
FIDO Bluetooth Specification v1.0

FIDO Alliance Implementation Draft 14 May 2015

This version:
https://fidoalliance.org/specs/fido-undefined-undefined-id-20150514/fido-u2f-bt-
protocol-v1.0-undefined-id-20150514.html

Previous version:
https://fidoalliance.org/specs/fido-u2f-bt-protocol-v1.0-Member Submission-
20140721.html

Editors:
Alexei Czeskis, Google, Inc.
Juan Lang, Google, Inc.

Contributors:
Scott Walsh, Plantronics, Inc.
Deniz Akkaya, Yubico, Inc.
Jakub Pawlowski, Google, Inc.
Hannes Tschofenig, ARM Ltd.

Copyright © 2014-2015 FIDO Alliance All Rights Reserved.

Abstract

The FIDO U2F framework was designed to be able to support multiple Authenticator
form factors. This document describes the communication protocol with Authenticators
over Bluetooth including both Basic Rate Enhanced Data Rate (BR/EDR) and
Bluetooth Smart (refered to in this document as Bluetooth Low Enegry or BLE).

IM
P
L
E
M

E
N
T
A
T
IO

N
 D

R
A
F
T

There are multiple form factors possible for Authenticators. Some might be low cost,
low power devices, and others might be implemented as an additional feature of a
more powerful device, such as a smartphone. The design proposed here is meant to
support multiple form factors, including but not necessarily limited to these two
examples.

Status of This Document
This section describes the status of this document at the time of its publication. Other

documents may supersede this document. A list of current FIDO Alliance publications

and the latest revision of this technical report can be found in the FIDO Alliance

specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Implementation Draft. This
document is intended to become a FIDO Alliance Proposed Standard. If you wish to
make comments regarding this document, please Contact Us. All comments are
welcome.

This Implementation Draft Specification has been prapared by FIDO Alliance, Inc.

Permission is hereby granted to use the Specification solely for the purpose of
implementing the Specification. No rights are granted to prepare derivative works of
this Specification. Entities seeking permission to reproduce portions of this
Specification for other uses must contact the FIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under
third party intellectual property rights, including without limitation, patent rights. The
FIDO Alliance, Inc. and its Members and any other contributors to the Specification are
not, and shall not be held, responsible in any manner for identifying or failing to identify
any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY
WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS
OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1. Notation
1.1 Key Words

2. Pairing
3. Link Security
4. Framing

4.1 Request from Client to Authenticator
4.2 Response from Authenticator to Client
4.3 Command and status constants

5. Bluetooth BR/EDR
5.1 Procedure Overview

5.2 Discovery Mode
5.3 Service Discovery Protocol
5.4 Communication
5.5 RFCOMM Framing

6. Bluetooth Low Energy
6.1 GATT Service Description

6.1.1 U2F Service
6.1.2 Device Information Service
6.1.3 Generic Access Service

6.2 Protocol Overview
6.3 Authenticator Advertising Format
6.4 Requests
6.5 Responses
6.6 Framing fragmentation
6.7 Implementation Considerations

6.7.1 Bluetooth pairing: Client considerations
6.7.2 Bluetooth pairing: Authenticator considerations
6.7.3 Handling command completion
6.7.4 Data throughput
6.7.5 Advertising
6.7.6 Authenticator Address Type

7. Bibliography
A. References

A.1 Normative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL
[WebIDL].

UAF specific terminology used in this document is defined in [FIDOGlossary].

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described

in [RFC2119].

2. Pairing
BR/EDR and BLE are long-range wireless protocols and thus have several implications
for privacy, security, and overall user-experience. Because they are wireless, BR/EDR
and BLE may be subject to monitoring, injection, and other network-level attacks.

For these reasons, Clients and Authenticators MUST create and use a long-term link key
(LTK) and SHALL encrypt all communications. Authenticator MUST never use short term
keys.

Because BR/EDR and BLE have poor ranging (i.e., there is no good indication of
proximity), it may not be clear to a FIDO Client with which BR/EDR or BLE
Authenticator it should communicate. Pairing is the only mechanism defined in this
protocol to ensure that FIDO Clients are interacting with the expected BR/EDR or BLE
Authenticator. As a result, Authenticator manufacturers SHOULD instruct users to avoid
performing Bluetooth pairing in a public space such as a cafe, shop or train station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-
wide" on most operating systems. That is, if an Authenticator is paired to a FIDO Client
which resides on an operating system where Bluetooth pairing is "system-wide", then
any application on that device might be able to interact with an Authenticator. This
issue is discussed further in Implementation Considerations.

