
Credential Exchange Protocol

https://fidoalliance.org/specs/cx/cxp-v1.0-wd-20240522.html

Github
GitHub

Nick Steele (1Password)

Rew Islam (Dashlane)
Anders Åberg (Bitwarden)
René Léveillé (1Password)
Oscar Hinton (Bitwarden)
Jonathan Salamon (Dashlane)
Ayman Bedair (NordPass)
Lee Campbell (Google)
Reema Bajwa (Google)

Copyright © 2024 FIDO Alliance. All Rights Reserved.

This document defines a protocol to securely move one or more credentials between two credential providing
applications same or separate devices.

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Working Draft Specification. If you wish to make
comments regarding this document, please Contact Us. All comments are welcome.

This is a Working Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. This document is merely a FIDO Alliance working group internal and member-
confidential document. It has no official standing of any kind and does not represent consensus of the FIDO
Alliance. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to
reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an
appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual
property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other
contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Working Draft, May 22, 2024

This version:

Issue Tracking:

Editor:

Contributors:

Abstract

W
ORKING DRAFT

W
ORKING DRAFT

Status of This Document

1/11

https://fidoalliance.org/
https://fidoalliance.org/specs/cx/cxp-v1.0-wd-20240522.html
https://github.com/fido-alliance/fido-2-specs
https://github.com/fido-alliance/fido-2-specs/issues/
mailto:nick.steele@1password.com
mailto:rew.islam@dashlane.com
mailto:aaberg@bitwarden.com
file:///home/travis/build/fido-alliance/fido-2-specs/release/fido-v1.0-wd-20240522/rene.leveille@1password.com
mailto:ohinton@bitwarden.com
mailto:jonathan@dashlane.com
mailto:ayman.bedair@nordsec.com
mailto:leecam@google.com
mailto:reemabajwa@google.com
https://fidoalliance.org
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

Table of Contents

Individuals and organizations use credential providers to create and manage credentials on their behalf as a
means to use stronger authentication factors. These credential providers can be used in browsers, on network
servers, and on mobile and desktop platforms, and often sharing or synchronizing credentials between different
instances of the same provider is an easy and common task.

However, the transfer of credentials between two different providers has traditionally been an infrequent
occurrence, such as when a user or organization is attempting to migrate credentials from one provider to

1 Introduction
1.1 Scope
1.2 Terminology

2 Protocol Overview
2.1 Participants
2.1.1 Credential Owner
2.1.2 Credential Providers
2.1.2.1 Importing Provider
2.1.2.2 Exporting Provider

2.1.3 Authorizing Party
2.2 Supporting Different Network Conditions
2.3 Supporting Different Key Encryption Schemes
2.3.1 Diffie-Hellman Key Exchange {#dhke}
2.3.2 Hybrid Public Key Encryption {#hpke}

3 Protocol API
3.1 Credential Types
3.2 Export Request
3.3 Export Response
3.4 Credential Payload
3.5 Supporting Types
3.5.1 HPKE Parameters
3.5.2 HPKE Modes
3.5.3 Archive Algorithms

4 IANA Considerations

5 Implementation Requirements

6 Security Considerations

Conformance

Index
Terms defined by this specification
Terms defined by reference

References
Normative References
Informative References

IDL Index

1. Introduction

NOTE: The name of this specification is subject to change.

2/11

another. As it becomes more common for users to have multiple credential providers that they use to create a
manage credentials, it becomes important to address some of the security concerns with regard to migration
currently:

In order to support credential provider interoperability and provide a more secure means of credential transfer
between providers, this document outlines a protocol for the import and export of one or more credentials
between two credential providers on behalf of a user or organization in both an offline or online context. Using
Diffie-Hellman key exchange, this protocol allows the creation of a secure channel or data payload between two
providers.

This protocol describes the secure transmission of one or more credentials between two credential providers on
the same or different devices managed by the same credential owner, capable of function in both online and
offline contexts. This protocol does not make any assumptions about the channels in which credential data is
passed from the source provider to the destination provider. The destruction of credentials after migration by the
credential provider source is out of scope as well.

{::boilerplate bcp14-tagged} Certain security-related terms are to be understood in the sense defined in [RFC494
9]. These terms include, but are not limited to, "attack", "authentication" "authorization", "certificate", "credential",
"encryption", "identity", "sign", "signature", "trust", "validate", and "verify".

Credential provider applications often export credentials to be imported in an insecure format, such as CSV,
that undermines the security of the provider and potentially opens the credential owner to vulnerability.

Credential providers have no standard structure for the exported credential CSV, which can sometimes
result in failure to properly migrate one or more credentials into a new provider.

Some credentials might be unallowed to be migrated, due to device policy or lack of algorithmic capability by
the importing credential provider.

