
FIDO Device Onboard Specification 1.1

https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-RD-v1.1-20211214

GitHub

Geoffrey Cooper (Intel)
Brad Behm (Amazon)
Ankur Chakraborty (Google)
Hanu Kommalapati (Microsoft)
Giri Mandyam (Qualcomm)
Hannes Tschofenig (ARM)

Witali Bartsch (TrustKey)

Copyright © 2021 FIDO Alliance. All Rights Reserved.

An automatic onboarding protocol for IoT devices. Permits late binding of device credentials, so that one manufactured
device may onboard, without modification, to many different IOT platforms.

Table of Contents

Review Draft, December 14, 2021

This version:

Issue Tracking:

Editors:

Contributors:

Abstract

1 Introduction
1.1 Transmitted Protocol Version
1.2 Correlation Attack Concerns
1.3 FIDO Device Onboard Terminologies
1.4 FIDO Device Onboard Transport Interfaces
1.5 FIDO Device Onboard Base Profile (Normative)
1.5.1 Protocols
1.5.2 Device Attestation
1.5.3 Ownership Vouchers
1.5.4 Session cryptography (TO2 protocol)

2 Protocol Description
2.1 Message Passing Protocol
2.2 FIDO Device Onboard Document Conventions
2.3 Protocol Entities
2.3.1 Entity Credentials
2.3.2 Management Agent/Service interactions using ServiceInfo

2.4 Protocol Entity Interactions
2.5 Protocols
2.5.1 Device Initialize Protocol (DI)
2.5.2 Transfer Ownership Protocol 0 (TO0)

↑
→

https://fidoalliance.org/
https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-RD-v1.1-20211214
https://github.com/fido-alliance/internet-of-things-specs
mailto:geoffrey.cooper@intel.com
mailto:behm@amazon.com
mailto:chakrabortya@microsoft.com
mailto:hanuk@microsoft.com
mailto:mandyam@qti.qualcomm.com
mailto:tschofenig@arm.com
mailto:wbarsch@trustkeysolutions.com
https://fidoalliance.org/

2.5.3 Transfer Ownership Protocol 1 (TO1)
2.5.4 Transfer Ownership Protocol 2 (TO2)

2.6 Routing Requirements
2.7 The Ownership Voucher

3 Protocol Encoding and Primitives
3.1 CBOR Message Encoding
3.2 Base Types
3.3 Composite Types
3.3.1 Stream Message
3.3.2 Hash / HMAC
3.3.3 SigInfo
3.3.4 Public Key
3.3.5 COSE Signatures
3.3.6 EAT Signatures
3.3.7 Nonce
3.3.8 GUID
3.3.9 IP Address
3.3.10 DNS Address
3.3.11 UDP/TCP port number
3.3.12 Transport protocol
3.3.13 Rendezvous Info
3.3.14 RVTO2Addr (Addresses in Rendezvous 'blob')
3.3.15 MAROEPrefix
3.3.16 KeyExchange
3.3.17 IVData

3.4 Device Credential & Ownership Voucher
3.4.1 Device Credential Persisted Type (non-normative)
3.4.2 Ownership Voucher Persisted Type (normative)
3.4.3 Extension of the Ownership Voucher
3.4.4 Restoring the Ownership Voucher
3.4.4.1 Extending the Ownership Voucher "Backwards"

3.4.4.2 Reset the Device and Re-Create Ownership Voucher

3.4.5 Validation of Device Certificate Chain
3.4.6 Verifying the Ownership Voucher
3.4.6.1 Ownership Voucher Internal Verification

3.4.6.2 Owner Verification against the Owner Key

3.4.6.3 Owner Verification of Device Certificate Chain

3.4.6.4 Receiver Verification of Owner

3.4.6.5 Rendezvous Server Verification of the Ownership Voucher

3.5 Device Attestation Sub Protocol
3.5.1 Intel® Enhanced Privacy ID (Intel® EPID) Signatures Overview
3.5.2 ECDSA secp256r1 and ECDSA secp384r1 Signatures

3.6 Key Exchange in the TO2 Protocol
3.6.1 Diffie-Hellman Key Exchange Protocol
3.6.2 Asymmetric Key Exchange Protocol
3.6.3 ECDH Key Exchange Protocol
3.6.4 Key Derivation Function
3.6.5 Mapping of Key Exchange Protocol with FIDO Device Onboard Crypto Options

3.7 RendezvousInfo

3.7.1 Rendezvous Bypass
3.7.2 Examples of RendezvousInfo
3.7.2.1 Different Ports for Device and Owner

3.7.2.2 Local and Global Rendezvous Servers

3.7.2.3 Device uses WiFi

3.7.3 Recommended RendezvousInfo
3.7.3.1 HTTPS only

3.7.3.2 HTTPS with fallback to HTTP

3.8 ServiceInfo and Management Service – Agent Interactions
3.8.1 Mapping Messages to ServiceInfo
3.8.2 The devmod Module
3.8.3 Module Selection
3.8.3.1 Module Activation/Deactivation in ServiceInfo

3.8.3.2 Module Execution and Errors

3.8.3.3 Module Selection Using ServiceInfo

3.8.3.4 Examples

3.8.3.5 Expressing Values in Different Encodings

3.8.3.6 Hypothetical File transfer (Owner ServiceInfo)

3.8.3.7 Hypothetical Direct Code Execution

3.8.4 Implementation Notes

4 Data Transmission
4.1 Message Format
4.2 Transmission of Messages over a Stream Protocol
4.3 Transmission of Messages over the HTTP-like Protocols
4.3.1 Maintenance of HTTP Connections

4.4 Encrypted Message Body

5 Detailed Protocol Description
5.1 General Messages
5.1.1 Error - Type 255
5.1.1.1 Error Code Values

5.2 Device Initialize Protocol (DI)
5.2.1 DI.AppStart, Type 10
5.2.2 DISetCredentials, Type 11
5.2.3 DI.SetHMAC, Type 12
5.2.4 DIDone, Type 13

5.3 Transfer Ownership Protocol 0 (TO0)
5.3.1 TO0.Hello, Type 20
5.3.2 TO0.HelloAck, Type 21
5.3.3 TO0.OwnerSign, Type 22
5.3.4 TO0.AcceptOwner, Type 23

5.4 Transfer Ownership Protocol 1
5.4.1 TO1.HelloRV, Type 30
5.4.2 TO1.HelloRVAck, Type 31
5.4.3 TO1.ProveToRV, Type 32
5.4.4 TO1.RVRedirect, Type 33

5.5 Transfer Ownership Protocol 2
5.5.1 Limitation of Round Trips
5.5.2 TO2.HelloDevice, Type 60
5.5.3 TO2.ProveOVHdr, Type 61

REVIEW DRAFT

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be
found in the FIDO Alliance specifications index at https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Review Draft.

This document is intended to become a FIDO Alliance Proposed Standard.

If you wish to make comments regarding this document, please Contact Us .

All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the
Specification may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the
Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to

5.5.4 TO2.GetOVNextEntry, Type 62
5.5.5 TO2.OVNextEntry, Type 63
5.5.6 TO2.ProveDevice, Type 64
5.5.7 TO2.SetupDevice, Type 65
5.5.8 TO2.DeviceServiceInfoReady, Type 66
5.5.9 TO2.OwnerServiceInfoReady, Type 67
5.5.10 TO2.DeviceServiceInfo, Type 68
5.5.11 TO2.OwnerServiceInfo, Type 69
5.5.12 TO2.Done, Type 70
5.5.13 TO2.Done2, Type 71

5.6 After Transfer Ownership Protocol Success

6 Resale Protocol
6.1 FIDO Device Onboard Devices that Do Not Support Resale
6.2 FIDO Device Onboard Owner that Does Not Support Resale

7 Credential Reuse Protocol

Appendix B: Device Key Provisioning with ECDSA

Appendix C: FIDO Device Onboard 1.1 Cryptographic Summary

Appendix D: Intel® Enhanced Privacy ID (Intel® EPID) Considerations
Intel® Enhanced Privacy ID (Intel® EPID) 1.0 Signatures (type EPID10)
Intel® Enhanced Privacy ID (Intel® EPID) 1.1 Signatures (type EPID11)

Appendix E: IANA Considerations

Appendix F: Changes from FDO version 1.0 to version 1.1
Fixes to errata in 1.0 document
Functional Changes

References
Informative References

Status of This Document

https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate
license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance , Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document specifies the protocol interactions and message formats for the FIDO Device Onboard (FDO) protocols,
version 1.1. FIDO Device Onboard is a device onboarding scheme from the FIDO Alliance, sometimes called "device
provisioning".

Device onboarding is the process of installing secrets and configuration data into a device so that the device is able to
connect and interact securely with an IoT platform. The IoT platform is used by the device owner to manage the device by:
patching security vulnerabilities; installing or updating software; retrieving sensor data; by interacting with actuators; etc.
FIDO Device Onboard is an automatic onboarding mechanism, meaning that it is invoked autonomously and performs only
limited, specific, interactions with its environment to complete.

A unique feature of FIDO Device Onboard is the ability for the device owner to select the IoT platform at a late stage in the
device life cycle. The secrets or configuration data may also be created or chosen at this late stage. This feature is called
"late binding".

Various events may trigger device onboarding to take place, but the most common case is when a device is first "unboxed"
and installed. The device connects to a prospective IOT platform over a communications medium, with the intent to
establish mutual trust and enter an onboarding dialog.

Due to late binding, the device does not yet know the prospective IOT Platform to which it must connect. For this reason,
the IOT Platform shares information about its network address with a "Rendezvous Server." The device connects to one or
more Rendezvous Servers until it determines how to connect to the prospective IOT platform. Then it connects to the IOT
platform directly.

The device is configured with instructions (RendezvousInfo) to query Rendezvous Servers. These instructions can allow the
device to query network-local Rendezvous Servers before Internet-based Rendezvous Servers. In this way, the device'
determination of the IOT Platform can take place on a closed network.

FIDO Device Onboard is designed so that the device initiates connections to the Rendezvous Server and to the prospective
IOT Platform, and not the reverse. This is common industry practice for devices connected over the Internet.

FIDO Device Onboard works by establishing the ownership of a device during manufacturing, then tracking the transfers of
ownership of the device until it is finally provisioned and put into service. In this way, the device onboarding problem can
be thought of as a device "transfer of ownership" or delegation problem. In a common situation for FIDO Device Onboard
that uses the "untrusted installer" model, an initial set of credentials and configuration data is configured during
manufacturing. Between when the device is manufactured and when it is first powered on and given access to the Internet,
the device may transfer ownership multiple times. A structured digital document, called an Ownership Voucher, is used to
transfer digital ownership credentials from owner to owner without the need to power on the device.

In onboarding, an installer person performs the physical installation of the IOT device. In the untrusted installer model, the
device takes no guidance on how to onboard from an installer person who has powered on the device. The FIDO Device
Onboard protocols are invoked when the device is first powered on. By protocol cooperation between the Device, the

1. Introduction§

Rendezvous server, and the new owner, the device and new owner are able to prove themselves to each other, sufficient to
allow the new owner to establish new cryptographic control of the device. When this process is finished, the device is
equipped with credentials supplied by the new owner.

In the trusted installer model, the device is able to take advice and input from the installer person. Where this change in the
trust relationship between the device and the installer person is appropriate, it can simplify onboarding.

Support for a trusted installer model is planned for a future release of FIDO Device Onboard.

The FIDO Device Onboard protocol does not limit or mandate the specific credentials supplied by the new owner to the
device during onboarding. FIDO Device Onboard allows the manager to supply a variety of keys, secrets, or credentials and
other associated data to the device so that it can be remotely controlled and enter service efficiently. The flexibility of the
kind and quantity of credentials is an enabling feature for late binding of device to its IOT platform.

As an example, the device may be provisioned with: the Internet address and public key of its manager; a random number to
be used as a shared secret; a key pair whose public key is in a certificate signed by a trusted party of its manager. Such
credentials would permit an mTLS connection between device and manager, with additional functions controlled by a
shared secret.

Once a device is under management, the FIDO Device Onboard credentials are updated to allow for future use in
repurposing the device. Then FIDO Device Onboard enters a dormant state and the device enters normal IOT operations.
Subsequent incremental update of the device may be performed by the manager, outside of FIDO Device Onboard.
However, if the device is to be sold or re-provisioned, the manager may choose to clear the device of all local credentials
and data, and re-enable FIDO Device Onboard.

We assume the device has access, when it is first powered on, to a network environment for installation, either the Internet, a
sub-network of Internet (sometimes called an "intranet") or a closed network. The mechanism for device entry to the
network is outside the scope of this document.

During manufacturing, a FIDO Device Onboard equipped device is ideally configured with:

FIDO Device Onboard may be deployed in other environments, perhaps with different expectations of security and tamper
resistance. These include:

The remainder of this document presumes the preferred environment, as described previously.

The FIDO Device Onboard protocol described in this document has protocol version: 1.1

A processor containing:

A Restricted Operating Environment (ROE), which is a combination of hardware and firmware that provides isolation
of the necessary FIDO Device Onboard functions and applications on the device.

An FIDO Device Onboard application that runs in the processor’s ROE that maintains and operates on device
credentials

A set of device ownership credentials, accessible only within the ROE:

Rendezvous information for determining the current owner of the device

Hash of a public key to form the base of a chain of signatures, referred to as the Ownership Voucher

Other credentials, please see § 3.4.1 Device Credential Persisted Type (non-normative) for more information.

A microcontroller unit (MCU), perhaps with a hardware root of trust, where the entire system image is considered to be
a single trusted object

An OS daemon process, with keys sealed by a Trusted Platform Module (TPM) or in the filesystem

1.1. Transmitted Protocol Version§

Every message of the transmitted protocol for FIDO Device Onboard specifies a protocol version. This version indicates
the compatibility of the protocol being transmitted and received. The actual number of the protocol version is a major
version and a minor version, expressed in this document with a period character ('.') between them.

The protocol version is encoded into protocol messages differently; see section § 3.2 Base Types.

The specification version may be chosen for the convenience of the public. The protocol version changes for technical
reasons, and may or may not change for a given change in specification. The protocol version and specification version may
be different values, although a given specification must map to a given protocol version.

Owner and Rendezvous Server components MAY support multiple versions of the protocol, as the protocol evolves. This
will allow newer and older devices to onboard successfully. The Device MAY support only a single protocol version; the
Owner and Rendezvous Server can onboard the device if they have support for this version.

It is intended that the protocol major version be used for major changes to the protocol that are not expected to be backwards
compatible within a single implementation, while the protocol minor version is intended for lesser changes that a single code
base could implement as conditionals within the code. The actual implementation of support for one or more particular
versions is entirely up to the implementation.

The receiving party of a message can use the protocol version to verify:

FIDO Device Onboard has a number of protocol features that make it hard for 3rd parties to track information about a
device’s progress from manufacturing to ownership, to resale or decommissioning. This is a limited mechanism for
cryptographic privacy where parties not involved in a transaction are limited in their view of it.

Since devices to be onboarded are newly manufactured or assumed to be reconditioned for transfer of ownership, it is
unlikely that they contain Personally Identifiable Information (PII), so this cryptographic privacy is not related to a social
privacy concern. Instead, the concern is that a device’s appearance on a network during automatic onboarding might be
correlated to the device’s previous or future target service location, such that this correlation might enhance the knowledge
of an attacker about the device’s system responsibilities and/or potential vulnerabilities.

Towards this concern, all keys exposed by protocol entities in FIDO Device Onboard can be limited to be used only in FIDO
Device Onboard. The Transfer Ownership Protocol 2 (TO2) allows onboarding of additional device credentials, so that the
"application keys" used during device operation are distinct from the keys used in FIDO Device Onboard.

The Intel® Enhanced Privacy ID (Intel® EPID [iso20008-1][iso20009-1]) can be used for attestation during onboarding.
This attestation associates only a group identity with transfer of ownership, without allowing device correlation to the
Rendezvous server or to anyone monitoring Internet traffic at the Rendezvous server. Intel® EPID may also be used to
prove manufacturer and model number to a prospective owner without identifying device.

Attestation keys described in this specification, other than Intel® EPID, use key material that is unique to the device. This
key material makes it possible to correlate the use of a device during subsequent invocations of FIDO Device Onboard.
There are ways to avoid this correlation:

That the version is supported by the receiver

That the version is the same as with previous received messages in the same protocol transaction

Whether the receiver needs to invoke a backwards compatibility option. Since FIDO Device Onboard allows the device
to choose any supported version of the protocol, this applies to the Owner or Rendezvous Server.

1.2. Correlation Attack Concerns§

The device may only use FIDO Device Onboard once in its lifetime, and be decommissioned (i.e., destroyed) thereafter

The device may use FIDO Device Onboard only in a context, such as a closed network, where correlation of the device
key provides no useful information to an attacker

Transfer Ownership protocol 2 (TO2), on successful completion, replaces all FIDO Device Onboard keys and identifiers in
the device, except the attestation key mentioned above. This information may not be correlated with subsequent attempts to
use FIDO Device Onboard information used in the future. When Intel® EPID is used as the attestation key, the key
mechanism provides only group identification; if the groups sharing the same public key are large enough, it also becomes
hard to identify individual devices based on their public key usage.

The FIDO Device Onboard protocols have been designed so that IP addresses can be allocated dynamically by the device
owner to prevent correlation of device to IOT platform. This does not prevent a determined adversary from using IP
addresses to trace this information, but can raise the bar against more casual attempts to trace devices from outside to inside
an organization.

See protocol entities definitions in: § 2.3 Protocol Entities

Refer to the FIDO Glossary [FIDOGlossary] document.

The following terms extend the FIDO Device Onboard glossary to cover this document:

Specific additional definitions that help in reading this document:

1.3. FIDO Device Onboard Terminologies§

attestation: In this document: Device Attestation or Owner Attestation

device attestation: Entity Attestation Token (EAT, [EAT]) attestation from the Device to the Rendezvous Server or
from the Device to the Owner.

owner attestation: Owner signature in TO0.OwnerSign and TO2.ProveOVHdr that authenticates the Owner as owning
the key at the end of the OVEntries list (the "Owner key").

authentication (of non-human entities): The proof of a claim of identity from one entity to another.

{HTTP, TLS} authentication: the phase of the specified protocol by which protocol entities prove their identity to
each other; the process by which this is achieved.

{client, server} authentication: the process or phase of a protocol by which the given entity proves its identity

(TO2 protocol) authentication phase The portion of TO2 messages that perform authentication of Owner and
Device to each other. In this specification, the authentication phase extends from the start of the protocol until the
TO2.OwnerServiceInfoReady message.

(HTTP) authentication token: A token carried in a HTTP session to link it to other HTTP sessions.

(protocol name) client: The entity of the named protocol that initiates the connection (i.e., it sends the first message
or packet). See "server."

(protocol name) server: The entity of the named protocol that receives the connection (i.e., it receives the first
message or packet). See "client."

token: By context, either an Entity Attestation Token ([EAT]) or an HTTP token, transmitted in the HTTP
"Authorization" header (see § 4.3 Transmission of Messages over the HTTP-like Protocols).

uint8, uint16, uint32: In this document, these refer to CBOR data types which are defined in this document (section
§ 3.2 Base Types). The data types are compatible with those of the same name in the FIDO Glossary, but the reader
must also take into account CBOR semantics, such as for legal encodings. Note that the CDDL versions are lower case,
and the FIDO glossary uses upper case.

user: A human user, with the context specified in the text.

device: The device being onboarded with this protocol, usually assumed to be an IoT device. The device often hosts a
protocol entity, also called Device. By convention in this document, we capitalize the protocol entity.

Device Credential: a set of credentials stored in the device at manufacture. See § 3.4.1 Device Credential Persisted

Figure 1 describes the way in which FIDO Device Onboard data is transported. FIDO Device Onboard protocols are defined
in terms of an FIDO Device Onboard message layer (§ 2.1 Message Passing Protocol) and an encapsulation of these
messages for transport to FIDO Device Onboard network entities (§ 4 Data Transmission).

FIDO Device Onboard Devices may be either natively IP-based or non-IP-based. In the case of FIDO Device Onboard
Devices which are natively connected to an IP network, the FIDO Device Onboard Device is capable of connecting directly
to the FIDO Device Onboard Owner or FIDO Device Onboard Rendezvous server.

The initial connection of the Device to the IP network is outside the scope of this document. FIDO Device Onboard is
designed to allow an explicit or implicit HTTP proxy to operate as a network entry mechanism, when HTTP or HTTPS
transport is used. The decision to use this or another mechanism is also out of scope for this document.

FIDO Device Onboard Devices which are not capable of IP protocols can still use FIDO Device Onboard by tunneling the
FIDO Device Onboard message layer across a reliable non-IP connection. FIDO Device Onboard messages implement
authentication, integrity, and confidentiality mechanisms, so any reliable transport is acceptable.

The FIDO Device Onboard message layer also permits FIDO Device Onboard to be implemented end-to-end in a co-
processor, Trusted Execution Environment, or Restricted Operating Environment (ROE). However, security mechanisms
must be provided to allow credentials provisioned by FIDO Device Onboard to be copied to where they are needed. For
example, if FIDO Device Onboard is used to provision a symmetric secret into a co-processor, but the secret is used in the
main processor, there needs to be a mechanism to preserve the confidentiality and integrity of the secret when it is
transmitted between the co-processor and main-processor. This mechanism is outside the scope of this specification.

Type (non-normative)

Device Credential: a set of credentials stored in the device at manufacture. See § 3.4.1 Device Credential Persisted
Type (non-normative)

Owner (aka "Final Owner"): The last owner in the chain of ownership through the supply chain. This is the entity
which wishes to onboard the Device

Ownership Voucher: (§ 1.5.3 Ownership Vouchers) A credential, passed through the supply chain, that allows an
Owner to verify the Device and gives the Device a mechanism to verify the Owner.

Owner Key: The Final Owner’s key pair, contained in the last entry in the Ownership Voucher.

Rendezvous 'blob': a datum that gives addressing options for a Device to contact a prospective Owner and perform
the Transfer Ownership Protocol 2.

1.4. FIDO Device Onboard Transport Interfaces§

Figure 1 FIDO Device Onboard Transport Interfaces

This section defines a base profile that is normative for all compliant FIDO Device Onboard implementations. This profile
constitutes base connectivity for FIDO Device Onboard components.

In FIDO Device Onboard, there is no protocol negotiation of optional features. The Device may choose any options and the
burden of compatibility falls on the Owner and Rendezvous Server components.

This section references protocol entities. These are defined in: § 2.3 Protocol Entities

FIDO Device Onboard entities SHALL support transport protocols as follows:

Entity Protocol Requirement

Rendezvous Server TO0 & TO1 HTTP and HTTPS

Owner TO0 & TO2 HTTP and HTTPS

Device TO1 & TO2 Either HTTP or HTTPS

Regarding Device attestation, using Entity Attestation Token (EAT) cryptography (i.e., Device attestation), FIDO Device
Onboard components SHALL support attestation and verification using cryptography:

as follows:

1.5. FIDO Device Onboard Base Profile (Normative)§

1.5.1. Protocols§

1.5.2. Device Attestation§

ECDSA signatures, based on SECP256R1 or SECP384R1, encoded using X5CHAIN or X.509

Intel® EPID signatures, based on StEPID10 and StEPID11

Entity Protocol Requirement

Rendezvous
Server

TO1
Verify any attestation, as above.

Owner TO2 Verify any attestation, as above.

Device TO2

Generate at least one attestation signed with cryptography, above.

Although it is legal for a device to support multiple cryptographic options for device
attestation, we anticipate that the device manufacturer will pre-configure a single
cryptographic attestation for purposes of FIDO Device Onboard.

Regarding Ownership Vouchers generated, extended and verified, FIDO Device Onboard components SHALL be able to
process Ownership Vouchers with cryptography:

as follows:

Entity Protocol/Activity Requirement

Owner
Receive Ownership
Voucher from
Supply Chain

Verify all combinations, as above

Rendezvous
Server

TO0
Verify all combinations, as above

Owner TO2 Verify all combinations, as above.

Device TO1 & TO2

Verify at least one combination of cryptographic options (hash, MAC,
signature), as above.

Although it is legal for a device to support multiple cryptographic options
for Ownership Voucher attestation, the manufacturer is expected to "seed"
the Ownership Voucher with a single option that works for the host;
subsequent entities must extend the Ownership Voucher using the same
cryptographic options, so that the Device is only required to implement a
single option.

1.5.3. Ownership Vouchers§

Hash: SHA256 or SHA384

MAC: HMAC-SHA256 or HMAC-SHA384

Signature:

RSAPKCS and RSA2048RESTR public keys and signatures, encoded in X.509 (i.e., RSAPSS keys are not part of
the profile).

ECDSA public keys and signatures, based on SECP256R1 or SECP384R1 encoded using X.509 or X5CHAIN

FIDO Device Onboard components SHALL be support the following session cryptography:

Support shall be as follows:

Entity Protocol/Activity Requirement

Owner TO2 Generate and verify any combination of the above

Device TO2
From above, generate and verify at least one key exchange and one
"Confidentiality & integrity" selection.

FIDO Device Onboard protocols pass standard-format messages between cooperating entities, which are listed in
subsequent sections. The messages are defined independent of any transport protocol, permitting FIDO Device Onboard to
operate over multiple transport protocols with different properties, such as:

FIDO Device Onboard messages are formatted and encoded as described in subsequent sections

FIDO Device Onboard messages are defined in § 5 Detailed Protocol Description. A message is logically encapsulated by a
protocol-dependent header containing the message type, protocol version, and other transmission-dependent characteristics,
such as the message URL and message length in bytes. The message header is transmitted differently for different transport
protocols. For example, the message header may be encoded into the HTTP header fields.

The message body is a CBOR [RFC8949] object, as described in the following sections.

Entity Attestation Tokens within FIDO Device Onboard are also encoded in CBOR.

The ultimate goal of this document is to define a number of protocols, each of which is a specific flow of messages. The
messages are defined by base and composite data types.

This document specifies these items using CDDL [RFC8610].

Many CDDL structures in this document refer to CDDL arrays. In the specification, it is easier to refer to the elements by
their CDDL key or their CDDL type; the reader will infer the array index.

1.5.4. Session cryptography (TO2 protocol)§

Key Exchange using ECDH256, ECDH384, DHKEXid14, DHKEXid15, ASYMKEX2048, ASYMKEX3072

Confidentiality & integrity:

authenticated encryption: AES-GCM or AES-CCM, as given by AESType

encrypt-then-mac: as given by AESPlainType with HMAC-SHA256 or HMAC-SHA384.

2. Protocol Description§

HTTP/HTTPS/CoAP (Current implementation of FIDO Device Onboard)

Constrained Application Protocol (CoAP) [RFC7252]

TCP or TCP/TLS streams

Non-Internet protocols, such as Bluetooth® specification or USB* specification

2.1. Message Passing Protocol§

2.2. FIDO Device Onboard Document Conventions§

CDDL permits array entries to have a CDDL key (e.g., [key_of_this_int: int]), where the CDDL key
(key_of_this_int) for an array entry exists only in the specification. This mechanism is used for common types within an
array. Another mechanism used is to create a type instance and use it only in one context (cipherSuiteName = tstr) and
refer to the type.

In either case, individual fields are represented using a dot syntax, to indicate containment of one CDDL/CBOR construct
inside another. This does not imply in specific containment (i.e., whether maps or arrays). Protocol messages also use the
protocol name with a dotted syntax.

For example:

TO2.HelloDevice.kexSuiteName

refers to the 3rd element of the TO2.HelloDevice array, which has type "kexSuiteName".

Where COSE and EAT complex objects comprise an entire message, the payload entries are used as if they were part of the
base message. So:

TO2.ProveOVHdr.OVPubKey

is a useful shorthand for:

TO2.ProveOVHdr.CoseSignature.payload.$SigningPayloads.TO2ProveOVHdrPayload.OVPubKey

Similarly, in this array:

to1dBlobPayload = [
 to1dRV: RVTO2Addr, ;; choices to access TO2 protocol
 to1dTo0dHash: Hash ;; Hash of to0d from same to0 message
]

the first element may be referenced as to1dRV or RVTO2Addr, and the reader will infer the element in to1dBlobPayload[0].

Examples of actual messages are presented in pseudo-JSON. The reader will understand that this refers to CBOR, and
convert appropriately. For example:

[['str1',3]]

refers to a CBOR array with 1 element, containing a CBOR array with 2 elements, the first being a text string (tstr) and the
second being an unsigned integer (uint).

Base types from the CDDL specification are heavily used, especially as defined in [RFC8610], see the standard prelude in
Appendix D. The CBOR "hash" representation (e.g., #0), also defined in the CDDL specification, is also used.

CDDL plug-and-socket is used to simplify reference to COSE and EAT tokens. Rather than define the entire token for each
message where it is referenced, the token is defined with payload "plugs" (e.g., $COSEPayloads) that are filled in for each
message, such as:

$COSEPayloads /= (thisMessagePayload)

So a message may be read as: "this message is a COSE object with the following payload." While this does not generate the
tightest CDDL specification for each message type, we feel it is easier to understand.

See Figure 2 for a diagram of FIDO Device Onboard Entities and their protocol interconnections.

2.3. Protocol Entities§

Manufacturer (Mfg): Device manufacturer. A FIDO Device Onboard application runs in the factory, which
implements the initial communications with the Device ROE, as part of the Device Initialize Protocol (DI) or

Each of the entities above identifies itself in FIDO Device Onboard protocols using cryptographic credentials. These are:

appropriate substitute.

Device: The device being manufactured, later the device being provisioned. This device has hardware and software
configured on it, including a Device ROE and a Management Agent. In the following documentation, a FIDO Device
Onboard enabled Device is capitalized, to distinguish it from reference to the generic meaning of "device".

Device ROE: A Restricted Operating Environment within the Device. In some Devices, this is a co-processor or a
special processor mode that enables a small kernel of code to run, with credentials to prove its authenticity.

Device ROE App: This is the application that is installed in the ROE of the device to provide the FIDO Device
Onboard capabilities on the device. When we informally refer to the Device ROE as an endpoint to a protocol, we
always mean the Device ROE App.

Owner: This is an entity that is able to prove ownership to the Device using an Ownership Voucher and a private key
for the last entry of the Ownership Voucher (the “Owner Key”). Various members of the supply chain may have bought
and sold the device while it was still “boxed,” acting as owners, but without powering on the device. The final owner in
the chain uses the Owner Onboarding Service to provision the device, and then controls it across a network using a
Manager.

Manager also called a Management Service: The entity that manages devices via a network connection. This can
range from an application on a user’s computer, phone or tablet, to an enterprise server, to a cloud service spanning
multiple geographic regions. The Manager interacts with the Device using the Management Agent. Commonly, the
Manager is an existing IoT or cloud management service that is provisioned using FIDO Device Onboard, so that it
operates the same as if it were manually provisioned.

In some cases, the owner elects to subscribe to a cloud service and proxy his ownership, so that the Manager controls
the ownership credentials of the owner.

The common industry term "Device Management Service" (DMS) is shorted in this document because the word Device
is used frequently.

Management Agent: The entity on the device that uses the FIDO Device Onboard Device software to allow the
device ownership to be transferred using FIDO Device Onboard protocols. During FIDO Device Onboard operation,
the Management Agent interacts with the Management Service via the ServiceInfo key-value pairs.

