FIDO UAF Specification Set Manifest

filename (this file): fido-specifications-manifest-uaf-v1.0-rd-20131213
FIDO spec family: UAF

targeted version: v1.0

status type: RD (Review Draft)

snapshot date: 2013-12-13

version designation: uaf-v1.0-rd-20131213

Spec Filenames within the
“vaf-v1.0-rd-20131213”
REVIEW DRAFT spec set

fido-uaf-protocol-uaf-v1.0-rd-20131213
fido-authenticator-asm-api-uaf-v1.0-rd-20131213
fido-authenticator-commands-uaf-v1.0-rd-20131213
fido-authenticator-metadata-uaf-v1.0-rd-20131213
fido-registry-predefined-values-uaf-v1.0-rd-20131213
fido-technical-glossary-uaf-v1.0-rd-20131213

fido-client-api-uaf-v1.0-rd-20131213

Description

UAF protocol spec proper.
Authenticator-specific module API
Authenticator commands.
Authenticator Metadata.
Pre-defined values registry.
Glossary.

Non-normative webapp and Android client
APL

‘

Q)

lliance

UAF Protocol Specification
Draft v0.12q

Specification Set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.

Contributors:

Abstract:

Note: This document is subject to the terms of use posted on the FIDO Alliance website.

Please see www.fidoalliance.org/Terms-of-Use.html.

Confidential: For FIDO Alliance Members Only
Copyright © 2013 FIDO Alliance

http://www.fidoalliance.org/Terms-of-Use.html

FIDO UAF Protocol Specification Draft v0.12

Table of Contents

1 NOTATION. teeiitiiiieiiie ittt ettt ettt ettt et et 5
1.0 KOY WWOIAS. ettt ettt ettt ettt e et e ettt e e e e e 5

2 OVEIVIEW. ueiiiieriiiiiiiiieiiiiiiiei ittt e e e st e e sttt e e e e e e e e e 6
2.0 SO ettt ettt ettt ettt ettt et ee ettt ettt ettt ta ettt ettt 6
2.2 ArChITECIUNE. .ttt r e 7
2.3 ProtoCOl CONVErSatioN . ..uuuueeeiaiiiiiiieiiieiiiee ittt ittt ettt e et ea e e 7
2.3.1 RegiSTratioN . coeees e 8
2.3.2 AUtheNtiCatioN. .uuiiieiiieiiee et 9

2.3.3 Transaction Confirmation.........oueeierieiiiiiiiiiiiiiieiieeie it 10
2.3.4 Deregistration......oeeeeeeeiiiiiniiiiiiiiiiiiiiiei i s 11

3 ProOtOCOI DEtailS. uueeeeeiiaeieiiieiie ittt 12
3.1 Shared STruCtUres and TYP@S. . uuuuuieiiieiiiiiiieeiie ittt ettt s ee e et e e e e e 12
3.1.1 Operation Header........ooueiiiieiiiiiiiiiiiiiiiiiieiiiieciiecie e 12
3.1.2 Type Of AAID....eeueiiiiiiieiiecs s 13
3.1.3Type Of KOYID.eeiouuiiiiiiiiiiiiieiite ittt ittt ese e e 14

3.1.4 Type of ServerChallenge.......cceueeeiiiiiiiiiiiiiiiiiiiiiciecie e 14

3.1.5 Type of FinalChallengeParams.e.eeeieeieiiiiiiiieiiiiiieeiieiiieeieee e 15

3.1.6 Type Of TLSDAtA. .uuueeiiiiiiiiiiiiiii et ettt ettt eeeee e 15

3.1.7 Type Of JIWKKEY.....ooiuiiiiiiiiiiiiiiiiiiiiiiiii it 16
3.1.8 Type Of EXEONSION . .eeiiuriiiiiiiiiiiiiiiiiiiiii ittt ee e 17

3.1.9 Type Of TrUSTEAADDS . c.ueeeieieiiieiiie ittt ettt ettt ettt eas e e e e 17

3.2 Version Negotiation...oouueeeeeiiiiiiiisieiiiiieii i ittt ieisee ettt seeieeeeereeeeeieeeeeeteeeeee s 18
3.3 Policy Generation and Parsing RUIES..........coeeeuiiiiieiiiiiiiiiiiiiiiiiiiiiiieciieciecciec s 19
3.4 Registration Operation..........oeveeiiiiiieeiiiineeiiiinieiiiiiieeiiiineee e 22

Confidential: For FIDO Alliance Members Only Page 2

FIDO UAF Protocol Specification Draft v0.12

3.4.1 Type of RegiSterROQUEST . .uueireeieiiiiiiiieiieiieieeie e 23
3.4.2 Type Of RegiStErROSPONSE. .euuuuiiiiuiiiiiiiiiiiiiiieeii ittt 24
3.4.3 ProCeSSING RUIES. ..uuueiiiiiiiiiiiiiiiiiiiiie ettt 26
3.4.3.1 Registration Request Generation Rules for FIDO Server...........occeoeeneeiiieineeennes 26

3.5 Authentication Operation........cc.ceeeeiieiiiiiiiieiiessecsse s 28
3.5.1 Type of AuthenticatioNREQUESE......eeisuueiiiiiiiiiiiiiiiiiieeiieiieiieeee e 29
3.5.2 Type of AuthentiCatioNRESPONSE. ..ccuurriiiieiiiiiiiiiiiiiiiiiieiieiiseeisie et 31
3.5.3 Processing RUIES......ccueiseeiiiiiiiiiiiie s 32
3.6 Deregistration Operation........oeueeeieieieeiiiininiiiiiieeiiiieees e 35
3.6.1 Type of DeregistratioNREQUEST.ueeuiiiiiiiiiiiiiiiiieiieeiiieieiieeee e 35
3.6.2 ProcesSiNg RUIES.....uueiiiiiiiiiiiiiiiiiiiiiiiiseiie ittt 36

4 CONSIAEIatioNS. ceieueueieeiiieieiieee ettt ettt ettt ettt ettt e ettt et et et e e e s e e e aaeea 38
4.1 Protocol Core Design ConSiderations. . .u. ueuueeeinieiiiiiiiiiiiiiiiiiiieiiiieieieiie i eeeeeiee 38
4.1.1 Authenticator Metadata......ueeeeeiiiiiiiiiiiiiiiiiiiiieiiceiecieie e 38
4.1.2 Authenticator Attestation........ceeeeeiiiiiiiiiiiiiiiiiiiiiiciiee 38
4.1.2.1 Basic Attestation.......cceveeeeeiiiiiiiiiiiiiieiiii i 39

A4.1.3 Error HANAING. .c.eeeeeeiiiiiiiiiiiiiiiiie ittt ettt eeeeee 40
4.1.4 Registration and Authentication Schemes..........coceeeiiiiiiiiiiiiiiiiieieeiece, 41
4.1.5 Username in Authenticator.......cooeeeeeeiieiiiiiieiiiiiciecssecsi s 41
4.1.6 TLS Protected COMMUNICAtION. teiueeiiiiiiiiiiiiiiiiiiiiiee i 41
4.2 Implementation ConSiderations.uuuueeiseieiiiiiiiieiiiiiiii it eieeee et 42
4.2.1 Server Challenge and Random Numbers.........cccoeeiniiieiiiiiieiiiiiieieecece 42
4.2.2 TODO: iOS Implementations Of FIDO CHENES....ccuueiueiiiiiiiiiiiiiiiiiiiieeeiiiiiieeiiiieeee 42
4.3 Security CoNSIAEratioNS. ...uueuueeiiiiiiiiiiiieiiie ittt 42
4.3.1 FIDO Authenticator SECUNItY...ouueuseeiiiiiiiiiiiiiiiiiieisiiiieiiie i 45
4.3.2 Cryptographic AlOrithmS.....ceeueiiiiiiiiiiiiiiiiiiisieiseiseeieei e 45

Confidential: For FIDO Alliance Members Only Page 3

FIDO UAF Protocol Specification Draft v0.12

4.3.3 Application 1SOlatioN...eeureeiiiiiiiiiiiiiiiiieeise et 45
4.3.3.1 FacetlD ASSertion.......cceeeeeeieeiiiiiiiiiiiiiiiiii ittt 45

4.3.3.2 1501ation USING API K@YS...cciaeiiiaiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeieeiseeciiee e eeiieeeeees 47

A.3.4 TLS BiNAING. .eeeeeiiiiiiiiiiiiiiiiiiiii ittt ettt ettt et e it se ettt et ese et e s 48

4.3.5 POISON@S. cuuueriiiiieiiiiinniiiiieiiiiiiiiiinieeieeeiiiiitietttee e et is sttt e e et s 48

4.3.6 SESSIONID . ciiiiiiiiiiiiiiiiiiiiiiisit ettt ittt 49

4.3.7 Authenticator Information retrieved from client vs. MetaData..........cocceeveeeeeinnneeee. 49

4.4 Interoperability Considerations.........ceeueeisiiieiiiiiiiiiiiseesecise e 50
4.5 IANA CONSIAOIratioNS. ccuueeeeeieiieiiiiiiiiteii ittt sttt ettt ettt et e e 51

5 UAF Supported SCheMES.ueiuiiiiiiiiiiiiiiieiiei it 52
5.1 UAFVI-TLV ittt ettt et ettt e ettt ettt e et e et e e e eaeeeaanes 52
5.1.1 KeyRegistrationData.......cueeeiiiiiaiiieiiiiiiiiiiiiseiiieiii it 52

5.1.2 SigNData. . eeeieeiiiiiiieiieiie sttt ettt 52

6 DefiNItiONS. cueeeiiiiiiii it 53
Bibliography.....oooeeeueiiiiiiiiiiiiiiiiiiiiiiiiiiie i 54
AppendiX A UAF JSON SCh@M@...ueiieiiiiiiiiiiiiiiiiiii ittt tae et it eneeee 56

Confidential: For FIDO Alliance Members Only Page 4

FIDO UAF Protocol Specification Draft v0.12

1 Notation

Type names, attribute names and element names are written in Jtalics.
String literals are enclosed in “, e.g. “UAF-TLV”.

In formulas we use

to denote byte wise concatenation operations.

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED?”, “MAY”, and “OPTIONAL” in this doc-
ument are to be interpreted as described in [RFC2119].

Confidential: For FIDO Alliance Members Only Page 5

FIDO UAF Protocol Specification Draft v0.12

2 Overview

The Internet is expected to continue its breathtaking growth for the foreseeable future,
with analysts predicting the online population to exceed 2.7B users by 2015. Unfortu-
nately, this explosive growth has attracted online criminals responsible for over $114B
in online fraud against consumers and businesses in 2011 alone. Traditional password-
based authentication has failed to provide an effective defense against such sophisti-
cated online attackers; alternative authentication approaches have failed to achieve
widespread adoption due to their cumbersome user experience and onerous expense
for organizations to deploy.

The goal of this Universal Authentication Framework is to provide a unified and extensi-
ble authentication mechanism that supplants passwords while avoiding the shortcoming
of current alternative authentication approaches. The design goal of the protocol is to
enable Relying Parties to leverage the diverse and heterogeneous set of security capa-
bilities available on end users’ devices via a single, unified protocol. This approach is
designed to allow the Relying Party to choose the best authentication mechanism for a
particular end user or interaction, while preserving the option for the Relying Party to
leverage emerging device security capabilities in the future without requiring additional
integration effort.

2.1 Scope

This document describes FIDO architecture in details and defines the UAF protocol as a
network protocol. It defines the flow and content of all UAF messages and gives ratio-
nale of design choices.

Particular application level bindings are out of scope of this document. This document is
not intended to answer questions such as:

e How does HTTP binding look like for UAF?
e How can FIDO Client communicate to FIDO enabled Authenticators?
e How can a web application communicate to FIDO Client?

The answers of these questions can be found in specific application UAF binding speci-
fications.

Confidential: For FIDO Alliance Members Only Page 6

FIDO UAF Protocol Specification Draft v0.12

2.2 Architecture

The following diagram depicts the entities involved in UAF protocol.

I 1
FIDO User Device Relying Party
UAF Protocal grrserers e :
User Agent - i TLS i]. Web
i Endpoint i | iApplication
FIDO Client Y

' FIDO

' Server (PSR SRR ,
L 1

r ¥ ' FIDO !
| Authenticator !
FIDO Authenticator | Metadata :
! 1

Figure 2.1: The UAF Architecture

There are three actors in the protocol:
e FIDO Server, running on Relying Party’s infrastructure
e FIDO Client, part of User Agent and running on the FIDO user device
e FIDO Authenticator, integrated into the FIDO user device

It is assumed that FIDO Server has a built-in list of all supported Authenticator Specifi-
cations.

2.3 Protocol Conversation

The core UAF protocol consists of four conceptual conversations between FIDO Client
and FIDO Server.

Although this document defines FIDO Server as the initiator of requests, in real world deploy-
ment the first UAF operation will always follow User Agent’s request (e.g. a web request) to Re-
lying Party.

e Registration: UAF allows the Relying Party to register FIDO enabled Authentica-
tors with user’s account. The Relying Party can specify a policy for supporting
various FIDO Authenticator types. FIDO Client will only register existing FIDO
Authenticators in accordance with that policy.

e Authentication: UAF allows the Relying Party to prompt the end user to authen-
ticate using a previously registered FIDO Authenticator. This authentication can
be invoked any time, at the Relying Party’s discretion.

Confidential: For FIDO Alliance Members Only Page 7

FIDO UAF Protocol Specification Draft v0.12

e Transaction Confirmation: In addition to providing a general authentication
prompt, UAF provides support for prompting the user to confirm a specific trans-
action. This prompt includes the ability to communicate additional information to
the client for secure display to the end user. The goal of this additional authenti-
cation operation is to enable Relying Parties to ensure that the user is a specified
set of the transaction details.

e Deregistration: The Relying Party can trigger deletion of the Authentication Key
material.

2.3.1 Registration

The following diagram shows the message flows for the Registration operation.

FIDO Client FIDO Server
Login to Relying Party
Application

Yy |

+ If you have these Authenticators — register them

il
-

4 N\ 4 N\
i Fingerprint Face

Authentication Authentication
! N J \ J

Ll
' e N\ N
Ll

' Voice
User i TPM Authentication

. / \. /

Sy

Select an '
i Authenticator

Y.

: i Here is a proof of possession of this
i Authenticator type and a new key generated
. for this account on FIDO Server

Figure 2.2: Registration

Confidential: For FIDO Alliance Members Only Page 8

FIDO UAF Protocol Specification Draft v0.12

2.3.2 Authentication

The following diagram depicts the message flows for the Authentication operation.

FIDO Client FIDO Server

Initiate an authentication to Relying Party

If you have any of these Authenticators -
authenticate with them

A

Fingerprint Face

Authentication Authentication
\. J J

() ()

I
I
I
I
I
I
I
I
I
i
I
|
I
I
I
I
I
I .
User : TPM Voice
I
I
i
I
I
I
I
1
I
]
I
I
I
L
I
I

1
I
I
I
I
i
I
I
I
1
1
1
I
I
I
Authentication I
\. J \ y, I
I
I
I
I
1
1
1
I
I
I
I
I
1
I
I

A

Authenticate to
Authenticator(s)

Y

Authentication response from each Authenticator

Figure 2.3: Authentication

Confidential: For FIDO Alliance Members Only Page 9

FIDO UAF Protocol Specification Draft v0.12

2.3.3 Transaction Confirmation

The following figure depicts the Transaction Confirmation message flow.

FIDO Client FIDO Server

Initiate a transaction with Relying Party

If you have any of these Authenticators -
authenticate with them

A

4 \ 4 \
Fingerprint Face
Authentication Authentication
\. J \ J
4 \ 4 \ e
Voice
User TPM Authentication

Display Transaction
Text

A

Authenticate to
Authenticator(s)

[
|

Authentication response from each Authenticator

|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
. /. J/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 2.4: Transaction Confirmation

Confidential: For FIDO Alliance Members Only Page 10

FIDO UAF Protocol Specification Draft v0.12

2.3.4 Deregistration

The following diagram depicts the Deregistration message flow.

FIDO Client

FIDO Server

Login to Relying Party Application

Deregister this Authenticator
Delete local

4

A

registration data

Figure 2.5: Deregistration

Confidential: For FIDO Alliance Members Only

Page 11

FIDO UAF Protocol Specification Draft v0.12

3 Protocol Details

This section provides details description of operations supported by UAF Protocol.

Support of all protocol elements is mandatory for conforming software, except if stated
otherwise.

e All string literals in this specification are constructed from UNICODE codepoints
within the set U+0000..U+007F. All strings are UTF-8 encoded unless otherwise
specified

e All data used in this protocol MUST be exchanged using a secure protocol (such
as TLS/HTTPS) established between FIDO Client and Relying Party (details are
specified in section TLS Protected Communication)

e Unless otherwise specified the fields in UAF messages MUST be non-empty and
if a list/array is provided — it MUST have at least one entry

e The notation base64url(byte[8..64]) reads as a 8-64 bytes data encoded in
base64url

e The notation string[5] reads as a 5 character UTF-8 formatted string

Unless explicitly specified - “MUST” keyword applies to all steps described in this docu-
ment

The document uses WeblIDL for messages structure definition. The protocol MUST use
JSON format for delivering messages between FIDO Server and FIDO Client

3.1 Shared Structures and Types
This section defines types and structures shared by various operations.

3.1.1 Operation Header

Represents a UAF Message Request and Response header
dictionary OperationHeader ({

DOMString upv; // Mandatory. string[3..7].

DOMString aiv; // Mandatory. string[3..7].

DOMString op; // Mandatory. Must be one of “Reg”, “Auth” or “Dereg”
DOMString appID; // Mandatory. string[l..512].

DOMString sessionID; // Optional, string[l..1536]

Extension[] exts; // Optional.

Confidential: For FIDO Alliance Members Only Page 12

FIDO UAF Protocol Specification Draft v0.12

Description:
e upv: UAF protocol version.
e aiv: Authenticator Interface version

e op: Name of FIDO operation this message relates to. Note that “Auth” is used for
authentication and transaction confirmation.

e applD: The application id that the RP would like to assert. The new key pair that
the UAF Authenticator generates will be associated with this application id. It
MUST be an URI with HTTPS protocol as FIDO Client will use it to load the list of
FacetlDs using this URI.

e sessionlD: A session id created by the RP. The RP can opaquely store things
like expiration times for the registration session, protocol version used and other
useful information there. This data is opaque to FIDO Client and must be sent
back intact. However, the FIDO Client can modify data. If the FIDO Servers relies
on the integrity and relation of sessionlD to the Challenge, then the FIDO Server
has to provide appropriate security controls for that, e.g. wrapping sessionlD with
a secret key.

e exts: List of UAF Message Extensions.

3.1.2 Type of AAID

typedef DOMString AAID; // string[9]

Description:

e AAID: Each Authenticator MUST have an AAID to identify UAF enabled Authenti-
cator models globally. Only Authenticators with identical security characteristics
may share the same AAID.

o The AAID is a string with following format — “V#M”, where
= “#"is a separator
= “V”indicates the Authenticator Vendor Code. This code consists of 4 hex
digits.
= “M” indicates the Authenticator Model Code. This code consists of 4 hex
digits.
o The Augmented BNF [ABNF] for the AAID: 4(HEXDIG) “#” 4(HEXDIG)
Note: HEXDIG is case insensitive, i.e. “O3EF” and “03ef” are identical.

o FIDO Alliance is responsible for assigning Authenticator Vendor Codes.

o Authenticator Vendors are responsible for assigning model codes to their Au-
thenticators. Authenticator Vendors have to make sure that there is a unique
AAID assigned to Authenticators that have different security capabilities and
need to be presented as unique FIDO Authenticator.

Confidential: For FIDO Alliance Members Only Page 13

FIDO UAF Protocol Specification Draft v0.12

o Fixing firmware/software bugs, adding new firmware/software features, or
changing the underlying hardware protection mechanisms will typically
change the security characteristic and hence would require a different AAID
to be used.

3.1.3 Type of KeylD

typedef DOMString KeyID; // base64url (byte[32...2048])

Description:

KeylID is a unique identifier used to refer to a specific Uauth.key. It is generated by the
Authenticator and registered with a FIDO Server.

e The {AAID, KeylID} pair MUST uniquely identify an Authenticator’s registration for
a relying party. Whenever FIDO Server wants to provide specific information to a
particular Authenticator it MUST use {AAID,KeylD} pair.

e KeylD must be base64url encoded within UAF message.

e KeylD may be used by Removable Authenticators which don’t have internal stor-
age and need to store the generated Uauth keys in wrapped form on FIDO
Server.

e During authentication operation FIDO Server has to provide the KeyID back to
Authenticator for the latter to unwrap Uauth.priv key and generate a signature us-
ing it.

e The exact structure and content of KeylID is implementation specific.

3.1.4 Type of ServerChallenge

// Mandatory. base64url (byte[8...64]). Server provided random challenge.
// Server Challenge is required to protect against replay

// attacks on an UAF messages. Protection measures against replay

// attacks on TLS level are implemented in TLS [TLS].

//

// The minimum challenge length of 8 bytes follows the requirement in

// [SP-800-63-1] and is equivalent to the 20 decimal digits as required in
// [RFC6287]. The maximum length has been defined such that SHA-512 output
// can be used without truncation.

typedef DOMString ServerChallenge;

Confidential: For FIDO Alliance Members Only Page 14

FIDO UAF Protocol Specification Draft v0.12

3.1.5 Type of FinalChallengeParams

dictionary FinalChallengeParams {

// Mandatory, string[l..512]. appID taken from request header

DOMString appID;

// Mandatory. Challenge taken from request data

ServerChallenge challenge;

// Mandatory, string[l..512]. Relying Party Facet ID.

// facetID is:

//
//

//
//
//
//
//
//
//
//

For

URI

For

For

the Web, the facet id is the web origin, written as a

with an empty path
(e.g., “https://login.paypal.com/” (default ports are omitted).

Android, the facet id is the URI

android:apk-key-hash:<hash-of-apk-signing-cert>.

iOS, the facet id is the URI

ios:bundle-id:<ios-bundle-id-of-app>

DOMString facetID;

// TLS information to be sent by FIDO Client and

// to be verified by FIDO Server

TLSData tlsData;

3.1.6 Type of TLSData

dictionary TLSData_type ({

// Optional. base64url encoded hash of TLS server certificate.

// If data is not available - it MUST be the string “None”

Confidential: For FIDO Alliance Members Only Page 15

FIDO UAF Protocol Specification Draft v0.12

DOMString serverEndPoint;

// Optional. base64url encoded TLS channel Finished structure
// (RFC5929 tls-unique).
// If data is not available - it MUST be the string “None”

DOMString tlsUnique;

// Optional. The Channel ID public key used by this browser to

// communicate with the above origin.

// This parameter is optional, and missing if the browser

// doesn’t support Channel ID. It is present and set to the constant

// ‘unused’ if the browser supports Channel ID, but is not using

// Channel ID to talk to the above origin (presumably because the origin
// server didn’t signal support for the Channel ID TLS extension).

// Otherwise (i.e., both browser and origin server at the above

// origin support Channel ID), it is present and of type JwkKey
(DOMString or JwkKey) channellID;

3.1.7 Type of JwkKey

// A dictionary representing the public key used by a browser for the

// Channel ID TLS extension. The current version of the Channel ID draft
// prescribes the algorithm (ECDSA) and curve used, so the dictionary will
// have the following parameters:

dictionary JwkKey {

// signature algorithm used for Channel ID, i.e., the constant ‘EC’
DOMString alg;

// Elliptic curve on which this public key is defined, i.e., the constant
// ‘P-256'
DOMString crv;

// base64url-encoding of the x coordinate of the public

// key (big-endian, 32-byte value)

Confidential: For FIDO Alliance Members Only Page 16

FIDO UAF Protocol Specification Draft v0.12

DOMString x;

// base64url-encoding of the y coordinate of the public
// key (big-endian, 32-byte value)
DOMString y;

3.1.8 Type of Extension

// Generic extensions used in various operations. ID identifies the extension
// and Data is an arbitrary data with a semantics agreed between Server and
// Client.
dictionary Extension {

// Mandatory. string[l..32]. Extension ID.

DOMString id;

// Mandatory. base64url (byte[l..4096]). Extension data.
// Interpretation of this data is up to the client
DOMString data;

3.1.9 Type of TrustedApps

// Represents a structure holding a list of FacetIDs trusted by RP
// A HTTP GET query to the Application Identity URI MUST return a

// JSON object with this structure.

// Example:

// {

// ‘alg’ : ‘B64S256',

// ‘ids’ [

// // the hash of ‘https://login.acme.com/’:

// ‘t6qo8BvAad4LIfA3nuul SNXWoh5d60RLT24/h2ghwbn8="',
// // the hash of

// // ‘android:apk-key-hash:2jmj715rSwOyVb/v1WAYkK/YBwk' :
// ‘Z2hR5jbDh8cTo70bVP87nNZe5dVCjnBruitd2CjulzI=’,
// // the hash of ‘ios:bundle-id:com.acme.app’:

// ‘8/ix+X£fz0+6pGyME+tu+quiFd9pVNx6EuwMyBRhnOzw="

Confidential: For FIDO Alliance Members Only Page 17

FIDO UAF Protocol Specification Draft v0.12

//
//

1
}

dictionary TrustedApps {

// Mandatory. Version of the structure. Must be “1.0”.

DOMString version;

// Mandatory. Hashing and encoding algorithm.

// For version “1.0” this must be either “B64S256” or “none”.

DOMString alg;

// List of hashed FacetIDs. Each list element is string[l..512].

// Each string in this list represents either the Facet ID itself

// (if alg is “none”) or the base64url encoding of the SHA256 hash

// of the Facet ID (if alg is “B64S256”)

DOMString[] ids;

3.2 Version Negotiation

Version negotiation is based on the following rules:

Each UAF message contains a version field (UAFProtocolVersion). UAFProtocolVersion
negotiation is always only between FIDO Client and FIDO Server

The communication between FIDO Client and FIDO Authenticator is also versioned (Au-
thenticatorinterfaceVersion) and grows independently from UAFProtocolVersion

There is a clearly defined mapping between UAFProtocolVersion and Authentiatorinter-
faceVersion

o When UAFProtocolVersion changes - AuthenticatorinterfaceVersion doesn’t
need to change

o When AuthenticatorinterfaceVersion changes - UAFProtocolVersion MUST
change

Each time FIDO Server initiates a UAF operation to FIDO Client - it MUST send a list of
as many messages as there are supported versions by Server

o [{ver:".0,..}, {ver:'1.2", .}, ...]

FIDO Client MUST know about the predefined mapping between different UAFProto-
colVersions and AuthenticatorinterfaceVersions

FIDO Client MUST filter out all Authenticators which it doesn't support

Confidential: For FIDO Alliance Members Only Page 18

FIDO UAF Protocol Specification Draft v0.12

e FIDO Client MUST choose the highest version that both itself and Server support and
process the message according to the rules specific to that version

e FIDO Client MUST prepare the response message according to the rules specific
to the chosen version

UAFProtocolVersion is fixed as “1.0”. AuthentiatorinterfaceVersion is fixed as “1.0”.

3.3 Policy Generation and Parsing Rules

// Represents a matching criteria to be used in server policy

dictionary MatchCriteria {

// Optional. Authenticator Vendor
DOMString vendor;

// Optional. Authenticator AAID
AAID aaid;

// Optional. Authenticator KeyID
KeyID keyID;

// Optional. A set of bit flags indicating

// the authentication factor(s) supportedby the authenticator.
unsigned long long authenticationFactor;

// Optional. A set of bit flags indicating the key protection

// used by the authenticator.

unsigned long long keyProtection;

// Optional. A set of bit flags indicating the attachment type

// of authenticator unsigned long long attachment;

// Optional. A set of bit flags indicating the availability and type
// of secure display

unsigned long long secureDisplay;

Confidential: For FIDO Alliance Members Only Page 19

FIDO UAF Protocol Specification Draft v0.12

// Optional. base64url encoded bytearray of supported
// authentication suite TAGs

DOMString supportedAuthSuites;

// Optional. List of supported encoding schemes the authenticators use for
// KRD and SignData

DOMString[] supportedSchemes;

// Optional. List of Extensions

Extension[] exts;

// Registration policy

dictionary Policy {

// Mandatory.

// A two dimensional array describing the required authenticator

// characteristics for the server to accept a registration/authentication
// for a particular purpose.

// The first array index indicates OR conditions. Any authenticator(s)

// satisfying any set of MatchCriteria in the first index is

// acceptable to the server for registration/authentication.

//

// Sub-arrays of MatchCriteria in the second index indicates that multiple
// authenticators must be registered/authenticated to be accepted by

// the server.

//

// The MatchCriteria arrays represent ordered preferences by the server.
// Servers SHOULD put their most preferred authenticators first, and
// FIDO clients SHOULD respect those preferences, either by presenting

// authenticator registration/authentication options to the user in the
// same order, or by offering to register/authenticate only the most

// preferred authenticator(s).
MatchCriteria[][] accepted;

Confidential: For FIDO Alliance Members Only Page 20

FIDO UAF Protocol Specification Draft v0.12

// Mandatory.

// Any authenticator that matches any of the disallowed MatchCriteria MUST
// be excluded fromeligibility for registration/authentication, regardless

// of whether it matches any accepted MatchCriteria.
MatchCriteria[] disallowed;
}

FIDO Client MUST follow the following rules while parsing server policy:

e During registration:

o Policy.accepted is a list of combinations. Each combination indicates list of
criteria of authenticators that the server wants the user to register. A typical
combination for registration contains a single criteria.

o Follow the priority of items in Policy.accepted[][]. The lists are ordered with
highest priority the first.

o Choose the combination who's criteria matches best with currently available
authenticators

= Collect information about available authenticators
= |gnore authenticators which match the Policy.disallowed criteria

= Match collected information with the matching criteria imposed in the pol-
icy

o Guide the user to register the authenticators specified in the chosen combina-
tion

e During authentication:

o Note that Policy.accepted is a list of combinations. Each combination indi-
cates a criteria which is enough to completely authenticate the current pend-
ing operation

o Follow the priority of items in Policy.accepted[][]. The lists are ordered with
highest priority first.

o Choose the combination who'’s criteria matches best with currently available
authenticators

= Collect information about available authenticators
= [gnore authenticators which meet the Policy.disallowed criteria

= Match collected information with the matching criteria imposed in the pol-
icy

Confidential: For FIDO Alliance Members Only Page 21

FIDO UAF Protocol Specification Draft v0.12

o Guide the user to authenticate with the authenticators specified in chosen
combination

= A pending operation will be approved by Server only after all criteria of a
single combination are entirely met

3.4 Registration Operation

Registration operation allows FIDO Server and FIDO Authenticator to agree on Authen-
tication Key (can be symmetric or asymmetric)

m Authenticator m m User Agent RP Web Server [l RP Web App FIDO Server
| |
1 |
|

I I
I I
1.0pen URL : }
I I
I I
I
|
T
I
I

i 4

f————— 2. Open https URL ——

| |

| ‘\<'ff 2b. http OK + legacy login form 7774‘
1 |
| |
| |
|

|
|
L
|
|
|
|
|
< 3a. show legacy login form i
|
|

3b. enter legacy password and submit +———/9 |
————— 4a. submit form ———p!

| Lﬁ

| | !