3. Link Security
For BLE connections, the Authenticator SHALL enforce Security Mode 1, Level 2
(unauthenticated pairing with encryption) before any U2F messages are exchanged.

For BR/EDR connections, the Authenticator SHOULD use Secure Simple Pairing when
possible, Security Mode 4 or better. Encryption SHALL be enabled using a key size of 16
bytes before any U2F messages are sent.

4. Framing
Conceptually, framing defines an encapsulation of U2F raw messages responsible for
correct transmission of a single request and its response by the transport layer
(BR/EDR or Bluetooth Low Energy).

All requests and their responses are conceptually written as a single frame. The format
of the requests and responses is given first as complete frames. Fragmentation is
discussed next for each type of transport layer.

4.1 Request from Client to Authenticator

Request frames must have the following format

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

Supported commands are PING and MSG. The constant values for them are described

below.

Data format is defined in [U2FRAWMESSAGES].

4.2 Response from Authenticator to Client

Response frames must have the following format, which share a similar format to the

request frames:

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request,

the response is a successful response. The value ERROR indicates an error, and the

response data contains an error code as a variable-length, big-endian integer. The

constant value for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g.,
indicating an incorrectly formatted request, or possibly an error communicating with the

Authenticator’s U2F message processing layer. Errors reported by the U2F message

processing layer itself are considered a success from the encapsulation layer’s point of

view, and are reported as a complete MSG response.

Data format is defined in [U2FRAWMESSAGES]. Note that as per

[U2FRAWMESSAGES] (and unlike the NFC transport specification), all communication

SHALL be done using extended length APDU format.

4.3 Command and status constants

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

ERROR 0xbf
The KEEPALIVE command contains a single byte with the following possible values:

Status Constant Value

Processing 0x01

TUPNeeded 0x02

RFU 0x00, 0x03-0xFF

5. Bluetooth BR/EDR

5.1 Procedure Overview

The general procedure is as follows:

1. If the Client and Authenticator are not yet bonded, the Authenticator becomes
discoverable (enters Discoverable Mode). An Authenticator SHALL only allow
connections from new Clients while in this mode.

2. Client connects to Authenticator. If not already paired, Client and Authenticator
perform Bluetooth bonding to create a link key and connect. Authenticator SHALL
only allow connections from previously bonded Clients without user intervention.

3. Client performs service discovery on the Authenticator.
4. Client connects to the FIDO U2F service.
5. Client writes a request (e.g., an enroll request)
6. Authenticator evaluates the request and responds.
7. The connection is closed by the Client or the connection times out and is closed

by the Authenticator.

5.2 Discovery Mode

When the Authenticator is in Bluetooth discovery mode, it SHOULD include a device
name in the Extended Inquiry Response (EIR) packet. The device name should be
distinctive and user-identifiable. For example, "ACME Key" would be an appropriate
name, while "XJS4" would not be.

5.3 Service Discovery Protocol

The Authenticator SHALL contain a Service Discovery Protocol (SDP) record with the
following data:

uint8 fido_client_spp_sdprecord [] =
{
 0x09, 0x00, 0x01, /* ServiceClassIDList(0x0001) */
 0x35, 0x04, /* DataElSeq 4 bytes */
 0xFD, 0xFF, /*UUID 0xFFFD*/

 0x09, 0x00, 0x04, /* ProtocolDescriptorList(0x0004) */
 0x35, 0x0c, /* DataElSeq 12 bytes */
 0x35, 0x03, /* DataElSeq 3 bytes */
 0x19, 0x01, 0x00, /* UUID L2CAP(0x0100) */
 0x35, 0x05, /* DataElSeq 5 bytes */
 0x19, 0x00, 0x03, /* UUID RFCOMM(0x0003) */
 0x08, 0x00,

/* uint8 0x00 - Change 0x00 to actual RFCOMM Channel Number */
 0x09, 0x00, 0x06, /* LanguageBaseAttributeIDList(0x0006) */
 0x35, 0x09, /* DataElSeq 9 bytes */
 0x09, 0x65, 0x6e, /* uint16 0x656e */
 0x09, 0x00, 0x6a, /* uint16 0x006a */
 0x09, 0x01, 0x00, /* uint16 0x0100 */
 0x09, 0x01, 0x00,

/* ServiceName(0x0100) = "U2FAUTHDEVICE" */
 0x25, 0x0D, /* String length 13 */
 'U','2','F','A','U','T','H','D','E','V','I','C','E'

};

5.4 Communication

If one or both of the Authenticator and Client only supports BR/EDR, they SHALL
communicate over RFCOMM.

