) on Desktop PCs and Mobile
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API. Instead it lists the minimum data set and a specific
message format which needs to be transferred to and from the FIDO Authenticator.

5. UAF Supported Assertion Schemes
This section is normative.
5.1 Assertion Scheme "UAFV1TLV"

This scheme is mandatory to implement for FIDO Servers. This scheme is mandatory to implement for FIDO Authenticators.

This Assertion Scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the

Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to encode registration and authentication assertions generated by
authenticators. This is the default assertion scheme for UAF protocol.

TAGs and Algorithms are defined in [UAFRegistry].

The authenticator must use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the metadata
statement [FIDOMetadataStatement] for each relying party. This key pair should be generated as part of the registration operation.

Conforming FIDO Servers must implement all authentication algorithms and key formats listed in document [FIDORegistry] unless they are
explicitly marked as optional in [FIDORegistry].

Conforming FIDO Servers must implement all attestation types (rac_arresrarion_+) listed in document [UAFRegistry] unless they are explicitly
marked as optional in [UAFRegistry].

Conforming authenticators must implement (at least) one attestation type defined in [UAFRegistry], as well as one authentication algorithm and
one key format listed in [FIDORegistry].

5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

6. Definitions
See [FIDOGlossary].

7. Table of Figures

Fig. 1 The UAF Architecture

Fig. 2 UAF Registration Message Flow

Fig. 3 Authentication Message Flow

Fig. 4 Transaction Confirmation Message Flow
Fig. 5 Deregistration Message Flow

Fig. 6 UAF Registration Sequence Diagram

Fig. 7 UAF Registration Cryptographic Data Flow
Fig. 8 UAF Authentication Sequence Diagram
Fig. 9 UAF Authentication Cryptographic Data Flow
Fig. 10 Attestation Certificate Chain

Fig. 11 UAF Client Trust Model

Fig. 12 FIDO Interoperability Overview

A. References

A.1 Normative references

[ABNF]
D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNF. January 2008. Internet Standard. URL:
https://tools.ietf.org/html/rfc5234
[ChannellD]
D. Balfanz Transport Layer Security (TLS) Channel IDs (Work In Progress) URL:http:/tools.ietf.org/html/draft-balfanz-tls-channelid
[Coron99]
J. Coron and D. Naccache An accurate evaluation of Maurer's universal test LNCS 1556, February 1999, URL:
http://www.jscoron.fr/publications/universal.pdf
[FIDOAppIDAndFacets]
D. Balfanz, B. Hill, R. Lindemann, D. Baghdasaryan, FIDO AppID and Facets v1.0. FIDO Alliance Proposed Standard. URLs:
HTML: fido-appid-and-facets-v1.1-id-20170202.pdf
[FIDOEcdaaAlgorithm]
R. Lindemann, J. Camenisch, M. Drijvers, A. Edgington, A. Lehmann, R. Urian,FIDO ECDAA Algorithm. FIDO Alliance Implementation
Draft. URLs:
HTML: fido-ecdaa-v1.1-id-20170202.html
PDF: fido-ecdaa-v1.1-id-20170202.pdf.
[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft. URLs:
HTML.: fido-glossary-v1.1-id-20170202.pdf
[FIDOMetadataStatement]
B. Hill, D. Baghdasaryan, J. Kemp, FIDO Metadata Statements v1.0. FIDO Alliance Implementation Draft. URLs:
HTML: fido-metadata-statements.pdf
[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values FIDO Alliance Implementation Draft. URLs:
HTML.: fido-reqistry-v1.1-id-20170202.pdf
[FIPS180-4]
FIPS PUB 180-4: Secure Hash Standard (SHS) National Institute of Standards and Technology, March 2012, URL:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
[JWA]
M. Jones. JSON Web Algorithms (JWA). May 2015. RFC. URL:https://tools.ietf.org/html/rfc7518
[JWK]
M. Jones. JSON Web Key (JWK). May 2015. RFC. URL:https://tools.ietf.org/html/rfc7517
[RFC1321]
R. Rivest, The MD5 Message-Digest Algorithm (RFC 1321), IETF, April 1992, URL:http://www.ietf.org/rfc/rfc1321.txt
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:

https://tools.ietf.org/html/rfc2119
[RFC3629]

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-appid-and-facets-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

cF. Yergeau. UTF-8, a transformation format of ISO 10646 November 2003. Internet Standard. URL:https://tools.ietf.org/html/rfc3629
[RFC4086]
D. Eastlake 3rd, J. Schiller, S. Crocker Randomness Requirements for Security (REC 4086), IETF, June 2005, URL:
http://www.ietf.org/rfc/rfc4086.txt
[RFC4627]
D. Crockford. The application/ison Media Type for JavaScript Object Notation (JSON) July 2006. Informational. URL:
https://tools.ietf.org/html/rfc4627
[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:
http://www.ietf.org/rfc/rfc4648.txt
[RFC5056]
N. Williams, On the Use of Channel Bindings to Secure Channels (RFC 5056) IETF, November 2007, URL:

http://www.ietf.org/rfc/rfc5056.txt
[RFC5280]

D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X.509 Public Key Infrastructure Cettificate and Certificate
Revocation List (CRL) Profile, IETF, May 2008, URL:http://www.ietf.org/rfc/rfc5280.txt
[RFC5929]
J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July 2010, URL:http://www.ietf.org/rfc/rfc5929.txt
[RFC6234]
D. Eastlake 3rd, T. Hansen, US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) (RFC 6234) IETF, May 2011, URL:

http://www.ietf.org/rfc/rfc6234.txt
[RFC6979]

T. Pornin, Deterministic Usage of the Digital Signature Algorithm (DSA) and
(RFC6979), IETF, August 2013, URL: http://www.ietf.org/rfc/rfc6979.txt
[SP800-90b]
Elaine Barker and John Kelsey, NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for Random Bit
Generation. National Institute of Standards and Technology, April 2016, URL:http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-
90b.pdf
[UAFASM]
D. Baghdasaryan, J. Kemp, R. Lindemann, B. Hill, R. Sasson, FIDO UAF Authenticator-Specific Module APl FIDO Alliance
Implementation Draft. URLs:
HTML.: fido-uaf-asm-api-v1.1-id-20170202.pdf
[UAFAppAPIAndTransport]
B. Hill, D. Baghdasaryan, B. Blanke, FIDO UAF Application API and Transport Binding Specification FIDO Alliance Implementation Draft.
URLs:
HTML: fido-uaf-client-api-transport-v1.1-id-20170202.pdf
[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp, R. Lindemann, R. Sasson, B. Hill, FIDO UAF Authenticator Commands v1.0. FIDO Alliance Implementation
Draft. URLs:
HTML: fido-uaf-authnr-cmds-v1.1-id-20170202.pdf
[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values FIDO Alliance Proposed Standard. URLs:
HTML: fido-uaf-reg-vi.1-id-20170202.pdf
[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

Elliptic Curve Digital Signature Algorithm (ECDSA

A.2 Informative references

[AnonTerminology]

"Anonymity, Unlinkability, Unobservability, Pseudonymity, and Identity Management - A Consolidated Proposal for Terminology", Version

0.34,. A. Pfitzmann and M. Hansen, August 2010. URL:http://dud.inf.tu-dresden.de/literatur/Anon_Terminology v0.34.pdf
[BriCamChe2004-DAA]

Ernie Brickell, Intel Corporation; Jan Camenisch, IBM Research; Liqun Chen, HP Laboratories,Direct Anonymous Attestation, 2004,
URL: http:/eprint.iacr.org/2004/205.pdf
[CTRMode]
H. Lipmea, P. Rogaway, D. Wagner, Comments to NIST concerning AES Modes of Operation: CTR-Mode Encryption National Institute
of Standards and Technology, accessed March 11, 2014, URL:
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
[CheLi2013-ECDAA]
Liqun Chen, HP Laboratories and Jiangtao Li, Intel Corporation, Flexible and Scalable Digital Signatures in TPM 2.9 2013. URL:
http://dx.doi.org/10.1145/2508859.2516729
[ECDSA-ANSI]
h : The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-2005
American National Standards Institute, November 2005, URL: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
[FIDOMetadataService]
R. Lindemann, B. Hill, D. Baghdasaryan, FIDO Metadata Service v1.0. FIDO Alliance Implementation Draft. URLs:
HTML: fido-metadata-service-v1.1-id-20170202.pdf
[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Security Reference. FIDO Alliance Implementation Draft. URLs:
HTML.: fido-security-ref-v1.1-id-20170202.pdf
[FIPS198-1]
FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC) National Institute of Standards and Technology, July 2008,

URL: http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1 final.pdf
[ISOBiometrics]

Project Editor, Harmonized Biometric Vocabulary. ISO/IEC 2382-37. 15 December 2012, URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194 ISOIEC 2382-37 2012.zip

[OWASP2013]

c OWASP 2013. OWASP Top 10 - 2013. The Ten Most Critical Web Application Security Risks

[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams.X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. June 1999. Proposed Standard. URL:https://tools.ietf.org/html/rfc2560

[RFC5746]
E. Rescorla; M. Ray; S. Dispensa; N. Oskov. Transport Layer Security (TLS) Renegotiation Indication Extension February 2010.
Proposed Standard. URL: https:/tools.ietf.org/html/rfc5746

[RFC6125]
P. Saint-Andre, J. Hodges, Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) (RFC 6125), IETF, March 2011, URL:

http://www.ietf.org/rfc/rfc6125.txt
[RFC6287]

D. M'Raihi, J. Rydell, S. Bajaj, S. Machani, D. Naccache,OCRA: OATH Challenge-Response Algorithm (RFC 6287) IETF, June 2011,
URL: http://www.ietf.org/rfc/rfc6287 .txt

[RFC7525]
Y. Sheffer; R. Holz; P. Saint-Andre. Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS). May 2015. Best Current Practice. URL:https://tools.ietf.org/html/rfc7525

[RFC7627]

K. Bhargavan, Ed.; A. Delignat-Lavaud; A. Pironti; A. Langley; M. Ray.Transport Layer Security (TLS) Session Hash and Extended

https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5056.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-client-api-transport-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-authnr-cmds-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
PDF: <a href=
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://eprint.iacr.org/2004/205.pdf
http://eprint.iacr.org/2004/205.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://dx.doi.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-service-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
PDF: <a href=
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc5746
https://tools.ietf.org/html/rfc5746
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6287.txt
http://www.ietf.org/rfc/rfc6287.txt
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7627

Master Secret Extension. September 2015. Proposed Standard. URL:https://tools.ietf.org/html/rfc7627

[SHEFFER-TLS]
Y. Sheffer, R. Holz, P. Saint-Andre Recommendations for Secure Use of TLS and DTLS Internet-Draft (Work in progress.) URL:
https://tools.ietf.org/html/draft-sheffer-tls-bcp

[SP800-38C]
M. Dworkin, NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. National Institute of Standards and Technology, July 2007, URL:
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C updated-July20 2007.pdf

[SP800-38D]
M. Dworkin. NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of OQerat/on Galois/Counter Mode (GCM) and

GMAC. November 2007 URL: https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
[SP800-63]

W. Burr, D. Dodson, E. Newton, R. Perlner, W.T. Polk, S. Gupta and E. Nabbus, NIST Special Publication 800-63-2: Electronic
Authentication Guideline. National Institute of Standards and Technology, August 2013, URL:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

[TLS]
T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2 August 2008. Proposed Standard. URL:

https://tools.ietf.org/html/rfc5246
[TLSAUTH]

Karthikeyan Bhargavan; Antoine Delignat-Lavaud; Cédric Fournet; Alfredo Pironti; Pierre-Yves Strub. Triple Handshakes and Cookie
Cutters: Breaking and Fixing Authentication over TLS. February 2014. URL:https://secure-resumption.com/tlsauth.pdf
[TPMv1-2-Part1]
Trusted Computing Group, TPM 1.2 Part 1: Design Principles URL:
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0OB8C062FF6/TPM%20Main-
Part%201%20Design%20Principles v1.2_revi16_01032011.pdf
[TPMv2-Part1]
Trusted Computing Group, Trusted Platform Module Library, Part 1: Architecture URL:
http://www.trustedcomputinggroup.org/files/static page files/8C56AE3E-1A4B-B294-
DOF43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
[TR-03116-4]
Technische Richtlinie TR-03116-4: eCard-Projekte der Bundesregierung: Teil 4 — Vorgaben fiir Kommunikationsverfahren im
eGovernment. Bundesamt fiir Sicherheit in der Informationstechnik, 2013, URL:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:

https://heycam.github.io/webidl/

https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/draft-sheffer-tls-bcp
https://tools.ietf.org/html/draft-sheffer-tls-bcp
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://secure-resumption.com/tlsauth.pdf
https://secure-resumption.com/tlsauth.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM Main-Part 1 Design Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM Rev 2.0 Part 1 - Architecture 01.16.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

fco

ALLIANCE

FIDO UAF Application APl and Transport Binding Specification
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-client-api-transport-v1.1-ps-20170202.html

Editor:
Dr. Rolf Lindemann, Nok Nok L. Inc.
Contributors:
Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.
Bill Blanke, Nok Nok Labs, Inc.

Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 EIDO Alliance All Rights Reserved.

Abstract

Describes APIs and an interoperability profile for client applications to utilize FIDO UAF. This includes methods of communicating with a FIDO UAF
Client for both Web platform and Android applications, transport requirements, and an HTTPS interoperability profile for sending FIDO UAF messages
to a compatible server.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Allian: ifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please Contact
Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used as
reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the specification and to
promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Key Words
» 2. Overview
o 2.1 Audience
o 2.2 Scope
o 2.3 Architecture
= 2.3.1 Protocol Conversation

» 3. Common Definitions
o 3.1 UAF Status Codes

e 4. Shared Definitions
o 4.1 UAFMessage Dictionary
= 4.1.1 Dictionary uarMessage Members
o 4.2 Version interface
= 4.2.1 Attributes
o 4.3 Authenticator interface
= 4.3.1 Attributes
= 4.3.2 Authenticator Interface Constants
o 4.4 DiscoveryData dictionary
= 4.4.1 Dictionary piscoverybata Members

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-client-api-transport-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-client-api-transport-v1.1-id-20170202.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
mailto:bblanke@noknok.com
https://www.noknok.com/
mailto:Jeff.Hodges@KingsMountain.com
https://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

o 4.5 ErrorCode interface
= 4.5.1 Constants

« 5.DOM API
o 5.1 Feature Detection
o 5.2 uaf Interface
= 5.2.1 Methods
o 5.3 UAFResponseCallback
= 5.3.1 Callback uarresponsecallback Parameters
o 5.4 DiscoveryCallback
= 5.4.1 Callback piscoverycallback Parameters
o 5.5 ErrorCallback
= 5.5.1 Callback errorcaliback Parameters
o 5.6 Privacy Considerations for the DOM API

o 5.7 Security Considerations for the DOM API
= 5.7.1 Insecure Mixed Content

= 5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content
o 5.8 Implementation Notes for Browser/Plugin Authors
e 6. Android Intent API
o 6.1 Android-specific Definitions
= 6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT
= 6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
= 6.1.3 channelBindings
= 6.1.4 UAFIntentType enumeration
o 6.2 org.fidoalliance.intent.FIDO_OPERATION Intent
= 6.2.1 UAFIntentType.DISCOVER
= 6.2.2 UAFIntentType.DISCOVER_RESULT
= 6.2.3 UAFIntentType.CHECK_POLICY
= 6.2.4 UAFIntentType.CHECK_POLICY_RESULT
= 6.2.5 UAFIntentType.UAF_OPERATION
= 6.2.6 UAFIntentType.UAF_OPERATION_RESULT
= 6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS
o 6.3 Alternate Android AIDL Service UAF Client Implementation
o 6.4 Security Considerations for Android Implementations
s 7.i0S Custom URL API
o 7.1i0S-specific Definitions
= 7.1.1 X-Callback-URL Transport
= 7.1.2 Secret Key Generation
= 7.1.3 Origin
= 7.1.4 channelBindings
= 7.1.5 UAFXType
o 7.2JSON Values
= 7.2.1 DISCOVER
= 7.2.2 DISCOVER_RESULT
= 7.2.3 CHECK_POLICY
= 7.2.4 CHECK_POLICY_RESULT
= 7.2.5 UAF_OPERATION
= 7.2.6 UAF_OPERATION_RESULT
= 7.2.7 UAF_OPERATION_COMPLETION_STATUS
o 7.3 Implementation Guidelines for iOS Implementations
o 7.4 Security Considerations for iOS Implementations
» 8. Transport Binding Profile
o 8.1 Transport Security Requirements
o 8.2 TLS Security Requirements
o 8.3 HTTPS Transport Interoperability Profile
= 8.3.1 Obtaining a UAF Request message
= 8.3.2 Operation enum
= 8.3.3 GetUAFRequest dictionary
= 8.3.3.1 Dictionary cetuarrequest Members
= 8.3.4 ReturnUAFRequest dictionary
= 8.3.4.1 Dictionary returnuarrequest Members
= 8.3.5 SendUAFResponse dictionary
= 8.3.5.1 Dictionary senduarresponse Members
= 8.3.6 Delivering a UAF Response
= 8.3.7 ServerResponse Interface
= 8.3.7.1 Attributes
= 8.3.8 Token interface
= 8.3.8.1 Attributes
= 8.3.9 TokenType enum
= 8.3.10 Security Considerations
» A. References
o A.1 Normative references
o A.2 Informative references

. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “”, e.g. “UAF-TLV”.

a»

In formulas we use “I” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.
DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL [WebIDL-ED].

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

NOTE
Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the WebIDL
definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you

are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means to
ensure those fields are present.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document are to
be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO UAF technology replaces traditional username and password-based authentication solutions for online services, with a stronger and simpler
alternative. The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server: Registration,
Authentication, Transaction Confirmation, and Deregistration. As specified in the core protocol, these messages do not have a defined network
transport, or describe how application software that a user interfaces with can use UAF. This document describes the API surface that a client
application can use to communicate with FIDO UAF Client software, and transport patterns and security requirements for delivering UAF Protocol
messages to a remote server.

The reader should also be familiar with the FIDO Glossary of Terms [FIDOGlossary] and the UAF Protocol specification [UAFProtocol].
2.1 Audience

This document is of interest to client-side application authors that wish to utilize FIDO UAF, as well as implementers of web browsers, browser plugins
and FIDO clients, in that it describes the API surface they need to expose to application authors.

2.2 Scope
This document describes:

» The local ECMAScript [ECMA-262] API exposed by a FIDO UAF-enabled web browser to client-side web applications.

« The mechanisms and APIs for Android [ANDROID] applications to discover and utilize a shared FIDO UAF Client service.
« The general security requirements for applications initiating and transporting UAF protocol exchanges.

« An interoperability profile for transporting FIDO UAF messages over HTTPS [RFC2818].

The following are out of scope for this document:
« The format and details of the underlying UAF Protocol messages
» APIs for, and any details of interactions between FIDO Server software and the server-side application stack.
NOTE
The goal of describing standard APIs and an interoperability profile for the transport of FIDO UAF messages here is to provide an example of
how to develop a FIDO-enabled application and to promote the ease of integrating interoperable layers from different vendors to build a complete

FIDO UAF solution. For any given application instance, these particular patterns may not be ideal and are not mandatory. Applications may use
alternate transports, bundle UAF Protocol messages with other network data, or discover and utilize alternative APIs as they see fit.

2.3 Architecture

The overall architecture of the UAF protocol and its various operations is described in the FIDO UAF Protocol Specification [UAFProtocol]. The
following simplified architecture diagram illustrates the interactions and actors this document is concerned with:

FIDO
UAF Server
~ Protocol

Relying Party
Server
Application

TLS | System Boundary

Relying Party
Client
Application

FIDO
Client

APls FIDO
AN / Authenticator

Fig. 1 UAF Application API Architecture and Transport Layers

This document describes the shaded components in Fig 1.
2.3.1 Protocol Conversation
The core UAF protocol consists of five conceptual phases:

« Discovery allows the relying party server to determine the availability of FIDO capabilities at the client, including metadata about the available

authenticators.

Registration allows the client to generate and associate new key material with an account at the relying party server, subject to policy set by the

server and acceptable attestation that the authenticator and registration matches that policy.

« Authentication allows a user to provide an account identifier, proof-of-possession of previously registered key material associated with that
identifier, and potentially other attested data, to the relying party server.

« Transaction Confirmation allows a server to request that a FIDO client and authenticator with the appropriate capabilities display some

information to the user, request that the user authenticate locally to their FIDO authenticator to confirm it, and provide proof-of-possession of

previously registered key material and an attestation of the confirmation back to the relying party server.

Deregistration allows a relying party server to tell an authenticator to forget selected locally managed key material associated with that relying

party in case such keys are no longer considered valid by the relying party.

Discovery does not involve a protocol exchange with the FIDO Server. However, the information available through the discovery APIs might be
communicated back to the server in an application-specific manner, such as by obtaining a UAF protocol request message containing an authenticator
policy tailored to the specific capabilities of the FIDO user device.

Although the UAF protocol abstractly defines the FIDO server as the initiator of requests, UAF client applications working as described in this document
will always transport UAF protocol messages over a client-initiated request/response protocol such as HTTP.

The protocol flow from the point of view of the relying party client application for registration, authentication, and transaction confirmation is as follows:

1. The client application either explicitly contacts the server to obtain a UAF Protocol Request Message, or this message is delivered along with
other client application content.

2. The client application invokes the appropriate API to pass the UAF protocol request message asynchronously to the FIDO UAF Client, and
receives a set of callbacks.

3. The FIDO UAF Client performs any necessary interactions with the user and authenticator(s) to complete the request and uses a callback to
either notify the client application of an error, or to return a UAF response message.

4. The client application delivers the UAF response message to the server over a transport protocol such as HTTP.
5. The server optionally returns an indication of the results of the operation and additional data such as authorization tokens or a redirect.

6. The client application optionally uses the appropriate API to inform the FIDO UAF Client of the results of the operation. This allows the FIDO UAF
Client to perform “housekeeping” tasks for a better user experience, e.g. by not attempting to use again later a key that the server refused to
register.

7. The client application optionally processes additional data returned to it in an application-specific manner, e.g. processing new authorization
tokens, redirecting the user to a new resource or interpreting an error code to determine if and how it should retry a failed operation.

Deregister does not involve a UAF protocol round-trip. If the relying party server instructs the client application to perform a deregistration, the client
application simply delivers the UAF protocol Request message to the FIDO UAF Client using the appropriate API. The FIDO UAF Client does not return
the results of a deregister operation to the relying party client application or FIDO Server.

UAF protocol Messages are JSON [ECMA-404] structures, but client applications are discouraged from modifying them. These messages may contain

embedded cryptographic integrity protections and any modifications might invalidate the messages from the point of view of the FIDO UAF Client or
Server.

3. Common Definitions

This section is normative.

These elements are shared by several APIs and layers.
3.1 UAF Status Codes

This table lists UAF protocol status codes.

NOTE

These codes indicate the result of the UAF operation at the FIDO Server. They do not represent the HTTP [RFC7230] layer or other transport
layers. These codes are intended for consumption by both the client-side web app and FIDO UAF Client to inform application-specific error
reporting, retry and housekeeping behavior.

Code Meaning
1200 | OK. Operation completed

1202 Accepted. Message accepted, but not completed at this time. The RP may need time to process the attestation, run risk scoring, etc. The
server should not send an authenticationToken with a 1202 response

1400 | Bad Request. The server did not understand the message

1401 | Unauthorized. The userid must be authenticated to perform this operation, or this KeyID is not associated with this UserID.

1403 | Forbidden. The userid is not allowed to perform this operation. Client should not retry
1404 | Not Found.
1408 | Request Timeout.

1480 | Unknown AAID. The server was unable to locate authoritative metadata for the AAID.

Unknown KeyID. The server was unable to locate a registration for the given UserlD and KeyID combination.

1481 | This error indicates that there is an invalid registration on the user's device. It is recommended that FIDO UAF Client deletes the key from
local device when this error is received.

1490 | Channel Binding Refused. The server refused to service the request due to a missing or mismatched channel binding(s).

1491 Request Invalid. The server refused to service the request because the request message nonce was unknown, expired or the server has
previously serviced a message with the same nonce and user ID.

1492 Unacceptable Authenticator. The authenticator is not acceptable according to the server's policy, for example because the capability registry
used by the server reported different capabilities than client-side discovery.

1493 | Revoked Authenticator. The authenticator is considered revoked by the server.

1494 | Unacceptable Key. The key used is unacceptable. Perhaps it is on a list of known weak keys or uses insecure parameter choices.

1495 Unacceptable Algorithm. The server believes the authenticator to be capable of using a stronger mutually-agreeable algorithm than was
presented in the request.

1496 | Unacceptable Attestation. The attestation(s) provided were not accepted by the server.

1497 Unacceptable Client Capabilities. The server was unable or unwilling to use required capabilities provided supplementally to the authenticator
by the client software.

1498 | Unacceptable Content. There was a problem with the contents of the message and the server was unwilling or unable to process it.

1500 | Internal Server Error

4. Shared Definitions

This section is normative.

NOTE

This section defines a number of JSON structures, specified with WebIDL [WebIDL-ED]. These structures are shared among APIs for multiple
target platforms.

4.1 UAFMessage Dictionary

The UAFMessage dictionary is a wrapper object that contains the raw UAF protocol Message and additional JSON data that may be used to carry
application-specific data for use by either the client application or FIDO UAF Client.

WebIDL

dictionary UAFMessage {
required DOMString uafProtocolMessage;
Object additionalData;

bi

4.1.1 Dictionary varvessage Members

uafProtocolMessage Of type required DOMString
This key contains the UAF protocol Message that will be processed by the FIDO UAF Client or Server. Modification by the client application
may invalidate the message. A client application may examine the contents of a message, for example, to determine if a message is still
fresh. Details of the structure of the message can be found in the UAF protocol Specification [UAFProtocol].

additionalbata Of type Object

This key allows the FIDO Server or client application to attach additional data for use by the FIDO UAF Client as a JSON object, or the FIDO
UAF Client or client application to attach additional data for use by the client application.

4.2 Version interface

Describes a version of the UAF protocol or FIDO UAF Client for compatibility checking.

WebIDL

interface Version {
readonly attribute unsigned short major;
readonly attribute unsigned short minor;

bi

4.2.1 Attributes

major Of type unsigned short, readonly
Major version number.

minor Of type unsigned short, readonly
Minor version number.

4.3 Authenticator interface

Used by several phases of UAF, theauthenticator interface exposes a subset of both verified metadata [FIDOMetadataStatement] and transient
information about the state of an available authenticator.

WebIDL

interface Authenticator {

readonly attribute DOMString title;

readonly attribute AAID aaid;

readonly attribute DOMString description;

readonly attribute Version[] supportedUAFVersions;
readonly attribute DOMString assertionScheme;
readonly attribute unsigned short authenticationAlgorithm;
readonly attribute unsigned short[] attestationTypes;
readonly attribute unsigned long userVerification;
readonly attribute unsigned short keyProtection;

readonly attribute unsigned short matcherProtection;
readonly attribute unsigned long attachmentHint;

readonly attribute boolean isSecondFactorOnly;
readonly attribute unsigned short tcDisplay;

readonly attribute DOMString tcDisplayContentType;
readonly attribute DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
readonly attribute DOMString icon;

readonly attribute DOMString][] supportedExtensionIDs;

bi

4.3.1 Attributes

title of type DOMString, readonly
A short, user-friendly name for the authenticator.
NOTE
This text must be localized for current locale.

If the ASM doesn't return a title in theauthenticatorinfo object [UAFASM], the FIDO UAF Client must generate a title based on the
other fields in authenticatorinfo, because title must not be empty (see section 1. Notation).

aaid of type AAID, readonly
The Authenticator Attestation ID, which identifies the type and batch of the authenticator. See [UAFProtocol] for the definition of the AAID
structure.

description Of type DOMString, readonly
A user-friendly description string for the authenticator.
NOTE
This text must be localized for current locale.

It is intended to be displayed to the user. It might deviate from the description specified in the authenticator's metadata statement
[FIDOMetadataStatement].

If the ASM doesn't return a description in theruthenticatorinfo object [UAFASM], the FIDO UAF Client must generate a meaningful
description to the calling App based on the other fields in authenticatorinfo, because description must not be empty (see section 1.
Notation).

supportedUAFVersions Of type array of Version, readonly
Indicates the UAF protocol Versions supported by the authenticator.

assertionscheme Of type DOMString, readonly
The assertion scheme the authenticator uses for attested data and signatures.
Assertion scheme identifiers are defined in the UAF Registry of Predefined Values. [UAFRegistry]

authenticationAlgorithm Of type unsigned short, readonly
Supported Authentication Algorithm. The value must be related to constants with prefix arc_szcn.

attestationTypes Of type array ofunsigned short, readonly
A list of supported attestation types. The values are defined in [UAFRegistry] by the constants with the prefix tac_arresTarron.

userVerification Of type unsigned long, readonly
A set of bit flags indicating the user verification methods supported by the authenticator. The values are defined by the constants with the
prefix uUsEr VERIFY.

keyProtection Of type unsigned short, readonly
A set of bit flags indicating the key protection used by the authenticator. The values are defined by the constants with the prefix
KEY_PROTECTION.

matcherProtection Of type unsigned short, readonly
A set of bit flags indicating the matcher protection used by the authenticator. The values are defined by the constants with the prefix
MATCHER_PROTECTION.

attachmentHint Of type unsigned long, readonly

A set of bit flags indicating how the authenticator is currently connected to the FIDO User Device. The values are defined by the constants
with the prefix arTacaMeENT HINT.

NOTE
Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used in

applying server-supplied policy to guide the user experience. This can be used to, for example, prefer a device that is connected and
ready for authenticating or confirming a low-value transaction, rather than one that is more secure but requires more user effort.

These values are not reflected in authenticator metadata and cannot be relied upon by the relying party, although some models of
authenticator may provide attested measurements with similar semantics as part of UAF protocol messages.

isSecondFactoronly Of type boolean, readonly
Indicates whether the authenticator can only be used as a second-factor.

tcpisplay Of type unsigned short, readonly
A set of bit flags indicating the availability and type of transaction confirmation display. The values are defined by the constants with the prefix
TRANSACTION_CONFIRMATION_DISPLAY.

This value must be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType Of type DOMString, readonly
The MIME content-type [RFC2045] supported by the transaction confirmation display, such as text/plain Or image/png.

This value must be non-empty if transaction confirmation is supported (cpisplay is non-zero).
tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor, readonly
The set of PNG characteristics currently supported by the transaction confirmation display (if any).
NOTE

See [FIDOMetadataStatement] for additional information on the format of this field and the definition of the
DisplayPNGCharacteristicsDescriptor Structure.

This list must be non-empty if PNG-image based transaction confirmation is supported, i.e. tcpisplay is non-zero and tcpisplayContentType
is image/png.

icon of type DOMString, readonly
A PNG [PNG] icon for the authenticator, encoded as adata: url [RFC2397].

NOTE

If the ASM doesn't return an icon in theauthenticatorinfo object [UAFASM], the FIDO UAF Client must set a default icon, because
icon must not be empty (see section 1. Notation).

supportedExtensionIps Of type array of DOMString, readonly
A list of supported UAF protocol extension identifiers. These may be vendor-specific.

4.3.2 Authenticator Interface Constants

A number of constants are defined for use with the bit flag fields userverification, keyProtection, attachmentHint, @and tcpisplay. TO avoid duplication
and inconsistencies, these are defined in the FIDO Registry of Predefined Values [FIDORegistry].

4.4 DiscoveryData dictionary

WebIDL

dictionary DiscoveryData {

required Version]] supportedUAFVersions;
required DOMString clientVendor;
required Version clientVersion;

required Authenticator[] évailableAuthenticators;

4.4.1 Dictionary piscoverypata Members

supportedUAFVersions Of type array ofrequired Version
A list of the FIDO UAF protocol versions supported by the client, most-preferred first.

clientvendor Of type required DOMString
The vendor of the FIDO UAF Client.

clientVersion Of type required Version
The version of the FIDO UAF Client. This is a vendor-specific version for the client software, not a UAF version.

availableAuthenticators Of type array ofrequired Authenticator
An array containing Authenticator dictionaries describing the available UAF authenticators. The order is not significant. The list may be empty.