Owner Onboarding Service: This is an entity constructed to perform FIDO Device Onboard protocols on behalf of
the Owner. The Owner Onboarding Service is an application that executes on some platform already controlled by the
Owner. After the protocols are completed, the Owner Onboarding Service transfers control of the device to the
Owner’s Management Service, and never interacts with the Device again. In FIDO Device Onboard, the Owner
Onboarding Service is a component of the Management Service, rather than a separate network service.

Rendezvous Server: A network server or service (e.g., on the Internet) that acts as a rendezvous point between a
newly powered on Device and the Owner Onboarding Service. It is expected that Internet versions of the Rendezvous
Server will comprise multiple actual servers and service points; the reader will understand that Rendezvous Server in
this document applies to the aggregate service.

2.3.1. Entity Credentials§

Device Attestation Key : FIDO Device Onboard uses cryptographic device attestation based on a signed Entity
Attestation Token ([EAT]). The protocol can support many cryptographic mechanisms for device attestation but this
spec supports two basic capabilities: Intel® EPID and ECDSA. For each of the methods, there is a private key that is
provisioned into the device, such as when the CPU or board is manufactured, for establishing the trust for a Restricted
Operating Environment (ROE) that runs on the device. When signed by the device attestation key, this provides
evidence of the code being executed in the ROE.

Ownership Credential Key Pair: This is a key pair that serves temporarily to identify the current owner of the
device. When the device is manufactured, the manufacturer uses a key pair to put in an initial ownership credential.

In the Transfer Ownership Protocol 2 (TO2), after mutual trust is proven, and a secure channel is established, key-value
pairs are exchanged. This is a mechanism for interaction between the Management Agent and Management Service using
the TO2 protocol as a secure transport. The amount of information transferred using this mechanism is not specifically
constrained by the TO2 protocol, but some structure is imposed in the definition of ServiceInfo (Section 5.2.5). The intent is
to allow the Management Service to provision sufficient keys, data and executables to the Management Agent so that they
are enabled to interact securely for the life of the device.

For example, a Management Agent may send a Public Key Cryptography Standards (PKCS#10) Certificate Signing Request
(CSR) to the Management Service in a Device ServiceInfo key-value pair, which can use a certificate authority (CA) to
provision a X.509 certificate, trusted by itself, and send that certificate back to the Management Agent in PKCS#7 format,
all using an Owner ServiceInfo key-value pairs.

The flows of ServiceInfo information between the Owner and the Management Service, and between the Device and the
Management Agent, are outside the scope of this document.

ServiceInfo provides a key-value pair mechanism. The namespace of keys is divided into module-specific spaces and key
attributes allow for downloading of data files or executable code (e.g., installation scripts) using the trust provided by FIDO
Device Onboard.

The following diagram shows the interaction between the protocol entities in the FIDO Device Onboard Protocols:

Later, the protocols conspire specifically to replace this credential with a new ownership credential, effecting
ownership transfer.

The Device Credential does not identify the owner in general, it identifies the owner for the purposes of ownership
transfer. The device credential from the manufacturer, stored in the device, must match the credential at one side of the
ownership voucher. That is all. It is not intended that this key pair permanently identify the manufacturer or any of the
parties in the ownership voucher. On the contrary, we expect that the manufacturer may use different keys over time
and the owners will also use different keys over time, specifically to obscure their identity in the FIDO Device Onboard
protocols and increase of the robustness of FIDO Device Onboard.

2.3.2. Management Agent/Service interactions using ServiceInfo§

2.4. Protocol Entity Interactions§

Figure 2 FIDO Device Onboard Entities and Entity Interconnection

The following sections define these protocols.

It is expected the “final state” protocol (bottom arrow in the diagram) may be a pre-existing protocol between a
Management Agent and Management Service that exist independently of FIDO Device Onboard. FIDO Device Onboard
serves to provide credentials rapidly and securely so that the pre-existing software is able to take over and operate as if it
were manually configured. FIDO Device Onboard is not used further by the device or owner unless the owner wishes to re-
provision the device, such as to effect another ownership transfer.

Some of the interactions between entities are not defined in the protocols:

In addition, the Device Initialize Protocol § 5.2 Device Initialize Protocol (DI) is non-normative.

The following protocols are defined as part of FIDO Device Onboard. Each protocol is identified with an abbreviation,
suitable to use as a programming prefix. The abbreviations are also used in this discussion.

Table‑. FIDO Device Onboard Protocols

FIDO Device Onboard Protocols

Protocol Name Abbr. Function

The manufacturer creates an Ownership Voucher based on the credentials in the Device Initialize Protocol (DI). The
Ownership Voucher is a digital document that provides the Owner with the credentials to take ownership of the Device.
It is extended with each owner while the device is offline (i.e., boxed or shipped) between Manufacturer and Owner.
The Ownership Voucher is defined in [§ 1.5.3 Ownership Vouchers]. This specification does not indicate how the
Ownership Voucher is transported from the Manufacturer to the Owner Onboarding Service, where it is used in the
FIDO Device Onboard protocols.

The interaction between the Device ROE App and the Management Agent is system dependent.

The interaction between the Owner’s Management Service and the Owner Onboarding Service is dependent
on the implementation of these two components.

2.5. Protocols§

Device Initialize
Protocol (DI)

DI
Insertion of FIDO Device Onboard credentials into device during the
manufacturing process.

Transfer Ownership
Protocol 0 (TO0)

TO0
FIDO Device Onboard Owner identifies itself to Rendezvous Server.
Establishes the mapping of GUID to the Owner IP address.

Transfer Ownership
Protocol 1 (TO1)

TO1
Device identifies itself to the Rendezvous Server. Obtains mapping to connect
to the Owner’s IP address.

Transfer Ownership
Protocol 2 (TO2)

TO2
Device contacts Owner. Establishes trust and then performs Ownership
Transfer.

The following figure shows a graphical overview of these protocols. Graphical representations of each protocol are
presented with the protocol details.

Figure 3 Graphical Representation of the FIDO Device Onboard Protocols

The non-normative Device Initialize Protocol (DI) provides an example of a protocol that runs within the factory when a
new device is completed. The protocol’s function is to embed the ownership and manufacturing credentials into the newly
created device’s ROE. This prepares the device and establishes the first in a chain for creating an Ownership Voucher with
which to transfer ownership of the device.

The Device Initialize Protocol assumes that the protocol will be run in a safe environment. The trust model is Trust on First
Use (TOFU). When possible, the DI Protocol should use write-once memory to ensure the Device is not erased or
reprogrammed after factory use. When no such hardware is available, it might be possible to reprogram the device, so as to
create alternate FIDO Device Onboard credentials.

The Device Initialize Protocol starts with:

2.5.1. Device Initialize Protocol (DI)§

The physical device and the FIDO Device Onboard Manufacturing Component attached to a local network
within the factory.

The Device Initialize Protocol ends with:

Transfer Ownership Protocol 0 (TO0) serves to connect the Owner Onboarding Service with the Rendezvous Server. In this
protocol, the Owner Onboarding Service indicates its intention and proves it is capable of taking control of a specific
Device, based on the Device’s current GUID.

Transfer Ownership Protocol 0 starts with:

The FIDO Device Onboard Manufacturing Component has access to:

A key pair for device ownership, which will be used to create device credentials in the device and the Ownership
Voucher. This key pair does not specifically identify the manufacturer (e.g., it is not in a certificate) and may be
changed from time to time, so long as the Device Credential refers to the same key pair as the Ownership Voucher for
that device.

Device description string (tstr), configured by the manufacturer.

Device ROE running the FIDO Device Onboard application. In one implementation, the Device PXE-boots into this
application.

The FIDO Device Onboard Manufacturing Component has information and credentials to create an Ownership
Voucher for the device or has the Ownership Voucher itself.

The Device has ownership and manufacturer credentials stored in its ROE. The Device should arrange to protect
these credentials. Ideally:

Only the Device ROE software should be able to access these credentials.

The credentials are protected against modification by non-FIDO Device Onboard programs.

Any modification of the credentials by non-FIDO Device Onboard programs (despite measures above) is
detectable.

The Device is ready to be powered off and boxed for shipment. No further network attachment is necessary.

The Device has a GUID that can be used to identify it to its new owner. This GUID is also known to the FIDO Device
Onboard Manufacturing Component, and is in the Ownership Voucher. The GUID is not a secret. Specifically, the
GUID is intended to be visible to the Owner when the device shipped in a box, perhaps being on the box itself with a
bar code, perhaps being on the bill of lading. The GUID is used for one FIDO Device Onboard transfer of ownership
only; after Transfer Ownership Protocol 2, the GUID is replaced, and the Device has no memory of the original GUID.

2.5.2. Transfer Ownership Protocol 0 (TO0)§

A presumed Device that has undergone the Device Initialize Protocol (DI) and thus has credentials in its ROE
(DeviceCredential) identifying the Manufacturer public key that is in the Ownership Voucher. The Device is not a party
to this protocol, and may be powered off, in a box, or in transit when the protocol is run.

The Owner Onboarding Service has access to the following:

An Ownership Voucher, whose last Public key belongs to the Owner, and the GUID of the device, which is
also authorized by the Ownership Voucher.

The private key that is associated with the Owner’s public key in the Ownership Voucher.

An IP address from which to operate. This IP address need bear no relationship to the service addresses that are
used by the Owner. The Owner may take steps to hide its address, such as allocating it dynamically (e.g., using
DHCP) or using an IPv6 privacy address. The motivation for hiding this IP address is to maintain the privacy of
the Owner from the Rendezvous Server or from anyone monitoring network traffic in the vicinity of the
Rendezvous Server. This can never be done for sure; we think of it as raising the bar on an attacker.

The Rendezvous Server has some way to trust at least one key in the Ownership Voucher. For example, the
Manufacturer has selected the Rendezvous Server, then the Rendezvous Server might be aware of the Manufacturer’s

Transfer Ownership Protocol 0 ends with:

If the Device ROE appears within the set time interval, it can complete Transfer Ownership Protocol 1 (TO1). Otherwise,
the Rendezvous Server forgets the relationship between GUID and Rendezvous 'blob.' A subsequent TO1 from the Device
ROE will return an error, and the Device will not be able to onboard. The Owner Onboarding Service can extend the time
interval by running Transfer Ownership Protocol 0 again. It may do so from a different IP address.

In the case of a device being connected to a cloud service, the Owner Onboarding Service typically would repeatedly
perform the TO0 Protocol until all devices known to it successfully complete the TO2 Protocol. In the case of a Device
being connected using an application program implementation of the Owner Onboarding Service, the Owner might arrange
to turn on the Owner Onboarding Service shortly before turning on the device, to expedite the protocol.

The Rendezvous Server is only trusted to faithfully remember the GUID to Owner blob mapping. The other checks
performed protect the server from DoS attacks, but are not intended to imply a greater trust in the server. In particular, the
Rendezvous Server is not trusted to authorize device transfer of ownership. Furthermore, the Rendezvous Server never
directly learns the result of the device transfer of ownership.

Transfer Ownership Protocol 1 (TO1) is an interaction between the Device ROE and the Rendezvous Server that points the
Device ROE at its intended Owner Onboarding Service, which has recently completed Transfer Ownership Protocol 0. The
TO1 Protocol is the mirror image of the TO0 Protocol, on the Device side.

The TO1 Protocol starts with:

If these conditions are not met, the Device will fail to complete the TO1 Protocol, and it will repeatedly try to complete the
protocol with an interval of time between tries. The interval of time should be chosen with a random component to try to
avoid congestion at the Rendezvous Server.

After the TO1 Protocol completes successfully:

public key used in the Ownership Voucher.

The Rendezvous Server has an entry in a table that associates, for a specified interval of time, the Device GUID
with the Owner Onboarding Service’s rendezvous 'blob.' The blob contains an array of {DNS name, IP address, port,
protocol}.

The Owner Onboarding Service is waiting for a connection from the Device ROE at this DNS name and/or IP
address for this same amount of time.

2.5.3. Transfer Ownership Protocol 1 (TO1)§

A Device that has undergone the Device Initialize Protocol (DI) and thus has credentials (DeviceCredential) in its
ROE identifying the particular Manufacturer Public Key that is in the Ownership Voucher. The Device is ready to
power on.

An Owner Onboarding Service and Rendezvous Server that have successfully completed Transfer Ownership
Protocol 0:

The Rendezvous Server has a relationship between the GUID stored in the device ROE and a rendezvous 'blob', as
described above.

The Owner Onboarding Service is waiting for a connection from the Device ROE on the network addresses
referenced in the rendezvous 'blob.'

The Device has rendezvous information sufficient to contact the Owner Onboarding Service directly.

The Owner Onboarding Service is waiting for a connection from the Device ROE on the network addresses
referenced in the rendezvous 'blob.' I.e., it is still waiting, since it does not participate in the TO1 Protocol.

Transfer Ownership Protocol 2 (TO2) is an interaction between the Device ROE and the Owner Onboarding Service where
the transfer of ownership to the new Owner actually happens.

Before the TO2 Protocol begins:

After the TO2 Protocol completes successfully:

In a given Device, there may be a distinction between: the Device ROE and the Management Agent; and between the Owner
Onboarding Service and the Owner’s Manager:

After Transfer Ownership Protocol 2, the FIDO Device Onboard specific software is no longer needed until and unless a
new ownership transfer is intended, such as when the device is re-sold or if trust needs to be established anew. FIDO Device

2.5.4. Transfer Ownership Protocol 2 (TO2)§

The Owner has received the Ownership Voucher, and run Transfer Ownership Protocol 0 to register its rendezvous
'blob' against the Device GUID. It is waiting for a connection from the Device ROE on the network addresses
referenced in this 'blob.'

The Device has undergone the Device Initialize Protocol (DI) and thus has credentials (DeviceCredential) in its ROE
identifying the particular Manufacturer’s Public Key that is (hashed) in the Ownership Voucher.

The Device has completed Transfer Ownership Protocol 1 (TO1), and thus has the rendezvous 'blob', containing the
network address information needed to contact the Owner Onboarding Service directly.

The Owner Onboarding Service has replaced all the device credentials with its own, except for the Device’
attestation key. The Device ROE has allocated a new secret and given the Owner a HMAC to use in a new Ownership
Voucher, which can be used for resale. See § 6 Resale Protocol.

The Owner Onboarding Service has transferred new credentials to the Device ROE in the form of key-value pairs.
These credentials include enough information for the Device ROE to invoke the correct Management Agent and allow
it to connect to the Owner’s Management service. The set of parameters is given in the following messages, although
the OwnerServiceInfo is an extensible mechanism. See § 3.8 ServiceInfo and Management Service – Agent
Interactions.

TO2.SetupDevice (§ 5.5.7 TO2.SetupDevice, Type 65)

TO2.OwnerServiceInfo (§ 5.5.11 TO2.OwnerServiceInfo, Type 69)

The Owner Onboarding Service has transferred these credentials to the Owner’s Manager, which is now ready to
receive a connection from the Device.

The Device ROE has received these credentials, and has invoked the Management Agent and given it access to these
credentials.

The Management Agent has received these credentials is ready to connect to the Owner’s Manager.

The Device ROE performs the FIDO Device Onboard protocols and manipulates and stores FIDO Device Onboard
credentials. The Device ROE is likely to store other credentials and perform other services (e.g., cryptographic
services) for the device.

The Device itself runs its basic functions. Amongst these is the Management Agent, a service process that connects it
to its remote Manager. This software is often called an “agent”, or “client.” We intend that this software can be a pre-
existing agent for the Management Service chosen by the Owner, which may also operate on devices that do not use
FIDO Device Onboard.

The Owner Onboarding Service is a body of software that is dedicated specifically to run the FIDO Device
Onboard Protocol on behalf of the Manager. For example, this code might have its own IP addresses, so that the
eventual Manager IP addresses (which may be well known) are hidden from prying eyes.

The Owner Manager is an Internet-resident service that provides management services for the Owner on an ongoing
basis. FIDO Device Onboard is designed to work with pre-existing management services for IoT devices.

Onboard client software adjusts itself so that it does not attempt any new protocols after the TO2 Protocol. Implementation-
specific configuration can be used to re-enable ownership transfer (e.g., a CLI command).

In an IP-based network, the Device must be able to route to the Rendezvous Server and the prospective Owner returned by
the Rendezvous Server. A "closed" IP network with no path to the Internet can support FIDO Device Onboard if:

For example, if the closed network uses addresses 192.168.0.0/16, then the Rendezvous Server and prospective Owner
returned by the RVInfo and the Device itself must all have IP addresses within 192.168.0.0/16, and a route must exist
between the Device that the other two.

The Ownership Voucher is a structured digital document that links the Manufacturer with the Owner. It is formed as a chain
of signed public keys, each signature of a public key authorizing the possessor of the corresponding private key to take
ownership of the Device or pass ownership through another link in the chain.

The following diagram illustrates an Ownership Voucher with 3 entries. In the first entry, Manufacturer A, signs the public
key of Distributor B. In the second entry, Distributor B signs the public key of Retailer C. In the third entry, Retailer C signs
the public key of Owner D.

The entries also contain a description of the GUID or GUIDs to which they apply, and a description of the make and model
of the device.

Figure 4 Ownership Voucher Chain

2.6. Routing Requirements§

The Rendezvous Server has a network attachment within the closed network

The prospective Owner referenced by the returned RVInfo has a network attachment within the closed network

The Device can access a bidirectional route to to the IP address at the above attachments

2.7. The Ownership Voucher§

The signatures in the Ownership Voucher create a chain of trust from the manufacturer to the Owner. The Device is pre-
provisioned (e.g., in the Device Initialize Protocol (DI)) with a crypto-hash of A.PublicKey, which it can verify against
A.PublicKey in the Ownership Voucher header transmitted in the TO2 protocol. The owner can prove his connection with
the Ownership Voucher (and thus his right to take ownership of the Device) by proving its ownership of D.PrivateKey. It
can do this by signing a nonce (sometimes called a challenge), and the signature may be verified using D.PublicKey from
the Ownership Voucher.

The last entry in the Ownership Voucher belongs to the current owner. The public key signed in that entry is the owner’s
public key, signed by the previous owner. We call this public key the “Owner Key.”

In the TO2 Protocol, the Owner proves his ownership to the device using a signature (as above) and an Ownership Voucher
that is rooted in A.PublicKey. The Device verifies that the hash of A.PublicKey stored in its ROE matches A.PublicKey in
the Ownership Voucher, then verifies the signatures of the Ownership Voucher in sequence, until it comes to D.PublicKey.
The Owner provides the Device separate proof of D.PublicKey (the “owner key”), completing the chain of trust. The only
private key needed to verify the Owner’s assertion of ownership is the key of the Owner itself. The public keys in the
Ownership Voucher (and the public key hash in the Device) are sufficient to verify the chain of signatures.

The public keys in the Ownership Voucher are just public keys. They do not include other ownership info, such as the name
of the entity that owns the public key, what other keys they might own, where they are, etc.

The Ownership Voucher is maintained only for the purposes of connecting a particular device with its particular first owner.
The entities involved can switch the key pairs they use to sign the Ownership Voucher from time to time, make it more
difficult for potential attackers to use the Ownership Voucher as a means to map out the flow of devices from factory to
implementation.

Conversely, it is conceivable that a private data structure might contain supply chain identities, allowing the Ownership
Voucher to specifically map the identities who signed it. The use of the Ownership Voucher for other than device
onboarding is outside the scope of this specification.

Note

The Ownership Voucher signing operation need not be the same as the device attestation operation. For example, a device
can use RSA or ECDSA for Ownership Voucher signing independent of whether it uses Intel® EPID or ECDSA for
device attestation.

However, the ownership voucher signing and key encoding must be consistent across all entries in the ownership voucher.
This is required to ensure that the Device is able to process each entry.

The Ownership Voucher is distinct from the Voucher Artifact described in [RFC8366], although both are structured
documents that convey trust. The Ownership Voucher here conveys trust through the supply chain from the manufacturer,
being the original 'owner' of the Device, to the ultimate Owner who will use the Device in a production setting. The Voucher
Artifact is a dynamically generated object which provides an endorsement of the Device from a trusted authority (the
"MASA").

FIDO Device Onboard defines base types, composite types (based on the base types), and protocol messages based on the
composite types. Persisted Items indicate data structures that need to be persisted on storage and/or transmitted between
FIDO Device Onboard entities outside the protocol. Some persisted items are non-normative. These are defined to make it
easier for implementers to understand the data storage requirements for a given task.

CDDL

3. Protocol Encoding and Primitives§

start /= (
 BaseTypes, CompositeTypes,
 DataStructures
 ProtocolMsg
)

DataStructures /= (
 DeviceCredential, ;; in device
 OwnershipVoucher ;; outside device
)

ProtocolMsg /= (
 ErrorMessage,
 DIProtocolMessages, TO0ProtocolMessages,
 TO1ProtocolMessages, TO2ProtocolMessages
)

FIDO Device Onboard uses CBOR message encoding [RFC8949].

Encoded FIDO Device Onboard messages MUST follow CBOR length-first core deterministic encoding, as described in
[RFC8949], section 4.2.3. This is called "Canonical Encoding" in the earlier CBOR specification, RFC7049, section 3.9.

FIDO Device Onboard entities, other than the Device, MUST verify this encoding. The Device SHOULD verify this
encoding.

The value null in the text refers to a CBOR null, #7.22 (0xf6), whether explicitly described as a CBOR null or not.

Implementations MUST NOT use CBOR indefinite length. The intent of this restriction is to limit memory usage on a
constrained Device.

FIDO Device Onboard does not constrain the use of CBOR data types in COSE or EAT data structures, or in ServiceInfo
values, except to exclude indefinite length.

When transmitting frames over a stream in FIDO Device Onboard, the initial length field’s size is constrained by the FIDO
Device Onboard protocol. This intended to make it easier for low-level I/O drivers to read entire messages. See section § 4.2
Transmission of Messages over a Stream Protocol.

In cases where CBOR values must be hashed or signed, the payload is wrapped in a byte string (bstr). This makes it easier
for decoders to determine which CBOR encoded values to include in the computation. The bstr wrapper itself is generally
not included in the hash. COSE and EAT use a similar mechanism for "protected header" fields.

CDDL

BaseTypes /= (
 ;; BaseTypes pulled in from CDDL specification
 int, uint,
 bool,
 tstr,
 bstr,

 ;; BaseTypes unique to this specification
 uint8, uint16, uint32,

3.1. CBOR Message Encoding§

3.2. Base Types§

 msgarray,
 uint16bits
)

;; Defined in CDDL spec and standard prelude
;; This summary is non-normative
;;int = #0 / #1
;;uint = #0
;;bool = #7.20 / #7.21
;;tstr = #3
;;bstr = #2
;;any: any single CBOR object

;; Normative specification of specific types used below.
;;
;; Message array, must be encoded as a single byte, see below.
msgarray=#4

;; uint with no more than 16 bits magnitude.
;; We require 1, 2, or 3 byte encoding, although the following CDDL
;; expression permits a longer encoding (see text).
uint16bits = #0 .size 2

;; Type names used in the specification
protver = uint16bits
msglen = uint16bits
msgtype = uint16bits

The following types are imported, unchanged, from the CDDL specification [RFC8610], section 3.3:

Most FIDO Device Onboard integers are subsets of the uint type. To aid the protocol implementation, the requirements for
storage are made more explicit, by indicating the storage size:

The encoding for transmission MAY be any legal CBOR major type 0 (uint) encoding, so long as the storage requirement
for storing the value is not exceeded (i.e., a 9-byte encoding for uint 255 still is considered a valid uint8). Owner and
Rendezvous Server implementations MUST check that particular transmitted values are in the range for the type indicated,
and Device implementations SHOULD so check.

The following types are used for a fixed length stream header and MUST be encoded in a specific manner:

The msgarray type MUST be encoded as a single byte. This array (major type 4) is always 5 entries long, so the encoding is
exactly: (4<<5)+5 = 0x85.

The uint16bits type MUST be encoded in 1, 2, or 3 bytes. This is different from the uint16 type, which may have any
uint encoding , but whose value must fit in 16 bits.

int

uint

bool

tstr

bstr

uint8 for 8 bits,

uint16 for 16 bits

uint32 for 32 bits

The protver type is used to transmit the version of the protocols in this specification. Its value is always the same for a
given protocol run:

protver_value = protocol_major_version * 100 + protocol_minor_version

The specifying authority for FIDO Device Onboard must ensure that protocol_minor_version is less than 100.

For this document, the protocol_major_version is 1 and the protocol_minor_version is 1, so values of the protver type
must always equal 101.

Composite types are combinations or contextual encodings of base types.

CDDL

;; StreamMsg is designed for use in stream protocols.
;; The stream message always has 5 elements, and its encoding is
;; constrained, as above, so that the array header and first 3
;; elements can be read in a known number of bytes.
StreamMsg = msgarray
StreamMsg = [
 length: msglen, ;; length of the entire StreamMsg in bytes
 type: msgtype, ;; message type
 pv: protver, ;; protocol version
 MsgProtocolInfo,
 MsgBody
]
;; Protocol specific information, used for maintenance of the
;; entity connection in a specific protocol context
MsgProtocolInfo = {
 ?"token": authtoken ;; copy of HTTP authentication token
}
;; Messages
MsgBody = ProtocolMessage

This type is used for encoding FIDO Device Onboard into streaming transports. See section § 4.2 Transmission of Messages
over a Stream Protocol.

The StreamMsg data type is designed to guarantee that the message length is read in the first 4 bytes, due to the special
constraints on the msglen type.

All FIDO Device Onboard implementations SHOULD place messages into the StreamMsg format before handing them to
FIDO Device Onboard implementation. This gives the implementation access to required FIDO Device Onboard transmitted
data, without the need to use device-specific APIs to obtain message data that is encoded in the transport protocol.

CDDL

Hash = [
 hashtype: int, ;; negative values possible

3.3. Composite Types§

3.3.1. Stream Message§

3.3.2. Hash / HMAC§

 hash: bstr
]
HMac = Hash
hashtype = (
 SHA256: -16,
 SHA384: -43,
 HMAC-SHA256: 5,
 HMAC-SHA384: 6
)

Crypto hash, with length in bytes preceding. Hashes are computed in accordance with [FIPS-180-4].

See COSE assigned numbers [IANA-COSE-ALGS-REG] for the source of the values above. However, this document is
normative for the numbers chosen in 'hashtype.'

A HMAC [RFC2104] is encoded as a hash.

The size of the hash and HMAC functions used in the protocol depend on the size of the keys used for device and owner
attestation. The following table lists the mapping. The hash and HMAC that are affected by the size of device and owner
attestation keys are listed as follows:

Table ‑: Mapping of Hash/HMAC Types with Key sizes

Mapping of Hash/HMAC Types with Key Sizes

Device
Attestation

Owner Attestation Hash and HMAC Types

Intel® EPID RSA 2048-bit key SHA256/HMAC-SHA256

ECDSA NIST P-256 RSA 2048-bit key SHA256/HMAC-SHA256

ECDSA NIST P-384 RSA 2048-bit key SHA384/HMAC-SHA384 (Not a recommended configuration)*

Intel® EPID RSA 3072-bit key SHA256/HMAC-SHA256

ECDSA NIST P-256 RSA 3072-bit key SHA256/HMAC-SHA256 (Not a recommended configuration) *

ECDSA NIST P-384 RSA 3072-bit key SHA384/HMAC-SHA384

Intel® EPID ECDSA NIST P-256 SHA256/HMAC-SHA256

ECDSA NIST P-256 ECDSA NIST P-256 SHA256/HMAC-SHA256

ECDSA NIST P-384 ECDSA NIST P-256 SHA384/HMAC-SHA384 (Not a recommended configuration) *

Intel® EPID ECDSA NIST P-384 SHA384/HMAC-SHA384

ECDSA NIST P-256 ECDSA NIST P-384 SHA384/HMAC-SHA384 (Not a recommended configuration)*

Hash of device certificate in Ownership Voucher (OVEntry...OVEntryPayload.OVEHashHdrInfo)

Hash of previous entry in Ownership Voucher entries, also the hash of header in Ownership Voucher entry zero
(OVEntry...OVEntryPayload.OVEHashPrevEntry)

Public key hash in Ownership Credentials (DeviceCredential.DCPubKeyHash)

Hash of to0d object (TO0.OwnerSign...to1dTo0dHash)

HMAC generated by device (DI.SetHMAC.HMac ,TO2.DeviceServiceInfoReady.ReplacementHMac, and
OwnershipVoucher.OVHeaderHMac)

ECDSA NIST P-384 ECDSA NIST P-384 SHA384/HMAC-SHA384

For purposes of the above table, RSA keys include key types of RSA2048RESTR, RSAPKCS, and RSAPSS.

Note on "not recommended" configurations, above

The Ownership Voucher and the Device key in this configuration have different cryptographic strengths. It is
recommended that the strongest cryptographic strength always be used, and that the strengths match between Device and
Owner.

CDDL

SigInfo = [
 sgType: DeviceSgType,
 Info: bstr
]
eASigInfo = SigInfo ;; from Device to Rendezvous/Owner
eBSigInfo = SigInfo ;; from Owner/Rendezvous to Device

DeviceSgType //= (
 StSECP256R1: ES256, ;; ECDSA secp256r1 = NIST-P-256 = prime256v1
 StSECP384R1: ES384, ;; ECDSA secp384r1 = NIST-P-384
 StRSA2048: RS256, ;; RSA 2048 bit
 StRSA3072: RS384, ;; RSA 3072 bit
 StEPID10: 90, ;; Intel® EPID 1.0 signature
 StEPID11: 91 ;; Intel® EPID 1.1 signature
)

SigInfo is used to encode parameters for the device attestation signature.

SigInfo flows in both directions, initially from the protocol client (eASigInfo), then to the protocol client (eBSigInfo). The
types eASigInfo and eBSigInfo are intended to clarify these two cases in the protocol message descriptions.

The use of SigInfo is defined in section § 3.5 Device Attestation Sub Protocol.

CDDL

PublicKey = [
 pkType,
 pkEnc,
 pkBody
]
;; pkType is a uint8
pkType = (
 RSA2048RESTR: 1, ;; RSA 2048 with restricted key/exponent (PKCS1 1.5 encoding)
 RSAPKCS: 5, ;; RSA key, PKCS1, v1.5
 RSAPSS: 6, ;; RSA key, PSS
 SECP256R1: 10, ;; ECDSA secp256r1 = NIST-P-256 = prime256v1
 SECP384R1: 11, ;; ECDSA secp384r1 = NIST-P-384
)

3.3.3. SigInfo§

3.3.4. Public Key§

pkEnc = (
 Crypto: 0 ;; applies to crypto with its own encoding (e.g., Intel® EPID)
 X509: 1, ;; X509 DER encoding, applies to RSA and ECDSA
 X5CHAIN: 2, ;; COSE x5chain, an ordered chain of X.509 certificates
 COSEKEY: 3 ;; COSE key encoding
)
;; These are identical
SECP256R1 = (
 NIST-P-256,
 PRIME256V1
)
;; These are identical
SECP384R1 = (
 NIST-P-384
)

The restricted RSA public key, RSA2048RESTR is an RSA key with 2048 bits of base and an exponent equal to 65537.
This restriction appears in legacy deployed RSA hardware encryption and decryption modules (see reference in the
obsoleted [RFC2313]). In FIDO Device Onboard, the distinction of RSA encoding for devices with restricted RSA exponent
is needed to ensure that signatures in the Ownership Voucher can be verified in the Device with constrained RSA hardware.
Ownership Voucher signers have no other way to know about this limitation.

DER encoding is defined in [ITU-X690-2008].