If both Authenticator and Client are dual mode devices, they SHALL communicate using
GATT over L2CAP on the BREDR connection.

5.5 RFCOMM Framing

No fragmentation is supported as communication over RFCOMM should be able to
handle all messages without fragmentation.

6. Bluetooth Low Energy
Authenticator and Client devices using BLE SHALL conform to Bluetooth Core
Specification 4.0 or later [BTCORE]

Bluetooth(tm) SIG specified UUID values SHALL be found on the Assigned Numbers
website [BTASSNUM]

6.1 GATT Service Description

This profile defines two roles: FIDO Authenticator and FIDO Client.

The FIDO Client shall be a GATT Client
The FIDO Authenticator shall be a GATT Server

The following graphic illustrates the mandatory services and characteristics that SHALL
be offered by a FIDO Authenticator as part of its GATT server:

The table below summarizes additional GATT sub-procedure requirements for a FIDO

Authenticator (GATT Server) beyond those required by all GATT Servers.

GATT Sub-Procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements for a FIDO

Client (GATT Client) beyond those required by all GATT Clients.

GATT Sub-Procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service UUID (*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures.

(**): Mandatory to support at least one of these sub-procedures.

Other GATT sub-procedures may be used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values
are big-endian coded, all strings are in UTF-8 encoding, and any characteristics not
mentioned explicitly are optional.

6.1.1 U2F Service

An Authenticator SHALL implement the U2F Service described below. The UUID for the
FIDO U2F GATT service is 0xFFFD, it shall be declared as a Primary Service. The
service contains the following characteristics:

Characteristic
Name Mnemonic Property Length UUID

U2F Control
Point u2fControlPoint Write

Defined by
Vendor (20-
512 bytes)

F1D0FFF1-
DEAA-ECEE-
B42F-
C9BA7ED623BB

U2F Status u2fStatus Notify N/A
F1D0FFF2-
DEAA-ECEE-
B42F-
C9BA7ED623BB

U2F Control
Point Length u2fControlPointLength Read 2 bytes

F1D0FFF3-
DEAA-ECEE-
B42F-
C9BA7ED623BB

U2F Service
Revision u2fServiceRevision Read

Defined by
Vendor (20-
512 bytes)

0x2A28

u2fControlPoint is a write-only command buffer.

u2fStatus is a notify-only response attribute. The Authenticator will send a series of
notifications on this attribute with a maximum length of (ATT_MTU-3) using the
response frames defined above. This mechanism is used because this results in a
faster transfer speed compared to a notify-read combination.

u2fControlPointLength defines the maximum size in bytes of a single write request to
u2fControlPoint. This value SHALL be between 20 and 512.

u2fServiceRevision defines the revision of the U2F Service. The value is a UTF-8

string. For this version of the specification, the value u2fServiceRevision SHALL be 1.0
or in raw bytes: 0x312e30.

The u2fServiceRevision Characteristic MAY include a Characteristic Presentation
Format descriptor with format value 0x19, UTF-8 String.

6.1.2 Device Information Service

An Authenticator SHALL implement the Device Information Service [BTDIS] with the
following characteristics:

Manufacturer Name String
Model Number String
Firmware Revision String

All values for the Device Information Service are left to the vendors. However, vendors
should not create uniquely identifiable values so that Authenticators do not become a
method of tracking users.

6.1.3 Generic Access Service

Every Authenticator SHALL implement the Generic Access Service [BTGAS] with the
following characteristics:

Device Name
Appearance

6.2 Protocol Overview

The general overview of the communication protocol follows:

1. Authenticator advertises the FIDO U2F service.
2. Client scans for Authenticator advertising the FIDO U2F service.
3. Client performs characteristic discovery on the Authenticator.
4. If not already paired, the Client and Authenticator SHALL perform BLE pairing and

create a LTK. Authenticator SHALL only allow connections from previously bonded
Clients without user intervention.