4.5 ErrorCode interface

WebIDL

interface ErrorCode {
const short NO ERROR = 0x0;
const short WAIT USER ACTION = 0x01;
const short INSECURE TRANSPORT = 0x02;
const short USER CANCELLED = 0x03;
const short UNSUPPORTED VERSION = 0x04;
const short NO SUITABLE AUTHENTICATOR = 0x05;
const short PROTOCOL ERROR = 0x06;
const short UNTRUSTED FACET ID = 0x07;

const short KEY DISAPPEARED PERMANENTLY = 0x09;
const short AUTHENTICATOR ACCESS DENIED = 0x0c;
const short INVALID TRANSACTION CONTENT = 0x0d;

const short USER NOT RESPONSIVE = 0x0Oe;

const short INSUFFICIENT AUTHENTICATOR RESOURCES = 0x0f;
const short USER LOCKOUT = 0x10;

const short USER NOT ENROLLED = 0x11;

const short UNKNOWN = OXFF;

Yi

4.5.1 Constants

NO_ERROR Of type short
The operation completed with no error condition encountered. Upon receipt of this code, an application should no longer expect an
associated uarresponsecallback to fire.

WAIT_USER_ACTION Of type short
Waiting on user action to proceed. For example, selecting an authenticator in the FIDO client user interface, performing user verification, or
completing an enroliment step with an authenticator.

INSECURE_TRANSPORT Of type short
window.location.protocol is not "https" or the DOM contains insecure mixed content.

USER_CANCELLED Of type short
The user declined any necessary part of the interaction to complete the registration.

UNSUPPORTED_VERSION Of type short
The varmessage does not specify a protocol version supported by this FIDO UAF Client.

NO_SUITABLE_AUTHENTICATOR Of type short
No authenticator matching the authenticator policy specified in the varuessage is available to service the request, or the user declined to
consent to the use of a suitable authenticator.
PROTOCOL_ERROR Of type short
A violation of the UAF protocol occurred. The interaction may have timed out; the origin associated with the message may not match the
origin of the calling DOM context, or the protocol message may be malformed or tampered with.
UNTRUSTED_FACET_ID Of type short
The client declined to process the operation because the caller's calculated facet identifier was not found in the trusted list for the application
identifier specified in the request message.
KEY_DISAPPEARED_PERMANENTLY Of type short
The UAuth key disappeared from the authenticator and canot be restored.
NOTE

The RP App might want to re-register the authenticator in this case.

AUTHENTICATOR_ACCESS_DENIED Of type short
The authenticator denied access to the resulting request.

NOTE
TODO: when does that occur and what should RP app do?

INVALID_TRANSACTION_CONTENT Of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

NOTE
The transaction content format requirements are specified in the authenticator's metadata statement.
USER_NOT_RESPONSIVE Of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

INSUFFICIENT AUTHENTICATOR_RESOURCES Of type short

Insufficient resources in the authenticator to perform the requested task.

user_Lockout Of type short

The operation failed because the user is locked out and the authenticator cannot automatically trigger an action to change that. For example,
an authenticator could allow the user to enter an alternative password to re-enable the use of fingerprints after too many failed finger
verification attempts. This error will be reported if such method either doesn't exist or the ASM / authenticator cannot automatically trigger it.

USER_NOT_ENROLLED Of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot automatically trigger user enrollment.

unkNown Of type short
An error condition not described by the above-listed codes.

5. DOM API

This section is normative.

This section describes the API details exposed by a web browser or browser plugin to a client-side web application executing in a bocunent [DOM]
context.

5.1 Feature Detection

FIDO's UAF DOM APIs are rooted in a newzido object, a property of window.navigator code; the existence and properties of which may be used for
feature detection.

Example 1: Feature Detection of UAF APIs

<script>
if(!!window.navigator.fido.uaf) { var useUAF = true; }

</script>

5.2 uaf Interface

The window.navigator.£fido.uaf interface is the primary means of interacting with the FIDO UAF Client. All operations are asynchronous.

WebIDL

interface uaf {
void discover (DiscoveryCallback completionCallback, ErrorCallback errorCallback);
void checkPolicy (UAFMessage message, ErrorCallback cb);

void processUAFOperation (UAFMessage message, UAFResponseCallback completionCallback, ErrorCallback errorCallback);
void notifyUAFResult (int responseCode, UAFMessage uafResponse);

bi

5.2.1 Methods
discover

Discover if the user's client software and devices support UAF and if authenticator capabilities are available that it may be willing to accept for

authentication.

Parameter Type Nullable Optional Description
completionCallback piscoverycaliback X X The callback that receives piscoverypata from the FIDO UAF Client.
errorCallback ErrorCallback X X A callback function to receive error and progress events.

Return type: void
checkPolicy
Ask the browser or browser plugin if it would be able to process the supplied request message without prompting the user.

Unlike other operations using anerrorcallback, this operation must always trigger the callback and return no_error if it believes that the
message can be processed and a suitable authenticator matching the embedded policy is available, or the appropriateerrorcode value
otherwise.

NOTE

Because this call should not prompt the user, it should not incur a potentially disrupting context-switch even if the FIDO UAF Client is
implemented out-of-process.

Parameter Type Nullable Optional Description
message UAFMessage X X A varMessage containing the policy and operation to be tested.
cb ErrorCallback X X The callback function which receives the status of the operation.

Return type: void

processUAFOperation

Invokes the FIDO UAF Client, transferring control to prompt the user as necessary to complete the operation, and returns to the callback a
message in one of the supported protocol versions indicated by the UAFMessage.

Parameter Type Nullable Optional Description
message UAFMessage X X The varmessage to be used by the FIDO client software.
completionCallback uarresponsecallback X X The callback that receives the client response varmessage from the FIDO
UAF Client, to be delivered to the relying party server.
errorCallback ErrorCallback X X G'&:gll(tgla_cktfunction to receive error and progress events from the FIDO
ient.

Return type: void

notifyUAFResult
Used to indicate the status code resulting from a FIDO UAF message delivered to the remote server. Applications must make this call when
they receive a UAF status code from a server. This allows the FIDO UAF Client to perform housekeeping for a better user experience, for
example not attempting to use keys that a server refused to register.
NOTE

If, and how, a status code is delivered by the server, is application and transport specific. A non-normative example can be found below
in the HTTPS Transport Interoperability Profil

Parameter Type Nullable Optional Description
responseCode int X X The uvatresult field of aserverresponse.
uafResponse UAFMessage X X The uarMessage to which this responsecode applies.

Return type: void
5.3 UAFResponseCallback

A uarresponsecallback is used upon successful completion of an asynchronous operation by the FIDO UAF Client to return the protocol response
message to the client application for transport to the server.

NOTE

This callback is also called in the case of deregistration completion, even though the response object is empty then.

WebIDL

callback UAFResponseCallback = void (UAFMessage uafResponse);

5.3.1 Callback UAFResponseCallback Parameters

uafResponse Of type uarmessage
The message and any additional data representing the FIDO UAF Client's response to the server's request message.

5.4 DiscoveryCallback

A piscoverycallback is used upon successful completion of an asynchronous discover operation by the FIDO UAF Client to return the piscoverypata to
the client application.

WebIDL

callback DiscoveryCallback = void (DiscoveryData data);

5.4.1 Callback piscoverycallback Parameters

data Of type piscoverybata
Describes the current state of FIDO UAF client software and authenticators available to the application.

5.5 ErrorCallback

An ErrorCallback is used to return progress and error codes from asynchronous operations performed by the FIDO UAF Client.

WebIDL

callback ErrorCallback = void (ErrorCode code);

5.5.1 Callback errorcaliback Parameters

code Of type Errorcode
A value from the errorcode interface indicating the result of the operation.

For certain operations, an ErrorCallback may be called multiple times, for example with the warr_user_acrron code.

5.6 Privacy Considerations for the DOM API

This section is non-normative.

Differences in the FIDO capabilities on a user device may (among many other characteristics) allow a server to "fingerprint" a remote client and attempt
to persistently identify it, even in the absence of any explicit session state maintenance mechanism. Although it may contribute some amount of signal
to servers attempting to fingerprint clients, the attributes exposed by the Discovery API are designed to have a large anonymity set size and should
present little or no qualitatively new privacy risk. Nonetheless, an unusual configuration of FIDO Authenticators may be sufficient to uniquely identify a
user.

It is recommended that user agents expose the Discovery API to all applications without requiring explicit user consent by default, but user agents or
FIDO Client implementers should provide users with the means to opt-out of discovery if they wish to do so for privacy reasons.

5.7 Security Considerations for the DOM API
This section is non-normative.
5.7.1 Insecure Mixed Content

When FIDO UAF APIs are called and operations are performed in a nocunent context in a web user agent, such a contextmust not contain insecure
mixed content. The exact definition insecure mixed content is specific to each user agent, but generally includes any script, plugins and other "active"
content, forming part of or with access to the DOM, that was not itself loaded over HTTPS.

The UAF APIs must immediately trigger the errorcaliback with the Insecure TrRansporT code and cease any further processing if any APIs defined in

this document are invoked by a Document context that was not loaded over a secure transport and/or which contains insecure mixed content.
5.7.2 The Same Origin Policy, HTTP Redirects and Cross-Origin Content

When retrieving or transporting UAF protocol messages over HTTP, it is important to maintain consistency among the web origin of the document
context and the origin embedded in the UAF protocol message. Mismatches may cause the protocol to fail or enable attacks against the protocol.
Therefore:

FIDO UAF messages should not be transported using methods that opt-out of the Same Origin Policy [SOP], for example, using <script src="url”> to
non-same-origin URLSs or by setting the access-control-allow-origin header at the server.

When transporting FIDO UAF messages using XMLHttpRequest [XHR] the client should not follow redirects that are to URLs with a different origin than
the requesting document.

FIDO UAF messages should not be exposed in HTTP responses where the entire response body parses as valid ECMAScript. Resources exposed in
this manner may be subject to unauthorized interactions by hostile applications hosted at untrusted origins through cross-origin embedding using

<script src="url”>

Web applications should not share FIDO UAF messages across origins through channels such as postuessage () [webmessaging].

5.8 Implementation Notes for Browser/Plugin Authors

This section is non-normative.

Web applications utilizing UAF depend on services from the web browser as a trusted platform. The APIs for web applications do not provide a means
to assert an origin as an application identity for the purposes of FIDO operations as this will be provided to the FIDO UAF Client by the browser based
on its privileged understanding of the actual origin context.

The browser must enforce that the web origin communicated to the FIDO UAF Client as the application identity is accurate

The browser must also enforce that resource instances containing insecure mixed-content cannot utilize the UAF DOM APlIs.

6. Android Intent API

This section is normative.

This section describes how an Android ANDROID] client application can locate and communicate with a conforming FIDO Client installation operating
on the host device.

NOTE

As with web applications, a variety of integration patterns are possible on the Android platform. The API described here allows an app to
communicate with a shared FIDO UAF Client on the user device in a loosely-coupled fashion using Android Intents.

6.1 Android-specific Definitions
6.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT

FIDO UAF Clients running on Android versions prior to Android 5must declare the org. fidoalliance.uaf.permissions.FIDO_CLIENT permission and
they also must declare the related "uses-permission". See the below example of this permission expressed in an Android app manifest file
<permission/> and <uses-permission/> element [AndroidAppManifest].

FIDO UAF Clients running on Android version 5 or latershould not declare this permission and they also should not declare the related "uses-
permission".

<permission
android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"
android:label="Act as a FIDO Client."
android:description="This application acts as a FIDO Client. It may
access authentication devices available on the system, create and
delete FIDO registrations on behalf of other applications."
android:protectionLevel="dangerous"
/>
<uses-permission android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"/>

NOTE

Since FIDO Clients perform security relevant tasks (e.g. verifying the AppID/FacetlD relation and asking for user consent), users should
carefully select the FIDO Clients they use. Requiring apps acting as FIDO Clients to declare and use this permission allows them to be
identified as such to users.

« There are not any FIDO Client resources needing "protection" based upon the FIDO_CLIENT permission. The reason for having FIDO
Client declare the FIDO_CLIENT permission is solely that users should be able to carefully decide which FIDO Clients to install.

« Android version 5 changed the way it handles the case where multiple apps declare the same permission [Android5Changes]; it blocks the
installation of all subsequent apps declaring that permission.

« The best way to flag the fact that an app may act as a FIDO Client needs to be determined for Android version 5.

6.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER

Android applications requesting services from the FIDO UAF Client can do so under their own identity, or they can act as the user's agent by explicitly
declaring an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client to
determine the caller's identity as android:apk-key-hash:<hash-of-public-key>. The FIDO UAF Client will then compare this with the list of authorized
application facets for the target ApplID and proceed if it is listed as trusted.

NOTE

See the UAF Protocol Specification [UAFProtocol] for more information on application and facet identifiers.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when implementing
a full web browser) it may set its origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The application must satisfy
the necessary conditions described in Transport Security Requirements for authenticating the remote server before setting the origin.

Use of the origin parameter requires the application to declare the org.fidoalliance.uaf.permissions.ACT AS WEB BROWSER permission, and the FIDO
UAF Client must verify that the calling application has this permission before processing the operation.

<permission
android:name="org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER"
android:label="Act as a browser for FIDO registrations."
android:description="This application may act as a web browser,
creating new and accessing existing FIDO registrations for any domain."
android:protectionLevel="dangerous"
/>

6.1.3 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an
Android application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is:
Map<String,String>
with the keys as defined for thechanne1rinding structure in the UAF Protocol Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same channel
the legitimate client is using and that messages have not been forwarded through a malicious party.

UAF defines support for the t1s-unique and t1s-server-end-point bindings from [RFC5929], as well as server certificate and ChannellD [ChannellD]
bindings. The client should supply all channel binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.
6.1.4 UAFIntentType enumeration

This enumeration describes the type of operation for the intent implementing the Android API.

NOTE

UAF uses only a single intent to simplify behavior in the situation even where multiple FIDO clients may be installed. In such a case, the user will
be prompted which of the installed FIDO UAF clients should be used to handle an implicit intent.

If the user selected to make different FIDO UAF Clients the default for different intents representing different phases, it could produce inconsistent
results or fail to function at all.

If the application workflow requries multiple calls to the client (and it usually does) the application should read the componentname from the intent extras it
receives from startactivityForresult () and pass it to setcomponent () for subsequent intents to be sure they are explicitly resolved to the same FIDO
UAF Client.

WebIDL

enum UAFIntentType {
"DISCOVER",
"DISCOVER_RESULT",
"CHECK_POLICY",
"CHECK_POLICY_RESULT",
"UAF_OPERATION",
"UAF_OPERATION_RESULT",
"UAF_OPERATION_COMPLETION_STATUS"

Yi

Enumeration description

DISCOVER Discovery

DISCOVER_RESULT Discovery results

CHECK_POLICY Perform a no-op check if a message could be processed.

CHECK_POLICY_RESULT Check Policy results.

UAF_OPERATION Process a Registration, Authentication, Transaction Confirmation or Deregistration message.
UAF_OPERATION_RESULT UAF Operation results.

Inform the FIDO UAF Client of the completion status of a Registration, Authentication, Transaction Confirmation

UAF_OPERATION_COMPLETION_STATUS or Deregistration message.

6.2 org.fidoalliance.intent.FIDO_OPERATION Intent

All interactions between a FIDO UAF Client and an application on Android takes place via a single Android intent:
org.fidoalliance.intent.FIDO_OPERATION
The specifics of the operation are carried by the MIME media type and various extra data included with the intent.
The operations described in this document are of MIME media type application/fido.uaf client+json and this must be set as the type attribute of any
intent.

NOTE

Client applications can discover if a FIDO UAF Client (or several) is available on the system by using)
PackageManager.queryIntentActivities(Intent intent, int flags) With this intent to see if any activities are available.

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)

Extra Type Description
UAFIntentType String | One of the uarintentType enumeration values describing the intent.

discoveryData String | piscoverypata JSON dictionary.

componentName String | The component name of the responding FIDO UAF Client. It must be serialized using ComponentName.flattenString()

errorCode short | errorcode value for operation
message String | varmessage request to test or process, depending on varintentType.
origin String An RFC6454 Web Origin [RFC6454] string for the request, if the caller has the

org.fidoalliance.permissions.ACT AS_WEB_BROWSER permission.

channelBindings | String | The JSON dictionary of channel bindings for the operation.

responseCode short The uatresult field of a ServerResponse.

The following table shows what intent extras are expected, depending on the value of the uarintentType extra:

UAFIntentType value discoveryData componentName errorCode message origin channelBindings responseCode
"DISCOVER"
"DISCOVER_RESULT" optional required required
"CHECK_POLICY" required | optional
"CHECK_POLICY_RESULT" required required
"UAF_OPERATION" required | optional | required
"UAF_OPERATION_RESULT" required required | optional
"UAF_OPERATION_COMPLETION_STATUS" required required

6.2.1 UAFIntentType.DISCOVER

This Android intent invokes the FIDO UAF Client to discover the available authenticators and capabilties. The FIDO UAF Client generally will not show
a Ul associated with the handling of this intent, but immediately return the JSON structure. The calling application cannot depend on this however, as
the FIDO UAF Client may show a Ul for privacy purposes, allowing the user to choose whether and which authenticators to disclose to the calling
application.

This intent must be invoked with startactivityForresult ().
6.2.2 UAFIntentType.DISCOVER_RESULT

An intent with this type is returned by the FIDO UAF Client as an argument toonactivityresult () in response to receiving an intent of type nrscover.

If the resultcode passed t0 onactivityResult() iS RESULT 0k, and the intent extra errorcode is NO_ERROR, this intent has an extra, discoverybata,
containing a string representation of a niscoverypata JSON dictionary with the available authenticators and capabilities.

6.2.3 UAFIntentType.CHECK_POLICY

This intent invokes the FIDO UAF Client to discover if it would be able to process the supplied message without prompting the user. The action
handling this intent should not show a Ul to the user.

This intent requires the following extras:

s message, containing a string representation of a varmessage representing the request message to test.

» origin, anoptional extra that allows a caller with the org.fidoalliance.uaf.permissions.ACT AS WEB BROWSER permission to supply an RFC6454
Origin [RFC6454] string to be used instead of the application's own identity.

This intent must be invoked with startactivityForresult ().
6.2.4 UAFIntentType.CHECK_POLICY_RESULT

This Android intent is returned by the FIDO UAF Client as an argument toonactivityresult() in response to receiving a ceeck_roricy intent.

In addition to the resultcode passed to onactivityresult(), this intent has an extra, errorcode, containing an errorcode value indicating the specific
error condition or NO_ERROR if the FIDO UAF Client could process the message.

6.2.5 UAFIntentType.UAF_OPERATION

This Android intent invokes the FIDO UAF Client to process the supplied request message and return a response message ready for delivery to the
FIDO UAF Server.

The sender should assume that the FIDO UAF Client will display a user interface allowing the user to handle this intent, for example, prompting the
user to complete their verification ceremony.

This intent requires the following extras:

s message, containing a string representation of a varmessage representing the request message to process.

e channelBindings, containing a string representation of a JSON dictionary as defined by the channelsinding structure in the FIDO UAF Protocol
Specification [UAFProtocol].

« origin, anoptional parameter that allows a caller with the org. fidoalliance.uaf.permissions.ACT AS WEB_BROWSER permission to supply an
RFC6454 Origin [RFC6454] string to be used instead of the application's own identity.
This intent must be invoked with startactivityForresult ().

6.2.6 UAFIntentType.UAF_OPERATION_RESULT

http://developer.android.com/reference/android/content/ComponentName.html#flattenToString()

This intent is returned by the FIDO UAF Client as an argument toonactivityresult (), in response to receiving a uar_orperaTION intent.

If the resultcode passed t0 onactivityResult() iS RESULT cancELLED, this intent will have an extra, errorcode parameter, containing an errorcode value
indicating the specific error condition.

If the resultcode passed to onactivityResult () iS RESULT 0K, and the errorcode is NO_ERROR, this intent has a nessage, containing astring
representation of a uarmessage, being the UAF protocol response message to be delivered to the FIDO Server.

6.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

This intent must be delivered to the FIDO UAF Client to indicate the processing status of a FIDO UAF message delivered to the remote server. This is
especially important as a new registration may be considered by the client to be in a pending state until it is communicated that the server accepted it.

6.3 Alternate Android AIDL Service UAF Client Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism to Android Intents. While Android
Intents work at the Ul layer, Android AIDL services are performed at a lower level. This can ease integration with relying party apps, since UAF
requests can be fulfilled without interfering with existing relying party app Ul and application lifecycle behavior.

The UAF Android AIDL service needs to be defined in the UAF client manifest. This is done using the <service> tag for an Android AIDL service instead
of the <activity> tag in Android Intents. Just as with Android intents, the manifest definition for the AIDL service uses an intent filter (note
org.fidoalliance.aidl.FIDO_OPERATION VEISUS org.fidoalliance.intent.FID0_OPERATION) tO identify itself as a FIDO UAF client to the relying party

app:

<service android:name="foo" >

<intent-filter>

<action android:name="org.fidoalliance.aidl.FIDO_OPERATION" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="application/fido.uaf_client+json" />
</intent-filter>

</service>

Once the relying party app choses a UAF client from the list discovered by packagemanager.queryIntentservices (), the relying party app and the FIDO
UAF client share the following AIDL interface to service UAF requests:

package org.fidoalliance.aidl
oneway interface IUAFOperation

void process(in Intent uafRequest, in IUAFResponseListener uafResponselListener);

Note that Android AIDL services use Binder.getcallinguid() instead of activity.getcallingactivity() With Android Intents to identify the caller and
obtain FacetID information.

For consistency, the Intents for the Android AIDL service are the same as defined in the Android Intent specification in the UAF standard. In process (),

the vatrequest parameter is the Intent that would be passed t0 startactivityForResult (). The uafResponseListener parameter is a listener interface
that receives the result. The following AIDL defines this interface:

package org.fidoalliance.aidl
interface IUAFResponseListener

void onResult(in Intent uafResponse);

In the listener, the uatresponse parameter is the Intent that would be passed t0 onactivityresult.

6.4 Security Considerations for Android Implementations

This section is non-normative.

Android applications may choose to implement the user-interactive portion of FIDO in at least two ways:

» by authoring an Android Activity using Android-native user interface components, or
» with an HTML-based experience by loading an Android WebView and injecting the UAF DOM APIs with addgavascriptinterface().

An application that chooses to inject the UAF interface into a WebView must follow all appropriate security considerations that apply to usage of the
DOM APIs, and those that apply to user agent implementers.

In particular, the content of a WebView into which an API will be injected must be loaded only from trusted local content or over a secure channel as
specified in Transport Security Requirements and must not contain insecure mixed-content.

Applications should not declare theact as wes srowser permission unless they need to act as the user's agent for an un-predetermined number of third
party applications. Where an Android application has an explicit relationship with a relying party application(s), the preferred method of access control is
for those applications to list the Android application's identity as a trusted facet. See the UAF Protocol Specification [UAFProtocol] for more information

on application and facet identifiers.

To protect against a malicious application registering itself as a FIDO UAF Client, relying party applications can obtain the identity of the responding
application, and utilize it in risk management decisions around the authentication or transaction events.

For example, a relying party might maintain a list of application identities known to belong to malware and refuse to accept operations completed with
such clients, or a list of application identities of known-good clients that receive preferred risk-scoring.

Relying party applications running on Android versions prior to Android 5 must make sure that a FIDO UAF Client has the "uses-permission" for
org.fidoalliance.uaf.permissions.FID0_CLIENT. Relying party applications running on Android 5 should not implement this check.
NOTE

Relying party applications should implement the check on Android prior to 5 by using the package manager to verify that the FIDO Client indeed
declared the org.fidoalliance.uaf.permissions.FIDO_CLIENT permission (see example below). Relying party applications should not use a

"uses-permission" for FIpo_CcLIENT.

boolean checkFIDOClientPermission(String packageName)
throws NameNotFoundException {
for (String requestedPermission :
getPackageManager () .getPackageInfo(packageName,
PackageManager.GET_PERMISSIONS).requestedPermissions) {
if (requestedPermission.matches
"org.fidoalliance.uaf.permissions.FIDO_CLIENT"))
return true;

return false;

}

7.i10S Custom URL API

This section is normative.

This section describes how an iOS relying party application can locate and communicate with a conforming FIDO UAF Client installed on the host
device.

NOTE

Because of sandboxing and no true multitasking support, the iOS operating system offers very limited ways to do interprocess communication
(IPC).

Any IPC solution for a FIDO UAF Client must be able to:

1. Identify the calling app in order to provide FacetID approval.
2. Allow transition to another app without user intervention

Currently the only IPC method on iOS that satisfies both of these requirements is custom URL handlers.

Custom URL handlers use the iOS operating system to handle URL requests from the sender, launch the receiving app, and then pass the
request to the receiving app for processing. By enabling custom URL handlers for two different applications, it is possible to achieve bidirectional
IPC between them--one custom URL handler to send data from app A to app B and another custom URL handler to send data from app B to app
A.

Because iOS has no true multitasking, there must be an app transition to process each request and response. Too many app transitions can
negatively affect the user experience, so relying party applications must carefully choose when it is necessary to query the FIDO UAF Client.

7.1 i0S-specific Definitions
7.1.1 X-Callback-URL Transport

When the relying party application communicates with the FIDO UAF Client, it sends a URL with the standard x-cal1back-ur1 format (see x-callback-
url.com):

FidoUAFClientl://x-callback-url/[UAFxRequestType] ?X-success=[RelyingPartyURL]://x-callback-url/
[UAFXResponseType]&
key=[SecretKey]&
state=[STATE]&
json=[Base64EncodedJSON]

e ridouarclientl is the iOS custom URL scheme used by FIDO UAF Clients. As specified in the x-caliback-url standard, version information for
the transport layer is encoded in the URL scheme itself (in this case, ridouarclient1). This is so other applications can check for support for the
1.0 version by using the canopenurr call.

s [UAFxRequestType] IS the type that should be used for request operations, which are described later in this document.

» [RelyingpartyURL] iS the URL that the relying party app has registered in order to receive the response. According to the x-callback-url
standard, this is defined using the x-success parameter.

e [UAFxResponseType] iS the type that should be used for response operations, which are described later in this document.
e [secretkey] iS @ base64url-encoded, without padding, random key generated for each request by the calling application.

The response from the FIDO UAF Client will be encrypted with this key in order to prevent rogue applications from obtaining information by
spoofing the return URL.

(sTaTE] is data that can be used to match the request with the response.
» Finally [Base64Encodedgson] contains the message to be sent to the FIDO UAF Client.

Items are stored in JSON format and then base64url-encoded without padding.

For FIDO UAF Clients, the custom URL scheme handler entrypoint is the openURL() function:

(BOOL)application: (UIApplication *)application openURL: (NSURL *)url sourceApplication:(NSString *)sourceApplication annotation:(id)anr

Here, the URL above is received via theur1 parameter. For security considerations, the sourcerpplication parameter contains the iOS bundle ID of the
relying party application. This bundle ID must be used to verify the applicationracet1p.

Conversely, when the FIDO UAF Client responds to the request, it sends the following URL back in standard x-callback-ur1 format:

[RelyingPartyURL]://x-callback-url/
[UAFxResponseType]?

http://x-callback-url.com

state=[STATE]&
json=[Base64EncodedJWE]

The parameters in the response are similar to those of the request, except that the [Base64EncodedEncryptedsson] parameter is encrypted with the
public key before being base64url-encoded without padding. [staTE] is the same sTate as was sent in the request--it is echoed back to the sender to
verify the matched response.

In the relying party application'sopenurr () handler, the ur1 parameter will be the URL listed above and the sourceapplication parameter will be the iOS
bundle ID for the FIDO client application.

7.1.2 Secret Key Generation

A new secret encryption key must be generated by the calling application every time it sends a request to FIDO UAF Client. The FIDO UAF Client must
then use this key to encrypt the response message before responding to the caller.

JSON Web Encryption (JWE), JSON Serialization (JWE Section 7.2) format must be used to represent the encrypted response message.

The encryption algorithm is that specified in "A128CBC-HS256" where the JWE "Key Management Mode" employed is "Direct Encryption" and the JWE
"Content Encryption Key (CEK)" is the secret key generated by the calling application and passed to the FIDO UAF Client in the xey parameter of the
request.

{
"unprotected": {"alg": "dir", "enc": "A128CBC-HS256"},
nighs voLn,

"ciphertext": "...",

"tag': " "

}

7.1.3 Origin

iOS applications requesting services from the FIDO Client can do so under their own identity, or they can act as the user's agent by explicitly declaring
an RFC6454 [RFC6454] serialization of the remote server's origin when invoking the FIDO UAF Client.

An application that is operating on behalf of a single entity must not set an explicit origin. Omitting an explicit origin will cause the FIDO UAF Client to
determine the caller's identity as "ios:bundle-id". The FIDO UAF Client will then compare this with the list of authorized application facets for the target
AppID and proceed if it is listed as trusted.

See the UAF Protocol Specification [UAFProtocol] for more information on application and facet identifiers.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary number of remote applications (as when implementing
a full web browser) it may set origin to the RFC6454 [RFC6454] Unicode serialization of the remote application's Origin. The application must satisfy
the necessary conditions described in Transport Security Requirements for authenticating the remote server before setting origin.

7.1.4 channelBindings

This section is non-normative.

In the DOM API, the browser or browser plugin is responsible for supplying any available channel binding information to the FIDO Client, but an iOS
application, as the direct owner of the transport channel, must provide this information itself.

The channelBindings data structure is map<string, string> with the keys as defined for the channelsinding structure in the FIDO UAF Protocol
Specification. [UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol messages are transported is the same channel
the legitimate client is using and that messages have not been forwarded through a malicious party. UAF defines support for the t1s-unique and t1s-
server-end-point bindings from [RFC5929], as well as server certificate and channe11p [ChannellD] bindings. The client should supply all channel
binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a transaction.
7.1.5 UAFxType

This value describes the type of operation for thex-cal1iback-ur1 operations implementing the iOS API.

WebIDL

enum UAFxType {
"DISCOVER",
"DISCOVER_RESULT",
"CHECK_POLICY",
"CHECK_POLICY_RESULT",
"UAF_OPERATION",
"UAF_OPERATION_RESULT",
"UAF_OPERATION_COMPLETION_STATUS"

Yi

Enumeration description

DISCOVER Discovery

DISCOVER_RESULT Discovery results

CHECK_POLICY Perform a no-op check if a message could be processed.

CHECK_POLICY_RESULT Check Policy results.

UAF_OPERATION The UAF message operation type (for exampleregistration).
UAF_OPERATION_RESULT UAF Operation results.

AT S R ST Lrlf;)irg rtr;flI;I)DO UAF Client of the completion status of a UAF operation (such as

7.2 JSON Values

The specifics of the UAFxType operation are carried by various JSON values encoded in the json x-callback-url parameter.

JSON value Type Description

http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#section-7.2
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31#appendix-B

JSON value Type Description

errorCode short Errorcode Value for operation

message String uAFMessage request to test or process, depending onuarxType.
origin String An RFC6454 Web Origin [RFC6454] string for the request.
channelBindings String The channel bindings JSON dictionary for the operation.
responseCode short The uatresult field of aserverresponse.

The following table shows what JSON values are expected, depending on the value of the varxType x-callback-url operation:

UAFxType operation discoveryData errorCode message origin channelBindings responseCode
"DISCOVER"
"DISCOVER_RESULT" optional required
"CHECK_POLICY" required optional
"CHECK_POLICY_RESULT" required
"UAF_OPERATION" required optional | required
"UAF_OPERATION_RESULT" required optional
"UAF_OPERATION_COMPLETION_STATUS" required required

7.2.1 DISCOVER

This operation invokes the FIDO UAF Client to discover the available authenticators and capabilities. The FIDO UAF Client generally will not show a
user interface associated with the handling of this operation, but will simply return the resulting JSON structure.

The calling application cannot depend on this however, as the client may show a user interface for privacy purposes, allowing the user to choose
whether and which authenticators to disclose to the calling application.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no user interface is displayed.

7.2.2 DISCOVER_RESULT

An operation with this type is returned by the FIDO UAF Client in response to receiving an x-callback-url operation of type prscover.

If the resultcode is rREsuLT 0%, and the JSON value errorcode is NO_ERROR, then this operation has a JSON value, discoverypata, containing a string
representation of a niscoverypata JSON dictionary listing the available authenticators and their capabilities.

7.2.3 CHECK_POLICY

This operation invokes the FIDO UAF Client to discover if the client would be able to process the supplied message, without prompting the user.

The related action handling this operation should not show an interface to the user.

NOTE

iOS custom URL scheme handlers always require an application switch for every request and response, even if no Ul is displayed.