Because organizations lack a secure means of migrating user credentials, often they will apply device policy
that prevents the export of credentials to a new provider under any circumstances, opting to create multiple
credentials for a service.

1.1. Scope

1.2. Terminology

2. Protocol Overview

3/11

 ┌──┐
 │ Authorizing Party │
 └─────┬──┬─────┘

 │ (2) Determine (1) Create Export │
 Migration Key Request
┌────────────┴──┐ ┌────┴──────────┐
│ ◀─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤ │
│ │ │ │
│ │ │ │
│ │ │ │
│┌─────────────┐│ │ │
││ (3)Encrypt ││ │ │
││ Credential ││ │ │
││ Data ││ │ │
│└─────────────┘│ │ │
│ │ (4) Send Export Response │ │
│ │─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ▶┌─────────────┐│
│ │ ││ (5) Decrypt ││
│ │ ││ Bundle ││
│ │ │└─────────────┘│
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ Exporter │ │ Importer │
│ │ │ │
└───────────────┘ └───────────────┘

The flow illustrated above shows the following:

An entity that is able to authenticate, authorize, or access one or more credentials from within a credential
provider. The credential owner is in charge of authorizing or delegating authorization of the migration between
the source credential provider and the destination provider. In the case of a credential owner being an individual,
they are referred to as the end-user, an individual or service being delegated by an organization are considered
credential owner agents.

1. The importing credential provider initiates the flow by creating an export request for the exporting provider.
The import request includes a challenge, the scope of the export request, and a declaration of the type of
encryption scheme to be used. In most cases, this will use Diffie-Hellman and the importer will provide a
public key in the export request.

2. If an end-user and/or authorizing party approves the request, the exporter uses the export request key to
generate or retrieve the migration key used to encrypt the credential data.

3. The source collects and encrypts the requested credential data for export and signs the challenge provided
by the importer.

4. The export response is sent to the destination provider and includes the encrypted credential data, the
signed challenge response, and the public key of the source credential provider’s migration key.

5. The importing provider validates the challenge and retreives the migration key, decrypting the credential
data which is formatted normatively with (CXF), and then stores the result.

2.1. Participants

2.1.1. Credential Owner

2.1.2. Credential Providers

4/11

Hardware or software capable of securely storing and managing credentials on behalf of their owner. The two
credential providers that participate in this protocol should generally be two distinct pieces of hardware or
software.

The importing provider, or importer, initiates the export request and is the final storage destination for the
exported credentials.

The exporting provider, or exporter, encrypts and transfers the credential data to the importing provider.

An OPTIONAL authority that can grant and attest certificates on behalf of a credential owner. These certificates
are used to authenticate the credential agent and MAY be used to create the migration key used on behalf of the
source and destination credential providers.

This protocol can work in both online and offline scenarios, as well as in air-gapped networks where one or both
devices might not have access to the internet. Different network conditions might result in participants like an
authorizing party or another outside service from being included, but the core exchange protocol should not be
affected.

Import and export providers can use different encryption schemes to initiate a secure exchange of credentials,
and depending on the needs of the credential owner, there may be a preference for which type of scheme is
used for encrypting the credential payload.

This scheme allows for an importer and exporter to negotiate a shared key using a key pair that SHOULD be
generated by the respective provider applications for the purposes of migration, but MAY be supplied by an
authorizing party in enterprise cases.

If the importing provider receives or knows the exporter’s public key prior to generating the export request, it is
capable of hybrid encryption to encapsulate a migration key that can be securely passed to the exporting
application.

Credential Types are defined through the Credential Exchange Format (CXF). The exported credentials MUST
be formatted using CXF in order to have interoporability.

2.1.2.1. Importing Provider

2.1.2.2. Exporting Provider

2.1.3. Authorizing Party

2.2. Supporting Different Network Conditions

2.3. Supporting Different Key Encryption Schemes

2.3.1. Diffie-Hellman Key Exchange {#dhke}

2.3.2. Hybrid Public Key Encryption {#hpke}

3. Protocol API

3.1. Credential Types

3.2. Export Request 5/11

The export request initiates the protocol which contains a set of encryption parameters. These encryption
parameters MUST have an associated public key if it is necessary for that instance of given parameters. This
request or elements of it MAY be created by the authorizing party if one is present, or created by the destination
credential provider with or without input from the credential owner.

dictionary ExportRequest {
 required unsigned short version = 0;
 required sequence<HPKEParameters> hpke;
 required sequence<DOMString> archive;
 required DOMString importer;
 sequence<DOMString> credentialTypes;
 sequence<DOMString> knownExtensions;
 };

The protocol version that the Importing Provider wants to use in the exchange. This document
currently details version 0.

This member defines a list of HPKEParameters that the Importing Provider supports in order of
preference. It is up to the Exporting Provider to select a matching set of parameters that both support.