5. Client reads the u2fControlPointLength characteristic.
6. Client registers for notifications on the u2fStatus characteristic.
7. Client writes a request (e.g., an enroll request) into the u2fControlPoint

characteristic.
8. Authenticator evaluates the request and responds by sending notifications over

u2fStatus characteristic.
9. The connection is closed by the Client or the connection times out and is closed

by the Authenticator.

6.3 Authenticator Advertising Format

When advertising, the Authenticator SHALL advertise the FIDO U2F service UUID.

When advertising, the Authenticator MAY include the TxPower value in the
advertisement (see [BTXPLAD]).

The advertisement MAY also carry a device name which is distinctive and user-
identifiable. For example, "ACME Key" would be an appropriate name, while "XJS4"
would not be.

The Authenticator SHALL also implement the Generic Access Profile [BTGAP] and
Device Information Service [BTDIS], both of which also provide a user friendly name
for the device which could be used by the Client.

It is not specified when or how often an Authenticator should advertise, instead that
flexibility is left to manufacturers.

6.4 Requests

Clients SHOULD make requests by connecting to the Authenticator and performing a
write into the u2fControlPoint characteristic.

6.5 Responses

Authenticators SHOULD respond to Clients by sending notifications on the u2fStatus
characteristic.

Some Authenticators might alert users or prompt them to complete the test of user
presence (e.g., via sound, light, vibration, etc.) Upon receiving any request, the
Authenticators SHALL respond within kMaxInitialResponseMillis. The Authenticators
SHALL send KEEPALIVE BLE commands every kKeepAliveMillis milliseconds. While
the Authenticator is processing the request the KEEPALIVE BLE command will contain
status Processing. As soon the Authenticator has completed the processing it SHALL
either send the reply or wait for user presence. If a wait-for-user-presence state is
entered the KEEPALIVE will contain the TUPNeeded status. The Authenticators MAY alert
the user (e.g., by flashing) in order to prompt the user to complete the test of user
presence. Upon receiving a KEEPALIVE message, the Client SHALL assume the
Authenticator is still processing the command; the Client SHALL not resend the
command. The Authenticator SHALL continue sending KEEPALIVE messages at least
every kKeepAliveMillis to indicate that it is still handling the request. Until a client-
defined timeout occurs, the Client SHALL NOT move on to other devices when it receives
a KEEPALIVE with TUPNeeded status, as it knows this is a device that can satisfy its
request.

6.6 Framing fragmentation

A single request/response sent over BLE MAY be split over multiple writes and
notifications, due to the inherent limitations of BLE which is not currently meant for
large messages. Frames are fragmented in the following way:

A frame is divided into an initialization fragment and one or more continuation
fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 maxLen - 3 DATA Data

where maxLen is the maximum packet size supported by the characteristic or

notification.

In other words, the start of an initialization fragment is indicated by setting the high bit

in the first byte. The subsequent two bytes indicate the total length of the frame, in big-

endian order. The first maxLen - 3 bytes of data follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ
Packet sequence 0x00..0x7f (high bit always

cleared)

1
maxLen -

1
DATA Data

where maxLen is the maximum packet size supported by the characteristic or

notification.

In other words, continuation fragments begin with a sequence number, beginning at 0,

implicitly with the high bit cleared.

Example for sending a PING command with 40 bytes of data with a maxLen of 20 bytes:

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512

bytes:

Frame Bytes

0 [810190] [400 bytes of data]

6.7 Implementation Considerations

6.7.1 Bluetooth pairing: Client considerations

As noted in the Pairing section, a disadvantage of using standard Bluetooth pairing is

that the pairing is "system-wide" on most operating systems. That is, if an Authenticator

is paired to a FIDO Client which resides on an operating system where Bluetooth

pairing is "system-wide", then any application on that device might be able to interact

with an Authenticator. This poses both security and privacy risks to users.

While Client operating system security is partly out of FIDO's scope, further revisions of

this specification MAY propose mitigations for this issue.

6.7.2 Bluetooth pairing: Authenticator considerations

The method to put the Authenticator into Pairing Mode should be such that it is not

easy for the user to do accidentally especially if the pairing method is Just Works. For

example, the action could be pressing a physically recessed button or pressing

multiple buttons. A visible or audible cue that the Authenticator is in Pairing Mode

should be considered. As a counter example, a silent, long press of a single non-

recessed button is not advised as some users naturally hold buttons down during

regular operation.