This x-callback-url operation requires the following JSON values:

s message, containing a string representation of a varmessage representing the request message to test.

e origin, an optional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's own
identity.

7.2.4 CHECK_POLICY_RESULT

This operation is returned by the FIDO UAF Client in response to receiving a cueck_porzcy x-callback-url operation.

In addition to the resultcode, this x-callback-url operation has a JSON value, errorcode, containing an errorcode value indicating the specific error
condition or NO_ERROR if the FIDO Cliet could process the message.

7.2.5 UAF_OPERATION

This operation invokes the FIDO UAF Client to process the supplied request message and return a result message ready for delivery to the FIDO UAF
Server. The sender should assume that the FIDO UAF Client will display a Ul to the user to handle this x-callback-url operation, e.g. prompting the user
to complete their verification ceremony.

This x-callback-url operation requires the following JSON values:

s message, containing a string representation of a varmessage representing the request message to process.

e channelBindings, containing a string representation of a JSON dictionary as defined by the channelsinding structure in the UAF Protocol
Specification [UAFProtocol].

« origin, an optional JSON value that allows a caller to supply an RFC6454 Origin [RFC6454] string to be used instead of the application's own
identity.
7.2.6 UAF_OPERATION_RESULT

This x-callback-url operation is returned by the FIDO UAF Client in response to receiving a uar_orerarzon x-callback-url operation.

If the resultcode is rEsuLT cancerreD, this x-callback-url operation has a JSON value, errorcode, containing an errorcode value indicating the specific
error condition.

If the resultcode is RESULT 0k,, and the x-callback-url JSON value errorcode is NO _ERROR, this x-callback-url operation has a JSON value, nessage,
containing a string representation of a uarmessage, being the UAF protocol response message to be delivered to the FIDO Server.

7.2.7 UAF_OPERATION_COMPLETION_STATUS

This x-callback-url operation must be delivered to the FIDO UAF Client to indicate the completion status of a FIDO UAF message delivered to the
remote server. This is especially important as, e.g. a new registration may be considered in a pending status until it is known the server accepted it.

7.3 Implementation Guidelines for iOS Implementations

Each iOS Custom URL based request results in a human-noticeable context switch between the App and FIDO UAF Client and vice versa. This will be
most noticeable when invoking DISCOVER and CHECK_POLICY requests since typically these requests will be invoked automatically, without user's
involvement. Such a context switch impacts the User Experience and therefore it's recommended to avoid making these two requests and integrate
FIDO without using them.

7.4 Security Considerations for iOS Implementations

This section is non-normative.

A security concern with custom URLs under iOS is that any app can register any custom URL. If multiple applications register the same custom URL,
the behavior for handling the URL call in iOS is undefined.

On the FIDO UAF Client side, this issue with custom URL scheme handlers is solved by using the sourceapplication parameter which provides the
bundle ID of the URL originator. This is effective as long as the device has not been jailbroken and as long as Apple has done due diligence vetting
submissions to the app store for malware with faked bundle IDs. The sourceapplication parameter can be matched with the FacetlD list to ensure that
the calling app is approved to use the credentials for the relying party.

On the relying party app side, encryption is used to prevent a rogue app from spoofing the relying party app's response URL. The relying party app
generates a random encryption key on every request and sends it to the FIDO client. The FIDO client then encrypts the response to this key. In this
manner, only the relying party app can decrypt the response. Even in the event that malware is able to spoof the relying party app's URL and intercept
the response, it would not be able to decode it.

To protect against potentially malicious applications registering themselves to handle the FIDO UAF Client custom URL scheme, relying party
Applications can obtain the bundle-id of the responding app and utilize it in risk management decisions around the authentication or transaction events.
For example, a relying party might maintain a list of bundle-ids known to belong to malware and refuse to accept operations completed with such
clients, or a list of bundle-ids of known-good clients that receive preferred risk-scoring.

8. Transport Binding Profile
This section is normative.

This section describes general normative security requirements for how a client application transports FIDO UAF protocol messages, gives specific
requirements for Transport Layer Security [TLS], and describes an interoperability profile for using HTTP over TLS [RFC2818] with the FIDO UAF
protocol.

8.1 Transport Security Requirements

This section is non-normative.

The UAF protocol contains no inherent means of identifying a relying party server, or for end-to-end protection of UAF protocol messages. To perform a
secure UAF protocol exchange, the following abstract requirements apply:

1. The client application must securely authenticate the server endpoint as authorized, from that client's viewpoint, to represent the Web origin
[RFC6454] (scheme:host:port tuple) reported to the FIDO UAF Client by the client application. Most typically this will be done by using TLS and
verifying the server's certificate is valid, asserts the correct DNS name, and chains up to a root trusted by the client platform. Clients may also
utilize other means to authenticate a server, such as via a pre-provisioned certificate or key that is distributed with an application, or alternative
network authentication protocols such as Kerberos [RFC4120].

2. The transport mechanism for UAF protocol messages must provide confidentiality for the message, to prevent disclosure of their contents to
unauthorized third parties. These protections should be cryptographically bound to proof of the server's identity as described above.

3. The transport mechanism for UAF protocol messages must protect the integrity of the message from tampering by unauthorized third parties.
These protections should be cryptographically bound to proof of the server's identity in as described above.

8.2 TLS Security Requirements

This section is non-normative.

If using HTTP over TLS ([RFC2246] [RFC4346], [RFC5246] or [TLS13draft02]) to transport an UAF protocol exchange, the following specific
requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any other error level with the TLS connection, the HTTP client must terminate the
connection without prompting the user. For example, this includes any errors found in certificate validity checking that HTTP clients employ, such
as via TLS server identity checking [RFC6125], Certificate Revocation Lists (CRLs) [RFC5280], or via the Online Certificate Status Protocol
(OCSP) [RFC2560].

2. Whenever comparisons are made between the presented TLS server identity (as presented during the TLS handshake, typically within the server
certificate) and the intended source TLS server identity (e.g., as entered by a user, or embedded in a link), [RFC6125] server identity checking
must be employed. The client must terminate the connection without prompting the user upon any error condition.

3. The TLS server certificate must either be provisioned explicitly out-of-band (e.g. packaged with an app as a "pinned certificate") or be trusted by
chaining to a root included in the certificate store of the operating system or a major browser by virtue of being currently in compliance with their
root store program requirements. The client must terminate the connection without user recourse if there are any error conditions when building
the chain of trust.

4. The "anon" and "null" crypto suites are not allowed and insecure cryptographic algorithms in TLS (e.g. MD4, RC4, SHA1) should be avoided (see
NIST SP800-131A [SP800-131A]).

5. The client and server should use the latest practicable TLS version.

6. The client should supply, and the server should verify whatever practicable channel binding information is available, including a ChannellD
[ChannellD] public key, the t 1s-unique and t1s-server-end-point bindings [RFC5929], and TLS server certificate binding [UAFProtocol]. This
information provides protection against certain classes of network attackers and the forwarding of protocol messages, and a server may reject a
message that lacks or has channel binding data that does not verify correctly.

8.3 HTTPS Transport Interoperability Profile

This section is normative.

Conforming applications may support this profile.

Complex and highly-optimized applications utilizing UAF will often transport UAF protocol messages in-line with other application protocol messages.
The profile defined here for transporting UAF protocol messages over HTTPS is intended to:

« Provide an interoperability profile to enable easier composition of client-side application libraries and server-side implementations for FIDO UAF-

enabled products from different vendors.

« Provide detailed illustration of specific necessary security properties for the transport layer and HTTP interfaces, especially as they may interact

with a browser-hosted application.

« This profile is also utilized in the examples that constitute the appendices of this document. This profile is optional to implement. RFC 2119 key

words are used in this section to indicate necessary security and other properties for implementations that intend to use this profile to interoperate.

NOTE

Certain FIDO UAF operations, in particular, transaction confirmation, will always require an application-specific implementation. This
interoperability profile only provides a skeleton framework suitable for replacing username/password authentication.

8.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request messages as part of a response body containing other application content, e.g in a script
block as such:

<script type="application/json”>
“initialRequest”: {

// initial request message here
1

“lifetimeMillis”: 60000; // hint: this initial request is valid for 60 seconds

</script>

However, request messages have a limited lifetime, and an installed application cannot be delivered with a request, so client applications generally
need the ability to retrieve a fresh request.

When sending a request message over HTTPS with XMLHttpRequest [XHR] or another HTTP API:

a MW=

© O N O

. The URI of the server endpoint, and how it is communicated to the client, is application-specific.

. The client must set the HTTP method to POST. RFC7231]

. The client must set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-8~. [RFC7231]

. The client should include “application/fido+uat” as a media type in the HTTP “Accept” header. [RFC7231]

. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific manner, their

authorization to perform a request.

. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the cetuarrequest dictionary.

. The server's response should set the HTTP “Content-Type” to “application/fido+uaf; charset=utf-8”

. The client should decode the response byte string as UTF-8 with error handling. HTML5]

. The decoded body of the response must consist entirely of a JSON structure described by the returnuarrequest interface.

8.3.2 Operation enum

Describes the operation type of a FIDO UAF message or request for a message.

WebIDL

enum Operation {

Yi

Enumeration description

Reg Registration

Auth

Authentication or Transaction
Confirmation

pereg Deregistration

8.3.3 GetUAFRequest dictionary

WebIDL

dictionary GetUAFRequest {
Operation op;
DOMString previousRequest;
DOMString context;

bi

8.3.3.1 Dictionary cetvarrequest Members

op Of type Operation
The type of the UAF request message desired. Allowable string values are defined by the Operation enum. This field is optional but must be
set if the operation is not known to the server through other context, e.g. an operation-specific URL endpoint.

previousRequest Of type DOMString
If the application is requesting a new UAF request message because a previous one has expired, this optional key can include the previous
one to assist the server in locating any state that should be re-associated with a new request message, should one be issued.

context Of type DOMString

Any additional contextual information that may be useful or necessary for the server to generate the correct request message. This key is
optional and the format and nature of this data is application-specific.

8.3.4 ReturnUAFRequest dictionary

WebIDL

dictionary ReturnUAFRequest {
required unsigned long statusCode;

DOMString uafRequest;
Operation op;
long lifetimeMillis;

Yi

8.3.4.1 Dictionary returnuarrequest Members

statusCode Of type required unsigned long
The UAF Status Code for the operation (see section3.1 UAF Status Codes).

uafRequest Of type DOMString
The new UAF Request Message, optional, if the server decided to issue one

op Of type Operation
An optional hint to the client of the operation type of the message, useful if the server might return a different type than was requested. For
example, a server might return a deregister message if an authentication request referred to a key it no longer considers valid. Allowable
string values are defined by the Operation enum.

lifetimeMillis Of typelong
If the server returned auatrequest, this is an optional hint informing the client application of the lifetime of the message in milliseconds.

8.3.5 SendUAFResponse dictionary

WebIDL

dictionary SendUAFResponse {
required DOMString uafResponse;
DOMString context;

Yi

8.3.5.1 Dictionary sendvarresponse Members

uafResponse Of type required DOMString
The UAF Response Message. Itmust be set to uarmessage.uatprotocolmessage returned by FIDO UAF Client.

context Of type DOMString

Any additional contextual information that may be useful or necessary for the server to process the response message. This key is optional
and the format and nature of this data is application-specific.

8.3.6 Delivering a UAF Response

Although it is not the only pattern possible, an asynchronous HTTP request is a useful way of delivering a UAF Response to the remote server for either
web applications or standalone applications.

When delivering a response message over HTTPS with XMLHttpRequest [XHR] or another API:

1. The URI of the server endpoint and how it is communicated to the client is application-specific.

2. The client must set the HTTP method to POST. RFC7231]

3. The client must set the HTTP “Content-Type” header to “application/fido+uaf; charset=utf-g8~.[RFC7231]

4. The client should include “application/fido+uat” as a media type in the HTTP “Accept” header. [RFC7231]

5. The client may need to supply additional headers, such as a HTTP Cookie [RFC6265], to demonstrate, in an application-specific manner, their
authorization to perform an operation.

6. The entire POST body must consist entirely of a JSON [ECMA-404] structure described by the senduarresponse.

7. The server's response should set the “Content-Type” to “application/fido+uaf; charset=utf-8~” and the body of the response must consist
entirely of a JSON structure described by the serverresponse interface.

8.3.7 ServerResponse Interface

The serverresponse interface represents the completion status and additional application-specific additional data that results from successful
processing of a Register, Authenticate, or Transaction Confirmation operation. This message is not formally part of the UAF protocol, but the
statusCode should be posted to the FIDO UAF Client, for housekeeping, using the notifyuarresult () operation.

WebIDL

interface ServerResponse {

readonly attribute int statusCode;
[Optional]

readonly attribute DOMString description;
[Optional]

readonly attribute Token]] additionalTokens;
[Optional]

readonly attribute DOMString location;
[Optional]

readonly attribute DOMString postData;
[Optional]

readonly attribute DOMString newUAFRequest;

8.3.7.1 Attributes

statusCode Of type int, readonly
The FIDO UAF response status code. Note that this status code describes the result of processing the tunneled UAF operation, not the status
code for the outer HTTP transport.

description of type DOMString, readonly
A detailed message describing the status code or providing additional information to the user.

additionalTokens Of type array of Token, readonly
This key contains new authentication or authorization token(s) for the client that are not natively handled by the HTTP transport. Tokens
should be processed prior to processing of 1ocation.

location Of type DOMString, readonly
If present, indicates to the client web application that it should navigate the Document context to the URI contained on this field after
processing any tokens.

postpata of type DOMString, readonly
If present in combination with1ocation, indicates that the client should POST the contents to the specified location after processing any
tokens.

newUAFRequest Of type DOMString, readonly
The server may use this to return a new UAF protocol message. This might be used to supply a fresh request to retry an operation in
response to a transient failure, to request additional confirmation for a transaction, or to send a deregistration message in response to a
permanent failure.

8.3.8 Token interface

NOTE

The UAF Server is not responsible for creating additional tokens returned as part of a UAF response. Such tokens exist to provide a means for
the relying party application to update the authentication/authorization state of the client in response to a successful UAF operation. For example,
these fields could be used to allow UAF to serve as the initial authentication leg of a federation protocol, but the scope and details of any such
federation are outside of the scope of UAF.

WebIDL

interface Token {
readonly attribute TokenType type;
readonly attribute DOMString value;
bi

8.3.8.1 Attributes

type Of type TokenType, readonly
The type of the additional authentication / authorization token.

value Of type DOMString, readonly
The string value of the additional authentication / authorization token.

8.3.9 TokenType enum

WebIDL

enum TokenType {
"HTTP_COOKIE",
"OAUTH",
"OAUTH2",
"SAML1 1",
"SAML2",
"IWT",
"OPENID_CONNECT"

Yi

Enumeration description

If the user agent is a standard web browser or other HTTP native client with a cookie store, this TokenType should not be used.
Cookies should be set directly with the Set-Cookie HTTP header for processing by the user agent. For non-HTTP or non-browser
contexts this indicates a token intended to be set as an HTTP cookie. [RFC6265] For example, a native VPN client that
authenticates with UAF might use this TokenType to automatically add a cookie to the browser cookie jar.

HTTP_COOKIE

OAUTH Indicates that the token is of type OAUTH. RFC5849].

OAUTH2 Indicates that the token is of type OAUTH2. RFC6749].

SAML1_1 Indicates that the token is of type SAML 1.1. BAML11].

SAML2 Indicates that the token is of type SAML 2.0. BAML2-CORE]

JWT Indicates that the token is of type JSON Web Token (JWT). JWT]

oreniD connecT Indicates that the token is an OpenlD Connect “id_token”. [OpenIDConnect]

8.3.10 Security Considerations

This section is non-normative.

It is important that the client set, and the server require, the method be POST and the “Content-Type” HTTP header be the correct values. Because the
response body is valid ECMAScript, to protect against unauthorized cross-origin access, a server must not respond to the type of request that can be
generated by a script tag, e.9. <script src="https://example.com/fido/uaf/getRequest”>. The request a user agent generates with this kind of
embedding cannot set custom headers.

Likewise, by requiring a custom “Content-Type” header, cross-origin requests cannot be made with an XMLHttpRequest [XHR] without triggering a
CORS preflight access check. [CORS]

As FIDO UAF messages are only valid when used same-origin, servers should not supply an “Access-Control-Allow-Origin” [CORS] header with
responses that would allow them to be read by non-same-origin content.

To protect from some classes of cross-origin, browser-based, distributed denial-of-service attacks, request endpoints should ignore, without performing
additional processing, all requests with an “Access-Control-Request-Method” [CORS] HTTP header or an incorrect “Content-Type” HTTP header.

If a server chooses to respond to requests made with the GET method and without the custom “Content-Type” header, it should apply a prefix string

such as “while(1);” Or “sssBEGIN UAF RESPONSEsss” t0 the body of all replies and so prevent their being read through cross-origin <script> tag
embedding. Legitimate same-origin callers will need to (and alone be able to) strip this prefix string before parsing the JSON content.

A. References

A.1 Normative references

[AndroidAppManifest]
Android App Manifest Google Inc., the Open Handset Alliance and the Android Open Source Project (Work in progress) URL:
http://developer.androi m/quide’t /manifest/manifest-intro.html
[ChannellD]
o D. Balfanz Transport Layer urity (TL hannel IDs. (Work In Progress) URL:http://tools.ietf.org/html/draft-balfanz-tls-channeli
[DOM]
Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/
[ECMA-262]
ECMAScript Langu ification. URL: https://tc39.github.io/ecma262/
[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL:https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf
[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft. URLs:
HTML: fi I ry-v1.1-id-20170202.

[FIDOMetadataStatement]
B. Hill, D. Baghdasaryan, J. Kemp, FIDO Metadata Statements v1.0. FIDO Alliance Implementation Draft. URLs:
HTML: fido-metadata-statements.pdf
[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values FIDO Alliance Implementation Draft. URLs:
HTML: fido-registry-v1.1-id-20170202.pdf

[HTML5]
I. Hickson; R.Berjon; S. Faulkner; T. Leithead; E. D. Navara; E. O'Connor; S. Pfeiffer HTML5: A vocabulary and associated APIs for HTML and
XHTML. 28 October 2014. W3C Recommendation. URL:http://www.w3.0rg/TR/html5/

[JWT]

M. Jones; J. Bradley; N. Sakimura. JSSON Web Token (JWT). May 2015. RFC. URL:https://tools.ietf.org/html/rfc7519
[OpenIiDConnect]

OpenlID Connect. OpenlD Foundation (Work in Progress) URL:http://openid.net/connect/

[PNG]
Tom Lane. Portable Network Graphics (PN ification nd Edition). 10 November 2003. W3C Recommendation. URL:
https://www.w3.0rg/TR/PNG/

[RFC2119]

CS. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:https:/tools.ietf.org/html/rfc2119
[RFC2397]

L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:https://tools.ietf.org/html/rfc2397
[RFC2818]

E. Rescorla. HTTP Over TLS. May 2000. Informational. URL:https://tools.ietf.org/html/rfc2818
[RFC4648]

S. Josefsson, The Base16, B 2, and B 4 Data Encodings (RFC 4648), IETF, October 2006, URL:http://www.ietf.org/rfc/rfc4648.txt
[RFC5849]

E. Hammer-Lahav, The OAuth 1.0 Protocol (RFC 5849), IETF, April 2010, URL:http://www.ietf.org/rfc/rfc5849.txt
[RFC5929]

J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS (RFC 5929), IETF, July 2010, URL:http://www.ietf.org/rfc/rfc5929.txt
[RFC6125]
P. Saint-Andre, J. Hodges, R i ntity within Internet Publi
ing X. PKIX rtifi in th: ntext of Tran rt r urlt 12 IETF March 2011, URL:
http://www.ietf.org/rfc/rfc612 .txt
[RFC6265]

A. Barth. HTTP State Management Mechanism. April 2011. Proposed Standard. URL:https://tools.ietf.org/html/rfc62
[RFC6454]
A. Barth, The W rigin Concept (RFC 6454), IETF, June 2011, URL:http://www.ietf.org/rfc/rfc6454.txt
[RFC6749]
D. Hardt, Ed., The OAuth 2.0 Authorization Framework (RFC 6749) IETF, October 2012, URL:http://www.ietf.org/rfc/rfc6749.txt
[RFC7230]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): M ntax and Routing. June 2014. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7230
[RFC7231]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. June 2014. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7231
[SAML11]
E. Maler, P. Mishra and R. Phllpott The Security Assertion Markup Language (SAML) v1.1. OASIS, October 2003, URL:https://www.oasis-
open Qrg/gtgnga rds#samlvi.
[SAML2-CORE]
Scott Cantor; John Kemp; Rob Philpott; Eve Maler. A nd Protocols for SAML V2.0 15 March 2005. URL:http://docs.oasis-

open Qrg/ggcurltylggml/VZ O/saml-core-2.0-0s.pdf
[UAFProtocol]

R. Lindemann, D. Baghdasaryan, E. Tiffany, D. Balfanz, B. Hill, J. Hodges, FIDO UAF Protocol Specification v1.0. FIDO Alliance Proposed
Standard. URLs:
HTML.: fido-uaf-protocol-v1.1-id-20170202.
[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values FIDO Alliance Proposed Standard. URLs:
HTML.: fido-uaf-reg-v1.1-id-20170202.pdf
[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://h m.github.io/w

A.2 Informative references

[ANDROID]
The Android™ gzggrat/ng ,sttgm Google, Inc., the Open Handset Alliance and the Android Open Source Project (Work in progress) URL:
http://developer.androi
[Android5Changes]
Android 5.0 Changes. Google, Inc., the Open Handset Alliance and the Android Open Source Project (Work in progress) URL:
http://developer.android.com/about/versions/android-5.0-changes.html
[CORS]
Anne van Kesteren. Cross-Origin Resource Sharing. 16 January 2014. W3C Recommendation. URL:https://www.w3.org/TR/cors/
[RFC2045]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies November 1996. Draft

Standard. URL: https://tools.ietf.org/html/rfc2045
[RFC2246]

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://tools.ietf.org/html/draft-balfanz-tls-channelid
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://openid.net/connect/
http://openid.net/connect/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc6125.txt
http://www.ietf.org/rfc/rfc6125.txt
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://www.oasis-open.org/standards#samlv1.1
https://www.oasis-open.org/standards#samlv1.1
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
PDF: <a href=
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/about/versions/android-5.0-changes.html
http://developer.android.com/about/versions/android-5.0-changes.html
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045

T. Dierks, E. Rescorla, The TLS Protocol Version 1.0, IETF, January 1999, URL:http://www.ietf.org/rfc/rfc2246.txt
[RFC2560]
M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams.X. Internet Public Key Infrastructure Onlin rtificate Status Protocol - P June
1999. Proposed Standard. URL: https://tools.ietf.org/html/rfc2560
[RFC4120]
C. Neuman, T. Yu, S. Hartman, K. Raeburn, The Kerberos Network Authentication Protocol (V5) (RFC 4120) IETF, July 2005, URL:
http://www.ietf.org/rfc/rfc4120.txt
[RFC4346]
T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.1, IETF, April 2006, URL:http://www.ietf.org/rfc/rfc4346.txt
[RFC5246]
T. Dierks, E. Rescorla, The Transport Layer urity (TLS) Protocol, IETF, August 2008, URL:http://www.ietf.org/rfc/rfc5246.txt
[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X. Public Key Infrastructur rtificate an rtifi

List (CRL) Profile, IETF, May 2008, URL:http://www.ietf.org/rfc/rfc5280.txt
SOP]

Same Origin Policy for JavaScript. Mozilla Developer Network, January 2014 URL:https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Same_origin_policy for JavaScript

[SP800-131A]
E. Barker, A. Roginsky, NIST Special Publication 800-131A: Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths. National Institute of Standards and Technology, January 2011, URL:http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-
131A.pdf

31A.pd
[TLS13draft02]

T. Dierks, E. Rescorla, The Transport Layer Security (TLD) Protocol Version 1.3 (draft 02) IETF, July, 2014, URL:https://tools.ietf.org/html/draft-
ietf-tls-tls13-02

[UAFASM]
D. Baghdasaryan, J. Kemp, R. Lindemann, B. Hill, R. Sasson, FIDO UAF Authenticator-Specific Module APl FIDO Alliance Implementation Draft.
URLs:
HTML.: fido-uaf-asm-api-v1.1-id-20170202.

[WebIDL]

Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:https://heycam.github.io/webidl/
R]

Anne van Kesteren. XMLHttpRequest Standard. Living Standard. URL: https://xhr.spec.whatwg.org/
[webmessagin

gl
lan Hickson. HTML5 Web Messaging. 19 May 2015. W3C Recommendation. URL:https://www.w3.org/TR/webmessaging/

[XH

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2560
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://tools.ietf.org/html/draft-ietf-tls-tls13-02
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
PDF: <a href=
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/webmessaging/
https://www.w3.org/TR/webmessaging/

fco

ALLIANCE

FIDO UAF Authenticator-Specific Module API
FIDO Alliance Proposed Standard 02 February 2017

This versmn

Editors:
Dr. Rolf Lindemann, Nok Nok L. In
John Kemp, FIDO Alliance
Contributors:
avn Baghdasaryan, Nok Nok Labs, Inc.
Hill, PayPal Inc.
in §g§§g Discretix, Inc.
Jeff Hodges, PayPaI Inc.
Ka Yang, N Sk Nok L. In

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific
Module (ASM) is a software interface on top of UAF authenticators which gives a standardized way for FIDO UAF Clients to detect and access the
functionality of UAF authenticators and hides internal communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs, defines the UAF ASM API and explains how FIDO UAF Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO FIDO UAF Client vendors.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Allian: ifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please Contact
Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used as
reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the specification and to
promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Key Words
e 2. Overview
o 2.1 Code Example format
« 3. ASM Requests and Responses
o 3.1 Request enum
o 3.2 StatusCode Interface
= 3.2.1 Constants
= 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes
o 3.3 ASMRequest Dictionary
= 3.3.1 Dictionary asmrequest Members
o 3.4 ASMResponse Dictionary
= 3.4.1 Dictionary asmresponse Members
o 3.5 GetInfo Request
= 3.5.1 GetInfoOut Dictionary
= 3.5.1.1 Dictionary cetInfoout Members

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-asm-api-v1.1-id-20170202.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

= 3.5.2 AuthenticatorInfo Dictionary
» 3.5.2.1 Dictionary authenticatorinfo Members

o 3.6 Register Request
= 3.6.1 RegisterIn Object
= 3.6.1.1 Dictionary registerin Members

= 3.6.2 RegisterOut Object
» 3.6.2.1 Dictionary registerout Members

= 3.6.3 Detailed Description for Processing the Register Request

o 3.7 Authenticate Request
= 3.7.1 Authenticateln Object
= 3.7.1.1 Dictionary authenticatein Members

= 3.7.2 Transaction Object
= 3.7.2.1 Dictionary Transaction Members

= 3.7.3 AuthenticateOut Object
= 3.7.3.1 Dictionary authenticateout Members

= 3.7.4 Detailed Description for Processing the Authenticate Request

o 3.8 Deregister Request
» 3.8.1 Deregisterln Object
= 3.8.1.1 Dictionary peregisterzn Members

= 3.8.2 Detailed Description for Processing the Deregister Request

o 3.9 GetRegistrations Request
= 3.9.1 GetRegistrationsOut Object
= 3.9.1.1 Dictionary cetregistrationsout Members

= 3.9.2 AppRegistration Object
= 3.9.2.1 Dictionary appregistration Members

= 3.9.8 Detailed Description for Processing the GetRegistrations Request
o 3.10 OpenSettings Request
« 4.Using ASM API
» 5. Using the ASM API on various platforms
o 5.1 Android ASM Intent API
= 5.1.1 Discovering ASMs
= 5.1.2 Alternate Android AIDL Service ASM Implementation
o 5.2 Windows ASM API

» 6. Security and Privacy Guidelines
o 6.1 KHAccessToken
o 6.2 Access Control for ASM APIs

« A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “*, e.g. “UAF-TLV”.
apn

In formulas we use

DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL [WebIDL-ED].

to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

NOTE
Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the WebIDL
definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you

are using a WeblIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means to
ensure those fields are present.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document are to
be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific
module (ASM) is a software interface on top of UAF authenticators which gives a standardized way for FIDO UAF Clients to detect and access the

functionality of UAF authenticators, and hides internal communication complexity from clients.

The ASM is a platform-specific software component offering an API to FIDO UAF Clients, enabling them to discover and communicate with one or more
available authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and FIDO UAF Client vendors.

NOTE

Platform vendors might choose to not expose the ASM API defined in this document to applications. They might instead choose to expose ASM
functionality through some other API (such as, for example, the Android KeyStore API, or iOS KeyChain API). In these cases it's important to
make sure that the underlying ASM communicates with the FIDO UAF authenticator in a manner defined in this document.

The FIDO UAF protocol and its various operations is described in the FIDO UAF Protocol Specification [UAFProtocol]. The following simplified
architecture diagram illustrates the interactions and actors this document is concerned with:

UAF
Client

ASM

Authnr

Authenticator

Fig. 1 UAF ASM API Architecture

2.1 Code Example format

ASM requests and responses are presented in WebIDL format.

3. ASM Requests and Responses

This section is normative.

The ASM API is defined in terms of JSON-formatted ECMA-404] request and reply messages. In order to send a request to an ASM, a FIDO UAF
Client creates an appropriate object (e.g., in ECMAscript), "stringifies" it (also known as serialization) into a JSON-formated string, and sends it to the
ASM. The ASM de-serializes the JSON-formatted string, processes the request, constructs a response, stringifies it, returning it as a JSON-formatted
string.

NOTE

The ASM request processing rules in this document explicitly assume that the underlying authenticator implements the "UAFV1TLV" assertion
scheme (e.g. references to TLVs and tags) as described in [UAFProtocol]. If an authenticator supports a different assertion scheme then the
corresponding processing rules must be replaced with appropriate assertion scheme-specific rules.

Authenticator implementers may create custom authenticator command interfaces other than the one defined in [UAFAuthnrCommands]. Such
implementations are not required to implement the exact message-specific processing steps described in this section. However,

1. the command interfaces must present the ASM with external behavior equivalent to that described below in order for the ASM to properly respond
to the client request messages (e.g. returning appropriate UAF status codes for specific conditions).

2. all authenticator implementations must support an assertion scheme as defined [UAFRegistry] and must return the related objects, i.e.
TAG UAFV1_REG ASSERTION and tac uarvi auTe assertIon as defined in [UAFAuthnrCommands].

3.1 Request enum

WebIDL

enum Request {
"GetInfo",
"Register",
"Authenticate",
"Deregister",
"GetRegistrations",
"OpenSettings"

Enumeration description

GetInfo
Register
Authenticate

Deregister

GetRegistrations

OpenSettings

GetlInfo

Register
Authenticate
Deregister
GetRegistrations
OpenSettings

3.2 StatusCode Interface

If the ASM needs to return an error received from the authenticator, it shall map the status code received from the authenticator to the appropriate ASM
status code as specified here.

If the ASM doesn't understand the authenticator's status code, it shall treat it as uar cup starus err unknows and map it to uar asm sTatus Error if it
cannot be handled otherwise.

If the caller of the ASM interface (i.e. the FIDO Client) doesn't understand a status code returned by the ASM, it shall treat it as uar_asm_sTaTUS ERROR.
This might occur when new error codes are introduced.

WebIDL

interface
const
const
const
const
const
const
const
const
const
const
const

Yi

Statu
short
short
short
short
short
short
short
short
short
short
short

sCode {
UAF_ASM_STATUS

OK = 0x00;

UAF ASM STATUS ERROR = 0x01;

UAF ASM STATUS

ACCESS DENIED = 0x02;

UAF ASM STATUS

USER_CANCELLED = 0x03;

UAF ASM STATUS

CANNOT RENDER TRANSACTION CONTENT = 0x04;

UAF ASM STATUS

KEY DISAPPEARED PERMANENTLY = 0x09;

UAF_ASM STATUS AUTHENTICATOR DISCONNECTED = 0x0b;

UAF ASM STATUS

USER_NOT RESPONSIVE = 0x0e;

UAF ASM STATUS

INSUFFICIENT AUTHENTICATOR RESOURCES = 0x0f;

UAF ASM STATUS

USER_LOCKOUT = 0x10;

UAF ASM STATUS

USER_NOT ENROLLED = 0x11;

3.2.1 Constants

UAF_ASM_STATUS_OK Of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR Of type short

An unknown error has been encountered during the processing.