For X.509 DER key encoding, the ASN.1 field SubjectPublicKeyInfo corresponds to pkBody. SubjectPublicKeyInfo has
fields algorithm and subjectPublicKey (see [RFC5280]). Additional information is available in [RFC4055] (Section 1.2)
and [RFC3279] section 2.3.1.

Elliptical curve cryptography X.509 encoding is defined in [RFC5480], and refers to definitions in [SEC1] and [SEC2].

COSE X5CHAIN encoding is given in [COSEX509]. In this case, the public key is wrapped with a X.509 certificate, from
which SubjectPublicKeyInfo may be extracted.

When processing an Ownership Voucher with X5CHAIN encoding, the Rendezvous Server and Device SHOULD verify the
certificate chain as much as possible, and MAY decide to accept or reject the Ownership Voucher based on a trust analysis
of the X5CHAIN.

The Device can decide to reject an OVEntry if the presented certificates do not chain up to a trusted root certificate. This
specification is silent on the topic of how an Owner and Device agree on the minimum set of trusted roots.

For pkType of RSA2048RESTR and RSAPKCS, the rsaEncryption object identifier is { pkcs-1 1 }. The hash algorithm is
SHA256 for RSA 2048 and SHA384 for RSA 3072.

For pkType of RSAPSS, the rsaEncryption object identifier is id-RSASSA-PSS, with additional parameters as given in
[RFC4055], section 3.1. The hash algorithm is SHA256 for RSA 2048 and SHA384 for RSA 3072.

For pkType of SECP256R1, the object identifier is id-ecPublicKey and the ECParameters specify namedCurve with
OID secp256r1 ([RFC5480] section 2.1.1.1). The hash is SHA256.

For pkType of SECP384R1, the object identifier is id-ecPublicKey and the ECParameters specify namedCurve with
OID secp384r1 ([RFC5480] section 2.1.1.1). The hash is SHA384.

COSE X5CHAIN permits part or all of a certificate chain to be include. The FIDO Device Onboard public key is in the
leaf certificate (the "end-entity" key), which is the first element of the x5chain sequence.

Other certificate elements, and subsequent certificates in the x5chain, are not used to obtain cryptographic materials to
verify the Ownership Voucher. However, public key trust may be inferred from the x5chain to inform the confidence in
the Ownership Voucher.

However, in this case of X5CHAIN’s use in the device certificate (OVDevCertChainOrNull), the Owner and Rendezvous
Server MUST verify the device certificate chain and accept or reject the Device certificate base on a trust analysis.

COSE Key encoding is defined in [RFC8152], section 7, with CDDL definition: COSE_Key.

Signature formats are defined in COSE [RFC8152] and EAT [EAT], and in the associated cryptographic specifications.

COSE signatures are used for the ownership voucher. The structure of a COSE object is defined in [RFC8152]. The CDDL
below is needed to map the CDDL payload definitions into the message type.

;; This is a COSE_Sign1 object:
CoseSignature = #6.18(CoseSignatureBase)

CoseSignatureBase = [
 protected : bytes .cbor $$COSEProtectedHeaders,
 unprotected: $$COSEUnprotectedHeaders
 payload: bytes .cbor $COSEPayloads,
 signature: bstr
]

;; Use the socket/plug feature of CBOR here.
$$COSEProtectedHeaders /= ()
$$COSEUnprotectedHeaders /= ()
$COSEPayloads /= ()

;; These are definitions for COSE & EAT unprotected header, see appendix
;;CUPHNonce
;;CUPHOwnerPubKey
;; Crypto types missing from COSE. See appendix.
;;COSEAES128CBC
;;COSEAES128CTR
;;COSEAES256CBC
;;COSEAES256CTR
;; Signing types for EPID
;;COSEEPID10
;;COSEEPID11

COSECompatibleSignatureTypes = (
 ES256: -7, ;; From COSE spec, table 5
 ES384: -35, ;; From COSE spec, table 5
 ES512: -36 ;; From COSE spec, table 5
 RS256: -257,;; From https://datatracker.ietf.org/doc/html/draft-ietf-cose-webauthn-algorithms-05
 RS384: -258 ;; From https://datatracker.ietf.org/doc/html/draft-ietf-cose-webauthn-algorithms-05
)
;; Weird naming for RSA, based on the hash size. The key size is
;; implied.
;; For RS256, need key size of RSA2048 bits.
;; For RS384, need key size of RSA3072 bits.

The protected, unprotected and payload sections are defined for each signature use, using the socket/plug mechanism with
the variables $$COSEProtectedHeaders, $$COSEUnprotectedHeaders and $COSEPayloads.

3.3.5. COSE Signatures§

3.3.6. EAT Signatures§

EAT signatures [EAT] are used for entity attestation of Devices.

;; This is a COSE_Sign1 object:
EAToken = #6.18(EATokenBase)

EATokenBase = [
 protected: bytes .cbor $EATProtectedHeaders,
 unprotected: $EATUnprotectedHeaders
 payload: bytes .cbor EATPayloadBaseMap
 signature: bstr
]
EATPayloadBaseMap = { EATPayloadBase }
$$EATPayloadBase //= (
 EAT-FDO => $EATPayloads,
 EAT-NONCE => Nonce,
 EAT-UEID => EAT-GUID,
 EATOtherClaims
)
;; EAT claim tags, copied from EAT spec examples
EAT-NONCE = 10
EAT-UEID = 11

;; FIDO Device Onboard specific EAT claim tag, see appendix
;;EAT-FDO
;;EATMAROEPrefix
;;EUPHNonce

;; EAT GUID is a EAT-UEID with the first byte
;; as EAT-RAND and subsequent bytes containing
;; the FIDO Device Onboard GUID
EAT-GUID = bstr .size 17
EAT-RAND = 1

;; Use the socket/plug feature of CBOR here.
$$EATProtectedHeaders //= ()
$$EATUnprotectedHeaders //= (
 EATMAROEPrefix: MAROEPrefix
)
$EATPayloads /= ()

In FIDO Device Onboard, an EAT token is used for the Device attestation. Entity Attestation Tokens (EAT [EAT]) in FIDO
Device Onboard require the COSE_Sign1 prefix. The EAT token follows the EAT specification for all claims except as
follows:

EATOtherClaims indicates all other valid EAT claims, as defined in the EAT specification [EAT].

As a documentation convention, the affected FIDO Device Onboard messages are defined to be the EAT token, with the
following:

The UEID claim MUST have EAT-RAND in the first byte and contain the FIDO Device Onboard Guid for the attesting
Device in subsequent bytes

The EAT NONCE claim MUST contain the specified FIDO Device Onboard Nonce for the specific FIDO Device
Onboard message in question (see below)

An additional claim, EAT-FDO, may be present to contain other claims specified for the specific FIDO Device
Onboard message.

The MAROEPrefix, if needed for a given ROE, is an unprotected header item.

CDDL

Nonce = bstr .size 16

;; The protocol keeps several nonces in play during the
;; authentication phase. Nonces are named in the spec, to make it
;; easier to see where the protocol requires the same nonce value.
NonceTO0Sign = Nonce
NonceTO1Proof = Nonce
NonceTO2ProveOV = Nonce
NonceTO2ProveDv = Nonce
NonceTO2SetupDv = Nonce

ByteArray with length (16 bytes) 128-bit Random number.

Nonces are used within FIDO Device Onboard to ensure that signatures are create on demand and not replayed (i.e., to
ensure the "freshness" of signatures). When asymmetric digital signatures are used to prove ownership of a private key, as in
FIDO Device Onboard, an attacker may try to replay previously signed messages, to impersonate the true key owner. A
secure protocol can detect and thwart a replay attack by attaching a unique value to the signed data. In this case, we use a
nonce, which is a cryptographically secure random number chosen by the other party in the connection. Since FIDO Device
Onboard contains several signatures, more than one nonce is used. The reader may use the number of the nonce type to track
when a nonce is offered and then subsequently returned.

CDDL

Guid = bstr .size 16

The Guid type identifies a Device during onboarding, and is replaced each time onboarding is successful in the Transfer
Ownership 2 (TO2) protocol.

Guid is implemented as a 128-bit cryptographically strong random number.

A device serial number is not appropriate for use as a GUID, because it persists during the device lifetime. Also, device
serial numbers for other valid devices may often be predicted from a given serial number. This must be avoided for FIDO
Device Onboard GUID’s.

CDDL

IPAddress = ip4 / ip6

Guid appears as above

EAT-NONCE is added to $$EATPayloadBase to indicate which Nonce to use

If needed, $EATPayloads contains the definition for the contents of the EAT-FDO tag.

$$EATUnprotectedHeaders gives unprotected headers to use for that message.

$$EATProtectedHeaders gives protected headers to use for that message.

3.3.7. Nonce§

3.3.8. GUID§

3.3.9. IP Address§

ip4 = bstr .size 4
ip6 = bstr .size 16

For ip4 and ip6 see [RFC8610] section 3.8.1.

CDDL

DNSAddress = tstr

CDDL

Port = uint16

CDDL

TransportProtocol /= (
 ProtTCP: 1, ;; bare TCP stream
 ProtTLS: 2, ;; bare TLS stream
 ProtHTTP: 3,
 ProtCoAP: 4,
 ProtHTTPS: 5,
 ProtCoAPS: 6,
)

Used to indicate which protocol to use, in the Rendezvous 'blob.'

CDDL

RendezvousInfo = [
 + RendezvousDirective
]
RendezvousDirective = [
 + RendezvousInstr
]
RendezvousInstr = [
 RVVariable,
 RVValue
]
RVVariable = uint8
$RVVariable = () # values for RVVariable, see below
RVValue = bstr .cbor any

3.3.10. DNS Address§

3.3.11. UDP/TCP port number§

3.3.12. Transport protocol§

3.3.13. Rendezvous Info§

RendezvousInfo is a set of instructions that allows the Device and Owner to find a cooperating Rendezvous Server.

Rendezvous information is stored in key-value pairs, encoded into a 2-element array, RendezvousInstr. A list of key-value
pairs forms one directive, called RendezvousDirective.

Multiple Rendezvous directives, arranged in an array, form the RendezvousInfo field of the protocol.

CDDL

RVTO2Addr = [+ RVTO2AddrEntry] ;; (one or more RVTO2AddrEntry)
RVTO2AddrEntry = [
 RVIP: IPAddress / null, ;; IP address where Owner is waiting for TO2
 RVDNS: DNSAddress / null, ;; DNS address where Owner is waiting for TO2
 RVPort: Port, ;; TCP/UDP port to go with above
 RVProtocol: TransportProtocol ;; Protocol, to go with above
]

The RVTO2Addr indicates to the Device how to contact the Owner to run the TO2 protocol. The RVTO2Addr is
transmitted by the Owner to the Rendezvous Server during the TO0 protocol, and conveyed to the Device during the TO1
protocol.

The RVTO2Addr structure is the main contents of the Rendezvous 'blob' in the TO0 protocol. See § 5.3.3 TO0.OwnerSign,
Type 22 and § 5.4.4 TO1.RVRedirect, Type 33.

A given RVTO2Addr MUST have a non-null value for at least one of RVIP and RVDNS. If both are present, the Device
MUST act on the RVIP value after all RVDNS values have been attempted.

The order of the RVTO2AddrEntry’s indicates the preference of the Owner (entry zero is most preferred, etc), but the actual
choice of one or more entries is entirely up to the Device. The Owner MUST accept a connection from the Device using any
RVTO2AddrEntry.

CDDL

MAROEPrefix = bstr ;; signing prefix for multi-app ROE

In a constrained device with a ROE that supports protection for multiple applications, the applications sometimes share a
single signing key (e.g., a "root of trust" derived key). Still, each application needs to have a distinguished signature, so that
a compromise of one application does not allow it to sign for another application.

This type is a signing prefix which may optionally be used to distinguish application key usage as follows:

3.3.14. RVTO2Addr (Addresses in Rendezvous 'blob')§

3.3.15. MAROEPrefix§

The ROE protection mechanism stores a known prefix value for each application (the application also can see the
prefix).

The ROE applications cannot see the shared key, but can sign with it.

When a ROE application signs with the shared key, the prefix is prepended to the signing data before the signature.

The ROE application transmits the prefix with the signature.

The verifier validates that the prefix belongs to the correct application. The mechanism for the verifier to perform this
validation is out of scope for this document.

If the signing function is S, for signing key SK, with payload P, then the signature is:

signature = S<SK>(MAROEPrefix||P)

When the MAROEPrefix is empty, S becomes the classic signature for the key SK and payload P. Thus, a ROE / verifier
that does not have multiple applications can elide the MAROEPrefix and use a normal signing library.

In FIDO Device Onboard, MAROEPrefix appears only for Entity Attestation Token (EAT) signatures.

CDDL

KeyExchange /= (
 xAKeyExchange: bstr,
 xBKeyExchange: bstr
)

Key exchange parameters, in either direction.

CDDL

IVData = bstr

Cipher Initialization Vector (§ 4.4 Encrypted Message Body}

The format of the Device Credential is non-normative, and the CBOR format below is only used as an example. The Device
Credential is typically re-formatted to match local system storage conventions and data types.

The Ownership Voucher format is normative as presented.

For transmission over textual media, the Ownership Voucher may be stored in a textual representation, such as Base64
[RFC4648]. An Ownership Voucher may be stored in PEM format [RFC7468] using the label "OWNERSHIP VOUCHER".

The Device Credential and Ownership Voucher are cryptographically linked during the manufacturing process initialization
for FIDO Device Onboard, such as the DI protocol.

The manufacturer establishes a key pair for use by the targetted device. The Device Credential contains the hash of the
public key, and the Ownership Voucher contains the full public key. The GUID and DeviceInfo in the Ownership Voucher
header must also match the hash in the Ownership Voucher entry.

When it is first created, the OwnershipVoucher.OVEntries array has zero (0) entries. As the OwnershipVoucher (and the
device) proceed through the supply chain, entries are added to this array as the next device Owner is identified. This allows
the device chain of ownership to change during the device’s progress through the supply chain.

The verifier prefixes the MAROEPrefix to the signing payload, and verifies the signature

3.3.16. KeyExchange§

3.3.17. IVData§

3.4. Device Credential & Ownership Voucher§

If the device’s final destination is known (the end of the supply chain), this Owner’s public key is added as an entry to
the OVEntries array.

When an Ownership Voucher is received, the OVEntries array is examined. If a public key of the receiving party is at the
end of OVEntries array, the Ownership Voucher must be extended before it is transmitted to a 3rd party. Otherwise, the
Ownership Voucher is transmitted without change.

A secret is created and stored in the Device ROE during device initialization (e.g., the DI protocol). This secret is used to
create a HMAC of the Ownership Voucher header. The HMAC can only be verified in the same Device ROE, and is used to
detect a device that has been reprogrammed after it left the factory. The HMAC size is given in the table, below.

The key pair used for the Ownership Voucher may be chosen based on the available cryptography in the Device at
manufacturing initialization time. The cryptographic strength is given in the table, below.

Table ‑. Cryptographic Sizes for Ownership Voucher

Cryptographic Sizes for Ownership Voucher

Item in Ownership Voucher Cryptography

HMAC in Ownership Voucher

HMAC-SHA256, based on 256-bit randomly allocated
secret stored in Device

HMAC-SHA384, based on 512-bit randomly allocated
secret stored in Device

Public keys in Ownership Voucher (all must have same
size, type and hash)

RSA2048RESTR (RSA with 2048-bit key, restricted
exponent)

RSAPKCS with 2048-bit key

RSAPSS with 2048-bit key

RSAPKCS with 3072-bit key

RSAPSS with 3072-bit key

ECDSA secp256r1

ECDSA secp384r1

The strongest cryptography available to the device SHOULD be used. Legacy devices may need to use smaller
cryptographic sizes than newer devices. Since cryptographic strength is based on the weakest link, a device-based
requirement to choose weaker cryptography for one parameter of the Ownership Voucher may be matched to similar
strength in other items. For example, the hash size can be tuned to the key size.

An assessment of the end-to-end security of a given device with a given cryptographic choice is outside the scope of this
document.

The Device Credential type indicates those values which must be persisted in the Device (e.g., during manufacturing) to
prepare it for FIDO Device Onboard onboarding.

Otherwise, the latest known intermediate destination’s public key is added to the OVEntries array. (Latest known
means furthest along the supply chain)

Otherwise, the OVEntries array is left empty until the device is shipped, then the OVEntries array is filled in with the
immediate recipient of the device.

3.4.1. Device Credential Persisted Type (non-normative)§

The structure of the Device Credential is not normative in FIDO Device Onboard. However, each value described in the
Device Credential here must be available in the device during FIDO Device Onboard operation.

In this document, fields from the Device Credential are referenced to the CDDL structure below (e.g.,
DeviceCredential.DCHmacSecret); the implementer will apply this reference the actual data structure used in a physical
device.

CDDL

DeviceCredential = [
 DCActive: bool,
 DCProtVer: protver,
 DCHmacSecret: bstr, ;; confidentiality required
 DCDeviceInfo: tstr,
 DCGuid: Guid, ;; modified in TO2
 DCRVInfo: RendezvousInfo, ;; modified in TO2
 DCPubKeyHash: Hash ;; modified in TO2
]

All fields of the DeviceCredential MUST be stored in the device in a manner to best ensure continued availability. The
DCHmacSecret additionally requires ensured confidentiality. The DCGuid, DCRVInfo and DCPubKeyHash are updated
during FIDO Device Onboard and MUST be stored in mutable storage.

The “DCActive” field indicates whether FIDO Device Onboard is active. When a device is manufactured, this field is
initialized to True, indicating that FIDO Device Onboard must start when the device is powered on. When the TO2 protocol
is successful, this field is set to False, indicating that FIDO Device Onboard should remain dormant.

Sometimes a device may need to invoke FIDO Device Onboard more than once before the device is ready to go into service.
For example, a device might need to install a firmware upgrade and reboot before subsequent onboarding can proceed. A
FIDO Device Onboard ServiceInfo directive MAY instruct a device to leave DCActive true after TO2 completes
successfully. This indicates a successive application of FIDO Device Onboard is needed. The form and structure of such a
directive is outside the scope of this specification.

The “DCProtVer” parameter specifies the protocol version.

A given Owner or Rendezvous Server implementation SHOULD support as many protocol versions as possible.

The “DCHmacSecret” parameter contains a secret, initialized with a random value by the Device during the DI protocol or
equivalent Device initialization.

The “DCDeviceInfo” parameter is a text string that is used by the manufacturer to indicate the device type, sufficient to
allow an onboarding procedure or script to be selected by the Owner.

The GUID parameter “DCGuid” is the current device’s GUID, to be used for the next ownership transfer.

The RendezvousInfo parameter “DCRVInfo” contains instructions on how to find the Secure Device Onboard Rendezvous
Server.

The Public Key Hash “DCPubKeyHash” is a hash of the manufacturer’s public key, which must match the hash of
OwnershipVoucher.OVHeader.OVPubKey.

The stored DCGuid, DCRVInfo and DCPubKeyHash fields are updated during the TO2 protocol. See TO2.SetupDevice for
details. These fields must be stored in a non-volatile, mutable storage medium.

The Device Credential must be stored securely in the Device in a manner that prevents and/or detects modification. Write-
once memory, where available, is a useful assistive technology.

The HMAC is intended to assure that the device was not reinitialized and reprogrammed with FIDO Device Onboard

credentials since the time the Ownership Voucher was created.

The DI protocol indicates how it is possible to create the HMAC secret on the device, so that only the device ever knows
this value. The device manufacturer MAY create the HMAC secret outside the device, but MUST destroy all copies of the
secret as soon as it is programmed into the device. Physical security for such a process is recommended, but the details are
outside the scope of this document.

To the extent possible, storage of the HMAC secret SHOULD be linked to storage of the other device credentials, so that
modifying any credential invalidates the HMAC secret.

The HMAC secret is the only Device credential that requires confidentiality.

The Ownership Voucher function is described, at a high level, in section § 2.7 The Ownership Voucher.

The Ownership Voucher is created during Device manufacture, but is not stored in the device. Instead, the Ownership
Voucher is transmitted along the supply chain to mirror the device’s progress. The Ownership Voucher is extended to
contain a list or ledger of subsequent "owners" of the device, identified only by public keys in a signature chain.

The Ownership Voucher contains internal hash computations that allow it to be verified during the supply chain and
onboarding processes.

CDDL

;; Ownership Voucher top level structure
OwnershipVoucher = [
 OVProtVer: protver, ;; protocol version
 OVHeaderTag: bstr .cbor OVHeader,
 OVHeaderHMac: HMac, ;; hmac[DCHmacSecret, OVHeader]
 OVDevCertChain: OVDevCertChainOrNull,
 OVEntryArray: OVEntries
]

;; Ownership Voucher header, also used in TO1 protocol
OVHeader = [
 OVHProtVer: protver, ;; protocol version
 OVGuid: Guid, ;; guid
 OVRVInfo: RendezvousInfo, ;; rendezvous instructions
 OVDeviceInfo: tstr, ;; DeviceInfo
 OVPubKey: PublicKey, ;; mfg public key
 OVDevCertChainHash:OVDevCertChainHashOrNull
]

;; Device certificate chain
;; use null for Intel® EPID.
OVDevCertChainOrNull = X5CHAIN / null ;; CBOR null for Intel® EPID device key

;; Hash of Device certificate chain
;; use null for Intel® EPID
OVDevCertChainHashOrNull = Hash / null ;; CBOR null for Intel® EPID device key

;; Ownership voucher entries array
OVEntries = [* OVEntry]

;; ...each entry is a COSE Sign1 object with a payload
OVEntry = CoseSignature

3.4.2. Ownership Voucher Persisted Type (normative)§

$COSEProtectedHeaders //= (
 1: OVSignType
)
$COSEPayloads /= (
 OVEntryPayload
)
;; ... each payload contains the hash of the previous entry
;; and the signature of the public key to verify the next signature
;; (or the Owner, in the last entry).
OVEntryPayload = [
 OVEHashPrevEntry: Hash,
 OVEHashHdrInfo: Hash, ;; hash[GUID||DeviceInfo] in header
 OVEExtra: null / bstr .cbor OVEExtraInfo
 OVEPubKey: PublicKey
]

OVEExtraInfo = { * OVEExtraInfoType: bstr }
OVEExtraInfoType = int

;;OVSignType = Supporting COSE signature types

The “OVHeader” field contains header information, similar to the information stored in the Device; the Device stores only a
hash of the public key “OVHeader.OVPubKey”. The “OVHeader” field’s contents are hashed into “OVHeaderHMac” by
the device ROE and combined with a secret, which is only stored in the device ROE. To simplify the hashing operation for
CBOR receivers, the OVHeader is wrapped in a byte string when encoded.

The “OVEntries” array contains the Ownership Voucher entries, in order. If there are no entries, OVEntries is a zero length
array. Each entry is a COSE Sign1 object, with a specific payload, OVEntryPayload, with the following fields:

OVEHashPrevEntry is the hash of previous entry in OVEntries. For the first entry, the hash is:

HASH<halg1>[OwnershipVoucher.OVHeader||OwnershipVoucher.HMac]

where halg1 is a suitably-chosen hash algorithm supported in this protocol.

Note that the OVHeader appears wrapped with a CBOR byte string (bstr). The byte string header and length is not included
in the hmac OVHeaderHMac, above.

“OVProtVer” is the protocol version, which must match “OVHeader.OVHProtVer”.

“OVHeader.OVHProtVer” is the protocol version. “OVHeader.OVHProtVer” is integrity protected by the signature of
the first OVEntry.

“OVGuid” is the current GUID of the device, as stored in DCGuid

“OVRVInfo” is the rendezvous info, as stored in DCRVInfo

“OVDeviceInfo” is the DCDeviceInfo string stored in the Device.

The device certificate chain is present in the Ownership Voucher as OwnershipVoucher.OVDevCertChain. This is of
type CertChain. When the device uses an Intel® EPID root of trust, OwnershipVoucher.OVDevCertChain is CBOR
null.

“OVPubKey” is the public key of the device’ initial owner (e.g., the manufacturer).

“OVDevCertChainHash” is the Hash of the concatenation of the contents of each byte string in
“OwnershipVoucher.OVDevCertChain”, in the presented order. When OVDevCertChain is CBOR null,
OVDevCertChainHash is also CBOR null.

i.e., for OVDevCertChain = X5CHAIN = [bstr[cert1] ... bstr[certN]],
OVDevCertChainHash = Hash[cert1 || ... || certN]

OVEHashHdrInfo is Hash<alg2>[OVGuid||OVDeviceInfo], the bitwise concatenation of the “OVGuid” and
“OVDeviceInfo” fields from OVHeader, for suitable hash algorithm, halg2 .

halg1 SHOULD be chosen as the SHA384 if the Device supports SHA384, and SHA256 otherwise.

halg2 may be any hash algorithm supported by the Device.

OVEPubKey is the public key that verifies the signature on the next entry’s COSE Sig1 object. The first entry is verified by
OVHeader.OVPubKey. This creates a signature chain from the Ownership Voucher header through each entry, to the last
entry. The last entry’s public key verifies a signature created during the TO2 protocol, in the TO2.ProveOVHdr message.

OVEExtra is either CBOR null or a bstr-wrapped CBOR map, OVEExtraInfo. If present, OVEExtraInfo maps each
individual integer type value, OVEExtraInfoType, to a CBOR byte string (bstr). This specification does not constrain the
value of the byte string.

OVEExtraInfoType values MUST be unique within OVEExtraInfo. No specific values of OVEExtraInfoType are defined by
this specification. Individual implementations MUST use OVEExtraInfoType type values less than -65535 for local
applications.

OVEExtra has no confidentiality provided by FIDO Device Onboard.

OVEExtra may be used to pass additional supply-chain information along with the Ownership Voucher. The Device
implicitly verifies the plaintext of OVEExtra along with the verification of the Ownership Voucher. An Owner which trusts
the Device' verification of the Ownership Voucher may also choose to trust OVEExtra.

Signature Chain in Ownership Voucher with N OVEntries

Public key in Ownership Voucher Verifies COSE signature

OVHeader.OVPubKey OVEntries[0] (COSE Sig1)

OVEntries[0].OVEntryPayload.OVEPubKey OVEntries[1] (COSE Sig1)

OVEntries[N-1].OVEntryPayload.OVEPubKey TO2.ProveOVHdr (COSE Sig1 message)

For more information on X5CHAIN, see section § 3.3.4 Public Key.

Subsequent to its initial state, the Ownership Voucher may extend as follows:

Extension of Ownership Voucher from (N) segments to (N+1) segments

Signatures in the Ownership Voucher are encoded using COSE signature primitives [RFC8152].

3.4.3. Extension of the Ownership Voucher§

Required:

Ownership Voucher with N segments, numbered [0..N-1]

Owner Key Pair— private and public key. The public key from the Owner key pair appears in the last segment (N-
1), and its corresponding private key. Keys for earlier segments are not needed.

The GUID of the Device

The “OVDeviceInfo” tstr in the Ownership Voucher header (OwnershipVoucher.OVHeader.OVDeviceInfo)

The Public Key for the new segment— the next owner’s public key

The private key corresponding to this public key is used either to provision the device using the protocols
described in this document, or to extend the Ownership Voucher further. It is not needed for this step.

This section is non-normative.

There are some circumstances where a Device’s Ownership Voucher must be reset or recovered:

In these circumstances, there are two basic approaches.

This technique requires additional work to return a device, but it does not require special software or hardware to reset the
device and restore device credentials. Also, it preserves FIDO Device Onboard Device credentials on a working device, so it
can be used by devices which do not support resetting the Device credentials or only support resetting the Device a limited

Procedure

All hashes are computed as per the table in: § 3.3.2 Hash / HMAC

Note that OVHeader does not include the byte string that wraps OVHeader within the OwnershipVoucher object.

For N>0, hash is computed of the last segment, segment N-1

For N=0, the hash covers the Ownership Voucher header and the HMAC that protects it:

 hash[OVHeader||OVHeaderHMac]

A new OVEntry segment, segment N, is created, containing a payload OVEntryPayload with:

OVEHashPrevEntry = the hash of segment N-1

OVEHashHdrInfo = Hash[OVGuid||OVDeviceInfo] (the two values are concatenated)

OVEPubKey = public key for the new segment

The new segment is then signed using the Owner private key corresponding to the public key in Segment N-1, and
appended to the ownership voucher, to become segment N; its signed public key becomes the new (next) Owner
key.

For segment 0, the segment is signed with the private key corresponding to OVHeader.OVPubKey.

The device manufacturer must ensure that the device can verify the cryptography initially selected from the
Ownership Voucher.

Each key in the Ownership Voucher must copy the public key type from the manufacturer’s key in
OVHeader.OVPubKey, hash, and encoding (e.g., all RSA2048RESTR, all RSAPKCS 3072, all ECDSA
secp256r1 or all ECDSA secp384r1). This restriction permits a Device with limited crypto capabilities to verify all
the signatures.

Public key types (pkType) and public key encodings (pkEnc) are described in: § 3.3.4 Public Key

3.4.4. Restoring the Ownership Voucher§

Device return to vendor / manufacturer

Ownership voucher is lost or corrupted (does not work with Device credentials)

Device credentials lost or corrupted (does not work with Ownership Voucher)

Ownership voucher signed to wrong key, or Owner has lost the key

If possible, the Ownership Voucher may be extended "backwards" to a previous key.

The device may be reset and new FIDO Device Onboard device credentials may be placed in the device, as at
manufacturing.

3.4.4.1. Extending the Ownership Voucher "Backwards"§

number of times (e.g., devices that implement parts of these credentials using one-time programmable memory).

If the current Ownership Voucher is valid and signed to a valid Owner key (last signature in the chain), the owner
determines an entry in the Ownership Voucher from a known party. The last entry in the Ownership Voucher is most likely
to be known, since the Device was received from that party.

The owner then extends the Ownership Voucher to the key from this known party. Then the physical device and the
extended Ownership Voucher can be sent to the party who owns that key, such as to obtain a refund.

The party receiving this newly-extended Ownership Voucher can create a usable Ownership Voucher for the device in one
of these ways:

This procedure is possible if the Device hardware permits itself to be reset in a way that new Device credentials can be
stored again. For example, the Device might support completely erasing Device credentials from non-volatile memory; or
the Device might have a mechanism to append new Device credentials that supersede old ones, at least until all such
memory is used up.

In this case, the Device is reset, and the factory procedures are followed to create a new set of FIDO Device Onboard Device
credentials. The DI protocol gives an example of how this might be done. As part of this process, a new Ownership Voucher
is created, based on the new Device Credentials. Then the device may be re-sold or re-purposed as desired.

A device certificate chain is included in the Ownership Voucher in the format of x5chain, as described in [COSEX509]. The
device certificate contains the public key corresponding to the private key that is in the device ROE, and is used by the
device to attest its identity in TO1 and TO2 protocols.

A problem in the device certificate chain may result in a large batch of devices rejected by the Owner. To discover problems
early, the manufacturer’s tool set SHOULD perform some basic validation during device initialization, such as to verify
that:

When the Owner receives an Ownership Voucher, it SHOULD validate the device certificate chain to determine if it can
trust the device certificate. If the validation fails, the Owner may decide to reject the device.

It can truncate the Ownership Voucher OVEntries array to the first occurrence of its own key

It can run the Transfer Ownership 2 protocol to create a new Ownership Voucher, and then re-enable FIDO Device
Onboard.