This member defines a list of archiving algorithms that the Importing Provider supports in order of
preference. It is up to the Exporting Provider to select an algorithm that both support. The values of
this list SHOULD be members of ArchiveAlgorithm and the Exporting Provider MUST ignore any
unknown values.

This member is the Relying Party Identifier of the Importing Provider.

This OPTIONAL member lists the types of credentials that the Importing Provider understands and
requests from the Exporting Provider. This list SHOULD be validated by the user before initiating the
exchange. The values in the list SHOULD be members of CredentialType and the Exporting
Provider MUST ignore any unknown values.

If this member is not present then it is understood that the Importing Provider is requesting all
credential types. If this member is present but the list is empty, the Exporting Provider MUST send
only the Account object without any Collection information.

This OPTIONAL member lists the extensions that the Importing Provider understands. This list
SHOULD be members of name defined in CXF and the Exporting Provider MUST ignore all unknown
values.

If this member is not present, then it is understood that the Importing Provider is requesting all
extensions that the Exporting Provider wishes to include. If this member is present but the list is empty,
the Exporting Provider MUST NOT include any extensions in the resulting export.

The export response includes both the credential payload and any metadata necessary to decrypt and marshall
the credentials into the importer’s storage.

3.2. Export Request

version, of type unsigned short, defaulting to 0

hpke, of type sequence<HPKEParameters>

archive, of type sequence<DOMString>

importer, of type DOMString

credentialTypes, of type sequence<DOMString>

knownExtensions, of type sequence<DOMString>

3.3. Export Response

6/11

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

dictionary ExportResponse {
 required unsigned short version = 0;
 required HPKEParameters hpke;
 required DOMString archive;
 required DOMString exporter;
 required Base64UrlString payload;
};

The protocol version that the Exporting Provider understands. The value SHOULD be the same as
version however there is the possibility of the Exporting Provider having a previous version of the
protocol implemented and therefore responding with a lower version. The Importing Provider MAY
refuse this version downgrade. This document currently details version 0.

This member defines the encryption parameters selected by the Exporting Provider. The value MUST
correspond to an entry in hpke.

This member defines the archiving algorithm selected by the Exporting Provider. The value MUST
correspond to an entry in archive.

This member is the Relying Party Identifier or the Exporting Provider.

This contains the base64url encoded Credential Payload.

One or more normatively formatted credentials that are passed inside the export response. The format MUST
follow the zip archive format as defined in (CXF) where each file is separately encrypted using the key defined by
the selected HPKEParameters. The file names are replaced with the anonymous identifier in the export request.
All files are stored as JSON Web Encryption files.

CXP-Export/
├─ index.jwe
├─ documents/
│ ├─ 1b3.jwe
│ ├─ d5f.jwe
│ ├─ 7h9.jwe

dictionary HPKEParameters {
 required DOMString mode;
 required unsigned short kem;
 required unsigned short kdf;
 required unsigned short aead;
 JWK key;
};

The encryption mode as defined in [RFC9180] and SHOULD be a member of HPKEMode. The Exporting
Provider SHOULD ignore any HPKEParameters where this value is unknown.

The encryption key encapsulation method as defined in [RFC9180]. The value SHOULD be from the HPKE

version, of type unsigned short, defaulting to 0

hpke, of type HPKEParameters

archive, of type DOMString

exporter, of type DOMString

payload, of type Base64UrlString

3.4. Credential Payload

3.5. Supporting Types

3.5.1. HPKE Parameters

mode, of type DOMString

kem, of type unsigned short

7/11

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://www.iana.org/assignments/hpke/hpke.xhtml#hpke-kem-ids

KEM Identifiers IANA table, the Exporting Provider SHOULD ignore any HPKEParameters where this
value is unknown.

The encryption key derivation function as defined in [RFC9180]. The value SHOULD be from the HPKE KDF
Identifiers IANA table, the Exporting Provider SHOULD ignore any HPKEParameters where this value
is unknown.

The authenticated encryption with additional data algorithm as defined in [RFC9180]. The value SHOULD be
from the HPKE AEAD Identifiers IANA table, the Exporting Provider SHOULD ignore any
HPKEParameters where this value is unknown.

This member is only present in the case that the option is not using a pre-shared key. It is a JSON Web Key
representing that provider’s key necessary for the other provider’s generation of the AEAD key.

enum HPKEMode{
 "base",
 "psk",
 "auth",
 "auth-psk"
};

Base mode of encrypting a public key.

Authenticates the possession of a pre-shared key.

Authenticates the possession of a KEM private key.

Authenticates possession of both a pre-shared key and a KEM private key.

enum ArchiveAlgorithm {
 "deflate"
};

Archiving through the use of the DEFLATE algorithm defined in [RFC1951].

This document has no IANA actions.