} } 5. Verify password

\ \] \

} } ‘P 6. request UAF Reg. request ‘N‘

| | € --—- 8. UAF Reg. request ————-
i

| | |
}<,, 9. UAF Reg.request + session binding _ .

" AppID + TLS binding | }

.
o
c
p=3
>
E
o

@
@

2
<
o
a

|

|

|

|

|

|

|

|

|

|

|

|

|

|

}‘— 11a. Retrieve list of FacetIDs identified by AppID (URI) }}
| ! |
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|

|
|
|
|
|
|
|
|
T
| |
| |
r T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 14. Generate API Key for new AppID
| | !
| |
I <
4
| User Auth. |

‘F 17. Authenticate)“
| user |

‘<, ,,,,,,,,,, 11b. return FacetID list ,,,,,,,,,,,}

| |

2. Select Authenticator according to policy }

¢ |

- 13- Trigger __ | [

I Registration } }

! | |

| |

|

. ____15:Trigeer) ‘
,}@Jﬂiﬁgfﬂkoff‘,, Registration b }
|

|

|

|

|

|

|

|

|

|

|

|

|

|

18. Generate Key Pair specific to AppID (and Username) }
= |
| 19.return KRD object |
(incl. attestation and Uauth.pul I
return KRD ‘N‘

20. return UAF Reg. responsg‘

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(contains KRD) |

L 21. return UAF Reg. response —p

|
22. send UAF Reg. response —p»

I

23. Verify attestation and
store new Uauth.pub key

T

t

|
—
|
|
|
|
|
|
\<* 24. return verification result -~

Figure 3.1: Sequence Diagram of UAF Registration

Confidential: For FIDO Alliance Members Only Page 22

FIDO UAF Protocol Specification Draft v0.12

The following diagram depicts the cryptographic data flow for the Registration se-
quence.

Authenticator FIDO Client FIDO Server

o ®

ApplD, FCH, Username

ApplID, Policy, Chl,
Username

el
-

©

Generate new
UAuth key and sign

with attestation key. KRD
Store ApplD, ., KRD from each Store
UAuth.priv and "1 Authenticator UAuth.pub in
Username.

user’s record

Figure 3.2: Cryptographic data flow of Registration

AppID — App Identity, Chl — Server challenge, FCH — “final” challenge params

3.4.1 Type of RegisterRequest

// UAF Registration Request Message
dictionary RegisterRequest {

// Mandatory, OperationHeader.op must be “Reg”

OperationHeader header;

// Mandatory, Server provided challenge

ServerChallenge challenge;

// Mandatory, string[l..128]. User’s human-readable username

DOMString username;

// Mandatory. Registration policy
Policy policy;

Confidential: For FIDO Alliance Members Only Page 23

FIDO UAF Protocol Specification Draft v0.12

// Represents the Authenticator specific response

dictionary AuthenticatorRegistrationAssertion ({

// Mandatory. Authenticator’s AAID
AAID aaid;
// Optional. base64url (DER encoded certificate)

//

Authenticator’s Attestation certificate chain.

DOMString attestationCertificateChain;

//

Registration Scheme used to encode KRD (e.g. “UAF-TLV”)

DOMString krdScheme;

//
//
//

//
//
//
//
//
//

base64url (byte[1l..4096])
KeyRegistrationData is a structure that contains newly generated

Uauth.pub signed with Attestation Private Key.

This structure is produced by Authenticator and is used only in

Registration operation.

Its format can vary from one Registration Scheme to another. KRD is
a byte array converted into string containing KeyRegistrationData

as an opaque element.

DOMString krd;

//

Optional. Extensions prepared by Authenticator

Extension [] exts;

3.4.2 Type of RegisterResponse

// UAF Registration Response Message

dictionary RegisterResponse {

//

Mandatory, OperationHeader.op must be “Reg”

Confidential: For FIDO Alliance Members Only Page 24

FIDO UAF Protocol Specification Draft v0.12

OperationHeader header;

// Final Challenge data

FinalChallengeParams fcParams;

// List of registered authenticators with specific data

AuthenticatorRegistrationAssertion[] assertions;

// Represents UAF Registration request message.

// A single message may convey multiple versions of Registration requests.
// In this document only one version of request message is defined for

// registration - RegisterRequest.

// uafRegisterRequest MUST contain a single object of RegisterRequest type.
object[] uafRegisterRequest;

// Represents UAF Registration Response message.

RegisterResponse uafRegisterResponse;

Confidential: For FIDO Alliance Members Only Page 25

FIDO UAF Protocol Specification Draft v0.12

Example 1: UAF Register Request

{
“Op”: “Reg”, “Ver”: “1.0”, “AppId”: “https://mycorp.com/fido”,
“Challenge”: “qwudh827hddbawd8gbdqj3bdugq3duq56t324zwasdqgdwrt®,
“Username” :”banking_personal”,
“Policy”: {
“accepted” : [[{
“authenticationFactor” : 00000000000001ff,
“keyProtection” : 000000000000000¢e,
“attachment” : 00000000000000ff,
“secureDisplay” : 0©00000000000001e,
“supportedSchemas” : “UAF-TLV*}]],
“disallowed” : {“AAID” : “1234#5678}
}
}

3.4.3 Processing Rules

3.4.3.1 Registration Request Generation Rules for FIDO Server

e Generate a random challenge and assign a timeout to it.
e Construct appropriate registration policy

o If MatchCritera.aaid is provided - no other fields, except keyID, attachment
and exts, MUST be provided

o If MatchCritera.aaid is not provided - at least supportedAuthenticationSuites
and supportedSchemes MUST be provided

o Server MUST include already registered AAIDs and KeyIDs into Policy.disallowed to
hint the Client to not suggest registering these again

o In case of step-up authentication every item in Policy.accepted MUST include al-
ready registered AAID and KeyID

e Create a registration request message for each supported version by putting
generated data into these, assemble all these messages into an array and send
to FIDO Client

Registration Request Processing Rules for FIDO Client

e Choose the message with highest supported version from the array provided by
FIDO Server

Confidential: For FIDO Alliance Members Only Page 26

FIDO UAF Protocol Specification Draft v0.12

Parse the message

o If a mandatory field in UAF message is not present or a field doesn’t corre-
spond to its type and value - reject the operation

Filter the available Authenticators with the given policy and present the filtered Authenti-
cators to User. Make sure to not include already registered Authenticators for this user
specified in

RegRequest.policy.disallowed[].keyID

Follow the priorities in server’s policy and drive user experience based on these priori-
ties.

Obtain Facet ID of the requesting Application. Resolve Appldentity URI and make sure
that this FacetlID is listed in TrustedApps.

o If FacetID is not in RP’s trusted list - reject the operation
Obtain TLS data if its available

Create a FinalChallengeParams structure and include AppID | ServerChallenge
| FacetID | TLSData (optional) into it. Stringify the FinalChallengeParams struc-
ture and provide to Authenticator

o FinalChallenge = JSON.stringify(FinalChallengeParams)

For each authenticator that matches UAF protocol version and user agrees to
register:

o Provide AppID (mandatory), Username (optional) and FinalChallenge (mandatory)
to Authenticator.

o Instruct the Authenticator to register

Registration Request Processing Rules for FIDO Authenticator

See UAF Authenticator Commands, section “Reqgister Command”.

Registration Response Generation Rules for FIDO Client
<TODO>

Create a RegResponse message
Copy RegRequest.header into RegResponse.header
Fill out RegResponse.FinalChallengeParams with appropriate fields

Append the response from each Authenticator into RegResponse.asser-
tions

Send RegResponse message to FIDO Server

Confidential: For FIDO Alliance Members Only Page 27

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit#heading=h.uamny4rvvl58

FIDO UAF Protocol Specification Draft v0.12

Registration Response Processing Rules for FIDO Server

<TODO>
e Check AntiFraud signals (depending on set, e.g. ResetCtr and RegCitr)
e Verify Attestation

3.5 Authentication Operation

During this operation FIDO Server asks FIDO Client to authenticate user with specified
Authenticators and return authentication response. In order for this operation to succeed
Authenticator MUST be already registered with Relying Party.

o= m o
| |
|

vY__

1.0pen URL

|
——— 1b. Open httpd‘ URL ———p 3. generate UAF
I Auth. request ’

|
| <- 4. return UAF Auth _

|
|
!
|
|
|
|
|
|
|

|
| |
L !
| |
‘ ‘ ‘ request o		
} } } I J<'*** 5. return UAF Auth} request ————- } q }		
		6. Send UAF Auth requestJ
} } }	~ + AppID + TLS binding	} } }
		— 7a. retrieve FacetID list identified by AppID (URI) P
		[Gl 7b. return FacetID list ——==--~--~ b
		—
		8. Select authenticator according to policy
	<. OTrisger @&	
} } 10.Trigger } Authentication } } } } }		
i< Authentication -+		
11.Trigger Local	(incl. APIKey)	
I Bl I I I I I I		
User Auth		
I 12. Local	I I I	
User Auth		
! ! ! | | | |
13. Unlock Uauth and compute Authentication result | | | |
. . | | | |
¢ | | | | |
14. return SignData ! } } } }
15. return SignData P | | |
| 16. return UAF | | |
— Auth. response P | |
contains SignData I | |
(©) —— 17. return UAF Auth. response —» |
18. send UAF |

| |
e
} | Auth. response
} } 19. Verify
| |
| |
|
|
|

i
|
|
|
|
|
|
|
|
|
|
|
|
|
} [< 20. send verification result j‘
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Figure 3.3: Sequence Diagram for UAF Authentication

Confidential: For FIDO Alliance Members Only Page 28

FIDO UAF Protocol Specification Draft v0.12

Diagram of cryptographic flow:

Authenticator FIDO Client FIDO Server

O, ©

AppID, FCH, AUM

-l
-

ApplID, Policy, Chl

Sign FCH using

appropriate @ Verify
UAuth.priv SignData SignData from each signature
> Authenticator using
p! UAuth.pub

L]
1
1
1
1
-
1
1
1
1
1
1
1
1
1
1
1
L
1
1
1
1

Figure 3.4: Cryptographic data flow of the Authentication message sequence

AppID — App Identity, AUM — Authentication mode, Chl — Server challenge, FCH — “final” challenge params

3.5.1 Type of AuthenticationRequest

// Transaction Text provided by FIDO Server.

dictionary Transaction {

// Mandatory. Content-type of “text” according to [RFC1341]
DOMString contentType;

// base64url (byte[l..4096]), Mandatory
// This is the content of the transaction according to the content type.

DOMString content;

// UAF Authentication Request Message

dictionary AuthenticationRequest ({

// Mandatory, OperationHeader.op must be “Auth”

Confidential: For FIDO Alliance Members Only Page 29

FIDO UAF Protocol Specification Draft v0.12

OperationHeader header;

// Mandatory, Server provided challenge

ServerChallenge challenge;

// Mandatory. Authentication Mode indicates the mode of authentication
// operation at the time of signature generation.

//

// authenticationMode is an integer and may have one of the following
// values:

// 1 - Authentication with user not present (silent authentication).
// 2 - Authentication with user present.

// 3 - User present and transaction shown on a secure

// display. For this mode transaction text hash must be included in
// the final signature.

short authenticationMode;

// Optional. Transaction data.

Transaction transaction;

// Mandatory. RP’s Authentication Policy
Policy policy;

// Represents the Authenticator specific response

dictionary AuthenticatorSignAssertion_ type {

// Mandatory. Authenticator’s AAID

AAID aaid;

// Mandatory. UAuth.priv unique KeyID
KeyID keyID;

// Authentication Scheme used to encode signData (e.g. “UAF-TLV”)
DOMString signDataScheme;

Confidential: For FIDO Alliance Members Only Page 30

FIDO UAF Protocol Specification Draft v0.12

// Mandatory. base64url (byte[l..4096])

// SignData is a structure that contains cryptographic signature using

// Uauth.priv. This structure is produced by Authenticator and is used only
// in Authentication operation.

// SignData is a byte array converted into string containing SignData

// as an opaque element.

DOMString signData;

// Optional. Extensions prepared by Authenticator

Extension[] exts;

Example 2: UAF Authentication Request
{“Op”: “Auth”, “Ver”: “1.0”, “AppId”: “https://mycorp.com/fido”, “Challenge”:
“triz786ighwer8764g6574234515regd5z”, “AuthMode” :2, “Policy”: {

“accepted” : [[{“authenticationFactor” : 00000001 ff, “keyProtection” :
000000000000000e, “attachment” : 00000000VOOOOOff, “secureDisplay” :
000000000000001e, “supportedSchemas” : “UAF-TLV”}]],

“disallowed” : {“AAID” : “1234#5678”}

}

3.5.2 Type of AuthenticationResponse

// UAF Authentication Response Message

dictionary AuthenticationResponse {

// Mandatory, OperationHeader.op must be “Auth”

OperationHeader header;

// Final Challenge data

FinalChallengeParams fcParams;

// List of authenticator responses

AuthenticatorSignAssertion[] assertions;

Confidential: For FIDO Alliance Members Only Page 31

FIDO UAF Protocol Specification Draft v0.12

// Represents UAF Authentication request message.

// A single message may convey multiple versions of Authentication requests.
// In this document only one version of request message is defined for

// authentication - AuthenticationRequest.

// uafAuthRequest MUST contain a single object of AuthenticationRequest type.
object[] uafAuthRequest;

Example 3: UAF Authentication Response

{“Op”: “Auth”, “Ver”: “1.0”, “FCParams”: {“AppID” ‘“https://mycorp.com/fido”, “Chal-
lenge” :54698zhfdksjgh876ujhghj7”, “FacetID”:” android:apk-key-
hash:2jmj715rSweyVb/v1WAYkK/YBwk”, “TLSData”:””}, “Auths”: [{“AAID”:”1234#abcd”,
“signDataScheme” : “UAF-TLV”, “SignData”: “.””}, {“AAID”:”1234#abce”, “signDataScheme”
: “UAF-TLV”, “SignData”:”..”}]}

3.5.3 Processing Rules

Authentication Request Generation Rules for FIDO Server

e Generate a random challenge and assign a timeout to it
e Construct appropriate authentication policy

o If MatchCritera.aaid is provided - no other fields, except keyID, attachment
and exts, MUST be provided

o If MatchCritera.aaid is not provided - at least supportedAuthenticationSuites
and supportedSchemes MUST be provided

o In case of step-up authentication every item in Policy.accepted MUST in-
clude already registered AAID and KeylD

e Create an authentication request message for each supported version by putting gener-
ated data into these, assemble all these messages into an array and send to FIDO
Client

Authentication Request Processing Rules for FIDO Client

e Choose the message with highest supported version from the array provided by
FIDO Server

e Parse the message

Confidential: For FIDO Alliance Members Only Page 32

FIDO UAF Protocol Specification Draft v0.12

o If a mandatory field in UAF message is not present or a field doesn’t corre-
spond to its type and value - reject the operation

e Filter available Authenticators with the given policy and present the filtered list to
User

e If AuthRequest.policy.accepted list is empty — suggest any registered Authenti-
cator to the user for authentication

e Obtain Facet ID of the requesting Application. Resolve Appldentity URI and make sure
that this FacetID is listed in TrustedApps.

o If FacetID is not in RP’s trusted list - reject the operation
e Obtain TLS data if its available

e Create a FinalChallengeParams structure and include AppID | ServerChallenge
| FacetID | TLSData (optional) into it. Stringify the FinalChallengeParams struc-
ture and provide to Authenticator

o FinalChallenge = JSON.stringify(FinalChallengeParams)

e For each authenticator that matches message version and user agrees to au-
thenticate with:

o Provide ApplD (mandatory), Final Challenge (mandatory), KeylD (mandatory), Au-
thentication Mode (mandatory) and Transaction Text (mandatory) to Authenticator.

o Instruct the authenticator to authenticate

Authentication Request Processing Rules for FIDO Authenticator

See UAF Authenticator Commands, section “Sign Command”.

Authentication Response Generation Rules for FIDO Client

e Create a AuthResponse message
e Copy AuthRequest.header into AuthResponse.header
e Fill out AuthResponse.FinalChallengeParams with appropriate fields

e Append the response from each Authenticator into AuthResponse.asser-
tions

e Send AuthResponse message to FIDO Server

Confidential: For FIDO Alliance Members Only Page 33

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit#heading=h.x96mtarvjp4y

FIDO UAF Protocol Specification Draft v0.12

Authentication Response Processing Rules for FIDO Server

e Parse the message
o If protocol version is not supported - reject the operation

o If a mandatory field in UAF message is not present or a field doesn’t correspond
to its type and value - reject the operation

e Make sure that AuthResponse.header.sessionlID is intact

e Verify each field in AuthResponse.FinalChallengeParams and make sure it's
valid:

o Make sure ApplID corresponds to the one stored in FIDO Server
o Make sure FacetlD is in “trusted FacetIDs”
o Make sure TLSData is as expected

o Make sure ServerChallenge is a really generated by FIDO Server and is
not expired

o Reject the response if any of these checks fails
e For each assertions AuthResponse.assertions

o Locate Uauth.pub public key associated with AuthResponse.assertion-
s.keylD

= |f such record doesn'’t not present - continue with next assertion

o

Locate Authenticator specific authentication suite from Authenticator Metadata

@)

Parse AuthResponse.assertions.signData and make sure it has all the manda-
tory fields (indicates in Authenticator Metadata) it's supposed to have

O

Check the Sign Counter and make sure it has incremented

= |f didn’t increment - continue with next assertion

@)

Stringify the contents of AuthResponse.FinalChallengeParams and hash it using
hashing algorithm suitable for this authenticator type (look up the algorithm in
Authenticator Metadata)

= stringifiedFC=JSON.stringify(AuthResponse.FinalChallengeParams)
If authenticationMode ==

o

= Make sure there is a transaction cached on Relying Party side
* If no - continue with next assertion

= Hash the cached transaction using hashing algorithm suitable for this
authenticator (look up the algorithm in Authenticator Metadata)

Confidential: For FIDO Alliance Members Only Page 34

FIDO UAF Protocol Specification Draft v0.12

» cachedTransHash = hash(cachedTransaction)
= Make sure that the cachedTransHash=signData.TransactionHash
* If comparison fails - continue with next assertion
= Append cachedTransHash into final challenge
» stringifiedFCHash = hash(stringifiedFC | cachedTransHash)
o If authenticationMode != 3
= stringifiedFCHash = hash(stringifiedFC)
o Make sure that signData.Challenge = stringifiedFCHash
= [f comparison fails - continue with next assertion

o Use Uauth.pub key and appropriate authentication suite to verify the signature
included in SignData

= [f signature verification fails - continue with next assertion
e Make sure that the set of successfully verified assertions meets the originally im-
posed policy
o If they don’t meet the policy - treat the response as insufficient

3.6 Deregistration Operation

This operation allows FIDO Server to delete keys from FIDO Authenticator.
// Represents a deregistering authenticator data

3.6.1 Type of DeregistrationRequest

dictionary DeregisterAuthenticator_type ({

// Optional. Authenticator’s AAID
AATD AAID;

// Mandatory. UAuth.priv unique KeyID
KeyID KeyID;

Confidential: For FIDO Alliance Members Only Page 35

FIDO UAF Protocol Specification Draft v0.12

// UAF Deregistration Request Message

dictionary DeregistrationRequest ({

// Mandatory, OperationHeader.op must be “Dereg”

OperationHeader header;

// Mandatory. List of authenticators to be deregistered

DeregisterAuthenticator[] authenticator;

// Represents UAF Deregistration request message.

// A single message may convey multiple versions of Deregistration requests.
// In this document only one version of request message is defined for

// authentication - DeregistrationRequest.

// uafDeregRequest MUST contain one object of DeregistrationRequest type.
object[] uafDeregRequest;

Example 4: UAF Deregistration Request

{“Op”: “Dereg”, “Ver”: “1.0”, “AppId”: “https://mycorp.com/fido”, “Policy”: {“Auths”:
[{“AAID”:’1234#tabcd”, “KeyID”: “14a504423f582727eal5c96d67200727f350dc8c-
c2289ed8106f3b6b7ee3ebb8”}, {“AAID”:”12344#abce”, “KeyID”: “84a2f88la2ee7866b8fd4d-
b94d00279a2b485b635823fcfadef79eef0c7771e4”}]} }

3.6.2 Processing Rules

Request Generation Rules for FIDO Server

e Create a de-registration request message for each supported version by putting place
AAID and KeylID of the deregistering authenticators into these, assemble all these mes-
sages into an array and send to FIDO Client

Message Processing Rules for FIDO Client

e Choose the message with highest supported version from the array provided by
FIDO Server

e Parse the message

Confidential: For FIDO Alliance Members Only Page 36

FIDO UAF Protocol Specification Draft v0.12

o If a mandatory field in UAF message is not present or a field doesn’t corre-
spond to its type and value - reject the operation

e Find authenticators based on AAID and KeylD

e For each authenticator that matches message version:
o Provide ApplID (mandatory) and KeylD (mandatory) to Authenticator.
o Instruct the authenticator to deregister

Message Processing Rules for FIDO Authenticator

See UAF Authenticator Commands, section “Deregister Command”.

Confidential: For FIDO Alliance Members Only Page 37

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit#heading=h.25i5hk3yttlm

FIDO UAF Protocol Specification Draft v0.12

4 Considerations

This is the considerations section. In this section the contents is informative by default,
normative clauses are clearly marked as follows:

Normative

This is a normative clause

4.1 Protocol Core Design Considerations
This section describes the important design elements used in the protocol.

4.1.1 Authenticator Metadata

It is assumed that FIDO Server has a built-in list of all supported Authenticators and
their corresponding metadata. Authenticator Metadata contains information such as:

e Supported Registration and Authentication Schemes
e Authentication Factor, Installation type and other supplementary information, etc.

In order to make a decision which Authenticators are appropriate for a specific transac-
tion, FIDO Server looks up the list of Authenticator Metadata and uses this data to make
decisions.

Normative

Authenticator Metadata is identified by a unique ID called Authenticator Attestation ID
(AAID).

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating Authenticator model identity during
registration. It allows Relying Parties to cryptographically verify that the Authenticator re-
ported by FIDO Client is really who it claims to be.

Using Authenticator attestation, a relying party “example-rp.com” will be able to verify
that the Authenticator model of the “example-Authenticator”, reported with AAID
“1234#5678”, is not a malware sitting on client machine but is really a Authenticator of
model “1234#5678”.

All FIDO Authenticators MUST support “Basic Attestation” described below. New Attes-
tation mechanisms MAY be added to the protocol over time.

Confidential: For FIDO Alliance Members Only Page 38

FIDO UAF Protocol Specification Draft v0.12

4.1.2.1 Basic Attestation

FIDO Servers and Authenticators MUST have pre-shared attestation public keys (i.e.
Attestation Certificate trust store) and Authenticator MUST provide its attestation signa-
ture during registration process.

NOTE

The protection measures of the Authenticator’s attestation private key depend on
the specific Authenticator model implementation.

FIDO Server MUST load appropriate Authenticator Attestation (Root-) Certificate from
trust store based on AAID provided in KeyRegistrationData. The remainder of the Attes-
tation Certificate Chain is included in the UAF Registration Response (field Attestation-
CertificateChain) and potentially the KeyRegistrationData. These two partial chains
have to be combined. The ability to off-load portions of the Attestation Certificate Chain
from the Authenticator reduces its memory requirements.

In this Basic Attestation model, a large number of Authenticators share the same Attes-
tation certificate and Attestation Private Key in order to provide non-linkability (see sec-
tion Protocol Core Design Considerations). So Authenticators can only be identified on
a production batch level or an AAID level by their Attestation Certificate and not individ-
ually. A large number of Authenticators sharing the same Attestation Certificate pro-
vides better privacy, but also makes the related private key a more attractive attack tar-
get.

Normative

In the case of basic attestation, the minimum number of authenticators sharing the
same Attestation key is 100,000.

Normative

Either (a) the manufacturer attestation root certificate or (b) the root certificate related
to the AAID needs to be specified in the Authenticator Metadata (see section Authenti-
cator Metadata).

In the case (a), the root certificate might cover multiple Authenticator types (i.e. multiple
AAIDs). The AAID MUST be specified in the SubjectDN CommonName (oid 2.5.4.3) of
the Attestation Certificate. In the case (b) this is not required as the root certificate only
covers a single AAID.

Confidential: For FIDO Alliance Members Only Page 39

FIDO UAF Protocol Specification Draft v0.12

é Manufacturer Attestation Root

Intermediate Attestation Certificates

v

S Intermediate Attestation Certificates

Attestation Certificate, AAID in commonName

Figure 4.1: Manufacturer Attestation Root

4.1.3 Error Handling

FIDO Server will inform the calling Relying Party Web Application Server (see Error:
Reference source not found in section Personas) about any error conditions encoun-
tered when generating or processing UAF messages through their proprietary API.

FIDO Authenticators will inform the FIDO Client (see Error: Reference source not found
in section Personas) about any error conditions encountered when processing com-
mands through the Authenticator Specific Module (ASM). See document “ASM Plugin
and Authenticator API Specification” for details.

For FIDO Client we distinguish two different cases:

1. Web Applications or Mobile Applications In this case the FIDO Client will in-
form the Web App Client or the Mobile App (see Error: Reference source not
found in section Personas) about any error conditions encountered when pro-
cessing UAF messages through the proprietary API. The Web Application or Mo-
bile Application will transmit the error code to the Web Application server through
a proprietary protocol.

2. Native PC Applications In this case the error code needs to be transmitted
through either the UAF message or the HTTP binding.

Confidential: For FIDO Alliance Members Only Page 40

FIDO UAF Protocol Specification Draft v0.12

4.1.4 Registration and Authentication Schemes

UAF Protocol is designed to be compatible with variety of existing Authenticators
(TPMs, Fingerprint Sensors, Secure Elements, etc.) and also future Authenticators, de-
signed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility.
These are:

e “Cryptographic key provisioning“ (called Registration Scheme)
e “Cryptographic signature schemes*” (called Authentication Scheme)

The UAF protocol allows plugging in new “Registration Schemes® and also supporting
new Authentication Schemes, specific to Authenticators.

The Registration Scheme defines how a cryptographic key is exchanged between the
Authenticator and the FIDO Server. If in the future one finds a better for key exchange,
a new Registration Scheme might be defined and plugged to the protocol.

The Authentication Scheme defines how the Authenticator generates a cryptographic
signature.

4.1.5 Username in Authenticator

FIDO UAF supports Authenticators which can be used to replace username and pass-
word. In this case the Authenticator stores the username (uniquely identifying an ac-
count at the specific relying party) internally and adds it to the UAF SignData message.
See UAF Authenticator Commands, section “Sign Command” for details.

4.1.6 TLS Protected Communication

Normative

[C-General-010] In order to protect the data communication between FIDO Client and FIDO
Server a protected TLS channel MUST be used by FIDO Client (or User Agent) and the [S-Gen-
eral-010] Relying Party for all protocol elements.

* The server endpoint of TLS connection MUST be at the Relying Party
* The client endpoint of TLS connection MUST be either FIDO Client or User Agent

* [C-General-010.1] TLS Client and Server [S-General-010.1] SHOULD use TLS v1.1 or
newer. Use of TLS v1.2 is RECOMMENDED. The “anon” and “null” crypto suites are not
allowed and MUST be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4,
SHA1) SHOULD be avoided [SP800-131A].

Confidential: For FIDO Alliance Members Only Page 41

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit#heading=h.25i5hk3yttlm

FIDO UAF Protocol Specification Draft v0.12

* [C-General-10.3] TLS Client MUST verify and validate the server certificate chain ac-
cording to [RFC5280], section 6 “Certificate Path Validation”. Certificate revocation
status MUST be checked (e.g. using OCSP or CRL based validation).

* [C-General-10.3] TLS Client’s trusted certificate root store MUST be properly main-
tained and at least require the CAs included in the root store to annually pass Web
Trust or ETSI audits for SSL CAs.

See [TR-03116] and [SHEFFER-TLS] for more recommendations on how to use TLS.

4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

Normative

Server Challenges (see section Type of ServerChallenge) need appropriate random sources in
order to be effective (see [RFC4086] for more details). The (pseudo-)random numbers used for
generating the Server Challenge SHOULD successfully pass the randomness test specified in
[Coron99].

4.2.2 TODO: iOS Implementations of FIDO Clients

see iSec Partner document issue #3

4.3 Security Considerations

There is no “one size fits all” authentication method. The FIDO goal is to decouple the
authentication method from the authentication protocol and the authentication server,
and to support a broad range of authentication methods and a broad range of assur-
ance levels. FIDO authenticators should be able to leverage capabilities of existing
computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the
security and integrity of the user’s equipment involved and (b) on the authentication
method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and
a variety of authentication methods. The relying party needs reliable information about
the security relevant parts of the equipment and the authentication method itself in order

Confidential: For FIDO Alliance Members Only Page 42

FIDO UAF Protocol Specification Draft v0.12

to determine whether the overall risk of an electronic authentication is acceptable in a
particular business context.

It is important for the UAF protocol to provide this kind of reliable information about the
security relevant parts of the equipment and the authentication method itself to the
FIDO server.

The overall security is determined by the weakest link. In order to support scalable se-
curity in FIDO, the underlying UAF protocol needs to provide a very high conceptual se-
curity level, so that the protocol isn’'t the weakest link.

Relying Parties define Acceptable Assurance Levels FIDO Alliance envisions a
broad range of FIDO Clients, FIDO Authenticators and FIDO Servers to be offered by
various vendors. Relying parties should be able to select a FIDO Server providing the
appropriate level of security. They should also be in a position to accept FIDO Authenti-
cators meeting the security needs of the given business context, to compensate assur-
ance level deficits by adding appropriate implicit authentication measures, and to reject
authenticators not meeting their requirements. FIDO does not mandate a very high as-
surance level for FIDO Authenticators, instead it provides the basis for authenticator
and authentication method competition.