It can reset the device and create new device credentials, using factory procedures

3.4.4.2. Reset the Device and Re-Create Ownership Voucher§

3.4.5. Validation of Device Certificate Chain§

All certificates in the chain must be in X.509 format. [COSEX509]

Certificate path validation is as per RFC 5280 [RFC5280], Section 6.1 (Basic Path Validation) must be successful. For
this, a tool may use standard APIs such as Java Class CertPathValidation (PKIX algorithm).

For the device leaf certificate, the following must be validated:

Public Key Algorithm must be supported by the device and this specification

Length of Public Key must be supported by the device and this specification

If Key Usage extension is present in the device certificate, then it must allow Digital Signature.

3.4.6. Verifying the Ownership Voucher§

The Ownership Voucher is stored as a persisted message to be used in the TO0 and TO2 Protocols. It must be verified in
these situations:

Internal verification should be performed whenever the Ownership Voucher is read from its persisted storage or received in
a protocol transmission.

To verify the internal consistency of the ownership voucher, the following steps are performed:

When the Owner reads the Ownership Voucher from storage, it must verify that its stored key pair corresponds to the signed
key in the last segment.

One mechanism to perform this check is to sign a nonce with its stored private key and verify the signature using the Owner
public key in the Ownership voucher. Other methods may also be used.

When an Owner receives the Ownership Voucher, the Owner must decide whether to trust or to distrust the device
certificate chain. This decision is typically based on an external trust relationship with the device’s supply chain. It can also
be aided by cryptographic verification, but such verification cannot replace external trust. The following cryptographic steps
are recommended:

Internal Verification: When being read from storage or inside a protocol transmission, the Ownership Voucher
SHOULD be internally verified to make sure it has not been tampered with.

Verification Against the Owner Key: If the Ownership Voucher is extended or used in the TO2 protocol, the owner
MUST control the Owner private key.

Verification of the Device Certificate Chain: The Device receiving the Ownership Voucher must verify it against the
Device Credential and verify the HMAC in the Ownership Voucher using the secret stored in the device.

3.4.6.1. Ownership Voucher Internal Verification§

Hash[OVGuid||OVDeviceInfo] is verified to match in all segments and the OVHeader.

The signature of each segment is verified against the signed public key of the previous segment.

The first segment is verified against OVHeader.OVPubKey.

The hash stored in each entry is verified to match the hash of the previous entry. The first entry matches the hash of the
encoding of the Ownership Voucher header components as described above

3.4.6.2. Owner Verification against the Owner Key§

3.4.6.3. Owner Verification of Device Certificate Chain§

The certificates and signature chain of OwnershipVoucher.OVDevCertChain are verified.

OCSP information is obtained from each certificate, and where present, the OCSP protocol is run to determine whether
the Device key is revoked. If so, the Ownership Voucher (and the Device) are rejected, and FIDO Device Onboard is
not possible with this Device key. In order to perform FIDO Device Onboard, another Device key must be used. For
example, the device may incorporate: a replacement device key and a mechanism to switch to the replacement key; or
the device may be reprogrammed with a new key, perhaps manually.

Certificate Revocation Lists can also be downloaded and cross referenced as an alternative to OCSP.

If possible, one or more of the certificate chain CA’s should be previously trusted by the Owner. If not, the Owner
MAY use its own judgment as to whether to accept the Ownership Voucher based on other business criteria, such as
the trust of supply chain partners.

When a device certificate chain is not trusted, it is permitted for the Owner to onboard the device anyway with protective
measures, and perform additional verification on the device to determine trust after onboarding is complete. Such
verification steps are outside the scope of this document.

When the Owner transmits the Ownership Voucher to the Rendezvous Server or to the Device, the receiver must verify the
internal structure of the Ownership Voucher, and also verify the signature that the Owner provides in TO0.OwnerSign and
the last transmission of TO2.ProveOpHdr against the public key in the last entry of the Ownership Voucher (the "Owner
key"). In the case of the Device, the Device Credential key hash (DCPubKeyHash) must match the hash of OVPubKey.

The Device must verify OwnershipVoucher.OVHeaderHMac using its stored secret.

The FIDO Device Onboard protocols do not supply the Rendezvous Server with a mechanism for determining the trust of
the Ownership Voucher. It is desirable for the Rendezvous Server to be able to trust one or more of the keys in the
Ownership Voucher. This implies using a back channel to supply public material to the Rendezvous Server by cooperating
supply-chain entities.

These mechanisms are outside the scope of this document.

The Device Attestation signature is used by the FIDO Device Onboard Device to prove its authenticity to the FIDO Device
Onboard Rendezvous and the FIDO Device Onboard Owner. Device attestations conform to the EAT specification [EAT].

The EAT token structure is reflected in EATokenBase. The protected and payload sections are defined for each signature use,
using the socket/plug mechanism with the variables $EATProtectedHeaders and $EATPayloads.

EAT attestations can be very extensive and can contain private or otherwise sensitive items. For purposes of FIDO Device
Onboard, the attestation SHOULD be simplified to contain non-linkable items to the extent possible. In particular, the EAT
UEID uses the FIDO Device Onboard GUID. Since the GUID is replaced at the successful conclusion of the TO2 protocol,
it is not linkable.

A given Device may be able to generate a more complete EAT attestation when running over an encrypted channel. This
token may transmitted using ServiceInfo. The token may be generated using a nonce from an earlier ServiceInfo message.

In some cases, an entity attestation signature cannot stand alone, but requires some protocol interaction to prepare for it.
Examples:

FIDO Device Onboard maintains an embedded signing protocol for the Device, with three messages:

3.4.6.4. Receiver Verification of Owner§

3.4.6.5. Rendezvous Server Verification of the Ownership Voucher§

3.5. Device Attestation Sub Protocol§

a multi-application Restricted Operating Environment (ROE) may need to negotiate program instance parameters with
the verifier before the signature can be trusted.

revocation information for a signature is sometimes obtained in-band in a protocol, permitting the signing entity to have
a single communications link with the verifying entity. In FIDO Device Onboard, Intel® EPID signers need to obtain
revocation information and cooperatively sign “proofs” to show anonymously that a signer is not revoked.

eA -- from Device to signature verifier, provides initial device based information

eB -- from verifier to Device, provides a response to eA

The eA and eB messages are structured as “SigInfo”, and contain a field that identifies the signature type as in
DeviceSgType. The eSig message is the complete Entity Attestation Token defined in the protocol.

There are two uses of this protocol in FIDO Device Onboard.

In the TO1 protocol:

In the TO2 protocol:

See definition of SigInfo: § 3.3.3 SigInfo

Intel® Enhanced Privacy ID (Intel® EPID) signatures are generated by Devices that support a Hardware Root of Trust
based on versions of Intel® EPID.

The Intel® EPID signer needs Intel® EPID revocation information in order to generate a valid signature from the private
key. In particular, the signer needs the signature revocation list (SIGRL) for its group. The mechanism to determine and
obtain the SIGRL is outside the scope of this document.

ECDSA signature attestation is defined in accordance with [RFC8152] and [EAT].

For ECDSA attestation, the Length field in eA and eB encoding is set to 0 and Info field is zero length. ECDSA secp256r1
uses SHA256 hash, and ECDSA secp384r1 uses SHA384 hash.

For ECDSA, both the private key and the public key are Device identities. This means that the FIDO Device Onboard
Rendezvous Server and FIDO Device Onboard Owner who verify the Device attestation signature receive a unique and
permanent identity for the device, even before they verify the signature. This information can be used to trace the
subsequent owners of the device. For this reason, we recommend careful administrative measures to ensure that this
information is used securely and discarded appropriately.

Alone among FIDO Device Onboard protocols, the TO2 Protocol requires message-level encryption. The TO2 Protocol
transmits potentially long-term credentials to the Device, and these credentials are confidential between the Device ROE and
its new Owner.

The purpose of key exchange is to allow the Device and its Owner to agree on two shared secrets. A session verification key
(SVK) is used to perform a HMAC over each message to ensure message integrity. A session encryption key (SEK) is used
to encipher each message to ensure message confidentiality.

eSig -- from Device to verifier, contains the actual signature, following the EAT specification.

eA appears in TO1.HelloRV, sent from Device to Rendezvous

eB appears in TO1.HelloRVAck, sent from Rendezvous to Device

eSig is TO1.ProveToRV

eA appears in TO2.HelloDevice, sent from Device to Owner

eB appears in TO2.ProveOVHdr, sent from Owner to Device. Although TO2.ProveOVHdr is a signature from Owner
to Device, the eB field in this message is actually part of the Device to Owner signing protocol.

eSig is TO2.ProveDevice

3.5.1. Intel® Enhanced Privacy ID (Intel® EPID) Signatures Overview§

3.5.2. ECDSA secp256r1 and ECDSA secp384r1 Signatures§

3.6. Key Exchange in the TO2 Protocol§

Key Exchange starts with a protocol to construct a shared secret between the Owner and the Device. This is accomplished
using one of supported methods below, chosen by the device. Next, the Device and Owner each uses an identical Key
Derivation Function on the shared secrets to compute the session verification key (SVK) and the session encryption key
(SEK).

Where authenticated encryption is used, a single SEVK replaces the SEK and SVK.

The selection of a key exchange algorithm is denoted in the TO2.HelloDevice.kexSuiteName variable. Key exchange
algorithms are presented for Owner key RSA and Owner key ECDSA.

CDDL

KexSuitNames /= (
 "DHKEXid14",
 "DHKEXid15",
 "ASYMKEX2048",
 "ASYMKEX3072",
 "ECDH256",
 "ECDH384"
)

When the Owner Key is RSA:

DHKEXid14 and DHKEXid15 differ in the size of the Diffie-Hellman modulus, which is chosen to match the RSA key size
in use.

When the Owner key is ECDSA:

The choice of key exchange algorithm follows the cryptography of the Owner key. See § 3.6.5 Mapping of Key Exchange
Protocol with FIDO Device Onboard Crypto Options.

Subsequent messages are protected for confidentiality and integrity:

“DHKEXid14”: Diffie-Hellman key exchange method using a standard Diffie-Hellman mechanism with a standard
NIST exponent and 2048-bit modulus ([RFC3526], id 14). This is the preferred method for RSA2048RESTR Owner
keys.

“DHKEXid15”: Diffie-Hellman key exchange method using a standard Diffie-Hellman mechanism with a standard
National Institute of Standards and Technology (NIST) exponent and 3072-bit modulus. ([RFC3526], id 15), This is the
preferred method for RSA 3072-bit Owner keys.

“ASYMKEX2048”: Asymmetric key exchange method uses the encryption by an Owner key based on
RSA2048RESTR; this method is useful in FIDO Device Onboard Client environments where Diffie-Hellman
computation is slow or difficult to code.

“ASYMKEX3072”: The Asymmetric key exchange method uses the encryption by an Owner key based on RSA with
3072-bit key.

“ECDH256”: The ECDH method uses a standard Diffie-Hellman mechanism for ECDSA keys. The ECC keys follow
NIST P-256 (SECP256R1)

“ECDH384”: Standard Diffie-Hellman mechanism ECC NIST P-384 (SECP384R1)

Using an authenticated encryption mechanism, supported by COSE [RFC8152]. SEVK is used for this single
mechanism.

Using a legacy Encrypt-then-Mac combination of COSE primitives SEK is used for encryption and SVK is used for
integrity protection. AES-CBC or AES-CTR mode are used, as defined in [SP800-38A].

Sizes for SVK, SEK and exemplary sizes for specific cases of SEVK in FIDO Device Onboard are given in the following
tables.

Table ‑. Exemplary SEVK Sizes (authenticated encryption)

Exemplary SEVK Sizes

Confidentiality & Integrity SEVK

A128GCM
AES-CCM-16-128-128

128 bits

A256GCM
AES-CCM-16-128-256

256 bits

Table ‑. SEK and SVK Sizes (encrypt-then-MAC)

SEK and SVK Sizes

Confidentiality Integrity SEK SVK

AES-CTR-128
AES-CBC-128

HMAC-SHA256 128 bits
256 bits

AES-CTR-256
AES-CBC-256

HMAC-SHA384 256 bits
512 bits

The key exchange protocols below yield a shared secret, ShSe and a ContextRand bitstring. These are used as input to the
KDF function defined in § 3.6.4 Key Derivation Function.

The following steps describe the Diffie-Hellman key exchange protocol (DHKEXid15), as part of the verification of the
Ownership Voucher:

kexSuiteName Modulus (p) size Generator (g) size a & b size

DHKEXid14 2048 2 256 bits

DHKEXid15 3072 2 768 bits

3.6.1. Diffie-Hellman Key Exchange Protocol§

1. The Device and Owner each choose random numbers (Owner: a, Device: b), and encode these numbers into exchanged
parameters A and B: A = g^a mod p B = g^b mod p

The values “p” and “g” are chosen from [RFC3526], with sizes as follows:

2. The Owner sends A to the Device as parameter TO2.ProveOVHdr.xaKeyExchange. Note that this parameter is signed by
the Owner key from the Ownership Voucher, which is proved as trusted later in the TO2 Protocol, but before the key
exchange completes.

3. The Device sends B to the Owner as parameter TO2.ProveDevice.xBKeyExchange. This parameter is signed with the
device attestation key.

4. The Owner computes shared secret ShSe = (B^a) mod p.

5. The Device computes shared secret ShSe = (A^b) mod p.
The ContextRand bitstring is null ('').

The following steps describe the Asymmetric key exchange protocol (ASYMKEX2048 or ASYMKEX3072), as part of the
verification of the Ownership Voucher (here || is used to indicate binary concatenation). Asymmetric key exchange applies
only to devices that support an RSA-based Ownership Voucher. Sizes are as follows:

Owner & Device
Randoms

MGF Hash Function

ASYMKEX2048 256 bits each SHA256

ASYMKEX3072 768 bits each SHA256 (larger hash size not needed for ASYMKEX3072)

The following steps describe the ECDH key exchange protocol (ECDH), as part of the verification of the Ownership
Voucher. ECDH applies only to devices that support an ECDSA-based Ownership Voucher.

Curve and Random parameters are as follows:

kexSuiteName ECC Curve Owner & Device Randoms

ECDH256 NIST P-256 (Gx, Gy), p each 256 bits 128 bits

ECDH384 NIST P-384 (Gx, Gy), p each 384 bits 384 bits

Curve parameters are taken from NIST P-series as above, including p and the base point (Gx, Gy). ECC curves allocated
for key exchange must be used once only.

3.6.2. Asymmetric Key Exchange Protocol§

1. Owner allocates a random value called the Owner Random. Owner sends the Owner Random to the Device as
TO2.ProveOVHdr.xaKeyExchange. This value is signed with the Owner key, but is not encrypted.

2. Device allocates a random value called the Device Random. Device encrypts the Device Random with the Owner
public key using RSA encrypt using Optimal Asymmetric Encryption Padding (OAEP) with Mask Generation Function
(MGF) SHA256. The RSA key is stored in the TO2.ProveOVHdr.CUPHOwnerPubKey and in last entry of the
Ownership Voucher. Either source may be used.

3. The encrypted Device Random is sent to the Owner as TO2.ProveDevice.xBKeyExchange This parameter is signed
with the Device attestation key.

4. Owner decrypts TO2.ProveDevice.xBKeyExchange using its Owner Private Key (the same private key it used to sign
in the TO2.ProveOVHdr message). Note that the Owner Private Key must be RSA-based.

5. The Owner & Device each compute shared secret

ShSe = DeviceRandom
ContextRand = OwnerRandom

3.6.3. ECDH Key Exchange Protocol§

Note: || is used to indicate binary concatenation; blen(x) describes the length of the of the input (x) as a 16-bit
unsigned integer (uint16).

1. The Device and Owner each choose random numbers (Owner: a, Device: b), and encode these numbers into exchanged
parameters A = ((Gx, Gy) * a) mod p, and B = ((Gx, Gy) * b) mod p. A and B are points, and have components (Ax,
Ay) and (Bx, By), respectively, with bit lengths same as (Gx, Gy).

2. The Device and Owner each choose a random number (as per table above), to be supplied with their public keys,

Owner and Device both have shared secret ShSe and a ContextRand bitstring, computed by one of the above key exchange

respectively DeviceRandom, and OwnerRandom.

3. The Owner sends TO2.ProveOVHdr...xAKeyExchange to the Device as the bstr:

blen(Ax) || Ax || blen(Ay) || Ay || blen(OwnerRandom) || OwnerRandom

Note that this parameter is signed by the Owner key from the Ownership Voucher, which is proved as trusted later in
the TO2 Protocol, but before the key exchange completes.

4. The Device sends TO2.ProveDevice...xBKeyExchange to the Owner as the bstr:

blen(Bx) || Bx || blen(By) || By || blen(DeviceRandom) || DeviceRandom

This parameter is signed with the device attestation key.

5. The Owner computes shared secret Sh = (B*a mod p), with components (Shx, Shy). The Device computes shared
secret Sh = (A*b mod p), with components (Shx, Shy). The shared secret ShSe is formed as:

ShSe = Shx || DeviceRandom || OwnerRandom
ContextRand is null ('')

(Note that Shy is not used to construct ShSe).

The DeviceRandom and OwnerRandom values are used to increase the entropy in the generated keys, in order to
reduce the possibility of certain related key weaknesses.

The lengths of a, b, DeviceRandom and OwnerRandom are chosen to permit the shared secret to source SVK & SEK of
appropriate lengths.

In steps 3 and 4, the values of A, B, DeviceRandom and OwnerRandom are transmitted within a single bstr as length-
preceding binary strings (i.e., the contents of the string is not CBOR).

Compatibility Note: This mechanism is intended to be a standard implementation of NIST ECC P-256 or P-384,
compatible with other software and hardware implementations.

Shy is not used to compute the shared secret ShSe, because it can be derived from Shx and the curve equation. Hence it
provides no additional entropy.

3.6.4. Key Derivation Function§

protocols. These values are fed into the Key Derivation Function defined in [SP800-108], KDF in Counter Mode , section
5.1, as follows:

(Notation)

The following refers directly to variables defined in [SP800-108]:

When both SVK and SEK are required, the KDF is run until there are enough bits for both SVK and SEK, and an output
buffer, result , has the K(i) bitwise concatenated. Then the result buffer is interpreted as:

SVK || SEK || extrabits

where extrabits consists of any extra bits beyond the length of SVK||SEK, and is discarded.

When SEVK is required, the KDF is run until there are enough bits for SEVK, and an output buffer, result , has the K(i)
bitwise concatenated. Then the result buffer is interpreted as:

SEVK || extrabits

and extrabits is discarded, as above.

As an example, the KDF loop when using SHA256 to compute 128 bits of key material as SEVK is as follows (assume the
"For" loop executes one iteration in this pseudo-code):

result(0) := Ø
For i = 1 to 1, do
 a. Context := ("AutomaticOnboardTunnel"||ContextRand)
 b. Lstr := (byte)0||(byte)128
 c. K(i) := HMAC-SHA256<ShSe>((byte)i||"FIDO-KDF"||(byte)0||Context||Lstr)
 d. result(i) := result(i-1) || K(i)

Then SEVK = K(1) >> 128 (i.e., the leftmost 128 bits of K(1), and extrabits is the remaining 128 bits of K(1).

Double vertical bar (||) means binary concatenation, so a||b||c means: concatenate the bits of a,b,c together.

"text" indicates the UTF-8 codes for the 4-character string text with no given length and no trailing zero. For the
strings in question, the UTF8 values also match ASCII.

(byte)n indicates a single byte with contents n.

The number of bits of derived keying material, L, is the number of bits of KDF output required.

For authenticated encryption modes (SEVK needed), this is the bit length of SEVK required for the selected encryption
algorithm.

For Encrypt-then-MAC (SVK and SEK needed), L is the number of bits in the required SVK plus the number of bits in
the SEK.

L is a 16 bit number, expressed in big-endian format.

The PRF (pseudo-random function) is either HMAC-SHA256 or HMAC-SHA384, as given in the description of the
cipher suite, see § 4.4 Encrypted Message Body. The PRF key, K I, is shown as the first argument in [SP800-108]. For
clarity, we denote the HMAC function as:
HMAC-SHAnnn<hmac-key>(hmac-text)

The Key Derivation Key (K I), is ShSe.

The Label is the string: " FIDO-KDF"

The Context is the concatenation of: " AutomaticOnboardTunnel" and ContextRand, defined in the key exchange.

The counter for each iteration, i, is a single byte (i.e., r = 1).

The following table shows the valid choices for key exchange protocol based on choice of device attestation and owner
attestation algorithms selected by the device manufacturer. The key exchange method may be configured in the device at the
time of manufacturing and not dynamically selected during TO2 protocol.

The choice of cryptography for the key exchange protocol follows the cryptography in the Ownership Voucher (Owner key,
and other keys in the Ownership Voucher). Where the Device key and Owner key use different cryptography, the Device
and Owner may need to support additional algorithms to allow verification and key exchange. We encourage a choice that
limits the software or hardware required in the Device.

Table ‑. Key Exchange and FIDO Device Onboard Crypto Mapping

Key Exchange and FIDO Device Onboard Crypto Mapping

Device
Attestation

Owner Attestation Key Exchange

EPID
RSA2048 or
RSA2048RESTR

DHKEXid14/ASYMKEX2048

ECDSA NIST
P-256

RSA2048 or
RSA2048RESTR

DHKEXid14/ASYMKEX2048

ECDSA NIST
P-384

RSA2048 or
RSA2048RESTR

DHKEXid14/ASYMKEX2048 (Not a recommended
configuration, see note)

EPID RSA3072 DHKEXid15/ASYMKEX3072

ECDSA NIST
P-256

RSA3072
DHKEXid15/ASYMKEX3072 (Not a recommended
configuration, see note)

ECDSA NIST
P-384

RSA3072
DHKEXid15/ASYMKEX3072

EPID ECDSA NIST P-256 ECDH256

ECDSA NIST
P-256

ECDSA NIST P-256
ECDH256

ECDSA NIST
P-384

ECDSA NIST P-256
ECDH256 (Not a recommended configuration) *

EPID ECDSA NIST P-384 ECDH384

ECDSA NIST
P-256

ECDSA NIST P-384
ECDH384 (Not a recommended configuration, see note)

ECDSA NIST
P-384

ECDSA NIST P-384
ECDH384

Note on "not recommended" configurations, above

Some configurations have different cryptographic strength between the Ownership Voucher (Owner key) and the Device
key. It is recommended to choose the strongest cryptographic methods of which the device is capable.

3.6.5. Mapping of Key Exchange Protocol with FIDO Device Onboard Crypto Options§

The RendezvousInfo type indicates the manner and order in which the Device and Owner find the Rendezvous Server. It is
configured during manufacturing (e.g., at an ODM), so the manufacturing entity has the choice of which Rendezvous
Server(s) to use and how to access it or them.

RendezvousInfo consists of a sequence of rendezvous instructions which are interpreted in order during the TO0 and TO1
Protocols. The rendezvous instructions are themselves grouped together in a sub-sequence.

Each set of rendezvous instructions is interpreted as one set of instructions for reaching the Rendezvous Server, with
differing conditions. For example, one set might indicate using the wireless interface, and another set might indicate using
the wired interface; or one set might use a DNS .local address, while another uses a global DNS address that the
manufacturer provides across the Internet.

The Owner and Device process the RendezvousInfo, attempting to access the Rendezvous Server. The first successful
connection may be used.

It is possible that a given instruction corresponds to multiple ways to access the Rendezvous Server (e.g., multiple IP
addresses that correspond to a single DNS name), and these must all be tried before the Device or Owner moves to the next
element of the sequence. This can be thought of as a re-writing rule, where the DNS expands one rule for DNS into one rule
for each IP address resolved by the DNS.

The Device MUST process all DNS entries returned for a given DNS name. These may be tried in any order, or may be tried
in parallel.

The Device and Owner may avoid obviously redundant operations, such as contacting the same IP address twice when a
DNS name maps to an IP address explicit in a separate rendezvous instruction (that has already returned a failure).

Conceptually, to execute each rendezvous instruction, the program defines a set of variables, one for each tag in the
RendezvousInfo instructions. It initializes all variables to default values. Then the rendezvous instruction is interpreted, and
updates each variable. If the user input variable is set to true, and user input is available, the user is allowed to update each
variable. On constrained devices, some variables do not exist. The constrained implementation interprets each instruction as
if this variable was not present.

Some variables apply only to the Owner and some only to the Device. See the table below. When a variable does not apply,
it is interpreted as if it had never been specified. This means that the Owner can only ever notice the tags: RVOwnerOnly,
RVIPAddress, RVOwnerPort, and RVDns. This is because the Owner, as a cloud-based server, is expected to use normal
Internet rules to access the Rendezvous Server. The Device, which may be in a specialized network and may be constrained,
might need additional parameters.

The RVDevOnly, RVOwnerOnly and RVDelaySec tags have side effects.

$RVVariable /= (
 RVDevOnly => 0,
 RVOwnerOnly => 1,
 RVIPAddress => 2,
 RVDevPort => 3,
 RVOwnerPort => 4,

3.7. RendezvousInfo§

When [RVDevOnly] appears in a set of instructions, an Owner must skip the entire set

When [RVOwnerOnly] appears in a set of instructions, a Device must skip the entire set

When [RVDelaysec, uint32] appears in a set of instructions, the set is followed by a delay for the number of seconds
specified, increased or decreased by a random value up to 25% of the specified time. It is assumed that an instruction
containing RVDelaysec with a default value is appended to the end of the RendezvousInfo to force a particular
randomized delay before retrying the entire sequence. An explicit instruction of this form overrides the default value.

 RVDns => 5,
 RVSvCertHash => 6,
 RVClCertHash => 7,
 RVUserInput => 8,
 RVWifiSsid => 9,
 RVWifiPw => 10,
 RVMedium => 11,
 RVProtocol => 12,
 RVDelaysec => 13,
 RVBypass => 14,
 RVExtRV => 15
)
RVProtocolValue /= (
 RVProtRest => 0,
 RVProtHttp => 1,
 RVProtHttps => 2,
 RVProtTcp => 3,
 RVProtTls => 4,
 RVProtCoapTcp => 5,
 RVProtCoapUdp => 6
);
$RVMediumValue /= (
)

Note about WiFi security.

The RVWifiSsid parameter is set in manufacturing. This is one way for a manufacturer to specify a purposely provisioned
WiFi "onboarding network". For example, a device could be provisioned with RVWiFiSsid="FIDO Device Onboard". Then
a user can provision such a SSID-based network when the device onboards. If the user has a stateful inspection firewall, it is
possible to leave the onboarding segment up for continued FIDO Device Onboard use, by restricting it only to run the FIDO
Device Onboard protocol (which the user has already decided to trust).

If the manufacturer includes a RVWifiPw, there is no improvement in security. An attacker only has to look up the
manufacturer’s information to find out the password. The password therefore has no function for authentication in this case.
It may be a convenience, however. Some personal consumer devices look for "open" Wifi connections and automatically
connect to them. Since an onboarding segment is only usable using FIDO Device Onboard, users would be inconvenienced
to attach automatically to the segment. The password serves the purpose of keeping them from automatically connecting.

Table ‑. RendezvousInfo Variables

Rendezvous
Instruction

Variable

Default
Value

Variable
Encoding Tag

Variable Type Device/Owner

Device Only None RVDevOnly none Both

Owner Only None RVOwnerOnly none Both

IP address None RVIPAddress IPAddress Both

DNS name None RVDns DNSAddress Both

Port, Device
Based on
protocol

RVDevPort uint16
Device

Port, Owner
Based on
protocol

RVOwnerPort uint16
Owner

TLS Server cert hash None RVSvCertHash Hash Device

TLS CA cert hash None RVClCertHash Hash Device

User input No RVUserInput bool Device

SSID None RVWifiSsid tstr Device

Wireless Password None RVWifiPw tstr Device

Medium
Device
dependent

RVMedium $RVMediumValue(uint8)
Device

Protocol TLS RVProtocol RVProtocolValue(uint8) Device

Delay 0 RVDelaysec uint32 Both

Bypass none RVBypass none Device

External RV none RVExtRV array Device

All the above fields of RendezvousInfo are optional, except as follows:

Rendezvous Instruction (RendezvousInstr) entries are specified as having the variables in alphabetical order. This does not
affect the interpretation of these variables, but makes the computation of a signature that includes them simpler for some
implementations.

The following list uses the model, above, where it is assumed that one variable exists per attribute.

One of RVIPAddress or RVDns is required. If both are present, RVDns is processed first, then RVIPAddress is used as
an additional address (if it was not already returned by the DNS query).

RVDelaysec, which is implicitly included if not present.

If the RVDevOnly element appears on the Owner, this instruction is terminated and control proceeds with the next set
of instructions.

If the RVOwnerOnly element appears on the Device, this instruction is terminated and control proceeds with the next
set of instructions.

The Medium is selected. The Device uses the selected preferred medium (RVMedium), or terminates this instruction.
When no medium is specified, the Device may establish its own preference, perhaps based on the other parameters (for
example, TLS might be available on one medium, but not another). If a selected medium does not apply (e.g., WiFi
where there is no WiFi interface), control proceeds with the next set of instructions.

On the Device, the protocol is chosen (RVProtocol), if it is supported. Otherwise, the instruction terminates. The
Owner always chooses the protocol “https”.

The Device attempts to resolve the DNS address. If DNS query is successful, then the resolved IP addresses are tried
one after another, as if this rule where rewritten with one IP address per DNS resolved value. In this operation, an
explicit IP address is processed just after all DNS resolutions.

Else, if DNS resolution fails or the Device fails to communicate with all of the resolved IP addresses, then the specified
IP address is used as the target IP address.

Else, if there is no specified IP address, the instruction terminates.

If TLS is used on a Device (RVProtocol=https or RVProtocol=tls), the hash instructions are used as specified against
server certificates appearing in the TLS handshake (or, for RVTls, the underlying TLS connection’s handshake). This
applies to the Device only.

If the server certificate hash is specified (on a Device), the server’s certificate is extracted from the certificate chain,

Medium values:

$RVMediumValue
/= (
 RVMedEth0
=> 0,
 RVMedEth1
=> 1,
 RVMedEth2
=> 2,
 RVMedEth3
=> 3,
 RVMedEth4
=> 4,
 RVMedEth5
=> 5,
 RVMedEth6
=> 6,
 RVMedEth7
=> 7,
 RVMedEth8
=> 8,
 RVMedEth9
=> 9
)

mapped to first through 10th wired Ethernet interfaces. These interfaces may appear with
different names in a given platform.

$RVMediumValue
/= (

RVMedEthAll =>
20,
)

means to try as many wired interfaces as makes sense for this platform, in any order. For
example, a device which has one or more wired interfaces that are configured to access the
Internet (e.g., “wan0”) might use this configuration to try any of them that has Ethernet link.

$RVMediumValue
/= (
 RVMedWifi0
=> 10,
 RVMedWifi1
=> 11,
 RVMedWifi2
=> 12,

mapped to first through 10th WiFi interfaces. These interfaces may appear with different
names in a given platform.

SHA256 hash computed, and compared to the specified value. Failure to match causes the TLS authentication to fail.

If the CA certificate hash is specified (on a Device), the other certificates in the server certificate chain are extracted
one by one, SHA256 hash computed, and compared to the specified value. Any match allows TLS authentication to
proceed. No match causes TLS authentication to fail.

The Owner always applies usual CA trust to server certificates used in TLS for the TO0 Protocol.

Attempt as many connections as are implied by the set of variables established and choices made, above. For example,
try each of the addresses returned by a DNS query if there is a valid DNS name.