UAF_ASM_STATUS_ACCESS_DENIED Of type short
Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED Of type short
Indicates that user explicitly canceled the request.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT Of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY Of type short

Indicates that the UAuth key disappeared from the authenticator and canot be restored.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED Of type short
Indicates that the authenticator is no longer connected to the ASM.

UAF_ASM_STATUS_USER_NOT_ RESPONSIVE Of type short

The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

UAF_ASM_STATUS_INSUFFICIENT AUTHENTICATOR_RESOURCES Of type short
Insufficient resources in the authenticator to perform the requested task.

UAF_ASM_STATUS_USER_LockouT Of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an action to change that. Typically the
user would have to enter an alternative password (formally: undergo some other alternative user verification method) to re-enable the use of
the main user verification method.

NOTE

Any method the user can use to (re-) enable the main user verification method is considered an alternative user verification method
and must be properly declared as such. For example, if the user can enter an alternative password to re-enable the use of fingerprints
or to add additional fingers, the authenticator obviously supports fingerprint or password based user verification.

UAF_ASM_STATUS_USER_NOT ENROLLED Of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot automatically trigger user enrollment.

3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

Authenticators are returning a status code in their responses to the ASM. The ASM needs to act on those responses and also map the status code
returned by the authenticator to an ASM status code.

The mapping of authenticator status codes to ASM status codes is specified here:

Authenticator Status Code ASM Status Code

UAF_CMD_STATUS_OK

UAF_ASM_STATUS_OK

Comment
Pass-through success status.

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_ASM_STATUS_ERROR

Pass-through unspecific error status.

UAF_CMD_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_ACCESS_DENIED

Pass-through status code.

According to [UAFAuthnrCommands], 1

Authenticator Status Code

UAF_CMD_STATUS_USER_NOT_ENROLLED

ASM Status Code

UAF_ASM_STATUS_USER_NOT_ENROLLED (or
UAF_ASM_STATUS_ACCESS_DENIED in some situations)

Commen

d
automatically trigger user enroliment. 1
mapping depends on the command as

In the case of "Register" command, the
mapped to
UAF_ASM_STATUS_USER_NOT_EN
in order to tell the calling FIDO Client tl
is an authenticator present but the use
enroliment needs to be triggered outsic
authenticator.

In the case of the "Sign" command, the
key needs to be protected by one of th
authenticator's user verification methoc
times. So if this error occurs it is consic
internal error and hence mapped to

UAF_ASM_STATUS_ACCESS_DENIt

UAF_CMD_STATUS_CANNOT RENDER_TRANSACTION_CONTENT

UAF_ASM_STATUS_CANNOT_ RENDER_TRANSACTION_CONTENT

Pass-through status code as it indicate
problem to be resolved by the entity pr:
the transaction text.

UAF_CMD_STATUS_USER_CANCELLED

UAF_ASM_STATUS_USER_CANCELLED

Map t0 UAF_ASM_STATUS_USER_CANCELLEI

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

UAF_ASM_STATUS_OK Of UAF_ASM_STATUS_ERROR

If the ASM is able to handle that comm
behalf of the authenticator (e.g. removi
key handle in the case of Dereg comm
bound authenticator), the uar_asu_sta1
must be returned. Map the status code
UAF_ASM_STATUS_ ERROR Otherwise.

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM he
obviously not requested one of the sup
attestation types indicated in the authe
response to the Getinfocommand.

UAF_CMD_STATUS_PARAMS_INVALID

UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM he
obviously not provided the correct pare
to the authenticator when sending the
command.

UAF_CMD_STATUS_KEY DISAPPEARED_ PERMANENTLY

UAF_ASM_ STATUS_KEY DISAPPEARED_ PERMANENTLY

Pass-through status code. It indicates 1
Uauth key disappeared permanently ai
RP App might want to trigger re-registr
the authenticator.

UAF_STATUS_CMD_TIMEOUT

UAF_ASM_STATUS_ERROR

Retry operation and map to
UAF_ASM_STATUS_ERROR if the problem pi

UAF_CMD_STATUS_USER_NOT_ RESPONSIVE

UAF_ASM_STATUS_USER_NOT_ RESPONSIVE

Pass-through status code. The RP Apy
want to retry the operation once the us
attention to the application again.

UAF_CMD_STATUS_INSUFFICIENT_ RESOURCES

UAF_ASM_STATUS_INSUFFICIENT AUTHENTICATOR RESOURCES

Pass-through status code.

UAF_CMD_STATUS_USER_LOCKOUT

UAF_ASM_STATUS_USER_LOCKOUT

Pass-through status code.

Any other status code

UAF_ASM_STATUS_ERROR

Map any unknown error code to
UAF_ASM_STATUS_ ERROR. This might hapj
an ASM communicates with an authen
implementing a newer UAF specificatic
the ASM.

3.3 ASMRequest Dictionary

All ASM requests are represented asasirequest objects.

WebIDL

dictionary ASMRequest {
required Request requestType;

Version asmvVersion;
unsigned short authenticatorIndex;
object args;

Extension[] exts;

bi

3.3.1 Dictionary asyrequest Members

requestType Of type required Request
Request type

asmversion Of type Version

ASM message version to be used with this request. For the definition of the version dictionary see [UAFProtocol]. The asmVersion must be
1.1 (i.e. major version is 1 and minor version is 1) for this version of the specification.

authenticatorIndex Of type unsigned short

Refer to the cet1nfo request for more details. Field authenticatorindex must not be set for cetnfo request.

args Of type object

Request-specific arguments. If set, this attribute may take one of the following types:

e RegisterIn
e AuthenticateIn

e DeregisterIn

exts Of type array ofExtension
List of UAF extensions. For the definition of the extension dictionary see [UAFProtocol].

3.4 ASMResponse Dictionary

All ASM responses are represented as asuresponse Objects.

WebIDL

dictionary ASMResponse {
required short statusCode;
object responseDataj;
Extension[] exts;

i

3.4.1 Dictionary asyresponse Members

statusCode Of type required short
must contain one of the values defined in thestatuscode interface

responseData Of type object
Request-specific response data. This attribute must have one of the following types:

e GetInfoOut
e RegisterOut
e AuthenticateOut

e GetRegistrationOut

exts Of type array ofExtension
List of UAF extensions. For the definition of the extension dictionary see [UAFProtocol].

3.5 GetInfo Request
Return information about available authenticators.

. Enumerate all of the authenticators this ASM supports
. Collect information about all of them

. Assign indices to them (authenticatorIndex)

. Return the information to the caller

A OON =

NOTE

Where possible, an authenticatorindex Should be a persistent identifier that uniquely identifies an authenticator over time, even if it is repeatedly
disconnected and reconnected. This avoids possible confusion if the set of available authenticators changes between a cet1nfo request and
subsequent ASM requests, and allows a FIDO client to perform caching of information about removable authenticators for a better user
experience.

NOTE

It is up to the ASM to decide whether authenticators which are disconnected temporarily will be reported or not. However, if disconnected
authenticators are reported, the FIDO Client might trigger an operation via the ASM on those. The ASM will have to notify the user to connect the
authenticator and report an appropriate error if the authenticator isn't connected in time.

For a Getlnfo request, the followingasmrequest member(s) must have the following value(s). The remaining asurequest members should be omitted:
» ASMRequest.requestType Must be set tocetinfo

For a GetInfo response, the followingasmresponse member(s) must have the following value(s). The remaining asmuresponse members should be
omitted:

s AsMResponse.statusCode must have one of the following values
© UAF_ASM_STATUS_OK
© UAF_ASM_STATUS_ERROR
e ASMResponse.responseData MUst be an object of typecetinfoout. In the case of an error the values of the fields might be empty (e.g. array with no

members).
See section 3.2.2 Mapping Authenticator Statu to ASM Statu or details on the mapping of authenticator status codes to ASM status
codes.

3.5.1 GetIinfoOut Dictionary

WebIDL

dictionary GetInfoOut {
required AuthenticatorInfo[] Authenticators;

bi

3.5.1.1 Dictionary Getinfoout Members

Authenticators Of type array ofrequired Authenticatorinfo
List of authenticators reported by the current ASM.may be empty an empty list.

3.5.2 Authenticatorinfo Dictionary

WebIDL

dictionary AuthenticatorInfo {

required unsigned short authenticatorIndex;
required Version]] asmvVersions;

required boolean isUserEnrolled;
required boolean hasSettings;

required AAID aaid;

required DOMString assertionScheme;
required unsigned short authenticationAlgorithm;
required unsigned short[] attestationTypes;
required unsigned long userVerification;
required unsigned short keyProtection;

required unsigned short matcherProtection;
required unsigned long attachmentHint;
required boolean isSecondFactorOnly;
required boolean isRoamingAuthenticator;
required DOMString[] supportedExtensionIDs;
required unsigned short tcDisplay;

DOMString tcDisplayContentType;
DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
DOMString title;

DOMString description;

DOMString icon;

Yi

3.5.2.1 Dictionary authenticatorinfo Members

authenticatorIndex Of type required unsigned short
Authenticator index. Unique, within the scope of all authenticators reported by the ASM, index referring to an authenticator. This index is used
by the UAF Client to refer to the appropriate authenticator in further requests.

asmversions Of type array ofrequired Version
A list of ASM Versions that this authenticator can be used with. For the definition of the version dictionary see [UAFProtocol].

isuserEnrolled Of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators which don't have user verification technology must always return
true. Bound authenticators which support different profiles per operating system (OS) user must report enrollment status for the current OS
user.

hassettings Of type required boolean
A boolean value indicating whether the authenticator has its own settings. If so, then a FIDO UAF Client can launch these settings by sending
a opensettings request.

aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and batch of the authenticator. See [UAFProtocol] for the definition of the
AAID structure.

assertionscheme Of type required DOMString
The assertion scheme the authenticator uses for attested data and signatures.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].

authenticationAlgorithm Of type required unsigned short
Indicates the authentication algorithm that the authenticator uses. Authentication algorithm identifiers are defined in are defined in
[FIDORegistry] with arc_ prefix.

attestationTypes Of type array ofrequired unsigned short
Indicates attestation types supported by the authenticator. Attestation type TAGs are defined in [UAFRegistry] with tac_arrestaron prefix

userVerification Of type required unsigned long
A set of bit flags indicating the user verification method(s) supported by the authenticator. The values are defined by the user_veriry
constants in [FIDORegistry].

keyProtection Of type required unsigned short
A set of bit flags indicating the key protections used by the authenticator. The values are defined by the xev_proTecTION CONstants in
[FIDORegistry].

matcherProtection Of type required unsigned short
A set of bit flags indicating the matcher protections used by the authenticator. The values are defined by the varcuer proTECTION CONStants in
[FIDORegistry].

attachmentHint Of type required unsigned long
A set of bit flags indicating how the authenticator is currently connected to the system hosting the FIDO UAF Client software. The values are
defined by the arTacament mInT constants defined in [FIDORegistry].

NOTE

Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used by
server-supplied policy to guide the user experience, e.g. to prefer a device that is connected and ready for authenticating or confirming
a low-value transaction, rather than one that is more secure but requires more user effort. These values are not reflected in
authenticator metadata and cannot be relied on by the relying party, although some models of authenticator may provide attested
measurements with similar semantics as part of UAF protocol messages.

isSecondFactoronly Of type required boolean
Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator Of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIps Of type array ofrequired DOMString
List of supported UAF extension Ids.may be an empty list.

tcpisplay Of type required unsigned short
A set of bit flags indicating the availability and type of the authenticator's transaction confirmation display. The values are defined by the
TRANSACTION CONFIRMATION DISPLAY constants in [FIDORegistry].
This value must be 0 if transaction confirmation is not supported by the authenticator.

tcbDisplayContentType Of type DOMString
Supported transaction content type [FIDOMetadataStatement].

This value must be present if transaction confirmation is supported, i.e. tcpisplay iS non-zero.

tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction Portable Network Graphic (PNG) type FIDOMetadataStatement]. For the definition of the
DisplayPNGCharacteristicsDescriptor Structure see [FIDOMetadataStatement].

This list must be present if PNG-image based transaction confirmation is supported, i.e. tcpisplay is non-zero and tcpisplayContentType iS
image/png.

title of type DOMString
A human-readable short title for the authenticator. It should be localized for the current locale.

NOTE

If the ASM doesn't return a title, the FIDO UAF Client must provide a title to the calling App. See section "Authenticator interface" in
[UAFAppAPIAndTransport].

description Of type DOMString
Human-readable longer description of what the authenticator represents.

NOTE
This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from the description specified in the metadata statement for the
authenticator [FIDOMetadataStatement].

If the ASM doesn't return a description, the FIDO UAF Client will provide a description to the calling application. See section
"Authenticator interface" in [UAFAppAPIAndTransport].

icon of type DOMString
Portable Network Graphic (PNG) format image file representing the icon encoded as a data: url [RFC2397].

NOTE

If the ASM doesn't return an icon, the FIDO UAF Client will provide a default icon to the calling application. See section "Authenticator
interface" in [UAFAppAPIAndTransport].

3.6 Register Request
Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following asvrequest member(s) must have the following value(s). The remaining asvrequest members should be omitted:

» ASMRequest.requestType Must be set toregister

e ASMRequest.asmversion must be set to the desired version

s ASMRequest.authenticatorIndex Must be set to the target authenticator index
» ASMRequest.args Must be set to an object of typeregisterin

For a Register response, the followingasuresponse member(s) must have the following value(s). The remaining asMresponse members should be
omitted:

e AsMResponse.statusCode must have one of the following values:
© UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR
o UAF_ASM_STATUS_ACCESS_DENIED

o UAF_ASM_STATUS_USER_CANCELLED

o UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

o UAF_ASM_STATUS_USER_NOT RESPONSIVE

o UAF_ASM_STATUS_INSUFFICIENT AUTHENTICATOR_RESOURCES
© UAF_ASM_STATUS_USER_LOCKOUT

© UAF_ASM_STATUS_USER_NOT ENROLLED

» ASMResponse.responseData MUst be an object of typeregisterout. In the case of an error the values of the fields might be empty (e.g. empty
strings).

3.6.1 Registerin Object

WebIDL

dictionary RegisterIn {

required DOMString appID;
required DOMString username;
required DOMString finalChallenge;

required unsigned short attestationType;

bi

3.6.1.1 Dictionary registerin Members

app1p Of type required DOMString
The FIDO server Application Identity.

username Of type required DOMString
Human-readable user account name

finalChallenge Of type required DOMString
base64url-encoded challenge data [RFC4648]

attestationType Of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

WebIDL

dictionary RegisterOut {
required DOMString assertion;
required DOMString assertionScheme;

bi

3.6.2.1 Dictionary registerout Members

assertion Of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionscheme Of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].
3.6.3 Detailed Description for Processing the Register Request
Refer to [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

1. Locate authenticator using authenticatorindex. If the authenticator cannot be located, then fail with uar aAsy_STATUS AUTHENTICATOR DISCONNECTED.

2. If a user is already enrolled with this authenticator (such as biometric enroliment, PIN setup, etc. for example) then the ASM must request that the
authenticator verifies the user.

NOTE

If the authenticator supports vserverificationToken (see [UAFAuthnrCommands]), then the ASM must obtain this token in order to later
include it with the register command.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger unblocking, return
UAF_ASM_STATUS_USER_LOCKOUT.

o If verification fails, return uar_asm_STATUS ACCESS DENIED

3. If the user is not enrolled with the authenticator then take the user through the enrollment process.
o If neither the ASM nor the Authenticator can trigger the enrollment process, return uar asM STATUS USER NOT ENROLLED.
o If enrollment fails, return uar _aAsm STATUS ACCESS DENIED

4. Construct keaccessToken (see section KHAccessToken for more details)

5. Hash the providedregisterIn. finalchallenge Using the authenticator-specific hash function (rFinalchallengenash)

An authenticator's preferred hash function information must meet the algorithm defined in the authenticatorinfo.authenticationalgorithm field.

6. Create aTac_uarvi recIsTER cMp Structure and pass it to the authenticator
1. COpy FinalChallengeHash, KHAccessToken, RegisterIn.Username, UserVerificationToken, RegisterIn.AppID, RegisterIn.AttestationType

1. Depending on authenticatorType SOMe arguments may be optional. Refer to [UAFAuthnrCommands] for more information on
authenticator types and their required arguments.

7. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return var_asm_status avtHENTICATOR DIsconnecTeD. If the operation finally fails, map the
authenticator error code to the the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Statu to ASM Statu for
details).

8. Parse TAG_UAFV1_REGISTER CMD_RESP
1. Parse the content of Tac_ AUTHENTICATOR ASSERTION (€.g. TAG_UAFV1 REG ASSERTION) and extract Tac_kevip

9. If the authenticator is a bound authenticator
1. Store callerip, AppID, TAG KEYHANDLE, TAG KEYID and currentTimestamp in the ASM's database.

NOTE

What data an ASM will store at this stage depends on underlying authenticator's architecture. For example some authenticators might
store AppID, KeyHandle, KeyID inside their own secure storage. In this case ASM doesn't have to store these data in its database.

10. Create a registerout oObject
1. Set registerout.assertionScheme according to AuthenticatorInfo.assertionScheme

2. Encode the content of Tac_auTHENTICATOR ASSERTION (€.9. TAG UAFV1 REG ASSERTION) in base64url format and set as registerout.assertion.
3. Return registerout object

3.7 Authenticate Request

Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following asurequest member(s) must have the following value(s). The remaining asMrequest members should be
omitted:

e ASMRequest.requestType Must be set toauthenticate.

s ASMRequest.asmversion must be set to the desired version.

e ASMRequest.authenticatorIndex must be set to the target authenticator index.
» ASMRequest.args Must be set to an object of typeauthenticatein

For an Authenticate response, the followingasmresponse member(s) must have the following value(s). The remaining asMresponse members should be
omitted:

e ASMResponse.statusCode must have one of the following values:
© UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR
© UAF_ASM_STATUS_ACCESS_DENIED

o UAF_ASM_STATUS_USER_CANCELLED

© UAF_ASM_STATUS_CANNOT RENDER_TRANSACTION CONTENT
© UAF_ASM_STATUS_KEY DISAPPEARED PERMANENTLY

o UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

© UAF_ASM_STATUS_USER_NOT RESPONSIVE

o UAF_ASM_STATUS_USER_LOCKOUT

o UAF_ASM_STATUS_USER_NOT ENROLLED

s ASMResponse.responseData MuUst be an object of type authenticateout. In the case of an error the values of the fields might be empty (e.g. empty
strings).

3.7.1 Authenticateln Object

WebIDL

dictionary AuthenticateIn {
required DOMString appID;

DOMString[] keyIDs;
required DOMString finalChallenge;
Transaction]] transaction;

bi

3.7.1.1 Dictionary authenticatern Members

app1p Of type required DOMString
applD string

key1ps Of type array ofDOMString
base64url [RFC4648] encoded keylDs

finalChallenge Of type required DOMString
base64url [RFC4648] encoded final challenge

transaction Of type array of Transaction
An array of transaction data to be confirmed by user. If multiple transactions are provided, then the ASM must select the one that best
matches the current display characteristics.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the moment of transaction.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
required DOMString contentType;
required DOMString content;
DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;

bi

3.7.2.1 Dictionary transaction Members

contentType Of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to its metadata statement (see [FIDOMetadataStatement])

content Of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to the contentType to be shown to the user.

tcDisplayPNGCharacteristics Of type DisplayPNGCharacteristicsDescriptor

Transaction content PNG characteristics. For the definition of the pisplaypnccharacteristicspescriptor structure See
[FIDOMetadataStatement].

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {
required DOMString assertion;
required DOMString assertionScheme;

bi

3.7.3.1 Dictionary authenticateout Members

assertion Of type required DOMString
Authenticator UAF authentication assertion.

assertionscheme Of type required DOMString
Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

1. Locate the authenticator usingauthenticatorindex. If the authenticator cannot be located, then fail with
UAF_ASM_ STATUS_AUTHENTICATOR_DISCONNECTED.

2. If no user is enrolled with this authenticator (such as biometric enroliment, PIN setup, etc.), return uar_aAsM_STATUS ACCESS DENIED

3. The ASM must request the authenticator to verify the user.
o If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger unblocking, return
UAF_ASM_STATUS_USER_LOCKOUT.

o If verification fails, return uar_asm_STATUS ACCESS DENIED

NOTE

If the authenticator supports vserverificationToken (see [UAFAuthnrCommands]), the ASM must obtain this token in order to later
pass to sign command.

4. Construct xkuaccessToken (see section KHAccessToken for more details)
5. Hash the provided authenticateIn.finalchallenge Using an authenticator-specific hash function (rinalchallengeHash).

The authenticator's preferred hash function information must meet the algorithm defined in the authenticatorInfo.authenticationAlgorithn field.

6. If this is a Second Factor authenticator and authenticateIn.keyIns is empty, then return uar asu sTarus access DENTED

7. If Authenticateln.keylDs is not empty,
1. If this is a bound authenticator, then look up ASM's database with ruthenticateIn.appId and authenticateIn.keyIns and obtain the
KeyHandles associated with it.
= Return uar asm_staTus kev prsappearep pErMANENTLY if the related key disappeared permanently from the authenticator.

= Return uar asu_status access_peniep if no entry has been found.
2. If this is a roaming authenticator, then treat authenticatein.keyins as KeyHandles

8. Create Tac uarvi sien_cwp Structure and pass it to the authenticator.
1. COpy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not empty), FinalChallengeHash, KHAccessToken,
UserVerificationToken, KeyHandles
=« Depending on AuthenticatorType some arguments may be optional. Refer to [UAFAuthnrCommands] for more information on
authenticator types and their required arguments.

= If multiple transactions are provided, select the one that best matches the current display characteristics.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the moment of transaction.

= Decode the base64url encodedauthenticateIn.Transaction.content before passing it to the authenticator

9. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return var asu_staTus avrHENTICATOR DIscoNNeCTED. If the operation finally fails, map the

authenticator error code to the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codesfor

details).
10. Parse Tac UAFV1_SIGN CMD RESP
o Ifit's a first-factor authenticator and the response includes Tac_usernaMe aAND KEYHANDLE, then
1. Extract usernames from tac_usernaMe anp xeveHANDLE fields
2. If two or more equal usernames are found, then choose the one which has registered most recently

NOTE

After this step, a first-factor bound authenticator which stores KeyHandles inside the ASM's database may delete the redundant
KeyHandles from the ASM's database. This avoids having unusable (old) private key in the authenticator which (surprisingly)
might become active after deregistering the newly generated one.

3. Show remaining distinct usernames and ask the user to choose a single username
4. Setrtac uarvl sien cup.KeyHandles to the single KeyHandle associated with the selected username.
5. Go to step #8 and send a newTac UAFV1 SIGN CMD command

11. Create the ruthenticateout Object
1. Set authenticateOut.assertionScheme @S AuthenticatorInfo.assertionScheme

2. Encode the content of Tac_AuTHENTICATOR ASSERTION (€.9. TAG UAFV1 AUTH ASSERTION) in base64url format and set as
AuthenticateOut.assertion

3. Return the authenticateout object

NOTE

Some authenticators might support "Transaction Confirmation Display" functionality not inside the authenticator but within the boundaries of the
ASM. Typically these are software based Transaction Confirmation Displays. When processing the sign command with a given transaction such
ASM should show transaction content in its own Ul and after user confirms it -- pass the content to authenticator so that the authenticator
includes it in the final assertion.

See [FIDORegistry] for flags describing Transaction Confirmation Display type.
The authenticator metadata statement must truly indicate the type of transaction confirmation display implementation. Typically the "Transaction

Confirmation Display" flag will be set to TransacTron conFrrMATION DIsPrAy ANy (DitwiS€) OF TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE.

3.8 Deregister Request
Delete registered UAF record from the authenticator.

For a Deregister request, the following asmrequest member(s) must have the following value(s). The remaining asmrequest members should be omitted:

s ASMRequest.requestType Must be set toperegister

s ASMRequest.asmversion must be set to the desired version
s ASMRequest.authenticatorIndex Must be set to the target authenticator index
* ASMRequest.args Must be set to an object of typeperegisterin

For a Deregister response, the followingasmresponse member(s) must have the following value(s). The remaining asvresponse members should be
omitted:

e AsMResponse.statusCode must have one of the following values:
© UAF_ASM_STATUS_OK

© UAF_ASM_STATUS_ERROR
© UAF_ASM_STATUS_ACCESS_DENIED
© UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

3.8.1 Deregisterin Object

WebIDL

dictionary DeregisterIn {
required DOMString appID;
required DOMString keyID;

bi

3.8.1.1 Dictionary peregisterrn Members

app1p Of type required DOMString
FIDO Server Application Identity

keyIp of type required DOMString
Base64url-encoded [RFC4648] key identifier of the authenticator to be de-registered. The key1p can be an empty string. In this case all key1ps
related to this appzp must be deregistered.

3.8.2 Detailed Description for Processing the Deregister Request
Refer to [UAFAuthnrCommands] for more information about the TAGs and structures mentioned in this paragraph.

1. Locate the authenticator usingauthenticatorIndex
2. Construct kuaccessToken (see section KHAccessToken for more details).
3. If this is a bound authenticator, then

o |f the value of peregisterin.keyID is an empty string, then lookup all pairs of this app1p and any xeyzo mapped to this authenticatorIndex
and delete them. Go to step 4.

o Otherwise, lookup the authenticator related data in the ASM database and delete the record associated with peregisterin.apprn and
DeregisterIn.keyID. GO tO step 4.

4. Create the Tac_uarvi DEREGISTER cuD Structure, COpy keAccessToken and peregisterIn.keyID and pass it to the authenticator.

NOTE

In the case of roaming authenticators, thekey1p passed to the authenticator might be an empty string. The authenticator is supposed to
deregister all keys related to this app1b in this case.

5. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return var asu_staTus avrHENTICATOR DIscoNNECTED. If the operation finally fails, map the

authenticator error code to the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codesfor
details). Return proper ASMResponse.

3.9 GetRegistrations Request
Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the followingasurequest member(s) must have the following value(s). The remaining asurequest members should be
omitted:

s ASMRequest.requestType MUst be set tocetregistrations
s ASMRequest.asmversion must be set to the desired version
s ASMRequest.authenticatorIndex must be setto corresponding ID

For a GetRegistrations response, the followingasmuresponse member(s) must have the following value(s). The remaining asuresponse members should
be omitted:

s ASMResponse.statusCode must have one of the following values:
© UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR

© UAF_ASM STATUS_AUTHENTICATOR_DISCONNECTED

o The aAsMRresponse.responseData Must be an object of type cetregistrationsout. In the case of an error the values of the fields might be empty
(e.g. empty strings).

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut {
required AppRegistration[] appRegs;

bi

3.9.1.1 Dictionary Getregistrationsout Members

appRegs Of type array ofrequired AppRegistration
List of registrations associated with anappip (See rppregistration below). may be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration {
required DOMString appID;
required DOMString[] keyIDs;
bi

3.9.2.1 Dictionary appregistration Members

app1p Of type required DOMString
FIDO Server Application Identity.

keyIps Of type array ofrequired DOMString
List of key identifiers associated with theappip

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator usingauthenticatorIndex

2. If this is bound authenticator, then
o Lookup the registrations associated withCallerID and AppID in the ASM database and construct a list of appregistration objects

NOTE

Some ASMs might not store this information inside their own database. Instead it might have been stored inside the authenticator's
secure storage area. In this case the ASM must send a proprietary command to obtain the necessary data.

3. Create cetregistrationsout object and return

3.10 OpenSettings Request

Display the authenticator-specific settings interface. If the authenticator has its own built-in user interface, then the ASM must invoke
TAG_UAFV1_OPEN_SETTINGS_cMD to display it.

For an OpenSettings request, the following asmrequest member(s) must have the following value(s). The remaining asmrequest members should be
omitted:

s ASMRequest.requestType MUst be set toopensettings
s ASMRequest.asmversion must be set to the desired version
s ASMRequest.authenticatorIndex Must be set to the target authenticator index

For an OpenSettings response, the following asmresponse member(s) must have the following value(s). The remaining asmresponse members should be
omitted:

s ASMResponse.statusCode must have one of the following values:
©o UAF_ASM_STATUS_OK

4. Using ASM API

This section is non-normative.

In a typical implementation, the FIDO UAF Client will call cet1nfo during initialization and obtain information about the authenticators. Once the
information is obtained it will typically be used during FIDO UAF message processing to find a match for given FIDO UAF policy. Once a match is found
the FIDO UAF Client will send the appropriate request (Register/Authenticate/Deregister...) to this ASM.

The FIDO UAF Client may use the information obtained from a cet1nfo response to display relevant information about an authenticator to the user.

5. Using the ASM API on various platforms

This section is normative.

5.1 Android ASM Intent API

On Android systems FIDO UAF ASMsmay be implemented as a separate APK-packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions between the FIDO UAF Client and an ASM on Android takes place
through the following intent identifier:

org.fidoalliance.intent. FIDO_OPERATION
To carry messages described in this document, an intentmust also have its type attribute setto application/fido.uaf asm+json.
ASMs must register that intent in their manifest file and implement a handler for it.
FIDO UAF Clients must append an extra, nessage, containing a string representation of a asmrequest, before invoking the intent.
FIDO UAF Clients must invoke ASMs by calling startactivityForResult()

FIDO UAF Clients should assume that ASMs will display an interface to the user in order to handle this intent, e.g. prompting the user to complete the
verification ceremony. However, the ASM should not display any user interface when processing acetinfo request.

After processing is complete the ASM will return the response intent as an argument to onactivityresult (). The response intent will have an extra,
message, containing a string representation of a asmresponse.

5.1.1 Discovering ASMs

FIDO UAF Clients can discover the ASMs available on the system by using packageManager.queryIntentActivities(Intent intent, int flags) With
the FIDO Intent described above to see if any activities are available.

A typical FIDO UAF Client will enumerate all ASM applications using this function and will invoke the cet1nto operation for each one discovered.
5.1.2 Alternate Android AIDL Service ASM Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism to Android Intents. Please see
Android Intent API section [UAFAppAPIAndTransport] for differences between the Android AIDL service and Android Intent implementation.

5.2 Windows ASM API

On Windows, an ASM is implemented in the form of a Dynamic Link Library (DLL). The following is an example asmplugin.h header file defining a
Windows ASM API:

/*! @file asm.h
*/

#ifndef _ ASMH

#define _ ASMH

#ifdef _WIN32

#define ASM API _ declspec(dllexport)
#endif

#ifdef _WIN32
#pragma warning (disable : 4251)
#endif

#define ASM FUNC extern "C" ASM_API
#define ASM NULL 0

/*! \brief Error codes returned by ASM Plugin API.

* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.

*/

enum asmResult_t

{
Success = 0, /**< Success */
Failure /**< Generic failure */

Yi

/*! \brief Generic structure containing JSON string in UTF-8

* format.

* This structure is used throughout functions to pass and receives
* JSON data.

*/

struct asmJSONData_t

{
int length; /**< JSON data length */
char pbData; /*< JSON data */

i

/*! \brief Enumeration event types for authenticators.

These events will be fired when an authenticator becomes
available (plugged) or unavailable (unplugged).

*/

enum asmEnumerationType_t

Plugged = 0, /**< Indicates that authenticator Plugged to system */
Unplugged /**< Indicates that authenticator Unplugged from system */
bi

namespace ASM

{
/*! \brief Callback listener.
FIDO UAF Client must pass an object implementating this interface to
Authenticator::Process function. This interface is used to provide
ASM JSON based response data.*/
class ICallback

public
virtual ~ICallback() {}
/**
This function is called when ASM's response is ready.
*

@param response JSON based event data

@param exchangeData must be provided by ASM if it needs some
data back right after calling the callback function.

The lifecycle of this parameter must be managed by ASM. ASM must
allocate enough memory for getting the data back.

*

virtual void Callback(const asmJSONData_t &response,
asmJSONData_t &exchangeData) = 0;
Yi

/*! \brief Authenticator Enumerator.

FIDO UAF Client must provide an object implementing this

interface. It will be invoked when a new authenticator is plugged or
when an authenticator has been unplugged. */

class IEnumerator

public
virtual ~IEnumerator() {}
/**
This function is called when an authenticator is plugged or
unplugged.

* @param eventType event type (plugged/unplugged)
@param AuthenticatorInfo JSON based GetInfoResponse object

*/
virtual void Notify(const asmEnumerationType t eventType, const
asmJSONData_t &AuthenticatorInfo) = 0;

Yi
}
[**
Initializes ASM plugin. This is the first function to be

called.