Authentication vs. Transaction Confirmation Existing Cloud services are typically
based on authentication. The user starts an application (i.e. User Agent) assumed to be
trusted and authenticates to the Cloud service in order to establish an authenticated
communication channel between the application and the Cloud service. After this au-
thentication, the application can perform any actions to the Cloud service. The service
provider will attribute all those actions to the user. Essentially the user authenticates all
actions performed by the application in advance until the service connection or authenti-
cation times out. This is a very convenient way as the user doesn’t get distracted by
manual actions required for the authentication. It is suitable for actions with low risk con-
sequences.

However, in some situations it is important for the relying party to know that a user really
has seen and accepted a particular content before he authenticates it. This method is
typically being used when non-repudiation is required. The resulting requirement for this
scenario is called What You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called “Authentication” and “Transaction Confir-
mation”. The technical difference is, that with Authentication the user confirms a random
challenge, where in the case of Transaction Confirmation the user confirms a human
readable content, i.e. the contract. From a security point, in the case of authentication
the application needs to be trusted as it performs any action once the authenticated
communication channel has been established. In the case of Transaction Confirmation
only the secure display component implementing WYSIWYS needs to be trusted, not
the entire application.

Confidential: For FIDO Alliance Members Only Page 43

FIDO UAF Protocol Specification Draft v0.12

Distinct Attestable Security Components For the relying party in order to determine
the risk associated with an authentication, it is important to know details about some
components of the user’s environment. Web Browsers typically send a “User Agent”
string to the web server. Unfortunately any application could send any string as “User
Agent” to the relying party. So this method doesn’t provide strong security. UAF is
based on a concept of cryptographic attestation. With this concept, the component to be
attested owns a cryptographic secret and authenticates its identity with this crypto-
graphic secret. In UAF the cryptographic secret is called “Authenticator Attestation Key”.
The relying party gets access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with
an authentication, all components performing significant security functions need to be
attestable.

In UAF significant security functions are implemented in the “FIDO Authenticators”. Se-
curity functions are:

1. Protecting the attestation key.

2. Generating and protecting the Authentication key(s), typically one per relying
party and user account on relying party.

3. Providing the WYSIWYS capability (“Secure Display” component).

Some FIDO Authenticators might implement these functions in software running on the
FIDO User Device, others might implement these functions in hardware. Some FIDO
Authenticators might even be formally evaluated and accredited to some national
scheme. Each FIDO Authenticator model has an attestation ID (AAID), uniquely identify-
ing the related security properties. Relying parties get access to these security proper-
ties of the FIDO Authenticators and the reference data required for verifying the attesta-
tion.

Resilience to leaks from other verifiers One of the important issues with existing au-
thentication solutions is a weak server side implementation, affecting the security of au-
thentication of typical users to other relying parties. It is the goal of the UAF protocol to

decouple the security of different relying parties.

Decoupling User Authentication Method from Authentication Protocol In order to
decouple the user authentication method from the authentication protocol, UAF is based
on an extensible set of cryptographic authentication algorithms. The cryptographic se-
cret will be unlocked after authenticating the user (i.e. after user-to-authenticator au-
thentication). This secret is then used for the authenticator-to-relying party authentica-
tion. The set of cryptographic algorithms is chosen according to the capabilities of exist-
ing cryptographic hardware and computing devices. It can be extended in order to sup-
port new cryptographic hardware.

Confidential: For FIDO Alliance Members Only Page 44

FIDO UAF Protocol Specification Draft v0.12

Privacy Protection Different regions in the world have different privacy regulations.
The UAF protocol should be acceptable in all regions and hence MUST support the
highest level of data protection. As a consequence, UAF doesn’t require transmission of
biometric data to the relying party. Additionally, cryptographic secrets used for different
relying parties shall not allow the parties to link actions to the same user entity. UAF
supports this concept, known as non-linkability. Consequently, the UAF protocol doesn’t
require a trusted third party to be involved in every transaction.

However, some cryptographic hardware Authenticators (e.g. some National Electronic
ID cards and legacy PKI smart cards) do not support such a scheme. If such crypto-
graphic hardware is used as FIDO Authenticator, then non-linkability typically cannot be
provided.

Relying parties can discover the AAIDs of all enabled FIDO Authenticators on the FIDO
User Device using the Java Script interface (see owp-ios). The combination of AAIDs
adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at eff.org
and https://wiki.mozilla.org/Fingerprinting). In order to minimize the entropy added by
FIDO, the user can enable/disable individual Authenticators — even when they are em-
bedded in the device (see owp-ios, privacy considerations, section 16).

4.3.1 FIDO Authenticator Security

See Authenticator Commands.

4.3.2 Cryptographic Algorithms

In order to keep key sizes small and to make private key operations fast enough for
small devices, we prefer ECDSA and suggest the use of either NIST or BrainPool
curves (see [RFC5639]) in combination with SHA-256 / SHA-512 hash algorithms.

4.3.3 Application Isolation

There are two concepts implemented in UAF to prevent malicious applications from mis-
using App identity specific keys registered with FIDO Authenticators. First concept is
called “FacelD Assertion” and second is called “API Key Isolation”.

4.3.3.1 FacetID Assertion
The main idea here is that instead of binding user authentication keys to web origins
only, we bind them to a more generic application identity. So instead of saying “this key-

pair can only be used with mycorp.com”, we say “this keypair can only be used by the
MyCorp applications”.

Confidential: For FIDO Alliance Members Only Page 45

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit
https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit
https://wiki.mozilla.org/Fingerprinting
https://panopticlick.eff.org/browser-uniqueness.pdf

FIDO UAF Protocol Specification Draft v0.12

An “application”, for the purpose of this section, can have multiple facets. For example,
the various facets of the “MyCorp application” could be:

The web site mycorp.com

The web site mycorp-payments.com

An Android app signed with a certain public key

The iOS app with the iOS Bundle ID com.mycorp

The following diagram depicts the facet architecture.

Relying Party

All Facets belong to

/ same Applicat on ID

APl|call APl|call APl|call APl|call

/— Determine Facet ID

Map Facet ID to

/_ Applicat on ID

Applicat on ID includes Facet ID?
Associate call with

Applicat on ID

Resource Access

Figure 4.2: Multiple Application Facets

The calling app passes its Application Identity (e.g. “https://mycorp.com/app-identity”) to
the API. On each platform, the FIDO Client will identify the calling app, and thus deter-

Confidential: For FIDO Alliance Members Only Page 46

FIDO UAF Protocol Specification Draft v0.12

mine its Facet ID. It then resolves the Application Identity and checks whether the
Facet ID is indeed included in the list returned by accessing the Application Identity
URL. For example, the browser extension (or, in the future the browser itself) will be
able to see the web origin of the calling app. Similarly, an Android system component
like the Account Manager could identify the APK signing key of the Android app making
an API call into the Account Manager There is a similar mechanism in iOS.

Note, that the FIDO Client needs to be trusted to correctly determine the FacetID.

The UAF protocol supports passing Facet ID to the FIDO Server and including the
Facet ID in the computation of the authentication response.

A weakness in the facet identification mechanism results in a security vulnerability, i.e.,
identity assertions that are issued to facets other than those legitimately belonging to an
application. In contrast, a weakness in the application identity matching mechanism re-
sults in a privacy (but not the above-mentioned security) vulnerability, causing the au-
thenticator to use an authentication key (in other words, a user identifier) that should
have been reserved for a different application.

Normative

In order to properly complement federation protocols, the list of Facet IDs may only include a
single web origin facet.

4.3.3.2 Isolation using APl Keys

Authenticators might be implemented in dedicated hardware and hence might not be
able to verify the caller (i.e. ASM).

This API Key technique allows making sure that only the intended ASM can use the
keys generated by the FIDO Authenticator. It is based on Trust On First Use (TOFU)
concept.

FIDO Authenticator is capable of binding UAuth keys with a key provided by a caller
(e.g. the ASM). This key is called API Key.

Normative

The APl key MUST be provided by the ASM both during registration and authentication opera-
tions. During registration operation, the API key is stored together with the newly generated
key. During authentication operation, the APl key is compared against the stored key by FIDO
Authenticator. The FIDO Authenticator produces a signature only if the provided API key is
valid.

This technique allows making sure that registered keys are only accessible by the caller
who have originally registered them. A “dancing pig” App on a mobile platform won’t be
able to access keys by bypassing the related ASM (assuming that this ASM originally
registered these keys).

Confidential: For FIDO Alliance Members Only Page 47

FIDO UAF Protocol Specification Draft v0.12

See Authenticator Commands for more details.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g. [RFC5929] and [Chan-
nellD]).

UAF relies on TLS server authentication for binding authentication keys to Appldentities.
There are threats:
1. Attackers might fraudulently get a TLS server certificate for the same Appldentity
as the relying party and they might be able to manipulate the DNS system.

2. Attackers might be able to steal the relying party’s TLS server private key and
certificate and they might be able to manipulate the DNS system.

And there are functionality requirements:
1. UAF transactions might span across multiple TLS sessions. As a consequence,
“tls-unique” defined in [RFC5929] might be difficult to implement.
2. Data centers might use SSL concentrators.

3. Data centers might do load-balancing for TLS endpoints using different TLS cer-
tificates. As a consequence, “tls-server-end-point” defined in [RFC5929] might be
inappropriate.

Normative
1. If TLS Channel ID data is accessible to the FIDO Client, it SHALL be used by FIDO Client.

2. TLS ChannellD SHALL be supported by FIDO Server. However, it can only be used by FIDO
Server, if the related Web Server supports it.

3. If TLS binding data according to RFC5929 is accessible to the FIDO Client, it SHALL be used
by FIDO Client. Depending on the constraints given by the operating environment, the FIDO
Server may or may not evaluate it.

4.3.5 Personas

FIDO supports unlinkability of accounts at different relying parties by using relying party
specific keys.

Sometimes users have multiple accounts at a particular relying party and even want to
maintain unlinkability between these accounts.

Today, this is difficult and requires certain measures to be strictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between ac-
counts at one relying party.

Confidential: For FIDO Alliance Members Only Page 48

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit

FIDO UAF Protocol Specification Draft v0.12

In the case of Removable Authenticators, it is recommended to use different Authentica-

tors for the various personas (e.g. “business”, “personal”). This is possible as Remov-
able Authenticators typically are small and not excessively expensive.

In the case of Embedded Authenticator, this is different. FIDO supports the concept of
Personas for this situation.

All relevant data in an Authenticator are related to one Persona (e.g. “business” or “per-
sonal”’). Some administrative interface (not standardized by FIDO) of the Authenticator
allows maintaining and switching Personas.

The Authenticator will only “know” / "recognize” data (e.g. authentication keys, User-
names, KeylIDs, ...) related to the Persona being active at that time.

With this concept, the User can switch to the “Personal” Persona and register new ac-
counts. After switching back to “Business” Persona, these accounts will not be recog-
nized by the Authenticator (until the User switches back to “Personal” Persona again).

See Authenticator Commands for more details.

4.3.6 SessionlD

TODO: Consensus: Al add explanation to Security Considerations sections that if FS
wants to have integrity protection for SessionID it needs to bind SessionID to the chal-
lenge (e.g. by adding Challenge to it) and protects its integrity.

4.3.7 Authenticator Information retrieved from client vs. MetaData

TODO: in Security Considerations: talk about "hint" character of the Flags reported by
FIDO Client (i.e. not security relevant, Server MUST look into Meta Data using AAID).

Confidential: For FIDO Alliance Members Only Page 49

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit

FIDO UAF Protocol Specification Draft v0.12

4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native PC Applications.
These environments require different bindings in order to achieve interoperability.

UAF Open Web Plaf orm

/_ Interoperability Prof le

Relying Party Applicat on

vV V

A

\ UAF Protocol

Specif cat on

\ UAF Open Web Plaf orm

Interoperability Prof le

FIDO Client

\ ASM API
\ Authent cator FIDO Server

FIDO Authent cator Commands

Figure 4.3: FIDO Interoperability Overview

Web applications typically consist of the web application server and the related Web
App. The Web App code (e.g. HTML and JavaScript) is rendered and executed on the
client side by the User Agent. The Web App code talks to the User Agent via a set of
JavaScript APIs, e.g. HTML DOM. The FIDO ECMA Script binding is defined in UAF_
Open Web Platform Interoperability Profile. The protocol between the Web App and the
Relying Party Web Application Server is typically proprietary. Web Apps SHALL use the
UAF message format defined in this document (see section Protocol Details).

Mobile Apps play the role of the User Agent and the Web App (Client). The protocol
between the Mobile App and the Relying Party Web Application Server is typically pro-

Confidential: For FIDO Alliance Members Only Page 50

https://sites.google.com/a/fidoalliance.org/technology-working-group/file-cabinet/protocols/draft-hill-uaf-owp-iop-00.html?attredirects=0&d=1
https://sites.google.com/a/fidoalliance.org/technology-working-group/file-cabinet/protocols/draft-hill-uaf-owp-iop-00.html?attredirects=0&d=1

FIDO UAF Protocol Specification Draft v0.12

prietary. In order to ensure interoperability, such Apps SHALL use the UAF message
format defined in this document (see section Protocol Details).

Native PC Applications play the role of the User Agent, the Web App (Client) and po-
tentially also the FIDO Client. Those applications are typically expected to be indepen-
dent from any particular Relying Party Web Application Server. These applications
should use the UAF HTTP Binding defined in "draft-hill-uaf-owp-iop-00”.

| NOTES |

e The Objects KeyRegistrationData and SignData (see UAF Authenticator Commands)
are generated and signed by FIDO Authenticators and have to be verified by the
FIDO Server. Verification will fail if the values are modified.

e The ASM API specifies the standardized API to access Authenticator Specific Modules
(ASMs) on Desktop PCs and Mobile Devices.

e The document Authenticator Commands does not specify a particular protocol or APL

Instead it lists the minimum data set and a specific message format which needs to
be transferred to and from the FIDO Authenticator.

4.5 |ANA Considerations

The following identifiers need to be registered with IANA:
<N/A>

Confidential: For FIDO Alliance Members Only Page 51

https://sites.google.com/a/fidoalliance.org/technology-working-group/file-cabinet/protocols/draft-hill-uaf-owp-iop-00.html?revision=7

FIDO UAF Protocol Specification Draft v0.12

5 UAF Supported Schemes

5.1 UAFV1-TLV

This scheme allows Authenticator and FIDO Server to exchange an asymmetric authen-
tication key generated by Authenticator.

Authenticator MUST generate a key pair (UAuth.pub/UAuth.priv) to be used with algo-
rithm suites listed in “FIDO Registry of Predefined Values”.

This scheme is using TLV (Tag Length Value) compact encoding to encode KRD and
SignData messages generated by Authenticators. This is the default scheme for UAF
protocol.

TAGs and Algorithms are defined in FIDO Registry.

Normative

[S-Auth-005] Conforming FIDO Servers MUST support all algorithm suites listed in document
“FIDO Registry of Predefined Value”.

[A-Auth-002] Conforming Authenticators MUST support at least one algorithm listed in in doc-
ument “FIDO Registry of Predefined Value”.

5.1.1 KeyRegistrationData

See UAF Authenticator Commands, section “Reqgister Command”.

5.1.2 SignData

See UAF Authenticator Commands, section “Sign Command’.

Confidential: For FIDO Alliance Members Only Page 52

https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit#heading=h.25i5hk3yttlm
https://docs.google.com/a/noknok.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s/edit#heading=h.25i5hk3yttlm

FIDO UAF Protocol Specification Draft v0.12

6 Definitions

See FIDO Glossary.

Confidential: For FIDO Alliance Members Only Page 53

https://docs.google.com/a/noknok.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit

FIDO UAF Protocol Specification Draft v0.12

Bibliography

[Coron99] Coron, J. and D. Naccache, “An accurate evaluation of Maurer's universal
test”, LNCS 1556, February 1999. Download
http://www.jscoron.fr/publications/universal.pdf.

[BioVocab] Harmonized Biometric Vocabulary. Text of Standing Document 2 (SD 2)
Version 8, WD 2.8, work-in-progress, ISO/IEC JTC 1/SC 37: Biometrics, 2007-08-22.
Download:
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3
004_JTC_1_SC_37_- Harmonized_Biometric_Vocabulary -_for_information.pdf?
nodeid=6719683&vernum=0

[Clickj] Clickjacking: Attacks and Defenses, Lin-Shung Huang and Collin Jackson
Carnegie Mellon University; Alex Moshchuk, Helen J. Wang, and Stuart Schlechter
Microsoft Research. Download
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf

[JSON] The application/json Media Type for JavaScript Object Notation (JSON),
(REC4627)

[JWA] JSON Web Algorithms (JWA) draft-ietf-jose-json-web-algorithms-08
[JWK] JSON Web Key (JWK) draft-ietf-jose-json-web-key-11
[JWS] JSON Web Signature (JWS) draft-jose-json-web-signature-11

[JPSK] JSON Private and Symmetric Key, see draft-jones-jose-json-private-and-
symmetric-key-00

[SP 800-131A] NIST Transitions: Recommendation for Transitioning the Use of Crypto-
graphic Algorithms and Key Lengths (NIST SP 800-131A)

[SP 800-63-1] NIST Electronic Authentication Guideline SP 800-63-1 (NIST SP 800-63-
1).
[FIPS 186-3] NIST DIGITAL SIGNATURE STANDARD (DSS) (FIPS 186-3)

[TLS] The TLS Protocol Version 1.0 (REC 2246), Version 1.1 (REC 4346), Version 1.2
(REC 5246)

[OCSP] Online Certificate Status Protocol (OCSP) (REC 2560)

[PKCS#1] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifi-
cations Version 2.1 (REC 3447)

[RFC1341] MIME (Multipurpose Internet Mail Extensions) (REC1341)

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels (RFEC2119)
[RFC4086] Randomness Requirements for Security (REC 4086)

[RFC4648] The Base16, Base32, and Base64 Data Encodings (REC 4648)
[RFC5056] On the Use of Channel Bindings to Secure Channels (REC 5056).

Confidential: For FIDO Alliance Members Only Page 54

http://tools.ietf.org/html/rfc5056
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc1341
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc2560.txt
http://tools.ietf.org/html/rfc5246
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc2246.txt
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://tools.ietf.org/html/draft-jones-jose-json-private-and-symmetric-key-00
http://tools.ietf.org/html/draft-jones-jose-json-private-and-symmetric-key-00
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-11
http://tools.ietf.org/html/draft-ietf-jose-json-web-key-11
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-08#section-6.1
http://tools.ietf.org/html/rfc4627
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327973/654118/6687752/N_3004_JTC_1_SC_37_-_Harmonized_Biometric_Vocabulary_-_for_information.pdf?nodeid=6719683&vernum=0
http://www.jscoron.fr/publications/universal.pdf

FIDO UAF Protocol Specification Draft v0.12

[ABNF] Augmented BNF for Syntax Specifications: ABNF (RFC 5234)

[RFC5280] Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile (REC 5280)

[RFC5639] Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve
Generation (REC 5639)

[RFC5929] Channel Bindings for TLS (REC 5929)
[OCRA] OCRA: OATH Challenge-Response Algorithm (REC 6287)
[RFC6454] The Web Origin Concept (REC 6454)

[ChannellD] Transport Layer Security (TLS) Channel IDs (draft-balfanz-tls-channel-id-
00)

[TR-03116-4] eCard-Projekte der Bundesregierung, BS| TR-03116-4

[SHEFFER-TLS] Recommendations for Secure Use of TLS and DTLS, draft-sheffer-tls-
bcp-00

Confidential: For FIDO Alliance Members Only Page 55

https://tools.ietf.org/html/draft-sheffer-tls-bcp-00
https://tools.ietf.org/html/draft-sheffer-tls-bcp-00
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf?__blob=publicationFile#page=8&zoom=100,99.2,431.5
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf?__blob=publicationFile#page=8&zoom=100,99.2,431.5
http://tools.ietf.org/html/draft-balfanz-tls-channelid-00
http://tools.ietf.org/html/draft-balfanz-tls-channelid-00
http://www.ietf.org/rfc/rfc6454.txt
http://tools.ietf.org/html/rfc6287
http://tools.ietf.org/html/rfc5929
http://www.rfc-archive.org/getrfc.php?rfc=5639
http://www.ietf.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc5234

FIDO UAF Protocol Specification Draft v0.12

Appendix A UAF JSON Schema

// UAF Request Schema
{
"id": "http://fidoalliance.org/UAF_vO11#",
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "UAF v@1l Request",
"type": "object",
"required”: ["V", "SeverOrigin", "Req"],
"properties": {
"v': { "type": "string", "pattern": "70.12%" },
"SeverOrigin": { "type": "string" },

IIRquI: {
"type": "object",
"oneOf": [

{ "$ref": "#/definitions/Query" },
{ "$ref": "#/definitions/Reg" },

{ "$ref": "#/definitions/Auth" },

{ "$ref": "#/definitions/Dereg" }

1
}
}J
"definitions": {
"Query": {
"type": "object",
"properties": {
"op": { "type" : "string", "pattern": "~Query$" },
"Permissions": { "$ref": "#/definitions/StringlList" },
"SupportedExtensions"” : { "$ref": "#/definitions/StringlList" },
"Extensions" : { "$ref": "#/definitions/Extensions" }
¥
"required": ["Op", "Permissions"],
"additionalProperties"”: false
¥
"Reg": {

"type": "object",
"properties": {

"Op": { "‘type" : "S‘tl"ing", "pat‘ter‘n": uAReg$u })
"Permissions": { "$ref": "#/definitions/StringlList" },
"Policy" : {

"type": "object",
"properties": {
"MatchPolicy": {"type": "string"},
"Accepted": {
"type": "array",
"minItems": 1,
"items": {"type": "string"}
s
"Registered": {
"type": "array",

Confidential: For FIDO Alliance Members Only

Page 56

FIDO UAF Protocol Specification Draft v0.12

"minItems": 1,
"items": {"type": "string"}

}
¥
"required": ["MatchPolicy", "Accepted"]
¥
"UserID": { "type" : "string" },
"AccountName": { "type" : "string" },
"RegInfo": {
"type": "object",
"properties": {
"Challenge": { "$ref": "#/definitions/ServerChallenge" },
"PreferredSuite”: {
"type": "object",
"properties": {
"Modes": { "$ref": "#/definitions/StringlList" },
"AuthSuites": { "$ref": "#/definitions/StringlList" }
}
¥
"RegExtensions" : { "$ref": "#/definitions/Extensions” }
¥
"required": ["Challenge"]
¥
"SupportedExtensions" : { "$ref": "#/definitions/StringlList" },
"Extensions" : { "$ref": "#/definitions/Extensions” }

s
"required": ["Op", "Policy", "UserID", "RegInfo"],
"additionalProperties"”: false

}s

"Auth": {
"type": "object",
"properties": {

"op": { "type" : "string", "pattern": "/~Auth$" },
"Permissions": { "$ref": "#/definitions/StringlList" },
"Policy" : {

"type": "object",
"properties": {
"MatchPolicy": {"type": "string"},
"Accepted": {
"type": "array",
"minItems": 1,
"items": {
"type": "object",
"properties": {
"TAID": {
"type": "array",
"minItems": 1,
"items": {"type": "string"}
s
"TokenID": {
"type": "array",

Confidential: For FIDO Alliance Members Only Page 57

FIDO UAF Protocol Specification Draft v0.12

"minItems": 1,
"items": {"type": "string"}

3,
"UserID": { "type" : "string" },
"AuthInfo": {
"type": "object",
"properties": {
"Challenge": { "$ref": "#/definitions/ServerChallenge" },
"AuthenticatorOperation”: {"type": "string"}
¥
"required”: ["Challenge"]
¥
"Tokens" : {
"type": "array",
"minItems": 1,
"items": {
"type": "object",
"properties": {
"TokenID": {"type": "string"},
"TokenData": {"type": "string"},

"TokenExtensions" : { "$ref": "#/definitions/Extensions”

s
"required": ["TokenID"]
}
s

"Transaction": {
"type": "object",
"properties": {
"TText": {"type": "string"},
"ServerData": {"type": "string"}

3

"required": ["TText"]
s
"SupportedExtensions" : { "$ref": "#/definitions/StringList" },
"Extensions" : { "$ref": "#/definitions/Extensions" }

¥
"required": ["Op", "Policy", "UserID", "AuthInfo"],
"additionalProperties"”: false

¥

"Dereg": {
"type": "object",
"properties": {

"op": { "type" : "string", "pattern": "~Dereg$" },
"UserID": { "type" : "string" },
"TokenID": { "type" : "string" },

"SupportedExtensions"” : { "$ref": "#/definitions/StringlList" },

Confidential: For FIDO Alliance Members Only

}

Page 58

FIDO UAF Protocol Specification Draft v0.12

"Extensions" : { "$ref": "#/definitions/Extensions” }
¥
"required": ["Op", "UserID", "TokenID"],
"additionalProperties"”: false

}s

"Extensions": {
"type": "array",
"minItems": O,
"items": {
"type": "object",
"properties": {
"ID": {"type": "string"},
"Data": {"type": "string"}
}s
"required": ["ID", "Data"]
¥
"StringlList": {
"type": "array",
"items": { "type": "string" }
s
"ServerChallenge": {
"type": "object",
"properties": {
"Challenge": {"type": "string"},
"ExpirationTime": {"type": "number"}
¥

"required": ["Challenge", "ExpirationTime"]

// UAF Response Schema
{
"id": "http://fidoalliance.org/UAF_vo11#",
"$schema": "http://json-schema.org/draft-04/schema#",
"description"”: "UAF v@1l Response”,
"type": "object",
"required": ["v", "Op" 1,
"properties": {
"v': { "type": "string", "pattern": "70.11%$" },

"Resp": {
"type": "object",
"oneOf": [

{ "$ref": "#/definitions/Query" },
{ "$ref": "#/definitions/Reg" },
{ "$ref": "#/definitions/Auth" }

]
}
}J
"definitions": {
"Query": {

Confidential: For FIDO Alliance Members Only Page 59

FIDO UAF Protocol Specification Draft v0.12

"properties": {

"Op": { "type" : "string", "pattern": "~Query$" },
"DeviceInfo" : { "$ref": "#/definitions/DeviceInfo" },
"Extensions" : { "$ref": "#/definitions/Extensions" }

¥
"required": ["Op", "Permissions"],
"additionalProperties"”: false

¥

"Reg": {
"type": "object",
"properties": {
"op": { "type" : "string", "pattern": "~Reg$" },
"UserID": { "type" : "string" },
"Tokens" : {
"type": "array",
"minItems": 1,
"items": {
"type": "object",
"properties”: {
"Info" : { "$ref": "#/definitions/TokenBaseInfo" },
"KeyRegistration": {
"type": "object",
"properties": {
"Mode": {"type": "string"},
"Scheme": {"type": "string"},
"KeyRegistrationData": {"type": "string"}
}J

"required": ["Mode", "Scheme", "KeyRegistrationData"]

¥
"TokenExtensions" : { "$ref": "#/definitions/Extensions” }
s
"required": ["Info", "KeyRegistration"]
}
s
"DeviceInfo" : { "$ref": "#/definitions/DeviceInfo" },
"Extensions" : { "$ref": "#/definitions/Extensions” }
s
"required": ["Op" 1],
"additionalProperties"”: false

}s

"Auth": {
"type": "object",
"properties": {

"op": { "type" : "string", "pattern": "/~Auth$" },
"UserID": {"type" : "string"},
"Tokens" : {

"type": "array",
"minItems": 1,
"items": {

"type": "object",

Confidential: For FIDO Alliance Members Only Page 60

FIDO UAF Protocol Specification Draft v0.12

"properties”: {
"TokenID": {"type": "string"},
"TokenAuthData": {
"type": "object",
"properties": {
"UAuthPub": {
"type": "object",
"properties": {
"X509": { "type" : "string" },
"JWK": { "type" : "string" }

s
"AlgSuite": {"type": "string"},
"SignScheme": {"type": "string"},
"SignData": {"type": "string"}
}J
"required”: ["AlgSuite", "SignScheme", "SignData"]
¥
"EncTokenData": {
"type": "object",
"properties": {
"Suite": {"type": "string"},
"ESK": {"type": "string"},
"Data": {"type": "string"}

¥
"required": ["Suite", "ESK", "Data"]
¥
"TokenExtensions" : { "$ref": "#/definitions/Extensions" }

¥
"required": ["TokenID"]

3,
"Transaction": {
"type": "object",
"properties": {
"TText": {"type": "string"}

¥

"required": ["TText"]
}s
"DeviceInfo" : { "$ref": "#/definitions/DevicelInfo" },
"Extensions" : { "$ref": "#/definitions/Extensions" }

¥
"required": ["Op", "Policy", "UserID", "AuthInfo"],
"additionalProperties"”: false

¥

"TokenBaseInfo": {
"type": "object",
"properties": {
"Vendor": { "type" : "string" },
"VendorURL": { "type" : "string" },
"TokenID": { "type" : "string" },

Confidential: For FIDO Alliance Members Only Page 61

FIDO UAF Protocol Specification Draft v0.12

"TAID": { "type" : "string" },

"AuthFactor": { "type" : "string" },
"Install": { "type" : "string" },
"SecType": { "type" : "string" },

"SecDisplay": { "type"
¥
"required":
"additionalProperties": false

¥

"DeviceInfo": {
"type": "object",
"properties": {
"UAFTokens": {
"type": "array",
"minItems": 0O,

"items": { "type": { "$ref":

: "boolean" }

["TokenID", "TAID", "AuthFactor", "Install"],

"#/definitions/TokenBaseInfo" } }

}
3s
"OEMInfo": {
"type": "object",
"properties": {
"MachineModel": {
"type": "object",
"properties": {
"OEM": { "type" : "string" },
"0s": { "type" : "string" }
¥
"required": ["OEM", "0S" 1],
"additionalProperties": false
s
"UAFInfo": {
"type": "object",
"properties": {
"Vendor": { "type" : "string" },
"Version": { "type" : "string" }
¥
"required": ["Vendor", "Version"],
"additionalProperties"”: false
¥
¥
"additionalProperties": true
}

Confidential: For FIDO Alliance Members Only

Page 62

UAF Authenticator-specific Module (ASM) API

specification set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)

Editors:

Davit Baghdasaryan, Nok Nok Labs
John Kemp, FIDO Alliance

Contributors:

(member companies)

Abstract:

A FIDO authenticator may have a set of authenticator-specific software modules installed in the
same environment where the authenticator is installed. This document describes the APIs which
may be used by the FIDO client to access the functionality of these modules. The document’s
intended audience is FIDO Authenticator and FIDO Client vendors.