If a RVDelaysec tag appears, delay as specified.

If RVDelaysec does not appear and the last entry in RendezvousInfo has been processed, a delay of 120s ± random(30)
is executed.

 RVMedWifi3
=> 13,
 RVMedWifi4
=> 14,
 RVMedWifi5
=> 15,
 RVMedWifi6
=> 16,
 RVMedWifi7
=> 17,
 RVMedWifi8
=> 18,
 RVMedWifi9
=> 19
)

$RVMediumValue
/= (

RVMedWifiAll
=> 21
)

means to try as many WiFi interfaces as makes sense for this platform, in any order

Others device dependent.

Protocol Values:

RVProtRest

first supported protocol from:

RVProtHttps
RVProtHttp
RVProtCoapUdp
RVProtCoapTcp

RVProtTcp bare TCP, if supported

RVProtTls bare TLS, if supported

RVProtCoapTcp CoAP protocol over tcp, if supported

RVProtCoapUdp CoAP protocol over UDP, if supported

RVProtHttp HTTP over TCP

RVProtHttps HTTP over TLS, if supported

FIDO Device Onboard includes a Rendezvous mechanism that is useful for IOT deployments that are not dependent on a
particular network structure or ownership. Sometimes, a network is specifically configured to include a mechanism that
provides this kind of service. Examples include:

3.7.1. Rendezvous Bypass§

Multicast DNS [RFC6762]

Bluetooth Low Energy (BLE) Beacon [BTCORE]

In these cases, a FIDO Device Onboard device may elect to bypass the FIDO Device Onboard Rendezvous Server
mechanism and use the local mechanism instead. Since the Transfer Ownership Protocol 2 (TO2) provides full
authentication and authorization of the Device to the Owner, there is no change in the security posture of FIDO Device
Onboard if an external rendezvous mechanism is used.

In this case, the TO2 protocol is released from the need to verify the signature of the "rendezvous blob" (TO1.RVRedirect),
since no such blob is transmitted or received.

To bypass the TO1 protocol and use an alternate rendezvous mechanism, the RendezvousInfo is as follows:

In one or more RendezvousDirective(s):

Either:

Or:

There are no RVExtRv mechanisms defined in this specification.

For example:

[
 [[RVBypass]
 [RVIPAddress h’c0a801fe']]
]

causes the TO1 protocol to be skipped, and a TO2 connection to be attempted repeatedly to IP address 192.168.1.254. The
TO2 connection uses HTTPS on port 443 (default values).

In the following examples a pseudo JSON syntax is used to indicate the example. All examples are really in CBOR.

This example has a RendezvousInfo with one RendezvousInstrList with 3 RendezvousInstr. Both Device and Owner
interpret the same instruction every time they start processing RendezvousInfo.

[[[RVDns,"onboardservice.fido"],
 [RVIPAddress, h’01020304'],
 [RVDevPort,80],
 [RVOwnerPort,443]]]

On both Device (TO1 Protocol) and Owner (TO0 Protocol), attempt to connect to all IP addresses returned by the DNS
query for “onboardservice.fido”, followed by IP address 1.2.3.4 (given explicitly -- think of it as a backup IP address). The
Owner queries TO0 Protocol on port 443 (Owner always uses TLS). The Device queries TO1 Protocol on port 80, using
HTTP as the default protocol for port 80.

Closed networks, where the device management address is fixed (e.g., 10.1.1.1)

RVBypass is included. There is no argument to this rendezvous variable.

An IP address, port, etc is specified using RVIPAddress, RVDevPort, etc.. In this case, the given IP addressing
parameters indicate the TO2 address of the Owner, rather than the address of the Rendezvous Server.

RVExtRv is specified. This contains a CBOR array with at least one element. The first element of the array is a string
that specifies the external mechanism to use. The subsequent array elements are specific to this mechanism.

3.7.2. Examples of RendezvousInfo§

3.7.2.1. Different Ports for Device and Owner§

In the following example, a global Rendezvous Server is queried. If this fails, two possible local Rendezvous Server are
queried, one which assumes split DNS (a .local domain) and one which assumes a local IP address. The local IP addresses
chosen are commonly used by an internal router; the assumption is that the local router has a rule to route FIDO Device
Onboard to the right place.

[
 [[RVDns,"onboardservice.fido"]], # global DNS address, default port
 [[RVIPAddress, h’0a000001'][RVPort,8000]], # IP 10.0.0.1, port 8000
 [[RVIPAddress, h’5ca80101'][RVPort,8000]] # IP 192.168.1.1, port 8000
]

In the following situation, the Device needs to try Wi-Fi* media, as many as it can connect to. The Owner just uses the DNS
name without the Wi-Fi media specification, because RVMedium applies only to Devices, and is thus ignored by the Owner.

[[[RVDns,"onboardservice.fido"],
 [RVMedium,RVMediumWifiAll]]]

The above is thus equivalent to the following pair of RendezvousInfo:

[
 [[RVDevOnly] ,[RVDns,"onboardservice.fido"],[RVMedium,RVMediumWifiAll]],
 [[RVOwnerOnly],[RVDns,"onboardservice.fido"]]
]

In the above, RVEthAll could be used for wired interfaces that are purposed for Internet access, such as the outside wired
interface on a gateway or router.

As guidance for device manufacturers, the following recommended RendezvousInfo is presented as an additional example.
The RendezvousInfo is presented in pseudo-JSON, but the actual RendezvousInfo must be in CBOR format, as defined
above.

In this example, the RendezvousInfo uses a DNS entry to identify one or more Rendezvous Servers. The owner of the DNS
entry must include the address of every Rendezvous Server that the device might use. Since the Owner and the Device use
the same RendezvousInfo, any RendezvousInfo will do. In practice, geographical boundaries or business preferences may
cause the IOT platform to prefer one Rendezvous Server or another, so the IOT platform and the Device may need to be able
to access multiple servers.

Also, the Device might be in a closed network, where none of the public Rendezvous Servers are accessible. A local
Rendezvous Service must be provided in the closed network. A simple expedient is to use a DNS ".local" address to refer to
this Rendezvous Server. The local network can then provide the address to allow devices to onboard.

This closed network ".local" rendezvous also offers a recovery mode for a device which is unable to onboard. Device
manufacturers are encouraged to offer this or another recovery mode for devices which are unable to access the rendezvous
server.

3.7.2.2. Local and Global Rendezvous Servers§

3.7.2.3. Device uses WiFi§

3.7.3. Recommended RendezvousInfo§

The RVInfo allows a DNS address to be specified using the verb RVDns:

[RVDns dnsname_string]

For the purposes of this section, we will use the DNS name "rvserver.fidoalliance.org" as the DNS name for Internet based
Rendezvous Servers, and "rvserver.local" as the DNS name for closed network based Rendezvous Servers.

If the device is using HTTPS for all FIDO Device Onboard protocols, the example RendezvousInfo is as follows:

[#RendezvousInfo (2 directives)
 # try local rendezvous server first
 [#RendezvousDirective-1
 [RVDns "rvserver.local"]
]

 # try internet based rendezvous server next
 # tries all resolved addresses
 [#RendezvousDirective-2
 [RVDns "rvserver.fidoalliance.org"]
]
]

How this works:

Within RendezvousInfo the defaults are set up for HTTPS (protocol, port, etc). So a RendezvousDirective with only a DNS
entry indicates a HTTPS connection on port 443 to any or all addresses referenced by DNS.

Thus, the Device interprets the above as a sequence of searches for DNS entries (either Internet or local, depending on
context), and tries each server in turn.

The following recommended RendezvousInfo causes the Device to try HTTPS then HTTP for both local and internet based
Rendezvous Servers. The HTTPS connection works as in the previous section. The HTTP connection requires an additional
RendezvousInstr

[RVProt RVProtHTTP]

to override the HTTPS default protocol. The port is defaulted to port 80 for HTTP. This could also be specified explicitly
using the RendezvousInstr: RVDevPort.

Since the Transfer Ownership Protocol 1 (TO1) requires HTTPS, so RendezvousDirective-2 and RendezvousDirective-4
provide no information for the Owner. The RendezvousInstr: RVDevOnly is used to indicate that this applies only to the
Device.

3.7.3.1. HTTPS only§

The device manufacturer allows all its customers to place their favored Rendezvous Server addresses in the DNS name
"rvserver.fidoalliance.org".

On a closed network, the DNS lookup for "rvserver.fidoalliance.org" fails.

A customer who wishes to onboard within a closed network creates one or more local Rendezvous Servers and
references their addresses in the local DNS entry: "rvserver.local". Note that ".local" DNS addresses do not propagate
outside a local network, even if there is a path to the Internet.

When the device starts on an Internet accessible network, the DNS lookup for "rvserver.local" fails.

3.7.3.2. HTTPS with fallback to HTTP§

[#RendezvousInfo (4 directives)

 # try local rendezvous server first
 [#RendezvousDirective-1
 [RVDns "rvserver.local"]
]

 # fall back to HTTP for local rendezvous server
 [#RendezvousDirective-2
 [RVDevOnly]
 [RVProt RVProtHttp]
 [RVDNS "rvserver.local"]
]

 # Try internet based rendezvous server next
 # tries all resolved addresses
 [#RendezvousDirective-3
 [RVDns "rvserver.fidoalliance.org"]
]

 # fall back to HTTP for internet based rendezvous server
 [#RendezvousDirective-4
 [RVDevOnly]
 [RVProt RVProtHttp]
 [RVDns "rvserver.fidoalliance.org"]
]

]

The ServiceInfo type is a collection of key-value pairs which allows an interaction between the Management Service (on the
cloud side) and Management Agent functions (on the Device side), using the FIDO Device Onboard encrypted channel as a
transport.

Conceptually, each key-value pair is a message between a module in the Owner and a module on the Device that
implements some primitive function. Messages have a name and a value. The ServiceInfo key is the module name and the
message name, separated by a colon. ServiceInfo is constrained to tstr or bstr.

CDDL

ServiceInfo = [
 * ServiceInfoKV
]
ServiceInfoKV = [
 ServiceInfoKey: tstr,
 ServiceInfoVal: bstr .cbor any
]

ServiceInfo uses key-value pairs. A ServiceInfo key is a module name and a message name:

moduleName:messageName

moduleName and messageName are tstr values. Where appropriate, the moduleName may contain a version of the module. By
convention, the version is separated using a hyphen character (‘-‘), as in: tpm-1.2 or tpm-2.

3.8. ServiceInfo and Management Service – Agent Interactions§

ServiceInfo values may be any single CBOR base type, wrapped in a bstr. The bstr wrapping ensures that the entry can be
skipped even if the major type 6 sub-type is unknown.

The interpretation of the ServiceInfo value is dependent on the message. Implementations MAY allow the module to decode
this value.

Messages sent to a module on the FIDO Device Onboard Device may interact with the Device OS to install software
components. Another message might use those components in combination with a cryptographic key, to establish
communications. In some systems, the Management Agent might be installed by cooperating modules before it is active by
others, allowing an “off-the-shelf” device to be customized by FIDO Device Onboard.

The intention is that modules will implement common or standardized IOT provisioning functions, and will be reused for
different IOT solutions provisioned by FIDO Device Onboard.

In some cases, modules on the FIDO Device Onboard Owner and FIDO Device Onboard Device will be designed to
cooperate directly with each other. For example, a module that implements a particular device management client on the
FIDO Device Onboard Device, and its counterpart that feeds it exactly the right credentials on the FIDO Device Onboard
Owner. In other cases, modules may implement IOT or OS primitives so that the FIDO Device Onboard Owner or FIDO
Device Onboard Device picks and chooses among them. For example, allocating a key pair on the FIDO Device Onboard
Device; signing a certificate on the FIDO Device Onboard Owner; transferring a file into the OS; upgrading software; and
so on.

The following set of examples is presented for illustrative purposes, and is not intended to constrain FIDO Device Onboard
implementations in any way (the bstr wrapping is elided in the example):

Example Key Example Value Comment

firmware_update:active 1
Hypothetical firmware update module, sends
“active” message with value of 1 (true)

firmware_update:codeSize uint, value 262144 Code size is 256k

firmware_update:code001 bstr
First 512 bytes of firmware update, encoded in
base64

firmware_update:verify bstr SHA384 of firmware image

wget:hashSha384 bstr
SHA384 hash of data that is downloaded in the
next message

wget:CAfiles.dat
str
'http://myserver/CAfiles.dat'

Download CA database

cmd-linux:\#!/bin/sh

str 'exec
/usr/local/bin/mydaemon -k
mykeyfile.pkcs7 -ca
CAfiles.dat'

Hypothetical module to execute Linux scripting
commands, message name gives interpreter,
value gives shell code

The API between the Management Agent / Device OS and the FIDO Device Onboard Device, and between the Management
Service and the FIDO Device Onboard Owner, are outside the scope of this document. The requirements for this API are as
follows:

A mechanism to discover modules on the FIDO Device Onboard Owner and to establish a preference among them
(analogous to a preference for TPM2 over TPM1.2)

A mechanism to connect modules on the FIDO Device Onboard Device. A complex FIDO Device Onboard Device
might be able to discover modules, but a simpler device could have modules “hard” coded

Figure 5 Management Service - Agent Interactions via ServiceInfo

A module may have an arbitrary number of messages. There are no arrays, but numbered message names can be used to
simulate their effect (mod:key1, mod:key2).

Since ServiceInfo messages are separated into one or more FIDO Device Onboard messages, it is possible to use the same
message over and over again. Whether this is has a cumulative or repetitive effect is up to the module that interprets the
messages (e.g., file:part might be repeated for successive parts, but tpm:certificate might be individual certificates).

Messages are processed in the order they appear in ServiceInfo.

The same message may also be repeated in a single ServiceInfo.

ServiceInfo does not have to be interpreted as it is parsed from the message. It is legal to buffer the entire ServiceInfo and
interpret it all later. However, the messages must be interpreted in the same order.

A mechanism to generate FIDO Device Onboard messages to modules. As above, modules can send messages to their
counterparts or to other modules

On constrained FIDO Device Onboard Devices, common code for performing base64 decoding is desirable.

Common code for modules to store and buffer state from messages is desirable.

On complex FIDO Device Onboard Devices, the ability of modules to send messages to each other may also be
supported. For example, a file transfer module and a file storage module might be called as primitives for a “file
transfer and store” module.

One special case of the above. We envision a “ROE” module, that encapsulates messages for other modules, but causes
an error unless these modules are implemented at the same security level as the FIDO Device Onboard implementation
(e.g., in the same Restricted Operating Environment). For example, ROE:tpm:createkey causes an error if the module
called “tpm” is not at the same security level as FIDO Device Onboard. This module might encrypt data to ensure that
it can only be processed in a trusted environment. Implementations which support multiple security levels for code
execution should allow for this function, since this capability cannot be simulated using other FIDO Device Onboard
mechanisms.

3.8.1. Mapping Messages to ServiceInfo§

In a given implementation it is possible to process the ServiceInfo variables as they arrive or in a batch. However, the order
of interpretation of ServiceInfo messages MUST be preserved.

The “devmod” module implements a set of messages to the FIDO Device Onboard Owner that identify the capabilities of
the device. All FIDO Device Onboard Owners must implement this module, and FIDO Device Onboard Owner
implementations must provide these messages to any module that asks for them. In addition all “devmod” messages are sent
by the Device in the first Device ServiceInfo.

The following messages are defined in the devmod Module:

Table ‑. devmod Module Device Service Info Keys

Device Service Info
Key

Disposition
CBOR
type

Meaning / Action

devmod:active Required
bool
(True)

Indicates the module is active. Devmod is required on all
devices

devmod:os Required tstr OS name (e.g., Linux)

devmod:arch Required tstr Architecture name / instruction set (e.g., X86_64)

devmod:version Required tstr Version of OS (e.g., “Ubuntu* 16.0.4LTS”)

devmod:device Required tstr
Model specifier for this FIDO Device Onboard Device,
manufacturer specific

devmod:sn Optional
tstr or
bstr

Serial number for this FIDO Device Onboard Device,
manufacturer specific

devmod:pathsep Optional tstr
Filename path separator, between the directory and sub-
directory (e.g., ‘/’ or ‘\’)

devmod:sep Required tstr
Filename separator, that works to make lists of file names
(e.g., ‘:’ or ‘;’)

devmod:nl Optional tstr
Newline sequence (e.g., a tstr of length 1 containing
U+000A; a tstr of length 2 containing U+000D followed by
U+000A)

devmod:tmp Optional tstr
Location of temporary directory, including terminating file
separator (e.g., “/tmp”)

devmod:dir Optional tstr
Location of suggested installation directory, including
terminating file separator (e.g., “.” or “/home/fdo” or
“c:\Program Files\fdo”)

devmod:progenv Optional tstr
Programming environment. See Table 3‑22 (e.g.,
“bin:java:py3:py2”)

devmod:bin Required tstr
Either the same value as “arch”, or a list of machine
formats that can be interpreted by this device, in preference
order, separated by the “sep” value (e.g., “x86:X86_64”)

3.8.2. The devmod Module§

devmod:mudurl Optional tstr
URL for the Manufacturer Usage Description file that
relates to this device

devmod:nummodules Required uint
Number of modules supported by this FIDO Device
Onboard Device

devmod:modules Required

[uint,
uint,
tstr1,
tstr2,
...]

Enumerates the modules supported by this FIDO Device
Onboard Device. The first element is an integer from zero
to devmod:nummodules. The second element is the number
of module names to return The subsequent elements are
module names. During the initial Device ServiceInfo, the
device sends the complete list of modules to the Owner. If
the list is long, it might require more than one ServiceInfo
message.

The “progenv” key-value is used to indicate the Device’ capabilities for running programs. This is a list of tags, separated by
the “sep” value, that indicates which programming environments are available and preferred on this platform. E.g.,
bin;perl;cmd means use system binary format (preferred), but Perl* is also supported, and Windows* CMD shell is also
supported, but Perl is preferred over CMD.

The following tags are supported at present. Version numbers may be appended to the tag (as in py2 and py3).

Table ‑. devmod Module "progenv" Key Tags

“progenv”
tag

Meaning

bin System-dependent most common binary format (the “arch” key-value may inform the format)

java Java* class/jar (openJDK compatible)

js Node.js* (Javascript*)

py2 Python version 2

py3 Python version 3

perl Perl 5

bash Bourne shell

ksh Korn shell

sh *NIX system shell (whichever one it is)

cmd Windows* CMD

psh Windows Power Shell

vbs Windows Visual Basic* Script

… (Other specifiers may be defined on request. Contact the FIDO Device Onboard Enablement team)

In some FIDO Device Onboard implementations, multiple modules can perform overlapping functions. Some modules may

3.8.3. Module Selection§

implement legacy versions of others (e.g., TPM versions) and some modules may control alternative IOT control techniques
(e.g., MQTT versus CoAp). The FIDO Device Onboard Owner and FIDO Device Onboard Device need to negotiate to
select the right set of modules.

In FIDO Device Onboard, module selection is as follows:

Devices may export many modules, potentially with overlapping functions. The Owner must activate modules before using
them, and may choose to deactivate particular modules (see example, below).

All Device modules implement a message modname:active to indicate whether the module is active or not.

The Owner activates a module by sending it the message:

[modname:active, True]

in OwnerServiceInfo. Once the module is activated, the Owner may send other messages to the module to perform actions
on the Device.

The Owner may deactivate a module by sending it the message:

[modname:active, False]

in OwnerServiceInfo.

The Device’s modname:active message argument is CBOR True if the module is available, and CBOR False otherwise.

The Owner MUST send a [modname:active, True] message as its first message to each module it references. It MAY send
additional messages to the module after the "active" message in the same ServiceInfo entry, before determining if the
module exists.

The Owner MAY send a [modname:active, False] message to a module, indicating that the module is to be disabled. The
Owner MUST send no further messages to this module. The Device SHOULD prevent subsequent messages from accessing
the referenced module for the rest of the TO2 protocol instance.

Any other semantics associated with disabling a module are Device specific and outside the scope of this document.

The Device MUST respond to a reference to a non-existent module with a message:

[modname:active,False]

The Device SHOULD send this message only for the first message to a non-existent module, but MAY send this message on

1. The Device sends a devmod:modules variable that lists modules initially supported by the FIDO Device Onboard
Device. The Owner may inspect this list to determine modules to access.

A Device MAY allow the Owner to download a module during ServiceInfo, such that the module may be referenced by
the Owner in the same FIDO Device Onboard session. The Device MAY update devmod:modules in this case. The
mechanism to activate such a module is outside the scope of this document.

2. Owner ServiceInfo messages indicate the intent to access a module by sending an “active” message to the module
([modname:active, True]).

3. The Device ServiceInfo indicates which modules are selected by including an “active” message and provides device-
side data for the modules from the Management Agent, as described below (§ 3.8.3.1 Module Activation/Deactivation
in ServiceInfo).

4. The Owner ServiceInfo may deselect modules with its own “active” messages, and provides messages containing
owner-side data from the Management Service.

3.8.3.1. Module Activation/Deactivation in ServiceInfo§

other references to such a module.

Except as regards the active message, above, the Device MUST ignore messages to modules it does not support. However, it
must parse the CBOR for such messages in order to process subsequent messages in the ServiceInfo.

For example, a constrained FIDO Device Onboard Device may implement a management module and a firmware update
module. The Device sends the current firmware version as a parameter in Device ServiceInfo. The FIDO Device Onboard
Owner can decide either to accept this version of firmware and de-activate the firmware update module, or decide to update
the firmware and de-activate the management module.

If possible, all module functions should complete in time to allow the FIDO Device Onboard operation to succeed or fail
based on module operation, so that a module failure causes the entire FIDO Device Onboard operation to fail and be retried
later. In some cases, the module cannot determine success criteria before FIDO Device Onboard completes (e.g., a firmware
update module must restart the system to invoke the new software), and FIDO Device Onboard must complete “on faith”
that all is well.

Any error in a module must cause the active FIDO Device Onboard session to fail with an error message. If the FIDO
Device Onboard session has already completed (as described in the previous paragraph), a Device SHOULD store log
information to allow subsequent error isolation. Such error processing and access to such error logs is outside the scope of
FIDO Device Onboard.

Module information in ServiceInfo may be used to indicate a preference for one module over another. For example, the
FIDO Device Onboard Owner may indicate that a TPM2 module is preferred over a TPM1.2 module, even if both are
supported by the Owner and the Device.

As an example, consider a device which exports 3 modules:

In this example, IOT devices are originally distributed with TPM1.2, then later a new model is adopted, which uses TPM2.
The Owner needs the device to allocate 3 key pairs for signing, based on the cryptography available; whichever version of
TPM is present must allocate the appropriate key pairs.

The following ServiceInfo can instruct the legacy (TPM1.2) device to allocate 3 RSA key pairs, and the current (TPM2)
device to allocate 3 ECDSA key pairs:

index ServiceInfoKey ServiceInfoVal meaning

1 "tpm-2:active" True Enable tpm-2 module

2 "tpm-1.2:active" True Enable tpm-1.2 module

3 "tpm-2:sgnKeys" 3 Allocate 3 TPM2 keys

4 "tpm-2:type" "secp256r1" TPM2 keys are ECDSA

5 "tpm-1.2:sgnKeys" 6 Allocate 3 TPM1.2 keys

3.8.3.2. Module Execution and Errors§

3.8.3.3. Module Selection Using ServiceInfo§

"tpm": a module to indicate the preference of one TPM version over another

"tpm2": a module to allocate keys from a TPM version 2

"tpm1.2" a module to allocate keys from a TPM version 1.2

7 "tpm-1.2:type" "RSA3072" TPM1.2 keys are RSA

In the following examples, spaces are provided for clarity, and fragments of ServiceInfo are presented in pseudo JSON.

ServiceInfo:

[
 ...
 ['mymod:options','foo,bar']
 ['mymod:options',h’0393a3f3']
 ...
]

These fragments define a message “mymod:options” with value “foo,bar”. The first gives the value in a text string (tstr), and
the second is a byte string (bstr).

Which value is correct depends on the implementation of “mymod”.

Owner ServiceInfo1:

[
 ['binaryfile:active', True],
 ['binaryfile:name','myfile.tmp'],
 ['binaryfile:length',722],
 ['binaryfile:data001',h'—*data-512-bytes*—']
]

Owner ServiceInfo2:

[
 ['binaryfile:data002',h'—*data-210-bytes*—'],
 ['binaryfile:sha-384',h'—*data*—*48-bytes*']
]

In this example, a “binary file” module allows a file to be downloaded using the FIDO Device Onboard secure channel. The
data001 and data002 variables need to be in separate ServiceInfo messages to keep message sizes small. A bstr is used to
allow the module to generate a binary file. The last message allows the file transfer to be verified after it is stored in the
filesystem, as an added integrity check.

Another way to accomplish file transfer would be to use an external HTTP connection. For example:

Owner ServiceInfo:

[
 ['wget:active', True],
 ['wget:filename', 'myfile.tmp'],

3.8.3.4. Examples§

3.8.3.5. Expressing Values in Different Encodings§

3.8.3.6. Hypothetical File transfer (Owner ServiceInfo)§

 ['wget:url', 'http://myhost/myfile.tmp'],
 ['wget:sha-384', h'—*data*—*48-bytes*—']
]

In this case, the file is transferred using a separate connection, perhaps at OS level. If the file is confidential, ‘https:’ could
be used instead of ‘http:’.

Both these techniques are valid in FIDO Device Onboard, and represent two sides of a trade-off. Using the FIDO Device
Onboard channel, a small file can be transferred without needing a parallel network connection. However, the same file
might be transferred much faster using an optimized HTTP implementation, and might not require the confidentiality built
into FIDO Device Onboard (e.g., the file contents might be posted on a public Internet site). The following table discusses
the trade-off.

Table ‑. Comparison of Transferring a File Using FIDO Device Onboard Channel or Independent Channel

File Transfer Using FIDO Device Onboard Channel File Transfer Using HTTP Mechanism

Performance based on FIDO Device Onboard
protocol (slow for file large data)

Performance based on HTTP or HTTPS, designed for
streaming large amounts of data. Second stream required.

Can download large amounts of bulk data or
programs (limited to the number of ServiceInfo
iterations)

Can download arbitrary amounts of bulk data or programs

Data can be stored in a file Data can be stored in a file

Data can be executed as a program Data can be executed as a program

Data is encrypted using FIDO Device Onboard
channel

Data is encrypted only if HTTPS is used.

Data is verified using FIDO Device Onboard channel
Data can verified by the module if a hash of contents (e.g.,
SHA384) is included

Owner ServiceInfo:

[
 ['code:active',True],
 ['code:architecture','x86_64'],
 ['code:length':'512'],
 ['code:machinecode001','—*data-512-bytes*—']
]

In this example, a module permits loading and executing machine code (this might be needed on a MCU). Obviously, this
requires a high degree of trust in the FIDO Device Onboard implementation, and perhaps an ability to execute code in a
sandbox.

This section is non-normative.

An FIDO Device Onboard implementation may implement ServiceInfo in a variety of ways. It is recommended that FIDO

3.8.3.7. Hypothetical Direct Code Execution§

3.8.4. Implementation Notes§

Device Onboard implementations create a ServiceInfo interface on both Device and Owner side, that allows an easy plug-in
mechanism.

On the Owner side, a dynamic plug-in mechanism may by easier to maintain.

On the Device side, a statically linked or compiled mechanism may be required due to system constraints. However, a more
capable Device that runs Linux OS might be able to implement a flexible scripted mechanism similar to Linux init.d.

Constrained Devices must still parse ServiceInfo messages, but may discard them if the module or message is not supported.

All data is transmitted using Messages. Data may also be persisted or interchanged using messages, although a more
compact form of the message might be used for long-term storage; for example, a persisted type might be compressed or re-
encoded in a system-dependent binary format.

A message has 4 elements:

Messages may be transmitted or forwarded using a variety of communications mechanisms, such as API’s, physical media,
and protocols that layer on physical media. The encapsulation of the message can vary, depending on the media in use. For
example, an HTTP message includes a content length in a specific format.

The protocol message body is always transmitted so as to recreate the same logically contiguous message on the other end of
communications. The other parameters may be encoded within the communications medium. Of particular interest are these
cases:

The StreamMsg type (§ 3.3 Composite Types) includes the entire message format, with all elements included. A space is
provided for protocol-specific information, and the message body appears separately.

The array header and message length are designed to have a constrained length in CBOR format, which may be read first by
a low level driver. The low level driver reads the first 4 bytes of a message. The encoding guarantees that all messages have
at least 4 bytes, and that message length is completely contained in these first 4 bytes. The low level driver can use this
information to read the rest of the message.

The StreamMsg type has been created in a way that allows a FIDO Device Onboard implementation to present a message to
the code that processes it in a uniform manner, independent of protocol transmission. However, applications can choose to
use another format if it is more convenient.

FIDO Device Onboard implementations SHOULD create a StreamMsg structure for message interpretation, regardless of
the way the FIDO Device Onboard connection is actually transmitted.

4. Data Transmission§

4.1. Message Format§

A length

A message type, which acts to identify the message body

Protocol version: the version of the transmitted ("wire") protocol

A particular protocol message body, associated with the message ID, defined in the context of the protocol

When FIDO Device Onboard protocols are transmitted using a reliable stream protocol, or a technology that provides a
similar service.

When FIDO Device Onboard protocols are transmitted using HTTP-like protocols (i.e., HTTP, HTTPS or CoAP).

4.2. Transmission of Messages over a Stream Protocol§

In some cases, messages are transmitted over a stream or datagram protocol. This is a protocol that reliably transmits a
stream of data with no external or out-of-band information. In this case, all message data must be encapsulated in a single
protocol data unit (PDU) that encapsulates a CBOR-encoded StreamMsg type.

When a stream protocol (such as TCP or TLS) is used as the transport FIDO Device Onboard protocols, the protocol
proceeds as follows:

This section describes how to transmit FIDO Device Onboard over a sequence of HTTP-like transactions, sometimes called
"RESTful" protocols. This section applies to several such protocols, including HTTP, HTTPS and CoAP. FIDO Device
Onboard is not itself a RESTful protocol, since it maintains state between client and server across message boundaries.
However, it is useful to use RESTful protocols to transmit FIDO Device Onboard messages.

In what follows, HTTP is used to characterize FIDO Device Onboard behavior. Other HTTP-like protocols use the same
rules.

When HTTP (or an HTTP-like) protocol is used as transport for JSON messages, the protocol proceeds as follows:

The Device always calls out as the stream client.

The Rendezvous Server always acts as the stream server.

The Owner Onboarding Service acts as stream client for Transfer Ownership Protocol 0 TO0—interacting with the
Rendezvous Server) and as stream server for Transfer Ownership Protocol 2 (TO2—interacting with the device).

Internet-based protocols normally use standard protocols TCP or UDP port (e.g., HTTP on port 80, HTTPS on port
443). However, for testing, or where needed, other ports may be used.

For all reliable stream protocols, StreamMsg items are transmitted in the stream verbatim, without a separate messaging
layer.

The stream is kept open until the last message has been transmitted, then dropped using the normal stream close (e.g.,
TCP FIN).

The stream connection must be adjusted to handle expected processing delays without dropping the connection. In the
case of a TCP stream (direct or underlying), the client and server must configure their TCP implementation to send
“keep-alives” frequently enough to keep the connection alive for the entire protocol transaction, including all stateful
routers and firewalls that might be in the connection path. This is particularly an issue if either the client or the server
takes a long delay to send some messages.