*
@param pEnumerationListener caller provided Enumerator
*/

ASM_FUNC asmResult_t asmInit(ASM::IEnumerator

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)

*pEnumerationListener);
Process given JSON request and returns JSON response.
*
If the caller wants to execute a function defined in ASM JSON

schema then this is the function that must be called.
*

@param pInData input JSON data

@param pListener event listener for receiving events from ASM

*/

ASM_FUNC asmResult_t asmProcess(const asmJSONData_t *pInData,
ASM::ICallback *pListener);

[**

Unitializes ASM plugin.
*

;éMiFUNC asmResult_t asmUninit();

#endif // _ ASMPLUGINH_
A Windows-based FIDO UAF Client must look for ASM DLLs in the following registry paths:
HKCU\Software\FIDO\UAF\ASM
HKLM\Software\FIDO\UAF\ASM
The FIDO UAF Client iterates over all keys under this path and looks for "path" field:
[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE_PATH_TO_ASM>.d1l"

path must point to the absolute location of the ASM DLL.

6. Security and Privacy Guidelines

This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs must follow these security guidelines:

« ASMs must implement a mechanism for isolating UAF credentials registered by two different FIDO UAF Clients from one another. One FIDO UAF
Client must not have access to FIDO UAF credentials that have been registered via a different FIDO UAF Client. This prevents malware from
exercising credentials associated with a legitimate FIDO Client.

NOTE
ASMs must properly protect their sensitive data against malware using platform-provided isolation capabilities in order to follow the

assumptions made in [FIDOSecRef]. Malware with root access to the system or direct physical attack on the device are out of scope for this
requirement.

NOTE
The following are examples for achieving this:

o |f an ASM is bundled with a FIDO UAF Client, this isolation mechanism is already built-in.

o If the ASM and FIDO UAF Client are implemented by the same vendor, the vendor may implement proprietary mechanisms to bind its
ASM exclusively to its own FIDO UAF Client.

o On some platforms ASMs and the FIDO UAF Clients may be assigned with a special privilege or permissions which regular
applications don't have. ASMs built for such platforms may avoid supporting isolation of UAF credentials per FIDO UAF Clients since
all FIDO UAF Clients will be considered equally trusted.

« An ASM designed specifically for bound authenticators must ensure that FIDO UAF credentials registered with one ASM cannot be accessed by
another ASM. This is to prevent an application pretending to be an ASM from exercising legitimate UAF credentials.

o Using a KHAccessToken offers such a mechanism.

« An ASMs must implement platform-provided security best practices for protecting UAF related stored data.

« ASMs must not store any sensitive FIDO UAF data in its local storage, except the following:

o CallerID, ASMToken, PersonalD, KeyID, KeyHandle, AppID

NOTE

An ASM, for example, must never store a username provided by a FIDO Server in its local storage in a form other than being decryptable
exclusively by the authenticator.

« ASMs should ensure that applications cannot use silent authenticators for tracking purposes. ASMs implementing support for a silent
authenticator must show, during every registration, a user interface which explains what a silent authenticator is, asking for the users consent for
the registration. Also, it is recommended that ASMs designed to support roaming silent authenticators either

o Run with a special permission/privilege on the system, or

o Have a built-in binding with the authenticator which ensures that other applications cannot directly communicate with the authenticator by
bypassing this ASM.

6.1 KHAccessToken

KHAccessToken iS an access control mechanism for protecting an authenticator's FIDO UAF credentials from unauthorized use. It is created by the ASM
by mixing various sources of information together. Typically, a kaaccessToken contains the following four data items in it: App1D, Personaip, AsMToken and

CallerID.
app1p is provided by the FIDO Server and is contained in every FIDO UAF message.
personalb iS Obtained by the ASM from the operational environment. Typically a different rersona1p is assigned to every operating system user account.

asMToken is @ randomly generated secret which is maintained and protected by the ASM.

NOTE

In a typical implementation an ASM will randomly generate an ASMToken when it is launched the first time and will maintain this secret until the
ASM is uninstalled.

caller1n is the ID the platform has assigned to the calling FIDO UAF Client (e.g. "bundle ID" for iOS). On different platforms the CallerID can be
obtained differently.

NOTE

For example on Android platform ASM can use the hash of the caller's apk-signing-cert.

The ASM uses the kuaccessToken to establish a link between the ASM and the key handle that is created by authenticator on behalf of this ASM.

The ASM provides the kzaccessToken to the authenticator with every command which works with key handles.

NOTE

The following example describes how the ASM constructs and uses ruaccessToken.

e During a register request
o Set kuaccessToken to a secret value only known to the ASM. This value will always be the same for this ASM.
o Append 2ppiDp
m KHAccessToken = AppID
o If a bound authenticator, append asuroken, PersonaIp and callerid
= KHAccessToken |= ASMToken | PersonaID | CallerID

o Hash ruAccessToken
= Hash kuaccessToken using the authenticator's hashing algorithm. The reason of using authenticator specific hash function is to
make sure of interoperability between ASMs. If interoperability is not required, an ASM can use any other secure hash function it
wants.

m KHAccessToken=hash(KHAccessToken)
o Provide kuaccessToken to the authenticator
o The authenticator puts the keaccessToken into rRawkeyrandle (see [UAFAuthnrCommands] for more details)
« During other commands which require kaaccessToken as input argument

o The ASM computes kxaccessToken the same way as during the register request and provides it to the authenticator along with other
arguments.

o The authenticator unwraps the provided key handle(s) and proceeds with the command only if rRawkeyHandle.KHACcessToken iS equal
to the provided kuAccessToken.

Bound authenticators must support a mechanism for binding generated key handles to ASMs. The binding mechanism must have at least the same
security characteristics as mechanism for protcting kuaccesstoken described above. As a consequence it is recommended to securely derive
KHAccessToken from AppID, ASMToken, PersonalD and the callerip.
NOTE
It is recommended for roaming authenticators that the xuaccessToken contains only the app1p since otherwise users won't be able to use them on
different machines (persona1p, asuToken and caller1n are platform specific). If the authenticator vendor decides to do that in order to address a
specific use case, however, it is allowed.

Including persona1p in the kuaccessToken is optional for all types of authenticators. However an authenticator designed for multi-user systems will
likely have to support it.

If an ASM for roaming authenticators doesn't use axuaccesstoken Which is different for each app1p, the ASM must include the 2pp1p in the command for
a deregister request containing an empty key1p.

6.2 Access Control for ASM APls

The following table summarizes the access control requirements for each API call.
ASMs must implement the access control requirements defined below. ASM vendorsmay implement additional security mechanisms.

Terms used in the table:

» NoAuth -- NO access control

e caller1p -- FIDO UAF Client's platform-assigned ID is verified
s Userverify -- user must be explicitly verified

e KeyIDList -- must be known to the caller

Commands First-factor bound Second-factor bound First-factor roaming Second-factor roaming
authenticator authenticator authenticator authenticator
Getlnfo NoAuth NoAuth NoAuth NoAuth
OpenSettings NoAuth NoAuth NoAuth NoAuth
Register UserVerify UserVerify UserVerify UserVerify

; UserVerify
Verif .
- XSSIrDen Y AppiD UserVerify UserVerify
Authenticate CallerlD KeylIDList AppID AppiD
PersonalD CallerlD i KeyIDList
PersonalD
: -« || CallerID CallerID
GetRegistrations PersonalD PersonalD X X
AppID AppID
: KeylD KeylD AppID AppID
Deregister PersonalD PersonalD KeylD KeylD
CallerlD CallerlD
A. References
A.1 Normative references
[ECMA-262]
ECMAScript Langu ification. URL: https://tc39.github.io/ecma262/

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft. URLs:
HTML: fido-gl ry-v1.1-id-20170202.pdf

[FIDOMetadataStatement]
B. Hill, D. Baghdasaryan, J. Kemp, FIDO Metadata Statements v1.0. FIDO Alliance Implementation Draft. URLs:
HTML: fido-metadata-statements.pdf

[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values FIDO Alliance Implementation Draft. URLs:
HTML: fido-registry-v1.1-id-20170202.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:https:/tools.ietf.org/html/rfc2119
[RFC4648]

S. Josefsson, The Base16, B 2, and B 4 Data Encodings (RFC 4648), IETF, October 2006, URL:http://www.ietf.org/rfc/rfc4648.txt
[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp, R. Lindemann, R. Sasson, B. Hill, FIDO UAF Authenticator Commands v1.0. FIDO Alliance Implementation Draft.
URLs:
HTML.: fido-uaf-authnr-cmds-v1.1-id-20170202.
[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany, D. Balfanz, B. Hill, J. Hodges, FIDO UAF Protocol Specification v1.0. FIDO Alliance Proposed
Standard. URLs:
HTML: fido-uaf-protocol-v1.1-id-20170202.
[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values FIDO Alliance Proposed Standard. URLs:
HTML.: fido-uaf-reg-v1.1-id-20170202.pdf
[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://h m.github.io/w

A.2 Informative references

[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL:https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf
[FIDOSecRef]

R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Security Reference. FIDO Alliance Implementation Draft. URLs:
HTML: fido-security-ref-v1.1-id-20170202.pdf
[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL:https://tools.ietf.org/html/rfc2397
[UAFAppAPIAndTransport]
B. Hill, D. Baghdasaryan B Blanke, FIDO UAF Appl/cat/on APl and Transport Binding Specification FIDO Alliance Implementation Draft. URLs:
: uaf f

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:https://h m.qgithub.io/w

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-authnr-cmds-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
PDF: <a href=
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
PDF: <a href=
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-client-api-transport-v1.1-ps-20170202.html
PDF: <a href=
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

fco

ALLIANCE

FIDO UAF Authenticator Commands
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-authnr-cmds-v1.1-ps-20170202.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-authnr-cmds-v1.1-id-20170202.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance
Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Roni Sasson, Discretix
Brad Hill, PayPal, Inc.

Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative franslations may also be available.

Copyright © 2013-2017 EIDO Alliance All Rights Reserved.

Abstract

UAF Authenticators may take different forms. Implementations may range from a secure application running inside tamper-
resistant hardware to software-only solutions on consumer devices.

This document defines normative aspects of UAF Authenticators and offers security and implementation guidelines for
authenticator implementors.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO
Alliance specifications index at https.://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this
document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such third
party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable
document and may be used as reference material or cited from another document. FIDO Alliance's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Conformance

« 2. Overview
« 3. UAF Authenticator

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-authnr-cmds-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-authnr-cmds-v1.1-id-20170202.html
mailto:rlindemann@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

o 3.1 Types of Authenticators
e 4. Tags

o 4.1 Command Tags
o 4.2 Tags used only in Authenticator Commands

o 4.3 Tags used in UAF Protocol
o 4.4 Status Codes

¢ 5. Structures
o 5.1 RawKeyHandle

o 5.2 Structures to be parsed by FIDO Server
= 52.1 TAG_UAFV1_REG_ASSERTION
= 522 TAG_UAFV1_AUTH_ASSERTION

o 5.3 UserVerificationToken
¢ 6. Commands
o 6.1 Getinfo Command
= 6.1.1 Command Description
= 6.1.2 Command Structure
= 6.1.3 Command Response
= 6.1.4 Status Codes
o 6.2 Register Command
= 6.2.1 Command Structure
= 6.2.2 Command Response
= 6.2.3 Status Codes
= 6.2.4 Command Description
o 6.3 Sign Command
= 6.3.1 Command Structure
= 6.3.2 Command Response
= 6.3.3 Status Codes
= 6.3.4 Command Description
o 6.4 Deregister Command
= 6.4.1 Command Structure
= 6.4.2 Command Response
= 6.4.3 Status Codes
= 6.4.4 Command Description
o 6.5 OpenSettings Command
= 6.5.1 Command Structure
= 6.5.2 Command Response
= 6.5.3 Status Codes
« 7.KeylDs and key handles
o 7.1 first-factor Bound Authenticator
o 7.2 2ndF Bound Authenticator
o 7.3 first-factor Roaming Authenticator
o 7.4 2ndF Roaming Authenticator
« 8. Access Control for Commands
¢ 9. Considerations
o 9.1 Algorithms and Key Sizes
o 9.2 Indicating the Authenticator Model

« 10. Relationship to other standards
o 10.1 TEE

o 10.2 Secure Elements
o 10.3TPM

o 10.4 Unreliable Transports
e A. Security Guidelines
« B. Table of Figures
« C. References

o C.1 Normative references
o C.2 Informative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in ", e.g. "UAF-TLV".

In formulas we use "I" to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

Unless otherwise specified all data described in this documentmust be encoded in little-endian format.

All TLV structures can be parsed using a "recursive-descent" parsing approach. In some cases multiple occurrences of a
single tag may be allowed within a structure, in which case all values must be preserved.

All fields in TLV structures are mandatory, unless explicitly mentioned as otherwise.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be
interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document specifies low-level functionality which UAF Authenticators should implement in order to support the UAF
protocol. It has the following goals:

« Define normative aspects of UAF Authenticator implementations
« Define a set of commands implementing UAF functionality that may be implemented by different types of authenticators
« Define varviTrv assertion scheme-specific structures which will be parsed by a FIDO Server

NOTE

The UAF Protocol supports various assertion schemes. Commands and structures defined in this document assume
that an authenticator supports the varviTrv assertion scheme. Authenticators implementing a different assertion
scheme do not have to follow requirements specified in this document.

The overall architecture of the UAF protocol and its various operations is described in [UAFProtocol]. The following simplified
architecture diagram illustrates the interactions and actors this document is concerned with:

UAF
Client

API

ASM

Authnr
Cmds UAF

Authenticator

Fig. 1 UAF Authenticator Commands
3. UAF Authenticator

This section is non-normative.

The UAF Authenticator is an authentication component that meets the UAF protocol requirements as described in
[UAFProtocol]. The main functions to be provided by UAF Authenticators are:

1. [Mandatory] Verifying the user with the verification mechanism built into the authenticator. The verification technology
can vary, from biometric verification to simply verifying physical presence, or no user verification at all (the so-called
Silent Authenticator).

[Mandatory] Performing the cryptographic operations defined in [UAFProtocol]

[Mandatory] Creating data structures that can be parsed by FIDO Server.

[Mandatory] Attesting itself to the FIDO Server if there is a built-in support for attestation
[Optional] Displaying the transaction content to the user using the transaction confirmation display

o r0DN

ASM

FIDO Authenticator

User
Verification

A
N
O
]

B T
= o oo
3
w
o
-

- r Authenticatior
E D'@p’@}" Ke}aE

User

Fig. 2 FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

« A fingerprint sensor built into a mobile device

« PIN authenticator implemented inside a secure element

« A mobile phone acting as an authenticator to a different device
« A USB token with built-in user presence verification

« A voice or face verification technology built into a device

3.1 Types of Authenticators

There are four types of authenticators defined in this document. These definitions are not normative (unless otherwise stated)
and are provided merely for simplifying some of the descriptions.

NOTE

The following is the rationale for considering only these 4 types of authenticators:

« Bound authenticators are typically embedded into a user's computing device and thus can utilize the host's
storage for their needs. It makes more sense from an economic perspective to utilize the host's storage rather
than have embedded storage. Trusted Execution Environments (TEE), Secure Elements and Trusted Platform
Modules (TPM) are typically designed in this manner.

« First-factor roaming authenticators must have an internal storage for key handles.

« Second-factor roaming authenticators can store their key handles on an associated server, in order to avoid the
need for internal storage.

« Defining such constraints makes the specification simpler and clearer for defining the mainstream use-cases.

Vendors, however, are not limited to these constraints. For example a bound authenticator which has internal storage
for storing key handles is possible. Vendors are free to design and implement such authenticators as long as their
design follows the normative requirements described in this document.

« First-factor Bound Authenticator

o These authenticators have an internal matcher. The matcher is able to verify an already enrolled user. If there is
more than one user enrolled - the matcher can also identify a user.

o There is a logical binding between this authenticator and the device it is attached to (the binding is expressed
through a concept called KeyHandleAccessToken). This authenticator cannot be bound with more than one
device.

o These authenticators do not store key handles in their own internal storage. They always return the key handle to
the ASM and the latter stores it in its local database.

o Authenticators of this type may also work as a second factor.
o Examples
= A fingerprint sensor built into a laptop, phone or tablet
= Embedded secure element in a mobile device
= Voice verification built into a device

« Second-factor (2ndF) Bound Authenticator

o This type of authenticator is similar to first-factor bound authenticators, except that it can operate only as the
second-factor in a multi-factor authentication

o Examples
= USB dongle with a built-in capacitive touch device for verifying user presence

= A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

« First Factor (1stF) Roaming Authenticator
o These authenticators are not bound to any device. User can use them with any number of devices.

o Itis assumed that these authenticators have an internal matcher. The matcher is able to verify an already enrolled
user. If there is more than one user enrolled - the matcher can also identify a user.

o Itis assumed that these authenticators are designed to store key handles in their own internal secure storage and
not expose externally.

o These authenticators may also work as a second factor.
o Examples
= A Bluetooth LE based hardware token with built-in fingerprint sensor
= PIN protected USB hardware token
= A first-factor bound authenticator acting as a roaming authenticator for a different device on the user's behalf

« Second-factor Roaming Authenticator
o These authenticators are not bound to any device. A user may use them with any number of devices.

o These authenticators may have an internal matcher. The matcher is able to verify an already enrolled user. If there
is more than one user enrolled then the matcher can also identify a particular specific user.

o Itis assumed that these authenticators do not store key handles in their own internal storage. Instead they push
key handles to the FIDO Server and receive them back during the authentication operation.

o These authenticators can only work as second factors.
o Examples
= USB dongle with a built-in capacitive touch device for verifying user presence

= A "Trustlet" application running on the trusted execution environment of a mobile phone, and leveraging a
secure keyboard to verify user presence

Throughout the document there will be special conditions applying to these types of authenticators.

NORMATIVE

In some deployments, the combination of ASM and a bound authenticator can act as a roaming authenticator (for example
when an ASM with an embedded authenticator on a mobile device acts as a roaming authenticator for another device).
When this happens such an authenticator must follow the requirements applying to bound authenticators within the
boundary of the system the authenticator is bound to, and follow the requirements that apply to roaming authenticators in
any other system it connects to externally.

Conforming authenticators must implement at least one attestation type defined in [UAFRegistry], as well as one
authentication algorithm and one key format listed in [FIDORegistry].

NOTE

As stated above, the bound authenticator does not store key handles and roaming authenticators do store them. In the
example above the ASM would store the key handles of the bound authenticator and hence meets these assumptions.

4. Tags
This section is normative.

In this document UAF Authenticators use "Tag-Length-Value" (TLV) format to communicate with the outside world. All
requests and response data must be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by appending other TLV tags (custom or predefined).
Refer to [UAFRegistry] for information about predefined TLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g. a UINT32[4] will have length 16.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the
limitations of some hardware platforms.

Arrays are implicit. The description of some structures indicates where multiple values are permitted, and in these cases, if
same tag appears more than once, all values are signifanct and should be treated as an array.

For convenience in decoding TLV-formatted messages, all composite tags - those with values that must be parsed by
recursive descent - have the 13th bit (0x1000) set.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire message fif it
cannot process that tag.

Since UAF Authenticators may have extremely constrained processing environments, an ASM must follow a normative
ordering of structures when sending commands.

It is assumed that ASM and Server have sufficient resources to handle parsing tags in any order so structures send from
authenticator may use tags in any order.

4.1 Command Tags

Name Value Description |
TAG_UAFV1_GETINFO_CMD 0x3401 Tag for GetIlnfo command.
TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 | Tag for Getinfo command response.
TAG_UAFV1_REGISTER_CMD 0x3402 | Tag for Register command.
TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 | Tag for Register command response.
TAG_UAFV1_SIGN_CMD 0x3403 | Tag for Sign command.
TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 | Tag for Sign command response.
TAG_UAFV1_DEREGISTER_CMD 0x3404 | Tag for Deregister command.
TAG_UAFV1_DEREGISTER_CMD_RESPONSE 0x3604 | Tag for Deregister command response.
TAG_UAFV1_OPEN_SETTINGS_CMD 0x3406 | Tag for OpenSettings command.
TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE 0x3606 | Tag for OpenSettings command response.

Table 4.1.1: UAF Authenticator Command TLV tags (0x3400 - 0x34FF, 0x3600-0x36FF)

4.2 Tags used only in Authenticator Commands

Name Value Description |
Represents key handle.

TAG_KEYHANDLE 0x2801 | Refer to [FIDOGlossary] for more information about key
handle.

Represents an associated Username and key handle.

This is a composite tag that contains a TAG_USERNAME
and TAG_KEYHANDLE that identify a registration valid oin
TAG_USERNAME_AND_KEYHANDLE 0x3802 | the authenticator.

Refer to [FIDOGlossary] for more information about
username.

Name

Value

Description

Represents a User Verification Token.

TAG_USERVERIFY_TOKEN 0x2803 | Refer to [FIDOGlossary] for more information about user
verification tokens.
A full AppID as a UINT8[] encoding of a UTF-8 string.
TAG_APPID 0x2804 Refer to [FIDOGlossary] for more information about ApplID.
TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 | Represents a key handle Access Token.
TAG_USERNAME 0x2806 | A Username as a UINT8[] encoding of a UTF-8 string.
TAG_ATTESTATION_TYPE 0x2807 | Represents an Attestation Type.
TAG_STATUS_CODE 0x2808 | Represents a Status Code.

TAG_AUTHENTICATOR_METADATA

0x2809 | Represents a more detailed set of authenticator information.

TAG_ASSERTION_SCHEME

0x280A

A UINTS8[] containing the UTF8-encoded Assertion Scheme
as defined in [UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS

If an authenticator contains a PNG-capable transaction
confirmation display that is not implemented by a higher-level

0x280B | layer, this tag is describing this display. See

[FIDOMetadataStatement] for additional information on the
format of this field.

TAG_TC_DISPLAY_CONTENT_TYPE

A UINT8[] containing the UTF-8-encoded transaction display

0x280C | content type as defined in [FIDOMetadataStatement].

("image/png")

TAG_AUTHENTICATOR_INDEX

0x280D | Authenticator Index

TAG_API_VERSION

0x280E | API Version

TAG_AUTHENTICATOR_ASSERTION

The content of this TLV tag is an assertion generated by the

0x280F authenticator. Since authenticators may generate assertions

in different formats - the content format may vary from
authenticator to authenticator.

TAG_TRANSACTION_CONTENT

0x2810 | Represents transaction content sent to the authenticator.

TAG_AUTHENTICATOR_INFO

0x3811

Includes detailed information about authenticator's
capabilities.

TAG_SUPPORTED_EXTENSION_ID

0x2812 | Represents extension ID supported by authenticator.

TAG_TRANSACTIONCONFIRMATION_TOKEN

Represents a token for transaction confirmation. It might be
returned by the authenticator to the ASM and given back to

0x2813 | the authenticator at a later stage. The meaning of it is similar

to TAG_USERVERIFY_TOKEN, except that it is used for the
user's approval of a displayed transaction text.

Table 4.2.1: Non-Command Tags (0x2800 - 0x28FF, 0x3800 - 0x38FF)

4.3 Tags used in UAF Protocol

Name Value Description
TAG_UAFV1_REG_ASSERTION O0x3EO01 | Authenticator response to Register command.
TAG_UAFV1_AUTH_ASSERTION 0x3E02 | Authenticator response to Sign command.

TAG_UAFV1_KRD O0x3E03 | Key Registration Data

TAG_UAFV1_SIGNED_DATA 0x3E04 | Data signed by authenticator with the UAuth.priv key
Each entry contains a single X.509 DER-encoded [TU-X690-
2008] certificate. Multiple occurrences are allowed and form the
attestation certificate chain. Multiple occurrences must be

TAG_ATTESTATION_CERT 0x2E05 ordered. The attestation certificate itself must occur first. Each
subsequent occurrence (if exists) must be the issuing certificate
of the previous occurrence.

TAG_SIGNATURE 0x2E06 | A cryptographic signature

TAG_ATTESTATION_BASIC_FULL 0x3E07 | Full Basic Attestation as defined in [JAFProtocol]

Name Value Description

Elliptic curve based direct anonymous attestation as defined in
TAG_ATTESTATION_ECDAA 0x3EQ9 | [UAFProtocol]. In this case the signature in TAG_SIGNATURE is
a ECDAA signature as specified in [FIDOEcdaaAlgorithm].

TAG_KEYID 0x2EQ09 | Represents a KeyID.

Represents a Final Challenge Hash.

TAG_FINAL_CHALLENGE_HASH 0x2EOA | Refer to [UAFProtocol] for more information about the Final
Challenge.

Represents an authenticator Attestation ID.

TAG_AAID 0x2E0B Refer to [UAFProtocol] for more information about the AAID.

TAG_PUB_KEY 0x2EOC | Represents a Public Key.

TAG_COUNTERS 0x2EOD | Represents a use counters for the authenticator.
Represents assertion information necessary for message

TAG_ASSERTION_INFO 0x2EOE processing.

TAG_AUTHENTICATOR_NONCE 0x2EOF | Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10 | Represents a hash of transaction content.

This is a composite tag indicating that the content is an
extension.

If the tag is Ox3E11 - it's a critical extension and if the recipient
does not understand the contents of this tag, it must abort
processing of the entire message.

This tag has two embedded tags - TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more information about UAF
extensions refer to [UAFProtocol]

Ox3E11,
TAG_EXTENSION OX3E12
NOTE
This tag can be appended to any command and
response.
Using tag Ox3E11 (as opposed to tag 0x3E12) has the
same meaning as the flag fail if unknown in
[UAFProtocol].
Represents extension ID. Content of this tag is a UINT8][]
TAG_EXTENSION_ID 0x2E13 encoding of a UTF-8 string.
TAG_EXTENSION_DATA Ox2E14 Represents extension data. Content of this tag is a UINT8[] byte

array.

Table 4.3.1: Tags used in the UAF Protocol (Ox2E00 - Ox2EFF, Ox3EQ0 - Ox3EFF). Normatively defined in [UAFRegistry]

4.4 Status Codes

Name Value Description
UAF_CMD_STATUS_OK 0x00 | Success.
UAF_CMD_STATUS_ERR_UNKNOWN 0x01 | An unknown error.
UAF_CMD_STATUS_ACCESS_DENIED 0x02 | Access to this operation is denied.

User is not enrolled with the
UAF_CMD_STATUS_USER_NOT_ENROLLED 0x03 | authenticator and the authenticator
cannot automatically trigger enroliment.

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT | 0x04 ggggf‘ggon content cannot be

UAF_CMD_STATUS_USER_CANCELLED 0x05 | User has cancelled the operation.

UAF_CMD_STATUS_CMD_NOT_SUPPORTED 0x06 | Command not supported.

Name

Value

Description

UAF_CMD_STATUS_PARAMS_INVALID

0x08

The parameters for the command
received by the authenticator are
malformed/invalid.

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

0x09

The UAuth key which is relevant for this
command disappeared from the
authenticator and cannot be restored.
On some authenticators this error
occurs when the user verification
reference data set was modified (e.g.
new fingerprint template added).

UAF_CMD_STATUS_TIMEOUT

0x0a

The operation in the authenticator took
longer than expected (due to technical
issues) and it was finally aborted.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

0x0e

The user took too long to follow an
instruction, e.g. didn't swipe the finger
within the accepted time.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES

OxOf

Insufficient resources in the
authenticator to perform the requested
task.

UAF_CMD_STATUS_USER_LOCKOUT

0x10

The operation failed because the user
is locked out and the authenticator
cannot automatically trigger an action
to change that. Typically the user would
have to enter an alternative password
(formally: undergo some other
alternative user verification method) to
re-enable the use of the main user
verification method.

NOTE

Any method the user can use to
(re-) enable the main user
verification method is considered
an alternative user verification
method and must be properly
declared as such. For example, if
the user can enter an alternative
password to re-enable the use of
fingerprints or to add additional
fingers, the authenticator
obviously supports fingerprint or
password based user
verification.

Table 4.4.1: UAF Authenticator Status Codes (0x00 - OxFF)

5. Structures

This section is normative.

5.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the authenticator. Authenticators may define RawKeyHandle in

different ways and the internal structure is relevant only to the specific authenticator implementation.

RawKeyHandle for a typical first-factor bound authenticator has the following structure.

Depends on hashing
algorithm (e.g. 32 bytes)

Depends on key type.
(e.g. 32 bytes)

Username Size
(1 byte)

Max 128 bytes

KHAccessToken

UAuth.priv

Size

Username

Table 5.1: RawKeyHandle Structure

First Factor authenticators must store Usernames in the authenticator and they must link the Username to the related key.
This may be achieved by storing the Username inside the RawKeyHandle. Second Factor authenticators must not store the

Username.

The ability to support Usernames is a key difference between first-, and second-factor authenticators.

The RawKeyHandle must be cryptographically wrapped before leaving the authenticator boundary since it typically contains
sensitive information, e.g. the user authentication private key (UAuth.priv).

5.2 Structures to be parsed by FIDO Server

The structures defined in this section are created by UAF Authenticators and parsed by FIDO Servers.

Authenticators must generate these structures if they implement "UAFV1TLV" assertion scheme.

NOTE

"UAFV1TLV" assertion scheme assumes that the authenticator has exclusive control over all data included inside
TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.

The nesting structure must be preserved, but the order of tags within a composite tag is not normative. FIDO Servers must
be prepared to handle tags appearing in any order.

5.2.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the authenticator during processing of a Register command. It is then delivered
to FIDO Server intact, and parsed by the server. The structure embeds a TAG_UAFV1_KRD tag which among other data
contains the newly generated UAuth.pub.

If the authenticator wants to append custom data to TAG_UAFV1_KRD structure (and thus sign with Attestation Key) - this
data must be included as TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as
TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_REG_ASSERTION and not inside
TAG_UAFV1_KRD.

Currently this document only specifies TAG_ATTESTATION_BASIC_FULL, TAG_ATTESTATION_BASIC_SURROGATE
and TAG_ATTESTATION_ECDAA. In case if the authenticator is required to perform "Some_Other_Attestation" on
TAG_UAFV1_KRD - it must use the TLV tag and content defined for "Some_Other_Attestation" (defined in [UAFRegistry]).

TLV Structure Description \
1 UINT16 Tag TAG_UAFV1_REG_ASSERTION
1.1 UINT16 Length Length of the structure
1.2 UINT16 Tag TAG_UAFV1_KRD
1.21 UINT16 Length Length of the structure
1.2.2 UINT16 Tag TAG_AAID
1.2.2.1 | UINT16 Length Length of AAID
1.2.2.2 | UINT8[] AAID Authenticator Attestation ID
1.2.3 UINT16 Tag TAG_ASSERTION_INFO
1.2.3.1 | UINT16 Length Length of Assertion Information
1.23.2 XLTFEn?icatorVersion Vendor assigned authenticator version
1233 UINT8 For Registration this must be 0x01 indicating that the user has explicitly verified the
AuthenticationMode action.
Signature Algorithm and Encoding of the attestation signature.
1.2.34 gilg’;\lrglsreAlgAndEncoding Refer to [FIDORegistry] for information on supported algorithms and their values.
1235 UINT16 . Public Key algorithm and encoding of the newly generateduauth.pub key.
PublickeyAlgAndEncoding Refer to [FIDORegistry] for information on supported algorithms and their values.
1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.2.4.1 | UINT16 Length Final Challenge Hash length
1.2.4.2 Eilr':;-:_gﬂa”engeHaSh (binary value of) Final Challenge Hash provided in the Command
1.2.5 UINT16 Tag TAG_KEYID

TLV Structure Description

1.2.5.2 | UINT8[] KeyID (binary value of) KeylD generated by Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 | UINT16 Length Length of Counters
Signature Counter.

1.2.6.2 | UINT32 SignCounter Indicates how many times this authenticator has performed signatures in the past.
Registration Counter.

1.2.6.3 | UINT32 RegCounter Indicates how many times this authenticator has performed registrations in the
past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 | UINT16 Length Length of UAuth.pub

1.2.7.2 | UINT8[] PublicKey User authentication public key (UAuth.pub) newly generated by authenticator

1.3

(choice | UINT16 Tag TAG_ATTESTATION_BASIC_FULL

1)

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 | UINT16 Length Length of signature
Signature calculated with Basic Attestation Private Key over TAG_UAFV1_KRD
content.

1.3.2.2 | UINT8[] Signature The entire TAG_UAFV1_KRD content, including the tag and it's length field, must
be included during signature computation.
TAG_ATTESTATION_CERT (multiple occurrences possible)
Multiple occurrences must be ordered. The attestation certificate must occur first.