Notice:

blah blah legal boilerplate here, no warranty, confidential, etc.

1. Overview

1.1 Notations
2. Security Regquirements

3.1 Access Control for ASM APIs
3. ASM API

3.1. Process Function

3.2. GetlInfo Request

3.3. Register Request

3.4. Authenticate Request

3.4.1. Interface definition

3.5. Deregister Function

3.6. GetRegistrations Function
4. Plugin API

4.1. Android ASM Plugin_API

4.2. Windows ASM Plugin API
References

Normative

Informative

1. Overview

An Authenticator Sub-Module (ASM) is a platform-specific component developed by FIDO authenticator vendors which
can be plugged into FIDO Clients and accessed with FIDO protocols.

In its typical form, an ASM is a driver-level component that is directly integrated with the authenticator driver. The ASM
implements an API on top of the driver, exposing that API to the FIDO Client.

The intended audience are Authenticator and FIDO Client vendors.
There are two APls provided by an authenticator sub-module:

e The ASM Plugin APl is a platform-specific APl which allows a platform-specific FIDO Client to enumerate
ASMs and work with them.

e The ASM API is a cross-platform JSON API which allows FIDO Clients to communicate with ASMs and
exchange FIDO-related data with them.

1.1 Notations

e All data structures and APls in this document are presented in WebIDL format.

e All examples are provided in Javascript language.

2. Security Requirements

ASM developers must be very careful to protect FIDO data they are working with. There are several security
requirements ASMs must meet:

e ASM module MUST implement a mechanism for isolating UAF credentials registered by two different FIDO
Clients. One FIDO Client MUST not have access to UAF credentials that have been registered via a different
FIDO Client.

There are several ways to achieve this:

o If ASMis bundled with a FIDO Client - this isolation mechanism is already built-in.

o If ASM and FIDO Client are implemented by the same vendor - vendor MAY decide to implement
proprietary mechanisms to bind its ASM only with its FIDO Client.

o On some platforms ASM and FIDO Client may be assigned with a special privilege (or permission)
which regular Apps don’t have. ASMs built for such platforms MAY avoid supporting isolation of UAF
credentials per FIDO Clients since all FIDO Clients will be considered trusted.

o If FIDO Clients do not have a special privilege (or permission) ASMs MUST implement mechanisms to
allow these FIDO Clients to access only UAF credentials that have been registered by themselves.

Rationale: The above requirement ensures that an App pretending to be a FIDO Client won’t be able to exercise
registered UAF credentials.

e ASM module designed for Internal Authenticators MUST associate an unpredictable identifier with UAF
credentials that are registered via itself. This is a security measure that ensures that credentials registered by
one ASM cannot be accessed by another ASM.

o APIKey mechanism described in “UAF Authenticator Commands” document is such a mechanism.

Rationale: The above requirement ensures that an App pretending to be an ASM won't be able to exercise UAF
credentials.

e ASM MUST implement platform provided security best practices for protecting UAF related cached data.

e ASM MUST NOT cache any other UAF sensitive data than the bindings (e.g. FIDO Client IDs, APIKeys),
PersonalDs, KeylDs, KeyHandles and ApplDs in their local cache. For example ASM MUST never cache
Username in its local storage.

Rationale: The above requirement ensures that no sensitive information is stored outside the Authenticator’s security
boundaries.

e ASM implementing support for a Silent IAuthnr MUST, during every registration, show a Ul which explains
what is a silent authenticator and get user’s consent for the registration. Also, such ASM MUST either
© Run with a special permission/privilege on the system, or
o Have a built-in binding with the authenticator which ensures that other applications cannot directly
communicate with the authenticator by bypassing this ASM.

Rationale: The above requirement ensures that Apps cannot use Silent Authenticator for tracking purposes. User must
be aware of each registration and give a consent.

A typical ASM cache would have the following form:

var storage = {
registrations: [
{
personalD: aksd823ndi..., // PersonalD
appID: "https://rpl.com", // ApplD
keyID: "giwdm..." // KeyID
keyHandle: "aksjd..." // KeyHandle blob

by

2.1 Access Control for ASM APIs

The following table depicts access control for UAF ASM API.

Notations:

NoAuth - No authentication required

FCAuth - FIDO Client authentication

UserVerify - explicit user verification by authenticator
PubKeyHash - hash of public key to be deregistered
KeylDList - list of KeylDs

Table 2-1-1 Access Control for ASM API

Commands 1stF IAuthnr 2ndF IAuthnr 1stF XAuthnr 2ndF XAuthnr
Getlnfo NoAuth NoAuth NoAuth NoAuth
Register UserVerify UserVerify UserVerify UserVerify
Authenticate UserVerify UserVerify UserVerify UserVerify

ApplD ApplD ApplID AppiD
FCAuth KeylDList (provided KeylDList (provided by
by FC) FC)
FCAuth
GetRegistrations AppID AppID X X
FCAuth FCAuth
Deregister ApplID ApplD ApplID ApplD
KeylD KeylD KeylD KeyID
PubKeyHash PubKeyHash PubKeyHash PubKeyHash
FCAuth FCAuth
3. ASM API

3.1. Process Function

All ASM functions are invoked using a generic process function with the following signature:

3.1.1. Interface definition

interface ASM {
callback ProcessCallback = void (DOMString response) ;

DOMString process (DOMString request) ;
void processByCB (DOMString request, ProcessCallback cb) ;

const short UAF_STATUS OK = 0; // Success

const short UAF_STATUS_ERROR = 1; // Undefined error

const short UAF_STATUS_INVALID ARG = 2; // Invalid argument
const short UAF_STATUS_NO USER _ENROLLED = 3; // No user enrolled

const short UAF_STATUS VERIFY FAILED 4; // User verification failed
const short UAF_STATUS_ACCESS_DENIED 5; // Access denied

const short UAF_STATUS_ NOT REGISTERED = 6; // KeyID is not registered
const short UAF_STATUS USER CANCELLED = 7; // UI cancelled by user

Depending on the underlying platform, the process function may take two forms.

The first form of the function takes a stringified JSON request and returns a stringified JSON response.
The second form allows a callback function to be passed, and calls the provided callback function when the response
from the ASM is ready.

An example invocation of the process function is given below.
3.1.2. Example code

var req = {};
req.requestType = "Register”;

] ”

reqg.authenticatorReferencelID =

ASM.ProcessByCB (JSON.stringify(req), function (response) {
var resp = JSON.parse (resp);

3.2. GetInfo Request

A Getlinfo request call returns information about available Authenticators and their sub-modules.
3.2.1. Interface definition

interface ASM {
dictionary Authenticator {
// Unique ID (unique per device’s scope) associated with Authnr by ASM.
// This ID is generated by ASM and managed by it.
// ASM needs this ID to reference authenticators internally
long authenticatorReferencelID;

// Supported UAF versions.

// List of supported UAF Versions.

// Each item is an array of two elements from which the first element
// is the major version and the second is the minor version.

// Example: [[0, 1], [2, 0]] - indicate two versions “0.1” and “2.0”
short[] [] uafVersions;

// FIDO characteristics of Authnr
DOMString aaid;
long authenticationFactor;

long keyProtection;

long attachmentHint;

long secureDisplay;

long authenticationSuite;
long scheme;

long additionallInfo;

// Indicates if the authenticator is 1stF
boolean islstF;

// List of supported UAF extension IDs
DOMString[] supportedExtensions;

dictionary GetInfoInput ({
// MUST be “GetInfo”
DOMString requestType;

dictionary GetInfoOutput {
// Mandatory. Status Code. Can be one of these:
// UAF _STATUS OK, UAF STATUS ERROR
short statusCode;

// List of supported ASM Message Versions.

// Each item is an array of two elements from which the first element
// is the major version and the second is the minor version.

// Example: [[0, 1], [2, 0]] - indicate two versions “0.1” and “2.0”

short[] [] asmMessageVersions;

// ASM Vendor
DOMString vendor;

// List of available Authenticators
Authenticator[] authenticators;

3.2.2. Example code

3.3. Register Request

Create a FIDO KeyRegistrationData and return to the caller.
Unless otherwise specified all steps are NORMATIVE for ASM implementation.

1. Ifits an IAuthnr
a. Generate a new binding for this authenticator (e.g. APIKey) if not already generated

b. Depending on platform (see Security Requirements) ASM MAY identify the FIDO Client and assign a
binding ID to it (some form of FIDO Client ID)
c. Obtain PersonalD from appropriate operational environment
2. Make sure there is a user enrolled with Authenticator. If not - take the user through enroliment. Otherwise
locally verify the user
Hash the provided finalChallenge using Authnr specific hash function
Invoke Register CMD and provide all the necessary arguments
5. Ifit's an |Authnr
a. Cache ApplD, KeyHandle, PersonalD, KeyID, and APIKey in ASM’s cache
6. Return Authenticator’'s generated KeyRegistrationData (KRD)

Hw

3.3.1. Interface definition

interface ASM {

dictionary RegistrationInput ({
// Mandatory. MUST be “Register”
DOMString requestType;

// Mandatory. Authenticator ID returned by GetInfo function
long authenticatorReferencelID;

// Mandatory. Application Identity
DOMString appID;

// Mandatory. Human-readable Username
DOMString username;

// Mandatory. base64url encoded opaque Challenge data
DOMString finalChallenge;

// Optional. Extensions
Extension[] exts;

dictionary RegistrationOutput {
// Mandatory. Status Code. Can be one of these:
// UAF_STATUS OK, UAF STATUS ERROR, UAF INVALID ARG,
// UAF_STATUS_VERIFY FAILED, UAF_STATUS_ CANCELLED,
// UAF_STATUS USER NOT ENROLLED
short statusCode;

// Optional. base64url encoded Key Registration Data
DOMString krd;

// Optional. Extensions
Extension[] exts;

An example FIDO Client call to the register APl is given below.

3.3.2. Example code

/* This code assumes that it’s a 1stF IAuthnr and that ASM implements isolation of UAF
credentials of FIDO Clients. It’s also assumed that ASM and Authenticator implement APIKey.

*/

function Register (authnrID, appID, username, finalChallenge) {

try {

// Identify the calling FIDO Client and obtain APIKey associated with it
var fidoClientID = this.identifyCaller ()
if (this.apiKeyList.hasOwnProperty (fidoClientID) == null) {
this.apiKeyList[fidoClientID] = generateNewAPIKey ()
currentAPIKey = this.apiKeyList[fidoClientID]

// Select the right authenticator by authnrID
var authnr = GetAuthenticator (authnrID)

// Check if any user is enrolled with Authenticator
if (!authnr.Matcher.IsUserEnrolled()) {
// Enroll a new user with Authenticator
authToken = authnr.Matcher.EnrollUser ()
}
else {
// Locally verify the user with Authenticator
authToken = authnr.Matcher.LocalVerifyUser ()

// Hash the final challenge using a hash function that Authnr supports
var finalChallengeHash = hash (authnr.supportedHashAlg, finalChallenge)

// Obtain PersonaID from appropriate operational environment (e.g. 0S)
var personalD = environment.getPersonalD() ;

// Invoke REGISTER command
var tlv = authnr.Register (appID,
username,
finalChallengeHash,
currentAPIKey,
personalD,
authToken)
// Parse TLV response and extract KeyID, statusCode and KeyHandle

if (tlv.errorCode == UAF STATUS OK) {
// Add a new registration to local storage
this.storage.registrations.push ({
applID: applID,

keyHandle: tlv.KeyHandle,
keyID: tlv.KeyID,
personalD: personalD,
apiKey: currentAPIKey })

return JSON.stringify ({
statusCode: UAF STATUS OK,
krd: base64url encode (TLV.UAFV1 RESPONSE) })
}
else {
// Determine the right error code and raise it
throw errorCode
}
}
catch (err) {
return JSON.stringify ({ statusCode: err })
}

3.4. Authenticate Request

Verify the user and return UAF SignData to the caller.
Unless otherwise specified all steps are NORMATIVE for ASM implementation.

1. Ifits an |Authnr
a. Obtain the binding ID specific to this authenticator (e.g. APIKey)
b. Depending on platform (see Security Requirements) ASM MAY identify the FIDO Client and assign a
binding ID to it (some form of FIDO Client ID)
c. Obtain PersonalD from appropriate operational environment
Make sure that there is a registration corresponding to the given ApplD and appropriate bindings (PersonalD,
APIKey and FIDO Client ID, applies only to IAuthnrs).
Make sure that user is enrolled with Authenticator
Hash the provided finalChallenge using Authnr specific hash function
Invoke Sign CMD and provide all the necessary arguments
If it's a 1stF Authenticator and it returns list of Usernames, ASM must
a. Show all Usernames to the user
b. Ask the user to choose a single Username
C. Instruct Authenticator to generate SignData for selected Username
7. Return FIDO formatted SignData

N

oA wW

3.4.1. Interface definition

interface ASM {

10

dictionary AuthenticateInput {
// Mandatory. MUST be “Authenticate”
DOMString requestType;

// Mandatory. Returned by GetInfo function
long authenticatorReferencelD;

// Mandatory. Application Identity
DOMString appID;

// Optional. base64url encoded list of KeyIDs
DOMString[] keyIDList;

// Mandatory. base64url encoded opaque Challenge data
DOMString finalChallenge;

// Optional. base64url encoded Transaction Data. Optional.
DOMString transactionData;

// Optional. Extensions
Extension[] exts;

dictionary AuthenticateOutput {
// Mandatory. Status Code. Can be one of these:
// UAF_STATUS_OK, UAF_STATUS ERROR, UAF_INVALID_ ARG,
// UAF_AUTH_FAILURE, UAF_STATUS_CANCELLED,
// UAF_STATUS USER NOT ENROLLED, UAF STATUS NOT REGISTERED
short statusCode;

// Optional. base64url encoded Key Registration Data
DOMString signData;

// Optional. Extensions
Extension[] exts;

3.4.2. Example code

/* This code assumes that it’s a 1stF IAuthnr and that ASM implements isolation of UAF
credentials of FIDO Clients. It also assumes that ASM and Authenticator implement APIKey.
*/

function Authenticate (authnrID, appID, keyIDList, finalChallenge, transText) {

try {
// Identify the calling FIDO Client and obtain APIKey
// associated with it

11

var fidoClientID = this.identifyCaller ()

if (this.apiKeyList.hasOwnProperty (fidoClientID) == null) {
throw UAF STATUS ACCESS DENIED

}

var currentAPIKey = this.apiKeyList[fidoClientID];

// Select the right authenticator by authnrID
var authnr = GetAuthenticator (authnrID)

// Check if any user is enrolled with Authenticator
if (!authnr.Matcher.IsUserEnrolled()) {
throw UAF STATUS NO USER ENROLLED

// Hash the final challenge using a hash function that Authnr supports
var finalChallengeHash = hash (authnr.supportedHashAlg, finalChallenge)

// Obtain PersonalD from appropriate operational environment (e.g. OS)
var personalD = environment.getPersonalD();

// Filter KeyHandles
khList = this. filterKeyHandles (appID, keyIDList, personalD, currentAPIKey);

// Invoke SIGN Command

var tlv = authnr.Sign(finalChallengeHash,
appID,
currentAPIKey,
personalD,
transText,
khList,
authToken) ;

// Parse TLV response and extract KeyID, errorCode and KeyHandle

if (tlv.StatusCode != UAF STATUS OK) ({
// Determine the right error code and raise it
throw errorCode

// If Authnr returned list of Usernames -
// we need to show the list to user and ask to pick one
if (tlv.UsernamelList != null) {
// Show to user and ask them select a Username
var finalKeyHandle = this. showToUser (tlv.UsernamelList) ;

// Invoke SIGN command again with the final KeyHandle
tlv = authnr.Sign(finalChallengeHash,

applID,

currentAPIKey,

personalD,

transText,

finalKeyHandle,

authToken) ;

12

return JSON.stringify ({
statusCode: UAF STATUS OK,
signData: base64url encode (TLV.UAFV1 RESPONSE) }
)
}

return JSON.stringify ({
statusCode: UAF STATUS OK,
signData: base64url encode (TLV.UAFV1 RESPONSE)
1)
}
catch (err) {
return JSON.stringify ({ statusCode: err })

3.5. Deregister Function

Delete registered UAF data.
Unless otherwise specified all steps are NORMATIVE for ASM implementation.

1. Ifits an |Authnr
a. Obtain the binding ID specific to this authenticator (e.g. APIKey)

b. Depending on platform (see Security Requirements) ASM MAY identify the FIDO Client and assign a
binding ID to it (some form of FIDO Client ID)

c. Obtain PersonalD from appropriate operational environment
d. Delete the registration data associated with FIDO Client ID, APIKey, AppID, KeyID, PersonalD and
publicKeyHash
2. Ifit's an XAuthnr

a. Delete the registration data associated with AppID, KeyID and publicKeyHash

3.5.1. Interface definition

interface ASM {
dictionary DeregisterInput ({
// Mandatory. MUST be “Deregister”
DOMString requestType;

// Mandatory. Returned by GetInfo function
long authenticatorReferencelD;

13

// Optional. Application Identity
DOMString appID;

// Mandatory. AAID
DOMString aaid;

// Mandatory. base64url encoded Transaction Data.
DOMString keyID;

// Mandatory. base64url encoded Transaction Data.
DOMString publicKeyHash;

// Optional. Extensions
Extension[] exts;

dictionary DeregisterOutput {
// Mandatory. Status Code. Can be one of these:
// UAF_STATUS_OK, UAF_STATUS ERROR, UAF_INVALID_ ARG,
// UAF_STATUS VERIFY FAILED, UAF STATUS ACCESS_ DENIED
short statusCode;

// Optional. Extensions
Extension[] exts;

3.5.2. Example code

/* This code assumes that it’s a 1stF TAuthnr and that ASM implements isolation of UAF
credentials of FIDO Clients. It also assumes that ASM and Authenticator implement APIKey.

*/

function Deregister (authnrID, appID, aaid, keyID, publicKeyHash) {

try {

// Identify the calling FIDO Client and obtain APIKey

// associated with it

var fidoClientID = this.identifyCaller ()

if (this.apiKeyList.hasOwnProperty (fidoClientID) == null) {
throw UAF STATUS ACCESS DENIED

}
var currentAPIKey = this.apiKeyList[fidoClientID];

// Obtain PersonalID from appropriate operational environment (e.g. 0OS)
var personalD = environment.getPersonalD();

// Select the right authenticator by authnrID
var authnr = GetAuthenticator (authnrID)

// Invoke SIGN Command

14

var tlv = authnr.Deregister (applD,
keyID,
currentAPIKey,
personalD,
publicKeyHash) ;

// Delete KeyHandle from local storage
this.storage.deleteRegistration(authnrID, appID, keyID,
currentAPIKey, personalD, publicKeyHash)

return JSON.stringify({ statusCode: UAF STATUS OK })
}

catch (err) {
return JSON.stringify ({ statusCode: err })

3.6. GetRegistrations Function

Return registrations corresponding to the given ApplD.

Unless otherwise specified all steps are NORMATIVE for ASM implementation.

1. Ifit's an |Authnr:
a. Obtain the binding ID specific to this authenticator (e.g. APIKey)
b. Depending on platform (see Security Requirements) ASM MAY identify the FIDO Client and assign a
binding ID to it (some form of FIDO Client ID)
c. Obtain PersonalD from appropriate operational environment
d. Collect the list of registrations for given authenticatorReferencelD
e. Filter this list with FIDO Client ID, APIKey, PersonalD and AppID.
2. Ifit's an XAuthnr:
a. Create an empty list
3. Return the final list to caller

3.6.1. Interface Definition

interface ASM {
dictionary GetRegistrationsInput ({
// Mandatory. MUST be “GetRegistrations”
DOMString requestType;

// Mandatory. Returned by GetInfo function
long authenticatorReferencelD;

15

// Mandatory. Application Identity
DOMString appID;

dictionary Registration {
// Mandatory. Application Identity
DOMString appID;

// Mandatory. List of base64url encoded KeyID
DOMString[] keyIDs;

dictionary GetRegistrationsOutput ({
// Mandatory. Status Code. Can be one of these:
// UAF STATUS OK, UAF_STATUS ERROR, UAF INVALID ARG,
// UAF_STATUS_VERIFY FAILED, UAF_STATUS NOT_REGISTERED,
// UAF_STATUS_ACCESS_DENIED
short statusCode;

// Mandatory. List of registrations
Registration[] regs;

3.6.2. Example code

/* This code assumes that it’s a 1stF IAuthnr and that ASM implements isolation of UAF
credentials of FIDO Clients. It also assumes that ASM and Authenticator implement APIKey.

*/

function GetRegistrations (authnrID, appID) {

try {

// Identify the calling FIDO Client and obtain APIKey

// associated with it

var fidoClientID = this.identifyCaller ()

if (this.apiKeyList.hasOwnProperty (fidoClientID) == null) {
throw UAF STATUS ACCESS DENIED

}
var currentAPIKey = this.apiKeyList[fidoClientID];

// Obtain PersonalD from appropriate operational environment (e.g. OS)
var personalD = environment.getPersonalD()

var regs = []
// Iterate over registrations in the cache and match with provided AppID
foreach(reg in this.storage.registrations) {

if (reg.appID != appID || personalD != reg.personalD | |
currentAPIKey != reg.apiKey)
continue;

16

if (!result.hasOwnProperty(reg.appID)) {
result[reg.appID] = []
}
result[reg.applID] .push(reg.keyID)
}

return JSON.stringify({ statusCode: UAF STATUS OK, result: result })
}

catch (err) {
return JSON.stringify ({ statusCode: err })

4. Plugin API

ASM Plugins are operating system platform-specific components which offer implementations of the ASM process
interface described above, accepting and returning JSON-formatted values.

4.1. Android ASM Plugin API

On Android systems, an ASM Plugin may be implemented either as a Java library, statically linked with a FIDO Client

application, or it may be implemented as a separate APK-packaged application. The Java library approach is not
described in this document.

In order to be recognized by a FIDO Client, an ASM Plugin application must be designed as an Android Service,
implementing the IASMService interface (http:/developer.android.com/guide/components/aidl.html) described below .

/** ASM Service AIDL interface. This interface is used by FIDO Clients */

interface IASMService

{

int process(in String req, out String resp);

The following code demonstrates how to register a concrete implementation of the JASMService interface to receive
the Android-defined IBinder::onBind event within an ASM.

public class SampleASMService extends Service ({

@Override
public IBinder onBind (Intent intent) {

try {
// Return an object of SampleASMServiceImpl which
// implements IASMService AIDL
return new SampleASMServiceImpl () ;
}

catch (Exception ex) {

17

http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html

return null;

Additionally each ASM Plugin APK must include the following entry to its manifest file:

<service android:name=".exampleASMPluginName">
<intent-filter>
<action android:name=
"com.fido.android. framework.FIDO_ INTENT ENUM ASM" />
</intent-filter>
</service>

The FIDO Client will find ASM packages installed on the system by looking for packages which have the
FIDO_INTENT_ENUM_ASM intent registered.

The following code demonstrates how FIDO Clients can find ASMs and invoke the “process” function.

public class ASMBinder () {
public void FindAndBind() {
PackageManager pm = getApplicationContext () .getPackageManager () ;
List<ResolveInfo> asmList = pm.queryIntentServices (
new Intent ("com.fido.android.framework.FIDO INTENT ASM ENUM"),
PackageManager.GET INTENT FILTERS) ;

Iterator<ResolveInfo> iter = asmList.iterator();
while (iter.hasNext()) {
ResolveInfo info = iter.next();
ASMAgent agent = new ASMAgent () ;
agent.bind(info) ;

public class ASMAgent

@Override
public boolean bind () {
ComponentName name = name () ;
return mContext.bindService (
new Intent () .setClassName (name.getPackageName (), name.getClassName()),
serConn,
Context.BIND AUTO CREATE) ;
}
private ServiceConnection serConn = new ServiceConnection () {
@Override

public void onServiceConnected (ComponentName name, IBinder service) {

IASMService asmService = IASMService.Stub.asInterface (service);
if (asmService != null) {
// Create an ASM JSON request and call Process function
asmService.process (jsonRequest, jsonResponse);
}
}
@Override
public void onServiceDisconnected (ComponentName name) {

/] ...
}
bi

4.2. Windows ASM Plugin API

ASM Plugins are implemented in form of DLLs on Windows. Refer to asmplugin doxygen documentation for details
on the API exposed by the DLL.

A Windows-based FIDO Client looks for ASM Plugin DLLs in the following registry paths:

HKCU\Software\FIDO\ASM
HKLM\Software\FIDO\ASM

The FIDO Client iterates over all keys under this path and looks for "string values" named "path":

[HK**\Software\FIDO\ASM\<exampleASMName>]
"path"="...\\<asmDLLName>.d1l1l"

"path" must point to the exact filesystem location of ASM Plugin DLL.

Note that there may be FIDO Clients which can’t access HKLM registry entries and therefore it’s recommended to put

ASM plugin entries in HKCU location.

References

Normative

FIDO UAF Authenticator Commands specification, Davit Baghdasaryan, Nok Nok Labs -
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-Id44UMjAV7mqdsn9FhyBch7s

19

https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s
https://docs.google.com/document/d/1HxZtBuKuloXdkjGw1N-ld44UMjAV7mqdsn9FhyBch7s

FIDO Technical Glossary, Baghdasaryan, Hill, Lindemann -
https://docs.google.com/document/d/10qoZNA47QZSEiZQYiG4HLSvHsBLDqsFIJUtZCAyLYYk

WebIDL, Cameron McCormack, Mozilla Corporation <cam@mcc.id.au> -
http://dev.w3.0rg/2006/webapi/\WWebIDL/

Informative

FIDO Architecture Overview

20

http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
http://dev.w3.org/2006/webapi/WebIDL/
mailto:cam@mcc.id.au
mailto:cam@mcc.id.au
mailto:cam@mcc.id.au
mailto:cam@mcc.id.au
mailto:cam@mcc.id.au
mailto:cam@mcc.id.au
mailto:cam@mcc.id.au
http://mcc.id.au/
http://mcc.id.au/
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#
https://docs.google.com/document/d/10qoZNA47QZSEiZ0YiG4HLSvHsBLDqsFIJUtZCAyLYYk/edit#

UAF Authenticator Commands

specification set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)

Glossary
1. Overview

1.1 UAF Authenticator
1.2 Types of Authenticators
1.3 Notations

2. Access Control for Commands
2.1 API Key Handling

3. Types and Tags

4. Structures
4.1 RawKeyHandle

5. Commands
5.1 Getlnfo Command

General Description
Command Structure

Command Response

Non-Normative Example Code
5.2 Register Command

General Description

Command Structure

Command Response

Non-Normative Example Code
5.3 Sign Command

General Description
Command Structure

Command Response
Non-Normative Example Code
5.4 Deregister Command

General Description
Command Structure

Command Response
Non-Normative Example Code

Appendix: Security Guidelines

Glossary

Authnr FIDO Authenticator
|Authnr Internal FIDO Authenticator
XAuthnr External FIDO Authenticator

User Verification

Authenticators have different ways to locally verify a user. User Verification refers to the
process of locally verifying a user by Authnr.

User Enrollment

User Enroliment refers to the process of creating association (also called a template)
between user and Authenticator so that it can be further used for user verification.

Matcher Matcher Component - a component which is able to locally verify a user (biometric
matching, PIN verification, etc)

1stF Authnr A FIDO authenticator which may act as first factor as well as second factor.
By definition 1stF Authnrs must have a Matcher.
An important characteristics of 1stF Authnrs is that they can be used in Login scenarios
(without requiring user to enter username or password) where user is not known by the
Application.

2ndF Authnr A FIDO authenticator which acts only as second factor.
2ndF Authnrs always require a single KeylD to be provided before responding to Sign
command. They might or might not have a Matcher.

Username Username is a human readable string identifying user’s account on RP site.
It is provided by Relying Party as part of UAF Registration operation. All 1stF Authnrs
MUST be able to store Username inside KeyHandle.

APIKey APIKey acts as a guard for various commands. It's generated and provided by the ASM.

Uauth.pub/Uauth.priv

User authentication public/private key is generated during Register command by the
Authenticator. Uauth.pub is shared with the web application while Uauth.priv is wrapped
by the Authenticator. This key is specific to a particular account.

Wrap.sym Internal symmetric wrapping key in the Authenticator used to wrap/unwrap the
KeyHandle.

KeyHandle A key container created by the Authenticator. KeyHandle is wrapped by Wrap.sym and
contains the UAuth.priv key (and other data) inside.

RawKeyHandle KeyHandle in un-wrapped form

Att.priv Attestation Private Key as defined in UAF protocol

KRD Key Registration Data as defined in UAF protocol.

SIGNDATA Signing Data as defined in UAF protocol

UINT16 A 16 bit (2 bytes) unsigned integer

UINT32 A 32 bit (4 bytes) unsigned integer
UINT64 A 64 bit (8 bytes) unsigned integer
PersonalD An identifier provided by ASM. PersonalD is used to associate different personas with

registrations. It can be used to create virtual personas on an Authenticator e.g. for
business and private accounts.

PersonalD provides ways for users to manage their privacy settings.

Authentication Token/ AuthToken is a mechanism that allows the Authenticator to implement User Verification
AuthToken and Register/Sign functions in two distinct commands.
Refer to example codes for more details.

1. Overview

This document specifies low-level functionality which UAF Authenticators should implement in order to support the
UAF protocol. The document contains informative and normative notes. While implementing the set of commands
specified in this document is not mandatory nevertheless implementors must follow all the normative notes.

The audience of this document is UAF Authenticator Vendors.

1.1 UAF Authenticator

The UAF Authenticator is an Authentication component that meets the UAF protocol requirements. The main functions
to be provided by UAF Authenticators are:

1. [Mandatory] Verifying the User using verification technology built into the authenticator
2. [Mandatory] Performing cryptographic operations defined in UAF protocol

3. [Mandatory] Attesting itself to the UAF Server if there is a built-in support for attestation
4. [Optional] Securely displaying the transaction text to the User

FIDO Authenticator \

Interface

|

i User |
= = Verification / ! ™
:_}{%%[?f?%???ﬁ___: Attestation Key
User
-"'"_'______""--\
h — R
Authentication

Keays

Figure 1: FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

A fingerprint sensor built into a mobile device

PIN authentication implemented inside a secure element

A mobile phone acting as an authenticator to a different machine
A USB token with built-in authentication capability

1.2 Types of Authenticators

There are three types of authenticators defined in this document.

e 1stF IAuthnr - Internal Authenticator with 1st Factor capability
o Itis assumed that these authenticators MAY or MAY NOT store RawKeyHandles in their own internal
storage. If they don’t - they return KeyHandle to ASM.

e 1stF XAuthnr - External Authenticator with 1st Factor capability
o Itis assumed that these authenticators are designed to store RawKeyHandles in their own internal
secure storage and don’t provide these to ASM.

o Note that in some deployments IAuthnrs can act as XAuthnr. When it happens this Authenticator
MUST follow requirements of Internal Authenticators within the boundary of the system it is internally
connected to and follow requirements of External Authenticator to the system it connects externally.

e 2ndF Authnr - Internal or External Authenticator with 2nd Factor capability

o Itis assumed that these authenticators MAY or MAY NOT store RawKeyHandles in their own internal
storage. If they don’t - they return KeyHandle to ASM.
o These authenticators can only act as 2ndF

Throughout the document there will be special conditions applying to some of these types of authenticators.