Dropping a stream connection constitutes a failure of the protocol, causing the client to restart as mandated by this
specification. For example, a Device will handle a failure of a TO2 protocol by restarting with the next identified host
in the Rendezvous protocol, and initiating TO1.

4.3. Transmission of Messages over the HTTP-like Protocols§

The HTTP client always uses an HTTP POST. The content type is application/cbor.

The HTTP server listens on a standard port for the transport protocol. (HTTP: TCP/80, TLS: TCP/443)

Non-standard ports MAY be used if needed for special deployment circumstances, such as when multiple servers share
a common IP address.

The Device interprets the RendezvousInfo and implements the TO1 protocol using HTTP.

Each HTTP request-response interaction corresponds to a pair of messages.

The first message body is delivered in the POST body.

The second message is delivered as the entire POST response with status code 200 OK [RFC2616], unless it is an
error message or the situation described in the TO1.HelloRV message (see section § 5.4.1 TO1.HelloRV, Type
30).

The FIDO Device Onboard implementation has some latitude in both the form of the authorization token and how this token
gets allocated for FIDO Device Onboard protocols. In the typical (recommended) case, there is no initial authorization:

If the Rendezvous Server wishes to obtain a token using specific HTTP credentials, these must be programmed into the
device, then transmitted with or before the first FIDO Device Onboard HTTP request. How this might be done is outside the
scope of this document.

The second message contains the message type as the HTTP header with field-name: "Message-Type:" and field-
value: the numeric message type given in this document. An error message MAY omit the "Message-Type"
header. Example: "Message-Type: 21".

The length of the message is derived from the Content-Length field.

The URL for the message is of the form:

/fdo/101/msg/ msgtype

Where the first part, “/fdo/” is verbatim; the number “101” is the protocol version (major version (1) * 100 +
minor version 1); the string “/msg” is verbatim, and msgtype is the message type associated with the protocol
message.

On first message, the HTTP server allocates a token, which must be maintained by the HTTP client for the duration of
this FDO protocol (DI, TO0, TO1 or TO2).

The token is transmitted in the HTTP “Authorization” header.

The form of the token is implementation-specific. The simplest token is just a random number chosen to be unique
from other tokens. A JSON Web Token (JWT) or CBOR Web Token (CWT) might also be used.

The purpose of the token is to link HTTP calls to their protocol context within the message stream defined by the FIDO
Device Onboard Protocols. For example, a Java implementation of FIDO Device Onboard protocols might use a Java
object to store connection state. The handler for a subsequent HTTP message can find this stored state by looking it up
using the token as a key.

After the TO1 protocol is completed, the Device chooses the DNS/IP address, port and protocol from the RVTO2Addr
array delivered in the TO1 protocol. The Device SHOULD choose the lowest indexed RVTO2AddrEntry it is able to
implement, in order to reflect the preference of the Owner. However, the Device MAY choose the entries in any order
if it has its own preferences (e.g., protocol resource usage in a constrained Device).

If a DNS name is present in a selected RVTO2AddrEntry, the DNS lookup is performed first, and all resolved IP
addresses are tried before the given IP address is tried. If the given IP address was one of the IP addresses returned by
DNS, it does not have to be tried separately (once is enough).

Based on these and the above rules, the Device implements the TO2 protocol.

An FIDO Device Onboard Device MAY support only TCP (e.g., HTTP but not HTTPS), relying on FIDO Device
Onboard for all transmission security. A proxy may be used to encapsulate TCP from constrained devices into TLS.
Although this does not change the security posture of the connection, it may be useful for connecting to the largest
possible number of Owner sites.

The initial HTTP request from the Device has an empty Authorization header or no such header. FIDO Device
Onboard protocols perform their own authorization within the message layer.

The Rendezvous Server detects such a header as a request for a new connection, and allocates a new token and
associates it with the protocol context.

The Device saves the token and uses it on subsequent requests within the protocol, but not across protocols. An
example is when TO1 uses one token, and TO2 uses a different token.

The Rendezvous Server uses the token to look up the protocol context so that each subsequent message is processed
correctly.

When transmitting messages across HTTP request-response pairs, the client and server must take into account the possibility
that the underlying network connection may time out between HTTP messages. This is a problem if the time between a
given HTTP message and its response (i.e., a POST and the POST response) is long or if the time between messages is long.

In general, each FIDO Device Onboard protocol may send HTTP request-response messages across a single TCP stream (or
TLS stream for HTTPS). We require that the TCP server side (the Owner or the Rendezvous Server) either respond to
messages within one or two seconds, or generate TCP keep-alives sufficient to keep the connection open.

In the case of the TO1 and TO2 Protocols, the client is the Device, which might be running on a constrained system. In this
case, some of cryptographic operations may take long enough for the underlying TCP connection to time out between
messages. The client must be robust in its ability to restore TCP / TLS connections for each protocol transaction.

It is legal for the client to open a new TCP connection for each HTTP request, although it is recommended that the
connection be used for multiple requests where possible.

Transfer Ownership 2 Protocol (TO2) includes a key exchange (see § 3.6 Key Exchange in the TO2 Protocol), which
generates a session encryption key (SEK) and a session verification key (SVK); or a single session encryption and
verification key (SEVK). Subsequent message bodies in this protocol are confidentiality and integrity protected:

An encrypted message has the following format:

CDDL

EncryptedMessage /= (
 Simple: EncryptedMessage,
 Composed: EncThenMacMessage
)

EncryptedMessage = #6.16(EMBlock)

;;Simple encrypted message, using one COSE
;; (authenticated) encryption mechanism.
EMBlock = [
 protected: { 1:COSEEncType },
 unprotected: { COSEUnProtFields }
 payload: ProtocolMessage
]

;; Non-Simple is Encrypt-then-Mac, implemented as
;; an HMAC (COSE_Mac0) with a AES (COSE_Encrypt0) inside
EncThenMacMessage = #6.17(HMacOuterBlock) ;; MAC0
ETMOuterBlock = [

4.3.1. Maintenance of HTTP Connections§

4.4. Encrypted Message Body§

Using encryption with the session encryption key (Cipher[SEK]) and subsequent integrity protection using the
verification key (HMAC[SVK]).

Using encryption and integrity protection via an authenticated encryption technique supported by COSE, such as AES-
GCM [SP800-38D] or AES-CCM [SP800-38C]. The key material for these is SEVK.

A message header, as per: § 2.1 Message Passing Protocol

A message body, which is a COSE object whose payload is the message, encrypted and integrity protected by COSE
primitives.

 protected: bstr .cbor ETMMacType,
 unprotected: {},
 payload: bstr .cbor ETMPayloadTag,
 tag: bstr
]
ETMMacType = { 1: MacType }
ETMPayloadTag = #6.16(ETMInnerBlock)
ETMInnerBlock = [
 protected: { 1:AESPlainType },
 unprotected: { 5:AESIV }
 payload: ProtocolMessage
]

MacType = HMAC-SHA256 / HMAC-SHA384
 HMAC-SHA256 => 5
 HMAC-SHA384 => 6
AESPlainType = (COSEAES128CBC / COSEAES256CBC / COSEAES128CTR / COSEAES256CTR)
AESIV = bstr .size 16

Encrypt Then Mac suites
the assigned numbers are shared with COSE crypto types used
CS_AES128_CTR_HMAC-SHA256 = COSEAES128CTR
CS_AES128_CBC_HMAC-SHA256 = COSEAES128CBC
CS_AES256_CTR_HMAC-SHA386 = COSEAES256CTR
CS_AES256_CBC_HMAC-SHA384 = COSEAES256CBC

ETMSuites /= (
 CS_AES128_CTR_HMAC-SHA256,
 CS_AES128_CBC_HMAC-SHA256,
 CS_AES256_CTR_HMAC-SHA386,
 CS_AES256_CBC_HMAC-SHA384
)
CipherSuites => (COSEncType / ETMSuites)

Placeholder for values defined in the COSE specification
COSEEncType = A128GCM / A256GCM / AES-CCM-64-128-128 / AES-CCM-64-128-256 ...

A128GCM, A256GCM, AES-CCM-16-128-128, AES-CCM-16-128-256 are defined in the COSE specification [RFC8152].

With respect to AES CCM modes, note that the message size for FIDO Device Onboard is restricted to 2^16 bytes, so a
AES CCM mode with L=16 is acceptable. See [RFC3610]

COSEEncType indicates encryption mechanisms from the COSE specification [RFC8152]. The given list is exemplary; all
encryption types defined in the COSE spec are permitted to be used with FIDO Device Onboard. COSEUnProtFields
indicates unprotected header fields chosen from [RFC8152], such as IV type 5, defined within the Generic_Headers CDDL
object.

The mechanism of EncThenMac is a common encrypt-then-mac operation, created by composing COSE messages. This
mechanism is provided for legacy cryptographic engines which do not yet support authenticated encryption as a single
operation. In pseudo-JSON, this composed structure has the following form:

Example:

COSE_Mac0[
 {1:5}, # protected: alg:SHA256
 {}, # unprotected
 COSE_Encrypt0[
 {1:AESPlainType} # protected
 {5:h'--*iv*--'}, #unprotected

 h'--*AES*-*encrypted*-*CBOR*--'
],
 h'--*hmac*-*bytes*---'
]

Table ‑.

Cipher Suite Names and Meanings

Cipher Suite Name (see
TO2.HelloDevice)

Initialization Vector (IVData.iv in "ct"
message header)

Notes

A128GCM
A256GCM
AES-CCM-64-128-128
AES-CCM-64-128-256

Defined as per COSE specification. Other
COSE encryption modes are also supported.

COSE encryption modes are preferred,
where available.

KDF uses HMAC-SHA256

AES128/CTR/HMAC-
SHA256

The IV for AES CTR Mode is 16 bytes long
in big-endian byte order, where:

The random data source must be a
cryptographically strong pseudo random
number generator (CSPRNG) or a true
random number generator (TNRG).

This is the preferred encrypt-then-mac
cipher suite for FIDO Device Onboard
for 128-bit keys. Other suites are
provided for situations where Device
implementations cannot use this suite.
AES in Counter Mode [6] with 128 bit
key using the SEK from key exchange.

KDF uses HMAC-SHA256

AES128/CBC/HMAC-
SHA256

IV is 16 bytes containing random data, to use
as initialization vector for CBC mode. The
random data must be freshly generated for
every encrypted message. The random data
source must be a cryptographically strong

AES in Cipher Block Chaining (CBC)
Mode [3] with PKCS#7 [17] padding.
The key is the SEK from key
exchange.

Implementation notes:

The first 12 bytes of IV (nonce) are
randomly generated at the beginning of a
session, independently by both sides.

The last 4 bytes of IV (counter) is
initialized to 0 at the beginning of the
session.

The IV value must be maintained with
the current session key. “Maintain”
means that the IV will be changed by the
underlying encryption mechanism and
must be copied back to the current
session state for future encryption.

For decryption, the IV will come in the
header of the received message.

Implementation may not return an
error that indicates a padding
failure.

The implementation must only
return the decryption error after
the "expected" processing time

pseudo random number generator (CSPRNG)
or a true random number generator (TNRG).

It is recognized that the first item is
hard to achieve in general, but FIDO
Device Onboard risk is low in this
area, because any decryption error will
cause the connection to be torn down.

KDF uses HMAC-SHA256

AES256/CTR/HMAC-
SHA384

The IV for AES CTR Mode is 16 bytes long
in big-endian byte order, where:

The random data source must be a
cryptographically strong pseudo random
number generator (CSPRNG) or a true
random number generator (TNRG).

This is the preferred encrypt-then-mac
cipher suite for FIDO Device Onboard
for 256-bit keys. Other suites are
provided for situations where Device
implementations cannot use this suite.
AES in Counter Mode [6] with 256 bit
key using the SEK from key exchange.

KDF uses HMAC-SHA384

AES256/CBC/HMAC-
SHA384

IV is 16 bytes containing random data, to use
as initialization vector for CBC mode. The
random data must be freshly generated for
every encrypted message. The random data
source must be cryptographically strong
pseudo random number generator (CSPRNG)
or a true random number generator (TNRG)

AES-256 in Cipher Block Chaining
(CBC) Mode [15] with PKCS#7[16]
padding. The key is the SEK from key
exchange. Implementation notes:

It is recognized that the item is hard to
achieve in general, but FIDO Device
Onboard risk is low in this area,
because any decryption error causes
the connection to be torn down.

for this message.

The first 12 bytes of IV (nonce) are
randomly generated at the beginning of a
session, independently by both sides.

The last 4 bytes of IV (counter) is
initialized to 0 at the beginning of the
session.

The IV value must be maintained with
the current session key. “Maintain”
means that the IV will be changed by the
underlying encryption mechanism and
must be copied back to the current
session state for future encryption.

For decryption, the IV will come in the
header of the received message.

Implementation may not return an
error that indicates a padding
failure.

The implementation must only
return the decryption error after
the "expected" processing time
for this message.

KDF uses HMAC-SHA384

This section defines protocol messages and interactions.

Composite types described in the tables in section § 3.3 Composite Types are used freely.

Message Body:

ErrorMessage = [
 EMErrorCode: uint16, ;; Error code
 EMPrevMsgID: uint8, ;; Message ID of the previous message
 EMErrorStr: tstr, ;; Error string
 EMErrorTs: timestamp,;; UTC timestamp
 EMErrorCID: correlationId ;; Unique id associated with this request
]
timestamp = null / UTCStr / UTCInt / TIME_T
UTCStr = #6.0(tstr)
UTCInt = #6.1(uint)
TIMET = #6.1(uint)
correlationId = uint

HTTP Context:

Message Meaning:

The error message indicates that the previous protocol message could not be processed. The error message is a “catch-all”
whenever processing cannot continue. This includes protocol errors and any trust or security violations.

The FIDO Device Onboard protocol is always terminated after an error message (and retries, automatically, as per
RendezvousInfo), and all FIDO Device Onboard error conditions send an error message. However, security errors might not
indicate the exact cause of the problem, if this would cause a security issue.

The contents of the error message are intended to help diagnose the error. The “EMErrorCode” is an error code, please see
following section, Error Code Values, for detailed information. The “EMPrevMsgID” gives the message ID of the previous

5. Detailed Protocol Description§

5.1. General Messages§

5.1.1. Error - Type 255§

When transmitted as HTTP response:

HTTP response is status code: 500 Internal Service Error [RFC2616]

HTTP response includes authentication token, if one is active

HTTP response body contains ErrorMessage

When transmitted as HTTP request:

HTTP request is: POST /fdo/101/msg/255

Message type is 255 (Error)

HTTP message contains authentication token, if one is active

HTTP message body contains ErrorMessage

message, making it easier to put the error into context. The “EMErrorStr” tag gives a string suitable for logging about the
error.

The string in the “EMErrorStr” tag must not include security details that are inappropriate for logging, such as a specific
security condition, or any key or password information.

The values EMErrorTS and EMErrorCID are intended to expedite diagnosis of problems, especially between cloud-based
entities where large logs must be searched. In a typical scenario, an endpoint generates a correlation ID for each request and
includes it in column of each event or trace logged throughout processing for that request. The combination of correlation ID
and the time of the transaction help to find the log item and its context.

EMErrorTS and EMErrorUuid may be CBOR Null if there is no appropriate value. This may occur in Device based
implementations. In some Devices, a time value may exist that is not correlated to UTC time, but might still be useful. The
TIMET choice is intended to remove the UTC restriction and allow a Device-local time value to be used.

If the problem is found in a HTTP request, the ERROR message is sent as HTTP response. The body of the response is a
FIDO Device Onboard message with message type 255, and “EMErrorStr” indicates the message type of the HTTP request
message. The flow is as follows:

If the problem is found in a HTTP response, the ERROR message is sent as a new HTTP request, POST /fdo/101/msg/255,
and the “EMPrevMsgID” indicates the message type of the previous HTTP response message. The authentication token
from the previous HTTP request appears in the HTTP request containing the ERROR message. Since the ERROR message
terminates the FIDO Device Onboard protocol, the HTTP response to an ERROR message is an HTTP empty message (zero
length). The flow is as follows:

ERROR messages are never re-transmitted, and an ERROR message must never generate an ERROR message in response.

Table ‑. Error Codes

Error Codes

Error
Code
(EC)

Internal Name Generated by Message
Description

DI.SetHMAC TO0.OwnerSign

JWT token is missing
or invalid. Each token
has its own validity
period, server rejects
expired tokens. Server
failed to parse JWT

1. HTTP request: POST /fdo/101/msg/X, msg type = X

2. HTTP error message in response, as described above

3. FIDO Device Onboard terminates in error on both sides

1. HTTP request: POST /fdo/101/msg/Y, msg type = Y (for any message type Y)

2. HTTP response: msg type = X

3. HTTP request, error message in request, as described above

4. HTTP response: <zero length>

5. FIDO Device Onboard terminates in error on both sides

5.1.1.1. Error Code Values§

001 INVALID_JWT_TOKEN

TO1.ProveToRV
TO2.GetOVNextEntry
TO2.ProveDevice
TO2.NextDeviceServiceInfo
TO2.Done

token or JWT signature
did not verify correctly.
The JWT token refers
to the token mentioned
in section 4.3 (which is
not required by
protocol to be a JWT
token). The error
message applies to
non-JWT tokens, as
well.

002 INVALID_OWNERSHIP_VOUCHER TO0.OwnerSign

Ownership Voucher is
invalid: One of
Ownership Voucher
verification checks has
failed. Precise
information is not
returned to the client
but saved only in
service logs.

003 INVALID_OWNER_SIGN_BODY TO0.OwnerSign

Verification of
signature of owner
message failed.
TO0.OwnerSign
message is signed by
the final owner (using
key signed by the last
Ownership Voucher
entry). This error is
returned in case that
signature is invalid.

004 INVALID_IP_ADDRESS TO0.OwnerSign

IP address is invalid.
Bytes that are provided
in the request do not
represent a valid
IPv4/IPv6 address.

005 INVALID_GUID TO0.OwnerSign

GUID is invalid. Bytes
that are provided in the
request do not
represent a proper
GUID.

006 RESOURCE_NOT_FOUND TO1.HelloRV TO2.HelloDevice

The owner connection
info for GUID is not
found. TO0 Protocol
wasn’t properly
executed for the
specified GUID or
information that was
stored in database has

expired and/or has
been removed.

100 MESSAGE_BODY_ERROR

DI.AppStart DI.SetHMAC
TO0.Hello TO0.OwnerSign
TO1.HelloRV TO1.ProveToRV
TO2.HelloDevice
TO2.GetOVNextEntry
TO2.ProveDevice
TO2.NextDeviceServiceInfo
TO2.GetNextOwnerServiceInfo
TO2.Done

Message Body is
structurally unsound:
JSON parse error, or
valid JSON, but is not
mapping to the
expected Secure
Device Onboard type
(see 4.6)

101 INVALID_MESSAGE_ERROR

TO0.OwnerSign TO1.HelloRV
TO1.ProveToRV
TO2.HelloDevice
TO2.GetOVNextEntry
TO2.ProveDevice
TO2.NextDeviceServiceInfo
TO2.GetNextOwnerServiceInfo

Message structurally
sound, but failed
validation tests. The
nonce didn’t match,
signature didn’t verify,
hash, or mac didn’t
verify, index out of
bounds, etc...

102 CRED_REUSE_ERROR TO2.SetupDevice
Credential reuse
rejected.

500 INTERNAL_SERVER_ERROR

DI.AppStart DI.SetHMAC
TO0.Hello TO0.OwnerSign
TO1.HelloRV TO1.ProveToRV
TO2.HelloDevice
TO2.GetOVNextEntry
TO2.ProveDevice
TO2.NextDeviceServiceInfo
TO2.GetNextOwnerServiceInfo
TO2.Done

Something went wrong
which couldn’t be
classified otherwise.
(This was chosen to
match the HTTP 500
error code.)

The Device Initialize Protocol a non-normative protocol, and may be replaced by any protocol that achieves the same end-
state of storing the Device Credentials in the device and creating the Ownership Voucher to complement these credentials.

The Device Initialize Protocol (DI) serves to set the manufacturer and owner of the device in the ROE. It is assumed to be
performed at device manufacture time.

This protocol uses a Trust On First Use (TOFU) trust model, consistent with the FIDO Device Onboard assumption that the
manufacturing environment is trusted.

It is possible to implement a more restricted trust model for the DI Protocol by embedding a public key into the ROE, with
the ROE owner providing signing (or at least CA) services to the manufacturer.

The DI Protocol runs between a manufacturing support station, which contains the FIDO Device Onboard Manufacturing
Component, and the Device ROE.

The Device is assumed to be running with some other kind of support software, which is able to access the ROE and provide
communications services for it. For example, the device may be PXE-booted into a RAM-based Linux system, with features

5.2. Device Initialize Protocol (DI)§

to access the ROE. It is assumed that this software is able to determine from its environment the IP address for the
manufacturing support station.

Some devices may be initialized without normal CPU "startup". These devices can be initialized for FIDO Device Onboard
using other techniques.

Before the DI protocol is run, it is assumed that:

Figure 6 DI Protocol Diagram

CDDL

DIProtocolMessages /= (
 DI.AppStart,
 DI.SetCredentials,
 DI.SetHMAC,
 DI.Done
)

From Device ROE to Manufacturer:

The App Start message starts talking to the ROE application to start. Downloading, verifying, and starting the ROE
application is outside the scope of this document.

Message Format:

DI.AppStart = [
 DeviceMfgInfo

The Device has a key pair installed, that can be used to run FIDO Device Onboard.

The manufacturer has a copy of the Device public key and has created a Device certificate chain.

5.2.1. DI.AppStart, Type 10§

]
DeviceMfgInfo = bstr .cbor any

HTTP Context:

POST /fdo/101/msg/10

Message Meaning:

Start the process of taking initial ownership of the device.

If available, the device may include a serial number or other identifying mark from the hardware in this message, using
DeviceMfgInfo. This is intended to help the manufacturing station to index FIDO Device Onboard information with other
information available to the manufacturer. If no such information is available, DeviceMfgInfo is sent with a cbor null value.

The manufacturing station SHOULD be able to accept any legal value of DeviceMfgInfo, even if the value cannot be
interpreted.

From Manufacturer to Device ROE:

Message Format:

DI.SetCredentials = [
 bstr .cbor OVHeader
]

HTTP Context:

Message Meaning:

The manufacturing station sends credentials to the Device ROE. The credentials in OVHeader are identical to the OVHeader

field of the Ownership Voucher. Note that OVHeader is wrapped in a byte string, as it is in the Ownership Voucher. Some
additional credentials allow the original manufacturer of the device to be determined across future ownership transfers.

The manufacturing station computes the Hash of the device certificate chain (provided by the manufacturer to the
manufacturing tool) and includes the Hash as OVHeader.OVDevCertChainHashOrNull in the message. When the device uses
Intel® EPID root of trust, OVHeader.OVDevCertChainHashOrNull may be CBOR null.

The manufacturing station typically will use the DeviceMfgInfo determine information for OVHeader.OVRendezvousInfo,
OVHeader.OVDeviceInfo and OVHeader.PublicKey. The OVHeader.OVGuid field (GUID) shall be a secure-randomly
created unique identifier and not derived in any way from device-specific information to ensure the privacy of the protocol.
The Device ROE allocates a secret, stores this information in the Device ROE within the DeviceCredential, along with the
secret. A hash of the public key OVHeader.OVPubKey is stored as a DeviceCredential.DCPubKeyHash.

The Device ROE also computes an HMAC based on the above secret and the entire contents of this message body
(including the brace brackets). This HMAC is used in the next message.

Potential uses for DeviceMfgInfo:

5.2.2. DISetCredentials, Type 11§

POST response

includes authorization token

model number and/or serial number of the device, used as a database search key

From Device ROE to Manufacturer:

Message Format:

DI.SetHMAC = [
 Hmac
]

HTTP Context:

POST /fdo/101/msg/12

Message Meaning:

The device ROE returns the HMAC of the internal secret and the DI.SetCredentials.OVHeader tag, as mentioned above. The
manufacturer combines this HMAC with its own transmitted information to create an Ownership Voucher with zero entries.

From Manufacturer to Device ROE:

Message Body:

DI.Done = [] ;; empty message

HTTP Context:

Message Meaning:

Indicates successful completion of the DI protocol. Before this message is sent, credentials associated with the device should
be recoverably persisted in the manufacturing backend.

Upon receipt of this message, the device persists all information associated with the Device Initialization protocol.

The function of Transfer Ownership Protocol 0 (TO0) is to register the new owner’s current Internet location with the
Rendezvous Server under the GUID of the device being registered. This location is formatted into a 'blob' of data, which
includes an array of type RVTo2Addr with addressing options for the Device. The Rendezvous Server negotiates a length of
time during which it will remember the rendezvous 'blob.' If the new owner does not receive a device transfer of ownership
within this time, it must re-connect to the Rendezvous Server to repeat Transfer Ownership Protocol 0.

Transfer Ownership Protocol 0 MUST be implemented as a normative interface to each Rendezvous Server. This normative
requirement ensures interoperability between Owners and Rendezvous Servers.

certificate chain for device key to be used with FIDO Device Onboard, where the device stores part of this chain in an
earlier stage of manufacturing.

5.2.3. DI.SetHMAC, Type 12§

5.2.4. DIDone, Type 13§

POST response with token

5.3. Transfer Ownership Protocol 0 (TO0)§

However, any given Owner and given Rendezvous Server may implement any interface or protocol to register the
rendezvous information, instead of using the TO0 protocol, so long as the state of the Rendezvous Server with respect to the
Transfer Ownership Protocol 1 (TO1) is identical to that generated by the TO0 protocol specified here.

The protocol begins when the Owner Onboarding Service opens a connection to the Rendezvous Server as is given in the
Ownership Voucher.

The preferred protocol to use is TLS with server authentication only. The necessary client authentication is provided by the
ownership voucher.

Figure 7 TO0 Protocol Diagram

CDDL

TO0ProtocolMessages = (
 TO0.Hello,
 TO0.HelloAck,
 TO0.OwnerSign,
 TO0.AcceptOwner
)

From Owner Onboarding Service to Rendezvous Server

Message Format:

TO0.Hello = [] ;; -empty array-

HTTP Context:

POST /fdo/101/msg/20

5.3.1. TO0.Hello, Type 20§

Message Meaning:

Initiates the TO0 Protocol, requests a Hello Ack nonce.

From Rendezvous Server to Owner Onboarding Service

Message Format:

CDDL

TO0.HelloAck = [
 NonceTO0Sign
]

HTTP Context:

Message Meaning:

Requests proof of the Ownership Voucher. NonceTO0Sign is returned in TO0.OwnerSign.

From Owner Onboarding Service to Rendezvous Server

Message Format:

CDDL

TO0.OwnerSign = [
 bstr .cbor to0d, ;; TO0 protocol parameters, not used in TO1
 to1d ;; TO1 blob being provided from Owner
]
;; to0d is covered by the signature of to1d, using a hash
to0d = [
 OwnershipVoucher, ;; Ownership Voucher (complete)
 WaitSeconds, ;; how many seconds to wait.
 NonceTO0Sign ;; Freshness of signature
]
WaitSeconds = uint32
;; to1d is the "rendezvous blob" that the Owner sends to the
;; Device via the rendezvous server.
;; To1d is used for both the to0 protocol and the to1 protocol
to1d = CoseSignature
to1dBlobPayload = [
 to1dRV: RVTO2Addr, ;; choices to access TO2 protocol
 to1dTo0dHash: Hash ;; Hash of to0d from same to0 message
]
$COSEPayloads /= (
 to1dBlobPayload
)

5.3.2. TO0.HelloAck, Type 21§

POST response

includes authorization token

5.3.3. TO0.OwnerSign, Type 22§

HTTP Context:

POST /fdo/101/msg/22

Message Meaning:

The new owner demonstrates its credentials for a given GUID by providing the Ownership Voucher and signing with the
Owner Key. In addition, the owner provides the network address(s) where it is waiting for a Device to connect (entries in the
RVTO2Addr array) and upper bound of how long it is willing to wait (to0d.WaitSeconds). The wait time is negotiated with
the server, see TO0.AcceptOwner.WaitSeconds. After the negotiated wait time passes, the owner must re-run the TO0
Protocol to refresh its mapping.

The Ownership Voucher is given in to0d.OwnershipVoucher as a single object. The Ownership Voucher must have at least
one entry, i.e., len(to0d.OwnershipVoucher.OVEntries) > 0, or the Rendezvous Server MUST fail the connection. The
Rendezvous Server cannot verify an ownership voucher with zero entries. The Rendezvous Server MAY also restrict the
maximum number of entries it is willing to accept, to prevent DoS attacks. The current recommended maximum is ten
entries. The Rendezvous Server MAY also restrict the maximum blob size it is willing to accept. It is recommended that
Rendezvous Servers accept a RVTO2Addr array of at least 3 entries.

The encoding of this message is divided into two objects: to0d and to1d, which are linked by the hash to1dTo0dHash inside
of to1d. The object to0d contains fields that are only used in the TO0 Protocol, and the object to1d contains fields that are
also used in the TO1 Protocol.

The fields in to0d are:

to0d.OwnershipVoucher:
The entire Ownership Voucher. The Owner Key is given in the last
OwnershipVoucherEntry. The Owner key is used to verify the COSE signature in to1d.

to0d.WaitSeconds:
The wait time offered by the Owner, which is adjusted and confirmed in
TO0.AcceptOwner.WaitSeconds.

to0d.NonceTO0Sign:
A copy of TO0.HelloAck.NonceTO0Sign, used to ensure the freshness of the signature in
to1d.

The to1d object is a signed "blob" that indicates a network address (RVTO2Addr) where the Device can find a prospective
Owner for the TO2 Protocol. The entire object is stored by the Rendezvous Server and returned verbatim to the Device in
the TO1 Protocol. This value is verified by the Device at a later time (§ 5.5.3 TO2.ProveOVHdr, Type 61).

The fields in to1d are as follows. RVTO2AddrEntry fields are listed after an ellipsis, such as: to1d...RVIP instead of
to1d.RVTO2Addr.RVTO2AddrEntry[i].RVIP

to1d...RVIP:

An internet address where the Owner is listening for a TO2 connection. It may be CBOR null
if only RVDNS matters. Since the to1d value has a time limit associated with it (WaitSeconds),
the server may use the Internet address to create a temporary address that is harder to map to
its identity. If both DNS and IP address are specified, the IP address is used only when the
DNS address fails to resolve.

to1d...RVDNS:
A DNS name where the Owner is listening for a TO2 connection. Any IP address resolved by
the DNS name must be equivalently able to process the TO2 connection. A CBOR null may
be used if only the RVIP value matters.

to1d...RVPort:
A TCP- or UDP-port where the Owner is listening for a TO2 connection. A value of CBOR
null indicates that the default port for the protocol (80 for HTTP or 443 for HTTPS) is used.

to1d...RVProtocol:
The protocol to use to contact the Owner in the TO2 connection. The CDDL type
TransportProtocol gives the possible field values.

to1d.to1dTo0dHash:

A SHA256 or SHA384 hash of the TO0.OwnerSign.to0d CBOR object. The Rendezvous
Server MUST verify that to0dh matches the hash of the to0d object. Otherwise, the
Rendezvous Server SHALL end the connection in error. SHA384 is used if the selected
Device cryptography includes SHA384.

The bstr wrapping to0d is not included in the hash.