This section defines which algorithms and features of this specification are mandatory to implement. Applications
using this specification can impose additional requirements upon implementations that they use.

kdf, of type unsigned short

aead, of type unsigned short

key, of type JWK

3.5.2. HPKE Modes

base

psk

auth

auth-psk

3.5.3. Archive Algorithms

deflate

4. IANA Considerations

5. Implementation Requirements

6. Security Considerations 8/11

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://www.iana.org/assignments/hpke/hpke.xhtml#hpke-kdf-ids
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://www.iana.org/assignments/hpke/hpke.xhtml#hpke-aead-ids

TODO Security

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119
terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be
interpreted as described in RFC 2119. However, for readability, these words do not appear in all uppercase
letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and
notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the normative
text with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like
this:

6. Security Considerations

Conformance

EXAMPLE 1
This is an example of an informative example.

Note, this is an informative note.

Index

Terms defined by this specification

aead, in § 3.5.1

archive
dict-member for ExportRequest , in § 3.2

dict-member for ExportResponse, in § 3.3

ArchiveAlgorithm, in § 3.5.3

"auth", in § 3.5.2

auth, in § 3.5.2

"auth-psk", in § 3.5.2

auth-psk, in § 3.5.2

"base", in § 3.5.2

base, in § 3.5.2

Credential Payload, in § 3.4

credentialTypes, in § 3.2

"deflate", in § 3.5.3

deflate, in § 3.5.3

exporter, in § 3.3

Exporting Provider, in § 2.1.2.2

ExportRequest, in § 3.2

9/11

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://webidl.spec.whatwg.org/

P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. May 1996. Informational. URL:
https://www.rfc-editor.org/rfc/rfc1951

R. Shirey. Internet Security Glossary, Version 2. August 2007. Informational. URL: https://www.rfc-
editor.org/rfc/rfc4949

R. Barnes; et al. Hybrid Public Key Encryption. February 2022. Informational. URL: https://www.rfc-
editor.org/rfc/rfc9180

ExportResponse, in § 3.3

hpke
dict-member for ExportRequest , in § 3.2

dict-member for ExportResponse, in § 3.3

HPKEMode, in § 3.5.2

HPKEParameters, in § 3.5.1

importer, in § 3.2

Importing Provider, in § 2.1.2.1

kdf, in § 3.5.1

kem, in § 3.5.1

key, in § 3.5.1

knownExtensions, in § 3.2

mode, in § 3.5.1

payload, in § 3.3

"psk", in § 3.5.2

psk, in § 3.5.2

version
dict-member for ExportRequest , in § 3.2

dict-member for ExportResponse, in § 3.3

Terms defined by reference

[WEBIDL] defines the following terms:
DOMString

sequence

unsigned short

References

Normative References

[RFC2119]

[WEBIDL]

Informative References

[RFC1951]

[RFC4949]

[RFC9180]

10/11

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc4949
https://www.rfc-editor.org/rfc/rfc4949
https://www.rfc-editor.org/rfc/rfc9180
https://www.rfc-editor.org/rfc/rfc9180

dictionary ExportRequest {
 required unsigned short version = 0;
 required sequence<HPKEParameters> hpke;
 required sequence<DOMString> archive;
 required DOMString importer;
 sequence<DOMString> credentialTypes;
 sequence<DOMString> knownExtensions;
 };

dictionary ExportResponse {
 required unsigned short version = 0;
 required HPKEParameters hpke;
 required DOMString archive;
 required DOMString exporter;
 required Base64UrlString payload;
};

dictionary HPKEParameters {
 required DOMString mode;
 required unsigned short kem;
 required unsigned short kdf;
 required unsigned short aead;
 JWK key;
};

enum HPKEMode{
 "base",
 "psk",
 "auth",
 "auth-psk"
};

enum ArchiveAlgorithm {
 "deflate"
};

IDL Index

↑
→

11/11

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short

	Credential Exchange Protocol
	Working Draft, May 22, 2024
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Terminology

	2. Protocol Overview
	2.1. Participants
	2.1.1. Credential Owner
	2.1.2. Credential Providers
	2.1.3. Authorizing Party

	2.2. Supporting Different Network Conditions
	2.3. Supporting Different Key Encryption Schemes
	2.3.1. Diffie-Hellman Key Exchange {#dhke}
	2.3.2. Hybrid Public Key Encryption {#hpke}

	3. Protocol API
	3.1. Credential Types
	3.2. Export Request
	3.3. Export Response
	3.4. Credential Payload
	3.5. Supporting Types
	3.5.1. HPKE Parameters
	3.5.2. HPKE Modes
	3.5.3. Archive Algorithms

	4. IANA Considerations
	5. Implementation Requirements
	6. Security Considerations
	Conformance
	Index
	Terms defined by this specification
	Terms defined by reference

	References
	Normative References
	Informative References

	IDL Index