1.3 Notations

e All data described in this document MUST be encoded in big-endian format.

o The following is an example of a buffer presented in form of Table. It reads as:
o A variable length buffer which has a 2 bytes Tag in the beginning with value of
TAG_CUSTOM_KHANDLE_LIST.
Tag follows by 2 bytes of overall Length
What follows is a list of KeyHandles. The sum of all KeyHandles equals to the Length.
m Length = N * length(UINT16) + N * KeyHandleSize where N is the number of KeyHandles

UINT16 Tag TAG_CUSTOM_KHANDLE_LIST
UINT16 Length Entire Length of list of KeyHandles
UINT16 KeyHandleSize Each entry is a KeyHandle with length and content. This is

the length part.

BYTE KeyHandle[KeyHandleSize] Each entry is a KeyHandle with length and content. This is
the content part.

e Details of commands is described using a pseudo-code based on Javascript syntax.

2. Access Control for Commands

The following table summarizes access control requirements for each command.

Table 2-1 Access Control for Commands

Commands 1stF IAuthnr 2ndF |Authnr 1stF XAuthnr 2ndF XAuthnr

GetInfo NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify
Sign UserVerify UserVerify UserVerify
PersonalD PersonalD ApplID
ApplD ApplD
KeyHandleList (provided | KeyHandleList (provided
by ASM) by ASM)
APIKey APIKey
Deregister PersonalD PersonalD AppID
AppID ApplID KeylID
APIKey APIKey PubKeyHash
KeylID KeylD
PubKeyHash PubKeyHash (the command
should never
(the command should (the command should reveal any
never reveal any never reveal any information
information whether key | information whether key | whether key was
was registered or not) was registered or not) registered or not)

Normative Note:
All UAF Authenticators MUST support the access control mechanism defined above.

If Authenticator vendors want to add additional security mechanisms - they MAY do it.

2.1 APl Key Concept

UserVerify

UserVerify
ApplD
KeyHandleList (provided
by ASM)

AppID
KeylD
PubKeyHash

(the command should
never reveal any
information whether key
was registered or not)

From Authenticator perspective APIKey guards the access to KeyHandles from unauthorized ASMs. APIKey uses
Trust On First Use (TOFU) trust model to establish a link between ASM, which instructs Authenticator to create a

KeyHandle, and the KeyHandle itself.

The concept requires the following steps to be performed by ASM and Authenticator:

o During Registration command
o ASM generates a random APIKey and provides to Authenticator
o Authenticator puts the APIKey into RawKeyHandle, wraps it and returns

o ASM stores APIKey in its own storage and makes sure to protect it from other Apps on the system

® During Sign command
o ASM provides the APIKey to Authenticator along with other arguments

o Authenticator unwraps provided KeyHandle(s) and proceeds with Sign command only if

RawKeyHandle.APIKey equals to provided APIKey

Normative Notes:

IAuthnrs MUST support a mechanism for binding generated KeyHandles with ASMs. The mechanism MUST have at
least the same security characteristics as APIKeys described above.

It is RECOMMENDED that XAuthnrs ignore APIKeys since it would not allow using these authenticators on multiple
machines.

3. Types and Tags

Informative Notes:

In this document UAF Authenticators use TLV (Type Length Value) format to communicate with outside world. All
requests and response packets are encoded via TLV.

While it is not mandatory for implementors to follow this formatting it is recommended to do so. Future versions of
UAF specifications may make this mandatory.

Commands and existing predefined TAGs can be extended with appending other TAGs (custom or predefined).

Refer to “FIDO Registry of Pre-defined Values” document for information about predefined TAGs.

TAG values defined in this section are custom and non-normative.
TLV formatted data has the following simple structure:

2 bytes 2 bytes “Length” bytes

Tag Length Data

Table 3-1 Custom non-normative TAGs used in this document only (0x0100 - 0x01FF)

Name Value Description

TAG_CUSTOM_KEYHANDLE 0x1001 Custom tag for representing a KeyHandle
TAG_CUSTOM_KHANDLE_LIST 0x1002 Custom tag for representing a list of KeyHandles.
TAG_CUSTOM_UNAME_LIST 0x1003 Custom tag for representing a list of Usernames.
TAG_CUSTOM_AUTHTOKEN 0x1004 Custom tag for representing an Authentication Token

Table 3-2 UAF Predefined Authenticator Command TAGs (0x1000 - 0x10FF)

Name Value Description

TAG_UAFV1_GETINFO_CMD 0x2001 | Tag for Getinfo command.

TAG_UAFV1_GETINFO_CMD_RESP | 0x2101 | Tag for Getinfo command response.

TAG_UAFV1_REG_CMD 0x2002 | Tag for Register command.
TAG_UAFV1_REG_CMD_RESP 0x2102 | Tag for Register command response.
TAG_UAFV1_SIGN_CMD 0x2003 | Tag for Sign command.
TAG_UAFV1_SIGN_CMD_RESP 0x2103 | Tag for Sign command response.
TAG_UAFV1_DEREG_CMD 0x2004 | Tag for Deregister command.

TAG_UAFV1_DEREG_CMD_RESP 0x2104 | Tag for Deregister command response.

Table 3-3 UAF Authenticator Error Codes

Name Value Description

UAF_STATUS_OK 0x0000 Indicates success
UAF_STATUS_ERR_UNKNOWN 0x0001 Indicates a generic error
UAF_STATUS_ERR_ACCESS_DENIED 0x0002 Indicates that access to command is denied

UAF_STATUS_ERR_INVALID_KEYHANDL | 0x0003 Indicates that the provided KeyHandle is invalid
E

UAF_STATUS_ERR_INVALID_PARAM 0x0004 Indicates that one of the input params is not valid

UAF_STATUS_ERR_USER_CANCELLED 0x0005 User cancelled the operation

UAF_STATUS_ERR_UNSUPPORTED_CM | 0x0006 Unsupported command
D

4. Structures

4.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by Authenticator. Authenticators may define RawKeyHandle in
different ways and its internal structure is relevant only to Authenticator implementation. This section provides a
sample reference definition for it.

Table 4-1 RawKeyHandle Structure

Hash of Size depends on Hash of uauth.pub. 32 bytes | 32 bytes max 128 bytes

AppID Algorithm used Size depend on Algorithm (mandatory for 1stF Authnrs)
used

ApplIDHash Uauth.priv UauthPubHash APIKey Personal Username
D

Normative Note:

1stF Authnrs MUST store Username and 2ndF Authnrs MUST NOT store it. Ability to support Username is a key
difference between 1stF and 2ndF Authenticators. Refer to “Sign” command section for more details on this
difference.

It is RECOMMENDED that XAuthnrs do not store APIKey and PersonalD since otherwise users won'’t be able to use
them on different machines. However if Authenticator vendor decides to do that to address a specific use case -
they MAY do it.

RawKeyHandle MUST be wrapped before leaving Authenticator boundary since it contains the user authentication
private key (uauth.priv).

Supporting PersonalD is optional for all types of authenticators. However an authenticator designed for multi-user
systems will likely have to support.

5. Commands

All UAF Authenticator commands and responses are semantically similar - they are all represented as TLV encoded
blobs. The first 2 bytes of each command is the command code. After receiving a command - Authenticator MUST
parse the first TAG and figure out what command is being issued.

Informative Note:

Supporting exactly the same semantics of commands is not a requirement but is recommended. This applies to all
commands described in this section.

UAF v1.0 doesn'’t attempt to standardize Authenticator Commands layer however next versions may standardize it
and therefore it is recommended to follow the structures and notations used in this specification.

5.1 Getinfo Command

General Description
This command returns a subset of Authenticator's UAF metadata.

Command Structure

TLV Structure

Description

1 UINT16 CmdTag

TAG_UAFV1_GETINFO_CMD

1.1 UINT16

Length

Entire Command Length - must be 0 for this command

Command Response

Informative Note:

Refer to “FIDO Registry of Pre-defined Values” document for bitflag definitions of AuthFactor, KeyProtection,

SecureDisplay and AuthSuite.

TLV Structure Description

1 UINT16 CmdTag TAG_UAFV1_GETINFO_CMD_RESP

1.1 UINT16 Length TLV Length

1.2 UINT16 APIVersion Specifies API version.
MAJOR (1 byte) and MINOR (1 byte).
MUST be 0x0001

1.2 BYTE NumUAFVersion Number of supported UAF Versions

1.3 UINT16 UAFVersion[NumUAFVersion] List of supported UAF Protocol Versions. Each item is
encoded as UINT16:
MAJOR (1 byte) and MINOR (1 byte).

1.4 UINT32 AAID Vendor assigned AAID

1.5 UINT64 AuthFactor Authentication Factor (as defined in “FIDO Registry of
Pre-defined Values” document)

1.6 UINT64 KeyProtection Key Protection type (as defined in “FIDO Registry of Pre-
defined Values” document)

1.7 UINT64 SecureDisplay Secure Display type (as defined in “FIDO Registry of
Pre-defined Values” document)

1.8 UINT64 AuthSuite Authentication Suite (as defined in “FIDO Registry of
Pre-defined Values” document)

Non-Normative Example Code

10

function GetInfo ()

{

var response = []

writel6 (response, TAG UAFV1 GETINFO CMD) ;
writel6 (response, GETINFO LENGTH) ;
writel6 (response, NUM UAF VERSIONS) ;
= 0; i < NUM UAF VERSIONS; ++i)
writel6 (response, supportedUAFVersions[i]);

write32 (response, MY AAID);

for (i

return response;

5.2 Register Command

General Description

This command generates a UAF registration assertion. This assertion can be used to register the Authenticator with a

UAF server.
Authenticator MUST:

1. If User is already locally enrolled (such as biometric enrollment, PIN setup, etc.) - locally verify the user.
a. If verification fails - fail the command
2. If Useris not locally enrolled with Authenticator — take the User through enroliment process.
a. If enrollment fails - fail the command
Generate a new User Authentication Key (Uauth.pub/Uauth.priv)
Create TAG_UAFV1_KRD structure (see below table) and attest it with Attestation Private Key (Att.priv)
Create a RawKeyHandle
If it's an |Authnr
a. Add APIKey and PersonalD into RawKeyHandle
Wrap RawKeyHandle with Wrap.sym key
8. Return the command response

o 0hAw

N

Error Codes:
e UAF _STATUS ERR _ACCESS _DENIED

UAF_STATUS_ERR_INVALID_PARAM
UAF_STATUS_ERR_UNKNOWN

Command Structure

11

TLV Structure

Description

1 UINT16 CmdTag TAG_UAFV1_REG_CMD
1.1 UINT16 Length Entire Command Length
1.2 UINT16 ChallengeSize Final Challenge size - max 32 bytes
1.3 BYTE Final Challenge provided by ASM
FinalChallenge[ChallengeSize]
1.4 UINT16 ApplDSize AppID size - (max 256 bytes)
1.5 BYTE AppID[AppIDSize] AppID provided by ASM
1.6 UINT16 UsernameSize Username size - max 128 bytes
1.7 BYTE Username[UsernameSize] Username provided by ASM
1.8 UINT16 APIKeySize APIKey size - max 32 bytes
1.9 BYTE APIKey[APIKeySize] APIKey provided by ASM
1.10 UINT16 PersonalDSize PersonalD size - max 32 bytes
1.11 BYTE PersonalD[PersonalDSize] PersonalD provided by ASM
UINT16 Tag TAG_CUSTOM_AUTHTOKEN (optional)
UINT16 Length Entire Length of Authentication Token
UINT32 AuthToken Authentication Token. Used only by Authenticators which
have a Matcher.
Command Response
TLV Structure Description
UINT16 CmdTag TAG_UAFV1_REG_CMD_RESP
UINT16 Length Entire Command Length
UINT16 StatusCode Error Code returned by Authnr
UINT16 Tag TAG_UAFV1_RESPONSE (optional)
UINT16 Length Entire Length of TAG_UAFV1_RESPONSE
structure
UINT16 Tag TAG_UAFV1_KRD

12

UINT16 Length Entire Length of TAG_UAFV1_KRD structure

UINT16 AAIDSize AAID size

BYTE AAID[AAIDSIze] Authenticator AAID

UINT16 SignatureAlgAndEncoding Signature Algorithm and Encoding.
Refer to FIDO Registry of Predefined Values
document for information on supported algorithms
and their values.

UINT16 ChallengeSize Final Challenge size

BYTE FinalChallenge[ChallengeSize] | Final Challenge provided in the Command

UINT16 KeylDSize KeylD size

BYTE KeyID[KeyIDSize] KeyID generated by Authenticator

BYTE AuthenticatorVersion Vendor assigned authenticator version

UINT32 RegCounter Registration Counter.
Indicates how many times this Authenticator has
performed registrations in the past.

UINT32 SignCounter Sign Counter.
Indicates how many times this Authenticator has
performed signatures with any user authentication
key in the past.

UINT16 PublicKeyAlgAndEnc Public Key algorithm and encoding.
Refer to FIDO Registry of Predefined Values
document for information on supported algorithms
and their values.

UINT16 PublicKeySize Size of uauth.pub

BYTE PublicKey[PublicKeySize] User authentication public key (uauth.pub) newly
generated by Authenticator

UINT16 SignatureSize Signature size

BYTE Signature[SignatureSize] Signature calculated with Att.priv over
TAG_UAFV1_KRD content.
Note that entire TAG_UAFV1_KRD content,
including the tag and it’s length field, MUST be
included during signature computation.

UINT16 Tag TAG_ATTESTATION_CERT

UINT16 Length Entire Length of Attestation Cert

13

BYTE Certificate[Length] Attestation Certificate bytestream

UINT16 Tag TAG_CUSTOM_KEYHANDLE (optional)
UINT16 Length Entire Length of KeyHandle
BYTE KeyHandle[Length] KeyHandle

Normative Note:

Independent on whether Authenticator supports the exact semantics of this command or not, the content of
TAG_UAFV1_RESPONSE MUST precisely correspond to the structure defined above since it will be parsed and
verified by the UAF Server.

For 2ndF Authnr KeylD MAY be the KeyHandle. This is useful for situations where KeyHandle must be stored on
UAF Server.

For Silent Authenticators KeyHandle MUST never be stored on UAF Server otherwise this would enable tracking
users without providing ability to users to clear KeyHandles from local device.

KeyID MUST be a unique and unguessable 32 bytes bytestream. The uniqueness MUST be within the scope of
AAID.

If an Authenticator is not able to protect an attestation private key - it's RECOMMENDED to not support attestation
at all. If an Authenticator doesn’t support attestation - final TAG_UAFV1_KRD object MUST be signed with newly
generated Uauth.priv key. In addition the content of TAG_ATTESTATION_CERT MUST have 0 length.

If Authenticator doesn’t support Sign Counter or Reg Counter it MUST set these to 0 in TAG_UAFV1_KRD.

Non-Normative Example Code

/* It is assumed that prior to calling this function ASM also called a function
which verifies the user locally using authenticator’s matcher. After successful verification
a
special Authentication Token (authToken) is stored in cache of authenticator and returned
to the caller. The caller must provide authToken back to this command.
This code assumes that it’s a 1lstF TAuthnr and it doesn’t store RawKeyHandles internally.
*/
function Register (finalChallenge, appID, username, apiKey, personalD, authToken)
{
// Compare authToken with the one in cache and make sure it’s valid
if (!isValidAuthToken (authToken)) {
return UAF STATUS ERR ACCESS DENIED;
}

try {

// Generate a new Uauth key pair
var uauth = genKeyPair();

14

uauth.pub) ;

catch

// Construct a RawKeyHandle and wrap with Wrap.sym key

var kh = createKeyHandle (appID, apiKey, personalD, username, uauth.priv,

// Use SHA256 hash of KeyHandle as KeyID. This KeyID derivation
// mechanism is not mandatory.
var keyID = SHA256 (kh) ;

// Create UAF Registration to-be-signed object
var tbs = prepareTLVRegistrationTBS (aaid, finalChallenge, keyID,

// Calculate attestation signature
var signature = sign(attestation.priv, tbs);

// Prepare TLV response buffer and return
return prepareTLVWithKRD (UAF STATUS OK, tbs, signature, kh);

(err) {
// Prepare TLV response buffer, put error code and return
return prepareTLVWithError (err) ;

5.3 Sign Command

General Description

uauth.pub) ;

This command generates a UAF assertion. This assertion can be further verified by a UAF server which has a prior
registration with this Authenticator.

Informative Note:

1stF Authenticators MUST implement this command in two stages.

1.

The first stage will be executed only if Authenticator finds out that there are more than one keyHandles after
filtering with ApplD, APIKey and PersonalD. In this stage Authenticator must return a list of usernames

along with corresponding keyHandles
In the second stage, after user selects a username, this command will be called with a single keyHandle
and will return a UAF assertion based on this keyHandle

2ndF Authenticators do not need to support the first stage.

Authenticator MUST:

1.

Locally verify the User
a. If verification fails - fail the command

15

2. Filter KeyHandles with provided ApplD, APIKey and PersonalD

a. If number of filtered KeyHandles is O - fail

3. If number of filtered KeyHandles is 1:
a. If TransactionText is not empty:

m If this is a Silent Authenticator - fail

m If Authenticator doesn’t have a built-in Secure Display - fail
m Show TransactionText and AppID on Authenticator’s Secure Display and wait for the user to

confirm it

e Fail if user cancels transaction
m Compute hash of Transaction Text Hash (TTHash)

b. Create a UAFV1_SIGNDATA package

c. Sign the UAFV1_SIGNDATA with uauth.priv

d. Create a UAFV1_SIGN_RESPONSE and return to caller

4. If number of filtered KeyHandles is greater than 1:

a. Ifit's not a 1stF Authnr - fail

b. Return list of usernames (TAG_CUSTOM_UNAME_LIST) from filtered KeyHandles

Error Codes:

e UAF_STATUS_ERR_ACCESS_DENIED
UAF_STATUS_ERR_USER_CANCELLED

Command Structure

TLV Structure
UINT16 CmdTag
UINT16 Length
UINT16 ChallengeSize
BYTE

FinalChallenge[ChallengeSize]

UINT16 ApplIDSize
BYTE AppID[AppIDSize]
UINT16 APIKeySize
BYTE APIKey[APIKeySize]
UINT16 PersonalDSize
BYTE PersonalD[PersonalDSize]

Description
TAG_UAFV1_SIGN_CMD
Entire Command Length
Final Challenge size (max 32 bytes)

Final Challenge provided by ASM

AppID size (max 256 bytes)
Appldentity provided by ASM
APIKey size (max 32 bytes)
APIKey provided by ASM
PersonalD size - max 32 bytes

PersonalD provided by ASM

16

UINT16

TTSize

Transaction Text Size - max 1024 bytes

1.1 BYTE TransactionText[TTSize] Transaction Text provided by ASM
1.12 UINT16 Tag TAG_CUSTOM_KHANDLE_LIST (optional)
1121 UINT16 Length Entire Length of list of KeyHandles.
This TAG contains multiple (>=1) KeyHandle entries.
Each entry has a size and content.
Length = Sum(KeyHandleSizes) +
NumberOfKeyHandles * sizeof(UINT16)
1.12.2 UINT16 KeyHandleSize Size of KeyHandle
1.12.3 BYTE KeyHandle[KeyHandleSize] KeyHandle
UINT16 Tag TAG_CUSTOM_AUTHTOKEN (optional)
UINT16 Length Entire Length of UAFV1_RESPONSE structure
UINT32 AuthToken Authentication Token. Used only by Authenticators

which have a Matcher.

Informative Note:

Authenticators which do not expose KeyHandles should expect KeylDs to be provided to Sign command within
TAG_CUSTOM_KHANDLE LIST tag.

Command Response

TLV Structure Description
UINT16 CmdTag TAG_UAFV1_SIGN_CMD_RESP
UINT16 Length Entire Length of Command Response
UINT16 StatusCode StatusCode returned by Authenticator
UINT16 Tag TAG_CUSTOM_UNAME_LIST (optional)
UINT16 Length Entire Length of list of Usernames.

Each entry has a size and content.

This TAG contains multiple (>=1) Username entries.

17

Length = Sum(UsernameSizes) +
Sum(KeyHandleSizes) + NumberOfUsernames *
sizeof(UINT16) * 2

UINT16 UsernameSize Size of Username
BYTE Username[UsernameSize] Username
UINT16 KeyHandleSize Size of KeyHandle
BYTE KeyHandle[KeyHandleSize] KeyHandle
UINT16 Tag TAG_UAFV1_SIGN_RESPONSE (optional)
UINT16 Length Entire Length of UAFV1_SIGN_RESPONSE
structure.
UINT16 Tag TAG_UAFV1_SIGNDATA
UINT16 Length Entire Length of UAFV1_SIGNDATA structure.
BYTE AuthenticationMode Authentication Mode indicating whether user
explicitly verified or not and indicating if there is a
transaction text or not.
e 1 means that user has been explicitly
verified
e 2 means that transaction text has been
shown on secure display and user
confirmed it by explicitly verifying with
authenticator
UINT16 SignatureAlgAndEncoding Signature algorithm and encoding scheme.
Refer to FIDO Registry of Predefined Values
document for information on supported algorithms
and their values.
UINT16 AuthnrNonceSize Authenticator Nonce size - MUST be at least 8
bytes
BYTE AuthnrNonce[NonceSize] A nonce randomly generated by Authenticator
UINT16 ChallengeSize Final Challenge size
BYTE FinalChallenge[ChallengeSize] Final Challenge provided in the Command
UINT16 TTHashSize Transaction Hash size
BYTE TTHash[TTHashSize] Transaction Hash
BYTE AuthenticatorVersion Vendor assigned authenticator version.
UINT32 SignCounter Sign Counter.

18

Indicates how many times this Authenticator has
performed signatures with any user authentication
keys in the past.

UINT16 SignatureSize Signature size

BYTE Signature[SignatureSize] Signature calculated using Uauth.priv over
UAFV1_SIGNDATA structure.

Note that entire UAFV1_SIGNDATA content,
including the tag and it’s length field, MUST be
included during signature computation.

Normative Note:

Independent on whether Authenticator supports the exact semantics of this command or not, the content of
TAG_UAFV1_SIGN_RESPONSE MUST precisely correspond to the structure defined above since it will be verified
by the FIDO Server.

Silent Authenticators MUST only behave as a 2ndF Authnrs.

If Authenticator doesn’t support Sign Counter - it MUST set it to 0 in TAG_UAFV1_SIGNDATA.

Non-Normative Example Code

/* It is assumed that prior to calling this function ASM also called a function
which verifies the user locally using authenticator’s matcher. After successful verification

special Authentication Token (authToken) is stored in cache of authenticator and returned
to the caller. The caller must provide authToken back to this command.
This code assumes that it’s a 1lstF TAuthnr and it doesn’t store RawKeyHandles internally.
*/
function Sign (authMode, finalChl, appID, apiKey, personalD, trans, keyHandlelist,
authToken)

// Make sure that provided authToken equals the one stored in cache.
if (!isValidAuthToken (authToken)) {
return UAF STATUS ERR ACCESS DENIED;

try {
var rawkh = null;
var usernamelist = [];
foreach (kh in keyHandleList) {
rawkh = unwrap (kh) ;

if (rawkh.personalD != personalD ||
rawkh.appIDHash != SHA256 (appID) ||
rawkh.apiKey != apiKey) {
continue;

19

}

usernamelist.push ({"uname": rawkh.username, "kh": kh});

// If number of keyHandles is 1 - prepare SIGNDATA
if (usernamelist.length == 1) {
if (trans != null) {

// Show transaction on Secure Display.

ret = showOnDisplay (trans)

// If user cancelled - return an error

if (ret == false) {

return UAF STATUS ERR USER CANCELLED;

}
transHash = SHA256 (trans)

// Create UAF to-be-signed object
var tbs = prepareTLVSignTBS (finalChl, transHash);

// Calculate signature
var signature = sign(rawkh.uauth priv, tbs)

// Prepare response buffer and return

return prepareTLVWithSIGNDATA (UAF STATUS OK, tbs, signature)

// Need to return usernames and ask the user select a single username.
// After user selects it - Sign function will be called again with

// a single keyHandle

return prepareTLVWithUsernames (UAF STATUS OK, usernamelList);

}
catch (err) {
// Prepare TLV response buffer, put error code and return

return prepareTLVWithError (err)

5.4 Deregister Command

General Description

This command deletes a registered UAF credential from Authenticator. Only Authenticators which store
RawKeyhandle (or KeyHandle) in internal storage must support this command.

Authenticator MUST:

If it's an [Authnr
a. Delete KeyHandle associated with KeyID, AppID, KeyID, PersonalD and PubKeyHash

If it's an XAuthnr
a. Delete KeyHandle associated with KeyID, AppID and PubKeyHash

20

Error Codes:

e UAF_STATUS_ERR_ACCESS_DENIED

Command Structure

TLV Structure Description
1 UINT16 CmdTag TAG_UAFV1_DEREG_CMD
1.1 UINT16 Length Entire Command Length
1.2 UINT16 ApplIDSize AppID size (max 256 bytes)
1.3 BYTE AppID[AppIDSize] Appldentity provided by ASM
1.4 UINT16 KeylDSize KeyID size (max 32 bytes)
1.5 BYTE KeyID[KeyIDSize] KeylID provided by ASM
1.6 UINT16 APIKeySize APIKey size (max 32 bytes)
1.7 BYTE APIKey[APIKeySize] APIKey provided by ASM
1.8 UINT16 PersonalDSize PersonalD size - max 32 bytes
1.9 BYTE PersonalD[PersonalDSize] PersonalD provided by ASM
1.10 UINT16 HashSize Hash of uauth public key hash size - max 32 bytes
1.11 BYTE PublicKeyHash[HashSize] Hash of uauth public key hash

Command Response

TLV Structure Description
UINT16 CmdTag TAG_UAFV1_SIGN_CMD_RESP
UINT16 Length Entire Length of Command Response
UINT16 StatusCode StatusCode returned by Authenticator

Non-Normative Example Code

21

/*

This code assumes that it’s a 1lstF IAuthnr and it doesn’t store RawKeyHandles internally.

*/

function Deregister (appID, keyID, apiKey, personalID, publicKeyHash)

{

try {

var rawkh = null;

catch

var khlList = storage.getKeyHandlelList () ;
foreach (kh in khList) {

rawkh = unwrap (kh) ;
if (rawkh.appIDhash == SHA256 (appID) &&
rawkh.personalID == personalD &&
rawkh.apiKey == apiKey &&
rawkh.keyID == keyID &&
rawkh.publicKeyHash == publicKeyHash) ({
storage.removeKeyHandle (kh) ;

// Return status
return prepareTLVWithSuccess(UAF_STATUS_OK);

err) |
// Prepare TLV response buffer, put error code and return
return prepareTLVWithError (err)

Appendix: Security Guidelines

This section is informative only.

Category

Guidelines

Wrap.sym

If the Authenticator uses a wrapping key Wrap.sym, then the Authenticator must protect
Wrap.sym as its most sensitive asset. The overall security of Authenticator highly depends on
the protection level of this key.

Wrap.sym strength MUST be equal or higher than the strength of secrets stored in
RawKeyHandle. Refer to “NIST Special Publication 800-57” and “NIST Special Publication 800-
38F publications for more information about choosing the right wrapping algorithm and
implementing it correctly.

It is highly recommended to generate, store and operate this key inside a trusted execution
environment.
In situations where physical attacks and side channel attacks are considered in the threat model

22

it is highly recommended to use a tamper-resistant hardware module such as a Smart Card.

If the Authenticator uses a wrapping key to unwrap a data, it must ensure that unwrapping invalid
data (e.g. KeyHandle) and successfully unwrapping data which has invalid contents (e.g.
KeyHandle from invalid origin) are indistinguishable.

Private Keys
(Uauth.priv and

This document requires (a) the attestation key to be used for attestation purposes only
and (b) the authentication keys to be used for FIDO authentication purposes only. The

Att.priv) related to-be-signed objects (i.e. Key Registration Data and SignData) are designed to
reduce the likelihood of such attacks:
1. They start with a tag marking them as specific FIDO objects
2. They include an Authenticator generated random value. As a consequence all to-be-
signed objects are unique with very high probability.
3. They have a structure allowing only very few fields containing uncontrolled values, i.e.
value which are neither generated nor verified by the Authenticator
Att.priv Authenticator must protect Att.priv as a very sensitive asset. The overall security of Authenticator
depends on the protection level of this key.
It is highly recommended to store and operate this key inside a tamper-resistant hardware
module such as a Smart Card.
Authenticators must ensure that the Attestation Private Key Att.priv
1. Is only used to attest Authentication Keys generated and protected by the FIDO
Authenticator using the FIDO defined data structures, KeyRegistrationData.
2. Never is accessible outside the FIDO Authenticator boundary.
Attestation must be implemented in a way that two different relying parties cannot link
registrations, authentications or other transactions.
Uauth.priv Authenticator must protect all Uauth.priv keys as its most sensitive assets. The overall security of

Authenticator highly depends on the protection level of these keys.

It is highly recommended to generate, store and operate this key inside a trusted execution
environment.

In situations where physical attacks and side channel attacks are considered in the threat model
it is highly recommended to use a tamper-resistant hardware module such as a Smart Card.

FIDO Authenticators must ensure that Authentication Private Keys (Uauth.priv)

1. are specific to the particular account at one relying party (relying party is identified by an
App Identity)

2. are generated based on good random numbers generated using sufficient entropy. The
challenge provided by FIDO Server SHOULD be mixed into the entropy pool in order to
add additional entropy.