It is preferred that the Rendezvous Server has a basis on which to trust at least one public key within the Ownership
Voucher. For example, the manufacturer who ran the DI protocol to configure the Device, thereby choosing the Rendezvous
Server, may register public keys with the Rendezvous Server to establish such a trust. The Owner may register its own keys
additionally, or as an alternative. An intermediate signer of the Ownership Voucher might act as a national point of entry,
using its keys to establish trust for devices in the Rendezvous Server as they arrive in country.

A given Rendezvous Server MAY choose to reject Ownership Proxies that are not trusted.

If the Rendezvous Server has no basis on which to trust the Ownership Voucher, it must apply its own internal policies to
protect itself against a DoS attack, but may otherwise safely provide the Rendezvous Server (i.e., it can allow the TO0 and
TO1 Protocols to succeed). This behavior is acceptable because the TO2 Protocol is able to verify the to1d “blob” defined in
this message. However, such a Rendezvous Server must ensure that untrusted Ownership Proxies cannot degrade the service
for trusted Ownership Proxies. This may be accomplished through hard limiting of resources, or even allocating a trusted-
and non-trusted version of the service.

The Rendezvous Server needs to verify that the signature on this message is verified by the public key on the last message of
the ownership voucher, such as by saving the public key transmitted and verifying it is the same public key.

When the device certificate is non-null, the Rendezvous Server must verify the binding of the certificate to the Ownership
Voucher (verify the certificate chain hash). It is the only non-owner entity which can do this. It is recommended that the
Server should also do revocation check for the certificate chain.

A Rendezvous Server in a trusted context (e.g., a closed network), MAY simplify implementation by not performing the
above verifications and allowing the TO2 protocol to perform all verification.

From Rendezvous Server to Owner Onboarding Service

HTTP Context:

Message Format:

5.3.4. TO0.AcceptOwner, Type 23§

TO0.AcceptOwner = [
 WaitSeconds
]

HTTP Context

Message Meaning:

Indicates acceptance of the new Owner’s information. The Rendezvous Server will associate GUID with the new owner’s
address information for WaitSeconds seconds. WaitSeconds may not exceed TO0.OwnerSign.waitSeconds, but it may be
less.

If the GUID indicated in:

TO0.OwnerSign.to0d.OVHeader.OVGuid

is already associated with another IP address, the Rendezvous Server re-targets this association as specified in this protocol.

The Owner Onboarding Service can drop the connection after this message is processed.

If the new Owner does not receive a Transfer Ownership connection from a Device within WaitSeconds seconds, it must
repeat Transfer Ownership Protocol 0 and re-register its GUID to address association.

When the new Owner is actively changing its address from time to time (e.g., to mask its identity), the frequency of
changing address dictates the magnitude of WaitSeconds. Otherwise, the negotiation depends on the frequency at which the
new owner wishes to refresh the server, traded off with the server’s need to remember many GUID associations.

The Rendezvous Server has no sure way to know when a device ownership is successful or fails, since it is not party to the
TO2 Protocol. This is intended to make it harder for an intruder who is monitoring the Rendezvous Server to trace a device,
even by the FIDO Device Onboard GUID (which is replaced in the TO2 Protocol). Thus the Rendezvous Server may
arrange to keep the timeouts short enough that it does not have to keep every FIDO Device Onboard transaction ever created
in its database. We imagine a timeout of a day or two, or perhaps a week or two.

Transfer Ownership Protocol 1 (TO1) finishes the rendezvous started between the New Owner and the Rendezvous Server
in the Transfer Ownership Protocol 0 (TO0). In this protocol, the Device ROE communicates with the Rendezvous Server
and obtains the IP addressing info for the prospective new Owner. Then the Device may establish trust with the new Owner
by connecting to it, using the TO2 Protocol.

When possible, the TO1 Protocol should arrive at the Rendezvous Server under HTTPS to protect the privacy of the Owner.
It is possible that intermediate stages of the protocol are run under HTTP, such as from a constrained device to a gateway or
from a ROE to an OS user process.

If it is NOT possible to use HTTPS to protect the TO1 Protocol, the Owner may also take measures to protect its privacy:

POST response with token

5.4. Transfer Ownership Protocol 1§

The Transfer Ownership Protocols 0 and 1 serve only to get the Device the IP addressing information for a potential
Owner candidate—no trust is conveyed in these protocols.

The Owner may use a private IP address (e.g., IPv6 privacy address) and refresh the address periodically, to make it
more difficult for an attacker to glean information from the rendezvous address(es) in RVTO2Addr.

The Owner may use a multi-tenant model, where the actual Owner of the Device does not relate to the IP address or
DNS name of the Owner.

Figure 8 Transfer Ownership Protocol 1 (TO1)

CDDL

TO1ProtocolMessages = (
 TO1.HelloRV,
 TO1.HelloRVAck,
 TO1.ProveToRV,
 TO1.RVRedirect
)

From Device ROE to Rendezvous Server:

Message Format:

TO1.HelloRV = [
 Guid,
 eASigInfo
]

HTTP Context:

POST /fdo/101/msg/30

Message Meaning:

Establishes the presence of the device at the Rendezvous Server.

The “Guid” parameter is the GUID of the Device. This is used as an index by the Rendezvous Server to look up information
associated with the Device.

5.4.1. TO1.HelloRV, Type 30§

If the Rendezvous Server does include a record for this Guid, processing in this protocol continues.

If the Rendezvous Server does not include a record for this Guid, then it returns an ERROR message and terminates the TO1
protocol (see error RESOURCE_NOT_FOUND; § 5.1.1.1 Error Code Values). The Device will continue to try to onboard,
perhaps using a different Rendezvous Server or perhaps finding the Guid on this one at a later time, following the mandated
interpretation of RendezvousInfo.

However, a Rendezvous Server which does not include a record for this Guid, but knows of a second Rendezvous Server
that does include such a record MAY respond with one of the following HTTP messages:

302 Redirect (HTTP 1.0)
307 Temporary Redirect (HTTP 1.1 and later)

In this case, the FIDO Device Onboard device SHOULD immediately attempt a Transfer Ownership 1 (TO1) Protocol
connection to the redirect URL in the return message.

The following issues are outside the scope of this document:

However, a Rendezvous Server MAY NOT respond with a HTTP 302 or 307 message unless it has solved these issues.

It is possible that the second Rendezvous server, referenced in a HTTP 302 or 307 message, is inaccessible to the Device. In
this case, the Device will timeout and fail to access the second Rendezvous server. As for any device timeout, the Device
MUST continue to attempt new FIDO Device Onboard connections.

The eASigInfo variable contains signature related information, as described in: § 3.5 Device Attestation Sub Protocol.

From Rendezvous Server to Device ROE

Message Format:

TO1.HelloRVAck = [
 NonceTO1Proof,
 eBSigInfo
]

HTTP Context:

Message Meaning:

Sets up Device ROE for next message.

The NonceTO1Proof tag contains a nonce to use as a guarantee of signature freshness in the TO1.ProveTORV.

The eBSigInfo variable contains signature related information.

From Device ROE to Rendezvous Server:

How the Rendezvous Server knows that a second Rendezvous server includes a record for the Guid

How the Rendezvous Servers cooperate to prevent permanently looping redirects

5.4.2. TO1.HelloRVAck, Type 31§

POST response, includes authorization token

5.4.3. TO1.ProveToRV, Type 32§

Message Format:

TO1.ProveToRV = EAToken
$$EATPayloadBase //= (
 EAT-NONCE: NonceTO1Proof
)

HTTP Context:

POST /fdo/101/msg/32

Message Meaning:

Proves validity of device identity to the Rendezvous Server for the Device seeking its owner, and indicates its GUID.

MAROEPrefix may be used to provide evidence of the ROE application that is running.

NonceTO1Proof proves that the signature was just computed, and not a reply (signature ‘freshness’ test). EAT-UEID
contains the FIDO Device Onboard Guid, as described in § 3.3.6 EAT Signatures.

The signature is verified using the device certificate chain contained in the Ownership Voucher.

If the device signature cannot be verified, or fails to verify, the connection is terminated with an error message (§ 5.1.1 Error
- Type 255).

From Rendezvous Server to Device ROE:

Message Format:

The blob from the Rendezvous Server, which is: TO0.OwnerSign.to1d.

TO1.RVRedirect = to1d

HTTP Context:

Message Meaning:

Indicates to the Device ROE that a new Owner is indeed waiting for it, and may be found by connecting to any of the entries
in to1dBlobPayload.RVTO2Addr containing network address information.

After TO1.RVRedirect the TO1 protocol is complete.

After the TO1 protocol is complete, the Device uses the Rendezvous 'blob' information to initiate communications with the

5.4.4. TO1.RVRedirect, Type 33§

POST response, with token

See definition of RVTO2Addr: § 3.3.14 RVTO2Addr (Addresses in Rendezvous 'blob')

See additional instructions for interpreting the RVTO2Addr: § 4.3 Transmission of Messages over the HTTP-like
Protocols.

This message is bit-for-bit identical to TO0.OwnerSign.to1d.

5.5. Transfer Ownership Protocol 2§

Owner Onboarding Service in the TO2 protocol.

The TO2 Protocol is the most complicated of the protocols in FIDO Device Onboard, because it has several steps that are
not present in other protocols:

In addition, in all these operations, all unbounded data items are divided across multiple messages, to limit the size of an
individual message that the Device is required to process. This causes several loops in the protocol:

Implementation note: A larger or smaller maximum ServiceInfo size provides a tradeoff between buffering requirements
and the ability to transmit bulk data with fewer roundtrip times. As an additional tradeoff, an implementation may choose to
parse CBOR bulk data incrementally to allow larger messages to be sent without needing a full message buffer.

The ServiceInfo exchange in FIDO Device Onboard allows the cooperating client entities on the Device and Owner to
negotiate their own “protocol” for setting up the Device. The names and meanings of key value pairs is generally up to the
Device and Owner, but examples are given above. See § 3.8 ServiceInfo and Management Service – Agent Interactions.

Establishes trust in both directions: The Device uses its device attestation key and the Owner uses the Ownership
Voucher.

Creates an encrypted channel, based on the above trust, using a supported key exchange mechanism.

Exchanges device service info for owner service info.

The Owner replaces all FIDO Device Onboard credentials in the Device (this does not include the Device’s attestation
key and certificate); the Device gives the Owner an HMAC that allows it to generate a replacement Ownership
Voucher. The Owner can use this new Ownership Voucher in future FIDO Device Onboard transactions (e.g., to resell
the Device).

The Ownership Voucher is transmitted header first, then entry by entry in successive messages.

The service info (in each direction) is transmitted in as many messages as necessary to keep the message size to a
single packet. A constrained device may assume that the connection MTU size is 1500 bytes. The Owner and Device
can simplify the implementation by limiting the size of each ServiceInfo message 1300 bytes, to allow room for
protocol headers.

The Owner and Device may change the maximum ServiceInfo message the other entity may send using the fields:

TO2.DeviceServiceInfoReady.maxOwnerServiceInfoSz

and
TO2.OwnerServiceInfoReady.maxDeviceServiceInfoSz

Figure 9 Transfer Ownership Protocol 2 (TO2)

CDDL

TO2ProtocolMessages = (
 TO2.HelloDevice,
 TO2.ProveOVHdr,
 TO2.GetOVNextEntry,
 TO2.OVNextEntry,
 TO2.ProveDevice,
 TO2.SetupDevice,
 TO2.DeviceServiceInfoReady,
 TO2.OwnerServiceInfoReady,
 TO2.DeviceServiceInfo,
 TO2.OwnerServiceInfo,
 TO2.Done,
 TO2.Done2
)

The implementation shall complete the Transfer Ownership Protocol 2 in no more than 1,000,000 round trips, overall.
Owner and Device implementations should not request more iterations than this.

A given Owner implementation may limit the number of ServiceInfo iterations received from a Device, to prevent a denial
of service attack.

From Device ROE to Owner Onboarding Service

Message Format:

5.5.1. Limitation of Round Trips§

5.5.2. TO2.HelloDevice, Type 60§

TO2.HelloDevice = [
 maxDeviceMessageSize,
 Guid,
 NonceTO2ProveOV,
 kexSuiteName,
 cipherSuiteName,
 eASigInfo ;; Device attestation signature info
]
maxDeviceMessageSize = uint16
kexSuiteName = tstr
cipherSuiteName = CipherSuites

HTTP Context:

POST /fdo/101/msg/60

Message Meaning:

Sets up new owner for proof of ownership.

The maxDeviceMessageSize indicates the maximum sized FIDO Device Onboard message the Device is able to receive,
buffer, and decode. A value of zero indicates the default message size. The Owner may use this value to adjust the size of
messages sent to the device, but only starting with TO2.OVNextEntry. The default message size applies to TO2.ProveOVHdr.

The kexSuiteName and cipherSuiteName fields indicate the key exchange protocol and cipher suite to use. Because we
assume the Device may be constrained, it gets to choose these values; the Owner side must support all choices that a Device
can make.

The values for kexSuiteName are given in: § 3.6 Key Exchange in the TO2 Protocol

The cipher suite cipherSuiteName is as given in: § 4.4 Encrypted Message Body

The eASigInfo tag starts the Device’ signature process.

From Owner Onboarding Service to Device ROE:

Message Format:

TO2.ProveOVHdr = CoseSignature
TO2ProveOVHdrPayload = [
 bstr .cbor OVHeader, ;; Ownership Voucher header
 NumOVEntries, ;; number of ownership voucher entries
 HMac, ;; Ownership Voucher "hmac" of hdr
 NonceTO2ProveOV, ;; nonce from TO2.HelloDevice
 eBSigInfo, ;; Device attestation signature info
 xAKeyExchange,;; Key exchange first step
 helloDeviceHash: Hash, ;; hash of HelloDevice message
 maxOwnerMessageSize
]
NumOVEntries = uint8
TO2ProveOVHdrUnprotectedHeaders = (
 CUPHNonce: NonceTO2ProveDv, ;; nonce is used below in TO2.ProveDevice and TO2.Done
 CUPHOwnerPubKey: PublicKey ;; Owner key, as convenience to Device
)
$COSEPayloads /= (

5.5.3. TO2.ProveOVHdr, Type 61§

 TO2ProveOVHdrPayload
)
$$COSEUnprotectedHeaders /= (
 TO2ProveOVHdrUnprotectedHeaders
)

maxOwnerMessageSize = uint16

HTTP Context:

Message Meaning:

This message serves several purposes:

The Ownership Voucher’s header is sent in the OVHeader and HMac fields. The NumOVEntries value gives the number of
Ownership Voucher Entries. The Ownership Voucher entries will be sent in subsequent messages. It is legal for this tag to
have a value of zero (0), but this is only useful in re-manufacturing situations, since the Rendezvous Server cannot verify (or
accept) these Ownership Proxies.

NumOVEntries MUST be less than 256. If NumOVEntries is detected as larger than 255, all entities must reject the entry,
aborting a protocol connection if necessary.

The HMac field is a HMAC-SHA256 or HMAC-SHA384 over the OVHeader tag. The HMAC derives from the Device
initialization in DI.SetHMAC, or equivalent, and is based on a secret allocated and stored in the Device.

The Device re-computes the HMAC value against the received contents of the OVHeader tag using this stored secret, and
verifies that the HMac field has the same value. If the values are different, the protocol ends in error. This ensures that the
Device itself has not been reinitialized since it was originally programmed during manufacturing.

The Owner Onboarding Service includes the hash of device certificate chain from the Ownership Voucher
(OwnershipVoucher.OVHeader.OVDevCertChain) in the TO2.ProveOVHdr message (as OVDevCertChainHash) for the
device to verify with the HMAC. The device temporarily saves the cert chain hash on receiving the message. When the
device computes the new HMAC based on the fields received in TO2.SetupDevice message, it uses the value of the cert
chain hash that was previously saved. The new HMAC is returned to the Owner Onboarding Service as part of TO2.Done
message.

The public key (CUPHOwnerPubKey) in the COSE unprotected field, is the Owner Key. This key, which verifies this
message’s signature, must be compared with the public key in the last Ownership Voucher Entry when it is received later in
the sequence of this protocol. The presence of the Owner key in this message is a convenience for the Device, giving it the
option to verify the signature of this message immediately, then compare the given CUPHOwnerPubKey with the later
transmission.

Note that OVHeader.OVPubKey is the initial owner public key from the Ownership Voucher Header, and should not be
confused with the public key in the unprotected header of this message.

CUPHOwnerPubKey must also be able to verify the signature of the TO1.RVRedirect message. The Device must store the
TO1.RVRedirect message (or its hash) until the TO2.ProveOVHdr message is received. At this time, the Device can verify
the TO1.RVRedirect signature with the give Owner key in TO2.ProveOVHdr.OVPubKey. If the TO1.RVRedirect signature

POST response, includes authorization token

The Owner begins sending the Ownership Voucher to the device (only the header is in this message).

The Owner signs the message with the Owner key (the last key in the Ownership Voucher), allowing the Device to
verify (later on) that the Owner controls this private key.

The Owner starts the key exchange protocol by sending the initial key exchange parameter xAKeyExchange (e.g., in
Diffie Hellman, the parameter ‘A’) to the Device.

does not verify, the Device must assume that a man in the middle is monitoring its traffic, and fail TO2 immediately with an
error code message.

The eBSigInfo field continues the Device’ attestation process.

The xAKeyExchange field begins the key exchange protocol. See § 3.6 Key Exchange in the TO2 Protocol for more details
on key exchange. The key exchange is finished in the TO2.ProveDevice message.

The helloDeviceHash is a hash of the TO2.HelloDevice message that was received from the Device. The Device MUST
verify this hash against a hash of the original message. If the hashes do not match, the Device SHOULD send an ERROR
message and MUST terminate the TO2 protocol immediately. This hash, protected by the Owner’s signature, allows the
Device to detect if the TO2.HelloDevice message was changed by an adversary.

The maxOwnerMessageSize indicates the maximum sized FIDO Device Onboard message the Owner is able to receive,
buffer, and decode. The Device may use this value to adjust the size of messages sent to the Owner. A value of zero
indicates the default message size.

The verification of this message is critical, if complex. The Device initially verifies this message’s COSE signature using the
supplied CUPHOwnerPubKey, then saves a copy of this key (for memory reasons, the Device may save a suitable hash of the
key). A failure in verification causes TO2 to terminate in error.

As the Ownership Voucher entries are transmitted in successive TO2.GetOVNextEntry messages, the Device can verify
them using the signature chain embedded in the Ownership Voucher, from header to entry 1 to entry 2, and so on. The last
such entry signs a public key from the Owner entity that is actually driving this protocol (sometimes called the protocol
server role); this is also the “Owner key”. Now the Device must verify that the Owner can sign with the Owner key’s
corresponding private key. But if this public key matches the CUPHOwnerPubKey, then the signature verification at the
start has verified exactly this. The Device verifies that "owner key" matches the saved public key from this message.

The device may compare public keys by comparing key material, although care must be taken to ensure the public key
encodings do not cause a false failed comparison. Where feasible, the device may save the hashes computed during
signature verification and repeat the verification using the Owner key from TO2.GetOVNextEntry.

The following diagram illustrates the process, using only the signature chain, for an Ownership Voucher 3 entries:

Figure 10 Verification of Ownership Voucher by Device

From Device ROE to Owner Onboarding Service:

Message Format:

TO2.GetOVNextEntry = [
 OVEntryNum
]
OVEntryNum = uint8

HTTP Context:

POST /fdo/101/msg/62

Message Meaning:

Acknowledges the previous message and requests the next Ownership Voucher Entry. The integer argument, OVEntryNum,
is the number of the entry, where the first entry is zero (0).

The Device MUST send successive OVEntryNum values in subsequent TO2.GetOVNextEntry.

From Owner Onboarding Service to Device ROE

Message Format:

TO2.OVNextEntry = [
 OVEntryNum
 OVEntry
]

HTTP Context:

Message Meaning:

Transmits the requested Ownership Voucher entry from the Owner Onboarding Service to the Device ROE. The value of
OVEntryNum matches the value of TO2.GetOVNextEntry.OVEntryNum.

If OVEntryNum == TO2.ProveOVHdr.NumOVEntries-1, then the next state is TO2.ProveDevice. Otherwise the next state
is TO2.GetOVNextEntry.

The Device ROE verifies the ownership voucher entries incrementally as follows:

Variables from OVEntryPayload:

5.5.4. TO2.GetOVNextEntry, Type 62§

5.5.5. TO2.OVNextEntry, Type 63§

POST response with token

HashPrevEntry – hash of previous entry. The hash of the previous entry’s OVEntryPayload. For the first entry, the hash
is SHA[TO2.ProveOVHdr.OVHeader||TO2.ProveOVHdr.HMac]. The bstr wrapping for the OVHeader is not included.

PubKey – public key signed in previous entry (initialize with TO2.ProveOVHdr.OVHeader.OVPubKey)

HashHdrInfo – hash of GUID and DeviceInfo, compute from TO2.ProveOVHdr as:

If any verification fails, the TO2 protocol ends in error.

From Device ROE to Owner Onboarding Service

Message Format:

TO2.ProveDevice = EAToken
$$EATPayloadBase //= (
 EAT-NONCE: NonceTO2ProveDv
)
TO2ProveDevicePayload = [
 xBKeyExchange
]
$EATUnprotectedHeaders /= (
 EUPHNonce: NonceTO2SetupDv ;; NonceTO2SetupDv is used in TO2.SetupDevice and TO2.Done2
)
$EATPayloads /= (
 TO2ProveDevicePayload
)

HTTP Context:

POST /fdo/101/msg/64

Message Meaning:

Proves the provenance of the Device to the new owner, using the entity attestation token based on the challenge
NonceTO2ProveDv sent as TO2.ProveOVHdr.UnprotectedHeaders.CUPHNonce. The signature is verified using the device
certificate chain contained in the Ownership Voucher. If the signature cannot be verified, or fails to verify, the connection is
terminated with an error message (§ 5.1.1 Error - Type 255).

Completes the key exchange, by sending xBKeyExchange in the FIDO Device Onboard EAT payload. For more information,
see section § 3.6 Key Exchange in the TO2 Protocol.

Sends NonceTO2SetupDv for later use.

Note

SHA[TO2.ProveOVHdr.OVHeader.Guid||TO2.ProveOVHdr.OVHeader.DeviceInfo]

Pad the hash text on the right with zeros to match the hash length.

For each entry:

Verify signature TO2.OVNextEntry.OVEntry using variable PubKey

Verify variable HashHdrInfo matches TO2.OVEntry.OVEHashHdrInfo

Verify HashPrevEntry matches SHA[TO2.OpNextEntry.OVEntry.OVEPubKey]

Update variable PubKey to TO2.OVNextEntry.OVEPubKey.OVPubKey

Update variable HashPrevEntry to SHA[TO2.OpNextEntryPayload]

If OVEntryNum == TO2.ProveOpHdr.NumOVEntries-1 then verify

TO2.ProveOVHdr.pk == TO2.OVNextEntry.OVNextEntry.OVPubKey

5.5.6. TO2.ProveDevice, Type 64§

Subsequent message bodies are protected for confidentiality and integrity.

From Owner Onboarding Service to Device ROE

Message Format - after decryption and verification:

;; This message replaces previous FIDO Device Onboard credentials with new ones
;; Note that this signature is signed with a new (Owner2) key
;; which is transmitted in this same message.
;; The entire message is also verified by the integrity of the
;; transmission medium.
TO2.SetupDevice = CoseSignature
TO2SetupDevicePayload = [
 RendezvousInfo, ;; RendezvousInfo replacement
 Guid, ;; GUID replacement
 NonceTO2SetupDv, ;; proves freshness of signature
 Owner2Key ;; Replacement for Owner key
]
Owner2Key = PublicKey

$COSEPayloads /= (
 TO2SetupDevicePayload
)

HTTP Context:

Message Meaning:

This message prepares for ownership transfer, where the credentials previously used to take over the device are replaced,
based on the new credentials downloaded from the Owner Onboarding Service. These credentials were: previously
programmed by the DI protocol; programmed using another technique from the DI protocol; or previously updated by this
message.

The changes are queued by this message, but are implemented in the Device during TO2.Done. If the TO2 protocol ends in
error before TO2.Done, these changes are not implemented .

The following table indicates the transition of Ownership Credentials during TO2.Done, based on these parameters.

Table ‑. Ownership Credential Transition from TO2.SetupDevice

Ownership Credential Transition from TO2.SetupDevice

DI value Previous value New Value
New Value
(Credential
Reuse)

DI.SetCredentials.OVHeader.OVHProtVer OwnershipCredential.OCProtVer unchanged unchanged

DI.SetCredentials.

OVHeader.OVRendezvousInfo
OwnershipCredential. OCRVInfo

TO2SetupDevicePayload.

RendezvousInfo

unchanged

DI.SetCredentials. OVHeader.OVGuid OwnershipCredential. OCGuid TO2SetupDevicePayload.Guid unchanged

5.5.7. TO2.SetupDevice, Type 65§

POST response with token

DI.SetCredentials.

OVHeader.OVDeviceInfo

OwnershipCredential.

OCDeviceInfo
unchanged

unchanged

DI.SetCredentials.

OVHeader.OVPublicKey

hash[OwnershipCredential.
OCPubKeyHash]

TO2SetupUnprotectedHeaders.

PublicKey

unchanged

See § 7 Credential Reuse Protocol for additional information on Credential Reuse protocol.

From Device ROE to Owner Onboarding Service

Message Format - after decryption and verification:

TO2.DeviceServiceInfoReady = [
 ReplacementHMac, ;; Replacement for DI.SetHMac.HMac or equivalent
 maxOwnerServiceInfoSz ;; maximum size service info that Device can receive
]
;; A null HMAC indicates acceptance of credential reuse protocol
ReplacementHMac = HMac / null
maxOwnerServiceInfoSz = uint16 / null

HTTP Context

POST /fdo/101/msg/66

Message Meaning:

This message signals a state change between the authentication phase of the protocol and the provisioning phase
(ServiceInfo) negotiation.

The ReplacementHMac variable completes the information needed in the Owner Onboarding Service to create a new
Ownership Voucher for the Device.

The field maxOwnerServiceInfoSz, if non-null, indicates the maximum size Owner ServiceInfo message that the Device is
able to process from the Owner. This may indicate a decrease or increase in size from the recommended ServiceInfo limit of
1300 bytes per message. It is up to the Device to ensure that it can receive this message via the underlying transport
mechanism. A null value of maxOwnerServiceInfoSz indicates the recommended maximum ServiceInfo size, as above.

If the Device supports Credential Reuse protocol and all the conditions for Credential Reuse are satisfied in
TO2.SetupDevice, then it can return ReplacementHMac as CBOR null. See § 7 Credential Reuse Protocol for additional
information on Credential Reuse protocol.

If ReplacementHMac is an HMac (i.e., non-null) ReplacementHMac may be used by the Owner to create a replacement
Ownership Voucher for the device. This permits FIDO Device Onboard to onboard the device again at a future date.

If the Device returns a non-null ReplacementHMac, the Owner MUST either create a new Ownership Voucher, or accept
that the Device will not be able to onboard using FIDO Device Onboard again.

Even if ReplacementHMac is non-null (i.e., a valid HMac), the Device MAY refuse to support resale at a later time. In this
case, it is recommended that an out-of-band mechanism be provided to let the Owner know that the resale protocol
credentials will no longer work. The details of such a mechanism are outside the scope of this document.

The TO2.DeviceServiceInfoReady and TO2.OwnerServiceInfo messages are the joining point for the Untrusted Installer
and Trusted Installer phases of protocol authentication.

5.5.8. TO2.DeviceServiceInfoReady, Type 66§

The Trusted Installer authentication phase is not currently defined in FIDO Device Onboard.

From Owner Onboarding Service to Device ROE

Message Format - after decryption and verification:

TO2.OwnerServiceInfoReady = [
 maxDeviceServiceInfoSz ;; maximum size service info that Owner can receive
]
maxDeviceServiceInfoSz = uint16 / null

HTTP Context:

Message Meaning:

This message responds to TO2.DeviceServiceInfoReady and indicates that the Owner Onboarding Service is ready to start
ServiceInfo.

The field maxDeviceServiceInfoSz, if non-null, indicates the maximum size Device ServiceInfo message that the Owner is
able to process from the Device. This may indicate a decrease or increase in size from the recommended ServiceInfo limit of
1300 bytes per message. It is up to the Owner to ensure that it can receive this message via the underlying transport
mechanism. A null value of maxDeviceServiceInfoSz indicates the recommended maximum ServiceInfo size, as above.

From Device ROE to Owner Onboarding Service

Message Format - after decryption and verification:

TO2.DeviceServiceInfo = [
 IsMoreServiceInfo, ;; more ServiceInfo to come
 ServiceInfo ;; service info entries
]
IsMoreServiceInfo = bool

HTTP Context

POST /fdo/101/msg/68

Message Meaning:

Sends as many Device to Owner ServiceInfo entries as will conveniently fit into a message, based on protocol and Device
constraints. This message is part of a loop with TO2.OwnerServiceInfo.

On the first ServiceInfo message, the Device must include the devmod module messages.

The IsMoreServiceInfo indicates whether the Device has more ServiceInfo to send. If this flag is True, then the subsequent
TO2.OwnerServiceInfo message MUST be empty, allowing the Device to send additional ServiceInfo items.

If the previous TO2.OwnerServiceInfo.IsMoreServiceInfo had value True, then this message MUST contain:

5.5.9. TO2.OwnerServiceInfoReady, Type 67§

POST response with token

5.5.10. TO2.DeviceServiceInfo, Type 68§

This permits the Owner to send arbitrary sized collections of ServiceInfo.

All individual ServiceInfo items must fit into a single message.

The size of TO2.DeviceServiceInfo is limited to TO2.OwnerServiceInfoReady.maxDeviceServiceInfoSz, if non-null.
Otherwise, it is limited based on an MTU size of 1500 bytes. A limit of 1300 bytes may be used as a rule of thumb in this
case.

From Owner Onboarding Service to Device ROE

Message Format - after decryption and verification:

TO2.OwnerServiceInfo = [
 IsMoreServiceInfo,
 IsDone,
 ServiceInfo
]
IsDone = bool

HTTP Context:

Message Meaning:

Sends as many Owner to Device ServiceInfo entries as will conveniently fit into a message, based on protocol and
implementation constraints. This message is part of a loop with TO2.DeviceServiceInfo.

If the IsMoreServiceInfo was True on the previous TO2.DeviceServiceInfo message, this message MUST have:

This permits the Device to send arbitrary sized collections of ServiceInfo.

When the Owner has no more ServiceInfo to send, it can terminate the ServiceInfo process by setting IsDone=True. Once
IsDone=True is set, all subsequent ServiceInfo messages must contain:

The Device MAY send additional (empty) TO2.DeviceServiceInfo messages to the Owner as a keepalive mechanism
[RFC1122]. This is intended to allow the Device to perform lengthy computation between the end of ServiceInfo and the
TO2.Done message without the Owner side timing out and declaring a failure.

A Device SHOULD send such keepalive messages if the interval between the first message containing IsDone=True and the
TO2.Done message involves processing of long or unknown interval. A suggested keepalive interval for this phase of TO2

IsMoreServiceInfo = False

ServiceInfo is an empty array

5.5.11. TO2.OwnerServiceInfo, Type 69§

POST response with token

IsMoreServiceInfo = False

IsDone = False

ServiceInfo is an empty array

IsDone=True (for Owner ServiceInfo messages)

IsMoreServiceInfo = False (for Device and Owner ServiceInfo messages)

ServiceInfo is an empty array (for Device and Owner ServiceInfo messages)

is 60 seconds.