6.7.3 Handling command completion

One of the benefits of the Bluetooth, and especially, Bluetooth Low Energy protocols is

that they allow Authenticators to be battery-operated devices with low power

requirements. A key consideration for such devices to to be able to conserve power by

shutting down or switching to a lower-power state when they have satisfied a Client's

requests.

On the other hand, the design of the protocol typically requires more than one

command before completion. This is especially true when one command is rejected

due to a key handle error: if a user has more than one key handle associated with an

account or identity, multiple key handles may need to be tried before getting a

successful outcome. At the same time, a Client that fails to send followup commands in

a timely fashion may cause the Authenticator to drain its battery by staying powered up

anticipating more commands.

A further consideration for an Authenticator is to ensure that a user is not confused

about which command she is confirming by completing the test of user presence. That

is, if a user performs the test of user presence, that action should perform exactly one

operation.

We combine these considerations into the following series of recommendations:

Upon initial connection to an Authenticator, and upon receipt of a response from

an Authenticator, if a Client has more commands to issue, the Client MUST

transmit the next command or fragment within kMaxCommandTransmitDelayMillis
milliseconds.
Upon successful completion of a command which required a test of user
presence, e.g. upon a successful authentication or registration command, the
Authenticator can assume the Client is satisfied, and MAY reset its state or power
down.
Upon sending a command response that did not consume a test of user
presence, the Authenticator MUST assume that the Client may wish to initiate
another command, and leave the connection open until the Client closes it or until
a timeout of at least kErrorWaitMillis elapses. Examples of command
responses that do not consume user presence include failed authenticate or
register commands, as well as get version responses, whether successful or not.
After kErrorWaitMillis milliseconds have elapsed without further commands
from a Client, an Authenticator MAY reset its state or power down.

Constant Value

kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kMaxInitialResponseMillis 500 milliseconds

kKeepAliveMillis 500 milliseconds

6.7.4 Data throughput

BLE does not have particularly high throughput, this can cause noticeable latency to
the user if request/responses are large. Some ways that implementers can reduce
latency are:

Support the maximum MTU size allowable by hardware (up to the 512 bytes max
from the BLE specifications).
Make the attestation certificate as small as possible, do not include unnecessary
extensions.

6.7.5 Advertising

Though the standard doesn’t appear to mandate it (in any way that we’ve found thus
far), advertising and device discovery seems to work better when the Authenticators
advertise on all 3 advertising channels and not just one.

6.7.6 Authenticator Address Type

In order to enhance the user's privacy and specifically to guard against tracking, it is
recommended that Authenticators use Resolvable Private Addresses (RPAs) instead
of static addresses.

7. Bibliography
[BTASSNUM] Bluetooth Assigned Numbers. https://www.bluetooth.org/en-
us/specification/assigned-numbers

[BTCORE] Bluetooth Core Specification 4.1. see https://www.bluetooth.org/en-
us/specification/adopted-specifications

[BTDIS] Device Information Service V1.1. see https://www.bluetooth.org/en-
us/specification/adopted-specifications

[BTGAP] Generic Access Profile. Bluetooth Core Specification 4.1, Volume 3, Part C,
Section 12. see https://www.bluetooth.org/en-us/specification/adopted-specifications

[BTGAS] Generic Access Service. Bluetooth Core Specification 4.1, Volume 3, Part C,
Section 12. see
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?
u=org.bluetooth.service.generic_access.xml

[BTXPLAD] Bluetooth TX Power AD Type. Bluetooth Core Specification 4.1, Volume 3,
Part C, Section 11. see https://www.bluetooth.org/en-us/specification/adopted-
specifications

[U2FRAWMESSAGES] Dirk Balfanz, Jakob Ehrensvard. FIDO U2F Raw Message
Formats, Aug 2014.

A. References

A.1 Normative references

[ECMA-262]

ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/
[FIDOGlossary]

R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary.
FIDO Alliance Proposed Standard. URLs:
HTML: fido-glossary.html
PDF: fido-glossary.pdf

[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[WebIDL]

Cameron McCormack; Boris Zbarsky. WebIDL Level 1. 4 August 2015. W3C
Working Draft. URL: http://www.w3.org/TR/WebIDL-1/