3. are never directly revealed, i.e. always remain in exclusive control of the FIDO
Authenticator

4. are only being used for the defined Authentication Modes, i.e.

a. authenticating to the Appldentity they have been generated for, or

23

b. confirming transaction to the Appldentity they have been generated for, or
5. are only being used to create the FIDO defined data structures, i.e. SignData.
6. Authentication tokens and Transaction tokens only:

a. are only being used after requiring the user to authenticate to the FIDO
Authenticator. This authenticator shall be resistant against software based
attacks.

b. the confidentiality of the Authentication data is protected (e.g. malware cannot
access a PIN entered by the user).

Username Username MUST NOT be returned in plaintext in any condition other than the conditions
described for SIGN command. In all other conditions Usernames MUST be stored inside
KeyHandle.

ApplDs and Registered ApplDs and KeylDs MUST NOT be returned by Authenticator in plaintext.

KeylDs

Additionally if attacker gets physical access to the authenticator - it should not be easy to read
out AppIDs and KeyIDs.

Crypto Kernel

Crypto Kernel is a module of the Authenticator implementing crypto functions (key generation,
signing, wrapping, etc) necessary for UAF and having access to Uauth.priv, Att.priv and
Wrap.sym.

This module must reside within the same security boundaries as Uauth.priv, Att.priv and
Wrap.sym keys are residing. If it resides in a different module than the implementation must
guarantee the same level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted execution
environments.

In situations where physical attacks and side channel attacks are considered in the threat model
it is highly recommended to use a tamper-resistant hardware module such as a Smart Card.

“Software” based Authenticators must make sure to use state of the art code protection and
obfuscation techniques to protect this module and whitebox encryption techniques to protect the
associated keys.

Authenticators need good Random Number Generators using good entropy source enough for
1. generating authentication keys
2. generating signatures
3. computing Authenticator generated challenges

If the Authenticator doesn’t have sufficient entropy for generating strong random numbers, it
should fail safe.

Matcher

Tampering the Matcher module may have significant security consequences. It is highly
recommended for this module to reside within integrity boundaries of Authenticator and detect
tampering of itself.

It is highly recommended to run this module inside a trusted execution environment (TEE).

Authenticators which have separated Matcher and CryptoKernel modules should implement
mechanisms which would allow CryptoKernel to securely receive assertions from Matcher
module indicating user’s local verification status.

24

Software based Authenticators (if not in trusted execution environment) must make sure to use
state of the art code protection and obfuscation techniques to protect this module.

When Authenticator receives a wrong AuthToken it should treat it as an attack and invalidate the
cached AuthToken.

AuthToken should have a lifetime not longer than 10 seconds.
PIN based Authenticators MUST implement anti-hammering on PIN.
Biometrics based authenticators MUST protect the captured biometrics data (such as

fingerprints) as well as the reference data (templates) and make sure that they never leave the
security boundaries of authenticators.

Random
Numbers

The FIDO Authenticator uses its random number generator to generate authentication key pairs,
client side challenges and potentially for creating ECDSA signatures. Weak random numbers will
make FIDO vulnerable to certain attacks. It is important for the FIDO Authenticator to work with
good random numbers only.

Secure Display

Secure Display MUST ensure that the user is presented with the provided Transaction Text, e.g.
not overlaid by other display elements and clearly recognizable. See [Clickj] for some examples
of threats and potential counter-measures

For more guidelines refer to Global Platform “Trusted User Interface API” (GPD_SPE_020).

Certifications

Vendors must strive passing security standard certifications with Authenticators, such as FIPS
140-2, Common Criteria and similar. Passing such certifications will positively impact the UAF
implementation inside Authenticator.

Signature
Counter

Good protection measures of the Attestation key (Att.priv) is one method to prevent cloning
authenticators. In some situations the protection measures might not be sufficient.

If the Authenticator maintains a signature counter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If Signature-Counter is implemented: ensure that the Signature-Counter
1. is increased by any authentication / transaction confirmation operation and
2. cannot be manipulated/modified otherwise (e.g. API calls, etc.)

References

[Clickj] Clickjacking: Attacks and Defenses, Lin-Shung Huang and Collin Jackson Carnegie Mellon
University; Alex Moshchuk, Helen J. Wang, and Stuart Schlechter Microsoft Research. Download_
https://www.usenix.org/system/files/conference/usenixsecurity 12/sec12-final39.pdf

25

https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf

,~

alliance

Specification set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)

FIDO: Fast IDentity Online
Authenticator Metadata

Confidential: For FIDO Alliance Members Only

FIDO Authenticator Metadata Specification
Draft v0.2

Confidential: For FIDO Alliance Members Only Page 2

FIDO Authenticator Metadata Specification

CONTENTS

1 (O AV Z=T VA T=1 YA 4
2 1Y/ 1<) = o = | = TR RRTURR 4
I Yo 1 1= 1 1 - TR 6

Note: This document is subject to the terms of use posted on the FIDO Alliance website.

please sce WWW.fidoalliance.org/Terms-of-Use.html.

Confidential: For FIDO Alliance Members Only Page 3

http://www.fidoalliance.org/Terms-of-Use.html

FIDO Authenticator Metadata Specification

1 Overview

FIDO Authenticators may have different forms and capabilities. It’s important to formally define these
entities and categorize. This will allow adding semantics in the communication of FIDO Servers and Cli-
ents.

This document defines metadata for FIDO Authenticators.

2 Metadata

Name Description

AAID String: the Authenticator Attestation ID

AttestationCertificate String: Base64url encoded representation of the DER encoded
Attestation Certificate or Certificate Chain. For non-attested
authenticators, this value MUST be left empty.

Description String: human readable short description of Authenticator

AuthenticationFactor A 64 bit number representing the bit fields defined by the
USER_VERIFY constants in the FIDO Registry of Predefined Valu-
es. Any number of the relevant bits may be set.

ValidAttachmentTypes A 64 bit number representing the bit fields defined by the
ATTACHMENT_HINT constants in the FIDO Registry of Predefined
Values. The connection state and topology of an authenticator
may be transient and cannot be relied on as authoritative by a
Relying Party, but the medadata field should have all the bit flags
set for the topologies possible for the authenticator. For examp-
le, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set
ATTACHMENT_HINT_EXTERNAL but not
ATTACHMENT_HINT_INTERNAL

KeyProtection A 64 bit number representing the bit fields defined by the
KEY_PROTECTION constants in the FIDO Registry of Predefined
Values.

Confidential: For FIDO Alliance Members Only Page 4

FIDO Authenticator Metadata Specification

SecurityType Specifies security class. The following classes are defined:

e “SecureModuleWithAttestation” - A hardware security
module that both securely stores key material, performs
FIDO crypto operations inside the module and has the
Attestation Private Key securely stored in the module,
e.g. Secure Element, TPM, etc.

e “SecureModule” — The same as “SecureModuleWithAt-
testation” but Attestation Private Key stored outside
hardware boundary, e.g. TEE or TPM without Attestation
enabled.

o “Software” - An Authenticator that is exclusively built in
software; keys are stored only in software (although they
may be protected using operating system-based security
mechanisms), and all FIDO crypto operations are per-
formed in software.

SecureDisplay A 64 bit number representing the bit fields defined by the
SECURE_DISPLAY constants in the FIDO Registry of Predefined
Values.

SecondFactorOnly Boolean: Indicates if the Authenticator is designed to be used

only as a second factor

Logo String: Authenticator Logo, encoded in base64.

Reglnfo Describes what capabiliites the Authenticator supports for Re-
gistration operation.

e RegMode — Registration Mode
e RegScheme — Registration Scheme

See FIDO OSTP Protocol Specification for more details on sup-
ported modes and schemes.

Authinfo Describes what capabiliites the Authenticator supports for Au-
thentication operation.

e AuthSuite — Supported Authentication Suite

e AuthScheme — Authentication Scheme

Confidential: For FIDO Alliance Members Only Page 5

FIDO Authenticator Metadata Specification

See FIDO OSTP Protocol Specification for more details on sup-
ported suites and schemes.

3 Schema

The Authenticator Metadata document is a JSON structure containing the above information. This
forms the Payload portion of a JSON Web Signature (JWS) signed with the X.509 certificate that issued
the Attestation Certificate, or the software vendor’s issuing certificate in the case of a non-attestable

implementation.

TDB [need to define JSON schema]

Confidential: For FIDO Alliance Members Only Page 6

FIDO Registry of Predefined
Values - revision 01

Specification set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)

Editors:

Rolf Lindeman, Nok Nok Labs
Davit Baghdasaryan, Nok Nok Labs
Brad Hill, PayPal

Contributors:

Abstract:
This document defines all the strings and constants reserved by FIDO protocols.

This document's purpose is to define values that may be extensible and referenced from
additional specifications.

Notice:
blah blah legal boilerplate here, no warranty, confidential, etc.

Contents

Contents
1. Introduction
2. Authenticator Characteristics
2.1. Authentication Factors
2.2. Key Protection Types
2.3. Authenticator Attachment Hints
2.4. Secure Display Types
3. TLV TAGs
4. Crypto Suites

Copyright © 2013 FIDO Alliance

1. Introduction

This document is the FIDO Alliance registry of predefined values that are referenced by different
components in FIDO architecture.

This registry is expected to evolve along with the FIDO Alliance specifications and documents.

2. Authenticator Characteristics

2.1. Authentication Factors

The USER_VERIFY constants are flags in a bitfield represented as a 64 bit long. They describe
the methods and capabilities of an UAF authenticator for locally verifying a user. In most cases,
the operational details of these methods are opaque to the server, but in some cases
verification may involve transmission of attested measurement, such as for
USER_VERIFY_LOCATION. These constants are used in the authoritative metadata for an
authenticator, reported and queried through the UAF Discovery APls, and used to form
Authenticator policies in UAF protocol messages.

USER_VERIFY_PRESENCE 0x01
This flag will be set if the authenticator is able to confirm user presence in any
fashion. If this flag and no other is set for user verification, the guarantee is only
that the authenticator cannot be operated without some human intervention, not
necessarily that the presence verification provides any level of authentication of
the human's identity. (e.g. a device that requires a touch to activate)

USER_VERIFY_FINGERPRINT 0x02
This flag will be set if the authenticator uses any type of measurement of a
fingerprint for User-to-Authenticator authentication.

USER_VERIFY_PASSCODE 0x04
This flag will be set if the authenticator uses a local-only passcode for User-to-
Authenticator authentication.

USER_VERIFY_VOICEPRINT 0x08
This flag will be set if the authenticator uses a voiceprint for User-to-Authenticator
authentication.

USER_VERIFY_FACEPRINT 0x10
This flag will be set if the authenticator uses any manner of face recognition to
locally authenticate the user.

Copyright © 2013 FIDO Alliance 2

USER_VERIFY_LOCATION 0x20
This flag will be set if the authenticator uses any form of location sensor or
measurement for User-to-Authenticator authentication and/or returns a location
measurement to the Relying Party as an additional user verification.

USER_VERIFY_EYEPRINT 0x40
This flag will be set if the authenticator uses any form of eye biometrics for User-
to-Authenticator authentication.

USER_VERIFY_PATTERN 0x80
This flag will be set if the authenticator uses a drawn pattern for User-to-
Authenticator authentication.

USER_VERIFY_HANDPRINT 0x100
This flag will be set if the authenticator uses any measurement of a full hand
(including palmprint, hand geometry or vein geometry) for User-to-Authenticator
authentication.

USER_VERIFY_NONE 0x200
This flag will be set if the authenticator will respond without any user interaction.

USER_VERIFY_OTHER 0x400
Some method other than those defined here but not none.

2.2. Key Protection Types

The KEY_PROTECTION constants are flags in a bit field represented as a 64 bit long. They
describe the method an authenticator uses to protect the private key material for FIDO
registrations. These constants are used in the authoritative metadata for an authenticator,
reported and queried through the UAF Discovery APls, and used to form Authenticator policies
in UAF protocol messages. When used in metadata describing an authenticator, several of
these flags are exclusive with others - the certified metadata may have at most one of the
mutually exclusive bits set to 1. When used in authenticator policy, any bit may be set to 1, e.g.
to indicate that a server is willing to accept authenticators using either
KEY_PROTECTION_SOFTWARE and KEY_PROTECTION_HARDWARE.

KEY_PROTECTION_SOFTWARE 0x01
This flag will be set if the authenticator uses software-based key
management.

Exclusive in authenticator metadata with KEY_PROTECTION_HARDWARE,
KEY_PROTECTION_TEE, KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_HARDWARE 0x02

Copyright © 2013 FIDO Alliance 3

This flag will be set if the authenticator uses hardware-based key
management.

Exclusive in authenticator metadata with KEY _PROTECTION_SOFTWARE

KEY_PROTECTION_TEE 0x04
This flag will be set if the authenticator uses the Trusted Execution
Environment for key management. In authenticator metadata, this flag should
be set in conjunction with KEY_PROTECTION_HARDWARE.

Exclusive in authenticator metadata with KEY_PROTECTION_SOFTWARE,
KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_SECURE_ELEMENT 0x08
This flag will be set if the authenticator uses a Secure Element for key
management. In authenticator metadata, this flag should be set in
conjunction with KEY_PROTECTION_HARDWARE.

Exclusive in authenticator metadata with KEY_PROTECTION_TEE,
KEY _PROTECTION_SOFTWARE

KEY_PROTECTION_REMOTE_HANDLE 0x10
This flag will be set if the authenticator does not store per-Origin keys at the
client, but relies on a server-provided key handle.

This flag MUST be set in conjunction with one of the other KEY_PROTECTION
flags to indicate how the local key handle unwrapping key and operations are
protected.

Servers can unset this flag in authenticator policy if they are unprepared to
store and return key handles, for example, if they have a requirement to
respond indistinguishably to authentication attempts against userIDs that do
and do not exist.

2.3. Authenticator Attachment Hints

The ATTACHMENT _HINT constants are flags in a bit field represented as a 64 bit long. They
describe the method an authenticator uses to communicate with the system on which the FIDO
client software is executing. These constants are reported and queried through the UAF
Discovery APIs, and used to form Authenticator policies in UAF protocol messages.

Copyright © 2013 FIDO Alliance 4

Because the connection state and topology of an authenticator may be transient, these values
are only hints that can be used by server-supplied policy to guide the user experience, e.g. to
prefer a device that is connected and ready for authenticating or confirming a low-value
transaction, rather than one that is more secure but requires more user effort. These values are
not reflected in authenticator metadata and cannot be relied on by the relying party, although
some models of authenticator may provide attested measurements of similar data as part of
UAF response messages.

ATTACHMENT_HINT_INTERNAL 0x01
This flag indicates that the authenticator is permanently attached to the
system on which the FIDO client software is running.

A device such as a smartphone may have authenticator functionality that is
able to be used both locally and remotely. In such a case, the FIDO client
MUST filter and exclusively report only the relevant bit during Discovery and
when performing policy matching.

ATTACHMENT_HINT_EXTERNAL 0x02
This flag indicates, for a hardware-based authenticator, that it is removable or
remote from the system on which the FIDO client software is running.

A device such as a smartphone may have authenticator functionality that is
able to be used both locally and remotely. In such a case, the FIDO client
MUST filter and exclusively report only the relevant bit during Discovery and
when performing policy matching.

ATTACHMENT_HINT_WIRED 0x04
Indicates that an external authenticator currently has an exclusive wired
connection, e.g. through USB, Firewire or similar, to the system on which the
FIDO client software is executing.

ATTACHMENT_HINT_WIRELESS 0x08
Indicates that an external authenticator communicates with the system on
which the FIDO client software is executing through a personal area or
otherwise non-routed wireless protocol, such as Bluetooth or NFC.

ATTACHMENT_HINT_NFC 0x10
Indicates that an external authenticator is able to communicate by NFC to the
FIDO client software. As part of authenticator metadata, or when reporting
characteristics through Discovery, if this flag is set, the
ATTACHMENT_HINT_WIRELESS flag SHOULD also be set.

Copyright © 2013 FIDO Alliance 5

ATTACHMENT_HINT_BLUETOOTH 0x20
Indicates that an external authenticator is able to communicate using
Bluetooth to the FIDO client software. As part of authenticator metadata, or
when reporting characteristics through Discovery, if this flag is set, the
ATTACHMENT_HINT_WIRELESS flag SHOULD also be set.

ATTACHMENT_HINT_NETWORK 0x40
Indicates that the authenticator is not on the same system as the FIDO client
software but communicates with it over a non-exclusive network. (e.g. over a
TCP/IP LAN or WAN, as opposed to a point-to-point Bluetooth connection)

ATTACHMENT_HINT_READY 0x80
Indicates that an external authenticator is in a ready state. e.g. a Bluetooth
connected device that is currently paired and connected or a USB device that
is plugged in.

2.4. Secure Display Types

The SECURE_DISPLAY constants are flags in a bit field represented as a 64 bit long. They
describe the availability and implementation of a secure display capability required for the

Transaction Confirmation operation. These constants are used in the authoritative metadata for

an authenticator, reported and queried through the UAF Discovery APls, and used to form
Authenticator policies in UAF protocol messages.

SECURE_DISPLAY_ANY 0x01
This flag indicates, that some form of secure display is available on this
authenticator.

SECURE_DISPLAY_PRIVILEGED_SOFTWARE 0x02
This flag indicates, that a software-based secure display operating in a
privileged context is available on this authenticator.

Software based displays are typically provided by the FIDO client software
rather than the authenticator itself. A FIDO client that is capable of providing
this capability MAY set this bit for all authenticators of type
ATTACHMENT_EMBEDDED, even if the authoritative metadata for the
authenticator does not indicate this capability.

SECURE_DISPLAY_TEE 0x04

Copyright © 2013 FIDO Alliance 6

This flag indicates that the authenticator implements a secure display in the
Trusted Execution Environment.

SECURE_DISPLAY_HARDWARE 0x08
This flag indicates, that a secure display based on hardware assisted
capabilities is available on this authenticator.

SECURE_DISPLAY_REMOTE 0x10
This flag indicates, that the secure display is provided on a distinct device
from the system the FIDO client software is executing on.

3. UAF Authenticator Command TLV Tags (0x0001-
0x1000)

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence.
The Tag is a 2-byte unsigned value describing the type of field the data represents, the Length
is a 2-byte unsigned value indicating the size of the value in bytes and Value is the variable-
sized series of bytes which contain data for this item in the sequence. The following tags have
been allocated for data types in UAF protocol messages:

TAG_UAFV1_RESPONSE 0x0001
The content of this TAG is Authenticator Response for Registration
(TAG_UAFV1_KRD) or Sign (TAG_UAFV1_SIGNDATA) operations.

TAG_UAFV1_KRD 0x0002
Indicates Key Registration Data.

TAG_UAFV1_SIGNDATA 0x0003
Indicates SignData.

TAG_DER_ATTESTATION_CERT 0x0004
Indicates DER encoded Attestation Batch Certificate.

TAG_KEYHANDLE 0x0005
Indicates a wrapped KeyHandle.

Copyright © 2013 FIDO Alliance 7

TAG_AUTHENTICATOR_VERSION 0x0006
Indicates Authenticator version.

TAG_REG_RESET_CTR 0x0007
Indicates Registration Reset Counter.

TAG_REGISTRATION_CTR 0x0008
Indicates Registration Counter.

TAG_SIGN_CTR 0x0009
Indicates Signing Counter.

4, Crypto Suites

These constant strings and values indicate the specific cipher, mode of operation and encoding
of encrypted data.

UAF_ALG_SIGN_ECDSA_SHA256_RAW 0x01
ECDSA signature MUST have raw R and S buffers, encoded in big endian.
For example for ECC-P256 curve the signature MUST have the following form
[R (32 bytes), S (32 bytes)]

UAF_ALG_SIGN_ECDSA_SHA256_DER 0x02
DER encoded ECDSA signature,
i.e. DER encoded SEQUENCE { r INTEGER, s INTEGER }

UAF_ALG_KEY_ECC_NISTP256R1_X962_RAW 0x50
Raw ANSI X.9.62 formatted public key

UAF_ALG_KEY_ECC_NISTP256R1_X962_DER 0x51
DER encoded ANSI X.9.62 formatted public key

UAF_ALG_SIGN_RSASSA-PSS_SHA256_RAW 0x03

RSASSA-PSS signature MUST have raw S buffers, encoded in big endian. For
example for RSA 2048 the signature have the following form [S (256 bytes)]

Copyright © 2013 FIDO Alliance 8

UAF_ALG_SIGN_RSASSA-PSS_SHA256_DER 0x04

DER encoded RSASSA-PSS signature

UAF_ALG_KEY_RSA_2048_PSS_RAW 0x52

Raw RSASSA-PSS formatted public key

UAF_ALG_KEY_RSA_2048_PSS_DER 0x53

ASN.1 DER encoded RSASSA-PSS formatted public key

5. UAF Server Response Codes

When responding to a UAF client request message, the UAF server indicates status by the
following codes, encoded as a JSON number. These codes are part of the JSON that
constitutes the HTTP response body and indicate the status of the UAF protocol operation on
the server, NOT the HTTP status code.

Code | Meaning

200 OK. Registration completed

202 Accepted. Registration message accepted, but not completed at this time. The RP
may need time to process the attestation, run risk scoring, etc. The server
SHOULD NOT send an authenticationToken with a 202 response

400 Bad Request. The server did not understand the message

401 Unauthorized. The userid must be authenticated to register a FIDO Authenticator,
or this KeyID is not associated with this UserID.

403 Forbidden. The userid is not allowed to register a FIDO Authenticator. Client
SHOULD NOT retry

408 Request Timeout

480 Unknown AAID. The server was unable to locate authoritative metadata for the
AAID.

481 Unknown KeylID. The server was unable to locate a registration for the given

Copyright © 2013 FIDO Alliance 9

UserlD and KeylD combination.

490 Channel Binding Refused. The server refused to service the request due to a
missing or mismatched channel binding(s).

491 Server Challenge Invalid. The server refused to service the request because the
challenge was unknown, expired or the server has previously serviced a message
with the same challenge and user ID.

492 Unacceptable Authenticator. The authenticator is not acceptable according to the
server's policy, for example because the capability registry used by the server
reported different capabilities than client-side discovery.

493 Revoked Authenticator. The authenticator is considered revoked by the server.

494 Unacceptable Key. The key being registered is unacceptable. Perhaps it is on a list
of known weak keys or uses insecure parameter choices.

495 Unacceptable Algorithm. The server believes the authenticator to be capable of
using a stronger mutually-agreeable algorithm than was presented in the request.

496 Unacceptable Attestation. The attestation(s) provided were not accepted by the
server for registration.

497 Unacceptable Client Capabilities. The server was unable or unwilling to use
required capabilities provided supplementally to the authenticator by the client
software.

498 Unacceptable Content. There was a problem with the contents of the message and

the server was unwilling or unable to process it.

500 Internal Server Error

6. UAF Server Response Token Types

When responding to a UAF client request message, the UAF server may include additional
authentication or authorization tokens. These are described by the following WebIDL enum:

enum TokenType {
"HTTP_COOKIE",
"OAUTH",
"OAUTH2",
"SAML1_1",

Copyright © 2013 FIDO Alliance 10

"SAML2",
IIJWTII

%

The values of the enum refer to the following token types:

HTTP_COOKIE
If the user agent is a standard web browser or other HTTP native
client with a cookie store, this TokenType SHOULD NOT be used.
Cookies should be set directly with the Set-Cookie HTTP header. For
non- HTTP or non-browser contexts this indicates a token intended
to be set as an HTTP cookie. [RFC 6525] (for example, a native VPN
client on Microsoft Windows that authenticates with UAF might use
this TokenType to add a cookie to the browser cookie jar.)

OAUTH

Indicates an OAuth token
OAUTH?2

Indicates an OAuth2 token
SAML1 1

Indicates a SAML 1.1 token
SAML2

Indicates a SAML 2.0 token
JWT

Indicates a JSON Web Token (JWT)

7. UAF Client Callback Error Codes

When an application using UAF invokes an asynchronous operation targeting the FIDO client
software, the following error codes are used to indicate the status of the operation. Values are
of the WeblIDL type short.

NO_ERROR 0
No error condition encountered.
WAIT_USER_ACTION 1

Waiting on user action to proceed. (selecting an authenticator in the FIDO client user
interface, performing local User-to-Authenticator authentication, or completing an
enrollment step with an authenticator)

Copyright © 2013 FIDO Alliance 11

USER_CANCELLED 2

The user declined any necessary part of the interaction to complete the registration

or no registered authenticator exists for authenticate, confirm or deregister calls.

UNSUPPORTED_VERSION 3
The UAFProtocolMessage indicates protocol versions not supported by this FIDO
Client.

NO_SUITABLE_AUTHENTICATOR 4

No authenticator matching the AuthenticatorPolicy internal to the
UAFProtocolMessage is available to service the request, or the user declined to
consent to the use of a suitable authenticator.

INSECURE_TRANSPORT 5

window.location.protocol is not https or the DOM contains insecure mixed content.

PROTOCOL_ERROR 6
A violation of the UAF protocol occurred. The challenge may have timed out, the
origin associated with the challenge may not match the origin of the calling DOM
context, or the protocol message may be malformed or tampered with.

UNKNOWN 99
An error condition not described by other codes.

Copyright © 2013 FIDO Alliance

12

FIDO Technical Glossary

specification set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)

Editors:

Rolf Lindeman, Nok Nok Labs
Davit Baghdasaryan, Nok Nok Labs
Brad Hill, PayPal

Contributors:

Abstract:
This document defines many of the technical terms and phrases used in FIDO Alliance
specifications and documents.

Notice:
blah blah legal boilerplate here, no warranty, confidential, etc.

Introduction:
This document is the FIDO Alliance glossary of normative technical terms.

This document is not an exhaustive compendium of all FIDO technical terminology because the
FIDO terminology is built upon existing terminology. Thus many terms that are commonly used
within this context are not listed. They may be found in the glossaries/documents/specifications
referenced in the bibliography. Terms defined here that are not attributed to other
glossaries/documents/specifications are being defined here.

This glossary is expected to evolve along with the FIDO Alliance specifications and documents.

Definitions:

AAID
Authenticator Attestation ID. See Attestation ID.

APIKey
A secret value that acts as a guard for Authenticator Commands. APIKeys are
generated and provided by an ASM.

Application
A set of functionality provided by a common entity (the application owner, aka the
Relying Party), and perceived by the user as belonging together. For example, “PayPal”

is an application that allows users to make payments and send money.

Application Facet
An (application) facet is how an application is implemented on various platforms. For
example, the application MyBank may have an Android app, an iOS app, and a Web
app. These are all facets of the MyBank application.

Application Facet ID
A platform-specific identifier (URI) for an application facet.
o For Web applications, the facet id is the RFC 6454 origin.
o For Android applications, the facet id is the URI android:apk-key-hash:<hash-of-
apk-signing-cert>
o ForiOS, the facet id is the URI ios:bundle-id:<ios-bundle-id-of-app>

APP_IDENTITY
The RFC 6454 Web Origin of the Relying Party. [http://www.ietf.org/rfc/rfc6454.txt]
This identity is shared across all Facets of an Application.

APP_IDENTITY_HASH
The SHA256 hash of the APP_IDENTITY.

Attestation
In the FIDO context, attestation is how Authenticators make claims to a Relying Party
that the keys they generate, and/or certain measurements they report, originate from
genuine devices with certified characteristics.

Attestation Certificate
A public key certificate related to an Attestation Key.

Attestation ID
A unique identifier assigned to a model, class or batch of FIDO Authenticators that all
share the same characteristics, and which a Relying Party can use to look up an
Attestation Public Key and Authenticator Metadata for the device.

Attestation [Public / Private] Key
A key used for FIDO Authenticator attestation.

Attestation Root Certificate
A root certificate explicitly trusted by the FIDO Alliance, to which Attestation Certificates
chain to.

Authentication
In the FIDO protocols “Authentication” may refer to several actions depending on the
context and qualifications with which it is used:

http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt

a. User-to-Authenticator Authentication, also known as Local Authentication, in
which a user authenticates directly to a FIDO Authenticator with a biometric
measurement, PIN or other means. Local Authentication is used by the FIDO
Authenticator to authorize the use of keys or query state from the device.

b. Authenticator-to-Relying Party Authentication, in which a user, having gained
access to use a key managed by a FIDO Authenticator, uses that key to perform
a cryptographic authentication with a Relying Party over a network using one of
the FIDO protocols.

c. Authentication also refers to a fundamental operation of the FIDO family of
protocols which encompasses the entire ceremony of a registered user locally
authenticating to their FIDO Authenticator(s) and the FIDO Client leveraging that
to complete the authentication to the Relying Party.

Authentication Algorithm
The combination of signature and hash algorithms used for authenticator-to-relying party
authentication.

Authentication Factor
The means by which User-to-Authenticator authentication is accomplished. e.g.
fingerprint, voiceprint, or PIN.

Authentication Scheme
The combination of an Authentication Algorithm with a message syntax or framing that is
used by an Authenticator when constructing a response.

ASI (Authentication Scheme Input)
Additional input that must be provided by the Relying Party server and is specific to a
given Authentication Scheme.

Authenticator
See FIDO Authenticator.

Authenticator, 1stF / First Factor
A FIDO Authenticator that transactionally provides a username and at least two
authentication factors: cryptographic key material (something you have) plus user
verification (something you know / something you are) and so can be used by itself to
complete an authentication. 1stF Authnrs must have a user verification method more
specific than presence/touch.

Authenticator, 2ndF / Second Factor
A FIDO Authenticator which acts only as a second factor. 2ndF Authnrs always require
a single Key Handle to be provided before responding to a Sign command. They might
or might not have a user verification method.

Authenticator Attestation
The process of communicating a cryptographic assertion to a Relying Party that a key
presented during Registration was created and protected by a genuine Authenticator
with verified characteristics.

Authenticator Metadata
Verified information about the characteristics of a certified Authenticator, associated with
an AAID and available from the FIDO Alliance. FIDO Servers are expected to have
access to up-to-date metadata to be able to interact with a given Authenticator.

Authenticator Policy
A JSON data structure that allows a Relying Party to communicate to a FIDO Client the
capabilities or specific authenticators that are allowed or disallowed for use in a given
operation.

ASM / Authenticator Specific Module
Software associated with a FIDO Authenticator that provides a uniform interface
between the hardware and FIDO Client software.

Certificate
An X.509v3 certificate defined by the profile specified in RFC5280 and its successors.
[http://www.ietf.org/rfc/rfc5280.txt]

Channel Binding
See: http://tools.ietf.org/html/rfc5056

A channel binding allows applications to establish that the two end-points of a secure
channel at one network layer are the same as at a higher layer by binding authentication
to the higher layer to the channel at the lower layer.