133 UINT16 Ta Each subsequent occurrence (if exists) must be the issuing certificate of the

= 9 previous occurrence. The last occurence must be chained to one of the certificates

included in field attestationrootcertificate in the related Metadata Statement
[FIDOMetadataStatement].

1.3.3.1 | UINT16 Length Length of Attestation Cert

o Single X.509 DER-encoded ITU-X690-2008] Attestation Certificate or a single

1.3.3.2 | UINTS[] Certificate certificate from the attestation certificate chain (see description above).

1.3

(choice | UINT16 Tag TAG_ATTESTATION_BASIC_SURROGATE

2)

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 | UINT16 Length Length of signature
Signature calculated with newly generated UAuth.priv key over TAG_UAFV1_KRD
content.

1.3.2.2 | UINTB8[] Signature The entire TAG_UAFV1_KRD content, including the tag and it's length field, must
be included during signature computation.

1.3

(choice | UINT16 Tag TAG_ATTESTATION_ECDAA

3)

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 | UINT16 Length Length of signature

TLV Structure Description

5.2.2 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an authenticator during processing of a Sign command. It is then delivered to
FIDO Server intact and parsed by the server. The structure embeds a TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom data to TAG_UAFV1_SIGNED_DATA structure (and thus sign with Attestation
Key) - this data must be included as an additional tag inside TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to FIDO Server without signing it - this data must be included as an
additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside TAG_UAFV1_SIGNED_DATA.

TLV Structure Description |
1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION
1.1 UINT16 Length Length of the structure.
1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA
1.2.1 UINT16 Length Length of the structure.
1.2.2 | UINT16 Tag TAG_AAID
1.2.2.1 | UINT16 Length Length of AAID
1.2.2.2 | UINT8[] AAID Authenticator Attestation ID
1.2.3 | UINT16 Tag TAG_ASSERTION_INFO
1.2.3.1 | UINT16 Length Length of Assertion Information
1.2.3.2 XLTrEn?icatorVersion Vendor assigned authenticator version.
Authentication Mode indicating whether user explicitly verified or not and indicating if
there is a transaction content or not.
1233 XL’;‘PLSnticationMode « 0x01 means that user haer. been explicitly verified .
« 0x02 means that transaction content has been shown on the display and user
confirmed it by explicitly verifying with authenticator
Signature algorithm and encoding format.
1234 LSJilt;;\ln-l:—;tSreAIgAndEncoding Refer to [FIDORegistry] for information on supported algorithms and their values.
1.24 | UINT16 Tag TAG_AUTHENTICATOR_NONCE
1.2.4.1 | UINT16 Length Length of authenticator Nonce -must be at least 8 bytes
1.2.4.2 | UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by Authenticator
1.25 | UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.2.5.1 | UINT16 Length Length of Final Challenge Hash
1.25.2 Eilrﬂ\laTSHallengeHash (binary value of) Final Challenge Hash provided in the Command
1.26 | UINT16 Tag TAG_TRANSACTION_CONTENT_HASH
1:26.1 | UINT16 Length o, Suthentication. ot ransaction confirmation. | oo oo onode == 001,
1.2.6.2 | UINT8[] TCHash (binary value of) Transaction Content Hash
1.2.7 | UINT16 Tag TAG_KEYID
1.2.7.1 | UINT16 Length Length of KeyID
1.2.7.2 | UINT8[] KeyID (binary value of) KeyID
1.2.8 | UINT16 Tag TAG_COUNTERS
1.2.8.1 | UINT16 Length Length of Counters
Signature Counter.
1.2.8.2 | UINT32 SignCounter Indicates how many times this authenticator has performed signatures in the past.

TLV Structure Description

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Length Length of Signature

Signature calculated using UAuth.priv over TAG_UAFV1_SIGNED_DATA structure.

1.3.2 UINTS8][] Signature The entire TAG_UAFV1_SIGNED_DATA content, including the tag and it's length
field, must be included during signature computation.

5.3 UserVerificationToken

This specification doesn't specify how exactly user verification must be performed inside the authenticator. Verification is
considered to be an authenticator, and vendor, specific operation.

This document provides an example on how the "vendor_specific_UserVerify" command (a command which verifies the user
using Authenticator's built-in technology) could be securely bound to UAF Register and Sign commands. This binding is done
through a concept called userverificationToken. Such a binding allows decoupling "vendor_specific_UserVerify" and "UAF
Register/Sign" commands from each other.

Here is how it is defined:

« The ASM invokes the "vendor_specific_UserVerify" command. The authenticator verifies the user and returns a
UserVerificationToken back.

« The ASM invokes UAF.Register/Sign command and passes userverificationToken 10 it. The authenticator verifies the
validity of userverificationToken and performs the FIDO operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement this binding in a very

different way. For example an authenticator vendor may decide to append a UAF Register request directly to their
"vendor_specific_UserVerify" command and process both as a single command.

If userverificationToken binding is implemented, it should either meet one of the following criteria or implement a mechanism
providing similar, or better security:

e UserVerificationToken must allow performing only a single UAF Register or UAF Sign operation.
e UserVerificationToken Must be time bound, and allow performing multiple UAF operations within the specified time.

6. Commands
This section is non-normative.

NORMATIVE

UAF Authenticators which are designed to be interoperable with ASMs from different vendors must implement the
command interface defined in this section. Examples of such authenticators:

» Bound Authenticators in which the core authenticator functionality is developed by one vendor, and the ASM is
developed by another vendor

« Roaming Authenticators

NORMATIVE

UAF Authenticators which are tightly integrated with a custom ASM (typically bound authenticators) may implement a
different command interface.

All UAF Authenticator commands and responses are semantically similar - they are all represented as TLV-encoded blobs.
The first 2 bytes of each command is the command code. After receiving a command, the authenticator must parse the first
TLV tag and figure out which command is being issued.

6.1 Getinfo Command
6.1.1 Command Description

This command returns information about the connected authenticators. It may return 0 or more authenticators. Each
authenticator has an assigned authenticatorindex Which is used in other commands as an authenticator reference.

6.1.2 Command Structure

TLV Structure Description |
1 UINT16 Tag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length - must be 0 for this command

TLV Structure Description |
6.1.3 Command Response
TLV Structure Description |
1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE
1.1 UINT16 Length Response length
1.2 UINT16 Tag TAG_STATUS_CODE
1.21 UINT16 Length Status Code Length
1.2.2 UINT16 Value Status Code returned by Authenticator
1.3 UINT16 Tag TAG_API_VERSION
1.3.1 UINT16 Length Length of API Version (must be 0x0001)
Authenticator API Version (must be 0x01). This version indicates the types of
1.3.2 UINT8 Version commands, and formatting associated with them, that are supported by the
authenticator.
14 UINT16 Tag TAG_AUTHENTICATOR_INFO (multiple occurrences possible)
1.41 UINT16 Length Length of Authenticator Info
1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.4.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
1.4.2.2 | UINT8 Authenticatorindex Authenticator Index
1.4.3 UINT16 Tag TAG_AAID
1.4.3.1 | UINT16 Length Length of AAID
1.4.3.2 | UINT8[] AAID Vendor assigned AAID
1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA
1.4.4.1 | UINT16 Length Length of Authenticator Metadata
Indicates whether the authenticator is bound or roaming, and whether it is first-,
or second-factor only. The ASM must use this information to understand how to
work with the authenticator.
Predefined values:
« 0x0001 - Indicates second-factor authenticator (first-factor when the flag
is not set)
« 0x0002 - Indicates roaming authenticator (bound authenticator when the
flag is not set)
« 0x0004 - Key handles will be stored inside authenticator and won't be
returned to ASM
« 0x0008 - Authenticator has a built-in Ul for enroliment and verification.
ASM should not show its custom Ul
1.4.4.2 | UINT16 AuthenticatorType e 0x0010 - Authenticator has a built-in Ul for settings, and supports
OpenSettings command.
« 0x0020 - Authenticator expects TAG_APPID to be passed as an
argument to commands where it is defined as an optional argument
« 0x0040 - At least one user is enrolled in the authenticator. Authenticators
which don't support the concept of user enroliment (e.g.
USER_VERIFY_NONE, USER_VERIFY_PRESENCE) must always have
this bit set.
« 0x0080 - Authenticator supports user verification tokens (UVTs) as
described in this document. See section 5.3 UserVerificationToken.
« 0x0100 - Authenticator only accepts TAG_TRANSACTION_TEXT_HASH
in Sign command. This flag may ONLY be set if
TransactionConfirmationDisplay is set to 0x0003 (see section 6.3 Sign
Command).
Indicates maximum number of key handles this authenticator can receive and
1.4.4.3 | UINT8 MaxKeyHandles process in a single command. This information will be used by the ASM when
invoking SIGN command with multiple key handles.
1.4.4.4 | UINT32 UserVerification User Verification method (as defined in [FIDORegistry])
1.4.4.5 | UINT16 KeyProtection Key Protection type (as defined in FIDORegistry]).

: TLV Structure

Transaction Confirmation type (as defined in FIDORegistry]).
1.4.4.7 | YINT16 o NOTE
TransactionConfirmationDisplay If Authenticator doesn't support Transaction Confirmation - this value
must be set to 0.
1.4.4.8 | UINT16 AuthenticationAlg Authentication Algorithm (as defined in FIDORegistry]).
1.45 | UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)
1.4.5.1 | UINT16 Length Length of content type.
1.4.5.2 | UINT8[] ContentType F%]Sﬁgt%%gggﬁggﬁlgﬂtﬂgf R ironal nforemationon the format of this field.
146 UINT16 Tag gér%_i;{gj_)DISPLAY_PNG_CHARACTERISTICS (optional,multiple occurrences
1.4.6.1 | UINT16 Length Length of display characteristics information.
1.4.6.2 | UINT32 Width See [FIDOMetadataStatement] for additional information.
1.4.6.3 | UINT32 Height See [FIDOMetadataStatement] for additional information.
1.4.6.4 | UINT8 BitDepth See [FIDOMetadataStatement] for additional information.
1.4.6.5 | UINT8 ColorType See [FIDOMetadataStatement] for additional information.
1.4.6.6 | UINT8 Compression See [FIDOMetadataStatement] for additional information.
1.4.6.7 | UINTS8 Filter See [FIDOMetadataStatement] for additional information.
1.4.6.8 | UINT8 Interlace See [FIDOMetadataStatement] for additional information.
1.4.6.9 | UINTS8[] PLTE See [FIDOMetadataStatement] for additional information.
1.4.7 | UINT16 Tag TAG_ASSERTION_SCHEME
1.4.7.1 | UINT16 Length Length of Assertion Scheme
1.4.7.2 | UINT8[] AssertionScheme Assertion Scheme (as defined in [UAFRegistry])
1.4.8 | UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)
1.4.8.1 | UINT16 Length Length of AttestationType
1.4.8.2 | UINT16 AttestationType é:ﬁ&a&zg‘?;ggff\glluois' are defined in [UAFRegistry] by the constants with the
1.4.9 UINT16 Tag TAG_SUPPORTED_EXTENSION_ID (optional, multiple occurrences possible)
1.4.9.1 | UINT16 Length Length of SupportedExtension|D
1.4.9.2 | UINT8[] SupportedExtensionID | SupportedExtensionID as a UINT8J[] encoding of a UTF-8 string

6.1.4 Status Codes

e UAF CMD STATUS OK

e UAF CMD STATUS ERR UNKNOWN

e UAF_CMD_STATUS_ PARAMS INVALID

6.2 Register Command

This command generates a UAF registration assertion. This assertion can be used to register the authenticator with a FIDO

Server.

6.2.1 Command Structure

TLV Structure
UINT16 Tag

Description |
TAG_UAFV1_REGISTER_CMD

1.1

UINT16 Length

Command Length

1.2.1 UINT16 Length Length of Authenticatorindex (must be 0x0001)
1.2.2 UINT8 Authenticatorindex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINTS[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

141 UINT16 Length Final Challenge Hash Length

1.4.2 UINT8[] FinalChallengeHash Final Challenge Hash provided by ASM (max 32 bytes)
1.5 UINT16 Tag TAG_USERNAME

1.5.1 UINT16 Length Length of Username

15.2 UINT8[] Username Username provided by ASM (max 128 bytes)

1.6 UINT16 Tag TAG_ATTESTATION_TYPE

1.6.1 UINT16 Length Length of AttestationType

1.6.2 UINT16 AttestationType Attestation Type to be used

1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.7.1 UINT16 Length Length of KHAccessToken

1.7.2 UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)
1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.8.1 UINT16 Length Length of VerificationToken

1.8.2 UINT8[] VerificationToken User verification token

6.2.2 Command Response

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_REGISTER_CMD_RESPONSE
1.1 UINT16 Length Command Length
1.2 UINT16 Tag TAG_STATUS_CODE
1.2.1 UINT16 Length Status Code Length
1.2.2 UINT16 Value Status code returned by Authenticator
1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION
1.3.1 UINT16 Length Length of Assertion
1.3.2 UINT8][] Assertion Registration Assertion (see section TAG_UAFV1 REG ASSERTION).
1.4 UINT16 Tag TAG_KEYHANDLE (optional)
1.41 UINT16 Length Length of key handle
142 UINTSJ] Value (binary value of) key handle

6.2.3 Status Codes

e UAF_CMD_STATUS_OK
e UAF_CMD_STATUS_ERR_UNKNOWN

e UAF_CMD_STATUS_ ACCESS DENIED

e UAF_CMD_STATUS_USER NOT ENROLLED

e UAF_CMD_STATUS USER CANCELLED

e UAF_CMD_STATUS ATTESTATION NOT SUPPORTED
e UAF_CMD_STATUS_PARAMS_ INVALID

e UAF_CMD_STATUS_TIMEOUT

e UAF CMD STATUS USER NOT RESPONSIVE

e UAF CMD STATUS INSUFFICIENT RESOURCES

e UAF_CMD_STATUS_USER LOCKOUT

6.2.4 Command Description

The authenticator must perform the following steps (see below table for command structure):

If the command structure is invalid (e.g. cannot be parsed correctly), return var_cup STATUS PARAMS INVALID.

1.

11.

If this authenticator has a transaction confirmation display and is able to display ApplID, then make sure
command.TAG_APPID iS provided, and show its content on the display when verifying the user. Return
UAF_CMD STATUS PARAMS INVALID if command.TAG appID iS not provided in such case. Update command. kHAccessToken With
TAG_APPID.
o Update Command.KHAccessToken by mixing it with Command. TAG_APPID. An example of such mixing function
is a cryptographic hash function.

NOTE

This method allows us to avoid storing the ApplD separately in the RawKeyHandle.

= For example: Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

If the user is already enrolled with this authenticator (via biometric enroliment, PIN setup or similar mechanism) - verify
the user. If the verification has been already done in a previous command - make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger
unblocking, return uar_cMp STATUS USER LOCKOUT.

1. If the user doesn't respond to the request to get verified - return var cup STATUS USER NOT RESPONSIVE
2. If verification fails - return var _cup STATUS ACCESS DENIED
3. If user explicitly cancels the operation - return uar_cMp STATUS USER CANCELLED
If the user is not enrolled with the authenticator then take the user through the enroliment process. If the enroliment

process cannot be triggered by the authenticator, return uar_cup sTaTtus USER NOT ENROLLED.

1. If the authenticator can trigger enroliment, but the user doesn't respond to the request to enroll - return
UAF_CMD_STATUS_USER_NOT RESPONSIVE

2. If the authenticator can trigger enroliment, but enroliment fails - return var cup sTATUS ACCESS DENTED
3. If the authenticator can trigger enrollment, but the user explicitly cancels the enrollment operation - return
UAF_CMD_STATUS_USER_CANCELLED
Make sure that Command. TAG_ATTESTATION_TYPE is supported. If not - return
UAF_CMD_STATUS_ATTESTATION_NOT_ SUPPORTED

Generate a new key pair (UAuth.pub/UAuth.priv) If the process takes longer than accepted - return
UAF_CMD_STATUS_TIMEOUT

Create a RawKeyHandle, for example as follows
1. Add UAuth.priv to RawKeyHandle
2. Add Command.KHAccessToken to RawKeyHandle
3. If a first-factor authenticator, then add Command.Username to RawKeyHandle

If there are not enough resources in the authenticator to perform this task - return
UAF_CMD_STATUS_ INSUFFICIENT_ RESOURCES.

Wrap RawKeyHandle with Wrap.sym key

Create TAG_UAFV1_KRD structure

1. If this is a second-factor roaming authenticator - place key handle inside TAG_KEYID. Otherwise generate a
random KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section TAG_UAFV1 REG ASSERTION)
Perform attestation on TAG_UAFV1_KRD based on provided Command.AttestationType.

. Create TAG_AUTHENTICATOR_ASSERTION

1. Create TAG_UAFV1_REG_ASSERTION
1. Copy all the mandatory fields (see section TAG _UAFV1 REG ASSERTION)
2. If this is a first-factor roaming authenticator - add KeyID and key handle into internal storage
3. If this is a bound authenticator - return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

Return TAG_UAFV1_REGISTER_CMD_RESPONSE
1. Use uar cup staTus ok as status code
2. Add TAG_AUTHENTICATOR_ASSERTION
3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

I NORMATIVE

The authenticator must not process a register command without verifying the user (or enrolling the user, if this is the first
time the user has used the authenticator).

The authenticator must generate a unique UAuth key pair each time the Register command is called.

The authenticator should either store key handle in its internal secure storage or cryptographically wrap it and export it to
the ASM.

For silent authenticators, the key handle must never be stored on a FIDO Server, otherwise this would enable tracking of
users without providing the ability for users to clear key handles from the local device.

If KeylID is not the key handle itself (e.g. such as in case of a second-factor roaming authenticator) - it must be a unique
and unguessable byte array with a maximum length of 32 bytes. It must be unique within the scope of the AAID.

NOTE

If the KeylID is generated randomly (instead of, for example, being derived from a key handle) - it should be stored
inside RawKeyHandle so that it can be accessed by the authenticator while processing the Sign command.

If the authenticator doesn't supportsigncounter Or Regcounter it must set these to 0 in TAG_UAFV1_KRD. The
rRegCounter must be set to 0 when a factory reset for the authenticator is performed. The signcounter must be set to 0
when a factory reset for the authenticator is performed.

6.3S

ign Command

This command generates a UAF assertion. This assertion can be further verified by a FIDO Server which has a prior

registration with this authenticator.

6.3.1 Command Structure

TLV Structure Description
1 UINT16 Tag TAG_UAFV1_SIGN_CMD
1.1 UINT16 Length Length of Command
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
UINT8 .
1.2.2 Authenticatorindex Authenticator Index
1.3 UINT16 Tag TAG_APPID (optional)
1.3.1 | UINT16 Length Length of AppID
1.3.2 | UINT8J[] AppID AppID (max 512 bytes)
1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.4.1 | UINT16 Length Length of Final Challenge Hash
14.2 UINT8I] (binary value of) Final Challenge Hash provided by ASM (max 32 bytes)
"< | FinalChallengeHash y 9 P y y
1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)
1.5.1 | UINT16 Length Length of Transaction Content
1.5.2 UINTS[] (binary value of) Transaction Content provided by the ASM
~+% | TransactionContent y P y
TAG_TRANSACTION_CONTENT_HASH (optional and mutually exclusive with
TAG_TRANSACTION_CONTENT). This TAG is only allowed for authenticators not able
1.5 UINT16 Tag to display the transaction text, i.e. authenticator with tcpisplay=0x0003 (i.e. flags
TRANSACTION_CONFIRMATION_DISPLAY_ ANY and
TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE are set).
1.5.1 | UINT16 Length Length of Transaction Content Hash
1.5.2 | YINT8I (binary value of) Transaction Content Hash provided by the ASM
~+< | TransactionContentHash y P Y
1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN
1.6.1 | UINT16 Length Length of KHAccessToken

TLV Structure Description

ESS TORE

1.7 UINT16 g TAG_USERVERIFY_TOKEN (optional)

1.7.1 | UINT16 Length Length of the User Verification Token

1.7.2 \Lljtlal;li;li—ggtionToken User Verification Token

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)
1.8.1 | UINT16 Length Length of KeyHandle

1.8.2 | UINT8[] KeyHandle (binary value of) key handle

6.3.2 Command Response

TLV

Structure Description ‘
1 lTJ;gﬁG TAG_UAFV1_SIGN_CMD_RESPONSE
1.1 Eg:gtLG Entire Length of Command Response
1.2 %’;’;” 6 | TAG_STATUS_CODE
1.2.1 Eé’r\]l;—t},? Status Code Length
1.2.2 32}52 6 Status code returned by authenticator
TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)
1.3 UINT16 This TLV tag can be used to convey multiple (>=1) {Username, Keyhandle} entries. Each
choice occurance of TAG_USERNAME_AND_KEYHANDLE contains one pair.
1) Tag
If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present
1.3.1 Ee”r\gth Length of the structure
1.3.2 %r;n 6 | TAG_USERNAME
1.3.2.1 Eéﬂ;—tl]s Length of Username
1.3.2.2 H!s'\é-rrr?ag]me Username
1.3.3 %’;‘“ 6 | TAG_KEYHANDLE
1.83.31 Eé':;—tLG Length of KeyHandle
1.3.3.2 &(Ia’;l/-ll-—lsa[r]ldle (binary value of) key handle
13 TAG_AUTHENTICATOR_ASSERTION (optional)
. UINT16
(2‘;h°'°e Tag If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present
1.3.1 Eéﬂ;—tLS Assertion Length
1302 UINTS][] Authentication assertion generated by the authenticator (see section
"~ Assertion | TAG UAFV1 AUTH ASSERTION).

6.3.3 Status Codes

e UAF_CMD_STATUS_OK
e UAF_CMD_STATUS_ERR_UNKNOWN
e UAF_CMD_STATUS_ACCESS DENIED

e UAF_CMD_STATUS USER NOT ENROLLED

e UAF_CMD_STATUS_USER_CANCELLED

e UAF_CMD STATUS_ CANNOT RENDER_TRANSACTION_ CONTENT

e UAF_CMD_STATUS_PARAMS_ INVALID

e UAF_CMD_STATUS_KEY_ DISAPPEARED PERMANENTLY

e UAF CMD STATUS TIMEOUT

e UAF_CMD_STATUS_USER_NOT_RESPONSIVE

e UAF CMD STATUS USER LOCKOUT

6.3.4 Command Description

NOTE
First-factor authenticators should implement this command in two stages.

1. The first stage will be executed only if the authenticator finds out that there are multiple key handles after filtering
with the KHAccessToken. In this stage, the authenticator must return a list of usernames along with
corresponding key handles

2. In the second stage, after the user selects a username, this command will be called with a single key handle and
will return a UAF assertion based on this key handle

If a second-factor authenticator is presented with more than one valid key handles, it must exercise only the first one
and ignore the rest.

The command is implemented in two stages to ensure that only one assertion can be generated for each command
invocation.

Authenticators must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return var cup STATUS PARAMS INVALID.

1.

If this authenticator has a transaction confirmation display, and is able to display the AppID - make sure
Command.TAG_APPID is provided, and show it on the display when verifying the user. Return
UAF_CMD_ STATUS PARAMS INVALID if command.TAG aPPID iS not provided in such case.
o Update Command.KHAccessToken by mixing it with Command. TAG_APPID. An example of such a mixing
function is a cryptographic hash function.

= Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

If the verification has already been done in one of the previous commands, make sure that
Command.TAG USERVERIFY TOKEN iS a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger

unblocking, return uar_cuMp STATUS USER LOCKOUT.

1. If the user doesn't respond to the request to get verified - return var cMp STATUS USER NOT RESPONSIVE
2. If verification fails - return var _cup STATUS ACCESS DENTIED
3. If the user explicitly cancels the operation - return var_cvp STATUS USER_CANCELLED

If the user is not enrolled then return vaF cMp STATUS USER NOT ENROLLED

NOTE

This should not occur as the Uauth key must be protected by the authenticator's user verification method. If the
authenticator supports alternative user verification methods (e.g. alternative password and finger print verification
and the alternative password must be provided before enrolling a finger and only the finger print is verified as part
of the Register or Sign operation, then the authenticator should automatically and implicitly ask the user to enroll
the modality required in the operation (instead of just returning an error).

Unwrap all provided key handles from Command.TAG_KEYHANDLE values using Wrap.sym
1. If this is a first-factor roaming authenticator:

= If Command.TAG_KEYHANDLE are provided, then the items in this list are KeyIDs. Use these KeyIDs to
locate key handles stored in internal storage

= If no Command.TAG_KEYHANDLE are provided - unwrap all key handles stored in internal storage
If no RawKeyHandles are found - returnuar cup STATUS KEY DISAPPEARED PERMANENTLY.

Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken ==
Command.KHAccessToken)

If the number of remaining RawKeyHandles is 0, then fail with var cup sTaTUS AcCCESs DENIED
If number of remaining RawKeyHandles is > 1

1. If this authenticator has a user interface and wants to use it for this purpose: Ask the user which of the usernames

If the user is already enrolled with the authenticator (such as biometric enrollment, PIN setup, etc.) then verify the user.

he wants to use for this operation. Select the related RawKeyHandle and jump to step #8.
2. If this is a second-factor authenticator, then choose the first RawKeyHandle only and jump to step #8.

3. Copy {Command.KeyHandle, RawKeyHandle.username} for all remaining RawKeyHandles into
TAG_USERNAME_AND_KEYHANDLE tag.

= If this is a first-factor roaming authenticator, then the returned TAG_USERNAME_AND_KEYHANDLEs must
be ordered by the key handle registration date (the latest-registered key handle must come the latest).

NOTE

If two or more key handles with the same username are found, a first-factor roaming authenticator
may only keep the one that is registered most recently and delete the rest. This avoids having
unusable (old) private key in the authenticator which (surprisingly) might become active after
deregistering the newly generated one.

4. Copy TAG_USERNAME_AND_KEYHANDLE into TAG_UAFV1_SIGN_CMD_RESPONSE and return

8. If number of remaining RawKeyHandles is 1

1. If the Uauth key related to the RawKeyHandle cannot be used or disappeared and cannot be restored - return
UAF_CMD_STATUS_KEY DISAPPEARED PERMANENTLY.

2. Create TAG_UAFV1_SIGNED_DATA and set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01

3. If Transactioncontent is not empty
= If this is a silent authenticator, then return uar cup sTATUS ACCESS DENTIED

= [f the authenticator doesn't support transaction confirmation (it has set Transactionconfirmationbisplay t0 O
in the response to a cetnfo Command), then return uar cMp STATUS ACCESS DENTED

= [f the authenticator has a built-in transaction confirmation display, then show command.TransactionContent
and command.TAG_2APPID (Optional) on display and wait for the user to confirm it:

= Return uar cup sTaTus user noT REsponsIVE if the user doesn't respond.
= Return uar cvp status user cancernLeD if the user cancels the transaction.
= Return uar cMp STATUS CANNOT RENDER TRANSACTION conTENT if the provided transaction content cannot
be rendered.
= Compute hash of TransactionContent

. = TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)

= Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

4. If TransactionContent is Not set, but Transactioncontenttash is not empty
= If this is a silent authenticator, then return uar cup sTATUS ACCESS DENTED

= [f the conditions for receiving TransactionContentHash are not satisfied, i.e. if the authenticator's
TransactionConfirmationDisplay iS NOT set to 0x0003 in the response to a cetinfo Command), then return
UAF_CMD_STATUS_PARAMS_INVALID

. = TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
Command.TransactionContentHash

=« Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

5. Create TAG_UAFV1_AUTH_ASSERTION
= Fillin the rest of TAG_UAFV1_SIGNED_DATA fields
. = Increment SignCounter and put into TAG_UAFV1_SIGNED_DATA
= Copy all the mandatory fields (see section TAG_UAFV1 AUTH ASSERTION)

» [f TAG_UAFV1_SIGNED_DATA. AuthenticationMode == 0x01 - set
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Length to 0

= Sign TAG_UAFV1_SIGNED_DATA with UAuth.priv
If these steps take longer than expected by the authenticator - return uar_cup_staTus TiMEOUT.

6. Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

7. Copy TAG_AUTHENTICATOR_ASSERTION into TAG_UAFV1_SIGN_CMD_RESPONSE and return

NORMATIVE

Authenticator must not process Sign command without verifying the user first.

Authenticator must not reveal Username without verifying the user first.

Bound authenticators must not process Sign command without validating KHAccessToken first.

UAuth.priv keys must never leave Authenticator's security boundary in plaintext form. UAuth.priv protection boundary is
specified in Metadata.keyProtection field in Metadata [FIDOMetadataStatement]).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display - it must display provided
transaction content in this display and include the hash of content inside TAG_UAFV1_SIGNED_DATA structure.

Silent Authenticators must not operate in first-factor mode in order to follow the assumptions made in [FIDOSecRef].

If Authenticator doesn't support signcounter, then itmust set it to 0 in TAG_UAFV1_SIGNED_DATA. The signcounter
must be set to 0 when a factory reset for the Authenticator is performed, in order to follow the assumptions made in
[FIDOSecRef].

Some Authenticators might support Transaction Confirmation display functionality not inside the Authenticator but within
the boundaries of ASM. Typically these are software based Transaction Confirmation displays. When processing the Sign
command with a given transaction such Authenticators should assume that they do have a builtin Transaction
Confirmation display and should include the hash of transaction content in the final assertion without displaying anything
to the user. Also, such Authenticator's Metadata file must clearly indicate the type of Transaction Confirmation display.
Typically the flag of Transaction Confirmation display will be TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE. See [FIDORegistry] for flags describing
Transaction Confirmation Display type.

6.4 Deregister Command
This command deletes a registered UAF credential from Authenticator.

6.4.1 Command Structure

TLV Structure Description |
1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD
1.1 UINT16 Length Entire Command Length
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)

1.2.2 | UINT8 Authenticatorindex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 | UINT16 Length Length of AppID

1.3.2 | UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 | UINT16 Length Length of KeyID

1.4.2 | UINT8[] KeylD (binary value of) KeyID provided by ASM
1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN
1.5.1 | UINT16 Length Length of KeyHandle Access Token

1.5.2 | UINT8[] KHAccessToken (binary value of) KeyHandle Access Token provided by ASM (max 32 bytes)

6.4.2 Command Response

TLV Structure Description |
1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response
1.2 UINT16 Tag TAG_STATUS_CODE
1.2.1 UINT16 Length Status Code Length
1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.4.3 Status Codes

e UAF_CMD_STATUS_OK

e UAF_CMD_STATUS_ ERR_UNKNOWN

e UAF_CMD_STATUS ACCESS DENIED

e UAF_CMD_STATUS_CMD NOT SUPPORTED
e UAF_CMD_STATUS PARAMS INVALID

6.4.4 Command Description

Authenticator must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return var cup STATUS PARAMS INVALID.

1. If this authenticator has a Transaction Confirmation display and is able to display AppID, then make sure
Command.TAG_APPID is provided. Return uar cup STATUS PARAMS INVALID if Command.TAG APPID iS not provided in
such case.

o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing function
is a cryptographic hash function.

= Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If this Authenticator doesn't store key handles internally, then return var cMp_STATUS CMD_NOT SUPPORTED
3. If the length of Tac_xevip is zero (i.e., 0000 Hex), then
o if tac_app1D is provided, then
= for each KeyHandle that maps torac_arr1p do

1. if RawKeyHandle.KHAccessToken == Command.KHAccessToken, then delete KeyHandle from
internal storage, otherwise, note an error occured

= if an error occured, then return UAF_CMD_STATUS_ACCESS_DENIED

o if tac_app1D is not provided, then delete all KeyHandles from internal storage where
RawKeyHandle.KHAccessToken == Command.KHAccessToken

o Gotostep5

4. If the length of rac_xevip is NOT zero, then
o Find KeyHandle that matches Command.KeyID

o Ensure that RawKeyHandle.KHAccessToken == Command.KHAccessToken
= If not, then return uar_cMp STATUS ACCESS DENTED

o Delete this KeyHandle from internal storage

5. Return uar _cup sTATUS OK

NOTE

The authenticator must unwrap the relevant KeyHandles using Wrap.sym as needed.

NORMATIVE
Bound authenticators must not process Deregister command without validating KHAccessToken first.

Deregister command should not explicitly reveal whether the provided keylD was registered or not.

NOTE
This command never returns uar_cuvp sTaTUS KEY DISAPPEARED PERMANENTLY @S this could reveal the keylD registration
status.