All individual ServiceInfo items must fit into a single message.

The size of TO2.OwnerServiceInfo is limited to TO2.DeviceServiceInfoReady.maxOwnerServiceInfoSz, if non-null.
Otherwise, it is limited based on the MTU size of 1500 bytes. A limit of 1300 bytes may be used as a rule of thumb in this
case.

From Device ROE to Owner Onboarding Service:

Message Format - after decryption and verification:

TO2.Done = [
 NonceTO2ProveDv;; Nonce generated by Owner Onboarding Service
 ;; ...and sent to Device ROE in Msg TO2.ProveOVHdr
]

HTTP Context:

POST /fdo/101/msg/70

Message Meaning:

Indicates successful completion of the Transfer of Ownership.

The Client and Owner software now transitions to completing the requested actions between Device and Owner.

The Owner may use this information to construct a new Ownership Voucher based on the Owner2 key and the new
information configured into the Device in the TO2.SetupDevice message. This information permits the Owner to effect a
new transfer of ownership by re-enabling the FIDO Device Onboard software on the Device. The mechanism to re-enable
FIDO Device Onboard software on a given Device is outside the scope of this document.

The credentials received into the Device during the TO2.SetupDevice are implemented to replace the DeviceCredentials at
this time.

From Owner Onboarding Service to Device ROE:

Message Format - after decryption and verification:

TO2.Done2 = [
 NonceTO2SetupDv
]

HTTP Context:

Message Meaning:

This message provides an opportunity for a final ACK after the Owner has invoked the System Info block to establish agent-

5.5.12. TO2.Done, Type 70§

5.5.13. TO2.Done2, Type 71§

POST response with token

to-server communications between the Device and its final Owner.

When possible, the TO2.Done2 should be delayed until the Device has established agent-to-server communications,
allowing a FIDO Device Onboard error to occur when such communications fail.

On some constrained devices, FIDO Device Onboard software might not be able to run after the agent-to-server
communications are set up. On these systems, this ACK can happen right after the TO2.Done message. Such systems cannot
recover from a failure that appears after FIDO Device Onboard has finished, but that prevents agent-to-server
communications from being established.

Examples of systems that cannot generate a response after agent-to-server communications are working include:

The following are useful steps that SHOULD be performed at this time. Since Devices vary, Device owners may have to
perform some of these steps earlier or later.

After the transfer of ownership completes (i.e., the TO2 Protocol finishes), the Device switches an internal state variable to
inhibit the device’s software from running FIDO Device Onboard, such as is described for DeviceCredential.DCActive
(See § 3.4.1 Device Credential Persisted Type (non-normative)).

A device implementation might also stop a thread or process from running to achieve the same effect, perhaps freeing
resources for Device operation. In the case of a MCU-based implementation, the FIDO Device Onboard code might only be
able to run when external software calls a specific entry point for it.

The Owner may use System or OS level commands to re-enable FIDO Device Onboard for a new transfer of Ownership.
How this is accomplished is outside the scope of this document. In some systems, it may involve setting the
DeviceCredential.DCActive flag to True, but other system-dependent changes may be needed.

In the TO2 Protocol, the FIDO Device Onboard software in the Device ROE stores new credentials that are only known to
the Owner. How the device info is updated is described in the context of the TO2.SetupDevice message. Please note that the
public key stored in the device is updated to the Owner2 key, a key that is separate from the Owner key in the original
Ownership Voucher. This is to prevent this key from being used to correlate the original Ownership Voucher from the one
being generated for resale in the TO2 Protocol.

However, Correlation of Ownership Vouchers using the Device certificate is still possible for some Device attestation key
types.

Subsequently, in the [TO2.Done] message, the Device transfers to the Owner the HMAC of the stored device credentials.
This HMAC is used by the Owner exactly as the HMAC supplied to the ODM in the DI.SetHMAC message is used, to

Constrained systems that don’t have enough resources to run both FIDO Device Onboard and the agent-to-server
subsystems.

Systems that require a reboot to complete agent-to-server setup.

5.6. After Transfer Ownership Protocol Success§

The Owner Onboarding Service transfers all device information to the management server.

The Device ROE may indicates to its OS-level handler to invoke the Management Agent for the Management Service.
This Management Agent should be given all the information that the ROE has now collected.

The Device ROE transitions to the IDLE state.

The new Owner has changed all credentials in the device, except the Device key (e.g., hardware root of trust) and
OCDeviceInfo, and has sufficient information to construct an Ownership Voucher with zero entries.

6. Resale Protocol§

create a new Ownership Voucher.

Resale, then, involves the following conceptual steps whose details are device and site dependent, and thus are mostly
outside the scope of this document:

It may be that, when resale time comes, the Owner wishes to change the rendezvous information that is stored in the Device
ROE. This may be accomplished by performing a transfer of ownership (using the TO2 Protocol) from the Owner to itself,
allowing replacement of the credentials in the TO2.SetupDevice message.

A device may, at its option, implement only a limited number of FIDO Device Onboard transfers of ownership. There are
various reasons for this:

In this case, the Owner’s Device Management Service must disable all FIDO Device Onboard credentials and software after
the initial transfer of ownership succeeds. The TO2 protocol parameters can be used to disable the FIDO Device Onboard
credentials.

A device may also indicate to the Owner that it can no longer perform FIDO Device Onboard by setting
TO2.DeviceServiceInfoReady.ReplacementHMAC to CBOR null.

An Owner may elect not to support the resale capability, even if the underlying Device is capable of doing so. The Owner is
still required to provide new credentials for the Device in the TO2.SetupDevice message. The Owner should then discard the
credentials in a manner that will ensure that neither the Owner itself nor any malicious party can ever obtain them. This
involves:

1. The current Owner obtains a public key from the target Owner. The Owner retrieves the replacement Ownership
Voucher from the latest run of the TO2 protocol, and extends it to the target Owner’s public key.

2. The Device is reconditioned to remove all run-time changes and brought back to a factory state. This includes
removing any secrets, except for the FIDO Device Onboard credentials from the TO2 Protocol.

3. The Device is set to enable to FIDO Device Onboard Device software to run.

4. The Device is powered down, shipped, and re-installed in its new location.

5. The target Owner accepts the Ownership Voucher and enables itself as a FDO Owner. The target Owner implements
the TO0 protocol

6. The device onboards to the target Owner. Yet a new Ownership Voucher is created.

6.1. FIDO Device Onboard Devices that Do Not Support Resale§

Each transfer might consume some OTP memory or other resource, and the total amount is limited.

A device is intended to be discarded after its first Ownership Transfer.

The ability to use FIDO Device Onboard again on a Device might be thought of as an attack vector to disable or even
steal the device.

An Owner may be concerned that the Device’s key could be correlated to its previous onboarded location, giving an
attacker more information about the Device.

6.2. FIDO Device Onboard Owner that Does Not Support Resale§

The Owner must ensure the security of the Owner2 private key such as discarding the key.

The Owner must delete the HMAC received from the Device.

The Owner must not extend and distribute the replacement Ownership Voucher, created during the TO2 protocol,
before deciding to discard the key or HMAC.

Credential Reuse protocol allows devices to reuse the Device Credentials across multiple onboardings. The intended use
case for this protocol is to support demos and testing scenarios where the onboarding can be run repeatedly and quickly
without having to change the Ownership Voucher or resetting the system after each onboarding. Since credential reuse can
permit the previous Owner unlimited access to the device, it is NOT recommended for use in the normal device supply
chain.

Credential reuse is selected by the Owner, and accepted or rejected by the Device.

A Device implementation may elect to disable credential reuse as a security measure, either directly in the firmware, or
using a write-once flag in the hardware.

In normal credential use, the Owner changes the Device Credential in TO2.SetupDevice, which also creates a new
Ownership Voucher. At the end of a successful TO2 protocol, the device deactivates FIDO Device Onboard. If the Owner
re-enables FIDO Device Onboard, the next onboarding uses the new Ownership Voucher.

For credential reuse, the TO2 protocol supports a special case which indicates to the device not to change the Device
Credential in TO2.SetupDevice. The device still runs the complete TO2 protocol to the end but does not deactivate FIDO
Device Onboard at the end of the protocol.

The Credential Reuse protocol is as follows:

In TO2.SetupDevice:

and TO2.SetupDevice.RendezvousInfo == TO2.ProveOVHdr.OVHeader.OVRendezvousInfo (RendezvousInfo same as
previous)

and TO2.SetupDevice.Owner2Key == Owner’s current public key (which is the public key in the last entry of
Ownership Voucher),

and TO2.SetupDevice is verified as a valid COSE signature primitive

and the device supports the credential reuse protocol

If the Device does not support the credential reuse protocol, but all other conditions are met, the Device causes a protocol
error, and sends an error message CRED_REUSE_ERROR, which terminates the TO2 protocol.

Subsequently, the Device restarts running FIDO Device Onboard as for any other failure.

The following procedure is used to initialize the FIDO Device Onboard Device key and certificate, before the FIDO Device
Onboard Device Initialize (DI) protocol is run. This is presented as an example, and is non-normative.

7. Credential Reuse Protocol§

If TO2.SetupDevice.Guid == TO2.ProveOVHdr.OVHeader.OVGuid (GUID same as previous),

Then

Device does not update the Device Credential,

and Device does not internally change the HMAC,

and in TO2.DeviceServiceInfoReady message, devices responds with
TO2.DeviceServiceInfoReady.ReplacementHMac equal to CBOR null.

Appendix B: Device Key Provisioning with ECDSA§

The Ownership Voucher HMAC, passed in the DI protocol, references the initial Device Certificate. This means that the
ECDSA key and certificate must be programmed before the Device Initialize protocol is run. The Manufacturer is trusted to
match the Device certificate information to the required DI protocol fields. Subsequent to this, the Ownership Voucher
HMAC (OwnershipVoucher.hmac) is used to detect if the Device Certificate is changed in the supply chain.

The following table summarizes cryptography usage within FIDO Device Onboard. Different cryptographic options are
given, where appropriate.

This section is non-normative

.

Category FIDO Device Onboard usage

Device HMAC
HMAC-SHA256 with HMAC secret (DCHmacSecret) of 128 bits

HMAC-SHA384 with HMAC secret (DCHmacSecret) of 512 bits

Hash of Owner Key
SHA256
SHA384
or the device may store complete Owner public key

Ownership Voucher
(Owner attestation)

RSA2048RESTR, RSA2048 or RSA3072

RSA2048RESTR is intended for legacy hardware

Ownership Voucher
(Owner attestation)

SECP256R1
SECP384R1

Ownership Voucher
SHA256
SHA384

Device attestation, DAA Intel® EPID: EPID1.0, 1.1

An ECDSA key pair is generated, and a Certificate Signing Request (CSR) is signed with the new private key.

The recommended way to do this is to generate the ECDSA key pair and the signed CSR inside the FIDO Device
Onboard device.

If an appropriate security level is possible in device manufacture, it is acceptable for the manufacturer to generate
the key pair outside the FIDO Device Onboard Device, generate its own CSR, program the FIDO Device Onboard
Device with the private key, then discard its copy of the ECDSA private key.

The CSR is submitted to a Certificate Authority trusted by the device manufacturer to create a Device certificate and
certificate chain.

The device certificate should not expire unless the device manufacturer has a reason for FIDO Device Onboard to
be performed before a certain date. One such reason is recent discussion about the potential for quantum
computers in the future.

The Device private key is stored with Confidentiality, Availability, and Integrity (CAI) protection in the Device ROE
that is performing FIDO Device Onboard.

The certificate chain is attached to the Ownership Voucher, as described in section § 2.7 The Ownership Voucher.

Appendix C: FIDO Device Onboard 1.1 Cryptographic Summary§

Device attestation
ECDSA

secp256r1 (with SHA256 hash)
secp384r1 (with SHA384 hash)

Key Exchange, DH

DHKEXid14 (2048-bit modulus) owner and client randoms are 256 bits each

DHKEXid15 (3072 bit modulus) owner and client randoms are 768 bits each

Key Exchange,
Asymmetric

RSA2048RESTR RSA-OAEP-MGF-SHA256 Device, Owner Random of 256 bits

RSA_UR, 3072 bits RSA-OAEP-MGF-SHA256 Device, Owner Random of 768 bits

SHA256 may be used as mask generation function for RSA-OAEP. However, larger
Device and Owner Randoms required for SVK, SEK.

Targeted to legacy hardware; use DHKEXid14 or id15 where possible.

Key Exchange, ECDH

secp256r1 or secp384r1, keys used once only, Device, Owner random of 128 bits

secp384r1, keys used once only Device, Owner random of 384 bits

Larger Device and Owner Randoms required for SVK, SEK.

Key Exchange, ECDH,
for legacy devices

secp256r1, keys used once only. Device, Owner random of 128 bits

secp256r1, keys used once only. Device, Owner random of 512 bits

Key Derivation Function

SHA256 based SEK, SVK entropy is 128 bits (SVK 256 bits, but with lower entropy)

SHA384 based SEK is 256 bits SVK is 512 bits

SEVK = SEK || SVK

SEK (Session Encryption
Key)

128 bits
256 bits

SVK (Session
Verification Key)

256 bits, with 128 bits entropy
512 bits

TO2 Session HMAC

HMAC-SHA256
HMAC-SHA384

HMAC-SHA384 state is 512 bits.

TO2 Session Encryption,
counter mode

AES-128/CTR IV 16 bytes, Counter is low 4 bytes of IV.

AES-256/CTR IV is 16 bytes, Counter is 4 bytes of IV.

Session limits on TO2 protocol prevent counter wrap

TO2 Session Encryption,
CBC mode

AES-128/CBC IV is 16 bytes

AES-256/CBC IV is 16 bytes

Invalid CBC causes entire connection to fail. this mitigates padding attack

TO2 Protocol Roundtrip
Limit

1M (1e6) rounds

This appendix indicates how EPID signature information is encoded in FIDO Device Onboard. The eA and eB entries are
encoded within the protocol as described in this document. The eSig.signature portion appears within the Entity Attestation
Token, as the signature bstr in the COSE_Sign1 mechanism. See [RFC8152].

Intel® EPID 1.0 signature information is encoded using the EPID10 signature type, using the “eA”, “eB” and “eSig” fields,
each from separate messages. The contents of each field is as follows:

Table ‑. eA Encoding, type EPID10

eA Encoding, type EPID10

Type Name Description

BYTE[4] groupId Intel® EPID 1.0 group ID

Table ‑. eB Encoding, type EPID10

Type Name Description

uint16 groupCertSigma10Size Size of data in groupCertSigma10 field

BYTE[] groupCertSigma10 Legacy group certificate (binary format)

Table ‑. eSig.signature Encoding, type EPID10

Type Name Description

BYTE[] Signature Intel® EPID 1.0 signature according to Intel® EPID 1.0 specification

The data being signed is:

Table ‑. Data Signatures, type EPID10

Type Name Description

BYTE ID-length Length of ID field

BYTE[] ID MAROEPrefix, same as in the EAT token

Appendix D: Intel® Enhanced Privacy ID (Intel® EPID) Considerations§

Intel® Enhanced Privacy ID (Intel® EPID) 1.0 Signatures (type EPID10)§

eA encodes the Intel® EPID group ID as 4 bytes, in network byte order (MSB first):

eB encodes the Intel® EPID certificate and other items. The SIGRL is inside the group certificate. Length values
(uint16) are encoded in network order (MSB first):

eSig.signature encodes the signature, according to the Intel® EPID 1.0 specification. The length is given in the message
format:

BYTE[16] Nonce Nonce value same as in message body

BYTE[] Message body As in this protocol specification, from open to close brace bracket of JSON text.

Intel® EPID 1.1 signature information is encoded using the EPID11 signature type, using the “eA”, “eB” and “eSig” fields,
each from separate messages. The contents of each field is as follows:

Table ‑. eA Encoding, type EPID11

eA Encoding, type EPID11

Type Name Description

BYTE[4] groupId Intel® EPID 1.1 group ID

Table ‑. eB Encoding, type EPID11

eB Encoding, type EPID11

Type Name Description

uint16 groupCertSigma10Size Size of data in groupCertSigma10 field

BYTE[] groupCertSigma10 Legacy group certificate (binary format)

uint16 groupCertSigma11Size Size of data in groupCertSigma11 field

BYTE[] groupCertSigma11 X.509 group certificate

uint16 sigRLSize Size of data in sigRL field (in bytes)

BYTE[] sigRL SigRL as given below

The sigRL format is as follows (all fields are encoded in network order (MSB first)):

Table ‑. SigRL Format

SigRL Format

Type Field Name Description

uint16 sver Intel® EPID version number. Must be 0x0001 for Intel® EPID1.1

uint16 blobID ID of the data type. Must be 0x000e for SigRL

uint32 gid Group ID

uint32 RLver Revocation list version number

Intel® Enhanced Privacy ID (Intel® EPID) 1.1 Signatures (type EPID11)§

eA encodes the Intel® EPID group ID as 4 bytes, in network byte order (MSB first):

eB encodes the Intel® EPID certificate and other items. The SIGRL is inside the group certificate. Length values
(uint16) are encoded in network order (MSB first):

If there is no SIGRL, sigRLSize is zero, and sigRL is empty (not present).

sigRL non-zero implies that n2 > 0 (below).

uint32 n2 Number of entries in SigRL

BYTE[64] (n2 of
them)

B[i] for i in range [0;
n2-1]

Bi elements of G3

BYTE[64] (n2 of
them)

K[i] for i in range [0;
n2-1]

Ki elements of G3

BYTE[64] sig
512-bit ECDSA signature on the revocation list signed by the key
issuer

Table ‑. eSig.signature Encoding, type EPID11

eSig Encoding, type Intel® EPID11

Type Name Description

BYTE[] signature Intel® EPID 1.1 signature according to the Intel® EPID 1.1 specification

The data being signed is:

Table ‑. Data Signatures, type EPID11

Data Signatures, type EPID11

Type Name Description

BYTE[48] Prefix All zeros, except: Prefix[4]=0x48 and Prefix[8]=0x8

BYTE[16] ID MAROEPrefix, same as in message body

BYTE[16] Zero-padding Zeros

BYTE[16] Nonce Nonce value same as in message body

BYTE[16] Zero-padding Zeros (used to allow Nonce to be 32 bytes)

BYTE[] Message body As in this protocol specification, from open to close brace bracket of JSON text.

Locally Defined Numbers

The following numbers appear in the "Reserved for Private Use" space of the IANA repository: COSE Header Parameters:

CUPHNonce = 256 ;; iana assignment
CUPHOwnerPubKey= 257 ;; iana assignement

The following numbers are chosen from the "Reserved for Private Use" space of the IANA repository: COSE Algorithms.

COSEAES128CBC = -17760703
COSEAES128CTR = -17760704

eSig.signature encodes the signature, according to the Intel® EPID 1.1 specification. The length is given in the message
format:

Appendix E: IANA Considerations§

COSEAES256CBC = -17760705
COSEAES256CTR = -17760706
COSEEPID10 = -2000810 ;; EPID1.0 signature
COSEEPID11 = -2000811 ;; EPID1.1 signature

The encoding for EPID 1.0 and EPID 1.1 signatures is in an appendix to this document. See Appendix D: Intel® Enhanced
Privacy ID (Intel® EPID) Considerations.

The following numbers appear in the the "Reserved for Private Use" space of the IANA repository for CBOR Web Token
(CWT):

EAT-FDO = -257 ;; iana assignment
EATMAROEPrefix = -258 ;; iana assignment
EUPHNonce = -259 ;; iana assignment

Appendix F: Changes from FDO version 1.0 to version 1.1§

Fixes to errata in 1.0 document§

Fixed assorted typos and misspellings

Changed label on HMAC field in ETMOuterBlock to tag: to be a closer match with the COSE specification.

Consistent case for uint, int, uint8, uint16 and uint32 types.

Fixed incorrect references to AES128GCM and AES256GCM (should be A128GCM and A256GCM)

Fixed length of IPv6 address (ip6)

Corrected Hash.hashType to be a signed int since some values given in the specification are negative.

Fixed CDDL for RVVariable and specified type explicitly

Clarified "\r\n" as binary unicode values U+000D and U+000A

Clarified that TO2ProveOVHdrUnprotectedHeaders.CUPHOwnerPubKey must always be present in TO2.ProveOVHdr
(question on the meaning of the term "hint")

Removed spurious signature entries from encryption-only COSE structures.

Clarified that the HTTP token lifetime is for the length of the FDO protocol

Updated values of EAT-NONCE and EAT-UEID as per changes in the EAT draft specification from IETF. The FIDO
Device Onboard 1.0 specification incorrectly referenced values from an earlier draft.

TO2.OwnerServiceInfoReady.maxDeviceServiceInfoSz is undefined, cut and paste error shows as duplicate
definition of maxOwnerServiceInfoSz.

Functional Changes§

Encapsulate CBOR that needs post processing with byte strings. E.g., cbor any replaced by bstr .cbor any. This
affects:

OwnershipVoucher.OVHeader (§ 3.4.2 Ownership Voucher Persisted Type (normative))

OwnershipVoucher...OVEntryPayload.OVEExtra (§ 3.4.2 Ownership Voucher Persisted Type (normative))

RendezvousInfo...RendezvousInstr.RVValue (§ 3.3.13 Rendezvous Info)

ServiceInfo.ServiceInfoKV.ServiceInfoVal (§ 3.8 ServiceInfo and Management Service – Agent Interactions)

DI.Appstart.DeviceMfgInfo (§ 5.2.1 DI.AppStart, Type 10)

TO0.OwnerSign.to0d (§ 5.3.3 TO0.OwnerSign, Type 22)

For purposes of future expansion, the protocol version number is replicated as the first element in the Ownership
Voucher (§ 3.4.2 Ownership Voucher Persisted Type (normative))

Based on suggestions for potential application linkage within the supply chain, added an OVEntryPayload.OVEExtra
field to the Ownership Voucher. This is intended as a vehicle for future expansion in this area (§ 3.4.2 Ownership
Voucher Persisted Type (normative)).

Added limit on number of Ownership Voucher entries to 255 (OVEntries) (§ 3.4.2 Ownership Voucher Persisted Type
(normative))

Renamed COSE_X509 option in FIDO Device Onboard 1.0 to X5CHAIN, based on developer feedback (§ 3.3.4 Public
Key).

Updated descriptions of X509-encoded public key types. Added RSAPSS (§ 3.3.4 Public Key).

Changed the internally defined ciphersuites to be integers (see ETMSuites § 4.4 Encrypted Message Body). The
TO2.HelloDevice message incorrectly called out a text string (tstr) for this value in FIDO Device Onboard 1.0, even
though it could be an integer. TO2.HelloDevice now references the CipherSuites type directly (§ 5.5.2
TO2.HelloDevice, Type 60)

In the TO2 protocol, added a negotiation of the maximum size of a message. This permits support for OVEExtra and
long X5CHAIN on devices which can handle larger messages.

In the TO2 protocol, added a hash of the first message sent by the Device (TO2.HelloDevice) to the first message
received by the Device (TO2.ProveOVHdr). Since TO2.ProveOVHdr is signed, the device can immediately detect any
tampering of the first message by an adversary (§ 5.5.3 TO2.ProveOVHdr, Type 61)

Added requirement for implementations to use the Canonical CBOR, as described in RFC7049. It is also described as
"length-first core deterministic encoding" in RFC8949.

Removed extra level of data structure for ServiceInfo to simplify the transmitted data structure (§ 3.8 ServiceInfo and
Management Service – Agent Interactions).

Permit rendezvous 'blob' RVTO2AddrEntry to use null for either the IP address (RVIP) or the DNS name (RVDNS), but
not both (§ 3.3.14 RVTO2Addr (Addresses in Rendezvous 'blob'))

Clarified that the maximum negotiated message size can never be greater than the maximum message size of 65535
(change from uint to uint16). This affects TO2.HelloDevice, TO2.ProveOVHdr, TO2.DeviceServiceInfoReady,
TO2.OwnerServiceInfoReady.

FIDO Device Onboard 1.0 requires a simplified HTTP response, either 200 OK or 5xx ERROR. A HTTP 302 or 307
response is now permitted in response to a TO1.HelloRV message, IF one Rendezvous Server knows of a "better"
Rendezvous Server to use; this is intended to make it easier to implement federated Rendezvous Servers.

Since publication of FIDO Device Onboard 1.0, some of the assigned numbers in that specification have been assigned
by IANA. The IANA-assigned numbers replace the numbers assigned in the FIDO Device Onboard 1.0 specification
(Appendix E: IANA Considerations).

Renamed RSA to RSAPKCS and RSAPSS, to include RSA PSS option

Modified profile text to call out RSAPKCS, to maintain compatibility with previous profile.

In description of error INVALID_JWT_TOKEN, removed TO2.HelloDevice, because there is no token. Also
generalized text a little, previous text was confusing to implementers.

EMErrorUuid renamed to EMErrorCID, since it is really a correlation ID (uint) and not intended to be universally
unique.

Added missing definition of OVDevCertChainHash

References§

Bluetooth Core Specification 4.0 . URL: https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?
doc_id=229737

J. Schaad. CBOR Object Signing and Encryption (COSE): Header parameters for carrying and referencing X.509
certificates draft-ietf-cose-x509-08. 13 December 2020. Standards Track. URL: https://tools.ietf.org/html/draft-ietf-
cose-x509-08

G. Mandyam; L. Lundblade; J. O'Donoghue. The Entity Attestation Token (EAT) draft-ietf-rats-eat-11. October 23,
2021. Standards Track. URL: https://datatracker.ietf.org/doc/draft-ietf-rats-eat/11/

R. Lindemann; et al. FIDO Technical Glossary . 25 May 2021. Review Draft. URL:
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-rd-20210525.html

FIPS PUB 180-4 Secure Hash Standard . URL: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Jim Schaad; et al. IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry. URL:
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

ISO/IEC 20008-1:2013 Information technology — Security techniques — Anonymous digital signatures. 2013. URL:
https://www.iso.org/standard/57018.html

ISO/IEC 20009-1:2013 Information technology — Security techniques — Anonymous entity authentication. 2013.
URL: https://www.iso.org/standard/57079.html

X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
https://www.itu.int/rec/T-REC-X.690-200811-S

R. Braden, Ed.. Requirements for Internet Hosts - Communication Layers. October 1989. Internet Standard. URL:
https://tools.ietf.org/html/rfc1122

H. Krawczyk; M. Bellare; R. Canetti. HMAC: Keyed-Hashing for Message Authentication. February 1997.
Informational. URL: https://tools.ietf.org/html/rfc2104

B. Kaliski. PKCS #1: RSA Encryption, Version 1.5 . March 1998. obsoleted by RFC 2437. URL:
https://tools.ietf.org/html/rfc2313

R. Fielding; et al. Hypertext Transfer Protocol -- HTTP/1.1 . June 1999. Draft Standard. URL:
https://tools.ietf.org/html/rfc2616

L. Bassham; W. Polk; R. Housley. Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. April 2002. Proposed Standard. URL:
https://tools.ietf.org/html/rfc3279

T. Kivinen; M. Kojo. More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE).
May 2003. Proposed Standard. URL: https://tools.ietf.org/html/rfc3526

D. Whiting; R. Housley; N. Ferguson. Counter with CBC-MAC (CCM) . September 2003. URL:

Informative References§

[BTCORE]

[COSEX509]

[EAT]

[FIDOGlossary]

[FIPS-180-4]

[IANA-COSE-ALGS-REG]

[ISO20008-1]

[ISO20009-1]

[ITU-X690-2008]

[RFC1122]

[RFC2104]

[RFC2313]

[RFC2616]

[RFC3279]

[RFC3526]

[RFC3610]

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://tools.ietf.org/html/draft-ietf-cose-x509-08
https://tools.ietf.org/html/draft-ietf-cose-x509-08
https://tools.ietf.org/html/draft-ietf-cose-x509-08
https://tools.ietf.org/html/draft-ietf-cose-x509-08
https://datatracker.ietf.org/doc/draft-ietf-rats-eat/11/
https://datatracker.ietf.org/doc/draft-ietf-rats-eat/11/
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-glossary-v2.1-rd-20210525.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iso.org/standard/57018.html
https://www.iso.org/standard/57018.html
https://www.iso.org/standard/57079.html
https://www.iso.org/standard/57079.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3526
https://tools.ietf.org/html/rfc3526
https://tools.ietf.org/html/rfc3610

https://tools.ietf.org/html/rfc3610

J. Schaad; B. Kaliski; R. Housley. Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. June 2005. Proposed
Standard. URL: https://tools.ietf.org/html/rfc4055

S. Josefsson. The Base16, Base32, and Base64 Data Encodings (RFC 4648). October 2006. URL:
http://www.ietf.org/rfc/rfc4648.txt

D. Cooper; et al. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
May 2008. URL: https://tools.ietf.org/html/rfc5280

S.Turner; et al. Elliptic Curve Cryptography Subject Public Key Information. Mar, 2009. Standards Track. URL:
https://tools.ietf.org/html/rfc5480

S. Cheshire; M. Krochmal. Multicast DNS . February 2019. Request for Comments. URL:
https://tools.ietf.org/html/rfc6762

Z. Shelby; K. Hartke; C. Bormann. The Constrained Application Protocol (CoAP). June 2014. Proposed Standard.
URL: https://tools.ietf.org/html/rfc7252

S. Josefsson. Textual Encodings of PKIX, PKCS, and CMS Structures . April 2015. Standards Track. URL:
https://tools.ietf.org/html/rfc7468.html

J. Schaad. CBOR Object Signing and Encryption (COSE) . July 2017. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8152

K. Watsen; et al. A Voucher Artifact for Bootstrapping Protocols . May 2018. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8366

H. Birkholz; C. Vigano; C. Bormann. Concise Data Definition Language (CDDL): A Notational Convention to Express
Concise Binary Object Representation (CBOR) and JSON Data Structures. June 2019. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8610

C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). December 2020. RFC. URL:
https://www.rfc-editor.org/rfc/rfc8949.html

SEC1: Elliptic Curve Cryptography, Version 2.0 . September 2000. URL: http://secg.org/download/aid-780/sec1-v2.pdf

D. R. L. Brown. SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2.0. Jan 27, 2010. URL:
https://www.secg.org/sec2-v2.pdf

Lily Chen. NIST Special Publication 800-107: Recommendation for Key Derivation Using Pseudorandom Functions.
October 2009. URL: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf

M. Dworkin. NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. Dec 2001. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. July 2007. URL: http://csrc.nist.gov/publications/nistpubs/800-

[RFC4055]

[RFC4648]

[RFC5280]

[RFC5480]

[RFC6762]

[RFC7252]

[RFC7468]

[RFC8152]

[RFC8366]

[RFC8610]

[RFC8949]

[SEC1]

[SEC2]

[SP800-108]

[SP800-38A]

[SP800-38C]

https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4055
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7468.html
https://tools.ietf.org/html/rfc7468.html
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8366
https://tools.ietf.org/html/rfc8366
https://tools.ietf.org/html/rfc8610
https://tools.ietf.org/html/rfc8610
https://tools.ietf.org/html/rfc8610
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html
http://secg.org/download/aid-780/sec1-v2.pdf
http://secg.org/download/aid-780/sec1-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/sec2-v2.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf

38C/SP800-38C_updated-July20_2007.pdf

M. Dworkin. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. November 2007. URL: https://csrc.nist.gov/publications/detail/sp/800-
38d/final

[SP800-38D]

http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final

	Local Disk
	FIDO Device Onboard Specification 1.1