Correlation Handle
Any piece of information that may allow, in the context of FIDO protocols, implicit or
explicit association and or attribution of multiple actions, believed by the user to be
distinct and unrelated, back to a single unique entity. An example of a correlation
handle outside of the FIDO context is a client certificate used in traditional TLS mutual
authentication: because it sends the same data to multiple Relying Parties, they can
therefore collude to uniquely identify and track the user across unrelated activities.

Deregistration
A phase of a FIDO protocol in which a Relying Party tells a FIDO Authenticator to forget
a specified piece of (or all) locally managed key material associated with a specific
Relying Party account, in case such keys are no longer considered valid by the Relying
Party.

http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt

Discovery
A phase of a FIDO protocol in which a Relying Party is able to determine the availability
of FIDO capabilities at the client’s device, including metadata about the available
authenticators.

E(K,D)
Designates Encryption of data D with key K

Enroliment
The process of making a User known to an Authenticator. This might be a Biometric
Enrolliment as defined in (http://biometrics.gov/Documents/Glossary.pdf) or involve
processes such as taking ownership of and setting a PIN or password for a non-
biometric cryptographic storage device. Enrollment may happen as part of a FIDO
protocol ceremony, or it may happen outside of the FIDO context for multi-purpose
authenticators.

External Authenticator (--> Roaming Authenticator?)
A FIDO Authenticator configured for potential use with FIDO Clients in multiple
computing contexts. It uses its own local storage for registrations in a 1st Factor
scenario and is not required to use an access control mechanism to restrict access to
key material by multiple FIDO Clients. (compare to Internal Authenticator)

Facet
See Application Facet

Facet ID
See Application Facet ID

FIDO Authenticator
An Authentication entity that meets the FIDO Alliance’s requirements and which has
published metadata.

A FIDO Authenticator is responsible for User-to-Authenticator Authentication and
maintaining the cryptographic material required for the Authenticator-to-Relying Party
Authentication.

It is important to note that a FIDO Authenticator is only considered such for and in
relation to its participation in FIDO Alliance protocols. Because the FIDO Alliance aims
to utilize a diversity of existing and future hardware, many devices used for FIDO may
have other primary or secondary uses. To the extent that a device is used for non-FIDO
purposes such as local operating system login or network login with non-FIDO protocols,
it is not considered a FIDO Authenticator and its operation in such modes is NOT subject
to FIDO Alliance guidelines or restrictions, including those related to security and
privacy.

http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf

A FIDO Authenticator may be referred to as simply an Authenticator or abbreviated as
“Authnr”. Important distinctions in an Authenticator’'s capabilities and user experience
may be experienced depending on whether it is an “Internal” or ‘External” authenticator,
and whether it is a “First Factor” or “Second Factor” authenticator.

FIDO Client
This is the software entity processing the UAF protocol messages on client side and
meeting UAF requirements. FIDO Clients MAY have two forms:
o A software component implemented in a User Agent (either web browser or
native application).
o A standalone piece of software shared by several User Agents. (Web browsers
or native applications)

FIDO Data / FIDO Information
Any information gathered or created as part of completing a FIDO transaction. This
includes but is not limited to, biometric measurements of or templates for the user and
FIDO transaction history.

FIDO Plugin
The implementation of the interface in a web browser that brokers messages between a
client side web application and FIDO client. This component is referred to as a “plugin”
even if the APls are built natively into the web browser or injected into a hosted browser
component.

FIDO Server
Server software typically deployed in Relying Party’s infrastructure that meets the UAF
protocol’s server requirements

FIDO User Device
The computing device where the FIDO Client operates and from which the user initiates
an action that utilizes FIDO.

Internal Authenticator (--> Associated Authenticator?)
A FIDO Authenticator which uses an access control mechanism with FIDO Clients to
restrict the use of Authentication Keys and which might also use local system storage.
(compare to External Authenticator)

JWA
JSON Web Algorithm, see [JWA]

JWK
JSON Web Key, see [JWK]

JWS
JSON Web Signature, see [JWS]

JPSK
JSON Private and Symmetric Key, see [JPSK]

KeylD
KeylD identifies a registered key between an Authenticator and a FIDO Server for 1F
Authenticators. It is used in concert with AAID to identify a particular Authenticator that
holds the necessary key. KeyID is the SHA256 hash of the KeyHandle managed by the
ASM.

KeyHandle
A key container created by a FIDO Authenticator, containing a private key and
(optionally) other data (such as Username). A key handle may be wrapped (encrypted
with a key known only to the authenticator) or unwrapped. In the unwrapped form it is
referred to as a Raw Key Handle. 2F Authenticators must retrieve their Key Handles
from the Relying Party to function, 1F Authenticators manage the storage of their own
Key Handles, either internally (for External Authenticators) or at the ASM layer. (for
Internal Authenticators)

Key Registration
The process of securely establishing a key between FIDO Server and FIDO
Authenticator.

Key Registration Data (KRD)
{TBD}

Matcher
A component of a FIDO Authenticator which is able to perform local User Verification.
(biometric matching, PIN verification, etc.)

TTEXT
Transaction Text, i.e. text to be confirmed in the Transaction Confirmation operation.

TTEXT_HASH
Hash of Transaction Text based on the following formula: TTEXT_HASH =
SHA256(TTEXT)

Open Web Platform
The interoperable application environment available in most web browsers and several
app platforms encompassing a family of standards defined at the W3C, the IETF and
ECMA. Key pieces of the Open Web Platform technology stack for FIDO include: HTTP
1.1, HTML5, XMLHttpRequest, and ECMAScript (JavaScript).

PersonalD
An identifier provided by an ASM, PersonalD is used to associate different registrations.
It can be used to create virtual identities on a single authenticator, for example to
differentiate “personal” and “business” accounts. PersonalDs can be used to manage
privacy settings on the Authenticator.

PV
Protocol Version

Registration
A phase of a FIDO protocol in which a user generates and associates new key material
with an account at the Relying Party, subject to policy set by the server and acceptable
attestation that the authenticator and registration matches that policy.

Registration Scheme
The Registration Scheme defines how the authentication key is being exchanged
between the FIDO Server and the FIDO Authenticator.

RSI
Registration Scheme specific server Input. Different Registration schemes may require
different input. For each of them a specific RSI might be required to be defined.

Relying Party
A web site or other entity that uses a FIDO protocol to authenticate users

S(K, D)
Signing of data D with key K

Secure Display
This is a feature of FIDO Authenticators able to show content of a message to a user
and protect the integrity of this message.

Server Challenge
A random value provided by the FIDO Server in the UAF protocol requests.

SignData
{TBD}

Silent Authenticator
FIDO Authenticator not requiring any user interaction for the authentication operation.

TLS
Transport Layer Security

Transaction Confirmation
An operation in the FIDO protocol that allows a Relying Party to request that a FIDO
Client and Authenticator with the appropriate capabilities display some information to the
user, request that the user authenticate locally to their FIDO Authenticator to confirm i,
and provide proof of possession of previously registered key material an attestation of
the confirmation back to the Relying Party.

U2F
Universal 2nd Factor. The FIDO protocol and family of Authenticators to enable a cloud
service to offer its users the options of using an easy—to—use, strongly—secure open
standards—based 2nd factor device for authentication.

UAF

Universal Authentication Framework. The FIDO Protocol and family of Authenticators to
enable a service to offer its users flexible and interoperable authentication.

UAuth.pub / UAuth.priv / UAuth.key / UAuth.sym
User authentication keys generated by FIDO Authenticator. UAuth.pub is the public part
of key pair. UAuth,priv is the private part of the key. UAuth.sym indicates a symmetric
key. UAuth.key is the more generic notation to refer to UAuth.priv.

UINT16
A 16 bit (2 bytes) unsigned integer.

UINT32
A 32 bit (4 bytes) unsigned integer.

UINT64
A 64 bit (8 bytes) unsigned integer.

Use Counter
A monotonically increasing counter maintained by the Authenticator. It is increased on
every use of the Uauth (private) key. This value can be used by the FIDO Server to
detect cloned Authenticators.

User
Relying Party’s user and owner of the FIDO Authenticator.

User Agent
The user agent is a client application that is acting on behalf of a user in a client-server

system. Examples of user agents include web browsers and mobile apps.

Username

Username is a human-readable string identifying a user’s account at a Relying Party.

Web Application, Client-Side
The portion of a Relying Party application built on the Open Web Platform which
executes in the User Agent. When the term “Web Application” appears unqualified or
without specific context in FIDO documents, it generally refers to either the client-side
portion or the combination of both client-side and server-side pieces of such an
application.

Web Application, Server-Side
The portion of a Relying Party application that executes server-side and responds to
HTTP requests. When the term “Web Application” appears unqualified or without
specific context in FIDO documents, it generally refers to either the client-side portion or
the combination of both client-side and server-side pieces of such an application.

FIDO Alliance UAF TWG Draft

Specification B. Hill

PayPal, Inc.

November
2013

FIDO UAF Client API and Bindings Interoperability
Profile (rev 00)
draft-hill-uaf-client-api-00
Specification Set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)

Abstract
NOTE: This is a DRAFT in-progress revision of this document.

This document describes a client API and bindings interoperability profile for FIDO (Fast IDentity Online)
UAF (Universal Authentication Factor) version 1.0. This profile is defined for Web Browser applications
in terms of:

An HTTPS protcol binding
HTTP 1.1 message framing
HTML5

XMLHttpRequest
ECMAScript

with these technologies collectively falling under the umbrella term "The Open Web Platform".

For Android apps, the profile is defined in Java sample code and the Java language bindings for
WebIDL. (http://www.w3.0rg/TR/WebIDL-Java/)

This docuoment specifically addresses implementing the portion of FIDO UAF v1.0 interactions that
occur in both the client and server side of a web application executing in the context of a general
purpose web browser, and for applications on the Android platform, including the security and privacy
considerations thereof.

Table of Contents

- 1.
.« 2.
- 3.
. 4,
+ 5.
+ 6.
- 7.
- 8.
- 9.
+ 10.
« 11
« 12,
« 13.
- 14,
« 15.
« 16.
- 17.
- 18.

Conventions
Introduction
Definitions and Terminology
API Notation Conventions
UAF HTTP TLS Binding
« 5.1 Security Requirements
+ 5.1.1 Insecure Mixed Content
+ 5.1.2 XMLHttpRequest
Locating FIDO APIs
UAF API
7.1 UAFClientMessage Dictionary
7.2 UAFResponseCallback
+ 7.3 ErrorCallback
« 7.3.1 ErrorCode Values
+ 7.4 ServerResponse Interface
« 7.4.1 Attributes
« 7.4.2 Interface Token
+ 7.4.3 ServerResponse Status Codes
7.5 Authenticator Interface
+ 7.5.1 Constants
« 7.5.2 Attributes
* 7.6 notifyUAFResult Operation
Discovery
+ 8.1 Discovery Interface
« 8.1.1 Attributes
+ 8.1.2 Operations
+ 8.2 Example
Registration
* 9.1 Registration Interface
* 9.1.1 Operations
« 9.2 Example
Authentication
+ 10.1 Authentication Interface
« 10.1.1 Operations
Transaction Confirmation
+ 11.1 Confirmation Interface
« 11.1.1 Operations
« 11.2 Example
Deregistration
« 12.1 Deregistration Interface
« 12.1.1 Operations
« 12.2 Example
Delivery of the uafResponse
Considerations for Cross-Origin Requests
Extensibility
Security Considerations
Privacy Considerations
Normative References

¢ Author's Address

1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP
14, RFC 2119

2. Introduction

FIDO (Fast IDentity Online) describes a set of technologies to enable standards-based interoperability
of strong authentication technologies such as secure cryptographic hardware and biometric devices. The
FIDO UAF (Universal Authentication Framework) standards enable use cases where FIDO replaces a
password as the primary or sole authentication credential for a user account, or as a step-up credential
without the use of a password.

The FIDO UAF protocol consists of four operations:

Discovery
Discovery allows the relying party server to determine the availability of FIDO capabilities at the
client, including metadata about the available authenticators.

Registration
Registration allows the client to generate and associate new key material with an account at the
relying party server, subject to policy set by the server and acceptable attestation that the
authenticator and registration matches that policy.

Authentication
Authentication allows a user to provide proof of possession of previously registered key material,
and potentially other attested data, to the relying party server.

Transaction Confirmation
Transaction Confirmation allows a server to request that a FIDO client and authenticator with the
appropriate capabilities display some information to the user, request that the user authenticate
locally to their FIDO authenticator to confirm it, and provide proof of possession of previously
registered key material and an attestation of the confirmation back to the relying party server.

Deregistration
Deregistration allows a relying party server to tell an authenticator to forget selected locally
managed key material associated with that relying party in case such keys are no longer
considered valid by the relying party.

The majority of the operations performed as part of FIDO UAF are out of scope for this document.
Conceptually, the FIDO UAF client and server exchange UAF protocol messages tunnelled over HTTP
through the browser, relying on the web application to provide context, initial authentication (where
needed) and portions of the user experience necessary to complete the various ceremonies in the
protocol.

For Web applications, support and protocol tunnelling features are accomplished by means of
ECMAScript APIs exposed to client-side web applications by the browser or a browser plugin. These
APIs are described by this document. The implementation and instantiation of the full FIDO client that
these APIs connect to are not specified here - the client might be implemented entirely within the
context of the browser or a browser plugin, as a distinct application, a system service or even on a
remote device.

Android applications may either implement the UI and logic to initiate FIDO activities and communicate
with the relying party server directly, or they may instantiate a WebView to do so. If the WebView
technology supports the FIDO UAF APIs and bindings described in this document natively, the Android
application may need to do little work. If not, the application may need to use addl]avascriptInterface()
to inject these APIs into the WebView and provide an implementation. This document describes the
necessary APIs, bindings and communication patterns between an Android application and a FIDO client

implemented as an Android Bound Service necessary to complete the link between either a native UI or
APIs injected into a WebView.

3. Definitions and Terminology

See the FIDO Techncial Glossary

4. API Notation Conventions

The API notation in this document describes ECMAScript bindings in WebIDL for applications executing
in the context of the W3C Document Object Model (DOM). They are intended to be suitable for a web
application to participate in UAF, and are designed to enforce and support existing notions of privacy
and security in that context.

Where appropriate, the WebIDL bindings from the Web API notation apply to Android objects as well,
using the Java Language Binding for Web IDL. (http://www.w3.0rg/TR/WebIDL-Java/)

Android-specific constructs are described and sample code for Android is provided in Java.

5. UAF HTTP TLS Binding

A secure channel MUST be established to convey UAF protcool messages, regardless of whichever
intermediate protocol the UAF protcool is bound to.

5.1 Security Requirements
The following requirements apply for HTTP over TLS:

1. The HTTP client initiates the TLS connection to the HTTP server in the typical fashion.

2. If there are any TLS errors, whether "warning" or "fatal" or any other error level with the TLS
connection, the HTTP client MUST terminate the connection without prompting the user. For
example, this includes any errors found in certificate validity checking that HTTP clients employ,
such as via TLS server identity checking [RFC6124], Certificate Revocation Lists (CRLSs)
[RFC4280], or via the Online Certificate Status Protocol (OCSP) [RFC2460].

3. Whenever comparisons are made between the presented TLS server identity (as presented
during the TLS handshake, typically within the server certificate) and the intended source TLS
server identity (e.g., as entered by a user, or embedded in a link), [RFC6124] server identity
checking MUST be employed. The client MUST terminate the connection without prompting the
user on any error condition.

4. The TLS server certificate MUST either be provisioned explicitly out-of-band (e.g. packaged with
an app as a "pinned certificate") or be trusted by chaining to a root included in the certificate
store of the operating system or a major browser by virtue of being currently in compliance with
their root store program requirements. The client MUST terminate the connection without
prompting the user if there are any error conditions when building the chain of trust.

5. The "anon" and "null" crypto suites are not allowed and insecure cryptographic algorithms in TLS
(e.g. MD4, RC4, SHA1) SHOULD be avoided (see NIST SP800-131A).

6. The client and server SHOULD use the latest practicable TLS version.

7. The client MUST NOT follow HTTP redirects that are not within the same Origin. [RFC6454]

8. Otherwise, the TLS connection is now established and ready for use.

5.1.1 Insecure Mixed Content

When FIDO UAF APIs are called and operations are performed in a document context in a web user
agent, such a context MUST NOT contain insecure mixed content. The exact defintion of this is specific
to each user agent, but generally includes any script, plugins and other "active" content with access to
the DOM that was not itself loaded over HTTPS.

The FIDO plugin MUST immediately throw an InsecureTransportException if any APIs defined in this
document are invoked by a document context containing insecure mixed content.

5.1.2 XMLHttpRequest

This document describes an interoperability profile for UAF that can be executed by a ECMAScript
operating in a document context inside a web browser and gives non-normative examples using the
XMLHttpRequest object defined in [XHR]. A conformant implementation of this XMLHttpRequest with
https URLs can be assumed to meet the TLS binding requirements of UAF.

If any non-standard features or alternative transports (e.g. plugin-based asynchronous HTTP requests
or the Android HttpsURLConnection) are used by the UAF client-side web application, it must meet the
requirements described above.

Android applications implementing FIDO for WebViews with addJavascriptInterface() MUST only add
these interfaces to resources that meet these requirements.

6. Locating FIDO APIs

For Web applications, FIDO UAF APIs are rooted in a new uaf object, a property of a new fido object
under to the window.navigator object, the existence and properties of which can be used for feature
detection.

<script>
if (!!'window.navigator.fido.uaf) { var useUAF = true; }
</script>

For Android apps, the FIDO Client is implemented as a Bound Service with the name
org.fidoalliance.uaf.FidoClient. This contains a local class FidoBinder that implements
getServerInstance () to return an instance of org.fidoalliance.uaf.FidoClient, as shown in the
following example code. All other interfaces defined in this document are rooted in the
org.fidoalliance.uaf package.

import org.fidoalliance.uaf.FidoClient;

import android.app.Activity;

import android.content.ComponentName;
import android.content.Intent;

import android.content.ServiceConnection;
import android.os.Bundle;

import android.os.IBinder;

public class FidoAwareApp extends Activity {

boolean mFidoClientBound;
FidoClient mFidoClient;

@Override
protected void onStart () {

super.onStart () ;

Intent intent = new Intent(this, FidoClient.class);
bindService (intent, mConnection, BIND AUTO CREATE);
}:

ServiceConnection mConnection = new ServiceConnection() {

public void onServiceDisconnected (ComponentName name) {
mFidoClientBound = false;

mFidoClient = null;

}

public void onServiceConnected (ComponentName name, IBinder binder) {
mFidoClientBound = true;
mFidoClient = ((FidoClient.FidoBinder) binder) .getServerInstance () ;
}
bi

QOverride

protected void onStop () {
super.onStop () ;
if (mFidoClientBound) {
unbindService (mConnection) ;
mFidoClientBound = false;
}

I &

}

Once an Android app has obtained a FidoClient server instance, the additional inferfaces can be
accessed through that object using the following Java-specific interface:

package org.fidoalliance.uaf;
public interface FidoClient {

// equivalent to DOM api at window.navigator.fido.uaf.discovery
Discovery discovery;

// equivalent to DOM api at window.navigator.fido.uaf.registration
Registration registration;

// equivalent to DOM api at window.navigator.fido.uaf.authentication
Authentication authentication;

// equivalent to DOM api at window.navigator.fido.uaf.confirmation
Confirmation confirmation;

// equivalent to DOM api at window.navigator.fido.uaf.deregistration
Deregistration deregistration;

// used to notify the FIDO client of the results of a POST of
// a UAF message, should be called to allow client to do

// housekeeping for a good user experience.

public void notifyUAFResult (String uafResult);

7. UAF API

The following interfaces and definitions are shared among several phases of the UAF protocol.

7.1 UAFClientMessage Dictionary

This dictionary allows arbitrary addtional information from the client web app to be included with the
uafResponse protocol message in the POST body sent to the Relying Party server.

dictionary UAFClientMessage {

DOMString uafResponse;
Object additionalData;

uafResponse of type DOMString
This string contains the UAF protocol client response message that will be processed by the FIDO
server at the Relying Party. UAF protocol messages are JSON objects. Their internal structure is
described in [UAF_Protocol_Specification].

In general, the client web application should not need to read or modify the uafResponse, and
modifying cetain parts of the message will cause the transaction to fail. It is recommended that
this field be treated as opaque by the client side web application.

additionalData
This key allows the client web app to attach any additional data it wishes to the POST body sent to
the Relying Party server.

7.2 UAFResponseCallback

A UAFResponseCallback is used to indicate the successful completion of asynchronous operations that
invoke the FIDO client with a vafChallenge.

callback UAFResponseCallback = void (DOMString uafResponse);

Arguments

uafResponse of type DOMString. The UAF protcol message representing the FIDO Authenticator and
Client's response to the uafChallenge. This should be delivered to the Relying Party server by the
client web application.

7.3 ErrorCallback

The ErrorCallback is used to return progress and error codes from asynchronous operations that
invoke the FIDO client.

callback ErrorCallback = void (ErrorCode code);
interface ErrorCode {

const short NO ERROR =
const short WAIT USER ACTION =
const short INSECURE TRANSPORT
const short USER_ CANCELLED
const short UNSUPPORTED VERSION =
const short NO SUITABLE AUTHENTICATOR =
const short PROTOCOL ERROR
const short UNKNOWN =

Il
oUW N O

(O Ne¢ Ne Ne N Ne Ne N

7.3.1 ErrorCode Values

NO_ERROR
No error condition encountered.
WAIT_USER_ACTION
Waiting on user action to procede. (selecting an authenticator in the FIDO client user interface,
performing local User-to-Authenticator authentication, or completing an enroliment step with an
authenticator)
USER_CANCELLED
The user declined any necessary part of the interaction to complete the registration or no
registered authenticator exists for authenticate, confirm or deregister calls.
UNSUPPORTED_VERSION
The UAFProtocolMessage indicates protocol versions not supported by this FIDO Client.
NO_SUITABLE_AUTHENTICATOR
No authenticator matching the AuthenticatorPolicy internal to the UAFProtocolMessage is
available to service the request, or the user declined to consent to the use of a suitable
authenticator.
INSECURE_TRANSPORT
window.location.protocol is not https or the DOM contains insecure mixed content.
PROTOCOL_ERROR
A violation of the UAF protocol occurred. The challenge may have timed out, the origin associated
with the challenge may not match the origin of the calling DOM context, or the protcol message
may be malformed or tampered with.
UNKNOWN
An error condition not described by other codes.

The ErrorCallback may be called multiple times, for example with the WAIT USER ACTION.

7.4 ServerResponse Interface

In response to a Registration or Authentication message, the Relying Party server may return additional
information to the client web application, some of which can be handled locally in an application-specific
manner, some of which SHOULD be delivered to the FIDO client.

interface ServerResponse {

readonly int statusCode;
readonly DOMString description;
readonly Token[] tokens;

readonly DOMString location;
readonly DOMString postData;

readonly DOMString uafResult;

interface Token ({

enum TokenType {
"HTTP COOKIE",
"OAUTH",
"OAUTH2",
"SAML1 1",
"SAML2",
" JWT "

i

readonly TokenType type;
readonly DOMString value;

7.4.1 Attributes

statusCode of type int, readonly
The FIDO UAF response status code.

description of type DOMString, readonly
A detailed message describing the status code and providing additioanl information.

tokens of type ServerResponse.Token[], readonly
New authentication or authorization token(s) for the client not natively handled by the HTTP
transport. Tokens SHOULD be processed prior to processing of location.

location of type DOMString, readonly
If present, indicates to the client web application that it should navigate the Document context to
the URI contained on this field after processing any tokens.

postData of type DOMString, readonly
If present in combination with location, indicates that the client should POST the contents to the
location after processing any tokens.

uafResult of type DOMString, readonly
This is the UAF protocol message indicating the result of the processing of a UAFResponse
message. It should be returned to the FIDO Client using the supplied UAFResultCallback

7.4.2 Interface Token

type of type TokenType, readonly

The type of the additional authentication / authorization token.
value of type DOMString, readonly

The value of the additional authentication / authorization token.
enum TokenType

HTTP_COOKIE
If the user agent is a standard web browser or other HTTP native client with a cookie store, this

TokenType SHOULD NOT be used. Cookies should be set directly with the set-Cookie HTTP

header. For non- HTTP or non-browser contexts this indicates a token indended to be set as an

HTTP cookie. [RFC 6525] (for example, a native VPN client on Microsoft Windows that

authenticates with UAF might use this TokenType to add a cookie to the browser cookie jar.)
OAUTH

Indicates that the token is of type OAUTH as defined in [RFC ???7?].

OAUTH2

Indicates that the token is of type OAUTH2 as defined in [RFC ???7].
SAML1_1

Indicates that the token is of type SAML 1.1 as defined in [OASIS ????].
SAML2

Indicates that the token is of type SAML 2.0 as defined in [OASIS ????7]
JWT

Indicates that the token is of type JISON Web Token (JWT) as defined in [draft-jones-jwt-???7]

7.4.3 ServerResponse Status Codes

This table lists UAF protocol status codes. These indicate the result of the transaction at the FIDO
server, not the Relying Party's HTTP layer. These codes are intended for consumption by the client-side
web app to inform error messaging or retry behavior.

Table 1
Code Meaning

200 OK. Registration completed

Accepted. Registration message accepted, but not completed at this time. The RP may need
202 time to process the attestation, run risk scoring, etc. The server SHOULD NOT send an
authenticationToken with a 202 response

400 Bad Request. The server did not understand the message

Unauthorized. The userid must be authenticated to register a FIDO Authenticator, or this KeyID
is not associated with this UserID.

401
403 Forbidden. The userid is not allowed to register a FIDO Authenticator. Client SHOULD NOT retry
408 Request Timeout

480 Unknown AAID. The server was unable to locate authoritative metadata for the AAID.

Unknown KeyID. The server was unable to locate a registration for the given UserID and KeyID

481 combination.

Channel Binding Refused. The server refused to service the request due to a missing or

490 mismatched channel binding(s).

Code

491

492

493

494

495

496

497

498

500

Meaning

Server Challenge Invalid. The server refused to service the request because the challenge was
unknown, expired or the server has previously serviced a message with the same challenge and
user ID.

Unacceptable Authenticator. The authenticator is not acceptable according to the server's policy,
for example because the capability registry used by the server reported different capabilities
than client-side discovery.

Revoked Authenticator. The authenticator is considered revoked by the server.

Unacceptable Key. The key being registered is unacceptable. Perhaps it is on a list of known
weak keys or uses insecure parameter choices.

Unacceptable Algorithm. The server believes the authenticator to be capable of using a stronger
mutually-agreeable algorithm than was presented in the request.

Unacceptable Attestation. The attestation(s) provided were not accepted by the server for
registration.

Unacceptable Client Capabilities. The server was unable or unwilling to use required capabilities
provided supplementally to the authenticator by the client software.

Unacceptable Content. There was a problem with the contents of the message and the server
was unwilling or unable to process it.

Internal Server Error

7.5 Authenticator Interface

interface Authenticator {

readonly attribute DOMString AAID;
readonly attribute long userVerification;
readonly attribute long keyProtection;
readonly attribute long attachmentHint;
readonly attribute long secureDisplay;

readonly attribute DOMString authenticationSuite;
readonly attribute DOMString scheme;

// for future use
readonly attribute long additionalInfo;

const long USER VERIFY PRESENCE = 0x01;
const long USER VERIFY FINGERPRINT = 0x02;
const long USER VERIFY PIN = 0x04;
const long USER VERIFY VOICEPRINT = 0x08;
const long USER VERIFY FACEPRINT = 0x10;
const long USER VERIFY LOCATION = 0x20;

const long USER VERIFY EYEPRINT = 0x40;

const long USER VERIFY PATTERN = 0x80;

const long USER VERIFY HANDPRINT = 0x100;

const long USER VERIFY NONE = 0x200;

const long KEY PROTECTION SOFTWARE = 0x01;
const long KEY PROTECTION HARDWARE = 0x02;
const long KEY PROTECTION TEE = 0x04;
const long KEY PROTECTION SECURE ELEMENT = 0x08;
const long KEY PROTECTION REMOTE HANDLE = 0x10;
const long ATTACHMENT HINT INTERNAL = 0x01;

const long ATTACHMENT HINT EXTERNAL = 0x02;

const long ATTACHMENT HINT WIRED = 0x04;

const long ATTACHMENT HINT WIRELESS = 0x08;

const long ATTACHMENT HINT NFC = 0x10;

const long ATTACHMENT HINT BLUETOOTH = 0x20;

const long ATTACHMENT HINT NETWORK = 0x40;

const long ATTACHMENT HINT READY = 0x80;

const long SECURE DISPLAY ANY = 0x01;
const long SECURE DISPLAY PRIVILEGED SOFTWARE = 0x02;
const long SECURE DISPLAY HARDWARE = 0x04;
const long SECURE DISPLAY TEE = 0x08;
// bhill - I still think we need this one...

const long SECURE DISPLAY REMOTE = 0x10;

7.5.1 Constants

USER_VERIFY_PRESENCE
This flag will be set if the authenticator is able to confirm user presence in any fashion. If this flag
and no other is set for the userverification, the guarantee is only that the authenticator cannot
be operated without some human intervention, not necessarily that the presence verifiction
provides any level of authentication of the human's identity. (e.g. a device that requires a touch
to activate)

USER_VERIFY_FINGERPRINT
This flag will be set if the authenticator uses any type of measurement of a fingerprint for User-to-
Authenticator authentication.

USER_VERIFY_PIN
This flag will be set if the authenticator uses a PIN code for User-to-Authenticator authentication.

USER_VERIFY_VOICEPRINT
This flag will be set if the authenticator uses a voiceprint for User-to-Authenticator authentication.

USER_VERIFY_FACEPRINT
This flag will be set if the authenticator uses any manner of face recognition to locally authenticate
the user.

USER_VERIFY_LOCATION
This flag will be set if the authenticator uses any form of location sensor or measurement for
User-to-Authenticator authentication and/or returns a location measurement to the Relying Party
as an additional user verification.

USER_VERIFY_EYEPRINT
This flag will be set if the authenticator uses any form of eye biometrics for User-to-Authenticator
authentication.

USER_VERIFY_PATTERN
This flag will be set if the authenticator uses a drawn pattern for User-to-Authenticator
authentication.

USER_VERIFY_HANDPRINT

This flag will be set if the authenticator uses any measurement of a full hand (including palmprint,
hand geometry or vein geometry) for User-to-Authenticator authentication.
USER_VERIFY_NONE
This flag will be set if the authenticator will respond without any user interaction.
KEY_PROTECTION_SOFTWARE
This flag will be set if the authenticator uses software-based key management.