6.5 OpenSettings Command
This command instructs the Authenticator to open its built-in settings Ul (e.g. change PIN, enroll new fingerprint, etc).
The Authenticator must return uar cup_staTus cup wor supporTED if it doesn't support such functionality.

If the command structure is invalid (e.g. cannot be parsed correctly), the authenticator must return
UAF_CMD_STATUS PARAMS INVALID.

6.5.1 Command Structure

TLV Structure Description |
1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD
1.1 UINT16 Length Entire Command Length
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.2.1 UINT16 Length Length of Authenticatorindex (must be 0x0001)
1.2.2 UINT8 Authenticatorindex Authenticator Index

6.5.2 Command Response

TLV Structure Description |
1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

TLV Structure Description

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.5.3 Status Codes

e UAF CMD_ STATUS_ OK

e UAF CMD STATUS ERR UNKNOWN

e UAF CMD_STATUS_CMD NOT_ SUPPORTED
e UAF CMD STATUS PARAMS INVALID

7. KeyIDs and key handles

This section is non-normative.
There are 4 types of Authenticators defined in this document and due to their specifics they behave differently while

processing commands. One of the main differences between them is how they store and process key handles. This section
tries to clarify it by describing the behavior of every type of Authenticator during the processing of relevant command.

7.1 first-factor Bound Authenticator

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
Register database.
Command KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle).
When there is no user session (no cookies, a clear machine) the Server doesn't provide any KeyID (since it
doesn't know which KeyIDs to provide). In this scenario the ASM selects all key handles and passes them to
Sign Authenticator.
Command
During step-up authentication (when there is a user session) Server provides relevant KeylDs. ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.
Deregister Since Authenticator doesn't store key handles, then there is nothing to delete inside Authenticator.
Command ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.2 2ndF Bound Authenticator

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored in ASM
Register database.
Command KeylID is a randomly generated 32 bytes number (or simply the hash of KeyHandle).
This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no
Sign user session (no cookies, a clear machine).
Command During step-up authentication (when there is a user session) Server provides relevant KeylDs. ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.
Deregister Since Authenticator doesn't store key handles, then there is nothing to delete inside it.
IO ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.3 first-factor Roaming Authenticator

Authenticator stores key handles inside its internal storage. KeyHandle is never returned back to ASM.
Register
Command | KeylID is a randomly generated 32 bytes number (or simply the hash of KeyHandle)

When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID (since it
e doesn't know which KeyIDs to provide). In this scenario Authenticator uses all key handles that correspond to
Cgmmand the provided ApplID.

During step-up authentication (when there is a user session) Server provides relevant KeylDs. Authenticator

selects key handles that correspond to provided KeylDs and uses them.

Deregister

B e Authenticator finds the right KeyHandle and deletes it from its storage.

7.4 2ndF Roaming Authenticator

Register

Neither Authenticator nor ASM store key handles. Instead KeyHandle is sent to the Server (in place of KeyID)
Command | and stored in User's record. From Server's perspective it's a KeyID. In fact KeyID is the KeyHandle.

user session (no cookies, a clear machine).

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used when there is no

Sign

Command During step-up authentication Server provides KeylDs which are in fact key handles. Authenticator finds the
right KeyHandle and uses it.

83;&%{2}% Since Authenticator and ASM don't store key handles, then there is nothing to delete on client side.

8. Access Control for Commands

This section is normative.

FIDO Authenticators may implement various mechanisms to guard access to privileged commands.

The following table summarizes the access control requirements for each command.
All UAF Authenticators must satisfy the access control requirements defined below.
Authenticator vendors may offer additional security mechanisms.

Terms used in the table:

« NoAuth - no access control

« UserVerify - explicit user verification

« KHAccessToken - must be known to the caller
« KeyHandleList - must be known to the caller

« KeyID - must be known to the caller

Commang First-factor Bound 2ndF Bound First-factor Roaming 2ndF Roaming
Authenticator Authenticator Authenticator Authenticator
Getlnfo NoAuth NoAuth NoAuth NoAuth
OpenSettings | NoAuth NoAuth NoAuth NoAuth
Register UserVerify UserVerify UserVerify UserVerify
UserVerify UserVerify UserVerif UserVerify
Sign KHAccessToken KHAccessToken KHAGC engok en KHAccessToken
KeyHandleList KeyHandleList KeyHandleList
BeEaiEar KHAccessToken KHAccessToken KHAccessToken KHAccessToken
9 KeylD KeylD KeylD KeylD

Table 1: Access Control for Commands

9. Considerations

This section is non-normative.

9.1 Algorithms and Key Sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

9.2 Indicating the Authenticator Model

Some authenticators (e.g. TPMv2) do not have the ability to include their model identifier (i.e. vendor ID and model name) in
attested messages (i.e. the to-be-signed part of the registration assertion). The TPM's endorsement key certificate typically
contains that information directly or at least it allows the model to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator model (i.e. AAID).

If the authenticator cannot securely include its model (i.e. AAID) in the registration assertion (i.e. in the KRD object), we
require the ECDAA-Issuers public key (ipkk) to be dedicated to one single authenticator model (identified by its AAID).

Using this method, the issuer public key is uniquely related to one entry in the Metadata Statement and can be used by the
FIDO server to get a cryptographic proof of the Authenticator model.

10. Relationship to other standards

This section is non-normative.
The existing standard specifications most relevant to UAF authenticator are [TPM], [TEE] and [SecureElement].
Hardware modules implementing these standards may be extended to incorporate UAF functionality through their

extensibility mechanisms such as by loading secure applications (trustlets, applets, etc) into them. Modules which do not
support such extensibility mechanisms cannot be fully leveraged within UAF framework.

10.1 TEE

In order to support UAF inside TEE a special Trustlet (trusted application running inside TEE) may be designed which
implements UAF Authenticator functionality specified in this document and also implements some kind of user verification
technology (biometric verification, PIN or anything else).

An additional ASM must be created which knows how to work with the Trustlet.

10.2 Secure Elements

In order to support UAF inside Secure Element (SE) a special Applet (trusted application running inside SE) may be designed
which implements UAF Authenticator functionality specified in this document and also implements some kind of user
verification technology (biometric verification, PIN or similar mechanisms).

An additional ASM must be created which knows how to work the Applet.

10.3 TPM

TPMs typically have a built-in attestation capability however the attestation model supported in TPMs is currently incompatible
with UAF's basic attestation model. The future enhancements of UAF may include compatible attestation schemes.

Typically TPMs also have a built-in PIN verification functionality which may be leveraged for UAF. In order to support UAF
with an existing TPM module, the vendor should write an ASM which:

« Translates UAF data to TPM data by calling TPM APIs
« Creates assertions using TPMs API
« Reports itself as a valid UAF authenticator to FIDO UAF Client

A special AssertionScheme, designed for TPMs, must be also created (see [FIDOMetadataStatement]) and published by
FIDO Alliance. When FIDO Server receives an assertion with this AssertionScheme it will treat the received data as TPM-
generated data and will parse/validate it accordingly.

10.4 Unreliable Transports

The command structures described in this document assume a reliable transport and provide no support at the application-
layer to detect or correct for issues such as unreliable ordering, duplication, dropping or modification of messages. If the
transport layer(s) between the ASM and Authenticator are not reliable, the non-normative private contract between the ASM
and Authenticator may need to provide a means to detect and correct such errors.

A. Security Guidelines

This section is non-normative.

Category Guidelines |

Registered ApplDs and KeylDs must not be returned by an authenticator in plaintext, without first

AppIDs and performing user verification.

KeylDs If an attacker gets physical access to a roaming authenticator, then it should not be easy to read out
AppIDs and KeyIDs.
Authenticators must protect the attestation private key as a very sensitive asset. The overall security of
the authenticator depends on the protection level of this key.
It is highly recommended to store and operate this key inside a tamper-resistant hardware module, e.g.
[SecureElement].
It is assumed by registration assertion schemes, that the authenticator has exclusive control over the data

Attestation being signed with the attestation key.

Private Key FIDO Authenticators must ensure that the attestation private key:

Category

Guidelines
DO-defined data structures, KeyRegistrationData.

2. is never accessible outside the security boundary of the authenticator.

Attestation must be implemented in a way such that two different relying parties cannot link registrations,
authentications or other transactions (see [UAFProtocol]).

Certifications

Vendors should strive to pass common security standard certifications with authenticators, such as
[FIPS140-2], [CommonCiriteria] and similar. Passing such certifications will positively impact the UAF
implementation of the authenticator.

Cryptographic

(Crypto)
Kernel

The crypto kernel is a module of the authenticator implementing cryptographic functions (key generation,
signing, wrapping, etc) necessary for UAF, and having access to UAuth.priv, Attestation Private Key and
Wrap.sym.

For optimal security, this module should reside within the same security boundary as the UAuth.priv,
Att.priv and Wrap.sym keys. If it resides within a different security boundary, then the implementation
must guarantee the same level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted execution environment
[TEE].

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

Software-based authenticators must make sure to use state of the art code protection and obfuscation
techniques to protect this module, and whitebox encryption techniques to protect the associated keys.

Authenticators need good random number generators using a high quality entropy source, for:

1. generating authentication keys
2. generating signatures
3. computing authenticator-generated challenges

The authenticator's random number generator (RNG) should be such that it cannot be disabled or
controlled in a way that may cause it to generate predictable outputs.

If the authenticator doesn't have sufficient entropy for generating strong random numbers, it should fail
safely.

See the section of this table regardingrandom numbers

KeyHandle

It is highly recommended to use authenticated encryption while wrapping key handles with Wrap.sym.
Algorithms such as AES-GCM and AES-CCM are most suitable for this operation.

Liveness
Detection /
Presentation
Attack
Detection

The user verification method should include liveness detection NSTCBiometrics], i.e. a technique to
ensure that the sample submitted is actually from a (live) user.

In the case of PIN-based matching, this could be implemented using TEESecureDisplay] in order to
ensure that malware can't emulate PIN entry.

Matcher

By definition, the matcher component is part of the authenticator. This does not impose any restrictions
on the authenticator implementation, but implementers need to make sure that there is a proper security
boundary binding the matcher and the other parts of the authenticator together.

Tampering with the matcher module may have significant security consequences. It is highly
recommended for this module to reside within the integrity boundaries of the authenticator, and be
capable of detecting tampering.

It is highly recommended to run this module inside a trusted execution environment [TEE] or inside a
secure element [SecureElement].

Authenticators which have separated matcher and CryptoKernel modules should implement mechanisms
which would allow the CryptoKernel to securely receive assertions from the matcher module indicating
the user's local verification status.

Software based Authenticators (if not in trusted execution environment) must make sure to use state of
the art code protection and obfuscation techniques to protect this module.

When an Authenticator receives an invalid UserVerificationToken it should treat this as an attack, and
invalidate the cached UserVerificationToken.

A UserVerificationToken should have a lifetime not exceeding 10 seconds.

Category Guidelines

Biometrics based authenticators must protect the captured biometrics data (such as fingerprints) as well
as the reference data (templates), and make sure that the biometric data never leaves the security
boundaries of authenticators.

Matchers must only accept verification reference data enrolled by the user, i.e. they must not include any
default PINs or default biometric reference data.

This document requires (a) the attestation key to be used for attestation purposes only and (b) the
authentication keys to be used for FIDO authentication purposes only. The related to-be-signed objects

Private Keys (i.e. Key Registration Data and SignData) are designed to reduce the likelihood of such attacks:

ng]SUth'pnv 1. They start with a tag marking them as specific FIDO objects
Attestation 2. They include an authenticator-generated random value. As a consequence all to-be-signed objects
Private Key) are unique with a very high probability.

3. They have a structure allowing only very few fields containing uncontrolled values, i.e. values which
are neither generated nor verified by the authenticator

The FIDO Authenticator uses its random number generator to generate authentication key pairs, client
side challenges, and potentially for creating ECDSA signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the FIDO Authenticator to work with good random
numbers only.

The (pseudo-)random numbers used by authenticators should successfully pass the randomness test

Random specified in [Coron99] and they should follow the guidelines given in [SP800-90b].

Numbers
Additionally, authenticators may choose to incorporate entropy provided by the FIDO Server via the
serverChallenge Sent in requests (see [UAFProtocol]).

When mixing multiple entropy sources, a suitable mixing function should be used, such as those
described in [RFC4086].

The regcounter provides an anti-fraud signal to the relying parties. Using the regcounter, the relying party
can detect authenticators which have been excessively registered.

If the rRegcounter is implemented: ensure that

1. itis increased by any registration operation and

RegCounter 2. it cannot be manipulated/modified otherwise (e.g. via API calls, etc.)

A registration counter should be implemented as a global counter, i.e. one covering registrations to all
ApplIDs. This global counter should be increased by 1 upon any registration operation.

Note: The RegCounter value should not be decreased by peregistration operations.

When an attacker is able to extract a Uauth.priv key from a registered authenticator, this key can be used
independently from the original authenticator. This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent cloning authenticators. In
some situations the protection measures might not be sufficient.

If the Authenticator maintains a signature counter signcounter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If the signcounter is implemented: ensure that

1. ltis increased by any authentication / transaction confirmation operation and
2. it cannot be manipulated/modified otherwise (e.g. API calls, etc.)

Signature counters should be implemented that are dedicated for each private key in order to preserve
) the user's privacy.

SignCounter
A per-key signcounter should be increased by 1, whenever the corresponding UAuth.priv key signs an
assertion.

A per-key signcounter should be deleted whenever the corresponding UAuth key is deleted.
If the authenticator is not able to handle many different signature counters, then a global signature

counter covering all private keys should be implemented. A global signcounter should be increased by a
random positive integer value whenever any of the UAuth.priv keys is used to sign an assertion.

Category NOTE

There are multiple reasons why thesigncounter value could be 0 in a registration response. A
signcounter value of 0 in an authentication response indicates that the authenticator doesn't
support the signcounter concept.

Transaction
Confirmation
Display

A transaction confirmation display must ensure that the user is presented with the provided transaction
content, e.g. not overlaid by other display elements and clearly recognizable. See [CLICKJACKING] for
some examples of threats and potential counter-measures

For more guidelines refer to [TEESecureDisplay].

UAuth.priv

An authenticator must protect all UAuth.priv keys as its most sensitive assets. The overall security of the
authenticator depends significantly on the protection level of these keys.

It is highly recommended that this key is generated, stored and operated inside a trusted execution
environment.

In situations where physical attacks and side channel attacks are considered within the threat model, it is
highly recommended to use a tamper-resistant hardware module.

FIDO Authenticators must ensure that UAuth.priv keys:

1. are specific to the particular account at one relying party (relying party is identified by an AppID)

2. are generated based on good random numbers with sufficient entropy. The challenge provided by
the FIDO Server during registration and authentication operations should be mixed into the entropy
pool in order to provide additional entropy.

are never directly revealed, i.e. always remain in exclusive control of the FIDO Authenticator
4. are only being used for the defined authentication modes, i.e.
1. authenticating to the application (as identified by the AppID) they have been generated for, or

2. confirming transactions to the application (as identified by ApplD) they have been generated
for, or

3. are only being used to create the FIDO defined data structures, i.e. KRD, SignData.

w

Username

A username must not be returned in plaintext in any condition other than the conditions described for the
SIGN command. In all other conditions usernames must be stored within a xeynandie.

Verification
Reference
Data

The verification reference data, such as fingerprint templates or the reference value of a PIN, are by
definition part of the authenticator. This does not impose any particular restrictions on the authenticator
implementation, but implementers need to make sure that there is a proper security boundary binding all
parts of the authenticator together.

Wrap.sym

If the authenticator has a wrapping key (Wrap.sym), then the authenticator must protect this key as its
most sensitive asset. The overall security of the authenticator depends on the protection of this key.

Wrap.sym key strength must be equal or higher than the strength of secrets stored in a RawKeyHandle.
Refer to [SP800-57] and [SP800-38F] publications for more information about choosing the right wrapping
algorithm and implementing it correctly.

It is highly recommended to generate, store and operate this key inside a trusted execution environment.

In situations where physical attacks and side channel attacks are considered in the threat model, it is
highly recommended to use a tamper-resistant hardware module.

If the authenticator uses Wrap.sym, it must ensure that unwrapping corrupted KeyHandle and unwrapping
data which has invalid contents (e.g. KeyHandle from invalid origin) are indistinguishable to the caller.

B. Table of Figures

Fig. 1 UAF Authenticator Commands
Fig. 2 FIDO Authenticator Logical Sub-Components

C. References

C.1 Normative references

[Coron99]
J. Coron and D. Naccache An accurate evaluation of Maurer's universal test LNCS 1556, February 1999, URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOEcdaaAlgorithm]
R. Lindemann, J. Camenisch, M. Drijvers, A. Edgington, A. Lehmann, R. Urian,FIDO ECDAA Algorithm. FIDO Alliance
Implementation Draft. URLs:
HTML.: fido-ecdaa-v1.1-id-20170202.html
PDF: fido-ecdaa-v1.1-id-20170202.pdf.

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft.
URLs:
HTML.: fido-glossary-v1.1-id-20170202.pdf

[FIDOMetadataStatement]
B. Hill, D. Baghdasaryan, J. Kemp, FIDO Metadata Statements v1.0. FIDO Alliance Implementation Draft. URLSs:
HTML: fido-metadata-statements.pdf

[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values. FIDO Alliance Implementation Draft.
URLs:
HTML.: fido-registry-v1.1-id-20170202.pdf

[ITU-X690-2008]
X.690: Information technology - ASN. 1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). International
Telecommunications Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-200811-l/en

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[SP800-90b]
Elaine Barker and John Kelsey, NIST Special Publication 800-90b: Recommendation for the Entropy Sources Used for
Random Bit Generation. National Institute of Standards and Technology, April 2016, URL:
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany, D. Balfanz, B. Hill, J. Hodges, FIDO UAF Protocol Specification v1.0. FIDO
Alliance Proposed Standard. URLs:
HTML.: fido-uaf-protocol-v1.1-id-20170202.pdf

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values FIDO Alliance Proposed Standard.
URLs:

HTML: fido-uaf-reg-v1.1-id-20170202.pdf

C.2 Informative references

[CLICKJACKING]
D. Lin-Shung Huang, C. Jackson, A. Moshchuk, H. Wang, S. SchlechterClickjacking: Attacks and Defenses. USENIX,
July 2012, URL: https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
[CommonCiriteria]
CommonCriteria Publications. CCRA Members, Work in progress, accessed March 2014. URL:
http://www.commoncriteriaportal.org/cc/
[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Security Reference. FIDO Alliance Implementation Draft. URLs:
HTML.: fido-security-ref-v1.1-id-20170202.pdf
[FIPS140-2]
FIPS PUB 140-2: Security Requirements for Cryptographic Modules. National Institute of Standards and Technology,

May 2001, URL: http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
[NSTCBiometrics]

NSTC Subcommittee on Biometrics, Biometrics Glossary. National Science and Technology Council. 14 September
2006, URL: http://biometrics.gov/Documents/Glossary.pdf

[RFC4086]
D. Eastlake 3rd, J. Schiller, S. Crocker Randomness Requirements for Security (RFC 4086), IETF, June 2005, URL:
http://www.ietf.org/rfc/rfc4086.txt

[SP800-38F]
M. Dworkin, NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. National Institute of Standards and Technology, December 2012, URL:
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-57]
Recommendation for Key Management — Part 1: General (Revision 3) SP800-57. July 2012. U.S. Department of
Commerce/National Institute of Standards and Technology. URL: https://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57 part1 rev3 general.pdf

[SecureElement]
GlobalPlatform Card Specifications GlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.asp

[TEE]
GlobalPlatform Trusted Execution Environment Specifications GlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
GlobalPlatform Trusted User Interface API Specifications GlobalPlatform. Accessed March 2014. URL:
https://www.globalplatform.org/specifications.asp

[TPM]
TPM Main Specification Trusted Computing Group. Accessed March 2014. URL:
http://www.trustedcomputinggroup.org/resources/tpm main_specification

http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
PDF: <a href=
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
PDF: <a href=
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

fco

ALLIANCE

FIDO UAF APDU
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-apdu-v1.1-ps-20170202.html
Previous version:

https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-apdu-v1.1-id-20170202.html

Editor:
Naama Bak, Morpho

Contributors:
Virginie Galindo, Gemalto
Rolf Lindemann, Nok Nok Labs, Inc.
Ullrich Martini, Giesecke & Devrient
Chris Edwards, Intercede

Jeff Hodges, Paypal

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

This specification defines a mapping of FIDO UAF Authenticator commands to Application Protocol Data Units (APDUSs) thus facilitating
UAF authenticators based on Secure Elements.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index
at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document,
please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including
without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may
be used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention
to the specification and to promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Key Words
« 2. Introduction

¢ 3. SE-based Authenticator Implementation Use Cases
o 3.1 Hybrid SE Authenticator
= 3.1.1 Architecture of the Hybrid SE Authenticator

= 3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator
« 4. FIDO UAF Applet and APDU commands

o 4.1 UAF Applet in the Authenticator
= 4.1.1 Application Identifier

= 4.1.2 User Verification
= 4.1.3 Cryptographic operations

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-apdu-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-apdu-v1.1-id-20170202.html
mailto:naama.bak@morpho.com
https://www.morpho.com/
mailto:Virginie.Galindo@gemalto.com
https://www.gemalto.com/
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:Ullrich.Martini@gi-de.com
https://www.gi-de.com/
mailto:Chris.Edwards@intercede.com
https://www.intercede.com/
mailto:jeff.hodges@paypal.com
https://www.paypal.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

o 4.2 APDU Commands for FIDO UAF
= 4.2.1 Class byte coding

= 4.2.2 APDU command "UAF"
= 4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

= 4.2.2.2 Response message and status conditions of an "UAF" APDU command

» 4.2.3 APDU Command "SELECT"
» 4.2.4 APDU Command "VERIFY"
= 4.2.4.1 Command structure

= 4.2.4.2 Response message and status conditions

o 4.3 Managing Long APDU Commands and Responses
= 4.3.1 I1SO Variant

= 4.3.2 Proprietary Variant

¢ 5. Security considerations

« A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.
String literals are enclosed in “*, e.g. “UAF-TLV".
In formulas we use “I” to denote byte wise concatenation operations.

The notation base64url(byte[8..641) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename
Safe Alphabet" [RFC4648] without padding.

UAF specific terminology used in this document is defined in [FIDOGlossary].
All diagrams, examples, notes in this specification are non-normative.
All TLV structures defined in this documentmust be encoded in little-endian format.

All APDU defined in this document must be encoded as defined in [SOIEC-7816-4-2013].

1.1 Key Words

» o« » o« ” o« » o«

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not’, “recommended”, “may”, and “optional” in this
document are to be interpreted as described in [RFC2119].

",

2. Introduction

This section is non-normative.

This specification defines the interface between the FIDO UAF Authenticator Specific Module (ASM) [UAFASM] and authenticators
based upon "Secure Element" technology. The applicable secure element form factors are UICC (SIM card), embedded Secure Element
(eSE), uSD, NFC card, and USB token. Their common characteristic is they communicate using Application Programming Data Units
(APDU) in compliance with [ISOIEC-7816-4-2013].

Implementation of this specification is optional in the UAF framework, however, products claiming to implement the transport of UAF
messages over APDUs should implement it.

This specification first describes the various fashions in which Secure Elements can be incorporated into UAF authenticator
implementations — known as SE-based authenticators or just SE authenticators — and which components are responsible for handling
user verification as well as cryptographic operations. The specification then describes the overall architecture of an SE-based
authenticator stack from the ASM down to the secure element, the role of the "UAF Applet" running in the secure element, and outlines
the nominal communication flow between the ASM and the SE. It then defines the mapping of UAF Authenticator commands to APDUs,
as well as the FIDO-specific variants of the VERIFY APDU command.

NOTE

This specification does not define how an SE-based authenticator stack may be implemented, e.g., its integration with TEE or
biometric sensors. However, SE-based authenticator vendors should reflect such implementation characteristics in the
authenticator metadata such that FIDO Relying Parties wishing to be informed of said characteristics may have access to it.

3. SE-based Authenticator Implementation Use Cases

This section is non-normative.

Secure elements can be leveraged in different scenarios in the UAF technology. It can support user gestures (used to unlock access to
FIDO credentials) or it can be involved in the actual cryptographic operations related to FIDO authentication. In this specification, we will
be considering the following SE-based authenticator implementation use cases:

1. The Secure Element (SE) is the (silent) Authenticator.

2. The SE is part of the Authenticator which is composed of a Trusted Application (TEE) based User Verification component,
potentially a TEE based transaction confirmation display and the crypto kernel inside the SE (Hybrid SE Authenticator).

3. The authenticator (Hybrid SE Authenticator) consists of
o the SE implementing the matcher and the crypto kernel

o and a specific software module (e.g. running on the FIDO User Device) to capture the user verification data (e.g. PIN, Face,
Fingerprint).

3.1 Hybrid SE Authenticator

In FIDO UAF, the access to credentials for performing the actual authentication can be protected by a user verification step. This user
verification step can be based on a PIN, a biometric or other methods. The authenticator functionality might be implemented in different
components, including combinations such as TEE and SE, or fingerprint sensor and SE. In that case the SE implements only a part of
the authenticator functionality.

NOTE

The reason for using such hybrid configuration is that Secure Elements do not have any user interface and hence cannot directly
distinguish physical user interaction from programmatic communication (e.g. by malware). The ability to require a physical user
interaction that cannot be emulated by malware is essential for protecting against scalable attacks (see [FIDOSecRef]). On the
other hand, TEEs (or biometric sensors implemented in separate hardware) which can provide a trusted user interface typically do
not offer the same level of key protection as Secure Elements.

Strictly spoken, a Hybrid SE Authenticator (voluntarily) uses the Authenticator Command interface [UAFAuthnrCommands] inside
the authenticator, e.g. between the crypto kernel and the user verification component.

Examples of hybrid SE authenticators are:

1. User PIN code capture and verification are implemented entirely in a TEE relying on Trusted User Interface and secure storage
capabilities of the TEE and, once the PIN code is verified, the FIDO UAF crypto operations are performed in the SE.

2. User fingerprint is captured via a fingerprint sensor, the fingerprint match is performed in the TEE, relying on matching algorithms.
Once the fingerprint has been positively checked, the cryptographic operations are executed in the Secure Element.

3. The user verification is implemented as match-on-chip in separate hardware and FIDO UAF cryptographic operations are
implemented in the SE.

In all those cases, the hybrid nature of the authenticator will be managed by the software-based host, regardless of its nature (TEE, SW,
Biometric sensor..). There are a number of possible interactions between the ASM and the SE actually implementing the verification and
the cryptographic operations to consider within those use cases.

1. PIN user verification where the user interaction for the PIN entry is performed externally to the SE. The PIN may then be passed
within a VERIFY command to the SE, followed by the actual cryptographic operations (such as the Register and Sign UAF
authenticator commands).

2. Biometric user verification where the sample capture and matching is performed externally to the SE (e.g. in TEE or in a match-on-
chip FP sensor). This would then only need to send to the SE the actual cryptographic operation needed in this session (such as
the Register and Sign UAF authenticator commands).

3. User verification sample (Faceprint, Fingerprint..) capture is performed externally to the SE. The sample is then sent to a match-
on-card applet in the SE that behaves as a global PIN to enable access to the cryptographic operation required within this session.

3.1.1 Architecture of the Hybrid SE Authenticator

In order to support an Hybrid SE Authenticator, a dedicated software-based host must be created which knows how the SE applet
works. The communication between the SE applet and the host is defined based on [ISOIEC-7816-4-2013]. Whether a PC or mobile
device the architecture is still the same, as defined below:

e Application Layer: This component is responsible for acquiring the user verification sample and mapping UAF commands to
APDU commands.

e Communication layer: This is the [SOIEC-7816-4-2013] APDUs interface, which provides methods to list and select readers,
connect to a Secure Element and interact with it.

e sE access 0s aris : OMA, PC/SC, NFC API, CCID...
e secure Element : UICC, micro SD, eSE, Dual Interface card..

ASM

Authenticator

Software based Host

Secure Element Access OS APls

Secure
Element

Fig. 1 Architecture of Hybrid SE Authenticator
APDU command-response paire are handled as indicated in [ISOIEC-7816-4-2013].

3.1.2 Communication flow between the ASM and the Hybrid SE Authenticator

The host is the entity communicating with the SE and which knows how the SE and the applet running in the SE can be accessed. The
host could be a Trusted Application (TA) which runs inside a TEE or simply an application which runs in the normal world.

The following diagram illustrates how the Host of the Hybrid SE Authenticator may map the UAF commands to APDU commands. In
this diagram, the User Verification Module is considered inside the SE applet.
NOTE

If the User Verification Module is inside the Host, for example in the context of the TEE, the userverificationToken shall be
generated in the Host and not in the SE. As a result step 6 (Figure 2) should be executed in the Host instead of the SE.

l User I

=)

Authenticator

| Host |

If the c

o UAF TLV command

pbmmand does NOT require user verification

o UAF APDU command (see section UAF APDU command)
P2

Parses & |dentifies the UAF TLV
command using TAG_UAFV1..

Includes UAF TLV command on
the payload of an APDU command

——

6 UAF APDU response (see section UAF APDU command)

User Vernfication Token

T
- —-

Includes UAF TLV command on
the payload of an APDU command

N S e S S ———
If the command requires user verification

e s s e e e e r e ——————

: o Displays [the verification interface, and retrieves the user mean,

[

[

{ o User megn

] S

1)

, o VERIFY APDU command (see VERIFY section below)

1 <

1

: o - Verify user

1 - Generates UserVerificationToken

1

} o User Verification Token

1

1

[

i o UAF APDU command

| P

1

: @ UAF APDU response

1

e e e e e] o e o o o e e

0 UAF TLV Response

Fig. 2 Communication flow between the ASM and the Hybrid SE Authenticator
4. FIDO UAF Applet and APDU commands

This section is normative.

4.1 UAF Applet in the Authenticator

4.1.1 Application Identifier

The FIDO UAF AID is defined in [UAFRegistry].

4.1.2 User Verification

The User verification is based on the submission of a PIN/password (i.e., knowledge based) or a biometric template (i.e., biometric

based).

In this document, the envisaged user verification methods are PIN and biometric based.

4.1.3 Cryptographic operations

The SE applet must be able to perform a set of cryptographic operations, such as key generation and signature computation. The
cryptographic operations are defined in [UAFAuthnrCommands]. The SE applet must be able also to create data structures that can be

parsed by FIDO Server. The SE applet shall use the cryptographic algorithms indicated in [UAFRegistry].

4.2 APDU Commands for FIDO UAF

4.2.1 Class byte coding

CLA indicates the class of the command.

Commands CLA |
SELECT, VERIFY (ISO Version), GET RESPONSE (ISO Version) | 0x00
VERIFY, UAF, GET RESPONSE 0x80

Table 2: Class byte coding

ASM

N ———

NOTE

If the payload of an APDU command is longer than 255 bytes, command chaining as described in [ISOIEC-7816-4-2013] should
be used, even though CLA is proprietary.

4.2.2 APDU command "UAF"
4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

This section describes the mapping between FIDO UAF authenticator commands and APDU commands.

The mapping consists of encapsulating the entire UAF Authenticator Command in the payload of the APDU command, and the UAF
Authenticator Command response in the payload of the APDU Response.

The host shall set the INS byte to“0x36” for all UAF commands The SE shall read the UAF command number and data from the
payload in the data part of the command.

The payload of the APDU command is encoded according to [UAFAuthnrCommands], the first 2 bytes of each command are the UAF
command number. Upon command reception, the SE applet must parse the first TLV tag (2 bytes) and figure out which UAF command
is being issued. The SE applet shall parse the rest of the FIDO Authenticator Command payload according to [UAFAuthnrCommands].

The mapping of UAF Authenticator Commands to APDU commands is defined in the following table:

Data In

g)roprietary(See Table 0x36 | 0x00 | 0x00 | Variable UAF Authenticator Command None

structure

Table 3: UAF APDU command

The UAF Authenticator Command structures are defined in part 6.2 of [UAFAuthnrCommands].

NOTE

If the userverificationToken iS supported, The ASM must set the Tac_userveriry_Token flag in the value of the
UservVerificationToken, received previously contained in either a register or sign command. Please refer to the FIG 1 in Use-
Case section.

4.2.2.2 Response message and status conditions of an "UAF" APDU command

The status word of an "UAF" APDU response is handled at the Host level; the host must interpret and map the status word based on the
table below.

If the status word is equals to “9000”, the host shall return back to the ASM the entire data field of the APDU response. It the status
word is “61xx”, the host shall issue cer respousk (see below) until no more data is available, concatenate these response parts and then
return the entire response. Otherwise, the host has to build an UAF TLV response with the mapped status codes rac_starus_cobe, using
the following table.

For example, if the status word returned by the Applet is “6A88”, the host shall putuar_cup starus user noT EnNrOLLED in the status
codes of the UAF TLV response.

APDU FIDO UAF
STATUS STATUS NAME DESCRIPTION
CODE CODE
9000 0x00 UAF_CMD_STATUS_OK Success.
Success, xx bytes available
61xx 0x00 UAF_CMD_STATUS_OK s e e
6982 0x02 UAF_CMD_STATUS_ACCESS_DENIED ﬁgﬁi‘fj to this operation is
6A88 0x03 UAF_CMD_STATUS_USER_NOT_ENROLLED User is not enrolled with the
- - - - = authenticator.
N/A 0x04 UAF_CMD_STATUS_CANNOT RENDER_TRANSACTION_CONTENT g;agsn%‘:éir%g content cannot
User has cancelled the
N/A 0x05 UAF_CMD_STATUS_USER_CANCELLED operation,
6400 0x06 UAF_CMD_STATUS_CMD_NOT_SUPPORTED Command not supported.
6A81 0X07 UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED Ej;;gﬁgda“eﬂaﬂon not
6A80 0x08 UAF_CMD_STATUS_PARAMS_INVALID The request was rejected due

to an incorrect data field.

The UAuth key which is
relevant for this command
6983 0x09 UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY disappeared from the

authenticator and cannot be

restored
The operation in the

N/A 0x0a UAF_CMD_STATUS_TIMEOUT authenticator took longer than
expected.

N/A 0x0e UAF_CMD_STATUS_USER_NOT_RESPONSIVE The user took too long to

follow an instruction.

Insufficient resources in the
6A84 0xOf UAF_CMD_STATUS_INSUFFICIENT_RESOURCES authenticator to perform the
requested task.

The operation failed because
the user is locked out and the
63C0 0x10 UAF_CMD_STATUS_USER_LOCKOUT authenticator cannot
automatically trigger an action
to change that.

All other

codes 0x01 UAF_CMD_STATUS_ERR_UNKNOWN An unknown error

Table 4: Mapping between APDU Status Codes and FIDO Status Codes [UAFAuthnrCommands]

The response message of an UAF APDU command is defined in the following table :

Data field SW1 - SW2 \

“6982” — The request was rejected due to user verification being
required.

“6A80” — The request was rejected due to an incorrect data field.
not present “6A81” — Required attestation not supported

“6A88” — The user is not enrolled with the SE
“6400” — Execution error, undefined UAF command

“6983” — Authentication data not usable, Auth key disappeared

UAF Authenticator Command response “61xx” — Success, xx bytes available for GET RESPONSE.

[UAFAuthnrCommands] “9000” — SUCCess

Table 5: Response message of an "UAF" APDU command
4.2.3 APDU Command "SELECT"

A successful SELECT AID allows the host to know that the applet is active in the SE, and to open a logical channel with this end.

In Android smartphones apps are not allowed to use the basic channel to the SIM because this channel is reserved for the baseband
processor and the GSM/UMTS/LTE activities. In this case the app must select the applet in a logical channel.

The host must send a seLect appu command to the SE applet before any others commands.

As a result, the command for selecting the applet using the FIDO UAF AID is :

No response data is requested if the SELECT command's "Le" field is
0x00 | OxA4 | Ox04 | OxOC | 0x08 | OxA000000647AF0001 | absent. Otherwise, if the "Le" field is present, vendor-proprietary data
is being requested.

Table 6: SELECT AID command
4.2.4 APDU Command "VERIFY"

This command is used to request access rights using a PIN or Biometric sample. The SE applet shall verify the sample data given by
the Host against the reference PIN or Biometric held in the SE.

Please refer to [ISOIEC-7816-4-2013] and [ISOIEC-19794] for Personal verification through biometric methods.

If the verification is successful and userverificationToken is supported by the SE applet, a token shall be generated and sent to the
Host. Without having this token, the Host cannot invoke special UAF commands such as Register or Sign.

The support of userverificationToken can be checked by examining the contents of the cetinfo response in the authenticatorType
TAG or the response of seLect appu command [UAFAuthnrCommands].

Refer to [FIDOGlossary] for more information about userverificationToken.

4.2.4.1 Command structure

CLA INS P1 P2 Lc Data In Le \

0x00 | 0x00 Verification

data

ISO or Proprietary: see [ISOIEC- | 0x20 (for PIN) or 0x21 (for Variable

7816-4-2013] biometry)

None or expected Le for
UserVerificationToken

Table 7: VERIFY command encoding for PIN verification

4.2.4.2 Response message and status conditions

Data Out SW1 - SW2

Absent (ISO-Variant) or userverificationToken (proprietary) See [ISOIEC-7816-4-2013]

Table 8: Response message and status conditions

NOTE

An SE applet that does not supportuserverificationToken, may use the [ISOIEC-7816-4-2013] VERIFY command. In this case,
the VERIFY command must be securely bound to register and sign commands, so a secure bound method shall be implemented
in the SE applet, such as Secure Messaging.

4.3 Managing Long APDU Commands and Responses

If a Secure Element is able to send a complete response (e.g. extended length APDU, block chaining), cer response APDU command
shall be used, as defined intso variant section. Otherwise, the proprietary solution shall be used, as defined in section proprietary

Variant.

4.3.1 ISO Variant
The [ISOIEC-7816-4-2013] GET RESPONSE command is used in order to retrieve big data returned by APDU command "UAF".
4.3.2 Proprietary Variant

In order to avoid using Get Response APDU command which is not supported by all devices and terminals, a propriatry method is
defined for managing the long data answers at application level.

When using the proprietary variant, the response to the UAF APDU command shall include the Tag "0x2813", that specifies the length
of the response.

Response Data Out description

Tag
0x2813
Length
variable (2 bytes)
Value
Expected data length (2 bytes)

In the case where the data does not fit into a single Data Out message, the host shall repeat the "UAF" command with P2 = 1 value
mentioning this is a repetition of the incoming APDU to get all the data. This process shall be repeated until the entire data are collected
by the host.

Here is an example of an APDU Response which contains more than 255 bytes in the payload.

' SE l Authenticator l Host I ASM
o UAF TLV command

o - Parses & Identifies the UAF TLV
command using TAG_UAFV1..

- Includes UAF TLV command on the
payload of an APDU command

e UAF APDLU command (80 36 00 00 LC UAF_TLV)

o UAF APDU response (1328 0200 0003 SW1 3W2)

o UAF APDU command (80 36 00 01 00 FF)

o UAF APDU response (255_BYTES_DATA SW1SW2)

o UAF APDU command (80 36 00 01 00 03)

o UAF APDU response ([3_BYTES_DATA SW15W2)

@ - Builde TLV response

0 UAF TLY Response

Fig. 3 Long APDU management using the defined proprietary method

NOTE

The host shall support both versions of Get Response APDU command, and figure out which command must be sent to the
Applet by parsing the response of the UAF APDU command. If the UAF APDU command response contains the Tag "0x2813",
the host must send a proprietary Get Response APDU command, otherwise the host must send the ISO variant of Get Response
APDU command.

5. Security considerations

This section is non-normative.

Guaranteeing trust and security in a fragmented architecture such as the one levering on SE is a challenge that the Host has to address
regardless of its nature (TEE or Software based), which results in different challenges from a security and architecture perspective. One
could list the following ones:

« use of a trusted user interface to enter a PIN on the device,
« secure transmission of PIN or fingerprint minutiae,

« minutiae extraction format,

« integrity of data transmitted between a Host and a SE.

Hence, we will only consider here, security challenges affecting the interface between the Host and the SE.

A possible way to maintain the integrity and confidentiality when APDUs commands are exchanged is to enable a secure channel
between the Host and the SE. While this is left to implementation, there are several technologies allowing to build a secure channel
between a SE and a devices, that may be implemented.

« Secure channel between a trusted application in a TEE and an applet in a SE [GlobalPlatform-TEE-SE].
« Secure channel between a device and an applet in a secure element [GlobalPlatform-Card].
« Secure channel between a device and a SE [ETSI-Secure-Channel].

A. References

A.1 Normative references

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), |IETF, October 2006, URL:
http://www.ietf.org/rfc/rfc4648.txt

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt

A.2 Informative references

[ETSI-Secure-Channel]
ETSI TS 102 484 Smart Cards; Secure channel between a UICC and an end-point terminal
[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft. URLs:
HTML.: fido-glossary-v1.1-id-20170202.pdf
[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Security Reference. FIDO Alliance Implementation Draft. URLs:
HTML.: fido-security-ref-v1.1-id-20170202.pdf
[GlobalPlatform-Card]
Secure Channel Protocol 03 — GlobalPlatform Card Specification v.2.2 — Amendment D
[GlobalPlatform-TEE-SE]
TEE Secure Element API Specification v1.0 | GPD_SPE_024
[ISOIEC-19794]
ISO 19794: Information technology - Biometric data interchange formats
[ISOIEC-7816-4-2013]
ISO 7816-4: Identification cards — Integrated circuit cards; Part 4 : Organization, security and commands for interchange
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119
[UAFASM]
D. Baghdasaryan, J. Kemp, R. Lindemann, B. Hill, R. Sasson, FIDO UAF Authenticator-Specific Module APl FIDO Alliance
Implementation Draft. URLs:
HTML: fido-uaf-asm-api-v1.1-id-20170202.pdf
[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp, R. Lindemann, R. Sasson, B. Hill, FIDO UAF Authenticator Commands v1.0. FIDO Alliance
Implementation Draft. URLs:
HTML: fido-uaf-authnr-cmds-v1.1-id-20170202.pdf
[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values FIDO Alliance Proposed Standard. URLs:

HTML: fido-uaf-reg-v1.1-id-20170202.pdf

https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
PDF: <a href=
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-authnr-cmds-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
PDF: <a href=

fco

ALLIANCE

FIDO UAF Registry of Predefined Values
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-vi1.1-ps-20170202.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-reg-v1.1-id-20170202.html

Editor:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 EIDO Alliance All Rights Reserved.

Abstract

This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are
referenced by various UAF specifications.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding
this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable
document and may be used as reference material or cited from another document. FIDO Alliance's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Key Words

e 2. Overview

« 3. Authenticator Characteristics
o 3.1 Assertion Schemes

¢ 4. Predefined Tags
o 4.1 Tags used in the protocol

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-reg-v1.1-id-20170202.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

¢ 5. Predefined (untagged) Extensions
o 5.1 Android SafetyNet Extension

o 5.2 Android Key Attestation

o 6. Other Identifiers specific to FIDO UAF
o 6.1 FIDO UAF Application Identifier (AID)

+ A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in “*, e.g. “UAF-TLV”.

In formulas we use “I” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not’, “recommended”, “may”, and
“optional” in this document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the registry of UAF-specific constants that are used and referenced in various UAF specifications.
It is expected that, over time, new constants will be added to this registry. For example new authentication algorithms
and new types of authenticator characteristics will require new constants to be defined for use within the specifications.

FIDO-specific constants that are common to multiple protocol families are defined in[FIDORegistry].

3. Authenticator Characteristics

This section is normative.

3.1 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication
key generated by the authenticator. The authenticator must generate a key pair (UAuth.pub/UAuth.priv) to be used
with algorithm suites listed in [FIDORegistry] section "Authentication Algorithms" (with prefix arc_). This assertion
scheme is using a compact Tag Length Value (TLV) encoding for the KRD and SignData messages generated by
the authenticators. This is the default assertion scheme for the UAF protocol.

4. Predefined Tags

This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence. The tag is a 2-byte
unique unsigned value describing the type of field the data represents, the length is a 2-byte unsigned value indicating
the size of the value in bytes, and the value is the variable-sized series of bytes which contain data for this item in the
sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the
limitations of some hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire
message if it cannot process that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1_REG_ASSERTION 0x3EO1l
The content of this tag is the authenticator response to a Register command.
TAG_UAFV1_AUTH_ASSERTION 0x3E02

The content of this tag is the authenticator response to a Sign command.
TAG_UAFV1_KRD 0x3E03

Indicates Key Registration Data.
TAG_UAFV1_SIGNED_DATA 0x3E04

Indicates data signed by the authenticator using UAuth.priv key.
TAG_ATTESTATION_CERT 0x2EO05

Indicates DER encoded attestation certificate.
TAG_SIGNATURE 0x2E06

Indicates a cryptographic signature.
TAG_ATTESTATION_BASIC_FULL 0x3EO07

Indicates full basic attestation as defined in JAFProtocol].
TAG_ATTESTATION_BASIC_SURROGATE Ox3E08

Indicates surrogate basic attestation as defined in [JAFProtocol].
TAG_ATTESTATION_ECDAA 0x3E09

Indicates use of elliptic curve based direct anonymous attestation as defined in FIDOEcdaaAlgorithm]. Support for

this attestation type is optional at this time. It might be required by FIDO Certification.
TAG_KEYID 0x2E09

Represents a generated KeyID.
TAG_FINAL CHALLENGE_HASH 0x2EOA

Represents a generated final challenge hash as defined in UAFProtocol].
TAG_AAID O0x2EOB

Represents an Authenticator Attestation ID as defined in JAFProtocol].
TAG_PUB_KEY 0x2EOC

Represents a generated public key.
TAG_COUNTERS 0x2EOD

Represents the use counters for an authenticator.
TAG_ASSERTION_INFO O0x2EOE

Represents authenticator information necessary for message processing.
TAG_AUTHENTICATOR_NONCE O0x2EOF

Represents a nonce value generated by the authenticator.
TAG_TRANSACTION_CONTENT HASH 0x2E10

Represents a hash of the transaction content sent to the authenticator.
TAG_EXTENSION Ox3E1ll, Ox3El2

This is a composite tag indicating that the content is an extension.
TAG_EXTENSION_ID 0x2E13

Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.
TAG_EXTENSION_DATA 0x2E1l4

Represents extension data. Content of this tag is a UINT8[] byte array.
TAG_RAW_USER_VERIFICATION_INDEX 0x0103

This is the raw UVI as it might be used internally by authenticators. This TAG shall not appear in assertions leaving

the authenticator boundary as it could be used as global correlation handle.
TAG_USER_VERIFICATION_INDEX 0x0104

The user verification index (UVI) is a value uniquely identifying a user verification data record.

Each UVI value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient
entropy that makes guessing impractical. UVI values must not be reused by the Authenticator (for other biometric
data or users).

The UVI data can be used by FIDO Servers to understand whether an authentication was authorized by the exact
same biometric data as the initial key generation. This allows the detection and prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUV]1)), where the rawUVI reflects (a)
the biometric reference data, (b) the related OS level user ID and (c) an identifier which changes whenever a
factory reset is performed for the device, e.g. rawUVI = biometricReferenceData | OSLevelUserID |
FactoryResetCounter.

FIDO Servers supporting UVI extensions must support a length of up to 32 bytes for the UVI value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

04 01 —-- TAG_USER_VERIFICATION_INDEX (0x0104)
20 -- length of UVI
00 43 B8 E3 BE 27 95 8C —- the UVI value itself

28 D5 74 BF 46 8A 85 CF
46 9A 14 FO E5 16 69 31
DA 4B CF FF Cl1 BB 11 32
82

TAG_RAW_USER_VERIFICATION_STATE 0x0105
This is the raw UVS as it might be used internally by authenticators. This TAG shall not appear in assertions leaving
the authenticator boundary as it could be used as global correlation handle.

TAG_USER_VERIFICATION_STATE 0x0106
The user verification state (UVS) is a value uniquely identifying the set of active user verification data records.

Each UVS value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient
entropy that makes guessing impractical. UVS values must not be reused by the Authenticator (for other biometric
data sets or users).

The UVS data can be used by FIDO Servers to understand whether an authentication was authorized by one of the
biometric data records already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)), where the rawUVS reflects
(a) the biometric reference data sets, (b) the related OS level user ID and (c) an identifier which changes whenever
a factory reset is performed for the device, e.g. rawUVS = biometricReferenceDataSet | OSLevelUserID |
FactoryResetCounter.

FIDO Servers supporting UVS extensions must support a length of up to 32 bytes for the UVS value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

06 01 —-- TAG_USER _VERIFICATION_STATE (0x0106)
20 -- length of UVS
00 18 C3 47 81 73 2B 65 —- the UVS value itself

83 E7 43 31 46 8A 85 CF
93 6C 36 FO AF 16 69 14
DA 4B 1D 43 FE C7 43 24
45

TAG_RESERVED_5 0x0201
Reserved for future use. Name of the tag will change, value is fixed.

5. Predefined (untagged) Extensions

This section is normative.

5.1 Android SafetyNet Extension
This extension can be added

« by FIDO Servers to the UAF Request object (request extension) in the operationteader in order to trigger
generation of the related response extension.

« by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related
response extension.

¢ by the ASM to the respectiveexts array in the asvresponse object (response extension).

¢ by the FIDO Client to the respectiveexts array in either the operationteader, or the
AuthenticatorRegistrationAssertion, OF the authenticatorsignassertion Of the UAF Response object (response
extension).

Extension identifier

fido.uaf.safetynet
Extension fail-if-unknown flag

false, i.e. this (request and response) extension can safely be ignored by all entities.
Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value in
order to trigger the generation of this extension for the UAF Response.

"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail_if unknown": false}]

When present in a response (response extension)

« If the request extension was successfully processed, thedata value is set to the JSON Web Signature
attestation result as returned by the call to

com.google.android.gms.safetynet.SafetyNetApi.AttestationResult.

« If the FIDO Client or the ASM support this extension, but the underlying Android platform does not
support it (e.g. Google Play Services is not installed), the data value is set to the string "p" (i.e. platform
issue).

"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail if unknown": false}]

« If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but
the functionality is temporarily unavailable (e.g. Google servers are unreachable), the data value is set
to the string "a" (i.e. availability issue).

"exts": [{"id": "fido.uaf.safetynet", "data": "a", "fail if unknown": false}]

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResult

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response
object.

FIDO Client processing
FIDO Clients running on Android should support processing of this extension.

If the FIDO Client finds this (request) extension with empty data value in the UAF Request and it supports
processing this extension, then the FIDO Client

1. must call the Android API safetyNet.SafetyNetApi.attest(mGoogleApiClient, nonce) (See SafetyNet online
documentation) and add the response (or an error code as described above) as extension to the response
object.

2. must not copy the (request) extension to the ASM Request object (deviating from the general rule in
[UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the FIDO Client does not support this extension it must copy this extension from the UAF Request to the ASM
Request object (according to the general rule in [UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it must call the SafetyNet API (see above) and add the response as extension to
the ASM Response object. The FIDO Client must copy the extension in the ASM Response to the UAF Response
object (according to sections 3.4.6.4. and 3.5.7.4 step 4 in [UAFProtocol]).

When calling the Android API, the nonce parameter must be set to the serialized JSON object with the following
structure:

"hashAlg": "S256", // the hash algorithm
"fcHash": "..." // the finalChallengeHash

}

Where

¢ hashalg identifies the hash algorithm according to [FIDOSignatureFormat], section IANA Considerations.

e fcHash is the base64url encoded hash value of FinalChallenge (see section 3.6.3 and 3.7.4 in [UAFASM] for
details on how to compute finalchallengeHash).
We use this method to bind this SafetyNet extension to the respective FIDO UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [FIDORegistry] shall be used
(e.g. SHA256 because it belongs to ALc sIeGN SECP256R1 ECDSA SHA256 RAW).

Authenticator argument
N/A
Authenticator processing
N/A. This extension is related to the Android platform in general and not to the authenticator in particular. As a
consequence there is no need for an authenticator to receive the (request) extension nor to process it.
Authenticator data
N/A

Server processing
If the FIDO Server requested the SafetyNet extension,

1. it should verify that a proper response is provided (if client side support can be assumed), and

2. it should verify the SafetyNet AttestationResult (see SafetyNet online documentation).

NOTE
The package name in AttestationResult might relate to either the FIDO Client or the ASM.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or
MITB attacker would remove the response extension, the FIDO server might not be able to distinguish this
from the "SafetyNet extension not supported by FIDO Client/ASM" case.

5.2 Android Key Attestation
This extension can be added

« by FIDO Servers to the UAF Request object (request extension) in the operationteader in order to trigger

https://developer.android.com/training/safetynet/index.html#compat-check-response
https://developer.android.com/training/safetynet/index.html#compat-check-response

generation of the related response extension.
« by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related

response extension.

« by the ASM to the respectiveexts array in the asvresponse object (response extension).

¢ by the FIDO Client to the respectiveexts array in either the operationteader, or the
AuthenticatorRegistrationAssertion, OF the authenticatorsignassertion Of the UAF Response object (response

extension).

Extension identifier

fido.uaf.android.key_attestation
Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value in
order to trigger the generation of this extension for the UAF Response.

"exts":

[{"id": "fido.uaf.android.key_attestation", "data": "", "fail if unknown": false}]

When present in a response (response extension)

« If the request extension was successfully processed, thedata value is set to a JSON array containing
the base64 encoded entries of the array returned by the call to the KeyStore API function
getCertificateChain.

KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance(

KeyProperties.KEY ALGORITHM EC, "AndroidKeyStore");

kpGenerator.initialize(

new KeyGenParameterSpec.Builder (keyUUID, KeyProperties.PURPOSE_SIGN)

.setDigests (KeyProperties.DIGEST_ SHA256)
.setAlgorithmParameterSpec(new ECGenParameterSpec("prime256v1"))
.setCertificateSubject(

new X500Principal(String.format("CN=%s, OU=%s",

keyUUID, aContext.getPackageName())))

.setCertificateSerialNumber (BigInteger.ONE)
.setCertificateNotBefore(notBefore.getTime())
.setCertificateNotAfter (notAfter.getTime())
.setUserAuthenticationRequired(true)
.setAttestationChallenge(fcHash) -- bind to Final Challenge
.build());

kpGenerator.generateKeyPair(); // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain(keyUUID);
String certArray[]=new String[certarray.length];

int i=0;

for (Certificate cert : certarray) {

}

byte[] buf = cert.getEncoded();
certArray[i] = new String(Baseé64.encode(buf, Base64.DEFAULT));
i++;

JSONArray jarray=new JSONArray(certArray);
String key attestation data=jarray.toString();

« If the FIDO Client or the ASM support this extension, but the underlying Android platform does not
support it (e.g. Android version doesn't yet support it), the data value is set to the string "p" (i.e. platform

issue).

"exts": [{"id": "fido.uaf.android.key_ attestation", "data": "p", "fail if unknown": false}]

« If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but
the functionality is temporarily unavailable (e.g. Google servers are unreachable), the data value is set
to the string "a".

"exts": [{"id": "fido.uaf.android.key_ attestation", "data": "a", "fail if unknown": false}]

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response

object.

FIDO Client processing

FIDO Clients running on Android must pass this (request) extension with empty data value to the ASM.

If the ASM supports this extension it must call the KeyStore API (see above) and add the response as extension to
the ASM Response object. The FIDO Client must copy the extension in the ASM Response to the UAF Response
object (according to sections 3.4.6.4. and 3.5.7.4 step 4 in [UAFProtocol]).

More details on Android key attestation can be found at:

« https://developer.android.com/preview/api-overview.html#key attestation
o https://source.android.com/security/keystore/

« hitps://source.android.com/security/keystore/implementer-ref.html

Authenticator argument

N/A

Authenticator processing
The authenticator generates the attestation response. The call keyStore.getCertificateChain is finally processed by
the authenticator.

Authenticator data
N/A
Server processing

If the FIDO Server requested the key attestation extension,

1. it must follow the registration response processing rules (see FIDO UAF Protocol, section 3.4.6.5) before
processing this extension

2. it must verify the syntax of the key attestation extension and itmust perform RFC5280 compliant chain
validation of the entries in the array to one attestationRootCertificate specified in the Metadata Statement.

3. it must determine the leaf certificate from that chain, and itmust perform the following checks on this leaf

certificate

1. Verify that KeyDescripion.attestationChallenge == FCHash (see FIDO UAF Protocol, section 3.4.6.5
Step 6.)

2. Verify that the public key included in the leaf certificate is identical to the public key included in the FIDO
UAF Surrogate attestation block

3. If the related Metadata Statement claims keyProtection KEY_PROTECTION_TEE, then refer to
KeyDescription.teeEnforced using "authzList". If the related Metadata Statement claims keyProtection
KEY_PROTECTION_SOFTWARE, then refer to KeyDescription.softwareEnforced using "authzList".

4. Verify that

1.

No ok N

NOTE

authzList.origin == KM_TAG_GENERATED

authzList.purpose == KM_PURPOSE_SIGN

authzList.keySize is acceptable, i.e. =2048 (bit) RSA or =256 (bit) ECDSA.
authzList.digest == KM_DIGEST_SHA_2_256.

authzList.authType only contains acceptable user verification methods.
authzList.authTimeout == 0 (or not present).

authzList.noAuthRequired is not present (unless the Metadata Statement marks this authenticator
as silent authenticator, i.e. userVerificaton set to USER_VERIFY_NONE).

authzList.allApplications is not present, since FIDO Uauth keys must be bound to the generating
app (AppID).

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or
MITB attacker would remove the response extension, the FIDO server might not be able to distinguish this
from the "KeyAttestation extension not supported by ASM/Authenticator" case.

ExtensionDescriptor data value (for Metadata Statement)
In the case of extension id="fido.uaf.android.key_attestation", the data field of the ExtensionDescriptor as included
in the Metadata Statement will contain a dictionary containing the following data fields

DOMString attestationRootCertificates[]
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is valid for this authenticator
model. Multiple certificates might be used for different batches of the same model. The array does not
represent a certificate chain, but only the trust anchor of that chain.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [[TU-X690-2008] PKIX
certificate value.

https://developer.android.com/preview/api-overview.html#key_attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

NOTE

A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE

The field data is specified with type DOMString in FIDOMetadataStatement] and hence will contain the
serialized object as described above.

An example for the supportedExtensions field in the Metadata Statement could look as follows (with line breaks to
improve readability):

"supportedExtensions": [{

"id": "fido.uaf.android.key attestation",

"data": "{ \"attestationRootCertificates\": [
\"MIICPTCCAeOgAWIBAgIJAOuexvU30y2wMAOGCCgGSM4 9BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHR1c3RhdG1lvbiBSb290MRYWFAYDVQQKDA1GSURPIEFsbGlhbmN1
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA 1UEBwwJUGF sbyBBbHRVMQswCQYDVQQI
DAJDQTELMAkKGA1UEBhMCVVMwHhcNMTQwWN jE4MTMzMzMyWhcNNDEXMTAZMTMzMzMy
WjB7MSAwWHgYDVQQODDBATYW1wbGUgQXR0ZXNOYXRpb24gUm9vdDEWMBQGA1UECgwWN
Rk1ETYyBBbGxpYW5JjZTERMASGAIUECWWIVUFGIFRXRywxE jAQBgNVBACMCVBhbG8g
OWx0bzELMAKGA1UECAWCQOEXCzAJBgNVBAYTALVTMFkwEWYHKOZIZzjOCAQYIKOZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL./FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGgHIRYX/6NQME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It7zE4w8hk5EJ/MB8GA1UdIWQYMBaAFPOHA3CLhXxFbC0It7zE4w8hk5EJ/MAWG
A1UJEwWQFMAMBAf8wWCgYIKoZIzjOEAWIDSAAWRQIhAJ06QSXt9ihIbEKYKI jsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAXBZIpsIz2XN
10==\"1 }",

"fail_if unknown": false

H

6. Other Identifiers specific to FIDO UAF
6.1 FIDO UAF Application Identifier (AID)

This AID [ISOIEC-7816-5] is used to identify FIDO UAF authenticator applications in a Secure Element.
The FIDO UAF AID consists of the following fields:

VEITW 0xA000000647 | OXAF | 0x0001
Table 1: FIDO UAF Applet AID

A. References

A.1 Normative references

[FIDOEcdaaAlgorithm]
R. Lindemann, J. Camenisch, M. Drijvers, A. Edgington, A. Lehmann, R. Urian,FIDO ECDAA Algorithm. FIDO
Alliance Implementation Draft. URLs:
HTML: fido-ecdaa-v1.1-id-20170202.html
PDF: fido-ecdaa-v1.1-id-20170202.pdf.

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft.
URLs:
HTML: fido-glossary-v1.1-id-20170202.pdf

[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values FIDO Alliance Implementation Draft.
URLs:
HTML: fido-reqistry-v1.1-id-20170202.pdf

[ISOIEC-7816-5]

[RFC ISO ;816-5: Identification cards - Integrated circuit cards - Part 5: Registration of application providers

RFC2119
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references

[FIDOMetadataStatement]
B. Hill, D. Baghdasaryan, J. Kemp, FIDO Metadata Statements v1.0. FIDO Alliance Implementation Draft. URLs:

HTML.: fido-metadata-statements.pdf
[FIDOSignatureFormat]

FIDO 2.0: Signature format URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-

https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html

0s-20150904.html
[ITU-X690-2008]
X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER). (T-REC-X.690-200811). International
Telecommunications Union, November 2008 URL.: http://www.itu.int/rec/T-REC-X.690-200811-l/en
[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:
http://www.ietf.org/rfc/rfc4648.txt
[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X.509 Public Key Infrastructure
Cgrtificate and Certificate Revocation List (CRL) Profile, IETF, May 2008, URL:http://www.ietf.org/rfc/rfc5280.txt
[UAFASM]
D. Baghdasaryan, J. Kemp, R. Lindemann, B. Hill, R. Sasson, FIDO UAF Authenticator-Specific Module APl FIDO
Alliance Implementation Draft. URLSs:
HTML.: fido-uaf-asm-api-v1.1-id-20170202.pdf
[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany, D. Balfanz, B. Hill, J. Hodges, FIDO UAF Protocol Specification v1.0.
FIDO Alliance Proposed Standard. URLs:
HTML: fido-uaf-protocol-v1.1-id-20170202.pdf

http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
PDF: <a href=

fco

ALLIANCE

FIDO ApplID and Facet Specification
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-appid-and-facets-v1.1-ps-20170202.html
Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-appid-and-facets-v1.1-id-20170202.html
Editor:

Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Brad Hill, PayPal. Inc.

Dirk Balfanz, Google, Inc.

Davit Baghdasaryan, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract

The FIDO family of protocols introduce a new security concept,Application Facets, to describe the scope of user credentials and how a trusted
computing base which supports application isolation may make access control decisions about which keys can be used by which applications
and web origins.

This document describes the motivations for and requirements for implementing the Application Facet concept and how it applies to the FIDO
protocols.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be
used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Key Words

« 2.Overview
o 2.1 Motivation
o 2.2 Avoiding App-Phishing
o 2.3 Comparison to OAuth and OAuth2
o 2.4 Non-Goals
« 3. The AppID and FacetID Assertions

o 3.1 Processing Rules for ApplID and FacetlD Assertions
= 3.1.1 Determining the FacetID of a Calling Application
= 3.1.2 Determining if a Caller's FacetID is Authorized for an AppID
= 3.1.3 TrustedFacets structure
= 3.1.3.1 Dictionary Trustedracets Members

= 3.1.4 AppID Example 1:

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-appid-and-facets-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-appid-and-facets-v1.1-id-20170202.html
mailto://rolf@noknok.com
https://www.noknok.com/
mailto://hillbrad@gmail.com
https://www.paypal.com
https://www.google.com/
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
http://www.fidoalliance.org/
https://fidoalliance.org/contact

= 3.1.5 AppID Example 2:
= 3.1.6 Obtaining FacetID of Android Native App

= 3.1.7 Additional Security Considerations
= 3.1.7.1 Wildcards in TrustedFacet identifiers

« A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in “, e.g. “UAF-TLV”.

“«|»

In formulas we use “I” to denote byte wise concatenation operations.
This document applies to both the U2F protocol and the UAF protocol. UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.
1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not’, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

Modern networked applications typically present several ways that a user can interact with them. This document introduces the concept of an
Application Facetto describe the identities of a single logical application across various platforms. For example, the application MyBank may
have an Android app, an iOS app, and a Web app accessible from a browser. These are all facets of the MyBank application.

The FIDO architecture provides for simpler and stronger authentication than traditional username and password approaches while avoiding
many of the shortfalls of alternative authentication schemes. At the core of the FIDO protocols are challenge and response operations
performed with a public/private keypair that serves as a user's credential.