Exclusive with KEY _PROTECTION_HARDWARE, KEY _PROTECTION_TEE,
KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_HARDWARE
This flag will be set if the authenticator uses hardware-based key management.

Exclusive with KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_TEE
This flag will be set if the authenticator uses the Trusted Execution Environment [ref:TODO] for
key management.

Exclusive with KEY_PROTECTION_HARDWARE, KEY_PROTECTION_SOFTWARE,
KEY_PROTECTION_SECURE_ELEMENT

KEY_PROTECTION_SECURE_ELEMENT
This flag will be set if the authenticator uses a Secure Elemlent [ref:TODO] for key management.

Exclusive with KEY _PROTECTION_HARDWARE, KEY _PROTECTION_TEE,
KEY_PROTECTION_SOFTWARE

KEY_PROTECTION_REMOTE_HANDLE
This flag will be set if the authenticator does not store per-Origin keys locally, but relies on a
server-provided key handle.

This flag MUST be set in conjunction with one of the other KEY_PROTECTION flags to indicate how
local key unwrapping operations are protected.

Servers can use this value in authenticator policy to exclude such devices if they are unprepared

to store and return key handles, for example, if they have a requirement to respond

indistinguishably to authentication attempts for userIDs that do and do not exist.
ATTACHMENT_HINT_INTERNAL

This flag indicates that the authenticator is permanently attached to the system on which the

FIDO client software is running.

A device such as a smartphone may have authenticator functionality that is able to be used both
locally and remotely. In such a case, the device metadata may have both of these flags set, but
the FIDO client MUST filter and exclusively report only the relevant bit during Discovery and when
performing policy matching.

ATTACHMENT_HINT_EXTERNAL
This flag indicates, for a hardware-based authenticator, that it is removable or remote from the
system on which the FIDO client software is running.

A device such as a smartphone may have authenticator functionality that is able to be used both
locally and remotely. In such a case, the device metadata may have both of these flags set, but
the FIDO client MUST filter and exclusively report only the relevant bit during Discovery and when
performing policy matching.

ATTACHMENT_HINT_WIRED
Indicates that an external authenticator currently has a wired connection to the FIDO client
software.

ATTACHMENT_HINT_WIRELESS
Indicates that an external authenticator is able to communicate wirelessly to the FIDO client
software.

ATTACHMENT_HINT_NFC
Indicates that an external authenticator is able to communicate by NFC to the FIDO client
software.

ATTACHMENT_HINT_BLUETOOTH

Indicates that an external authenticator is able to communicate using Bluetooth to the FIDO client
software.
ATTACHMENT_HINT_NETWORK
Indicates that an external authenticator is able to communite to the FIDO client software over a
packet-switched network.
ATTACHMENT_HINT_READY
Indicates that an external authenticator is in a ready state. e.g. a Bluetooth conencted device that
is currently paired and connected or a USB device that is plugged in.
SECURE_DISPLAY_ANY
This flag indicates that some form of secure display is available on this authenticator.
SECURE_DISPLAY_PRIVILEGED_SOFTWARE
This flag indicates that a software-based secure display operating in a privileged context is
available on this authenticator.

Software-based displays are typically provided by the FIDO client software rather than the
authenticator itself. A FIDO client that is capable of providing this capability MAY set this bit for all
authenticators of type ATTACHMENT HINT INTERNAL, even if the authoritative metadata for the
authenticator does not indicate this capability.

A FIDO client that is capable of providing this capability MUST NOT set this bit for authenticators
of type ATTACHMENT HINT EXTERNAL as it may not be uniformly available at all systems to which
the authenticator may roam.

SECURE_DISPLAY_TEE
This flag indicates that the authenticator implements a secure display in the Trusted Execution
Environment. [ref: TODO]

SECURE_DISPLAY_HARDWARE
This flag indicates that an integrated and distinct hardware secure display is available on this
authenticator.

SECURE_DISPLAY_REMOTE
This flag indicates that the secure display is provided on a distinct device from the system the
FIDO client software is operating on.

7.5.2 Attributes

AAID of type DOMString, readonly
The Authenticatior Attestation ID, which identifies the type and batch of the authenticator.

No exceptions.

userVerification of type long, readonly
A set of bit flags indicating the user verification methods(s) supported by the authenticator. The
values are defined by the USER _VERIFY constants.

No exceptions.

keyProtection of type long, readonly
A set of bit flags indicating the key PROTECTION used by the authenticator. The values are
defined by the KEY PROTECTION constants.

No exceptions.

attachmentHint of type long, readonly
A set of bit flags indicating how they are currently connected to the system hosting the FIDO
client software. The values are defined by the ATTACHMENT HINT constants.

Because the connection state and topology of an authenticator may be transient, these values are
only hints that can be used by server-supplied policy to guide the user experience, e.g. to prefer a
device that is connected and ready for authenticating or confirming a | ow-value transaction,
rather than one that is more secure but requires more user effort. These values are not reflected
in authenticator metadata and cannot be relied on by the relying party, although some models of
authenticator may provide attested measurements of similar data as part of OSTP response

messages. No exceptions.
secureDisplay of type long, readonly
A set of bit flags indicating the availability and type of secure display. The values are defined by
the SECURE DISPLAY constants.
No exceptions.
authenticationSuite of type DOMString, readonly
Indicates the authentication suite the authenticator uses.
Authentication suite identifiers are defined in the OSTP specification. [ref]
No exceptions.
scheme of type DOMString, readonly
The encoding scheme the authenticator uses for attested data and signatures.
Scheme identifiers are defined in the OSTP specification. [ref]
No exceptions.
additionallnfo of type DOMString, readonly
RESERVED FOR FUTURE USE

No exceptions.

7.6 notifyUAFResult Operation

A notifyUAFResult call is used to indicate to the FIDO Client the completion status of a UAFResponse
delivered to the Relying Party server. Applications SHOULD make this call to allow the client to do
housekeeping for a better user experience.

void UAFResultCallback (DOMString uafResult) ;

Arguments

uafResult of type boMString. The UAF protcol message representing the result of the Relying Party
server's processing of a uafResponse.

8. Discovery

To discover if the user's client software and devices support UAF and if Authenticator capabilities are
available that it may be willing to accept for authentication, Relying Party code in the browser can use
the following interface.

8.1 Discovery Interface

interface Discovery {

readonly attribute long[][] version

readonly attribute DOMString clientVendor;
readonly attribute long[] clientVersion;
readonly attribute Authenticator[] availableAuthenticators;

void checkPolicy (DOMString uafChallenge, ErrorCallback cb);

8.1.1 Attributes

version of type long[], readonly
An array of arrays. The first index is the list of the FIDO UAF protocol versions supported by the
client, most- preferred first.

The second index is always a three element array indicating the detailed version supported by the
FIDO UAF Client. The first element indiates the major version, the second the minor version.

No exceptions.
clientVendor of type DOMString, readonly
The vendor of the FIDO UAF Client.

No exceptions.
clientVersion of type long[], readonly
The version of the FIDO UAF Client, ordered by version humber significance.

No exceptions.

availableAuthenticators of type Authenticator[], readonly
An array containing Authenticator dictionaries describing the available UAF authenticators. The
order is not significant.

No exceptions.

8.1.2 Operations

checkPolicy(DOMString uafChallenge, ErrorCallback cb) of return type void
Asks the FIDO plugin if it would be able to process the supplied UAF server challenge message
based on cached state only. Unlike other operations using an ErrorCallback, this operation MUST
always trigger the callback and return NO_ERROCR if it belives that the message can be processed
and a suitable authenticator matching the embedded policy is available, or the appropriate
ErrorCode value otherwise. Because this call should use cached information only, it should not

incur a potentially disrupting context-switch even if the FIDO client is implemented out-of-
process.

8.2 Example
This section is non-normative.

A Relying Party could employ a client-side web application similar to the following to do FIDO UAF
Discovery and show a message to the user that they are eligible to register a FIDO Authenticator with
their account if an authenticator with the required capabilities is available.

<html>

<head></head>
<body>
<script>
var uaf = window.navigator.fido.uaf;

if(!!uaf) // check if UAF is available in user agent

{

var disco = uaf.Discovery;
var aa disco.availableAuthenticators;
var done false;

// get a server challenge message, this is app specific...
var uafChallenge = getRegistrationChallenge() ;

disco.checkPolicy(uafChallenge,
function (ec) {
if(ec !'= 0) { // if no error, show the registration div
document.getElementById ("fidoDiv") .style.visibility =
"visible";
done = true;

}

</script>
<div id="fidoDiv" style="visibility:hidden">

Click here to register your account with FIDO!

</div>
</body>
</html>

The following Java example code demonstrates the same functionality for an Android app.

import org.fidoalliance.uaf.FidoClient;

import org.fidoalliance.uaf.Discovery;

import org.fidoalliance.uaf.ErrorCallback;

import org.fidialliance.uaf.ErrorCallback.ErrorCode;

import java.lang.String;

import android.app.Activity;

import android.content.ComponentName;
import android.content.Intent;

import android.content.ServiceConnection;
import android.os.Bundle;

import android.os.IBinder;

public class FidoAwareApp extends Activity {

boolean mFidoClientBound;
FidoClient mFidoClient;

@Override
protected void onStart () {

super.onStart () ;

Intent intent = new Intent(this, FidoClient.class);
bindService (intent, mConnection, BIND AUTO CREATE);

}:
ServiceConnection mConnection = new ServiceConnection () {

public void onServiceDisconnected (ComponentName name) {
mFidoClientBound = false;

mFidoClient = null;

}

public void onServiceConnected (ComponentName name, IBinder binder) {
mFidoClientBound = true;
mFidoClient = ((FidoClient.FidoBinder) binder).getServerInstance();

Discovery disco = mFidoClient.discovery;

// implementation to get a server challenge an exercise for the reader
String uafChallenge = getServerChallenge();

discoCheckPolicy (uafChallenge,
new ErrorCallback () {
public void call (ErrorCode code) {
if (code == ErrorCode.NO_ ERROR) {
// implementation of register
doFidoRegistration (mFidoClient, uafChallenge);

} else if (code == ErrorCode.WAIT USER ACTION) ({
// shouldn't happen, but do nothing
} else {

// fallback to user/pass
doUserPassRegistration();

}i

QOverride

protected void onStop () {
super.onStop () ;
if (mFidoClientBound) {
unbindService (mConnection) ;
mFidoClientBound = false;
}

b2

}

9. Registration

In the Registration phase, a user who is newly creating or has already demonstrated control of an
account through a non-UAF authentication scheme (presumably username + password, but possibly
with additional or alternate factors) can associate a FIDO UAF Authenticator with their account.

This section is non-normative. Web applications might make distinct HTTP request/response cycles to
deliver client-side code and data implementing the Discovery and Registration phase, but it is expected
that both actions will be able to be performed in a single HTTP round-trip. For example, the response to

a successful legacy username + password authentication might contain all the code and information
necessary to both dicover the availability of suitable authenticator(s) as well as the fine grained
registration policy and server challenge information needed to immediately get a
RegistrationResponseMessage ready to be sent asynchronously to the server.

9.1 Registration Interface

interface Registration {

void register (DOMString uafChallenge,
UAFResponseCallback completionCallback,
ErrorCallback errorCallback) ;

9.1.1 Operations

register(DOMString uafChallenge, UAFResponseCallback completionCallback, ErrorCallback
errorCallback) of return type void

Invokes the registration logic in the FIDO Client and prompts the user to register an
authenticator(s) matching the provided policy, using the supplied challenge, and returning to the
callback a message in one of the supported protocol versions indicated by the uafChallenge.

Arguments
uafChallenge of type DOMString
The UAF Server Challenge message to be delivered to the FIDO client software.
completionCallback of type RegistrationCallback
The callback that receives the UAF Client Response message from the FIDO client software,
to be delivered to the Relying Party server.
errorCallback of type ErrorCallback
A callback function to recieve error and progress events from the FIDO Client.
checkOnly of type boolean, optional
This defaults to 'false’. If set to 'true’, this instructs the FIDO client to evaluate the operation
using it's cached

9.2 Example
This section is non-normative.

A Relying Party could employ a client-side web application similar to the following to do FIDO UAF
Discovery and show a message to the user that they are eligible to register a FIDO Authenticator with
their account if an authenticator with the required capabilities is available.

<html>
<head></head>
<body>
<script>
function registerFIDO() {

var fidoReg = window.navigator.uaf.Registration;

function deliverResponse (uafResponse, jsonCallback) {

var clientMessage = {};
clientMessage.uafResponse = uafResponse;
clientMessage.additionalData = {};

// TODO: do not follow off-origin redirects!
var client = new XMLHttpRequest () ;
client.onreadystatechange = function () {
if (this.readyState == this.DONE) {
jsonCallback (JSON.parse (this.responseText)) ;
1
bi

client.setRequestHeader ("Content-Type", "application/fido.uaf+json;
charset=utf-8");

client.setRequestHeader ("Accept", "application/fido.uaf+json");

client.open ("POST", "https://fido.example.com/register");

client.send(clientMessage) ;

}i
function completionCallback (uafResponse) {

// invoke XHR to deliver the response from the FIDO client
// back to the server
deliverResponse (uafResponse, function (jsonResults) {

// return the result to the FIDO client for housekeeping
window.navigator.fido.uaf.notifyUAFResult (jsonResults.uafResult) ;

// invoke app-specific logic to process the web-app layer
// result semantics (new auth tokens, redirects, etc.)
handleResult (jsonResults) ;

function errorCallback (code) {
if (code == code.WAIT USER ACTION) {
// do nothing...
}
else {
// app specific error handling...
logError (code) ;

Il 5

// get a server challenge message, this is app specific...
var serverChallenge = getRegistrationChallenge();

// call the register operation
fidoReg.register (serverChallenge.uafChallenge, completionCallback,
errorCallback);

i
</script>

<button onClick="registerFIDO ()">Register your FIDO Authenticator</button>
</body>
</html>

The following Java example code demonstrates equivalent functionality for an Android app.

/** only partial class implemntation shown; implicit imports:
import org.fidoalliance.uaf.FidoClient;

import org.fidoalliance.uaf.ErrorCallback;

import org.fidoalliance.uaf.ErrorCallback.ErrorCode;
import org.fidoalliance.uaf.UAFResponseCallback;
import org.fidoalliance.uaf.UAFResultCallback;
import java.net.*;

import java.io.*;

import javax.net.ssl.HttpsUrlConnection;

import org.apache.commons.io.IOUtils;

import org.json.JSONObject;

=y

L S T T N S

public void doFidoRegistration (FidoClient fidoClient, String uafChallenge) ({

// inner class implementation of UAFResponseCallback handler
class RegCompletionCallback implements UAFResponseCallback {

public void call (String uafResponse) {

URL url = new URL("https://fido.example.com/register");

HttpsUrlConnection huc = new HttpsUrlConnection (url);

huc.setFollowRedirects (false);

huc.addRequestProperty ("Content-Type", "application/fido.uaf+json;
charset=utf-8");

huc.addRequestPrpoerty ("Accept", "application/fido.uaf+json");

huc.setRequestMethod ("POST") ;

huc.setDoInput (true) ;

huc.setDoOutput (true) ;

OutputStreamWriter out = new OutputStreamWriter (
huc.getOutputStream()) ;

// build the JSON structure with (in this case no) additional client data
String clientMessage = "{";

clientMessage += "uafResponse : {" + uafResponse;

clientMessage += "}, additionalData: {} }";

out.write (URLEncoder.encode (clientMessage, "UTF-8");
out.close();

String response = IOUtils.toString(huc.getInputStream(), "UTF-8");
JSONObject jsonResults = new JSONObject (response) ;

fidoClient.notifyUAFResult (jsonResults.getString ("uafResult"))
// invoke app-specific logic to process the web-app layer

// result semantics (new auth tokens, redirects, etc.)
handleResults (jsonResults) ;

}

}:

}:

// inner class implemenation of ErroCallback handler
class RegErrorCallback implements ErrorCallback {
public void call (ErrorCode code) {
if (code == ErrorCode.WAIT USER ACTION
|| code == ErrorCode.NO ERROR) {
// do nothing
}

else {
// app specific error handling...
logError (code) ;

}:
}

fidoClient.Registration.register (uafChallenge,
new RegCompletionCallback(),
new RegErrorCallback());

10. Authentication

In the Authentication phase, a user who has previously completed Registration can Authenticate to the
Relying Party with a registered authenticator.

This section is non-normative. Like the Registration phase, Authentication is policy-driven. A Relying
Party may ask a user to authenticate in order to access personal account information, to authorize a
transaction, to access or change sensitive information, or to confirm a transaction, and the Relying
Party may have different requirements about which registered authenticators are acceptable, and in
what combination, for each circumstance.

10.1 Authentication Interface

interface Authentication {

void authenticate (DOMString uafChallenge,
UAFResponseCallback completionCallback,
ErrorCallback errorCallback) ;

10.1.1 Operations

authenticate(DOMString uafChallenge, UAFResponseCallback completionCallback, ErrorCallback
errorCallback) of return type void

Invokes the authentication logic in the FIDO Client and prompts the user to register an
authenticator(s) matching the provided policy, using the supplied challenge, and returning to the
callback a message in one of the supported protocol versions indicated by the uafChallenge.

Arguments
uafChallenge of type DOMString
The UAF Server Challenge message to be delivered to the FIDO client software.
completionCallback of type RegistrationCallback
The callback that receives the UAF Client Response message from the FIDO client software,
to be delivered to the Relying Party server.
errorCallback of type ErrorCallback
A callback function to recieve error and progress events from the FIDO Client.
checkOnly of type boolean, optional
This defaults to 'false’. If set to 'true’, this instructs the FIDO client to evaluate the operation
using it's cached

11. Transaction Confirmation

In the Transaction Confirmation phase, a Relying Party can send text to a user with a registered
authenticator and request the user confirm the text by authenticating. This phase is essentially identical
to Authentication but with the addition of the transactional text to be displayed and confirmed. The
FIDO Client is responsble for displaying the text in a secure manner, the client web app SHOULD NOT
display the transactional text.

This section is non-normative. Like other phases, Transaction Confirmation is policy-driven. A Relying
Party may ask a user to confirm transaction, changes of sensitive information, or receipt of a message
and the Relying Party may have different requirements about which registered authenticators are
acceptable, and in what combination, for each circumstance.

11.1 Confirmation Interface

interface Confirmation ({

void confirm(DOMString uafChallenge,
UAFResponseCallback completionCallback,
ErrorCallback errorCallback) ;

11.1.1 Operations

confirm(DOMString uafChallenge, UAFResponseCallback completionCallback, ErrorCallback
errorCallback) of return type void

Invokes the transaction confirmation logic in the FIDO Client and prompts the user to register an
authenticator(s) matching the provided policy, using the supplied challenge, and returning to the
callback a message in one of the supported protocol versions indicated by the vafChallenge.

Arguments
uafChallenge of type DOMString
The UAF Server Challenge message to be delivered to the FIDO client software.
completionCallback of type RegistrationCallback
The callback that receives the UAF Client Response message from the FIDO client software,
to be delivered to the Relying Party server.
errorCallback of type ErrorCallback

A callback function to recieve error and progress events from the FIDO Client.

checkOnly of type boolean, optional
This defaults to 'false'. If set to 'true’, this instructs the FIDO client to evaluate the operation
using it's cached

11.2 Example
This section is non-normative.

A Relying Party could employ a client-side web application similar to the following to do FIDO UAF
Transaction Confirmation.

<html>
<head>..</head>
<body>

<script>

// TODO
</script>
<!-- TODO -->

</body>

</html>

12. Deregistration

In the Deregistration phase, a Relying Party can instruct the FIDO client to delete a registration(s) at
the specified authenticator(s). Unlike the other phases of UAF, a deregistration is a one-way, server-to-
client message.

This section is non-normative. Because key registrations in UAF are always Relying Party-specific, the
Relying Party may declare them as invalid at any time. Deregistration is primarily a 'housekeeping'
function to improve the user experience by avoiding prompting to authenticate with keys that the
Relying Party no longer considers valid.

12.1 Deregistration Interface

interface Deregistration {

void deregister (DOMString uafChallenge) ;

12.1.1 Operations

deregister(DOMString uafChallenge) of return type void

Invokes the deregistration logic in the FIDO Client and prompts the user to register an
authenticator(s) matching the provided policy, using the supplied challenge, and returning to the
callback a message in one of the supported protocol versions indicated by the uvafChallenge.

Arguments
uafChallenge of type DOMString
The UAF Server Challenge message to be delivered to the FIDO client software.

12.2 Example
This section is non-normative.

A Relying Party could employ a client-side web application similar to the following to do FIDO UAF
Deregistration.

<html>
<head>..</head>
<body>

<script>

// TODO
</script>
<!-- TODO -->

</body>

</html>

13. Delivery of the uafResponse

After calling register (), authenticate(), or confirm(), it is the responsiblity of the Relying Party
client-side web application to deliver the uafResponse returned to the UAFResponseCallback back to
the Relying Party server to complete the operation. This is typically accomplished in an asynchronous
manner using the xMLHttpRequest object.

When sending the message to the server, the following conditions apply:

. The HTTP Method MUST be POST

. A UAFClientMessage dictionary MUST comprise the entire POST body.

. The Content-Type HTTP header MUST be "application/fido.uaf+json; charset=utf-8"

. The Accept HTTP header MUST include "application/fido.uaf+json"

. The server SHOULD maintain its own notion of the user's authenticated identity associated with
the vafChallenge, but when possible the request SHOULD include the user's original cookies
and other ambient autority to assist the server in verifying the registration. For xMLHttpRequest,
this means that the Anonymous flag SHOULD NOT be set.

u b wNE

The Relying Party server SHOULD, after processing the request, return an HTTP response with a
Content-Type of application/fido.uaf+json of which the entire HTTP Response Body is a JSON
representation of a ServerResponse. Processing of the ServerResponse is at the discretion of the client
web application, but the UAFResultCallback supplied by the FIDO Client SHOULD be called with the
uafResult.

The Relying Party server MAY also inlcude additional information to be processed by the browser's HTTP

client stack, such as the Set-Cookie HTTP header to provide additional authentication or authorization
context for subsequent operations.

14. Considerations for Cross-Origin Requests

In some circumstances, a client-side web application may be able to interact asynchronously over HTTP
with servers other than the application's own Origin, for example by using CORS [ref CORS@W3C] or
Adobe(R) Flash. [ref crossdomain.xml] These capabilities will generally not allow for UAF to be used
cross-origin because the FIDO client software will receive the Origin of the executing Document context
from the plugin and the Origin of the Relying Party server inside the OSTP message and terminate the
protocol if a mismatch is detected.

15. Extensibility

This section is non-normative. So long as they meet the requirements in the security and privacy
considerations sections and the relevant overall security and privacy requirements of FIDO, FIDO clients
may add to the interface.

Non-standard additions SHOULD be vendor-prefixed, e.g.

readonly attribute DOMString vendorName-extendedAttrName;

The additionalData field of the UAFClientMessage also can serve as an extensibility point between
the client web app and Relying Party server.

16. Security Considerations

This section is non-normative. It is RECOMMENED that Relying Parties prevent resources that use the
FIDO UAF API from being displayed in an iframe by a different Origin, to avoid confusing users who
might rely on the browser’s address bar to determine with which Relying Party they are interacting. This
can be accomplished by setting the following HTTP headers:

X-Frame-Options: SAMEORIGIN
Content-Security-Policy: frame-options 'self'

This protection is most important during Registration. In some circumstances, it may be acceptable to
invoke other phases of the UAF in a cross-origin context. Relying Parties that choose to expose
endpoints cross-origin should be careful to restrict the semantics to operations that make sense. (e.g.
allowing an Authentication phase resource to be embedded cross-origin for making payments, but not
allowing a resource that allows changing an address to be so embedded)

An error-free TLS connection and Document context free of insecure mixed content MUST be
established before sending any OSTP protocol messages, as defined in the TLS Binding section.

17. Privacy Considerations

This section is non-normative. Differences in the FIDO capabilities of a Web User Agent may (among
many other characteristics) allow for a remote server to "fingerprint" a remote client and attempt to

persistently identify it in the absence of any explicit session state maintenance mechanism. Although it
may contribute some amount of signal to servers attempting to fingerprint clients, the attributes
exposed by the FIDO UAF Disocvery API are desighed to have a large anonymity set size and should
present little or no qualitatively new privacy risk. Nonetheless, an unusual configuration of FIDO
Authenticators may be sufficient to uniquely identify a user. It is recommended that user agents expose
the Discovery API to all applications without requiring explicit user consent by default, but user agents
or FIDO Client implementers should provide users with the means to opt-out of discovery if they wish to
do so for privacy reasons.

18. Normative References

Author's Address

Brad HillHillBradPayPal, Inc.EMail: bhill@paypal.comURI: http://fidoalliance.org/

http://fidoalliance.org/
mailto:bhill@paypal.com

	fido-specifications-manifest-uaf-v1.0-rd-20131213.pdf
	fido-uaf-protocol-uaf-v1.0-rd-20131213.pdf
	1 Notation
	1.1 Key Words

	2 Overview
	2.1 Scope
	2.2 Architecture
	2.3 Protocol Conversation
	2.3.1 Registration
	2.3.2 Authentication
	2.3.3 Transaction Confirmation
	2.3.4 Deregistration

	3 Protocol Details
	3.1 Shared Structures and Types
	3.1.1 Operation Header
	3.1.2 Type of AAID
	3.1.3 Type of KeyID
	3.1.4 Type of ServerChallenge
	3.1.5 Type of FinalChallengeParams
	3.1.6 Type of TLSData
	3.1.7 Type of JwkKey
	3.1.8 Type of Extension
	3.1.9 Type of TrustedApps

	3.2 Version Negotiation
	3.3 Policy Generation and Parsing Rules
	3.4 Registration Operation
	3.4.1 Type of RegisterRequest
	3.4.2 Type of RegisterResponse
	3.4.3 Processing Rules
	3.4.3.1 Registration Request Generation Rules for FIDO Server

	3.5 Authentication Operation
	3.5.1 Type of AuthenticationRequest
	3.5.2 Type of AuthenticationResponse
	3.5.3 Processing Rules

	3.6 Deregistration Operation
	3.6.1 Type of DeregistrationRequest
	3.6.2 Processing Rules

	4 Considerations
	4.1 Protocol Core Design Considerations
	4.1.1 Authenticator Metadata
	4.1.2 Authenticator Attestation
	4.1.2.1 Basic Attestation

	4.1.3 Error Handling
	4.1.4 Registration and Authentication Schemes
	4.1.5 Username in Authenticator
	4.1.6 TLS Protected Communication

	4.2 Implementation Considerations
	4.2.1 Server Challenge and Random Numbers
	4.2.2 TODO: iOS Implementations of FIDO Clients

	4.3 Security Considerations
	4.3.1 FIDO Authenticator Security
	4.3.2 Cryptographic Algorithms
	4.3.3 Application Isolation
	4.3.3.1 FacetID Assertion
	4.3.3.2 Isolation using API Keys

	4.3.4 TLS Binding
	4.3.5 Personas
	4.3.6 SessionID
	4.3.7 Authenticator Information retrieved from client vs. MetaData

	4.4 Interoperability Considerations
	4.5 IANA Considerations

	5 UAF Supported Schemes
	5.1 UAFV1-TLV
	5.1.1 KeyRegistrationData
	5.1.2 SignData

	6 Definitions
	Bibliography
	Appendix A UAF JSON Schema

	fido-authenticator-asm-api-uaf-v1.0-rd-20131213.pdf
	1. Overview
	1.1 Notations
	2. Security Requirements
	2.1 Access Control for ASM APIs
	3. ASM API
	3.1. Process Function
	3.2. GetInfo Request
	3.3. Register Request
	3.4. Authenticate Request
	3.4.1. Interface definition
	3.5. Deregister Function
	3.6. GetRegistrations Function
	4. Plugin API
	4.1. Android ASM Plugin API
	4.2. Windows ASM Plugin API
	References
	Normative
	Informative

	fido-authenticator-commands-uaf-v1.0-rd-20131213.pdf
	specification set: uaf-v1.0-rd-20131213 (REVIEW DRAFT)
	Glossary
	1. Overview
	1.1 UAF Authenticator
	1.2 Types of Authenticators
	1.3 Notations
	2. Access Control for Commands
	2.1 API Key Concept
	3. Types and Tags
	4. Structures
	4.1 RawKeyHandle
	5. Commands
	5.1 GetInfo Command
	General Description
	Command Structure
	Command Response
	Non-Normative Example Code
	5.2 Register Command
	General Description
	Command Structure
	Command Response
	Non-Normative Example Code
	5.3 Sign Command
	General Description
	Command Structure
	Command Response
	Non-Normative Example Code
	5.4 Deregister Command
	General Description
	Command Structure
	Command Response
	Non-Normative Example Code
	Appendix: Security Guidelines
	References

	fido-authenticator-metadata-uaf-v1.0-rd-20131213.pdf
	fido-registry-predefined-values-uaf-v1.0-rd-20131213.pdf
	Contents
	1. Introduction
	2. Authenticator Characteristics
	2.1. Authentication Factors
	2.2. Key Protection Types
	2.3. Authenticator Attachment Hints
	2.4. Secure Display Types
	3. UAF Authenticator Command TLV Tags (0x0001-0x1000)
	4. Crypto Suites
	5. UAF Server Response Codes
	6. UAF Server Response Token Types
	7. UAF Client Callback Error Codes

	fido-technical-glossary-uaf-v1.0-rd-20131213.pdf
	Editors:
	Contributors:
	Abstract:
	Notice:
	Introduction:
	Definitions:

	fido-client-api-uaf-v1.0-rd-20131213.pdf
	5.1 Security Requirements
	5.1.1 Insecure Mixed Content
	5.1.2 XMLHttpRequest

	7.1 UAFClientMessage Dictionary
	7.2 UAFResponseCallback
	7.3 ErrorCallback
	7.3.1 ErrorCode Values

	7.4 ServerResponse Interface
	7.4.1 Attributes
	7.4.2 Interface Token
	7.4.3 ServerResponse Status Codes

	7.5 Authenticator Interface
	7.5.1 Constants
	7.5.2 Attributes

	7.6 notifyUAFResult Operation
	8.1 Discovery Interface
	8.1.1 Attributes
	8.1.2 Operations

	8.2 Example
	9.1 Registration Interface
	9.1.1 Operations

	9.2 Example
	10.1 Authentication Interface
	10.1.1 Operations

	11.1 Confirmation Interface
	11.1.1 Operations

	11.2 Example
	12.1 Deregistration Interface
	12.1.1 Operations

	12.2 Example

